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I Introduction

Following the liberalization of electricity markets in many countries, utilities and other

market participants have been facing an increasing need for new pricing models in order

to accurately and timely evaluate spot and derivative electricity contracts that they would

buy and sell as part of their business. With the emergence of new financial risks following

the end of cost-based pricing in henceforth de-regulated markets, the necessity to now

optimize against the market for both standard electricity products as well as tailored

contingent claims required, in turn, effective integrated risk management strategies to be

developed.

These developments have to be seen in the context of the unique behavior of electricity

(spot) prices, which is primarily induced by the non-storability of this commodity:

Apart from hydropower with limited storage capabilities, an exact matching of electricity

demand and supply is required at every point in time. The resulting price dynamics

with their well-known stylized facts such as spikiness, mean-reversion, and seasonality,

have extensively been analyzed in academic literature1, yet still pose a challenge to

both practitioners and researchers in terms of adequately modeling and forecasting their

trajectories.

However, the non-storability of electricity has further implications on price-formation

mechanisms. First, electricity markets are commonly characterized as being very

transparent with respect to their underlying economic factors, including electricity

demand/consumption, available system capacity of the transmission network, as well as

the costs for generating fuels and emissions allowances. In fact, it is the instantaneous

nature of electricity that – other than in a classic storage economy – causes the

intertemporal linkages between economic agents’ decisions today and tomorrow to break

down, which altogether makes the structural approach especially appealing to electricity

price modeling (see, e.g., Pirrong, 2012). Second, and as the above implies, the classic

modeling assumption that the evolution of all relevant pricing information, i.e., the

information filtration, is fully determined by the price process of the commodity itself,

consequently does not hold for non-storable assets such as electricity. In other words,

1See, e.g., Johnson and Barz (1999), Burger et al. (2004) or Fanone et al. (2012) for an overview.
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today’s electricity prices do not necessarily reflect forward-looking information that is

publicly available to all market participants, as Benth and Meyer-Brandis (2009) show by

way of several examples.2 At the same time, legal requirements or voluntary initiatives to

increase data transparency3 have had power transmission system operators publish online

an increasing amount of data regarding the condition of their network, including, e.g.,

forecasts about expected electricity demand or updated schedules of planned short-term

outages. Pricing electricity spot and derivatives contracts based on models that have been

calibrated to historical data only, may hence result in using an incorrectly specified model

that leaves aside (forward-looking) information, although it is actually available and very

likely to play a key role for individual pricing decisions.

This paper hence focuses on the prominent role of forward-looking information in

electricity markets as well as investigates its impact on empirical pricing performance.

As such, our study contributes to existing literature in the following ways: Firstly, we

propose a new fundamental model for electricity pricing including fuel, demand and

capacity dynamics that successfully captures the stylized facts of this commodity and

provides analytic pricing formulae for derivative securities. Additionally, and although

depending on the respective market to be modeled, the inclusion of the dynamics of one

(instead of several) generating fuels may be seen as a good compromise for the model to

remain tractable and easy to implement from a practitioner’s point of view.

Secondly, out of the several recent studies that propose new fundamental electricity price

models, only a few models are actually calibrated to market data; if so, however, these

studies mainly focus on spot price backtesting or provide pricing results for single, select

2An example often referred to is the planned maintenance of a major generating unit, which is likely
to be public information available to all market participants. Assuming a stylized setting, such outage will
necessarily affect electricity spot prices expected to prevail during the time the unit is offline. Likewise,
the outage will also affect today’s prices of derivative contracts such as forward/futures contracts if
their delivery period overlaps with the period of scheduled maintenance. However, void of any means
to economically efficiently store electricity bought at (cheaper) spot prices today and to sell it at higher
prices during the time of the outage, there seems no way to arbitrage such situation – implying, hence,
that today’s electricity spot prices will remain virtually unaffected by the announcement of the outage.
See Benth and Meyer-Brandis (2009) for further examples.

3Regulations (EC) No. 1228/2003, its follow-up No. 714/2009 and annexed “Congestion Management
Guidelines” (CMG) may serve as the most prominent example, requiring, e.g., that ”the TSO shall publish
the relevant information on forecast demand and on generation (...)” (CMG, article 5.7).
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forward contracts as an illustrative example only. In this article, we test our model in

an extensive empirical study, using a comprehensive data set of forward contracts traded

in the British electricity market. At the same time, this allows us to further investigate

several interesting implementation challenges that arise during the calibration procedure.

Thirdly, and to the best of our knowledge, we are the first to investigate the pricing

of derivative contracts in electricity markets by explicitly making use of forward-looking

information. By means of an enlargement-of-filtration approach, we show how to properly

integrate demand and capacity forecasts into our setting from a technical point of view

and thus avoid using a mis-specified model if we were to calibrate it to historical data

only and disregard such additional information.

In a very rough distinction, existing literature on electricity (spot) price modeling can be

grouped into two categories: Allowing for analytic derivatives pricing formulae in many

cases, considerable attention is generally devoted to reduced-form models that either

directly specify dynamics for the electricity spot price process itself or, alternatively,

model the term structure of forward contracts, in which case spot dynamics are derived

from a forward contract with immediate delivery (e.g., Clewlow and Strickland, 2000,

Koekebakker and Ollmar, 2001, or Benth and Koekebakker, 2008). Starting with

traditional commodity modeling approaches via mean-reverting one- or two-factor models

(Lucia and Schwartz, 2002), a more adequate reflection of the stylized facts of electricity

price dynamics demands for more elaborate settings including (affine) jump diffusion

processes and regime-switching approaches (see Bierbrauer et al., 2007, Weron, 2009, or

Janczura and Weron, 2010, for a comprehensive overview). However, this may still not

be sufficient to reliably differentiate between spike- and non-spike regimes as observed in

reality, or to adequately capture, e.g., the (absolute) spikiness of electricity prices. Doing

so may require additional enhancements such as considering non-constant deterministic or

stochastic jump intensities (see, e.g., Seifert and Uhrig-Homburg, 2007) and their impact

on possibly different speeds of mean-reversion of the underlying Ornstein-Uhlenbeck (OU)

process, which, in turn, strongly affects analytic tractability. The same is true when trying

to mitigate other common drawbacks such as models precluding successive upward jumps
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or leaving jump intensities unaffected by previous jumps. Extensions (like Barone-Adesi

and Gigli, 2002) try to address these problems but may resort to non-Markovian models,

which, however, affects the applicability for contingent claim valuation. Finally, and as a

point of structural criticism, reduced-form models obviously fail to analyze the dependence

structure between prices and the electricity markets’ underlying drivers, which not only

leaves unexplained certain features such as the occurrence of price spikes, but also affects

their applicability for fields such as cross-commodity option valuation (unless, e.g., a

co-integration setting is employed such as in Emery and Liu, 2002, de Jong and Schneider,

2009, or Paschke and Prokopczuk, 2009). In this context, and given the above mentioned

increase in publicly available (fundamental) data released by TSOs, it must be seen as

a drawback of classic reduced-form models that they obviously fail to take direct benefit

from this increasing transparency.4

On the other hand, the class of structural/fundamental electricity price models subsumes

a wide spectrum of more diverse modeling approaches; starting with equilibrium-based

models (Bessembinder and Lemmon, 2002, Bühler and Müller-Mehrbach, 2007) or even

more richly parameterized full production cost models (Eydeland and Wolyniec, 2002)

on the one end, but also including, on the other end, econometric approaches such as

regression-based settings (Karakatsani and Bunn, 2008) or time-series models whose

efficiency is enhanced by including exogenous fundamental variables (Weron, 2006, or

Misiorek et al., 2006).

Often referred to as hybrid approach, the class of models focused on in this study may

be seen in the middle of such spectrum.5 In its most general form, fundamental settings

of this kind comprise of a selection of separately modeled underlying factors (such as

demand, capacity, and fuels) as well as a specification of the functional relationship

between these factors and (spot) prices, which could hence be interpreted as merit-order

4We note that it is still possible to integrate information about the dynamics of fundamental state
variables (such as demand or, e.g., also temperature) into reduced-form models by means of correlated
processes; however, even though such models may bridge the gap between classic reduced-form and
fundamental approaches, it is still questionable whether a single correlation parameter may be sufficient
to reflect the rich dependence structures between electricity prices and a fundamental state variable – all
the more if the dynamics of several underlying variables are to be taken into account at the same time.

5In order to avoid ambiguities, if we refer to fundamental electricity price models throughout the rest
of this paper, we shall actually mean the hybrid class of models within this category.
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curve or, equivalently, inverse supply curve.6 The main challenge in this context is to be

seen in an adequate reflection of the characteristic slope and curvature of the merit-order

curve that is usually characterized by significant convexity.7 As a matter of simplification,

many studies (e.g., Skantze et al., 2000, Cartea and Villaplana, 2008, or Lyle and Elliott,

2009) propose to approximate the merit-order curve with an exponential function. While

there may be other functional specifications yielding a better fit, such as a piecewise

defined “hockey stick” function (Kanamura and Ohashi, 2007) or power laws (Aı̈d et al.,

2011), the exponential setting offers the key advantage of yielding log-normal electricity

spot prices, allowing for analytic derivatives pricing formulae.

Requiring our model to provide timely pricing information to market participants by

retaining tractability, we therefore adopt an exponential setting to represent the merit-

order curve, too. As regards the inclusion of generating fuels, we follow Pirrong and

Jermakyan (2008) by modeling a stylized one-fuel market, leaving aside more flexible

multi-fuel approaches such as presented in Aı̈d et al. (2009, 2011), Coulon and Howison

(2009) and Carmona et al. (2011). Whereas a one-fuel setting hence avoids a model-

endogenous determination both of the merit-order and the marginal fuel in place, it

remains to be discussed how this reduction in flexibility affects pricing results, and for

which markets such a simplification may be viable at all.

Regarding the question of how to account for forward-looking information in this

context, many of the above presented models could in fact be modified to accommodate

short-, mid- or long-term forecasts about future levels of electricity demand or available

capacity. However, extant literature mainly focuses on the benefits of using day-ahead

demand/capacity forecasts in order to improve day-ahead electricity pricing performance,

such as Karakatsani and Bunn (2008) or Bordignon et al. (2011). A different approach

regarding the integration of forecasts into a pricing model is proposed by Cartea et al.

6This implicitly assumes electricity demand being completely inelastic, which is a basic assumption
for models of this kind. See Carmona and Coulon (2012) for further reference as well as for a general and
comprehensive review of the fundamental modeling approach.

7This is a non-trivial issue given that the curvature is determined by both the individual composition
of generating units for each marketplace as well as their (marginal) cost structure which, in turn, depends
stochastically on other factors such as underlying fuel prices, weather conditions, (un-)planned outages,
and daily patterns of consumption. Additional factors to be considered may include market participants
exercising market power by submitting strategic bids exceeding marginal costs, but also regulatory regimes
awarding, e.g., preferential feed-in tariffs to renewable energy producers.
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(2009). In their study, a regime-switching setting is invoked where the ratio of expected

demand to expected available capacity is used to determine an exogenous switching

component that governs the changes between “spiky” and “normal” spot price regimes.

In this way, the modeling of spikes present in spot prices can be improved, although

the model only resorts to very few forecast points per week and available forecasts are

not explicitly part of the price formation mechanism. Burger et al. (2004) also present

a model that requires as input normalized electricity demand, i.e. demand scaled by

available system capacity. For the latter, the usage of forecasts of future levels of system

capacity is suggested, but not focused on in more detail.

Finally, the application of the enlargement-of-filtration approach to electricity markets

was initially proposed by Benth and Meyer-Brandis (2009). Focusing on risk premia

rather than on forward pricing, Benth et al. (2012) use this concept in order to analyse

the impact of forward-looking information on the behavior of forward risk premia in the

German electricity market. The authors develop a statistical test for the existence of

an information premium8 and show that a significant part of the oftentimes supposedly

irregular behavior of risk premia can be attributed to it.9

The remainder of this paper is structured as follows: In the next section, we develop

our underlying pricing model. Section III introduces the concept of the enlargement-of-

filtration approach and discusses how it can be applied in the context of fundamental

electricity price modeling. The empirical part of this article starts with Section IV where

the data used, the estimation of the model and the general structure of the pricing study

are described. Section V presents the empirical results, Section VI concludes.

8The information premium is defined as the difference between forward prices, depending on whether
or not forward-looking information is entering the price formation mechanism.

9On a more general note, the idea to resort to forward-looking information, of course, extends
to numerous other fields of academic research. Another “natural” candidate is, by way of example,
the pricing of weather derivatives. For studies that resort to temperature forecasts in order to price
temperature futures, see, e.g., Jewson and Caballero (2003), Dorfleitner and Wimmer (2010) or Ritter
et al. (2011).
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II A Fundamental Electricity Pricing Model

A. Electricity Demand

Electricity demand is modeled on a daily basis with its functional specification chosen so

as to reflect typical characteristics of electricity demand such as mean-reverting behavior,

distinct seasonalities as well as intra-week patterns. On a filtered probability space(
Ω,FD,FD = (FD)t∈[0,T ?],P

)
with natural filtration Fq = (F q)t∈[0,T ?] (for FDt = F0∨F qt ),

demand Dt is assumed to be governed by the following dynamics:

Dt = qt + sD(t) (1)

dqt = −κDqtdt+ σDeϕ(t)dBD
t (2)

sD(t) = aD + bDt+
12∑
i=2

cDi Mi(t) + cDWEWE(t) +
4∑
j=1

cDPHj
PHj(t) (3)

ϕ(t) = θ sin
(
2π(kt+ ζ)

)
, (4)

where qt is an Ornstein-Uhlenbeck process with mean-reversion parameter κD and a

standard Brownian motion BD
t . Since volatility of electricity demand has often been

found to exhibit seasonal levels of variation (see, e.g., Cartea and Villaplana, 2008), we

apply a time-varying volatility function as proposed by Geman and Nguyen (2005) or

Back et al. (2012), with θ ≥ 0, a scaling parameter k = 1
365

, and ζ ∈ [−0.5; 0.5] to

ensure uniqueness of parameters.10 In order to also reflect absolute-level demand-side

seasonality, the deterministic component sD(t) contains a linear trend, monthly dummy

variables Mi(t) as well as additional indicators for weekends WE(t) and public holidays.11

10This volatility specification allows for continuous differentiability, which is a technical necessity in
the context of the enlargement-of-filtration approach. See the technical appendix for further information.

11Since the extent of a demand reduction induced by a public holiday strongly depends on the
respective season prevailing, three different groups of public holidays shall be distinguished: those
occurring in winter (PH2), the Easter holidays (PH3), and the remainder (PH4). Additionally, the days
with reduced electricity demand between Christmas and New Year are treated as quasi-public holidays
(PH1). This may appear overly detailed, however, almost all coefficients turn out to be highly significant;
see Bühler and Müller-Mehrbach (2009) for an even more detailed approach.
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B. System Capacity

Available capacity is modeled in a similar manner as electricity demand. Hence, on

a filtered probability space
(
Ω,FC ,FC = (FC)t∈[0,T ?],P

)
with natural filtration Fm =

(Fm)t∈[0,T ?] (for FCt = F0 ∨ Fmt ), we specify the following dynamics:

Ct = mt + sC(t) (5)

dmt = −κCmtdt+ σCdBC
t (6)

sC(t) = aC + bCt+
12∑
i=2

cCi Mi(t) + cCWEWE(t) +
4∑
j=1

cCPHj
PHj(t) + cCRR(t), (7)

where mt is again an Ornstein-Uhlenbeck process with mean-reversion parameter κC and

constant volatility σC . BC
t is a standard Brownian motion and sC(t) is defined analogously

to sD(t). In addition, another dummy variable R(t) is included in order to reflect the fact

that, other than for the electricity demand data used in this study, our capacity data

includes generating units from Scotland only after April 2005.12

C. Marginal Fuel

In addition to above processes for electricity demand and system capacity, we finally

introduce dynamics for our third state variable, i.e. the marginal fuel used for generation.

As a matter of simplification, we currently do not consider an n-fuel electricity market but

instead assume that the marginal fuel for the respective electricity market under study

does not change. While this certainly is a restrictive assumption, it may still seem justified

for markets that are strongly dominated by one generating fuel. Reflecting the dominant

role of natural gas as generation fuel in the British market (and, more generally, in several

other major electricity markets), we include it as single generating fuel into our overall

pricing model.

Although for modeling natural gas, a variety of multi-factor approaches with varying

12The introduction of the British Electricity Trading and Transmission Agreements (BETTA) as per
April 2005 is generally referred to as the starting point of a UK-wide electricity market. Prior to that,
and although linked via interconnectors, the electricity markets of England/Wales and Scotland were
operating independently.
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degree of sophistication have been proposed by recent literature (see, e.g., Cartea and

Williams, 2008, for an overview), we seek to limit both complexity and (the already

high) parametrization of the model and instead fit log gas prices using the mean-reverting

1-factor model initially proposed by Schwartz (1997):

ln gt = Xt + sg(t) (8)

dXt = −κgXtdt+ σgdBg
t (9)

sg(t) = ag + bgt+
12∑
i=2

cgiMi(t), (10)

where Xt is the logarithm of the de-seasonalized price dynamics and sg(t) reflects the

strong seasonality component that is inherent in natural gas prices. Dynamics for natural

gas are specified with respect to a filtered probability space
(
Ω,Fg,Fg = (Fg)t∈[0,T ?],P

)
.

Of course, and as can be seen in the following subsection, the overall structure of our

power price model as well as the availability of closed-form solutions will be retained

when introducing refinements such as a multi-factor log-normal model for natural gas.13

D. Pricing Model

In order to link the three state variables – marginal fuel gt, electricity demand Dt and

capacity Ct – with electricity (spot) prices Pt, we employ an exponential setting, thus

reflecting the convex relationship between prices and load/capacity as induced by the

merit-order curve; at the same time, we propose power prices to be multiplicative in the

marginal fuel. Both these modeling choices can be considered common practice (see, e.g.,

Carmona and Coulon, 2012, for further reference), which leads to the following structural

relationship between power prices and state variables:

Pt = α gδt eβDt+γCt (11)

13While applying a 1-factor model for natural gas prices may be seen as overly simplistic (e.g.,
especially since the structure of this model implies that all natural gas forward/futures contracts are
perfectly correlated across maturities), we note that in section V, we primarily focus on pricing short-term
electricity forward contracts for which only the short end of the curve may be relevant. However, when
pricing longer-term electricity contracts, we suggest a 2-factor natural gas price model be employed
instead.
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Or, in log-form:

lnPt = lnα + δ ln gt + βDt + γCt (12)

where δ can be interpreted as the elasticity of the electricity spot price with respect to

changes in the natural gas price, as proposed by Pirrong and Jermakyan (2008). Setting

δ = 1 in (11) would allow to interpret eβDt+γCt as heat rate function. However, given

that we will primarily be investigating baseload power prices in the empirical part of this

paper, we acknowledge that the elasticity of baseload power prices with respect to natural

gas may be varying and, hence, do not impose the restriction that δ = 1.

Also, and as will be seen later, there is a subtle form of dependence between the parameters

α and γ. In order to give an intuition for the role of α, and providing an abstract link to

structural multi -fuel power price models at the same time, we note that (11) could also

be re-written as follows:

Pt = f
(1−δ)
t︸ ︷︷ ︸
α

gδt eβDt+γCt (13)

In (13), α could hence be interpreted as reflecting the dynamics of another generation

fuel ft (such as coal) which, however, will be held constant for simplicity.

Following classic theory, (electricity) futures prices equal the expectation of the spot price

at maturity under a suitably chosen risk-neutral measure Q, and given that Pt is lognormal

in the state variables, the log futures price lnFt = lnF (t, T ) is derived as follows:

lnFt = EQ[lnPT ∣∣ Ft]+ 1
2
VQ[lnPT ∣∣ Ft] (14)

= lnα + δ EQ[ln gT ∣∣ Ft]+ β EQ[DT

∣∣ Ft]+ γ EQ[CT ∣∣ Ft]
+1

2
δ2 VQ[ln gT ∣∣ Ft]+ 1

2
β2 VQ[DT

∣∣ Ft]+ 1
2
γ2 VQ[CT ∣∣ Ft] (15)

where EQ
t

[
·
∣∣ Ft] and VQ

t

[
·
∣∣ Ft] indicate expectation and variance under a risk-neutral

measure Q at time t, and the market filtration F is defined as F := FD ∨ FC ∨ Fg.
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As will further be outlined in section III, when pricing forward contracts by making

use of forecasts of electricity demand and capacity, forward prices will be computed as

risk-neutral expectations of the spot during the delivery period, conditional on Gt rather

than Ft. Consequently, equation (14) will need to be replaced by lnFt = EQ[lnPT ∣∣
Gt
]

+ 1
2
VQ[lnPT ∣∣ Gt], where G := GD ∨ GC ∨ Fg and GD and GC are the (enlarged)

filtrations containing forecasts of expected demand and capacity levels, respectively.

Moreover, and following Pirrong and Jermakyan (2008), the state variables are assumed

to be independent of each other.

Also note that equation (14) refers to a contract with delivery of electricity at some future

time T , whereas standard electricity forward contracts specify the delivery of electricity

throughout a delivery period [T , T ] (with T < T ), e.g., one week or one month. Following

Lucia and Schwartz (2002), the price of a forward contract with delivery period [T , T ],

containing n = T −T delivery days, will hence be approximated as the arithmetic average

of a portfolio of n single-day-delivery forward contracts with their maturities spanning

the entire delivery period:

F (t, T , T ) =
1

T − T

n∑
i=1

F (t, τi) (16)

Finally, calculating electricity forward prices based on equation (16) also requires us to

dispose of fuel forward prices with single-day maturities, i.e., one also needs to compute

EQ[ln gτ ∣∣ Ft] (as well as corresponding variance) for every day τ within the delivery

period [T , T ]. For that purpose, we take the implied log-spot price of natural gas at time

t as a starting point to compute for every day τ within the delivery period the price of

a (hypothetical) natural gas forward contract that matures on that very day. A shortcut

approach could be to use only one average value for EQ[ln gτ ∣∣ Ft] during the entire

delivery period (e.g., based on the current value of the month-ahead natural gas forward,

when pricing month-ahead electricity forwards). However, this may pose problems for

non-standard delivery periods as well as requires identically defined delivery periods for
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gas and power.14

III The Enlargement-of-Filtration Approach

As has previously been argued, and following Benth and Meyer-Brandis (2009), non-

storability of an asset X implies that forward-looking information can neither be inferred

from, nor is reflected in the historical evolution of its price trajectory. Mathematically

speaking, given a finite horizon T ? and letting
(
Ω,F ,F = (F)t∈[0,T ?],P

)
be a filtered

probability space, the natural filtration FX = (FX)t∈[0,T ?] (with Ft = F0 ∨ FXt ) may

not reflect all forward-looking information available to market participants. Assume that

agents have access to some (non-perfect) forecast of the price of asset X at some future

time t? ∈ [0, T ?]. Then, there exists a sigma-algebra Gτ with Fτ ⊂ Gτ for all τ < t?,

where Gτ reflects all available information including the forecast, whereas Fτ does not.

For τ ≥ t?, i.e. for times beyond the forecast horizon, we however have Fτ = Gτ , since no

further forward-looking information is (assumed to be) available.

Next, we note that whereas electricity price dynamics and weather (or temperature)

processes clearly serve as most prominent examples for non-storable underlyings, the above

outlined incompleteness of natural filtrations with respect to forward-looking information

can generally be extended to any kind of non-storable underlying. Therefore, and

strictly speaking, we do not enlarge the filtration of the electricity spot price in order

to incorporate forecasts, like Benth and Meyer-Brandis (2009) do in their reduced-form

setting. Instead, we focus on electricity demand Dt in (1) and available system capacity

Ct in (5) which are, of course, non-storable underlyings15 as well, and hence do not reflect

forward-looking information either. Therefore, and more precisely, it is the filtrations

relating to the demand and capacity processes, respectively, that need to be enlarged in

14We note, however, that in the UK, electricity forward contracts (still) trade according to the EFA
(electricity forward agreement) calendar, following which every calendar year is grouped into four quarters
with three delivery months with lengths of 4/4/5 calendar weeks, respectively. Consequently, delivery
months of electricity forward contracts may not exactly overlap with corresponding delivery months of
traded natural gas futures contracts.

15While it may seem uncommon to refer to, e.g., transmission capacity as an underlying, we note aside
that for some markets, such as the PJM market in the US, FTRs (financial transmission rights) and FGRs
(flowgate rights) are available for congestion risk management purposes, with their value depending on
system capacity as direct underlying. See, e.g., Deng and Oren (2006).
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order to integrate forecasts provided by the system operator.

In the following, all formulae derived in this section relate to available system capacity and

forecasts thereof. Additional theoretical background as well as how to derive respective

formulae for the more general case of deterministic, but non-constant volatility (as

for electricity demand Dt) is provided in the technical appendix. Also, for notational

convenience, we will work with de-seasonalized forecasts that relate to mt instead of Ct;

FCt and GCt are defined as further above.16

In this setting, the (de-seasonalized) forecast of system capacity available at time t and

with forecast horizon T is interpreted as Gt-conditional expectation and can be expressed

as:

EP[mT

∣∣ GCt ] = mte
−κC(T−t) + σCEP

[∫ T

t

e−κ
C(T−u)dBC

u

∣∣∣∣ GCt ] (17)

This raises the question of how to treat expectations like EP[∫ T
t

e−κ
C(T−u)dBC

u

∣∣ GCt ]
that are conditional on GCt (i.e., the sigma-algebra incl. forecasts) when BC

t , however,

is an FCt -adapted Brownian motion. Consequently, BC
t may no longer be a standard

Brownian motion with respect to (GCt )t∈[0,T ?]. Even more importantly, and following the

“portfolio approach” in (16), the pricing of, e.g., a forward contract with delivery period

of one month will require to (ideally) dispose of capacity forecasts for every day within

the delivery period. Yet, as will be seen in section IV and as Figure 1 shows, detailed

forecasts on a daily basis (as released by National Grid for the British market) always

cover a window of the next 14 days only. For longer-term prognoses, such as expected

capacity in 21 days, only forcasts of weekly granularity are published. Consequently, we

may at best cover a certain first part of the delivery period with daily forecasts, whereas

16One could argue that there exist, of course, numerous other forecasts about expected system capacity
that market participants might also have access to. E.g., capacity forecasts released by the system
operator that relate to intermittent energy sources (such as wind or solar power) might be adjusted
based on a utility’s proprietary model involving different meteorological assumptions, such as more
windy conditions or fewer sunshine hours. Likewise, the same is, of course, true for demand forecasts if
market participants expect, e.g., higher temperatures than implied by the forecast of the system operator.
Therefore, if we speak of G as the sigma-algebra “including forecasts”, we assume away the existence of
other forecasts and only mean to refer to those forecasts released by the TSO (as well as to some manual
updates that were added by the authors in case of missing forecast data; see below on this issue).
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for the rest of the period, only few weekly forecast points will be available, thus leaving

several delivery days “uncovered” by forecasts. Therefore, another key question is how to

consistently determine EP[mT

∣∣ GCt ] when forecasts for system capacity on delivery day

T are not available, but only for times T1 and T2 with T1 ≤ T ≤ T2. This leads to the

following proposition:

Proposition III.1. Suppose that market participants dispose of forecasts of system

capacity at future points in time T1 and T2, i.e., EP[mT1

∣∣ GCt ] and EP[mT2

∣∣ GCt ]. Then,

for t ≤ T1 ≤ T ≤ T2, capacity expected to be available at time T is given as:

EP[mT

∣∣ GCt ] = (18)

EP[mT1

∣∣ GCt ]e−κC(T−T1) + EP
[∫ T2

T1

eκ
CudBC

u

∣∣∣∣ GCt ]σC eκ
CT
(
1− e−2κC(T−T1)

)
e2κCT2 − e2κCT1

The first part of the second term on the RHS of (18), in turn, can be derived as follows:

EP
[∫ T2

T1

eκ
CudBC

u

∣∣∣∣ GCt ] =
1

σC

(
EP[mT2

∣∣ GCt ]eκCT2 − EP[mT1

∣∣ GCt ]eκCT1

)
(19)

Proof. This directly follows from Proposition 3.5 and Proposition 3.6 in Benth and

Meyer-Brandis (2009). Detailed derivations for the more general case of non-constant

deterministic volatility are provided in the technical appendix.

Note that we do not impose any specific structure on the nature of the enlarged filtration

(GCt )t∈[0,T ?] apart from (i) the fact that the forecasts released by the TSO are interpreted

as Gt-conditional expectations and (ii) that the Ft-adapted process BC
t (likewise BD

t ) is

a semimartingale under the enlarged filtration. The latter is a common and well-studied

approach in the enlargement-of-filtration theory, although more recent studies (Biagini

and Oksendal, 2005, or Di Nunno et al., 2006) have shown that such assumption could in

fact be relaxed. As is shown in the appendix in more detail, the general idea in this case

is that BC
t under the enlarged filtration (GCt )t∈[0,T ?] decomposes into a standard Brownian

motion B̂C
t and a drift term A(t) =

∫ t
ϑ(s)ds which can be referred to as the information

drift. Hence, the additional information is essentially incorporated in the drift term ϑ(t),
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so that the dynamics for mt in (6) can be re-written as follows:

dmt = −κC
(
mt −

σC

κC
ϑ(t)

)
dt+ σCdB̂C

t (20)

Based on (20) – or, equivalently, on Proposition III.1 – we can now compute Gt-conditional

expectations which relate to those points in time where no TSO forecasts are available,

yet which are still consistent with the modified stochastic dynamics as imposed by the

available forecast points. Although a related concept, the change of the drift for the above

capacity process has not been obtained through a change of the probability measure,

i.e., B̂C
t is a Gt-adapted Brownian motion under the statistical measure P. Therefore,

when it comes to derivative pricing under a risk-neutral measure Q in section V, we

will consequently need to look for a Gt-adapted standard Q-Brownian motion B̌C
t =

B̂C
t −ΛC

G (t), where ΛC
G (t) is a finite variation process representing the market price of risk

that will be inferred from price quotes of actually traded electricity derivative contracts.

Finally, we shall briefly discuss why this specific approach of integrating demand and

capacity forecasts was chosen here. In fact, one may think of two alternative ways of how

the incorporation of forward-looking information could be dealt with technically.

Assuming the forecast data to be reasonably reliable, one approach could be to treat

the forecasts as deterministic. In such case, demand and capacity forecasts, represented

by expected values EQ[·] in equation (14), would be replaced by constants, so that

corresponding variance terms vanish as well. Although appealing through its simplicity,

such approach may raise several issues: First, when pricing, e.g., a forward contract

with monthly delivery period, it often will be the case that detailed forecast data on

a daily basis is not available for all days of the delivery month. Especially for mid-

to longer-term forecasts, granularity of forecast points tends to be rather low, i.e.,

only expected maximum weekly, monthly or seasonal demand (capacity) levels may be

indicated. Irrespective of the question of whether longer-term forecasts are still sufficiently

accurate at all in order to justifiably treat them as deterministic, choosing among different

methods of how to interpolate missing forecast data may appear arbitrary and the pricing

results of our model would be sensitive to the specific method chosen. Second, and as
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will be analyzed further below, future capacity levels are generally known to be hard to

predict, in particular for the British market (also see Karakatsani and Bunn, 2008, on

this issue). This results in slightly less reliable forecasts, hence invalidating at least in our

case the possible assumption of deterministic forecasts in the first place.17

Another approach could mitigate the above problem of interpolation in case of longer-term

forecasts, although this (again) requires daily forecasts to be considered deterministic

whenever available. For missing daily forecast points for periods beyond the horizon of

the daily forecasts, one could proceed as follows: A demand (capacity) process is estimated

based on the time series of historical demand data that has been extended to also include

a given set of available daily forecasts, treating the latter as if they were actually observed

values. Missing forecasts are then replaced with expectations derived from the estimated

process. This approach is proposed by Ritter et al. (2011) and Härdle et al. (2012)

in the context of weather derivatives pricing. Roughly speaking, estimating parameters

based on historic and forecast data at the same time may come close to the general idea

of enlarging the information filtration. Yet we argue that especially for electricity, this

“combined estimation” may level out expected future (demand/capacity) fluctuations too

strongly due to the (necessary) inclusion of historic data into the estimation. Assume,

e.g., that a longer-lasting period of very high electricity demand is expected. This will, of

course, be reflected explicitly in the daily forecast points. However, even if these days (for

which high demand is forecast) are added to the historical time series in the “combined”

estimation procedure, the derived demand expectations for periods thereafter will likely

be lower, reflecting historic long-term average demand, too. Note that this very issue is

avoided by modifying demand and capacity dynamics as proposed in (20), while retaining

the basic stochastic properties of the respective processes at the same time.

17Basically the same arguments apply if we instead retain the general structure of our stochastic
processes for demand and capacity in equations (2) and (6), and include the forecast data (e.g., relating
to a future point in time T ) into the deterministic parts sD(T ) and sC(T ). Additionally, and at least in the
short-term, the deterministic part within EQ[·] is clearly overlaid with the mean-reverting OU-component
qte−κ

D(T−t) (likewise for capacity) so that the exact forecast values contained in sD(T ) will be distorted.
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IV Data and Estimation Approach

A. Fundamental Data

The data set used in this study for the fundamental variables demand and capacity

comprises of ten years of historical data for the British electricity market, covering the

period from 2002 up to 2012. These contain both historical outturn as well as historical

forecast data, and were obtained from National Grid, the British transmission system

operator,18 and Elexon, the operator of the balancing and settlement activities in the

British market.19 Figure 2 shows the development of the outturn demand and capacity

data during the period from 01-Jan-2007 to 31-Dec-2011, i.e., the period covered by our

empirical pricing study.

With respect to electricity demand, the outturn data used is based on the realized

average MW value of electricity demand in England, Wales and Scotland during the peak

half-hour of the day, as indicated by operational metering.20 Specifically, the demand

metric we use is classified as IO14 DEM, which includes transmission losses and station

transformer load, yet excludes pump storage demand and net demand from interconnector

imports/exports.21

As regards forecasts of expected electricity demand, two categories need to be

distinguished: First, National Grid releases demand forecasts covering the next 2 weeks

ahead on a daily basis, and which are updated daily, too. These are forecasts of electricity

demand expected to prevail during the peak half-hour of the respective day, which is the

reason why we are using peak demand instead of average (baseload) demand throughout

this study. Second, longer-term forecasts of expected demand are released, too, covering

18National Grid both owns and operates the systems in England and Wales. Since the start of BETTA
in April 2005, it has also been operating the high-voltage networks in Scotland owned by Scottish and
Southern Energy as well as Scottish Power.

19The following websites were accessed: http://www.nationalgrid.com, http://www.bmreports.com
and http://www.elexonportal.co.uk.

20Other than for most electricity markets, electricity in Great Britain is traded on a half-hourly basis,
corresponding to 48 settlement periods per day.

21The British electricity market is connected to neighbouring markets via interconnectors such as
to/from France (IFA), the Netherlands (BritNed) or the Moyle Interconnector (connection to Northern
Ireland).
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the next 2-52 weeks ahead on a weekly basis. These forecasts relate to expected demand

during the peak half-hour of the respective week. Importantly, it has been made sure that

both outturn and forecast data are defined consistently.

In terms of outturn system capacity, National Grid records maximum export limits (MEL)

for each of the units that are part of the overall balancing mechanism (BM).22 These

limits quantify the maximum power export level of a certain BM unit at a certain time

and are indicated by generators to the TSO prior to gate closure for each settlement

period; should there be an (un-)expected outage for some generation unit, generators

will accordingly submit a MEL of zero during the time of the outage for this unit.

Importantly, MEL do include volatile interconnector flows as well as generation from

intermittent/renewable sources and, hence, may be seen as a good real-time proxy of

available generation capacity that either is in use for production, or could additionally be

dispatched into the transmission system immediately.

Capacity forecasts are released by National Grid, too, yet primarily focus on the expected

“market surplus” SPLD.23 This metric gives an indication on expected excess capacity

beyond the levels required to satisfy (expected) demand and reserve requirements, but

is structurally different from the MEL-approach that we follow for the outturn capacity

data. This is, amongst other reasons, due to SPLD including a statistically derived

reserve-allowance which is based on average loss levels and forecast errors, rather than

actual reserve levels held in operational timescales (which are probably less pessimistic as

well). As such, and in order to consistently define actual and forecast capacity metrics, we

instead use forecasts of expected total generation availability (which are also released by

National Grid) and adjust these for few additional items.24 Both timescale and updating

22These are approx. 300 units in the UK (with one plant comprising several units).
23See, e.g., Cartea and Villaplana (2008) who use this metric in their study.
24Even when using generation availability instead of SPLD, and unlike for the case of demand data,

capacity forecasts still slightly differ in definition from the capacity metric on which the outturn data is
based (i.e., MEL). There are several reasons for this: Inter alia, volatile interconnector flows are hard to
predict and, hence, are set at float throughout all forecast horizons. Also, a small number of generating
units submit a MEL which, however, is not included into the forecast of generation capacity. We roughly
adjust for these items to still arrive at consistently defined metrics, e.g, by carrying over latest observed
values/forecast deviations into the future. At the same time, special focus is laid on our adjustments to
remain simple, easily reproducible, and hence likely to be used by market participants. Further details
are available from the authors upon request.
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structure of these forecasts is similar to the demand case and is summarized schematically

in Figure 1.

As mentioned, the weekly updated demand forecasts with a forecast horizon ranging

from 2-52 weeks ahead are specified as relating to the expected peak half-hour within

the respective week, i.e., it is not tied to a specific (business) day. Weekly capacity

forecasts then relate to this very same expected (demand) peak-half hour, but do not

specify an exact date either, which, however, is required in order to apply Proposition

III.1. Based on historic data, the peak half-hour of demand during a given week was most

often found to occur between Tuesday and Thursday. As a matter of simplification, we

hence assume that weekly demand and capacity forecasts always relate to the Wednesday

of the respective week.25

Finally, an important caveat applies: While using forward-looking information may

presumably be beneficial for derivatives pricing purposes, using outdated forward-looking

information may certainly lead to the opposite: In fact, and depending on both maturity

and length of the respective contract to be priced, it may be the case that EP[Dτ

∣∣ GDt ]
and EP[Cτ ∣∣ GCt ] for τ = T . . . T are exclusively determined based on longer-term forecast

points which are only updated weekly (as opposed to the daily updated 2-14 day-ahead

forecasts). Focusing specifically on capacity forecasts, it may, however, happen that a

major unplanned outage occurs just after the most recent weekly forecasts have been

released. Even worse, for few periods in our data sample, forecast updates are missing

altogether, leaving gaps of up to several weeks between successive forecast updates.

Feeding such outdated forecasts into our model and not updating for significant outages

(whenever indicated) that move the market, may unduly punish the forecast-based variant

of our pricing model.

Therefore, in case of missing updates or major unplanned outages not reflected in the

most recent set of capacity forecasts, we have adjusted for such events by screening

25Pricing results have proven to be rather insensitive to this assumption, i.e., fixing the weekly forecasts
to relate to each Tuesday or Thursday of a given week (or even alternating, based on the business day
for which the weekly peak-hour during the preceding week was observed) did not visibly change pricing
errors.
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Bloomberg’s “UK VOLTOUT” page as well as daily market commentary from ICIS Heren.

Prominent examples, amongst others, relate to several of the unplanned trippings of

nuclear generation units during 2007/08, which (along with increased retrofitting activities

of coal-based plants at that time) led to extremely tight levels of system capacity in the

British market. Before examining pricing errors more closely in section V, we stress

that without these additions and “bridging” of gaps in our history of capacity forecasts,

pricing results for the forecast-based variants of our model would otherwise be worse in

some instances.

B. Electricity Spot and Forward Data

Following the historic development of electricity market regulation and especially since

the inception of the NETA26 regime in 2001, wholesale trading in the British market

is predominantly characterized by OTC forward transactions with physical settlement of

contracts. The forward market – when defined as covering maturities from day-ahead up to

several years ahead of delivery – hence makes up for about 90% of overall electricity volume

traded in the UK (see, e.g., Wilson et al., 2011). Compared to other major European

electricity markets such as Germany or the Nordic market, financially-settled trades are

less common for the British market and mainly concentrate on limited exchange-based

trading activity such as at the Intercontinental Exchange (curve) or at the APX UK

exchange (prompt). More recently, the N2EX platform, operated by Nord Pool Spot

and Nasdaq OMX Commodities and established in order to re-strengthen exchange-based

trading, has also started to list cash-settled power futures contracts for the British market.

Despite these efforts, derivatives trading activity still seems to be rather limited, with

member participation in futures trading increasing at slow pace only.27

In view of this dispersed market structure with the vast majority of trades still being

based on bilateral and broker-based trading, our electricity price data is exclusively based

on OTC contracts and was obtained from two sources: Bloomberg provides time series of

forward contracts for download; these price data are defined as composite quotes based

26New Electricity Trading Arrangements
27See OFGEM, 2011.
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on data obtained from individual OTC brokers. In addition, a very comprehensive and

representative data sample was obtained from Marex Spectron, a leading independent

energy broker that operates one of Europe’s biggest and most established marketplaces

for electricity.28 This second data set is entirely based on trade data (including time stamp

of trade, executed through platform or voice brokers) and contains a variety of additional

types of electricity contracts, out of which a second OTC sample was formed. These two

samples, for which pricing errors will be analyzed separately in section V, contain the

following types of contracts:

“Bloomberg Data Set”:

� 1-month ahead forward contracts

“Marex Spectron Data Set”:

� 1-month ahead forward contracts

� 2-months ahead forward contracts

All selected forward contracts are baseload contracts. Moreover, and as outlined in the

following subsection, electricity spot (day-ahead)29 price data will additionally be used

for model calibration purposes, but will not be analyzed further in the pricing study. We

deliberately focus on pricing the above types of baseload contracts, leaving aside other

instruments with quarterly, seasonal or yearly delivery periods. This is due to the following

reasons: First, we are primarily interested in the pricing impact of including demand and

capacity forecasts into our model, compared to the case when disregarding such forecasts.

Since these forecasts are more accurate during short-term horizons,30 our pricing study

hence especially focuses on contracts with short maturities and delivery periods. Second,

trading activity generally concentrates on front months with liquidity at the longer end

of the curve soon decreasing (OFGEM, 2011). Finally, and again primarily for liquidity

28For further information, see http://www.marexspectron.com/Commodities/Energy/Electricity.aspx.
29We follow the classic assumption in literature following which the day-ahead market is interpreted

as spot market rather than referring to technical intra-day/balancing markets.
30Longer-term forecasts rely on statistical averages and, thus, should convey no significant additional

information as compared to the “no-forecast” case (that is characterized by filtration Ft).
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reasons, we have chosen to price baseload contracts instead of peakload contracts.31

An overview of the two data samples is provided in Table 1 where descriptive statistics

as well as further contractual characteristics for the day-ahead and forward contracts are

summarized. As can be seen, well-known characteristics of electricity price dynamics can

be retraced, such as substantial levels of volatility or excess kurtosis. While these effects

are – as expected – more pronounced for spot than for forward contracts, we also note the

obvious difference in skewness of log-returns between both types of contracts. We refer

to Weron (2006) for a general treatment as well as comprehensive characterisation of the

typical dynamic properties of electricity spot prices.

C. Estimation Approach

The individual processes for the state variables Dt and Ct are estimated using

Maximum-Likelihood estimation. Based on annually shifted windows of five years of

time series data, parameters for the demand and capacity processes32 are re-estimated

annually, but held constant throughout every subsequent year when it comes to pricing

purposes. Estimation results and robust standard errors are presented in Tables 2

and 3. The reported significance levels underline the distinct seasonalities for both

demand and capacity, with our chosen specifications capturing well their most prominent

characteristics.

Given the already very high number of parameters to be estimated, we have chosen a

rather simple 1-factor approach to model the dynamics of the marginal fuel used for

generation, i.e., natural gas in our case. Since Xt in (8) cannot be observed directly,

estimation of all parameters for the natural gas model is performed using the Kalman filter

maximum likelihood methodology. Re-casting the model into state-space representation

with corresponding transition and measurement equations is a standard exercise which

31The fact that we are pricing baseload contracts, yet using demand and capacity during peak half-hours
as inputs, may seem inconsistent, but is ultimately due to the forecast data being available in this format
only. It might be possible to convert the peakload demand and capacity forecasts into corresponding
baseload predictions, e.g., by applying scaling factors that are based on historical averages. However,
this is already indirectly accounted for by the estimation procedure outlined in the following subsection.

32In the estimation procedure, we use the AR(1) discrete-time analogues of equations (2) and (6),
respectively.
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is outlined in more detail, e.g., in Schwartz (1997) or Manoliu and Tompaidis (2002)

who apply the very same model. Since our pricing study primarily focuses on short-

term electricity forward contracts, we accordingly focus on the short end of the natural

gas curve and hence seek to infer the log-spot natural gas dynamics from corresponding

short-term futures contracts with maturities ranging from 1 to 4 months. Relevant data

is sourced from Bloomberg and relates to standard natural gas futures contracts traded

at the ICE (Intercontinental Exchange) with physical delivery at the National Balancing

Point (NBP), the virtual trading point for natural gas in Great Britain operated by

gas-TSO National Grid.

Having estimated the parameters that govern the dynamics of the respective underlying

variablesDt, Ct and gt, it yet remains to be determined how to estimate the “fundamental”

parameters α, β, γ and δ that link the above three factors. Generally, two approaches

appear suitable:

1. Based on equation (12), historic log electricity spot prices lnPt are regressed on

corresponding time-series data of Dt, Ct and ln gt. This has been proposed by

Cartea and Villaplana (2008) for a structurally similar model (that, however, does

not include marginal fuel dynamics)

2. Implicit (re-)estimation over time of the “fundamental” parameters, based on the

cross-section of electricity spot and forward prices

Given evidence that α, β, γ and δ may not be constant over time, we favour the

second approach: In their study on electricity spot price forecasting in the British

market, Karakatsani and Bunn (2008), for example, also apply fundamentals-based

models, and conclude that the models with best pricing performance are those that

allow for time-varying coefficients to link the fundamental factors. Moreover, some

specific structural aspects of the model proposed by Carmona et al. (2011) may be

seen in the same spirit. Therefore, and although treated as constants in our model, the

time-varying nature of the parameters α, β, γ and δ is captured by implicitly extracting

and weekly re-estimating them from the cross-section of quoted power prices. Likewise,
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the parameters λD and λC governing the change to a risk-neutral measure Q are inferred

in the same way as well.33

In order to implicitly estimate these parameters, the following criterion function is

minimized:

Φ?
w = argΦw

minRMSPE(Φw)

= argΦw
min


√√√√ 1

NP
w

NP
w∑

i=1

(
P̂w,i(ΦP

w)− Pw,i
Pw,i

)2

+

√√√√ 1

NF
w

NF
w∑

i=1

(
F̂w,i(Φ

Q
w)− Fw,i
Fw,i

)2


where Φw ≡ {α, β, γ, δ, λD, λC}, and with the two subsets ΦQ

w and ΦP
w defined as Φw ≡ ΦQ

w

and ΦP
w ≡ ΦQ

w \{λD, λC}. To minimize the root mean squared percentage error (RMSPE)

over the in-sample period w, we assemble all available day-ahead prices Pw,i (totalling

NP
w quotes) as well as all available forward prices Fw,i (NF

w quotes) and compare against

prices P̂w,i and F̂w,i as predicted by our model according to equations (12) and (14).

For in-sample estimation windows w, a length of eight weeks has currently been chosen

(e.g., w1−w8) for the Bloomberg sample. Out-of-sample testing of the obtained parameter

estimates is performed during the subsequent week (i.e., w9) – thus only using information

available up to the respective pricing day. Finally, the in-sample period is shifted by one

week (i.e., new IS window: w2 − w9) and parameters are re-estimated. For the Marex

Spectron sample, however, we shorten the length of the in-sample estimation windows to

6 weeks, thus accounting for the fact that more cross-sectional prices need to be fitted

in-sample. Furthermore, these changes in the in-sample set-up may be seen as providing

additional robustness to our findings examined in section V, so as to ensure that pricing

improvements when using forecasts do not rely on a specific mix of contracts or length of

in-sample estimation windows.

33Note that for pricing power derivatives in our structural framework, risk-neutral dynamics are also
required for the natural gas component of our model. The corresponding market price of risk λg (which
is assumed constant), however, has already been determined by Kalman filter estimation (see Table 4).
We hence assume that the “look-through” risk premium of natural gas indirectly inherent to power
derivatives is equal to the one for (outright) traded natural gas futures contracts. While λg could easily
be re-estimated by including it into the set of implicitly determined parameters Φ, we refrain from doing
so and instead prefer to reduce the number of free parameters here.
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Implied parameter estimates Φ?
w that were obtained in this way are summarized in

Table 5. Although the table only provides an aggregate view on the estimates, their

corresponding means and standard errors give proof of significant weekly variation

between the parameters which our model could not capture when holding constant the

fundamental parameters α, β, γ and δ in Φ?
w otherwise.

Examining more closely the development of the parameter estimates over time, we observe

that β and γ, the parameters governing the sensitivity of the power price with respect

to changes in demand and capacity, respectively, culminate in 2008 and gradually decline

thereafter. As will be outlined further in the next section, this can be well explained by

the fact that in terms of (excess) capacity, the British power market was especially tight in

2008, as is clearly reflected in the behavior of day-ahead and month-ahead forward prices

displayed in Figure 2. The years to follow are marked by a massive increase in installed

generation capacity by more than 10 GW, leading to oversupply especially of thermal

generation, pressurizing spreads (especially spark spreads) in turn. As a consequence

of such abundant capacity levels, changes in demand and capacity are of clearly less

importance for power price dynamics at that time, as evidenced by rather small absolute

values for the estimates of β and γ in the years 2009-11.34 As will be seen, this strongly

affects the relative advantage of using forecasts of demand and capacity.

Recalling that δ can be interpreted as the elasticity of the power price with respect to

changes in the fuel price, we observe that between 2009 and 2011, the estimate for δ more

than doubles. This increase in the power-gas sensitivity may come as a surprise given that

at the same time, spark spreads have continued to decline. However, and as a matter of

fact, it is the structure of the British generation park that has especially the short end of

the power price curve track the NBP curve very closely; hence, the link between gas and

power markets may have become even stronger recently, owing to the fact that (i) the

34However, we acknowledge that it may be up for debate whether the variation of β and γ (and
especially the increase in absolute values for 2008) could, at least to some extent, also be due to
insufficient convexity of our functional representation of the merit order curve which is likely to be much
steeper during times of low system margin than the corresponding levels implied by our exponential-form
representation.
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LCPD35 has started to reduce availability levels of coal plants and that (ii) new generation

coming online has primarily been of CCGT-type. We also note that the increase in value

for δ during 2009-2011 goes in line with a corresponding decrease in value for α, which

appears reasonable when recalling the interpretation of α = f 1−δ
t in equation (13).

Finally, in view of rather large estimates for the market prices of demand and capacity

risk, λD and λC , it is important to mention that since these two parameters are estimated

simultaneously, they interact with each other during the estimation procedure and can

uniquely be determined in combination with each other only. It might hence be more

convenient to think of a “combined” market price of (reserve) margin risk βλD + γλC

which is also shown in Table 5.

V Empirical Pricing Results

Pricing results for 1-month ahead forward contracts from the Bloomberg data sample are

summarized in Table 6. As can be seen, employing demand and capacity forecasts clearly

improves pricing performance on an overall basis, cutting pricing error measures by up

to 50%: Aggregate RMSE over the entire sample period from 2007-2011 reduces by some

£4.00/MWh, which also underlines the economic significance of the pricing improvements

achieved by incorporating forecasts into our model – especially in view of average contract

volumes of several thousands of MWh.

In order for the analysis of pricing errors to be consistent with our estimation procedure,

we mainly focus on root mean squared-based error measures, given that this sort of metric

has also been used in our criterion function. However, we also note that the relative

improvement in pricing performance when employing forecasts is generally smaller when

looking at the absolute percentage error (MAPE) as opposed to RMSPE, which underlines

that incorporating forecasts seems to pay off mainly in situations of unusually high or

low demand/capacity. Hence, before analysing the breakdown of pricing errors on a

yearly basis, it is important to recall that primarily during the first 2-2.5 years covered

35The UK Large Combustion Plant Directive (LCPD) limits the amount of Sulphur Dioxide, Nitrous
Oxides and dust that (coal- and oil-fired) power stations are allowed to emit. As an alternative to
complying with the tighter emissions regulations, power stations that were “opted-out” either face
restrictions of operational hours and/or have to close by 2015.
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in our study, the British power market has suffered from exceptionally poor (expected)

levels of power plant availability, with reserve margins clearly falling below long-term

average (especially in 2008). Consequently, the model variant excluding forecasts fares

clearly worse than during any other period of our pricing study. By contrast, the model

variant including both demand and capacity forecasts gives strong proof of its capabilities,

reducing and limiting pricing error levels even in times of extreme fluctuations in day-

ahead and forward price levels – i.e., during times demanding utmost flexibility from any

type of pricing model. Reconsidering Figure 4, the extreme spike in month-ahead forward

prices during September/October 2008 was clearly fueled by ever-increasing supply fears,36

and it is obvious that such a trajectory can only be reproduced (albeit not perfectly) by

a model that includes forward-looking information about the capacity levels that are

expected to prevail during the respective delivery months.

As regards the pricing performance of the tested model variants during the year 2007, this

provides another opportunity to further discuss what kind of forward-looking information

we actually consider to be contained in the enlarged filtration (GCt )t∈[0,T ?] – and what is

not contained therein. Based on a detailed analysis of single-day pricing errors, the model

variant including both forecast types yields very satisfactory pricing results throughout

this year, except for a period of rather poor pricing performance during November and

December 2007, for which forward prices are clearly underestimated. Although market

commentary may generally be criticized for over-emphasizing alleged causal relationships

between specific events and strong market movements, several of the reports released at

that time stress, amongst other reasons, the then very high continental power prices that

are said to have impacted British power prices as well. In fact, French power prices had

reached record levels in November 2007, fueled by strikes in the energy sector that led to

temporary production cuts by some 8,000 MW. This, in turn, raised concerns about French

electricity supplies for the rest of the year, which ultimately could have resulted in Britain

becoming a net exporter of power to France via its interconnector, putting an additional

36This is supported by our analysis of market commentary covering the respective trading days.
Importantly, in these days, then prices of month-ahead natural gas were approximately flat.
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drain on the already tight British system.37 However, although market commentary

indicates that (British) market participants do seem to have “priced in” such a scenario,

and although pricing errors for the forecast-based variant of our model would have clearly

been reduced, we have decided not to incorporate this belief (i.e., interconnectors switching

from imports to exports) in our capacity forecasts: (GCt )t∈[0,T ?] is based on forecasts

released by the TSO and supplemented with updates of major unplanned outages which,

however, have actually happened. Although likely to further improve pricing performance,

starting to integrate market beliefs about future available import/export capacity levels

would also require us to do so for the rest of our sample and, finally, might give an

impression of trying to re-fit model prices in hindsight.

In the years 2009-2011, the relative improvement of the forecast-based model variants is

smaller than in previous years. As indicated by the corresponding parameter estimates

for β and γ in these years, the influence of demand and capacity as fundamental factors

driving power prices has been much reduced, primarily due to growing oversupply in

generation capacities leading to permanently healthy reserve margin levels. As such,

given that (short- to mid-term) power prices at that time were almost exclusively driven by

natural gas dynamics under these conditions, the impact of incorporating forward-looking

information into our model vanishes accordingly. Interestingly, pricing performance of

the model for the years 2009-2011 seems to be even slightly better when using demand

forecasts only, and leaving capacity forecasts aside. This could be due to the fact

that in the British market – as also stressed by Karakatsani and Bunn (2008) – the

forecasts of available capacity levels (or, equivalently, margins) released by the TSO

tend to be received with slight skepticism and, hence, are likely to be adjusted (or not

used at all) by market players. This adds to other, more general problems of capacity

forecasts, such as accuracy in terms of generation from renewables or their consistency

in definition with outturn data. This is also reflected in Figure 3 where prediction errors

between forecast and outturn demand and capacity levels are summarized.38 Compared

37The interconnector that links British and French electricity markets has a capacity of approx. 2,000
MW; Britain has “traditionally” been an importer of French electricity – which (especially during peak
hours) tends to be cheaper, also in view of the higher share of nuclear baseload generation capacity.

38Note that especially for capacity forecasts, the input capacity data from National Grid has been
subject to further adjustments by the authors.
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to demand forecasts, predicted future capacity levels are significantly less accurate and

this inaccuracy increases more strongly for longer forecast horizons. While this certainly

impacts pricing performance during 2009-11, such generally higher inaccuracy of capacity

forecasts nevertheless seems to be of minor importance during times of exceptionally low

reserve margins, as shown above.

For the sample based on data obtained from Marex Spectron, we again observe an

improvement in pricing performance when integrating demand and capacity forecasts

into our model – as evidenced in Table 7 and Table 8 by relative reductions in aggregate

2007-2011 RMSPE of 8% and 15% for 1-month and 2-months ahead forward contracts,

respectively. Moreover, the overall pattern of pricing errors for both types of forward

contracts is in general agreement with the conclusions drawn based on the Bloomberg

sample: Notably, integrating demand as well as capacity forecasts into our model

again primarily pays off during the years 2007-2008, reducing aggregate RMSE during

these years by about £1.20-2.00/MWh. This is also confirmed by applying a Wilcoxon

signed-rank test which finds these reductions in errors statistically significant at a 1%-level.

For the remaining years (during which the impact of the fundamental factors Dt and Ct

has been found to be rather muted) pricing errors can still be reduced by using only

demand forecasts as compared to the “no-forecast” case.

Obviously, the deltas in error metrics between the model variants including and excluding

forward-looking information are not of the same order of magnitude as those reductions in

pricing errors observed for the Bloomberg sample. Importantly, however, the in-sample

fitting procedure for the Marex Spectron data sample additionally includes 2-months

ahead forward contracts. As such, the fact that the benefits of using forecasts still prevail

if calibrating our model to a broader cross-section of forward quotes may certainly be seen

as clearly underlining the robustness of our general findings.39

Interestingly, and examining the pricing errors in more detail, the year 2008 may again

serve as a key example that illustrates another (and more subtle) effect when using

forecasts as compared to excluding them. For this year, and based on the Bloomberg data

39As a further robustness check, the in-sample estimation window was shortened from 6 to 4 weeks,
yielding similar pricing results.
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sample, pricing performance of the “no-forecast” variant of the model is especially poor,

as indicated by an RMSPE of about 20%. For the Marex Spectron sample, by contrast,

corresponding pricing errors for 1-month ahead contracts are much lower, yielding an

RMSPE of less than 10%. In this context, it is important to note that amidst the height

of above mentioned capacity shortage in 2008 (that led to the prominent spike in 1-month

ahead forward prices in September/October shown in Figure 4), supply fears primarily

concentrated on the front month. Consequently, 2-months ahead forward contracts at

that time (although, of course, not completely unaffected by the shortage) were clearly

less subject to such strong fluctuations in price levels. Therefore, the broader cross-section

of forward quotes in the Marex Spectron sample forces the “no-forecast” variant of our

model to simultaneously accommodate such contrary 1-month and 2-months ahead price

dynamics, which results in a “mediocre compromise” at best: 1-month ahead contracts

are now strongly underestimated (2008 MPE of -2.78% in Table 7 vs. 0.98% in Table 6),

which, however, halves RMSPE to less than 10%, given that underpricing pays off after

the sudden “collapse” in post-spike forward pricing levels. Yet on the other hand, the

pronounced spike in 1-month ahead forwards has 2-months ahead contracts become

strongly overpriced post-spike (despite an overall 2008 MPE of -0.69%), which alone

contributes more than 2% to the overall RMSPE of 11.45%. By contrast, and again

comparing Table 6 and Table 7, all error metrics for the model including demand and

capacity forecasts in 2008 are surprisingly similar – irrespective of whether 2-months ahead

contracts are included in the cross-section or not.

Put differently, the above example gives proof of the additional flexibility that arises when

including forecasts into our model. Forecasting low levels of capacity in the short-term, yet

healthier levels in the mid- to long-term may help govern opposed dynamics of contracts

with differing maturities, such as outlined above. This flexibility is also reflected in the

implicitly estimated fundamental parameters α, β, γ and δ. In fact (and although not

reported here), the implied estimates show clearly higher variation throughout 2007 and

2008 than if demand and/or capacity forecasts are accounted for during the estimation

procedure. This appears reasonable given the additional flexibility for the forecast-based

model variants in fitting observed prices, whereas the model variant without forecasts
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always has expected demand and capacity mean-revert to the same (long-term) levels. As

a result, flexibility is reduced, which must be compensated for by higher variation in the

set of fundamental parameters. Altogether, this again underlines that excluding forecasts

from the pricing procedure not only affects pricing performance, but may also imply using

a mis-specified model.

VI Conclusion

Modeling the dynamics of electricity prices has traditionally been a challenging task for

market participants such as generators/suppliers, traders or speculators. The strong link

between power prices and their fundamental drivers makes structural modeling approaches

especially appealing in this context, and it can be expected that both current and future

developments – such as further integration of geographic markets via market coupling –

will even further promote the importance of bottom-up modeling frameworks (albeit at

the cost of increasing complexity). At the same time, increasing transparency as well

as more reliable outturn and forecast data released by system operators help market

participants face these challenges and allow for more informed trading decisions.

In this paper, we develop and implement a model for electricity pricing that takes these

developments into account by integrating forward-looking information on expected levels

of electricity demand and available system capacity. Special focus is laid on calibrating

the model to market prices of traded electricity contracts and it has been shown that

the model parameters are easily interpretable in an economic way. Being one of the key

advantages of the fundamental approach, this helps to provide deeper insight into the

structure of the market than standard reduced-form models could ever do.

Although hard to compare with other pricing studies (that focus on different markets),

the pricing performance of our model appears very satisfactory, especially for the years

2009-2011 covered in our sample. Importantly, we find that pricing errors can be reduced

significantly by making use of forward-looking information. Especially during times of

very tight reserve margins, as witnessed for the British market in 2008 (and, to some

extent, also in 2007 and 2009), capacity forecasts are of crucial importance in order to
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track sudden outage-induced changes in forward pricing levels and, therefore, significantly

reduce pricing errors. Yet we have also found that if spare capacities or, equivalently,

tightness of the system is not perceived as playing a “fundamental” role, the advantage of

employing capacity forecasts reduces and, in some instances, may even lead to marginally

lower pricing performance. This is also strongly supported by our findings that capacity

forecasts are generally less accurate on average than demand forecasts. However, in these

cases, it is still beneficial to keep using demand forecasts (rather than using no forecasts

at all), which still reduces pricing errors. This is especially true for the pricing of forwards

during the years 2009-2011, where, as our parameter estimates indicate, the dynamics of

natural gas are the main fundamental driver so that demand and capacity only play a

very minor role for pricing.

Given the above mentioned challenges and future developments, there is ample room

for further research in the field of structural electricity price modeling. First, it would

be interesting to conduct empirical pricing studies for other electricity markets as well.

Given that structural electricity price models may always appear somewhat “tailored”

to capture the characteristics of a specific electricity market, it would be interesting to

see how these types of models perform empirically in those markets where merit-order

dynamics are different. Second, given that our model is cast in a log-normal setting, it is

equally well-suited to option pricing like other previously proposed fundamental models

(see, e.g., Carmona et al., 2011). Further empirical studies might not only investigate

the impact of using forward-looking information on option pricing performance, but also

focus on the question of how pricing performance is affected depending on whether a 1-

or 2-fuel model is used. Finally, the continued shift towards renewable energy sources

in the generation mix of many European power markets poses new and highly complex

challenges regarding the forecasting of availability levels of intermittent generation, such

as for wind or solar power. These forecasts will play an indispensable role especially

when modeling geographic markets that are highly interconnected with each other, so

that abundant supplies are likely to “spill over” across borders and impact price levels in

neighboring markets.
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A Appendix

A. Conditional Expectations Based on Enlarged Filtrations

Under the Historical Measure

Let
(
Ω,FD,FD = (FD)t∈[0,T ?],P

)
be a filtered probability space and qt be specified as in

(2). Assume that EP[qT1

∣∣ GDt ] and EP[qT2

∣∣ GDt ] (with FDt ⊂ GDt ) are available from the

system operator. Before computing a forecast of expected electricity demand at time T

with t ≤ T1 ≤ T ≤ T2, we first derive relevant formulae under the assumption that only

one forecast point for T1 is given by the system operator – hence neglecting for the time

being the existence of EP[qT2

∣∣ GDt ] – and that a forecast of electricity demand is needed

for time T with t ≤ T ≤ T1. Formally, this can be expressed as follows:

EP[qT ∣∣ GDt ] = qte
−κD(T−t) + σDEP

[∫ T

t

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDt ] (21)

In order to manipulate the conditional expectation on the RHS of (21), a standard

approach (see, e.g., Protter, 2004, or Biagini and Oksendal, 2005) is to exploit the

semimartingale-property of BD
t with respect to Gt, i.e., to decompose BD

t as follows:

BD
t = B̂D

t + A(t) (22)

where B̂D
t is a GDt -martingale (standard Brownian motion) and A(t) a continuous GDt -

adapted process of finite variation (commonly referred to as the ”information drift”).

Following Hu (2011) and Di Nunno et al. (2006), B̂D
t in (22) can be written more explicitly

as:

B̂D
t = BD

t −
∫ t

0

bt(s)B
D
s ds︸ ︷︷ ︸

A1(t)

−
∫ t

0

a(s)

(
EP[Y ∣∣ GDs ]− ρ′(s)BD

s

)
ds︸ ︷︷ ︸

A2(t)

(23)

with A(t) = A1(t) + A2(t). Following Theorem A.1 in Benth and Meyer-Brandis (2009)

or, equivalently, Theorem 3.1 in Hu (2011) – a(s) and bt(s) in above equation (23) are
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given as follows:

a(s) =
ρ′(s)

τ −
∫ s

0

(
ρ′(u)

)2
du

(24)

bt(s) = ρ′′(s)

∫ t

s

ρ′(v)

τ −
∫ v

0

(
ρ′(u)

)2
du

dv (25)

where ρ(t) = EP[BD
t Y ] is twice continuously differentiable, τ = EP[Y 2] and Y is a centered

Gaussian random variable with Y =
∫ T1

0
eϕ(s)eκ

DsdBD
s =

∫ T1

0
eθ sin(2π(ks+ζ))eκ

DsdBD
s .

Focusing on A1(t) and since bs(s) = 0, it holds that:

∫ t

0

bt(s)B
D
s ds =

∫ t

0

∫ s

0

∂bs
∂s

(u)BD
u duds

=

∫ t

0

a(s)

[∫ s

0

ρ′′(u)BD
u du

]
ds (26)

=

∫ t

0

a(s)

[
ρ′(s)BD

s −
∫ s

0

ρ′(u)dBD
u

]
ds (27)

where (27) is derived from (26) by applying Itô’s Lemma to ρ′(s)BD
s . Based on the above,

equation (23) can now be re-arranged to yield:

B̂D
t = BD

t −
∫ t

0

a(s)

(
EP[Y ∣∣ GDs ]− ∫ s

0

ρ′(u)dBD
u

)
ds︸ ︷︷ ︸

A(t)

(28)

Given above definition of Y , and since it can be shown that ρ′(t) = eϕ(t)eκ
Dt, the

information drift A(t) can be further simplified, so that (28) now reads:

B̂D
t = BD

t −
∫ t

0

a(s)EP
[∫ T1

s

eϕ(u)eκ
DudBD

u

∣∣ GDs ]ds
= BD

t −
∫ t

0

a(s)EP
[∫ T1

s

ρ′(u)dBD
u

∣∣ GDs ]ds (29)

= BD
t − EP

[∫ T1

t

ρ′(u)dBD
u

∣∣ GDt ] ∫ t

0

a(s) exp

(
−
∫ s

t

ρ′(v)a(v)dv

)
ds︸ ︷︷ ︸

A(t)

(30)

where (30) is derived from (29) based on Proposition A.3 in Benth and Meyer-Brandis
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(2009). Hence, in our initial setting (21) where a demand forecast EP[qT ∣∣ GDt ] is to be

determined that is consistent with the exogenously given forecast point relating to T1,

this can now be computed as follows:

EP[qT ∣∣ GDt ] = qte
−κD(T−t) + σDEP

[∫ T

t

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDt ]︸ ︷︷ ︸
IG(t,T )

(31)

= qte
−κD(T−t) + σDe−κ

DTEP
[∫ T

t

ρ′(s)dBD
s

∣∣∣∣ GDt ] (32)

= qte
−κD(T−t) + σDe−κ

DTEP
[∫ T

t

ρ′(s)d
(
B̂D
s + A(s)

) ∣∣∣∣ GDt ]
= qte

−κD(T−t) + σDe−κ
DT

∫ T

t

ρ′(s)dA(s)

= qte
−κD(T−t) + (33)

σDe−κ
DT EP

[∫ T1

t

ρ′(u)dBD
u

∣∣∣∣ GDt ]︸ ︷︷ ︸
(?)

∫ T

t

ρ′(s)a(s) exp

(
−
∫ s

t

ρ′(v)a(v)dv

)
︸ ︷︷ ︸

f(s)

ds

Note that the term IG(t, T ) is also referred to as information premium which is defined

as EP[qT ∣∣ GDt ] − EP[qT ∣∣ FDt ]. The term (?), in turn, can be extracted from the given

forecast as follows:

(?) =
1

σD

(
eκ

DT1EP[qT1

∣∣ GDt ]− qteκDt

)
(34)

The integral in the second term on the RHS of equation (33) can be further simplified

significantly if volatility is constant, as is the case for the dynamics of the capacity process

in (6). In the case of the seasonal volatility function for the demand process (as specified

in (4)), however, no analytic solutions for the integral exist; yet it can be approximated

computationally in an efficient way by using standard numerical integration techniques.

Having outlined the general procedure for the case T ≤ T1, we now turn to the more

relevant case where EP[qT1

∣∣ GDt ] and EP[qT2

∣∣ GDt ] (with FDt ⊂ GDt ) are released by the

system operator and a forecast EP[qT ∣∣ GDt ] needs to be computed with t ≤ T1 ≤ T ≤ T2.
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We proceed as follows:

EP[qT ∣∣ GDt ] = EP
[
qT1 + EP[qT − qT1

∣∣ GDT1

]︸ ︷︷ ︸
(??)

∣∣∣∣ GDt ] (35)

Re-arranging (??) and taking out what is known, i.e. GDT1
-measurable, we get:

EP[qT − qT1

∣∣ GDT1

]
= qT1

(
e−κ

D(T−T1) − 1
)

+ σDEP
[∫ T

T1

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDT1

]
(36)

Combining (35) and (36) and using iterated conditioning now yields:

EP[qT ∣∣ GDt ] = EP[qT1

∣∣ GDt ]e−κD(T−T1)

+ EP
{
σDEP

[∫ T

T1

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDT1

] ∣∣∣∣ GDt }

= EP[qT1

∣∣ GDt ]e−κD(T−T1) + EP[IG(T1, T )
∣∣ GDt ] (37)

The term EP[IG(T1, T )
∣∣ GDt ] in (37), however, can be manipulated similarly to equations

(31) - (33):

EP[IG(T1, T )
∣∣ Gt] = EP

{
σDe−κ

DTEP
[∫ T2

T1

ρ′(u)dBD
u

∣∣∣∣ GDT1

] ∫ T

T1

f(s)ds

∣∣∣∣ GDt }

= σDe−κ
DT EP

[∫ T2

T1

ρ′(u)dBD
u

∣∣∣∣ GDt ]︸ ︷︷ ︸
(???)

∫ T

T1

f(s)ds (38)

Analogous to (34), the term (? ? ?) can be backed out from the given forecast points

relating to T1 and T2:

(? ? ?) =
1

σD

(
eκ

DT2EP[qT2

∣∣ GDt ]− eκ
DT1EP[qT1

∣∣ GDt ]) (39)
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B. Conditional Expectations Based on Enlarged Filtrations

Under an Equivalent Risk-Neutral Measure

For derivatives pricing purposes, and based on (14), conditional expectations EQ[· ∣∣ Gt]
and variances VQ[· ∣∣ Gt] under the enlarged filtration G and a risk-neutral measure Q

need to be computed for both demand and capacity processes Dt and Ct, respectively.

Defining A(t) =
∫ t

0
ϑ(s)ds, and based on the manipulations in the previous subsection,

the GD-adapted dynamics for Dt can now be stated as below (cf. equation (2)):

dqt = −κD
(
qt −

σDeϕ(t)

κD
ϑ(t)

)
dt+ σDeϕ(t)dB̂D

t ,

where B̂D
t is a GDt -adapted standard P-Brownian motion.40 Applying Girsanov’s theorem,

and given that our market setting is inherently incomplete, we assume that under a

suitably chosen risk-neutral measure Q, B̂D
t is a semi-martingale and decomposes as

follows:

B̂D
t = B̌D

t + ΛD
G (t),

where B̌D
t is a GDt -adapted standard Q-Brownian motion and ΛD

G (t) =
∫ t

0
λDG (s)ds is a

finite variation process governing the change of measure as market price of (demand) risk.

The risk-neutral dynamics for Dt under the enlarged filtration now are:

dqt = −κD
(
qt −

σDeϕ(t)

κD
(
ϑ(t) + λDG (t)

))
dt+ σDeϕ(t)dB̌D

t ,

where conditional expectation EQ[· ∣∣ Gt] and variance VQ[· ∣∣ Gt] are then derived in

the standard way. As outlined in section IV, the market price of risk will be assumed

constant and inferred from price quotes of traded derivative contracts. Depending on

whether or not forward-looking information will be used, it will be referred to as λDG or

λDF , respectively.

40Recall that we assume the filtration (GCt )t∈[0,T?] to be of such nature that BDt = B̂Dt + A(t) is a
semimartingale.
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Figure 1: Schematic overview of forecast horizons for the GB market
Daily forecasts are available on a 2- to 14-days-ahead basis; additionally, forecasts of expected
maximum demand (capacity) per week are released for weeks 2-52. In this example, the first
nine delivery days of some given forward contract are covered by daily forecasts, expected demand
(capacity) for each of the remaining days must be derived based on Proposition III.1.
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Figure 2: Daily Electricity Demand and System Capacity
This figure shows the time series of daily electricity demand and available transmission system
capacity in the British market during the period from 01-Jan-2007 to 31-Dec-2011. Displayed
demand and capacity data both relate to the same daily peak (demand) half hour. All data shown
were obtained from National Grid and Elexon.
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Figure 3: Performance of Demand and Capacity Forecasts
This figure shows the root mean squared percentage error (RMSPE) for the 2-14 days-ahead
forecasts of electricity demand and available system capacity during the period from 01-Jan-2007
to 31-Dec-2011. Note that especially for capacity forecasts, inputs are based on data released by
National Grid plc, yet have been further adjusted by the authors.
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Figure 4: 1-Month Ahead Forward and 1-Day Ahead Baseload Electricity Prices
This figure shows the time series of daily forward prices for 1-month ahead and 1-day ahead baseload
electricity contracts during the period from 01-Jan-2007 to 31-Dec-2011. All data shown were
obtained from Bloomberg; for dates with missing quotes/prices, the last observed historic price was
carried over.
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Table 1: Samples of Baseload Spot and Forward Contracts

This table reports summary statistics for the samples of electricity spot (day-ahead) and forward
prices covering the period from January 2, 2007 until December 30, 2011. [T , T ] denotes the
average delivery period (in days) and T − t the average maturity (in days) as measured until the
start of the delivery period. All contracts from both the Bloomberg and Marex Spectron samples
are baseload contracts. Displayed log-returns for 1- and 2-month(s) ahead forward contracts are
adjusted to account for roll-over of contracts as well as for missing quotes.

Mean Median Std. Dev. Skewness Kurtosis [T , T ] T − t

B
lo

om
b
er

g
D

at
a

1-Day Ahead

lnPt 3.7543 3.7600 0.3891 0.0818 -0.1121 1.0 1.0
lnPt − lnPt−1 -0.0019 -0.0019 0.0717 1.2812 12.8443

1-Month Ahead

lnFt 3.7781 3.7899 0.3737 0.2196 0.2131 30.4 15.9
lnFt − lnFt−1 -0.0009 -0.0003 0.0219 -0.2365 5.4731

M
ar

ex
S
p
re

ct
ro

n
D

at
a

1-Day Ahead

lnPt 3.7500 3.7612 0.3829 0.1225 0.0516 1.0 1.0
lnPt − lnPt−1 -0.0027 -0.0021 0.0721 1.2138 10.9920

1-Month Ahead

lnFt 3.7856 3.7956 0.3604 0.2359 0.4641 30.4 16.1
lnFt − lnFt−1 -0.0010 -0.0014 0.0205 -0.1641 4.8328

2-Months Ahead

lnFt 3.8003 3.7975 0.3532 0.3031 0.4328 30.8 44.8
lnFt − lnFt−1 -0.0009 -0.0005 0.0177 -0.3552 4.5943
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W. Härdle, B. Lopez-Cabrera, and M. Ritter. Forecast based pricing of weather

derivatives. Discussion paper, SFB 649, Humboldt-Universität zu Berlin, 2012.

Y. Hu. An Enlargement of Filtration for Brownian Motion. Acta Mathematica Scientia,

31B(5):1671–1678, 2011.

J. Janczura and R. Weron. An empirical comparison of alternate regime-switching models

for electricity spot prices. Energy Economics, 32(5):1059–1073, 2010.

S. Jewson and R. Caballero. The use of weather forecasts in the pricing of weather

derivatives. Meteorological Applications, 10(4):377–389, 2003.

B. Johnson and G. Barz. Selecting Stochastic Processes for Modelling Electricity Prices.

In Energy Modelling and the Management of Uncertainty, pages 3–21. Risk Publication,

London, 1999.

T. Kanamura and K. Ohashi. A structural model for electricity prices with spikes:

Measurement of spike risk and optimal policies for hydropower plant operation. Energy

Economics, 29(5):1010–1032, 2007.

N.V. Karakatsani and D.W. Bunn. Forecasting electricity prices: The impact of

fundamentals and time-varying coefficients. International Journal of Forecasting, 24

(4):764–785, 2008.

S. Koekebakker and F. Ollmar. Forward curve dynamics in the Nordic electricity market.

Preprint, Norwegian School of Economics and Business Administration, 2001.

J.J. Lucia and E.S. Schwartz. Electricity Prices and Power Derivatives: Evidence from

the Nordic Power Exchange. Review of Derivatives Research, 5(1):5–50, 2002.

M.R. Lyle and R.J. Elliott. A ’simple’ hybrid model for power derivatives. Energy

Economics, 31(5):757–767, 2009.

M. Manoliu and S. Tompaidis. Energy futures prices: term structure models with Kalman

filter estimation. Applied Mathematical Finance, 9:21–43, 2002.

A. Misiorek, S. Trück, and R. Weron. Point and Interval Forecasting of Spot Electricity

Prices: Linear vs. Non-Linear Time Series Models. Studies in Nonlinear Dynamics and

Econometrics, 10(3), 2006. Article 2.

50



OFGEM. GB wholesale electricity market liquidity: summer 2011 assessment. 2011. URL

http://www.ofgem.gov.uk.

R. Paschke and M. Prokopczuk. Integrating multiple commodities in a model of stochastic

price dynamics. Journal of Energy Markets, 2(3):47–82, 2009.

C. Pirrong. Commodity Price Dynamics: A Structural Approach. Cambridge University

Press, Cambridge, 2012.

C. Pirrong and M. Jermakyan. The price of power: The valuation of power and weather

derivatives. Journal of Banking & Finance, 32(12):2520–2529, 2008.

P. Protter. Stochastic Integration and Differential Equations. Springer, New York, 2004.

M. Ritter, O. Mußhoff, and M. Odening. Meteorological Forecasts and the Pricing of

Temperature Futures. Journal of Derivatives, 19(2):45–60, 2011.

E.S. Schwartz. The stochastic behavior of commodity prices: Implications for valuation

and hedging. Journal of Finance, 52(3):923–973, 1997.

J. Seifert and M. Uhrig-Homburg. Modelling jumps in electricity prices: theory and

empirical evidence. Review of Derivatives Research, 10(1):59–85, 2007.

P. Skantze, A. Gubina, and M. Ilic. Bid-based Stochastic Model for Electricity Prices:

The Impact of Fundamental Drivers on Market Dynamics. MIT Energy Laboratory

Publication, 2000.

R. Weron. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach.

Wiley, Chichester, 2006.

R. Weron. Heavy-tails and regime-switching in electricity prices. Mathematical Methods

of Operations Research, 69(3):457–473, 2009.

H. White. Maximum Likelihood Estimation of Misspecified Models. Econometrica, 50(1):

1–25, 1982.

I.A.G. Wilson, P.G. McGregor, D.G. Infield, and P.J. Hall. Grid-connected renewables,

storage and the UK electricity market. Renewable Energy, 36(8):2166–2170, 2011.

51

http://www.ofgem.gov.uk

	Introduction
	A Fundamental Electricity Pricing Model
	Electricity Demand
	System Capacity
	Marginal Fuel
	Pricing Model

	The Enlargement-of-Filtration Approach
	Data and Estimation Approach
	Fundamental Data
	Electricity Spot and Forward Data
	Estimation Approach

	Empirical Pricing Results
	Conclusion
	Appendix
	Conditional Expectations Based on Enlarged Filtrations Under the Historical Measure
	Conditional Expectations Based on Enlarged Filtrations Under an Equivalent Risk-Neutral Measure


