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Fred E. Benth, Richard Biegler-König and Rüdiger Kiesel

Abstract Electricity markets feature a non-storable underlying, which implies the
break down of traditional cash-and-carry arguments as well as the well-known spot-
forward relationship. We introduce the notion of information premium to describe
the influence of future information - such as planned power plant maintenance - on
the relationship between forward contracts and the spot market. In a recent paper
we designed a statistical test to show the existence of the premia. Here, we exam-
ine how the presence of an information premium alters the prices of options on
forwards. Also, we apply the technique of enlargement of filtrations to show how
to calculate the premium specifically for certain types of information and delivery
periods. Furthermore, we illustrate the results in various stylised examples.

1 Introduction

Since deregulation in the 1990s, electricity has been traded on exchanges in vari-
ous regions such as Europe and the US. As an underlying, electricity is special in
many ways, with market design having to take different technical and regulatory
constraints into consideration. The most fundamental of the intrinsic properties of
electricity is its non-storability. This has a huge impact on price behaviour, espe-
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cially when it comes to the relation between spot and forward prices. Traditional
theory utilises no-arbitrage and cash-and-carry arguments to derive the well-known
spot-forward relationship

F(t,T ) = e(r−y)(T−t)St (1)

where F(t,T ) is the forward price in t with maturity in T , St is the spot price, r is
the interest rate and y reflects storage costs and convenience yield. In probabilistic
terms this corresponds to the risk-neutral valuation formula

F(t,T ) = EQ[ST |Ft ] (2)

Here, Q is a pricing measure and Ft denotes the historical filtration, i.e. the filtra-
tion as generated by the past and present of the spot price process. This definition
motivates the introduction of the so-called risk premium, i.e. the difference between
the expectations under a pricing measure and the real-world measure. The risk pre-
mium is subject of intense research, discussed for example in Longstaff and Wang
[28], Bessembinder and Lemmon [9], Lucia and Torró [34], Furiò and Meneu [18],
Diko et al. [16] and Benth, Cartea, Kiesel [6].

Still, with electricity being non-storable this classical relationship collapses. As
a stylised example we consider the announcement of planned maintenance of some
utility in the future. This is very likely to induce higher forward prices around that
time, whereas spot prices today will remain unchanged. In other words, we ex-
perience a situation in which movements in forward prices are not anticipated by
spot prices. Mathematically, this means that a non-storable underlying results in an
asymmetry between the historical filtration and what we will call the market filtra-
tion (Gt ).

This asymmetry leads to two different models in terms of a process and a filtra-
tion, namely (St ,Ft) and (St ,Gt). Looking at the spot isolated from the forward mar-
ket we have the non-validity of the Efficient Market Hypothesis (i.e. not all available
information is reflected) and thus (St ,Ft) is the actual spot model with knowledge
only of the evolution of the spot thus far. The forward market, on the other hand, is
efficient (at least theoretically) and future information is taken into account. Hence,
forward contracts are priced according to (St ,Gt) in our framework.

In a first paper, Benth and Meyer-Brandis [7] described the inadequacy of the his-
torical filtration when relating spot and forward prices on electricity markets. They
propose to complement the filtration by specific pieces of future information and
introduce a new pricing relationship. Referring to the risk premium they introduce
the notion of the information premium. This is defined as the difference between the
forward price under an enlarged market filtration and that under the historical filtra-
tion. For an arithmetic spot model they apply the theory of enlargement of filtrations
(French: grossissement de filtration) to calculate the information premium in some
cases. This theory was initiated by Itō [23] and developed by French mathematicians
in the 1980s and mainly provides the decomposition of semi-martingales under an
initially enlarged filtration.
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Benth, Biegler-König and Kiesel present a thorough empirical investigation of
the information premium in [5]. They prove its existence by a specially designed
test and analyse in detail two market situations, one being the Moratorium discussed
as a motivating example below, the other being the beginning of the second phase
of the EU ETS in 2008 when additional costs for CO2 were priced into the forwards
while the spot remained unchanged. They find significant information premia for
both scenarios, which match expectations in terms of size and shape.

To illustrate further, as mentioned above, we will consider a market situation that
occurred on the German EEX in March 2011. On 11 March 2011 the Tōhoku earth-
quake and the consequent tsunami heavily damaged several nuclear power plants in
Japan, in particular the one in Fukushima. Only three days later, on 14 March 2011,
the German government reevaluated their nuclear policy and issued the so called
”Atom Moratorium”, by which the seven oldest plants (eight reactors with a capac-
ity of more than eight GW) in Germany were to be shut down for three months.
This measure was to allow for a new evaluation of the usage of nuclear power in
Germany. Consequently, the market exhibited a sharp increase in forward prices
while spot prices remained at their pre-Moratorium level. Considering the merit-
order, this might, at first, sound surprising. Still, of the eight reactors, Brunsbüttel
and Krümel (both in Schleswig-Holstein) had been offline for some time due to con-
stant maintenance problems. Also, Biblis B (in Hessen) had gone into regular revi-
sion earlier. Hence, in effect, only around 4000 MW were switched off. At the same
time, not only was more solar and wind electricity produced (rather accidently) but
also Germany started importing cheap nuclear power from France (Germany actu-
ally exported four GW before and imported around two GW after the Moratorium).
Summarising, there was no change of the price-setting technology. Obviously, on
the demand side this was also due to the mild season. We refer to the report written
by the Bundesnetzagentur to the federal ministry of economics and technology [1]
for more details. Although the official end of the Moratorium was 15 June 2011, it
was widely expected that the seven plants would stay offline even after that date,
and indeed their permanent shut-down was decided on 31 May 2011.

The effect of the Moratorium and this future outlook was a sharp increase in
forward prices, not only of those whose delivery fell into the three months of the
Moratorium but also of those with a later delivery period.

As an example, when considering the evolution of the price of the forward with
maturity in May 2011, we find that the Moratorium is the most striking date, ex-
hibiting a huge increase in prices (i.e. a positive information premium). This for-
ward had a mean price of 46.93 Euro before the Moratorium and a 57.83 Euro
post-Moratorium mean. This corresponds to an increase of more than 10 Euro, i.e.
almost 25%. Prices remained at a high level until the end of the delivery period.

On the other hand, the forward with delivery in July 2011 behaved differently.
Again, there was a huge and sudden price increase following the Moratorium re-
sulting in a higher price level all through April and May. Then, with the beginning
of June the price returned to its pre-Moratorium level, i.e. the (positive) information
premium was neutralised by other effects: another four reactors had gone offline in
May and were only coming back online in the beginning of June (again, we refer to
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[1]). Furthermore, demand was low because of the season. Still, with the final deci-
sion to shut down the seven old plants, political uncertainty was also removed and
market participants began to better understand the new situation for summer 2012.
This shows that the impact of future information can indeed change over time, i.e.
the information premium is a function in time. For more details on the Moratorium
we also refer to the recent paper [33] in which forward prices as well as fuel prices
are examined empirically. The author can explain price paths of forwards and con-
cludes that the market reacted efficiently to the new legislative framework.

Thus, summarising, one finds that forward prices reacted to some future infor-
mation (or market sentiment) which was publicly available, but the spot did not.

In this article though, we want to extend the theoretical results of Benth and
Meyer-Brandis [7]. In particular, we will examine how the information premium
interacts with option prices. The necessary definitions and basic concepts will be
introduced in Section 2. In Section 3 we will use a very simple Brownian spot model
to examine the behaviour of option prices under additional information. This will be
closely related to the literature on modelling insider trading, which will be discussed
in Section 3.1. As a tool for pricing options, we will then provide formulae for
the information premium. Here, we will consider more complex and more realistic
situations than in [7]. In Section 5 we will illustrate our findings by presenting a
number of stylised examples. Finally, Section 6 will conclude the article.

We remark that the approach taken in this article (and also in [7] or [5]) is that
of modelling the spot using a reduced-form model. Our goal is to explore the rela-
tionship between spot and forward on electricity markets in general. Another branch
of the literature introduces so-called fundamental or structural models. These take
into consideration driving factors of electricity markets and deduce their prices from
those factors. As an example, let us mention the paper by Aı̈d et al. [2]. Here, the
authors model prices of fuels, demand and capacity and then deduce spot prices
as the marginal production costs using the most expensive needed production tech-
nology. Coulon and Howison [14] and Burger et al. [12] follow a similar approach.
Furthermore, it is worth mentioning the paper by Cartea et al. [13]. Here, the authors
set up a spot price model in the usual (reduced-form) way but they also include a
regime-switching part. Their switching parameter is deterministic and derived by
comparing forecasted demand and forecasted available capacity. Thus, they incor-
porate specific future information into their spot model.

2 Preliminaries

In this section we will provide important definitions and first results about the infor-
mation premium. We will consider forwards with a single delivery point rather than
the more realistic delivery period. This is to ease notation. Once we start calculations
(Section 3 and Section 4) everything can easily by adapted to delivery periods. In
the second part we will introduce the theory of enlargement of filtrations, including
the theorems and auxiliary results which will be used later.
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2.1 The information premium

The classical spot-forward relationship has already been mentioned in the introduc-
tion. We define it formally again:

Definition 1. Classical Spot-Forward relationship. With Q a pricing (risk-neutral)
measure1, we have

F(t,T ) = EQ[ST |Ft ] (3)

where F(t,T ) denotes the time t-price of a forward maturing at T , T ≥ t ≥ 0, St
is the spot price and EQ[·|Ft ] is the conditional expectation under the historical
filtration Ft = σ(Su : u≤ t).

We can now compare the conditional expectation under the real-world measure
with the conditional expectation under the pricing measure, and use the difference
as an indicator for market sentiment.

Definition 2. Risk Premium. The risk premium is defined as

RQ(t,T ) = EQ[ST |Ft ]−EP[ST |Ft ] (4)

Note that observed forward prices are often used for the expression EQ[ST |Ft ]
(by assuming the correctness of equation (3)). After calculating expectations under
P one then analyses the difference.

Since we want to study the impact of different information sets on forward prices,
we introduce further filtrations finer than the historical filtration. We need a filtration
which contains specified information on future spot prices and a slightly coarser
filtration which contains some un-specified additional information. To be precise:

Definition 3. Filtrations. Let Ht be a filtration which includes the historical filtra-
tion as well as precise knowledge of the future value of the underlying at some time
point Tϒ , i.e.

Ht = Ft ∨σ(STϒ
) (5)

Also, let Gt be a filtration that includes some information on the level of the future
value of the underlying at time Tϒ . We will call this filtration the market filtration
and we will assume that it represents the information available to market traders.
This yields the relationship Ft ⊆ Gt ⊆Ht .

As an example of possible future information available to the market we might
consider Gt = Ft ∨σ(1{STϒ

≥K}). For this threshold information we know the value

1 We remark that the spot price of electricity is not a traded asset and thus its discounted value
needs not be a martingale under the risk-neutral measure. Hence, all measures Q equivalent to the
real-world measure P are possible candidates.
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of the underlying at time Tϒ will be larger than some constant K but we do not know
the precise value.

Having in mind our main examples (the Moratorium and the introduction of the
CO2 certificates) a more realistic approach than information given only in Tϒ would
be additional information about the spot at a number of future time points. We re-
mark that the calculations of Section 4 can also be conducted for this multiple infor-
mation case. Still, in this report we will concentrate on the single information case
to keep things as simple as possible.

Now we can define the information premium properly:

Definition 4. Information Premium. Let Gt be the market filtration with extra in-
formation at Tϒ . Then the information premium is defined as

IQG (t,T ;Tϒ ) = FQ
G (t,T )−FQ

F (t,T ) (6)

i.e. the difference between the forward prices under the market and the historical
filtration.

In the following we will assume that all market participants work with the fil-
tration G . This implies that instead of assuming observed forward prices equal
EQ[ST |Ft ] forward prices are calculated by market participants as EQ[ST |Gt ]. In
other words, we assume that under additional information traders price electricity
forwards according to

FQ
G (t,T ) = FQ

F (t,T )+ IQG (t,T ;Tϒ ) (7)

i.e. the traditional forward price adjusted by the information premium.
Lemma 1 provides the most important property of the information premium.

Lemma 1. Orthogonality of the information premium. The information premium
is the residual when projecting the forward price under Gt onto the space L2(Ft ;Q).
In other words,

EQ[IQG (t,T )|Ft ] = 0 (8)

Proof. From Definition 4, the fact that Ft ⊆ Gt and the tower property the result
follows straightforwardly.

The consequence of this lemma is that the information premium cannot be at-
tained by a measure change (the general approach in Financial Mathematics and the
method used frequently to deduce the risk premium). For the difficulties this causes,
particularly in empirical investigations, the reader is referred to [5].

2.2 Enlargement of filtration

Itō [23] initiated the theory of enlargement of filtration and provided a first theorem.
Most results have since been proposed by French mathematicians, especially in the
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1970s and 1980s, for example Jeulin, Yor or Jacod [24, 26, 27]. A comprehensive
introduction is provided in Protter’s book [32, Chapter VI] but also in Amendinger’s
thesis [3]. The most important application of the theory in finance is modelling stock
markets with insider traders. We will discuss the corresponding literature in Section
3.1. Another application is default risk, discussed for example by Jeanblanc, Yor
and Chesney in their recent book [25, Chapter 7].

Generally, using the notation from Definition 3, we want to know whether a F -
semimartingale remains a semimartingale under G . If yes, we want to identify its
martingale decomposition under G .

The answer to the first question is yes if some conditions are satisfied (we refer
to [32] for details). For the second question we are searching for a G -measurable
process µG

t such that for an F -martingale W and a G -martingale ξ we have

ξt =Wt −
∫ t

0
µ

G
s ds (9)

In the context of the information premium we will call µG
t the information drift.

Note that µG
t is Gt -adapted, so that we can attain it by changing measure under

G . Under F this is not possible (this is Lemma 1 stated differently). There are
various ways to calculate the information drift: one can adapt Itō’s first theorem to
provide µG

t for enlarging a Lévy process Lt by incomplete knowledge of its future
value LTϒ

, t < Tϒ (amongst others, this result is provided in [32] and [5]). Enlarging
a Brownian motion by a more general random variable (usually called G) can be
done using Yor’s method and Jacod’s criterion. This includes the important cases of
enlargement by functionals of the Brownian motion (such as a spot price process).
Finally, Imkeller uses Malliavin calculus and introduces another method for this
case (as discussed in [20, 21]). We will show how to calculate the information drift
in Section 4. Still, for Section 3, we will work with the general form µG

t .

3 Electricity Options

In this section we will examine the problems and modifications that arise when
pricing options (on forwards) under the historical filtration F and the (enlarged)
market filtration G .

In order to find closed-form solutions we will consider a standard Gaussian
Ornstein-Uhlenbeck process Xt as our spot price model, in other words St = Xt . This
is the base signal only of the arithmetic spot price model used in [7, 5]. Additional
information about this part of the spot model is suitable to analyse the two main
examples mentioned in the introduction (especially when considering medium time
horizons (i.e. less than six months) as in [5]). For the Moratorium G would include
extra information from 14 March 2011 onwards. Furthermore, we remark that the
following analysis would not change for St = Λt +Xt with Λt being a seasonality
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function and indeed we will consider the (stylised) case Λt = µ (µ a constant) in
Section 5.

Before we begin calculations, though, we will try to relate the existing results
from the literature on insider trading to our electricity markets. In particular, we
need to identify carefully traded assets as well as non-traded objects.

3.1 Assets and insider trading

In the context of modelling insider trading on stock exchanges, the technique of en-
largement of filtrations has been applied in a variety of research papers: Examples
are Karatzas and Pikovsky [30], Imkeller in [22], [21] and [20], Ankirchner [4],
Amendinger [3], Biagini and Øksendal [10], Hu and Øksendal [19], Elliot, Geman
and Korkie [17]. The general idea in all these publications is that the normal mar-
ket trader’s flow of information is modelled by the historical filtration whereas an
insider’s flow of information is given by an enlarged filtration. Most papers above
also consider the utility of both types of investors rather than calculating specifically
prices of contingent claims. The reason for this is a result (proven very generally in
[3] for example) stating that for FT -measurable payoffs both investors assign the
same value to options. Basically, enlarging the filtration changes drift terms and not
volatilities. Thus, due to the G -measurability of these drifts they will be removed
by the insider’s pricing measure. The resulting risk-free dynamics of the underlying
will then be the same as those of the normal trader - which in consequence will give
equal option prices. Apart from this mathematical reasoning this can also be justified
economically. Stocks are conventional (and, in particular, storable) assets. It is well
known from classical Financial Mathematics that (in a complete market setup, cf.
[11]) normal derivatives can be perfectly replicated by the uninformed trader using
only basic assets (for example using a delta-hedge). Thus, prices assigned by both
types of investors must coincide as their hedge-portfolios do.

We are facing a different situation when the underlying is electricity. The spot
is non-storable and thus not an asset in the classical sense as it is not tradeable.
This poses a number of questions when trying to price forwards and options on
forwards. For example, one might ask, whether the results from the literature can be
translated, i.e. that options have identical prices under both filtrations. In the end, as
the spot is not tradeable, one cannot follow the traditional argument and compare
hedges. However, forwards are traded assets but then we now have two versions
of the forward price, one under the historical and one under the market filtration.
Hence, it is difficult to assign to each filtration one type of investor (as in the insider
literature) and to consider both investors coexisting on the market. If the underlying
is electricity we should think of the different objects as prices under different models
rather than traded assets.

Summarising, our way to interpret the objects discussed previously is as follows:
the informed and the uninformed traders calculate two sets of prices for themselves,
depending on their best knowledge. Our analysis consequently ignores the ques-
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tion of how observed market forward prices are then amalgamated from these two
individual sets of prices.

3.2 Vanilla Options on Forwards with delivery period

We want to price a plain vanilla call on a forward on electricity. The option expires
in T and the forward has delivery period between T1 and T2. Furthermore, there
is relevant additional future information in Tϒ . This setup is further illustrated in
Figure 1 (note that Tϒ could be any time after T , though).

0 T Tϒ

t T1 Tϒ1 Tϒ2 T2

t T1 Tϒ1 Tϒ2T2

t T1Tϒ1 TϒnT2Tϒ2 Tϒn‐1Tϒ3 Tϒn‐1

t

0 T TϒT1 T2

T̂

 

0 T TϒT1 T2

Fig. 1 The setup of the time axis. T is the maturity of the option, [T1,T2] the forward delivery
period and Tϒ the time of additional information.

As mentioned above, we will assume that the spot follows a standard Gaussian
Ornstein-Uhlenbeck process with constant parameters. Hence, St = Xt where, for
t < T

XT = e−α(T−t)Xt +σ

∫ T

t
e−α(T−u)dWu (10)

Here, Wt is a Brownian motion, α and σ are constant parameters. If we assume
forward prices are settled financially at the end of the delivery period we can show
(as for example in [8], p. 29) that the (F ,P)-forward price is given by

FP
F (t,T1,T2) =

1
T2−T1

EP
[∫ T2

T1

Sudu|Ft

]
(11)

For the spot as in equation (10) this can be calculated to be equal to

FP
F (t,T1,T2) =

1
T2−T1

ᾱ(t,T1,T2)X(t) (12)

where

ᾱ(t,T1,T2) =

{
− 1

α
(e−α(T2−t)− e−α(T1−t)) t ≤ T1

− 1
α
(e−α(T2−t)−1) t > T1

Now, we can calculate the forward dynamics:

dFP
F (t,T1,T2) =

1
T2−T1

(dᾱ(t,T1,T2)Xt + ᾱ(t,T1,T2)dXt)

The function ᾱ(t,T1,T2) is deterministic and we have t < T1. Thus
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dᾱ(t,T1,T2) = d(− 1
α
(e−α(T2−t)− e−α(T1−t))) = αᾱ(t,T1,T2)dt

Hence,

dFP
F (t,T1,T2) =

1
T2−T1

(ᾱ(t,T1,T2)(−αXtdt +σdWt)+αᾱ(t,T1,T2)Xtdt)

= 1
T2−T1

σᾱ(t,T1,T2)dWt (13)

Now Wt is a (F ,P) Brownian motion and thus the forward price is already a mar-
tingale. We can integrate and get

FP
F (T,T1,T2) = FP

F (t,T1,T2)+
1

T2−T1
σ

∫ T

t
ᾱ(s,T1,T2)dWs (14)

The electricity market is incomplete and we can choose our risk-neutral pricing
measure; for simplicity we will use Q= P.

Starting with formula (13), we rewrite the forward dynamics under the enlarged
market filtration G in terms of the information drift µG

t as given by equation (9):

dFP
G (t,T1,T2) =

1
T2−T1

σᾱ(t,T1,T2) d(ξt +
∫ t

0
µ

G
s ds)

= 1
T2−T1

(
σᾱ(t,T1,T2)dξt +σᾱ(t,T1,T2)µ

G
t dt

)
(15)

So,

FP
G (T,T1,T2)

= FP
G (t,T1,T2)+

σ

T2−T1

(∫ T

t
ᾱ(s,T1,T2)dξt +

∫ T

t
ᾱ(s,T1,T2)µ

G
s ds

)
(16)

This is, again, a (G ,P) semimartingale. The dt terms are Gt -measurable; thus we can
change measure to obtain martingale dynamics under G and a new measure P̃. This
connection was discovered by Protter in his note [31] and notation in the following
will be similar to that used there. We define new processes

Mt =
∫ t

0
(−µ

G
s )dξs

Nt = 1+
∫ t

0
NsdMs

Thus, process Nt is an exponential martingale, and, one has the well-known solution

Nt = Ns exp
(
−
∫ t

s

1
2 (µ

G
u )2du−

∫ t

s
µ

G
u dξu

)
As Nt has expectation one (i.e. is in L1(G ,P)), we can now apply the Girsanov-
Meyer theorem (see [32] or [15]) with dP̃

dP |Gt = Nt or dP
dP̃ |Gt = N−1

t , respectively. The
theorem states that the P̃-decomposition of the Brownian motion ξt is
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ξt =

(
ξt −

∫ t

0

1
Ns

d < N,ξ >s

)
+
∫ t

0

1
Ns

d < N,ξ >s

Calculating the integral yields∫ t

0

1
Ns

d < N,ξ >s =
∫ t

0

1
Ns

d <
∫ .

0
(−Nuµ

G
u )dξu,

∫ .

0
dξu >s

=
∫ t

0

1
Ns

d
(∫ s

0
(−Nuµ

G
u )du

)
=
∫ t

0

1
Ns

(−Nsµ
G
s )ds

=
∫ t

0
−µ

G
s ds

so that under (G , P̃) we have

ξt =

(
ξt +

∫ t

0
µ

G
s ds

)
−
∫ t

0
µ

G
s ds =Wt −

∫ t

0
µ

G
s ds

This means that the original (F ,P)-Brownian motion Wt is also a Brownian motion
under (G , P̃), and consequently, rewriting equation (15), the forward dynamics under
(G , P̃) are

dF P̃
G (t,T1,T2) =

1
T2−T1

σᾱ(t,T1,T2)d
(

Wt −
∫ t

0
µ

G
s ds

)
+ 1

T2−T1
σᾱ(t,T1,T2)µ

G
t dt

= 1
T2−T1

σᾱ(t,T1,T2)dWG ,P̃
t (17)

Hence, the forward price is a martingale. Integrating,

F P̃
G (T,T1,T2) = F P̃

G (t,T1,T2)+
1

T2−T1
σ

∫ T

t
ᾱ(t,T1,T2)dWG ,P̃

s (18)

In order to price options we need the distribution of the forward price. For both
filtrations, it is conditionally normally distributed. We calculate the first two mo-
ments under (F ,P):

E[FP
F (T,T1,T2)|Ft ] = FP

F (t,T1,T2) (19)

and using Itō’s isometry for the variance,
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Var(FP
F (T,T1,T2)|Ft) =

1
(T2−T1)2 σ

2
∫ T

t
ᾱ

2(t,T1,T2)ds

=
σ2

(T2−T1)2
1

α2

∫ T

t
(e−2α(T2−s)− e−α(T2−s)e−α(T1−s)+ e−2α(T1−s))ds

=
σ2

(T2−T1)2
1

α2

(
1

2α

(
e−2α(T2−T )− e−2α(T2−t)+ e−2α(T1−T )− e−2α(T1−t)

)
−2 1

2α

(
e−α(T2+T1−2T )− e−α(T2+T1−2t)

))
=

σ2

(T2−T1)2
1

α3

(
1
2

(
e−2α(T2−T )− e−2α(T2−t)+ e−2α(T1−T )− e−2α(T1−t)

)
−
(

e−α(T2+T1−2T )− e−α(T2+T1−2t)
))

= Σ
2(t,T,T1,T2)

Under G and corresponding pricing measure P̃ the first moments are given by

E[F P̃
G (T,T1,T2)|Gt ] = F P̃

G (t,T1,T2) (20)

Var(F P̃
G (T,T1,T2)|Gt) = Σ

2(t,T,T1,T2)

so that only start values are modified and variances remain unchanged. Now we
have the ingredients to calculate options on futures under the two filtrations. The
crucial difference between the insider literature and our analysis is that although we
replicate the result that the underlying has the same dynamics under both filtrations
we have different starting values in t. The trader using the historical filtration will
price his or her option using the traditional forward price in t whereas the informed
trader will include his or her future knowledge. Of course, this will have a huge
impact on the risk valuation of these options.

3.2.1 Vanilla Call under F on an F -forward

This is the standard case known from the literature. Our starting point is the risk-
neutral-valuation-formula, and we will assume r = 0 in the following:

CF (t,T,FF (T,T1,T2,K)) = EQ[(FF (T,T1,T2)−K)+|Ft ]

Note that Q = P because the forward is already a martingale under P. Introducing
an auxiliary function

dF
1 =

FP
F (t,T1,T2)−K
Σ(t,T,T1,T2)

(21)

as well as a standard normal random variable Z, we rearrange equation (14)
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E[(FP
F (T,T1,T2)−K)+|Ft ] = E[(FP

F (t,T1,T2)−K +Σ(t,T,T1,T2)Z)+|Ft ]

Hence, we are in the classical Bachelier setup.

Theorem 1. Option Price under the historical filtration. The price at t of a
Vanilla call option with maturity T and strike K under filtration F on an electricity
forward priced under F with delivery period in [T1,T2] is given by

CF (t,T,FF (T,T1,T2,K)) = (FP
F (t,T1,T2)−K)Φ(dF

1 )+Σφ(dF
1 ) (22)

where φ(·),Φ(·) denote the standard-normal density and distribution and dF
1 is

defined as in equation (21).

Proof. Straightforward calculations.

Next, we will consider option prices as calculated by a trader taking additional
future information into consideration.

3.2.2 Vanilla Call under G on a G -forward

The risk-neutral valuation formula in this setting is

CG (t,T,FG (T,T1,T2),K) = EQ[(FG (T,T1,T2)−K)+|Gt ]

We found that the G -Forward was a martingale under the measure P̃, so this is our
pricing measure. Again, the forward is conditionally normal with first moment given
by (20) and second moment Σ as before. As in equation (21), we define

dG
1 =

F P̃
G (t,T1,T2)−K
Σ(t,T,T1,T2)

We can then state

Theorem 2. Option Price under the market filtration. The price at t of a Vanilla
call option with maturity T and strike K under filtration G on an electricity forward
priced under G with delivery period in [T1,T2] is given by

CG (t,T,FF (T,T1,T2,K)) = (F P̃
G (t,T1,T2)−K)Φ(dG

1 )+Σφ(dG
1 ) (23)

where φ(·),Φ(·) denote the standard-normal density and distribution and dG
2 is

defined as in equation (23).

Proof. As in Theorem 1.

We remark that the pricing formulae of Theorem 1 and Theorem 2 are identical
except for the forward prices.
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4 Calculating the Information Premium

In this section we will show how to calculate the information premium for our sim-
ple spot model in different situations. The additional information we consider first
will be some knowledge about the value of the spot at some future time point Tϒ ,
i.e.

Gt ⊆Ht = Ft ∨σ(STϒ
) = Ft ∨σ(XTϒ

)

We have trivially that

Ft ∨σ(XTϒ
) = Ft ∨σ

(∫ Tϒ

t
e−α(Tϒ−s)dWs

)
so we are enlarging by a normally distributed random variable. We will call

G =
∫ Tϒ

0
e−α(Tϒ−s)dWs

Let further

mt =
∫ t

0
e−α(Tϒ−s)dWs

st =Var(mt) =
1

2α
(e−2α(Tϒ−t)− e−2αTϒ )

and

PG(dl) = P(G ∈ dl) = 1√
2πs2

Tϒ

exp(− 1
2

l2

s2
Tϒ

)dl

PG
t (dl) = P(G ∈ dl|Ft) =

1√
2π(s2

Tϒ
−s2

t )
exp(− 1

2
(l−mt )

2

s2
Tϒ
−s2

t
)dl

Simplified, Jacod’s criterion (see [24]) says that if PG
t (dl) = pt(l)PG(dl) for some

pt(l) then the G -decomposition of the G -Brownian motion ξt is

ξt =Wt −
∫ t

0

d < p.(l),W >s

ps(l)

in other words

µ
G
t =

d < p.(l),W >t

pt(l)

Calculating pt in this case is cumbersome (it involves a lengthy application of Itō’s
theorem). Hence, we will use Imkeller’s method. Imkeller proves that (under certain
conditions, see [21])
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µ
G
t =

dDtPG
t (·,dl)

dPG
t (·,dl)

(l)

where D denotes the Malliavin derivative. For more details on Malliavin calculus
we refer to [29]. We can return to our example and calculate

DtPG
t = Dt(

1√
2π(s2

Tϒ
−s2

t )
exp(− 1

2
(l−mt )

2

s2
Tϒ
−s2

t
))

= PG
t Dt(− 1

2
(l−mt )

2

s2
Tϒ
−s2

t
)

= PG
t

l−mt
s2
Tϒ
−s2

t
Dt(mt)

= PG
t

l−mt
s2
Tϒ
−s2

t
e−α(Tϒ−t)

Here, we used the Malliavin chain rule and the fact that mt is a simple Wiener
polynomial. Dividing by PG

t allows to write down the decomposition

Wt = ξt +
∫ t

0

l−ms

s2
Tϒ
− s2

s
e−α(Tϒ−s)ds = ξt +

∫ t

0

∫ Tϒ

s e−α(Tϒ−u)dWu
1

2α
(1− e−2α(Tϒ−s))

e−α(Tϒ−s)ds

= ξt +
∫ t

0

(∫ Tϒ

s
eαudWu

)
2αeαs

e2αTϒ − e2αs︸ ︷︷ ︸
=a(s)

ds (24)

Also, this can be written in terms of the process Xt

Wt = ξt +
∫ t

0

1
σ

eαTϒ (XTϒ
− e−α(Tϒ−s)Xs)

2αeαs

e2αTϒ − e2αs ds (25)

Using this decomposition we can then calculate the information premium by substi-
tuting into the definition.

Theorem 3. The Information Premium. Let 0≤ t ≤ T1 < T2 ≤ Tϒ . Then the infor-
mation premium with delivery period is given by

IG (t,T1,T2;Tϒ ) =
1

T2−T1

1
α

(
e2αT2 + e2αt

eαT2
− e2αT1 + e2αt

eαT1

)
eαTϒ E[XTϒ

|Gt ]− eαtXt

e2αTϒ − e2αt

(26)

Proof. The information premium with delivery period is defined as

IG (t,T1,T2;Tϒ ) = FG (t,T1,T2)−FF (t,T1,T2)

Looking at formulae (10) and (11) we realise that terms including Xt cancel. The
F -expectation of the Itō integral is zero. Hence, we only have the G -expectation of
the Itō integral, and we substitute the decomposition as in equation (24) as follows:
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IG (t,T1,T2;Tϒ ) =
1

T2−T1
E
[∫ T2

T1

∫ u

t
σe−α(u−s)dWsdu|Gt

]
=

σ

T2−T1
E
[∫ T2

T1

∫ u

t
e−α(u−s)

(
a(s)

∫ Tϒ

s
eαvdWv

)
ds du|Gt

]
=

σ

T2−T1

∫ T2

T1

∫ u

t
e−α(u−s)a(s)E

[∫ Tϒ

s
eαvdWv|Gt

]
ds du

Now we apply Theorem A.1 with f (u) = eαu and g(s) = a(s). Solving the resulting
integral equation yields

IG (t,T1,T2;Tϒ )

=
σ

T2−T1

∫ T2

T1

∫ u

t
e−α(u−s)a(s)

e2αTϒ − e2αs

e2αTϒ − e2αt E
[∫ Tϒ

t
eαvdWv|Gt

]
ds du

=
σ

T2−T1

E
[∫ Tϒ

t eαvdWv|Gt

]
e2αTϒ − e2αt

∫ T2

T1

∫ u

t
2αe−αue2αsds du

=
1

T2−T1

eαTϒ E[XTϒ
|Gt ]− eαtXt

e2αTϒ − e2αt

∫ T2

T1

eαu− e2αte−αudu

and evaluating the last integral yields the result.

Using this formula, we can now find numerical values for the information pre-
mium and thus for option prices on the corresponding forwards.

So far, we have, for technical reasons, assumed that Tϒ was larger than T2. Under
the forward-pricing model (St ,Gt) the whole evolution of the spot is changed and
all forward prices are adjusted, without regard to whether the future information is
located on the time axis before, during or after the maturity of the contract. Thus, it
is perfectly sound to take into consideration estimated future information in terms
of timing. Still, we now face a problem from a modelling perspective: for the CO2
scenario mentioned in the introduction our model will result in a positive informa-
tion premium for December 07 although the second phase of the EU ETS began on
January 1. We remark, though, that this effect is negligible, in particular due to the
mean-reversion rates observable on the market (we refer to [5] for a discussion) and
even more so when considering longer delivery periods.

Technically, it is relatively easy to adapt the result of Theorem 3 to other order-
ings of time points.

Lemma 2. The Information Premium (information before delivery period). For
0≤ t < Tϒ ≤ T1 < T2, i.e. extra information before the delivery period, the informa-
tion premium is given by

IG (t,T1,T2;Tϒ ) =
1

T2−T1
ᾱ(Tϒ ,T1,T2)

(
E[XTϒ

|Gt ]− e−α(Tϒ−t)Xt
)

(27)

Proof. One uses the definition and decomposes
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IG (t,T1,T2;Tϒ ) =
1

T2−T1

(
E
[∫ T2

T1

Xudu|Gt

]
−E

[∫ T2

T1

Xudu|Ft

])
=

1
T2−T1

(
E
[∫ T2

T1

(
e−β (u−Tϒ )XTϒ

+
∫ u

Tϒ

e−α(u−s)dWs

)
du|Gt

]
− ᾱ(t,T1,T2)Xt

)
Now, the filtrations satisfy Gt ⊆FTϒ

so

IG (t,T1,T2;Tϒ )

=
1

T2−T1

(
E
[∫ T2

T1

(
e−β (u−Tϒ )XTϒ

+E
[∫ u

Tϒ

e−α(u−s)dWs|FTυ

])
du|Gt

]
− ᾱ(t,T1,T2)Xt

)
=

1
T2−T1

(
ᾱ(Tϒ ,T1,T2)E[XTϒ

|Gt ]− ᾱ(t,T1,T2)Xt
)

=
1

T2−T1
ᾱ(Tϒ ,T1,T2)

(
E[XTϒ

|Gt ]− e−α(Tϒ−t)Xt

)
which is exactly the claim.

The case for which the extra information is in between T1 and T2 is a mixed case
of Theorem 3 and Lemma 2.

Lemma 3. The Information Premium (information during delivery period). For
0≤ t ≤ T1 < Tϒ < T2, i.e. extra information during the delivery period, the informa-
tion premium is given by

IG (t,T1,T2;Tϒ ) =
1

T2−T1

(
(Tϒ −T1) IG (t,T1,Tϒ ;Tϒ )︸ ︷︷ ︸

T heorem3

+(T2−Tϒ ) IG (t,Tϒ ,T2;Tϒ )︸ ︷︷ ︸
Lemma2

)
(28)

Proof. One uses the definition of the information premium and separates the two
cases by splitting the integrals in the expectations.

We can recover the information premium without delivery period (denoted by
IG (t,T1;Tϒ ), calculated in [7]) by taking limits:

Lemma 4. In the situation of Theorem 3 we have

lim
T2→T1

IG (t,T1,T2;Tϒ ) = IG (t,T1;Tϒ )

Proof. We need to evaluate

lim
T2→T1

IG (t,T1,T2;Tϒ )

= lim
T2→T1

1
T2−T1

1
α

(
e2αT2 + e2αt

eαT2
− e2αT1 + e2αt

eαT1

)
eαTϒ E[XTϒ

|Gt ]− eαtXt

e2αTϒ − e2αt
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We use L’Hospital’s rule

. . .=
eαTϒ E[XTϒ

|Gt ]− eαtXt

e2αTϒ − e2αt lim
T2→T1

1
∂

∂T2
(T2−T1)

1
α

∂

∂T2

e2αT2 + e2αt

eαT2

=
eαTϒ E[XTϒ

|Gt ]− eαtXt

e2αTϒ − e2αt e−αTϒ

(
e2αT1 + e2αt)

= IG (t,T1;Tϒ )

and this is the expression calculated in [7].

5 Discussion and stylised Examples

In this section we will present various stylised examples to illustrate the theory dis-
cussed so far. Firstly, we will assume that the spot satisfies St = µ +Xt (for some
constant µ) and use the results of section Section 4 to analyse properties of the in-
formation premium. We will assume that market agents are given non-precise future
spot information about XTϒ

, i.e. we know the value of E[XTϒ
|Gt ]. Furthermore, we

choose toy-parameters for α and σ which are similar to those fitted to market data.
Also, for the time axis we follow the daily convention, meaning that for example
T1 = 10,T2 = 20 denotes a delivery period of 20 days, starting from day ten.

Figure 2 illustrates the information premium for different values of this expecta-
tion and for moving Tϒ . Further parameters were set to t = 0,T1 = 20,T2 = 30,X0 =
0,α = 0.2 and σ = 3.0. Remembering for example formula (26) we see that with
these values the sign of the premium depends only on E[XTϒ

|Gt ], as expected. We
observe a vanishing information premium for a Tϒ that is either far before the deliv-
ery or far after. If the extra information is a zero expectation of XTϒ

then this does
not constitute genuinely new information and the information premium becomes
zero (green line). Generally, the value of the premium takes its maximum/minimum
in the middle of the delivery period. This makes sense economically: depending on
σ and α knowing the expected value at Tϒ gives a vague idea of spot values in the
vicinity. Hence, the further away the beginning and the end of the delivery period
are from Tϒ , the more of the interval around Tϒ will lie in the period. We can, for
example, use the half life of the Ornstein-Uhlenbeck process (defined as ln2

α
) as an

estimate of how many days are influenced by the additional information. For exam-
ple, in the case of Figure 2 the half life is ln2

0.2 ≈ 3.5. The value of the information
premium with knowledge about Tϒ = 25 is around 3 (solid red line). We can calcu-
late the area under the first two half lives by solving 30 = 1.5 ·3.5 ·E[X25|G0]. This
gives E[X25|G0]≈ 5.7, the true value being 5.0.

The interaction between the values at Xt and XTϒ
is illustrated in Figure 3. Here,

the value of the information premium for different Tϒ and different α is plotted. We
used the same parameters as above, except for t = 10,Xt = 10 and E[XTϒ

|Gt ] = 5.
The two dotted lines are similar to the graphs in Figure 2. The absolute value of the
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Fig. 2 The information premium over Tϒ for different values of E[XTϒ
|Gt ]. Other parameters

are: t = 0,T1 = 20,T2 = 30,X0 = 0,α = 0.2 and σ = 3.0

premium in this case is small because a higher mean reversion implies a lesser value
of information. We also see that the value of X10 = 10 does not play a role, again,
due to large α . For medium values of α and small Tϒ ignorant (i.e. F -) traders
calculate a large forward price because they observe a large spot price today. The
G -traders though, know that in Tϒ (being slightly larger than t) the value will be
smaller. Thus, the information premium is negative at first. Moving Tϒ further right
we exhibit a change in sign of the premium. For very small α (for example the solid
blue line) we also see that the impact of information lying outside of the delivery
period is much bigger.
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Fig. 3 The information premium over Tϒ for different values of α . Other parameters are: t =
10,T1 = 20,T2 = 30,X10 = 10,E[XTϒ

|G10] = 5 and σ = 3.0
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For different values of the volatility and the speed of mean reversion Figure 4
illustrates the value of an at-the-money European Call option under filtration F on
the forward under F , calculated as in theorem Theorem 1. Here, we assume µ = 30.
With most combinations of parameter values this option practically has zero value,
the reason being the averaging effect of the delivery period (which has a length of
ten days in this example). For a very low mean reversion and large volatility we find
a positive value for this option.

Figure 5 shows the corresponding picture for the at-the-money option on the
forward, both under the market filtration G . The additional information is given
at Tϒ = 25 and gives the expected value of the Ornstein-Uhlenbeck process as
E[X25|G10] = 5. Not surprisingly, the value of the option has a non-zero positive
value for all combinations of α and σ . We observe the same effect as above, i.e.
larger option prices for large volatility and small speed of mean reversion. Still, the
increase in the option price is smoother than in the case of the historical filtration.
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Fig. 4 Vanilla Call Price under F on a F -forward. For different α and σ . Other parameters
are: t = 10,T1 = 20,T2 = 30,X10 = 0,µ = 30 and K = 30.

An example of an in-the-money option is given in Figure 6, where we assume
again µ = 30 and a strike of K = 25. This results in an almost flat price at level
5 as expected. Only for very small speeds of mean reversion and large volatility
does the price increase. Figure 7 illustrates the in-the-money call under the market
filtration with additional information that the Ornstein-Uhlenbeck process will be
−5 in the middle of the delivery period. The price of the option is generally lower
and decreasing with decreasing speed of mean reversion. This is due to the lesser
significance of the future information for a higher degree of mean reversion. But the
most striking feature is the fact that the option price increases again for very small
α and large σ . In that case, the volatility of the spot price is no longer significantly
dampened by the mean-reversion of Xt and higher volatility causes higher option
prices. Hence, there are two forces effecting the option price for small α .
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Fig. 5 Vanilla Call Price under G on a G -forward. For different α and σ . Other parameters are:
t = 10,T1 = 20,T2 = 30,X10 = 0,E[X25|G10] = 5,µ = 30 and K = 30.
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Fig. 6 Vanilla Call Price under F on a F -forward. For different α and σ . Other parameters
are: t = 10,T1 = 20,T2 = 30,X10 = 0,µ = 30 and K = 25.

6 Conclusion

The special properties of electricity markets, especially that of the non-storability
of the underlying commodity, lead to non-validity of the classical spot-forward
relationship. This is the motivation for introducing the notion of the information
premium as presented in [7]. This premium is defined as the difference between
forward prices calculated under an enlarged market filtration and the traditional for-
ward price under the historical filtration. Its very existence has recently been shown
by means of a newly developed statistical test in [5].
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Fig. 7 Vanilla Call Price under G on a G -forward. For different α and σ . Other parameters are:
t = 10,T1 = 20,T2 = 30,X10 = 0,E[X25|G10] =−5,µ = 30 and K = 25.

In this report we discussed the issue of how options can be priced in the presence
of additional future information. Our starting point was the existing literature on
modelling insider trading on stock markets. In a number of papers various authors
have used the mathematical technique of the enlargement of filtrations to repre-
sent the extra knowledge an insider possesses. With a traditional underlying such as
stocks they find that both – insider and ”normal” traders – assign the same value to
contingent claims, the intuitive reason for this result being that both types of traders
have access to a self-financing replicating portfolio. This is not the case for electric-
ity markets. The underlying spot price is not a traded asset and thus, unlike the well
established result, traders who take into consideration future information will come
up with a different set of prices for the available financial products. In Section 3 we
established formulae for vanilla call options on electricity forwards for both types
of traders. To this end we utilised a very simple (Gaussian) spot model. In this case,
we found that the price of an option under the market filtration is given by a Bache-
lier type of pricing formula, requiring only previously calculating the information
premium.

Thus, in Section 4 we found explicit expressions for the information premium for
forwards with delivery period and additional future information of a simple kind. We
also provided the necessary established results from the enlargement of filtration. In
particular we used Imkeller’s method of applying Malliavin calculus.

Section 5 provided a number of stylised examples of the size and shape of the
information premium and of options on futures. These matched our economic intu-
ition.

In sum: we advocate taking relevant future information into consideration when
examining energy markets. We also propose using the information premium as well
as the traditional risk premium when describing the spot-forward relationship.



Electricity Options and Additional Information 23

Acknowledgements The authors are grateful to Prof. N. H. Bingham for his comments and so-
phisticated help with English grammar and punctuation as well as to an anonymous referee for
valuable comments. Fred Espen Benth greatly acknowledges financial support from the project
Energy Markets: Modeling, Optimization and Simulation (EMMOS), funded by the Norwegian
Research Council under grant 205328/v30. Richard Biegler-König is grateful for partial financial
support by the Carl-Zeiss-Stiftung.

Appendix

The following theorem will help us to calculate the information premium. In [7] it
is proposition A.3.

Theorem A.1. Let L(t) be a Lévy process and Ft the historical filtration. Also, let
Gt ⊆Ht = Ft ∨σ(L(Tϒ )) be the enlarged filtration. Further, one assumes that the
information drift is of the form

µ
G
s = g(s)E

[∫ Tϒ

s
f (u)dL(u) | Gs

]
where g and f are continuous function on [0,Tϒ ]. Then one has the identity

E
[∫ Tϒ

s
f (u)dL(u) | Gt

]
= E

[∫ Tϒ

t
f (u)dL(u) | Gt

]
e−

∫ s
t f (u)g(u)du

for time points t ≤ s ≤ Tϒ . This result is in particular true for L(t) being a simple
Brownian motion.

Proof. Defining the auxiliary process Ys as

Y (s) = E
[∫ Tϒ

s
f (u)dL(u) | Gt

]
gives rise to (by making use of the tower property)

Y (s) = Y (t)−E
[∫ s

t
f (u)dL(u) | Gt

]
= Y (t)−E

[∫ s

t
f (u)

(
g(u)E

[∫ Tϒ

u
f (v)dL(v) | Gu

])
du | Gt

]
= Y (t)−

∫ s

t
f (u)g(u)E

[∫ Tϒ

u
f (v)dL(v) | Gt

]
du

= Y (t)−
∫ s

t
f (u)g(u)Y (u)du

and the solution to this integral equation is
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Y (s) = Y (t)e−
∫ s
t f (u)g(u)du

E
[∫ Tϒ

s
f (u)dL(u) | Gt

]
= E

[∫ Tϒ

t
f (u)dL(u) | Gt

]
e−

∫ s
t f (u)g(u)du

and this completes the proof.
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