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Abstract. In this paper we analyze spot prices and futures quotation
data to get inference under both the historical and the risk neutral measure
in commodity crude oil market (data are referred to WTI index which
tracks the crude oil barrel price on NYMEX market). While big part of
research and techniques in finance deals with the risk neutral modeling
or with the model choice under the historical measure, the purpose of
this work is to study the estimation problem under both measures at the
same time, through a suitable parametric choice of the Radon-Nikodym
derivative. To conduct this estimation we resort to a recent technique in
Bayesian inference: the Particle Markov Chain Monte Carlo proposed by
Andrieu, Doucet and Holenstein [7], in which particle filters algorithms are
used to estimate the marginal likelihood for Markov Chain Monte Carlo
inference. We adopt a stochastic volatility two factor model to describe
the dynamics of the spot price, for which the futures prices and future
options prices are available in closed form. Three versions of the original
model, with and without jumps in prices and with seasonality term, are
taken into account and results are compared.

1. Introduction

Stochastic volatility models are a well-known choice in commodity markets,
Geman [18] and Hikspoors [16] discussed some of the most popular models
of this kind in commodity finance. The seminal paper, to which they refer is
the one by Schwartz [17], where the commodity spot values are modeled by a
mean reverting process and the convenience yield is incorporated in the dis-
count factor. While Cortazar and Schwartz [21] proposed an extension of the
original Schwartz model adding one factor to describe the long-term interest
rate by an Ornstein-Uhlenbeck process, Eydeland and Geman [20] proposed
a different extension adding a mean reverting OU-process to describe the in-
stantaneous variance of the diffusion term in the spot dynamics.
As Geman pointed out [19], the use of mean reversion in the dynamics of spot
values is controversial, in particular for crude oil market (the object of our
analysis) it is not always needed. In the same work it was suggested a simple
test to discriminate if a mean reverting dynamics is preferable to a simple dif-
fusion process, the results shows that for time series starting from 2005 there
is no strong evidence for a mean reverting modeling choice.
Further developments were implemented, as in Ribeiro and Hodges [23], to
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describe the dynamics for the oil sector of commodity market. Moreover in
this paper [23], it is also pointed out that the possibility for convenience yield
to assume negative values (to explain the contango effect in commodity mar-
ket) from a theoretical viewpoint is due to the cost of storage implied in prices
dynamics; if this term was separated off the convenience yield, then a Cox-
Ingersoll-Ross process for the convenience yield would automatically exclude
arbitrage opportunities in the market. In the model proposed in this article,
we stand on this remark by Ribeiro and Hodges, modeling the convenience
yield (once the cost of storage is separated off) with a CIR dynamics but
without imposing any linear dependence of the spot dynamics diffusion term
on the convenience yield; on the contrary, we prefer to include an extra volatil-
ity factor (with a CIR dynamics, like in the well known Heston model). The
possibility of jumps with finite activity (modeled by a compound Poisson pro-
cess with normally distributed jump size) is allowed in a second version of the
model, which has been tested with the same data set used for inference in the
model without jumps. A third version of the model substitutes the jump term
with a seasonality term (modeled by the usual periodic function, as suggested
also in [16]), allowing for a comparison between the effect of jumps and of the
seasonality term in the goodness of fit of analyzed data set. Data set used
for the estimation come from the WTI index spot values, quoted in NYMEX
market, and the futures written on it, more details about data sets are given
in a dedicated section. The time window considered spans from 01/02/2007
to 31/12/2010.
Inference under both the historical and the risk-neutral measures are quite
common in literature for models of this kind, and they could be easily ex-
tended to the present one. Some authors resorted to Bayesian analysis to
get inference in stochastic volatility framework: since the seminal paper by
Jacquier, Polson and Rossi [25] a fast-growing literature is exploring the ap-
plication of Bayesian estimation techniques, in particular MCMC methods, to
get inference for models belonging to this family. A branch of this literature
is devoting to study joint estimation under historical and risk neutral mea-
sure, using both stock and derivatives prices data. The link between the two
measures is provided by a suitable parametric choice of the Radon-Nikodym
derivative.
The main references in this section are the two papers by Eraker [1] and by
Eraker, Johannes and Polson [2] in which some popular stochastic volatility
models are analyzed using a Gibbs sampling algorithm. Further references
in which the Gibbs sampling method is used to get inference for stochastic
volatility models, eventually including jumps, are the papers by Forbes, Mar-
tin and Wright [3] and, more recently, by Yu, Li and Wells [4], who extended
the results by Eraker [1] including different jump models in the analysis and
compare them; all these paper refer to equity markets, analyzing S&P500
or DAX data. Another Bayesian technique which is becoming popular to
get inference in a stochastic volatility framework, and when latent factor are
present in general, is the particle filter (PF) method. This is a bayesian filter
algorithm based on sequential importance sampling for bayesian networks; dif-
ferently from Kalman filter, it can be used also for non-gaussian and non-linear
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dynamics. A complete survey on the theoretical background and implementa-
tion details on particle filters are the papers by Andrieu and Johansen [9], and
Arulampalam et al. [10], while for application to stochastic volatility models
Javaheri [11], Johannes, Polson an Stroud [6], Aihara [28]. Since the success
of PF techniques, different authors have worked on efficient estimation with
Particle filters, and conjunction of MCMC and PF algorithms; this culminated
in a paper by Andrieu, Doucet and Holestein [7], where have been introduced
the particle Markov Chain Monte Carlo algorithms that implement for infer-
ence on parameter set of a model an MCMC where the marginal likelihood is
estimated by a nested Auxiliary particle filter. We have adopted an algorithm
belonging to this family to carry out inference on the model chosen.

2. The Models Proposed

We studied three possible different variants the basic model including a
volatility process and a convenience yield process into spot price dynamics.
Both the spot variance and the convenience yield processes follow a CIR dy-
namics. Under the historical measure P the dynamics is the following:

(2.1)



dSt
St

= (µ+ c− δt)dt+
√
VtdW

(P)
St

dδt = α(δ̄ − δt)dt+ σ
√
δtdW

(P)
δt

dVt = β(V̄ − Vt)dt+ ξ
√
VtdW

(P)
Vt

dW
(P)
St

dW
(P)
Vt

= ρdt

Besides the basic model we considered the same model allowing for jumps
in the spot dynamics (modeled with poisson distributed jump time arrivals
and normal jump size), and the basic model with a seasonality term in spot
dynamics. The only dynamics changing from one model to the other is the
spot equation. In the model with jumps the dynamics equation becomes:

(2.2)



dSt
St

= (µ+ c− δt)dt+
√
VtdW

(P)
St

+ dJ
(P)
St

dδt = α(δ̄ − δt)dt+ σ
√
δtdW

(P)
δt

dVt = β(V̄ − Vt)dt+ ξ
√
VtdW

(P)
Vt

dW
(P)
St

dW
(P)
Vt

= ρdt

In the case with seasonality we add the usual sinusoidal term (like discussed
also in [16], hence the equation become:

(2.3)


dSt
St

= g(tyear) + (µ+ c− δt)dt+
√
VtdW

(P)
St

g(ty) = exp{ζ1(sen(2πtyear + ω1)) + ζ2(cos(2πtyear + ω2))}
with tyear the number of days from the first of January of the same year di-
vided by 365. The dynamics of the convenience yield process and the variance
process does not change from previous models.

Since seasonality term is just a deterministic function of time, changing from
a probability measure to another one does not affect it. Hence, following, we
discuss the model that allow spot prices to jump (2.2) (since also the risk-
neutral dynamics for the basic model can be derived easily: just neglecting
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the jump terms), and we refer to this model In order to describe the dynamics
under the risk-neutral measure, we need to define the Radon-Nikodym deriv-
ative of this measure with respect to the historical one. The parametric form
we choose is the same proposed by Heston [12] and by Pan [13], which pre-
serves the model structure under the measure change. This can be specified by
the following relations between the Wiener processes under the two measures,
provided by the Girsanov theorem:

(2.4)


dW

(Q)
δt

= dW
(P)
δt
− ηδ
σ

√
δtdt

dW
(Q)
Vt

= dW
(P)
Vt
− 1√

1− ρ2

(
ρηSt +

ηV
ξ

)√
Vtdt

dW
(Q)
St

= dW
(P)
St

+ ηSt
√
Vtdt

Hence in (2.2) µ = r + ηS
√
Vt + µ∗J where µ∗J is the compensator of the jump

process.
According to the specified choice, the jump structure remains the same under
the two measures; only the drift term in the spot dynamics will be affected by
the measure change, in order to assure that the discounted price process is a
martingale under the risk-neutral measure Q.
Hence, under the risk-neutral measure Q:

(2.5)



dSt
St

= (r + c− δt − µ∗)dt+
√
VtdW

(Q)
St

+ dJ
(Q)
St

dδt =
(
α(δ̄ − δt) + ηδδt

)
dt+ σ

√
δtdW

(Q)
δt

dVt =
(
β(V̄ − Vt) + ηV Vt

)
dt+ ξ

√
VtdW

(Q)
Vt

dW
(Q)
St

dW
(Q)
Vt

= ρdt

1

We make the usual choice of describing the price dynamics through the log-
price process: xt = log[St]. It is worth remarking that, since the cost of storage
is separated off the dynamics of the convenience yield, δt this is modeled by
a CIR process that prevents it from assuming negative values, automatically
excluding arbitrage opportunities in the market, as pointed out in Ribeiro and
Hodges [23].
Moreover, since δt − c can assume both positive and negative values, normal
and inverted futures market structures are both allowed.
To cope with the inference in this setting we use a Euler discretization method.
The discretized model (under the risk neutral measure) can be written as
follows:
(2.6)
xt+1 = xt + (r + c− δt −

1

2
Vt − µ∗)∆t+

√
1− ρ2

√
Vtε

(S)
t + ρ

√
Vtε

(V )
t +

∑N
(J)
t

i=1 ε
(J)
i,t

δt+1 = δt +
(
α(δ̄ − δt) + ηδδt

)
dt+ σ

√
δtε

(δ)
t

Vt+1 = Vt +
(
β(V̄ − Vt) + ηV Vt

)
dt+ ξ

√
Vtε

(V )
t

1for the basic model we just ignore µ∗ and dJ
(Q)
St

, for the model with seasonality we add

the seasonality factor (g(tyear)) to the spot dynamics like in (2.3)
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Where each ε
(S)
t , ε

(V )
t and ε

(δ)
t are normally distributed random variables with

zero mean and variance ∆t. In the discretized jump addend, the N
(J)
t are

independent Poisson distributed r.v. with parameter λJ , while ε
(J)
i,t are inde-

pendent normal r.v. with mean (µJ − ηJ) and variance σ2J . All the random
variables just listed are independent on each other.
Under the historical measure the same discretization holds, provided that the
risk premium {ηδ, ηV , ηJ} and the compensator µ∗ are set to zero, while the
drift coefficient rf + c has to be substituted by µ.
The futures price is given by the following expression:

(2.7) F (0, τ) = exp{A0(τ) + xt +A2(τ)δt}

where τ = T − t is the futures time to maturity. Details about computations
and the specifics of the functions A0(τ) and A2(τ) are provided in the appen-
dix. In case we consider model allowing for seasonality, the future slightly
change, and it becomes:

(2.8) F (0, τ) = g(Tyear) exp{A0(τ) + xt +A2(τ)δt}

where Tyear is the time in years the maturity day differ from the first of January
of the same year.
Since the prices of a futures are affected by different kind of noises (possible
incomplete specification of the model, market inefficiency, random noise, etc)
we modeled the price of the futures making the hypothesis that the market
price, FM(0, τ), are represented by the theoretical price got by (2.7) plus an
error distributed as a white noise εfut ∼ N (0, σ2ε )

2:

(2.9) FM(0, τ) = F (0, τ) + εfut

3. Futures Prices

When the underlying follows, under the the dynamics Q (2.5) the Kol-
mogorov backward equation for the generic contract value, f(t, xt, δt, Vt, Jt),
at time t, when the underlying follows, under the Q measure, the dynamics
(2.5) is:

∂f

∂t
+ ∂f∂x(rf + c− λµ∗J − δt −

1

2
Vt) +

1

2

∂2f

∂x2
Vt+

+
∂f

∂δ

[
α(δ̄ − δt)− ηδδt

]
+

1

2

∂2f

∂δ2
σ2δt+

+
∂f

∂V

[
β(V̄ − Vt)− ηV Vt

]
+

1

2

∂2f

∂V 2
ξ2Vt+

+
∂2f

∂V ∂x
ρξV+

+ λ [f(t, xt + ln(1 + J), δt, Vt)− f(t, xt, δt, Vt)] = 0

(3.1)

The PDE (3.1) has to be solved with the usual terminal condition f(t = T ) =
H(xT , δT , VT ) with H payoff at time T maturity, and since we are dealing with

2σ2
ε is fixed at value: half of the mean highest-lowest (future price) range observed daily
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futures the final payoff is:

(3.2) H(xT , δT , VT ) = exp{xT }

We make the hypothesis of a solution form:

ft = exp{A0(t) +A1(t)xt +A2(t)δt +A3(t)Vt}

if we try this guess solution into (3.1), we get the follow ODE system:

(3.3)

− ∂A0(τ)

∂τ
+A1(τ)(rf + c) +A2(τ)αδ̄ +A3βV̄ = 0

− ∂A1(τ)

∂τ
= 0

− ∂A2(τ)

∂τ
−A1(τ)−A2(τ) + 1

2A
2
2(τ)σ2 = 0

− ∂A3(τ)

∂τ
− 1

2A1(τ) + 1
2A

2
1(τ)−A3(τ)(β + ηV ) + 1

2A
2
3(τ)ξ2 +A1(τ)A3(τ)ρξ = 0

where we changed variable from t to τ = T − t 3 .
Since the payoff is (3.2) we obtain the initial condition for the ODE system:

(3.4)


A0(0) = 0

A1(0) = 1

A2(0) = 0

A3(0) = 0

Solving previous system we get :

(3.5)



A0(τ) = (rf + c)τ − 2αδ̄

σ2

[
Bτ + log

(
D −B exp{Cτ}

D −B

)]
A1(τ) = 1

A2(τ) = − 2
σ2

exp{Cτ} − 1
exp{Cτ}

D − 1
B

A3(τ) = 0

with:

(3.6)


C =

√
(α+ ηδ)2 + 2σ2

D =
(ηδ − α) + C

2

B =
(ηδ − α)− C

2

3Note also that in the system above there is no dependence on the
jump process parameters, since the compensator µJ is by definition: µJ =
[f(t, xt + ln(1 + J), δt, Vt)− f(t, xt, δt, Vt)].
Hence there is no difference in futures pricing formula between model including jump
process and model excluding it.
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4. Inference Algorithm

The reference object of our inference is the vector {Θ, V0:T , δ0:T , J0:T } where
V0:T , δ0:T , J0:T are the three latent processes (the variance process, the conve-
nience yield and the jump process) and Θ is the set of parameters, that is our
main inference target: Θ = {ε, µ, c, α, δ̄, σ, ηδ, β, V̄ , ξ, ηV , ρ, λ, µJ , σJ , ηJ}4. For
simplicity we shall indicate with X0:T the vector of the three latent processes
{V0:T , δ0:T , J0:T }, and by Z1:T the set of observed market data (coming from
both asset price and futures price quotations).

To make inference in a so large state space, Particle Markov Chain Monte
Carlo methods (from now on PMMC) represents an efficient technique, since
it allows to simulate the latent processes in a single simulation block. The
PMMC allows to sample from p(Θ, X0:T |Z1:T ), that is the joint probability
distribution of the parameter set and the latent processes given the observed
data. To sample with a Monte Carlo technique from such a probability dis-
tribution we make use of a particle filter algorithm5 to estimate the marginal
likelihood L(y|Θ), this will be used in defining an acceptance ratio probability
that will ensure that after a certain amount of time, whatever point in state
space we started from, we will sample from the right distribution, getting un-
biased estimate for Θ.
The MCMC method used is a variant of the well known Metropolis-Hastings
algorithm

• At step (s=0)
after setting a starting point Θ = θ(0) arbitrarily, then a Sampling Im-
portant Resampling algorithm is implemented. SIR algorithm allows

to simulate the latent processes x
(0)
1:T from the distribution p(X1:T |Z1:T , θ(0))

and an estimate of the marginal likelihood p(Z1:T |θ(0))
• At step (s from 1 to MC, the length of the Markov chain sequence we

want to simulate)
a new value set, θ∗, is sampled from a proposal (symmetric) distri-
bution q(·|θ(s − 1)) and the new sampling value is accepted with a
probability:

min

(
1,

p(z1:T |θ∗)p̃(θ∗)
p(z1:T |θ(s− 1))p̃(θ(s− 1))

)
where p̃(·) is the prior distribution, while p(z1:T |θ∗) is the likelihood
for the observation chain given the parameter set θ∗.
Again the marginal likelihood and x∗1:T comes form a PF algorithm
run.
If accepted: θ(s) = θ∗, otherwise: θ(s) = θ(s− 1).

According to this algorithm we are sampling from a Markov chain whose
limiting distribution is:

p(Θ, X1:T | Z1:T ) = p(θ|z1:T )pθ(x1:T | z1:T )

4in the case of the model with seasonality we replace the parameters referring to
jumps({λ, µJ , σJ , ηJ}) with the parameters referring to seasonality: {ζ1, ζ2, ω1, ω2}

5Details about the generic Particle Filter algorithm and probability distributions used in
the simulation we conducted are in appendix A.
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We can also discard the information about hidden state process and use the
sample to get inference about θ, if we need just the last one.
To reduce the number of rejected proposal, and increase mixing of the chain
different techniques are known, as Metropolis within Gibbs variant, that is the
one we implemented in our sampling algorithm. The output coming from the
PMMH (particle Metropolis Hastings algorithm), as any MCMC output need
to be resized, removing the burn in, that is the part of the chain needed by
algorithm to get to the stationary distribution. To check that convergence to
stationary distribution was reached (for all the parameters) we adopted the
Geweke test [?].

5. The Data

The data set used for the analysis are relative to WTI Cushing Crude Oil
spot and futures quotations on NYMEX market from 1/02/2007 to 31/12/2010.
Spot data are collected from the US Energy information administration web-
site where a large collection of energy related time series (among which the
WTI FOB spot prices) is provided. Daily data are taken into account for
any available working day in the interval. A plot of the spot data used in
estimating parameter set of the different models analyzed is in figure Fig.1

Figure 1. Spot FOB data for WTI crude oil

Besides spot data, for any working day we recorded a panel of 12 future
contract values. Their maturity day is fixed on the first working day of each
month of 2012. So for any trading day we analyzed a spot datum and 12
futures data, and in the range there are 988 dates. Hence the data set consists
in 988 spot values and 11856 future contracts.
In addition to this data set we reserved a panel of data to evaluate out of the
sample performances. The data set include again a FOB spot datum and a
panel of 12 future data (with different maturity one for each month of 2012,
the maturities are set on the first trading day), the range of dates goes from
01/01/2011 to 28/09/2012. The number of working days in the range is 187.
Future contracts are usually characterized by their behaviour when time to
maturity goes to zero. If at a certain date the futures quotation increases
when the time to maturity become longer, it usually said the future market is
normal, otherwise is said inverted. In figure Fig.2 are indicate the dates for
which we can observe a normal future market (equivalent to the value +1)
and the dates with an inverted future market(equivalent to the value −1).
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Figure 2. the dates in the data set used for the parameter
estimation are divided in normal future market days (+1 value)
and inverted future market days (−1 value)

Both in the analyzed period and in the data set used to evaluate out of
the sample performances show both the future market behaviour. The two
behaviour are shown in the figures Fig.3 and Fig.4 and illustrate, respectively,
the future market structure at the date 11/05/2011 and at 25/08/2011.

Figure 3. Normal future market: WTI future quotations 11
May 2011, different maturities. On x-axis are the days to de-
livery

Figure 4. Inverted future market: WTI future quotations 25
August 2011, different maturities. On x-axis are the days to
delivery

6. Numerical Results

The analysis has been conducted with model (2.6), with the same model
excluding jumps (that is imposing λJ = 0) and with the same configuration
of the latter model, including the seasonality factor g(tyear), as in (2.3).

Discarded the first part of each chain (10000 iterations for both the models),
we elaborated the simulation to get inference on parameter set. The results
are summarized in table 1.
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Table 1. Parameter inference: posterior means (and posterior
standard deviation) of the model parameter set Θ for three
analyzed models. All values are scaled by a 100 factor

Model Parameters Basic Model Model with Seasonality Model with Jumps

µ
0.0843 0.0757

(0.0016) (0.0717) ()

c
0.2215 0.1985

(0.0023) (0.0943) ()

α
0.0258 0.1047

(0.0196) (0.0651) ()

δ̄
0.1973 0.1915

(7.48E − 4) (0.0058) ()

σ
0.0304 0.0593

(0.0033) (0.0226) ()

ηδ
0.0282 0.0271

(2.45E − 4) (0.0035) ()

β
1.5165 1.3730

(0.2376) (0.8001) ()

V̄
0.0438 0.0359

(9.02E − 4) (0.0092) ()

ξ
0.3394 0.0359

(0.0048) (0.1159) ()

ρ
−50.63 −31.88
(2.1394) (16.60) ()

ζ1
− 0.8679

(−) (0.2534) ()

ζ2
− −0.9197

(−) (0.1607) ()

ω1
− 4.3136

(−) (2.2499) ()

ω2
− 4.4705

(−) (4.2490) ()

λJ
− −

(−) (−) ()

µJ
− −

(−) (−) ()

σJ
− −

(−) (−) ()

Together with inference about the parameters we got also inference on the
path of the latent processes (convenience yield and variance process). In the
following figures (Fig.5, Fig.6 and Fig.??) are shown the inference on the
latent processes for the different models, the blue line represent the mean of
all path, that we can interpret as our estimate for the process, in red the
lines representing the estimate plus (and minus) the standard deviation of the
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position of all the sampled path: we are interpreting the standard deviation
as the error associate with our estimation.

Figure 5. inference on dynamics for the convenience yield and
the volatility process got under the model without seasonality
or jumps

Figure 6. inference on dynamics for the convenience yield and
the volatility process got under the model with seasonality

In the table 1 are summarized the results for posterior distributions p(Θ|Z0:T )
for the three models.
Since cost of storage (c) estimate is greater than long run convenience yield
(δ̄) one, then c − δt assumes often positive values, which reflects in a normal
market effect in futures structure, as it is present for most of the dates in the
considered period. From Fig.5 and Fig.6 we can observe that the estimate for
δt is greater than the estimate for c in the same perdiods when in the markets
are observed an inverted future market, as it is possible to see from Fig.2. The
sharp increase in volatility and decrease in convenience yield estimate corre-
sponds to the fall in spot valuation in the period 01/08/2008− 31/12/2008

7. In the sample and out of the sample performances

To compare performances by the two model we analyzed both in the sample
and out-of the sample results. for in the sample results we, as Yu Li Wells [4],
analyzed the ε residuals to verify if the assumption of normality is satisfied
, hence the model well describe the dynamics of data we are studying. Out-
of the sample we ran a particle filter algorithm using the parameter set we
got from inference and check the RMSE and MAE for futures and option on
futures, to value which perform better perform for risk-management purposes.
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To analyze the goodness of fit and to compare the different models, we studied

the residuals ε
(S)
t , ε

(V )
t , ε

(δ)
t from (2.6):

(7.1)



ε
(S)
t =

xt+1 − xt − (µ+ c− δt)∆t√
Vt∆t

ε
(V )
t =

Vt+1 − Vt − β(V̄ − Vt)∆t√
Vt∆t

ε
(δ)
t =

δt+1 − δt − α(δ̄ − δt)∆t
σ
√
δt∆t

The model hypothesis is they are distributed according to a standard normal,
we use the Kolmogorov-Smirnov test to check this hypothesis, and when it
is not satisfied we compute the skewness and kurtosis of the distribution to
compare the different models. For the risk neutral dynamics we evaluate the

Table 2. Analysis of the residuals under the historical mea-
sure for the three model, for each residual is reported the p-
value of the Kolmogorov-Smirnov test, the skewness and the
kurtosis of the distribution

Residual Basic Model Model with Seasonality Model with Jumps

εS

KS test 0.346 0.502
skewness −0.053 −0.045
kurtosis 2.674 2.732

εδ

KS test 7.6E − 71 2.4E − 20
skewness −0.907 −1.043
kurtosis 7.240 9.529

εV

KS test 2.5E − 12 4.1E − 14
skewness 0.216 0.266
kurtosis 11.42 8.424

square root of the mean of quadratic errors (RMSE) and the absolute mean
error (AME)for both the data sets: the data set used for parameter estimation
(in the sample set ITS) and the data set outside the first one (out of the sample
OTS). Results are shown in Table 7.

Futures error Basic Model Model with Seasonality Model with Jumps

ITS
RMSE 3.21 2.86
AME 2.33 2.03

OTS
RMSE
AME

8. Conclusions
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Appendix A. Particle Filter

The particle filter the algorithm implemented is the Sampling Important
Resampling (SIR) algorithm. It was introduced to overcome degeneracy typi-
cal of standard bootstrap Particle Filter, which is a technique to sample from
a distribution p(X1:T |Z1:T ) by sequential application of Importance Sampling
Monte Carlo sampler. Each simulated process is identified as “particle”.
With respect to the basic bootstrap method in SIR algorithm a resample step
is added. Roughly speaking, with re-sampling we will focus our sample on the
most probable particles, avoiding that the most of particles lose their “impor-
tance weight” moving on an improbable forward direction.
Describing our discretized model with the following probabilities:

(A.1)

{
xk ∼ p(xk|xk−1)
zk ∼ p(zk|xk)

The SIR algorithm is (for the generic time step t = k6):

(1) for j = 1, . . .M sample x
(j)
k from q(xk|x

(j)
0:k−1, z0:k)

(2) x
(j)
0:k = (x

(j)
0:k−1, x

(j)
k )

(3) compute the importance weight for all the particles (for j = 1, . . .M)

ω
(j)
k = ω

(j)
k−1

p(zk|x
(j)
k )p(x

(j)
k |x

(j)
k−1)

q(xk|x
(j)
0:k−1, z0:k)

(4) normalize the importance weights:

w
(i)
k =

ω
(i)
k∑M

j=1 ω
(j)
k

(5) for j = 1, . . .M sample x
(j)
0:k from the empirical distribution

M∑
i=1

w
(i)
k δx(i)

0:k

6The time step t goes from 1 to T , hence the algorithm has to be repeated for all the
time step

http://www.jstatsoft.org/v21/i11/paper
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(6) since all the particles are, now, equally probable, set w
(j)
k = ω

(j)
k = 1

M
for all the j

(7) go to the next time step k + 1
(8) at time T the likelihood

p(z1:T |θ) = p(z1|θ)
T∏
t=2

p(zt|z1:t−1, θ)

can be estimated by the weights ω:

p̂(zt|z1:t−1, θ) =
M∑
j=1

ω
(j)
t

the probability function come from the Euler-discretized version of the model
in (2.6). As in [28], we integrated out the jump process, instead of simulating
it to spare computation time and improve algorithm efficiency, hence the sim-
ulated latent process is X0:T = {V0:T , δ0:T }.
The probability distribution used in simulation are:

(A.2) q(xk|x
(j)
0:k−1, z0:k) = q1(δk|δk−1)q2(V k|V k − 1, xk)

with
(A.3)

q1(δk|δk−1) ∼ N
(
δk−1 + [α(δ̄ − δk−1) + ηδδk−1]∆t;σ2δk−1

)
q2(Vk|Vk−1) ∼ N

(
Vk−1 + [β(V̄ − Vk−1) + ηV Vk−1]∆t

)
p(zk|Vk, δk) ∼

+∞∑
j=0

e−λ∆t(λ∆t)j

j!
N
(
zk−1 + (rf + c− δk − µ∗)∆t+

ρ

ξ
MV + jµJ ; (1− ρ2)Vk + jσ2

J

)
MV = Vk − Vk−1 − [β(V̄ − Vk−1)− ηV Vk−1]∆t
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