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Abstract

We study the market for emission permits in the presence of reversible abatement measures
characterized by delay in implementation. We assume that the new operating profits follow
a one-dimensional geometric Brownian motion and that the company is risk-neutral. The
optimal “investment” and “disinvestment” policy for reversible abatement options is evaluated
under both instantaneous and Parisian criteria, nesting the model of Bar-Ilan and Strange
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1 Introduction

In a pollution-constrained economy where polluting companies are subject to environmental regu-

lations that cap their noxious emissions, each firm faces a basic choice from three main abatement

alternatives: modify the production process which generates the emissions as a by-product; change

the production technology; trade marketable permits.1 This last option, also referred to as emis-

sions trading, is a market-based measure which is currently very popular among policy makers. In

a system for marketable permits, relevant companies exchange permits on the theory that trading

creates economic incentives that encourage firms to minimize the costs of pollution control to soci-

ety. The chief appeal of economic incentives as the regulatory device for achieving environmental

standards is the potentially large cost-saving that they promise. We refer to Baumol and Oates

(1988) for a complete discussion on market-based policy measures. There is now an extensive

body of empirical studies that estimate the cost of achieving standards for environmental quality

under existing command-and-control regulatory programs. These are typically programs under

which an environmental authority prescribes the treatment procedures that are to be adopted by

each source. The studies compare costs under command-and-control programs with those under

a more cost-effective system of economic incentives. The results have been quite striking: they

indicate that control costs under existing programs have often been several times the least-cost

levels. We refer to Tietenberg (1985) for a survey on cost studies. The source of these large cost

savings is the capacity of economic instruments to take advantage of large differential abatement

costs across polluters. Various aspects of the emission permits market have been investigated by

Misolek and Elder (1989), Hahn (1983), Bohi and Burtraw (1992) and Stavins (1995).

The aim of our paper is to develop a simple model for the permit price that can support

decision-makers in relevant companies in identifying the optimal time for undertaking a reversible

abatement measure, such as a modification of the production process, in the presence of imple-

mentation delays or trading permits. In other words, we evaluate the price level at which trading

permits is a cheaper solution. Similar to Chao and Wilson (1993), the price of marketable permits

is not simply equal to the marginal cost of abatement of pollution. In fact, we show that the price

of marketable permits includes a premium representing the value of flexibility as compared to

the alternative of (non-instantaneous) investments in abatement strategies that reduce the quan-

tity of emissions. In particular, instead of limiting our analysis to irreversible and instantaneous

commitments as in Chao and Wilson (1993) and Zhao (2003), we allow the company to undo the

abatement measure at most one time. Further, we account for those realistic situations where a

firm faces physical or technical constraints that allow the implementation of economic decisions

only after a given time-interval.2 In such situations, it is reasonable to undertake (respectively

1Niemeyer (1990) gives a more detailed list of abatement alternatives.
2This analysis differs from the ”construction-lag” or ”time-to-build” literature, where the lag refers to the time
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undo) an abatement project only when market conditions remain favorable (respectively unfa-

vorable). The Parisian structure defined in appendix B reflects such an optimal criterion. By

solving the one-time reversible investment problem under both the instantaneous and Parisian

criteria we obtain analytic solutions for optimal investment and disinvestment levels, nesting the

model of Bar-Ilan and Strange (1996) which focuses on the effects of time-lags on irreversible

investments. Relying on this result, we derive an analytic solution of the premium for the flexi-

bility embedded in marketable permits, extending a result of Chao and Wilson (1993). Showing

that an increase in the uncertainty of the underlying process hastens the decision to disinvest,

we extend the results of Bar-Ilan and Strange (1996) to the disinvestment case. This theoretical

result explains the different behavior of the premium for the flexibility of emission permits under

both reversible and irreversible investment assumptions.

Xepapadeas (2001) is one of several authors who explores how instantaneous investments in

abatement projects respond to environmental policies, such as marketable permits, under uncer-

tainty and irreversible decision constraints. Xepapadeas considers a firm that at each instant

of time maximizes its profit deciding about the abatement investments having optimally chosen

the output production level. In this model, uncertainty is present in the form of a stochastic

evolution of the output price or of the price of the marketable permits. Assuming these prices

follow a geometric Brownian motion and applying dynamic control, Xepapadeas identifies a “bar-

rier control” policy. For any given investment abatement level, the random price movements of

the output product or of the marketable permit determine the optimal strategy. If such a price

is above the barrier, then new investment in abatement projects is instantaneously undertaken;

otherwise, the abatement level remains the same. In other words, Xepapadeas determines the

continuation intervals and those intervals during which firms take irreversible and instantaneous

investment decisions.

In line with Xepapadeas (2001), Zhao (2003) investigates the impact of cost-uncertainty of

irreversible abatement projects on investment incentive. Following the literature on abatement

investments such as Farzin et al. (1998) and Farzin and Kort (2000), Zhao develops an equilibrium

model where companies are permit price takers and the dynamics of their abatement costs is

stochastic. Assuming efficient permit trading, marginal abatement costs are equalized across all

companies and, therefore, the equilibrium price of the permits is determined endogenously. The

author derives the price of permits in analytic form by adopting a specific functional form for

the investment cost function. Further, Zhao shows that the aggregate investment behavior of

firms together with cost-uncertainty, determine the time-path of the price of emission permits.

between the decision to invest and the receipt of the project’s first revenues (see Majd and Pindyck (1987) and
Pindyck (1991, 1993)). In our case the implementation-lag measures a systematic delay that occurs before the
decision to undertake, also called investment decision, or undo, also called disinvestment decision, the project
effectively takes place, i.e. before the consequence of hitting the trigger price comes into play.
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Aligning himself with the results in the real option literature on instantaneous investments,3 Zhao

proves that cost-uncertainty reduces the incentive to invest in irreversible projects, shifting the

investment-barrier upward. Our findings in the instantaneous case confirm such a result: more

uncertainty delays both investment and disinvestment decisions and thus generates more so-called

inertia. Delays in implementation account for the presence of realistic technical constraints. When

we introduce delays, conventional findings on the effect of the uncertainty on the investment and

disinvestment are reversed. In particular, a higher volatility of the underlying process hastens

both investment and disinvestment when delays force a firm to decide whether or not to undertake

a decision in the near future. The reason is that in our model the option to undo the abatement

project makes profit a convex function of the underlying stochastic. Therefore, in line with Bar-

Ilan and Strange (1996) and in the spirit of the works of Abel (1983) and Caballero (1991), the

higher the uncertainty, the higher the expected profit.

Chao and Wilson (1993) relax the assumption of perfect substitution among all abatement

measures. As proved by Montgomery (1972), such a relationship holds in the absence of uncer-

tainty about emission permit and technology costs. In particular, Chao and Wilson analyze the

main pollution control measures available in the SO2 market in U.S.: trading permits, scrub-

bing emissions and changing the production technology. For convenience we label these measure

as short, medium and long-term abatement options. Since relevant companies face consider-

able uncertainty, they perceive modification of the production process and technology changes,

i.e. medium and long-term abatement measures, as inferior substitutes for emission permits. As

a matter of fact, technology changes are typically irreversible and expensive investments which

last for decades cannot therefore be considered as equal alternatives.4 In line with Montgomery

(1972) and Rubin (1996), Chao and Wilson show that the equilibrium permit price is equal to

the marginal cost of a scrubber that is installed instantaneously. This holds in a world of cer-

tainty where all state variables are fixed forever. In practice, the demand for permits varies in

response to variations in the output market, as well as other developments in input costs and

technologies for pollution control. In such a situation, medium and long-term measures are im-

perfect substitutes for emission permits implying that the permit price will sell at a higher level

than the marginal cost of pollution-abatement. Characterizing the demand for permits by an

exogenous stochastic process, Chao and Wilson show that permit prices that clear the market,

i.e. the permits demand equals permits supply, can exceed the marginal cost of a scrubber by

an amount called “option value”. This premium measures the discounted expected value of the

greater flexibility that emission permits provide, compared to the irreversible and instantaneous

commitments required by investments in scrubbers. The sum of the marginal cost and the pre-

mium can then be correctly interpreted as a cap on the permit price. Such a value is binding only

3Pindyck (1991) provides a comprehensive survey of this literature.
4We refer to Zhao (2003) for more general discussions on irreversible abatement measures.
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when the demand of emission permits is sufficiently large such that companies find it advanta-

geous to install additional scrubbers. Though we do not model directly the demand for emission

permits, we obtain analytically a premium for the flexibility of emission permits as in Chao and

Wilson (1993) evaluating under which permit price conditions short and medium-term abatement

measures are equivalent alternatives.

Chao and Wilson first, and Zhao some years later, framed their studies of marketable per-

mits calling into question the principle of perfect substitution between permits and medium-term

abatement measures. Assuming efficient permit trading, the two strategies must be compara-

ble. Intuitively, trading permits and modifying production process are equivalent alternatives

exclusively when both lead to equal pollution emissions reduction for the same total costs. In

reality, the decision to undertake a reversible modification of the production process is typically

characterized by a significant implementation lag which implicitly has a profound impact on the

profitability of the economic decision undertaken. In fact, depending on the evolution of the

new operating profits during the implementation lag, the investment or disinvestment abatement

opportunity may partially lose its attractiveness. Therefore, any reversible modification of the

production process, i.e. any so-called medium-term abatement measure, is perceived as an inferior

substitute for marketable permits. Permits can be easily adapted to changing conditions whereas

a production modification, though reversible, might be too costly if the output market demand

falls over a short period of time. For these reasons, the price of marketable permits must include

a premium that recognizes the value of flexibility. Moreover, the existence of implementation lags

affects reversible decisions and increases further the flexibility which characterizes policy instru-

ments like marketable permits. Chao and Wilson (1993) were the first to identify the flexibility

embedded in the SO2 emission permits in the U.S. market. However, as mentioned before, the

authors concentrated their analysis on irreversible investments. It is our purpose in this paper to

derive such a premium in the presence of reversible decisions and implementation delays. In doing

so, we generalize the case of irreversible abatement opportunities. In determining the premium,

we rely on the Parisian criterion introduced by Chesney et al. (1997) and upon the results of

Gauthier (2002) and Chesney and Gauthier (2006).

2 Problem formulation: the Price for Flexibility in Marketable

Permits

Consider a company which has an infinite time horizon and that, from time zero up to T , is

subject to environmental regulations which impose a cap on the yearly amount of pollution

emitted during the production process. To encourage firms to minimize the costs to society of

pollution control, a system of marketable permits as described in Tietenberg (1985) is introduced.
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The company maximizes its expected discounted pay-off flow. At any given time (t, 0 ≤ t ≤ ∞)

the firm yields an operating profit that depends on the instantaneous cash flow hB(Yt), for some

function hB , where Yt is a one-dimensional Itô process defined on a filtered probability space

(Ω,F , (Ft)t≥0, P) and which drives the entire economy. Moreover, the company constantly emits

α units of pollution at each instant (t, 0 ≤ t ≤ ∞).5 We denote by V B
t the expected sum of the

discounted operating profits from t to infinity without any environmental constraints:

V B
t = Et

[

∫ ∞

t

e−ρ(u−t)hB(Yu)du
]

, (1)

where the discount rate ρ is constant and Et[·] stands for the conditional expectation E[·|Ft].

To fulfill environmental regulations the company can either undertake a modification of the

production process at any time (t, 0 ≤ t ≤ T ) or purchase the necessary marketable permits at

time T. In the model the decision to modify the production process is reversible but we assume

it can be reversed only once. Running the plant after production modification yields a new

operating profit St which follows a one-dimensional geometric Brownian motion,

dSt

St

= µdt + σZt, S0 = x, (2)

where µ and σ are constants and (Zt, t ≥ 0) is a Brownian motion defined on a filtered proba-

bility space (Ω,F , (Ft)t≥0, P). We assume that undertaking such modification, the instantaneous

emission rate boils down to zero.6 We denote by V S
t the expected sum of the new discounted

operating profits from t to infinity:

V S
t = Et

[

∫ ∞

t

e−ρ(u−t)Sudu
]

, (3)

and we impose V B
t > V S

t for every (t, 0 ≤ t ≤ ∞) such that the modification of the production

process corresponds realistically to a loss in profits.

Lemma 2.1 Assume that St follows a geometric Brownian motion and that ρ > µ. Then V S
t is

a geometric Brownian motion and moreover

V S
t =

St

ρ − µ
.

5In the paper we do not address questions such as how uncertainty affects the production (pollution) processes
or the choice of emission abatement measures. We refer interested readers to the general discussions in Taschini
(2008) and reference therein.

6The model can be extended to account for any given and fixed amount of instantaneous pollution reduction α̃

where α̃ ∈ [0, α].
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Proof. We have

V S
t = Et

[

∫ ∞

t

e−ρ(u−t)Ste
µ(u−t)e−

σ2

2
(u−t)+σ(Zu−Zt)du

]

where the last term is a martingale. Applying Fubini’s theorem we get:

V S
t = St

∫ ∞

t

e−ρ(u−t)eµ(u−t)du =
St

ρ − µ
.

Therefore, V S
t satisfies the following stochastic differential equation:

dV S
t

V S
t

= µdt + σZt, V S
0 =

S0

ρ − µ
. (4)

Alternatively, to fulfil environmental regulations, the company can rely on the market for permits

and purchase at time T , an amount of permits equivalent to the pollution reduction obtained with

the previous reversible abatement measure.7 By standard no-arbitrage arguments, we claim that

if the company undertakes a reversible and costly modification of the production process at time

τ , then an equivalent reduction of pollution by trading permits, evaluated at time (s, 0 ≤ s ≤ τ),

must corresponds to a purchase at time T of α · (T − s) permits for a unit-price of P .

Lemma 2.2 Purchasing permits at time T is equivalent to undertaking a reversible and costly

modification of the production process at time τ if, and only if, the price of the permits at time

(s, 0 ≤ s ≤ τ) is

P = eρ(T−s) · V B
s − V S

τ

α(T − s)
,

where V B
s and V S

τ are defined respectively in equation (1) and (3), and τ is a stopping time.

Proof. On the one hand, under environmental constraints, the strategy of undertaking a

production modification at time τ corresponds to a total loss of operating profits equal to V B
s −V S

τ ,

where s is the time of evaluation. On the other hand, the strategy of purchasing permits at time

T corresponds to a cost of e−ρ(T−s) ·α · (T − s)P at time s. Equating the two different strategies,

the expected result is yielded. The reverse implication follows in similar fashion.

Since we are in the presence of reversible abatement measures, we firstly attempt to determine

when it is optimal for a company to undertake and to undo the modification of the production

process. Such a choice corresponds to the well-known instantaneous investment and instantaneous

7In the paper we consider the case of a company in need of permits which is able to purchase all the permits it
requires. Similar results can be obtained when the company undertakes the modification of the production process
with the aim of freeing-up emission permits and selling them in the market. In this situation, the structure of the
problem has a reverse sign and coincides with the previous one by means of a simple sign manipulation.
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disinvestment decision problem. By investigating this problem we will determine the company’s

threshold for the price of the emission permits. Each time the price exceeds such a threshold,

the company finds it advantageous to change the production process. Secondly, by solving the

investment and disinvestment decision problem under the Parisian criterion, we determine the

premium for the flexibility of the emission permits in analytic form.

As this is clearer subsequent to Theorem 3.1, we will concentrate our analysis on the process V S
t .

Assuming the company to be risk-neutral, and that the abatement decision can be reversed only

once, the entire problem can be written as a discounted expectation of the new operating profits

flow:

E

[

e−ρτI (V S
τI

− CI)
+ + e−ρτD (CD − V S

τD
)+
]

,

where CI represents the cost of undertaking the abatement measure, which we call investment

cost.8 Similarly, CD represents the cost to undo such a decision, which we call disinvestment

cost. We assume both CI and CD to be constant. Given a pre-specified level of the state process

V S
t has reached, τI (τD) represents the first instant after a time interval longer than a fixed

amount of time (a so-called time-window) has passed. The time-window corresponds to the

implementation delay,9 whereas the pre-specified level is set at an optimal value: the optimal

investment (disinvestment) threshold h∗
I (h∗

D). We assume that the time-window associated with

the investment (disinvestment) is a fixed amount of time dI (dD). The decision-triggering criterion

is the so-called Parisian stopping time which depends on the size of the excursions of the state

variable over (below) the optimal thresholds.

In this simple model, the firm maximizes the current value of its new operating profits, namely

it solves:

V S(V S
0 ) = max

τI<τD

E

[

e−ρτI (V S
τI

− CI)
+ 1{τI<∞} + e−ρτD(CD − V S

τD
)+ 1{τD<∞}

]

.

Because we are in the perpetual case, the investment (disinvestment) decision will occur at the

first instant when V S
t hits some constant optimal threshold h∗

I (h∗
D). Letting τI and τD be the

stopping times corresponding to the Parisian criterion with time-windows dI , dD and levels hI ,

8In our model the investment action corresponds, for instance, to the decision to purchase a new input factor
which will then substitute the one used a the moment the order is submitted. Another more generic situation
corresponds to a case where the firm switches from a cheap-but-dirty production plant to an expensive-but-clean
one.

9With respect to the example in the previous footnote, the implementation delay represents the time required
to switch from one input factor to another. In the energy-production industry, for instance, such a time-interval
is called “rump-up” time. This corresponds to the time needed for the unit to switch from one production regime
(coal-burning) to a second one (gas-burning) and reach a certain operating efficiency of standard plant and output
levels. Similarly, “rump-down” time is associated with the reverse switch.
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hD respectively, the present value of the investment and disinvestment decision problem becomes:

V S(V S
0 ) = max

hD≤hI , V0≤hI

E0

[

e−ρτI (V S
τI

− CI) 1{τI<∞} + e−ρτD(CD − V S
τD

) 1{τD<∞}
]

. (5)

The two measures of compliance are equivalent alternatives when a company is indifferent in

undertaking at time τ an instantaneous modification of the production process or purchasing at

time T an amount of permits equal to α · (T − s) for a unit-price P . In other words, trading

permits and production modification are perfect substitutes when dI = dD = 0 and Lemma 2.2

holds. However, the existence of physical or technical constraints that allow the implementation

of the abatement decision only after a given time-interval makes marketable permits more flexible

instruments. This implies that the premium measures the expected present value of the greater

flexibility that emission permits provide, compared to the reversible commitments required by

modifying the production process. In order to obtain the premium for the flexibility we have to

solve (5) when dI > 0 or dD > 0 and compare it with the instantaneous case, i.e. dI = dD = 0.

3 Solution of the Problem: the Premium for Flexibility

In this section we solve the maximization problem (5), obtaining an analytic solution of the

premium for the flexibility embedded in marketable permits. The first abatement strategy corre-

sponds to the modification of the production process. When such a strategy can be implemented

instantaneously, trading permits are equivalent to the pollution abatement measure. However,

the presence of implementation delays, that we model by the Parisian criterion, make production

modification an attractive alternative only if a company is sufficiently compensated. Therefore,

the premium for the flexibility of emission permits is obtained by taking the difference between

the value of the instantaneous investment and disinvestment decision problem and the Parisian

investment and disinvestment decision problem, at their respective optima.

Following the literature on Parisian options, we translate the problem in terms of the drifted

Brownian motion. We define:

V S
t = V S

0 eσXt , where Xt = bt + Zt, and b =
µ − σ2

2

σ
. (6)

and construct a new probability measure P
∗ under which Xt becomes a P

∗-Brownian motion,

dP
∗

dP

∣

∣

∣

Ft

= e
b2

2
t−bXt . (7)

Applying the Girsanov theorem, we change the probability measure in (5) and using the

independence result from Revuz and Yor (1991) and Chesney et al. (1997), we obtain
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EP∗

[

e−(ρ+ b2

2
)τI

]

· EP∗

[

ebXτI (V S
0 eσXτI − CI)

]

(8)

for the first term in the maximization problem. Similarly, the second term becomes

EP∗

[

e−(ρ+ b2

2
)τD

]

· EP∗

[

ebXτD (CD − V S
0 eσXτD )

]

. (9)

The Laplace transform of the Parisian investment time under the measure P is computed first

in Chesney et al. (1997). Using standard results of excursion theory and the main findings of

Gauthier and Morellec (2000) and Gauthier (2002), in the Appendix C we calculate the moment

generating function for the process Xt defined in (6), stopped at the Parisian investment and

disinvestment times. This corresponds to the time when the new operating profits start and stop

after the implementation delay. Finally, we evaluate the first hitting time of Xt which starts from

the Parisian investment time. After that, and combining Proposition C.6 and Proposition C.7,

we can re-write the maximization problem (5) as

V S(V S
0 ) = max

hD≤hI , V S
0 ≤hI

(V S
0

hI

)θ1 φ(b
√

dI)

φ(
√

(2ρ + b2)dI)

{

hI
φ(
√

dI(σ + b))

φ(b
√

dI)
− CI+

+
( hI

hD

)θ2 φ(−
√

(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

φ(−b
√

dD)

φ(b
√

dI)

(

CD − hD
φ(−(b + σ)

√
dD)

φ(−b
√

dD)

)}

(10)

where, to simplify the already complicated formula, we adopt the following notations:

θ1 =
−b +

√

2ρ + b2

σ
and θ2 =

−b −
√

2ρ + b2

σ
, (11)

and φ is defined as:

φ(z) = E(exp(zx)) =

∫ ∞

0
exp(zx)Px(dx). (12)

To obtain a solution, we first solve the unconstrained problem corresponding to (10) where we

assume V0 ≤ hI .Taking the partial derivative with respect to hD and solving for the critical

value, we obtain an explicit solution for the optimal disinvestment threshold h∗
D,

h∗
D =

φ(−b
√

dD)

φ(−(b + σ)
√

dD)

θ2CD

θ2 − 1
. (13)

This indicates the optimal level for undoing the modification of the production process un-

dertaken at τI . When dD = 0, h∗
D equals the well-known optimal instantaneous-disinvestment

threshold, i.e. h∗
ND = θ2CD

θ2−1 . Intuitively, h∗
D increases if the disinvestment fixed-costs CD, the

costs to change once again the input factor for instance, increases. This means that, similar to
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the instantaneous investment and disinvestment problem, the higher the disinvestment costs the

sooner the firm wants to modify the production process. Furthermore, since φ is an increasing

function, we obtain that h∗
ND ≤ h∗

D, meaning that the firm has decided to change the production

process earlier in the presence of an implementation delay.

Taking the partial derivative with respect to hI and solving for the critical value, we obtain

an implicit solution for h∗
I . In particular, h∗

I = max{V0, x
∗} where x∗ solves the implicit equation

x =
θ1CI

θ1 − 1

φ(b
√

dI)

φ((b + σ)
√

dI)
+
( x

h∗
D

)θ2 θ2 − θ1

θ1 − 1

φ(−
√

(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

φ(−b
√

dD)

φ((b + σ)
√

dI)

CD

1 − θ2
. (14)

When dI = dD = 0, h∗
I equals the implicit equation for the optimal instantaneous investment

threshold h∗
NI , i.e. the implicit equation

x =
θ1CI

θ1 − 1
+
( x

h∗
ND

)θ2 θ2 − θ1

θ1 − 1

CD

1 − θ2
. (15)

Recall that the two abatement options are equivalent alternatives at time zero when P =

eρT · V B
0 −V S

τ

αT
and when they have the same implementation schedule, i.e. when dI = dD = 0.

As observed before, in this last situation we recover the well-known case of the instantaneous

investment and disinvestment problem and we obtain h∗
I = h∗

NI and h∗
D = h∗

ND. Relying on

this, we analytically quantify the flexibility premium which must be embedded in the price for

marketable permits as follows:

Theorem 3.1 Consider a company which has two pollution abatement measures at its disposal:

trading permits or modifying the production process. The premium for the flexibility embedded in

the price for marketable permits at time zero is:

θ = eρ·T · V S∗
I (V S

0 ) − V S∗
D(V S

0 )

α · T , (16)

where V S∗
I (V S

0 ) is the solution of the instantaneous investment and disinvestment problem (10),

i.e. when dI = dD = 0, whereas V S∗
D(V S

0 ) is the solution of the maximization problem (10) under

the Parisian criterion, i.e. when dD ≥ 0 and dI ≥ 0.

Proof. Let us consider a company at time zero which has two possible alternatives to abate

emissions, as described before. When the modification of the production process can be imple-

mented instantaneously, the firm will be indifferent between the two abatement measures for a

price:

PI = eρ·T · V B
0 − V S∗

I (V S
0 )

α · T , (17)

11



by Lemma 2.2 and where V S∗
I (V S

0 ) is defined in (10). Similarly, when the firm faces implemen-

tation delays, it will be indifferent between the two abatement measures for a price:

PD = eρ·T · V B
0 − V S∗

D(V S
0 )

α · T , (18)

again applying Lemma 2.2. Let us now consider the firm as a permit seller: given the presence of

implementation delay, the firm needs to be compensated for bearing such costs and will require a

premium. Then, the result follows applying standard no-arbitrage conditions to PD = PI + θ.

4 Model Results

We now investigate the sensitivity of the premium for flexibility θ and assess its likely magnitude.

In doing so, we show that the model of Bar-Ilan and Strange (1996) is nested into ours. Further,

we perform a numerical evaluation to illustrate that our one-time reversible investment framework

extends the irreversible investment model of Chao and Wilson (1993) when dD → ∞. Recall that

when the company undertakes a modification of the production process, it faces a loss of profit.

Also, the existence of implementation delays makes such a modification less attractive to the

company. In each of the following tables we report the value of θ for different pairs of time-

windows where columns and rows correspond to the values of dI and dD respectively. Table 1 is

our benchmark situation, i.e. where we set the discount factor ρ = 0.13, the drift rate µ = 0.05,

the volatility rate σ = 0.40, the disinvestment cost CD = 50, the investment cost CI = 170, the

initial value for the process V S
t equal to V S

0 = 100, α = 1 and T = 0.8. Because trading permits

and production modification are perfect substitutes if Lemma 2.2 holds, we expect the flexibility

premium to be equal to 0 when dI = dD = 0 (upper-left corner of all tables). This implies, first,

that the company is indifferent in undertaking an instantaneous modification of the production

process or purchasing the needed amount of permits and, second, that the firm is not willing to

spend more (or to receive less) than PI .

d 0 2 4

0 0 0.0151 0.0285
3 3.5083 3.5253 3.5405
5 5.9422 5.9604 5.9767

Table 1: Premium benchmark case. The parameters we used are ρ = 0.13; µ = 0.05; σ = 0.40; CD =
50; CI = 170; V0 = 100; α = 1; T = 0.8.

In what follows we discuss the impact on θ of a variation in the emission reduction, the time-

windows and the investment/disinvestment costs. In addition, we investigate the effect of the

uncertainty of the underlying process on investment and disinvestment. In line with Bar-Ilan and

Strange (1996), we show that conventional findings are reversed.
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We do not study the impact of T because this is trivially linked to the concept of time-value

of the money.

(a) If the reduction of emissions obtained by modifying the production process is lower than α,

then the cost per unit-reduction increases and the company requires a higher premium to

undertake the abatement measure, as reported in Table 2.

d 0 2 4

0 0 0.0302 0.0570
3 7.0165 7.0506 7.0811
5 11.8844 11.9209 11.9535

Table 2: Premium for α = 0.5, all other parameters being equal.

(b) The impact of a variation of the investment costs CI on the project value is aligned with

conventional findings in the literature: the lower (higher) the investment costs the higher

(lower) the value of an instantaneous investment V S∗
I . For general discussions we refer to

Majd and Pindyck (1987), Dixit and Pindyck (1994), and Dixit (1989). However, confirm-

ing the results of Bar-Ilan and Strange (1996), the investment value under the Parisian

criterion V S∗
D does not increase (decrease) with the same magnitude. As a consequence,

the profit-loss associated with the modification of the production process in presence of de-

lays decreases (increases) at a lower rate with respect to the profit-loss associated with the

instantaneous process modification. This corresponds to a higher premium for flexibility if

CI decreases (Table 3) and, conversely, a lower premium for flexibility if CI increases (Table

4).

d 0 2 4

0 0 0.0204 0.0387
3 3.7197 3.7427 3.7633
5 6.3008 6.3253 6.3473

Table 3: Premium for CI = 150, all other parameters being equal.

d 0 2 4

0 0 0.0115 0.0217
3 3.3299 3.3429 3.3545
5 5.6399 5.6538 5.6663

Table 4: Premium for CI = 190, all other parameters being equal.

(c) The interpretation of the impact of CD on θ is not as straightforward as in the case of CI and

requires a deeper analysis. However, we identify a decrease/increase in the premium when

the variation of the project value in the instantaneous investment case is lower (higher) than

13



the variation of the project value under the Parisian criterion. Formally, if disinvestment

costs move to C ′
D we obtain a premium θ′ such that

PD = PI + θ′ where θ′ is

{

> θ if V S∗
I (CD) - V S∗

I (C ′
D) < V S∗

D(CD) - V S∗
D(C ′

D)

< θ if V S∗
I (CD) - V S∗

I (C ′
D) > V S∗

D(CD) - V S∗
D(C ′

D)

d 0 2 4

0 0 0.0054 0.0101
3 3.5171 3.5233 3.5287
5 5.9565 5.9631 5.9690

Table 5: Premium for CD = 30, all other parameters being equal.

d 0 2 4

0 0 0.0287 0.0545
3 3.4967 3.5287 3.5575
5 5.9240 5.9577 5.9883

Table 6: Premium for CD = 70, all other parameters being equal.

(d) Since the premium measures the expected present value of the greater flexibility granted

by marketable permits, it is unsurprising to observe that the shorter (longer) the time-

windows the more (less) attractive is the modification of the production process to the

company. The longer the investment or disinvestment implementation delay, the higher the

premium required, as reported in Tables 7 and 8 respectively.

d 0 2 4

0 0 0.0151 0.0285
1 1.1198 1.1355 1.1496
2 2.3015 2.3179 2.3326
3 3.5083 3.5253 3.5405
5 5.9422 5.9604 5.9767
6 7.1531 7.1719 7.1887
8 9.5365 9.5564 9.5743

Table 7: Premium for dI = {0, 1, 2, 3, 5, 6, 8}. All other parameters being equal.

d 0 0.5 1 2 4 8

0 0 0.0039 0.0077 0.0151 0.0285 0.0502
3 3.5083 3.5127 3.5170 3.5253 3.5405 3.5652
5 5.9422 5.9469 5.9515 5.9604 5.9767 6.0032

Table 8: Premium for dD = {0, 0.5, 1, 2, 4, 8}. All other parameters being equal.
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The presence of an imbalanced effect of the time-windows on the premium is of particular

interest. In fact, the impact of dD on θ is not as evident as the impact of dI . This is due to

the option to reverse the abatement decision. Because a firm’s profits are a convex function

of the stochastic underlying V S
t and disinvestment is possible at a cost, a firm will invest at

a lower level when the implementation delay forces it to decide in advance whether to enter

a few periods ahead or not. Such asymmetry is observable also in Bar-Ilan and Strange

(1996).

(e) Xepapadeas (2001) and Zhao (2003) show that cost-uncertainty reduces the incentive to invest

in irreversible abatement measures, shifting the investment barrier upward, i.e. delaying the

project. Their findings align with the literature on irreversible investments, see Pindyck

(1988) for a comprehensive discussion. The intuition is that an increase in uncertainty

raises the benefit of waiting but not its opportunity cost, i.e. the foregone profits during the

period of inaction. Since in the models of Xepapadeas and Zhao a firm can undertake an

abatement investment instantaneously, the opportunity cost of waiting is independent of un-

certainty. Our model confirms such a result: an increase in uncertainty delays instantaneous

irreversible investments, increasing the instantaneous investment threshold h∗
II = θ1CI

θ1−1 , as

observable in the first row of Table 9. As σ goes from 0.05 to 0.40, h∗
II rises from 282.90 to

527.16.

In the presence of implementation delays and options to reverse the project, the opportunity

cost of waiting is no longer independent of uncertainty. As a result, conventional findings

on the effect of the uncertainty of the underlying process on investment and disinvestment

are reversed. See the last four columns of Table 9. For instance, when dI = dD = 3, h∗
I

falls from 232.21 to 208.07, while h∗
D rises from 52.01 to 58.84. Since a firm can undo

the abatement measure at a cost, the downside risk of the project is bounded. This makes

operating profits a convex function of the stochastic underlying V S
t , and the expected return

of the abatement project rises with uncertainty. Therefore, in our model a higher volatility

hastens both investment and disinvestment when delays force a firm to decide in advance

whether or not to undertake a decision in the near future. The work of Bar-Ilan and

Strange (1996) who study the effect of delays on irreversible investment is then nested into

our model. Figure 1 shows graphically the effect of the volatility σ of the new operating

profits V S
t on the premium for the flexibility. The larger the uncertainty about V S

t , the

higher is the premium required by the company that undertakes the modification of the

production process.

Finally, this theoretical result coincide with the findings of Abel (1983) and Caballero (1991).

In their model they both assume adjustment of the investment capital to be costly, which

make it less flexible than labor. Employing such an assumption and, contrary to Xepapadeas
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dI = dD = 3 dI = dD = 5
σ h∗

II h∗
I h∗

D h∗
I h∗

D

0.05 282.91 232.21 52.01 209.73 52.44
0.06 285.70 230.39 52.50 207.60 53.14
0.07 288.90 228.65 52.95 205.37 53.84
0.08 292.49 227.02 53.36 203.12 54.52
0.09 296.43 225.53 53.74 200.91 55.19
0.10 300.70 224.17 54.08 198.75 55.83
0.11 305.26 222.94 54.40 196.68 56.46
0.12 310.11 221.83 54.68 194.67 57.07
0.13 315.23 220.82 54.94 192.74 57.67
0.14 320.59 219.89 55.18 190.87 58.25
0.15 326.18 219.05 55.40 189.07 58.82
0.16 331.99 218.27 55.60 187.32 59.39
0.17 338.02 217.56 55.78 185.62 59.94
0.18 344.26 216.90 55.96 183.97 60.49
0.19 350.69 216.28 56.12 182.36 61.03
0.20 357.32 215.70 56.28 180.78 61.57
0.21 364.14 215.16 56.42 179.24 62.11
0.22 371.14 214.65 56.56 177.74 62.65
0.23 378.32 214.17 56.70 176.26 63.18
0.24 385.69 213.71 56.83 174.80 63.72
0.25 393.23 213.28 56.96 173.38 64.26
0.26 400.95 212.86 57.08 171.97 64.80
0.27 408.84 212.47 57.20 170.58 65.34
0.28 416.90 212.08 57.32 169.22 65.89
0.29 425.14 211.72 57.44 167.87 66.44
0.30 433.56 211.36 57.56 166.53 67.00
0.31 442.14 211.01 57.68 165.21 67.57
0.32 450.90 210.67 57.80 163.91 68.14
0.33 459.83 210.34 57.93 162.61 68.72
0.34 468.93 210.01 58.05 161.33 69.30
0.35 478.20 209.69 58.18 160.05 69.89
0.36 487.65 209.37 58.30 158.79 70.50
0.37 497.26 209.04 58.43 157.53 71.11
0.38 507.06 208.72 58.57 156.28 71.73
0.39 517.02 208.40 58.70 155.03 72.36
0.40 527.17 208.07 58.84 153.79 73.00

Table 9: Optimal instantaneous irreversible investment value h∗

II
, and Parisian optimal investment h∗

I

and disinvestment h∗

D
values. The parameters we used are ρ = 0.13; µ = 0.05; CD = 50; CI = 170; V0 =

100; α = 1; T = 0.8.

(2001) and Zhao (2003), adopting a constant return technology the authors show that the

marginal revenue product of capital is a convex function of the underlying stochastic price.

Relying on Jensen’s inequality, this implies the expected return of the investment rises

with uncertainty. Such an argument might suggests a reasonable explanation for the early
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over-investment in pollution control observed by Stavins (1998) in the U.S. market for SO2.

Though installing a scrubber is an irreversible investment, non-decreasing return to scale

and costly capital adjustment might explain the positive correlation between uncertainty

and investment.

(f) Chao and Wilson (1993) were the first to identify the flexibility embedded in marketable

permits and to investigate it in the presence of irreversible investments. Here we extend

their framework developing a one-time reversible investment model. Indeed, letting dD → ∞
we obtain the special case of an irreversible investment. More precisely, when dD → ∞ the

level h∗
I converges to

h∗
OI =

θ1CI

θ1 − 1

φ(b
√

dI)

φ((b + σ)
√

dI)
,

where h∗
OI represents the optimal investment threshold for time-window dI while disinvest-

ment is not possible. Gauthier and Morellec (2000) were the first to obtain this result.

As expected and as is observable in the last picture of figure 1, the required premium for

irreversible investments (θOI) is larger than that for those which are reversible (θD). This

theoretical result has a practical relevance. Since abatement measures are not perfect sub-

stitutes and companies value the flexibility of trading permits - as described in section 2 -

policy makers should be concerned about the degree of reversibility of all abatement alter-

natives available to companies when designing and implementing effective environmental

regulations.

5 Conclusions

In a constrained economy where companies are subject to environmental regulations and are en-

dowed with a marketable permits scheme, environmental economics literature claims that trading

emission permits and physical abatement reduction are equal alternatives. However, this only

holds in a deterministic setup. In reality, the presence of uncertainty and technical constraints

like implementation delays, make these measures perceived as imperfect substitutes. Relaxing

the assumption of perfect substitution among all abatement alternatives, we develop a model

for one-time reversible investments where we assume that the new operating profits follow a

one-dimensional geometric Brownian motion. The optimal “investment” and “disinvestment”

problem is solved under both the instantaneous and the Parisian criteria, obtaining an analytic

solution to the optimal “starting” and “stopping” levels and nesting the model of Bar-Ilan and

Strange (1996). Relying on these results, we also derive an analytic solution of the premium for

the flexibility embedded in marketable permits. We compare our findings with the instantaneous

and irreversible investment case, and show that an increase in the length of the time-windows

enhances the required premium whereas the absence of the reversibility-option increases the pre-
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mium, extending a result of Chao and Wilson (1993).

An interesting direction for future research would be to investigate explicitly the price of

emission permits assuming a tractable dynamics for the stochastic process V B
t . Further, it would

be interesting to test empirically the model in this paper parametrizing the process V S
t to real

data. This might simplify the interpretation of the impact of CD on the premium.

Appendix

A Definitions and Results

The Brownian meander and the Parisian criterion are closely related. In the following, we define

the Brownian meander and list some of its properties. We refer to Revuz and Yor (1991) for

details about the Brownian meander. Then, we present the connection existing between the

Brownian meander and the Parisian criterion.

Let (Zt, t ≥ 0) be a standard Brownian motion on a filtered probability space

(Ω,F , (Ft)t≥0, P). For each t > 0, we define the random variables

gt = sup{s : s ≤ t, Zs = 0}, (19)

dt = inf{s : s ≥ t, Zs = 0}. (20)

The interval (gt, dt) is called ”interval of the Brownian excursion” which straddles time t. For u

in this interval, sgn(Zt) remains constant. In particular, gt represents the last time the Brownian

motion crossed the level 0. It is known that gt is not a stopping time for the Brownian filtration

(Ft)t≥0, but for the slow Brownian filtration (Gt)t≥0, which is defined by Gt = Fgt ∨ σ(sgn(Zt)).

The slow Brownian filtration represents the information on the Brownian motion until its last

zero plus the knowledge of its sign after this.

The Brownian meander process ending at t is defined as (see Revuz and Yor (1991))

m(t)
u =

1√
t − gt

|Zgt+u(t−gt)|, 0 ≤ u ≤ 1. (21)

The process m
(t)
u is the non-negative and normalized Brownian excursion which straddles time

t and is independent of the σ-field (Gt)t≥0. When u = 1 and t = 1, we conveniently denote

m1 = m
(1)
1 . The random variable m1 will play a central role in the calculation of many other

variables that will be introduced later on. The distribution of m1 is known to be (see Revuz and

Yor (1991))

P(m1 ∈ dx) = x exp(−1

2
x2)1x>0dx,
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and the moment generating function φ(z) is given by (see Revuz and Yor (1991))

φ(z) = E(exp(zm1)) =

∫ ∞

0
x exp(zx − 1

2
x2)dx. (22)

We now look at the first instant when the Brownian motion spends d units of time consecu-

tively above (resp. below) the level 0. For d ≥ 0, we define the random variables

H+
d = inf{t ≥ 0 : t − gt ≥ d, Zt ≥ 0} (23)

H−
d = inf{t ≥ 0 : t − gt ≥ d, Zt ≤ 0} (24)

The variables H+
d and H−

d are Gt-stopping times and hence Ft-stopping times (see Revuz and

Yor (1991) for more details). From equation (21) we can easily deduce that the process

(

1√
d
|Zg

H
+
d

+ud|
)

u≤1

=
(

m
(H+

d
)

u

)

u≤1

is a Brownian meander, independent of Gg
H

+
d

. In particular, (1/
√

d)ZH+
d

is distributed as m1 (see

Revuz and Yor (1991)),

P(ZH+
d
∈ dx) =

x

d
exp(−x2

2d
)1x>0dx. (25)

and the random variables H+
d and ZH+

d
are independent.

Similarly, (1/
√

d)ZH−
d

is distributed as −m1 (see Revuz and Yor (1991)),

P(ZH−
d
∈ dx) =

−x

d
exp(−x2

2d
)1x<0dx. (26)

and the random variables H−
d and ZH−

d
are independent.

The Laplace transform of H+
d was first calculated in Chesney et al. (1997). We present the

result in the next theorem.

Theorem A.1 Let H+
d be the stopping time defined in (23) and φ the moment generating func-

tion defined in equation (22). For any λ > 0,

E[exp(−λH+
d )] =

1

φ(
√

2λd)
. (27)

The proof is based on the Azèma martingale, µt = sgn(Zt)
√

t − gt - a remarkable (Gt) martingale.

The same results hold also when H+
d is replaced with H−

d .

So far we only looked at the Brownian motion excursions above or below level 0. More
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generally, we can define for any a ∈ R and any continuous stochastic process X that

gX0,a
t (X) = sup{s : s ≤ t,X0 = X0,Xt = a}, (28)

H+
(X0,a),d(X) = inf{t ≥ 0 : t − gX0,a

t ≥ d,X0 = X0, Xt ≥ a}, (29)

H−
(X0,a),d(X) = inf{t ≥ 0 : t − gX0,a

t ≥ d,X0 = X0, Xt ≤ a} (30)

Thus, gX0,a
t (X) represents the last time the process X crossed level a. As for the Brownian

motion case, gX0,a
t (X) is not a stopping time for the Brownian filtration (Ft)t≥0, but for the slow

Brownian filtration (Gt)t≥0. The random variables H+
(X0,a),d(X) (resp. H−

(X0,a),d(X)) represent

the first instant when the process X spends d units of time above (resp. below) the level a. The

variables H+
(X0,a),d(X) and H−

(X0,a),d(X) are Gt-stopping times and hence Ft-stopping times. In

the notation we use, we indicate the starting point of the process X, the level a and the length of

time d. Although indicating the starting point seems unnecessary, it turns out to be extremely

helpful in the context of the Parisian criterion.

Another relevant random variable is the first hitting time of level a, which we define below:

TX0,a(X) = inf{s : X0 = X0,Xs = a}. (31)

B Parisian Criterion

According to the notation introduced in Section 2, the investment stopping time τI which satisfies

the Parisian criterion corresponds to H+
(V0,hI),dI

(V ). In order to express the disinvestment stopping

time τD in mathematical formulas, we need to extend the definition of H+
(V0,hI),dI

(V ). Let τ be

any stopping time, a ∈ R, X a continuous stochastic process and gX0,a
t (X) as defined in equation

(28. Then

(a) the first instant after τ when the process X spends d units of time above (resp. below)

level a is given by the stopping time H+,τ

(X0,a),d(X) (resp. H−,τ

(X0,a),d(X))

H+,τ

(X0,a),d(X) = inf{t ≥ τ : t − gX0,a
t ≥ d,X0 = X0, Xt ≥ a}, (32)

H−,τ

(X0,a),d(X) = inf{t ≥ τ : t − gX0,a
t ≥ d,X0 = X0, Xt ≤ a}; (33)

(b) the first hitting time after τ of level a is the stopping time T τ
X0,a(X)

T τ
X0,a(X) = inf{s ≥ τ : X0 = X0,Xs = a}. (34)

If X has the strong Markov property and τ is a finite stopping time, we have the follow-

ing equalities in distribution H+,τ

(X0,a),d(X) = H+
(Xτ ,a),d(X), H−,τ

(X0,a),d(X) = H−
(Xτ ,a),d(X), and

T τ
X0,a(X) = TXτ ,a(X). Now we can state the formulas for the stopping times τI and τD, which
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satisfy the Parisian criterion.

Proposition B.1 Let τI and τD be the stopping times corresponding to the Parisian criterion

with time windows dI , dD and levels hI , hD respectively. Then the following equalities hold

τI = H+
(V0,hI),dI

(V ), (35)

τD = H−,τI

(V0,hD),dD
(V ). (36)

Otherwise, in terms of the drifted Brownian motion, the Parisian stopping times are

τI = H+
(V0,hI),dI

(V ) = H+
(l0,lI),dI

(X), where l0 = 0, and lI =
1

σ
log
(hI

V0

)

,

and

τD = H−,τI

(V0,hD),dD
(V ) = H−,τI

(l0,lD),dD
(X), where l0 = 0, and lD =

1

σ
log
(hD

V0

)

.

Proposition B.2 Let τ be any finite stopping time such that τ and Vτ are independent and

assume hD ≤ Vτ a.s. Then the following equality in distribution holds

H−,τ

(V0,hD),dD
(V ) = τ + TVτ ,hD

(V ) + H−
(hD,hD),dD

(V ),

and the terms of the sum are independent. A similar relationship holds for H+,τ

(V0,hI),dI
(V ) if we

assume Vτ ≤ hI a.s.

Proof. The strong Markov property and the continuity of the process V give us the equality.

The independence follows from our hypothesis that τ and Vτ are independent.

C Laplace Transforms and Moment Generating Functions

To obtain an explicit solution for the optimal disinvestment threshold and an implicit solution for

the optimal investment threshold we need to calculate all terms that enter into the maximization

problem. We first find the Laplace transform of the Parisian investment time under the measure

P
∗ defined in (7).

Proposition C.1 For any λ > 0, the following equality holds:

EP∗

[

e−λτI

]

=
(V0

hI

)

√
2λ
σ 1

φ(
√

2λdI)
.
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Proof. From Proposition B.2 we have

EP∗

[

e−λτI

]

= EP∗

[

e−λTl0,lI

]

EP∗

[

e
−λH+

(lI ,lI ),dI
(X)
]

using the corresponding Laplace transforms we obtain

EP∗

[

e−λτI

]

= e−(lI−l0)
√

2λ 1

φ(
√

2λdI)
=
(V0

hI

)

√
2λ
σ 1

φ(
√

2λdI)
.

In the next proposition we calculate the moment generating function for the process Xt defined

in (6), stopped at the Parisian investment time.

Proposition C.2 For any λ ∈ R, the following equality holds,

EP∗

[

e−λXτI

]

=
(hI

V0

)−λ
σ
φ(−λ

√

dI).

Proof. Using the definition of XτI

EP∗

[

e−λXτI

]

= EP∗

[

e−λ(lI+m1
√

dI)
]

.

Now, using the definition of lI and φ, we obtain

EP∗

[

e−λXτI

]

= e−λlI φ(−λ
√

dI) =
(hI

V0

)−λ
σ
φ(−λ

√

dI).

In the following, we calculate the Laplace transform of the first hitting time of X, starting at

the Parisian investment time.

Proposition C.3 For any λ > 0, the following equality holds

EP∗

[

e
−λT(XτI

,lD)(X)
]

=
(hD

hI

)

√
2λ
σ

φ(−
√

2λdI)

Proof. Conditioning, we write

EP∗

[

e
−λT(XτI

,lD)(X)
]

= EP∗

[

EP∗

[

e
−λT(XτI

,lD)(X)
∣

∣

∣
FτI

]]

since XτI
≥ lD a.s., we can use the Laplace transform of the hitting time to obtain

EP∗

[

e−(XτI
−lD)

√
2λ
]

.

22



Using the formulas for XτI
and ld, we know that XτI

− ld = 1
σ

log
VτI

hD
and hence we obtain

EP∗

[(VτI

hD

)−
√

2λ
σ
]

= h

√
2λ
σ

D EP∗

[

V
−

√
2λ
σ

τI

]

=
(hD

V0

)

√
2λ
σ

EP∗

[

e−
√

2λXτI

]

Applying Proposition C.2 now we arrive at our result.

Then, we find the Laplace transform of the Parisian disinvestment time under the measure

P
∗ defined in (7).

Proposition C.4 For any λ > 0, the following equality holds

EP∗

[

e−λτD

]

= EP∗

[

e−λτI

]φ(−
√

2λdI)

φ(
√

2λdD)

(hD

hI

)

√
2λ
σ

.

Proof. Using Proposition B.2, we can write

EP∗

[

e−λτD

]

= EP∗

[

e−λτI

]

EP∗

[

e
−λT(XτI

,lD)(X)
]

EP∗

[

e
−λH−

(lD,lD),dD
(X)
]

.

Now, using the corresponding Laplace transforms, we arrive at the desired result.

Again we calculate the moment generating function for the process Xt defined in (6), stopped

at the Parisian disinvestment time.

Proposition C.5 For any λ ∈ R, the following equality holds

EP∗

[

e−λXτD

]

=
(hD

V0

)−λ
σ
φ(λ
√

dD).

Proof. Using the definition of XτD

EP∗

[

e−λXτD

]

= EP∗

[

e−λ(lD−m1
√

dD)
]

.

Now, using the definition of lD and φ, we obtain the desired result.

Finally, we are able to calculate the first term appearing in the maximization problem (5).

Proposition C.6 The following equality holds

EP

[

e−ρτI (VτI
− CI)1{τI <∞}

]

= EP∗

[

e−(ρ+ b2

2
)τI

](hI

V0

)
b
σ
φ(b
√

dI)×

×
{

hI
φ(
√

dI(σ + b))

φ(b
√

dI)
− CI

}

.
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Proof. Using equation (8) and Proposition C.2, the left hand side in the above equality becomes

EP∗

[

e−(ρ+ b2

2
)τI

]{

V0

(hI

V0

)
σ+b

σ
φ(
√

dI(σ + b)) − CI

(hI

V0

)
b
σ
φ(b
√

dI)
}

and grouping the terms we arrive at the desired result.

Similarly, we calculate the second term appearing in the maximization problem (5).

Proposition C.7 The following equality holds

EP

[

e−ρτD(CD − VτD
)1{τD<∞}

]

= EP∗

[

e−(ρ+ b2

2
)τI

](hI

V0

)
b
σ
( hI

hD

)

−b−
√

2ρ+b2

σ ×

×φ(−
√

(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)
φ(−b

√

dD)
{

CD − hD
φ(−(b + σ)

√
dD)

φ(−b
√

dD)

}

Proof. Using equation (9), Propositions C.4 and Proposition C.5, the left hand side in the

equality above becomes

EP∗

[

e−(ρ+ b2

2
)τI

](hD

hI

)

√
2ρ+b2

σ φ(−
√

(2ρ + b2)dI)

φ(
√

(2ρ + b2)dD)

{

CD

(hD

V0

)
b
σ
φ(−b

√

dD)−

−V0

(hD

V0

)
σ+b

σ
φ(−(b + σ)

√

dD)
}

and now factoring out and grouping the terms we arrive at the desired result.
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Figure 1: θD and θOI are the premia respectively for reversible (right picture) and irreversible investments
(middle picture). Both are functions of the investment time-window dI and the volatility rate σ. The left
picture plots the difference between the two premia.
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