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Abstract
Governments worldwide apply political targets to reduce the use of fossil fuels and
greenhouse gas emissions. In order to do this, many large investments in the electricity
system will likely be initiated in the future and it is highly relevant to analyze these
potential energy investments.

In order to evaluate investments in energy technologies, the real options approach will
be taken as an alternative to the traditional net present value rule. In contrast to the
net present value rule, the real options approach allows us to explicitly take into account
both uncertainties and flexibilities (the options) in the investments.

The aim of this paper is to consider sequential capacity investments in a single project,
for instance an offshore wind site. The agent can invest an initial capacity level below
a certain limit and any capacity that is not installed in the initial investment can be
installed at a later time. The initial capacity choice determines the value of the profit
flow that is received up until the next investment, and affects the value of the secondary
investment option as well.
We find that even without learning effects, splitting the capacity choice problem into

sequential investments will result in smaller but earlier initial investments. Furthermore
we find that the option to make a secondary investment will raise the value of the
investment option as a whole.
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1 Introduction
Large-scale investments are typically split into smaller stages, in order to decrease the
initial outlay of capital, reduce the exposure to unknown risks or to get knowledge from
the first investment stages to improve results of the later stages. Stage-wise investment
in energy technologies has for example been examined in Gollier et al (2005), while the
investment-scale-decision has been discussed in Décamps, Mariotti and Villeneuve (2006).
The combination of the two issues - a sequential capacity choice problem - in which the
two decision affect one another, has, to the best of our knowledge, not been addressed.
We will take a real options approach to modeling the value of the options and solve

as much as possible of the problem analytically. Where we are no longer able to find
analytical solutions we will use a least-squares Monte Carlo simulation approach developed
by Longstaff & Schwartz (2001), in order to find the optimal investment timing as well as
capacity choices. We find that the inclusion of stages in the capacity choice problem will
encourage the agent to initiate the investment earlier with a smaller initial investment
compared to the results obtained if we only allow a single investment decision with a
single capacity choice. The addition of stage-wise capacity decisions thus speeds up the
initiation of large-scale projects, by starting the first stage of the project earlier than if
the full project had to be initiated all at once. We also find that including this two-stage
flexibility in the option greatly increases it’s value.
The remainder of this paper is organized as follows: The first section contains a brief

discussion of the real options analysis method as well as the least-squares Monte Carlo
method used in this paper. We then determine the value of a project and the optimal
capacity choice in the case of a single possible investment. We also find the value of
holding the option to initiate this investment, as well as the investment trigger. In the
following section we expand the model so the investments can occur sequentially, where
the first capacity choice affects the value of the secondary investment opportunity. Then
a numerical example follows in which we find results of the two models and compare
investment timings as well as capacity choices. We conclude with a discussion of our
results, their implications and some potential extensions to the research.

2 The Method
Real options valuation - or real options analysis - applies methods from option pricing
to evaluate managerial budgeting decisions. A real option can be defined as the right -
but not the obligation - to commence various business initiatives, for example beginning,
expanding, abandoning or postponing an investment project. The term ’Real Options’
was first used in 1977, four years after the notable paper by Black & Scholes (1973) and
the method is thus tightly linked with the option valuation techniques developed by these
authors. As a mathematical discipline real options has it’s roots in financial engineering
but has been expanded to cover decision making under uncertainty as a much broader
field. It now provides an enhanced analytical framework within which to make decisions
given uncertainty in one or more underlying variables. For a general text-book on real
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options refer to Dixit & Pindyck (1994).
There is a great number of papers where real options analysis is applied to the field

of renewable energy, including Siddiqui and Fleten (2010) in which the deployment
of competing energy technologies is compared, Gollier et al (2005) who model and
examine the value of modularizing a nuclear power plant investment and Décamps,
Mariotti and Villeneuve (2006) who study the scale decision of an investment under price
uncertainty. Fleten, Maribu and Wangensteen (2007) examine investments in renewable
power generation under uncertainty, including a case study of investment in wind power
generation.
Developments in contingent claims analysis was started with the papers by Black &

Scholes (1973) and Merton (1973), both of which form the basis of the analysis that is
used in this paper. To facilitate the analysis we will need to make an identification and
description of the underlying uncertainties. We will take a simple approach to modeling
the uncertainty, and assume that the revenue stream of the project follows a geometric
Brownian motion, as is common in the literature.
Since we are not able to fully solve the two-stage model analytically, we will use a

numerical approach to obtain comparable results. More specifically we will use the
least-squared Monte Carlo approach presented in Longstaff & Schwartz (2001) to produce
the results we will then compare to those of the single-investment model. This method
was developed to price financial options of the American type but can easily be applied
to our problem.

3 The single-investment model
We begin by solving the problem of investment if the agent is only allowed to make
a single investment, by choosing a capacity level q ≤ q̄. The capacity limit should be
interpreted as a site-specific limit, reflecting geographic and spacial constraints, legal
limitations, as well as budget constraint and any other limiting factors. Assume that
the profit flow of the project is a concave and increasing function of capacity. Due to
production losses such as wake effects, the profit flow is marginally decreasing with
capacity: Π(π; q) = aπqb, with a > 0 and 0 < b < 1, where π is a measure of the general
profitability, varying stochastically with prices, realized production, operational costs and
other factors that impact the revenue stream of the project. Given a set capacity, the
value of the offshore wind power project is the total expected discounted future profits
over its lifetime, T :

V (π; q) = E
[ ∫ T

0
e−rtaπ(t)qbdt

∣∣∣π],
where r is the rate used to discount future payoffs. Given that the revenue stream π
follows a geometric Brownian motion with drift rate α and volatility σ:

dπ(t) = απdt+ σπdZ,
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the value of the wind power project can be found analytically and is, for a given capacity:

V (π; q) = aπqb

r − α

(
1− e−(r−α)T

)
≡ γπqb.

The optimal capacity of an investment can be determined by solving the simple
maximization problem

max
q≤q̄
{V (π; q)− I(q)} = max

q≤q̄

{
γπqb −Aq −B

}
,

where we assume that investment costs is an affine and increasing function of capacity:
I(q) = Aq +B, with A,B > 0. Since V (π; q)− I(q) is a concave function of the capacity
level, the unconstrained problem has a unique solution which can be found by solving
∂
∂qV (π; q) = I ′(q). The solution is to choose

q̃(π) =
(
bγπ

A

) 1
1−b

. (1)

If this is not a valid solution (i.e. if q̃(π) > q̄), it is optimal to instead invest the full
capacity q̄. We thus have that

q∗(π) = min{q̃(π), q̄}.

Note that q̃ depends on the value of the revenue stream π at the time of investment, and
so q∗ does as well. Inserting the optimal capacity in the value function yields

V (π; q∗)− I(q∗) = Di

(
bγπ

A

)ηi
− Ei. (2)

where i = 1 when q∗(π) = q̃(π) and i = 2 when q∗(π) = q̄, with

D1 = A(1− b)
b

> 0, E1 = B > 0, η1 = 1
1− b > 1, (3)

D2 = Aq̄b

b
> 0, E2 = Aq̄ +B > 0, η2 = 1. (4)

The option to initiate the investment can be exercised at anytime, and must fulfill the
following Bellman equation

U(π) = max
{

max
q≤q̄
{V (π; q)− I(q)} , 1

1+rdtE [U(π + dπ)]
}
. (5)

The partial differential equation in the continuation region (i.e. before the investment is
made) can be found using Itô’s Lemma and is:

1
2σ

2
V π

2U ′′ + αV πU
′ − rU = 0,
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with boundary conditions

U(0) = 0, U(π∗) = V (π∗; q∗)− I(q∗), U ′(π∗) = V ′(π∗; q∗),

where π∗ is the investment trigger (or threshold), such that the option is exercised and
the investment initiated once the profit flow surpasses this level. The partial differential
equation has an analytical solution of the form U(π) = C1π

β1 + C2π
β2 .

We can use this functional form to find a characteristic polynomial for the β-parameters:

Q(β) = 1
2σ

2β(β − 1) + αβ − r = 0. (6)

Using that Q(0) = −r < 0 and Q(1) = α− r < 0 (by assumption), together with the fact
that Q(β) is a parabola with a positive coefficient in front of the second order term, we
conclude that one root must lie to the left of zero (i.e. be negative) and one root must
lie to the right of 1 (i.e. be positive). In order to satisfy the first boundary condition, we
only need the positive solution, and conclude that U must be of the form U(π) = Cπβ,
where β > 1 is the positive root of the polynomial above.

Using this functional form as well as the expression for V found earlier we can use the
boundary conditions to find that

π∗ = A

bγ

(
Ei
Di

β

β − ηi

) 1
ηi (7)

Ci = Ei
ηi

β − ηi
(π∗)−β, (8)

In order to determine when we invest q̃(π∗) and when we invest q̄, we plug the results for
π∗ into the expression for q̃ to see that

i = 1 ⇐⇒ q∗ = q̃ ⇐⇒ q̃ < q̄ ⇐⇒ q̄ >
Bb

A
(
1− b− 1

β

) , (9)

and i = 2 if the opposite inequality holds.

4 Two sequential investments
Assume now that the investor has the possibility to make a secondary investment of
q2 ≤ q̄−q1 at any time, after the initial investment has been made. The initial investment
thus yields both a project value as well as a secondary option value; after the initial
investment the agent is left with the choice between making the secondary investment or
waiting for more information.
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4.1 The secondary investment
When the second investment is initiated the capacity will increase from q1 to q1 + q2,
thus increasing the value of the project by V2(π) = γπ((q1 + q2)b − qb1), while paying the
investment costs I2(q2) = Aq2 +B2, again with A,B2 > 0. The Bellman equation for the
secondary option value thus becomes:

U2(π; q1) = max
{

max
q2≤q̄−q1

{
γπ((q1 + q2)b − qb1)−Aq2 −B2

}
, e−rdtE [U2(π + dπ; q1)]

}
.

Note that for any given q1, the partial differential equation governing the option value in
the continuation region is exactly the same as in the one-investment-problem of section
3. It thus also has the solution U2(π; q1) = Cπβ. We will later see that the constant C
will depend on the initial capacity choice q1.

The optimal capacity choice is calculated by solving the first order condition as before
and we find that

q∗2(π) = min{q̃(π)− q1, q̄ − q1} =


(
γπb
A

) 1
1−b − q1, for

(
γπb
A

) 1
1−b ≤ q̄

q̄ − q1 for
(
γπb
A

) 1
1−b > q̄

where q̃(π) is defined in equation (1). Using these we find that the value of making the
investment (using the optimal capacity choice found above) is

V2(π, q∗2; q1)− I2(q∗2) =

 A
(

1−b
b

) (
γπb
A

) 1
1−b − (γπqb1 −Aq1)−B2, for

(
γπb
A

) 1
1−b ≤ q̄

γπq̄b − (γπqb1 −Aq1)−Aq̄ −B2 for
(
γπb
A

) 1
1−b > q̄

(10)

For either case we find that the option value can be expressed as

U2(π, q1) =


(

π
π∗

2(q1)

)β
(V2(π, q∗2; q1)− I2(q∗2)) , for π < π∗2(q1)

(V2(π, q∗2; q1)− I2(q∗2)) for π ≥ π∗2(q1)

where V2(π, q∗2; q1)−I2(q∗2) is defined in equation (10). However, only when
(
γπ∗

2b
A

) 1
1−b > q̄

(so q∗2(π∗2) = q̄−q1) is it possible to find an analytical solution for the investment threshold
π∗2(q1) and fully solve the problem. In order to get results comparable to the single-
investment model we will instead use a numerical simulation method.

4.2 The initial investment
When deciding the timing of the initial investment the gains of undertaking the investment
is the project value V1 as well as the secondary option value U2. The Bellman equation
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that describes this decision problem is

U1(π) = max
{

max
q1≤q̄
{V1(π, q1)− I1(q1) + U2(π, q1)} , e−rdtE [U1(π + dπ)]

}
= max

{
max
q1≤q̄

{
γπqb1 −Aq1 −B1 + U2(π, q1)

}
, e−rdtE [U1(π + dπ)]

}
.

In order to continue we need to make use of a small lemma:

Lemma 1: We must have that π∗1 < π∗2.
Proof: Assume the opposite, that π∗1 ≥ π∗2. This means that once the initial in-

vestment is made (at the threshold level π∗1), it is optimal to initiate the secondary
investment right away. Doing so will lead to a total invested capacity of q1 + q2 at a cost
of A(q1 + q2) + B1 + B2. Had the total capacity q1 + q2 been invested in one go, the
costs would have been A(q1 + q2) +B1 which would make the investor better off. So, the
secondary investment must have a higher profit threshold than the initial one.

We can use Lemma 1 to conclude that U2(π, q1) =
(

π
π∗

2(q1)

)β
(V2(π, q∗2; q1)− I2(q∗2)) at

π = π∗1. The initial capacity choice problem can now be reduced to choosing the q1 that
maximizes

γπqb1 −Aq1 −B1 +
(

π

π∗2(q1)

)β
(V2(π, q∗2; q1)− I2(q∗2)) ,

where the form of the V2 − I2 term depends on the parameters of the model (as seen in
equation (10)), and where we are not always able to find an analytical expression for
π∗2(q1).

5 Results
We will use the least-squared Monte Carlo approach presented in Longstaff & Schwartz
(2001) to generate results for the two models in order for us to properly compare them.
We begin by simulating a number of paths for the underlying π, using a drift rate of
α = 0.01 and a volatility of σ = 0.20. We initiate the paths at a normalized π0 = 100.
To solve for the initial capacity choice and timing of the first investment, we discretize
the capacity q1 so as to take values in {0, 40, 80, . . . , q̄ = 4000}. For every path and
every time period we find the capacity that would yield the best payoff (consisting of
both project value and expected value of the secondary option1). Using this optimal
payoff of investing at any given time period, we work our way backwards through the
paths: For any period the agent can either invest now (earning the payoff of the current
optimal capacity) or choose to wait. In order to determine the value of waiting we use
the least-squares Monte Carlo approach described in Longstaff & Schwartz (2001) - we
use a second order polynomial to estimate the conditional value of waiting. Working
backwards from the last time period to the first, we find the optimal time of investing

1the secondary option value is found using this exact same least-squares Monte Carlo method
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for every simulated path, as well as the initial capacity, q1 invested in each of them. The
parameters used for the calculation of payoffs are a = 0.08, b = 0.06, A = 3 and B = 300.
We simulate 10000 price paths of 10 periods2 (years), with possible investments each
period.
Using these numbers the value of the option (at time zero) increased from 4198 in

the one-stage model to 5205 in the two-stage model, an increase in value of 24%. The
value of considering sequential capacity choices and not just a single investment is thus
immense and should definitely not be overlooked. We now take a closer look at the actual
solutions of the two models and try to find how the extra flexibility of the two-stage
model adds so much value to the investment option.

5.1 Investment timing
We will begin by examining and comparing the optimal investment timing of the two
models. For each simulated path (note that the same set of simulations of the underlying
is used for both models), the time of the investment is stored as part of the final cash-flow
matrix (as described in Longstaff & Schwartz (2001)). In the one-stage model it is simply
the time at which the investment is made, in the two-stage model we have only recorded
the time that the initial investment is made. The distributions of the investment timing
can be seen in the histograms in Figure 1:

Figure 1: Distribution of the (first) investment timing in the two models.

2More time periods could have been chosen, but since options to invest in for example a wind farm site
are not infinite, it was chosen to keep the time horizon relatively short.
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We see right away that by allowing a second investment in the project, the entire
distribution of the initial investment time has shifted to the left. That is, the agent is
much more likely to invest early. The ’average investment initiation time’ has decreased
from 5.8 in the one-stage model to only 1.7 in the two-stage model. The reason for this
much speedier investment is that when a secondary investment is allowed after the initial
one, it is profitable to start the project at less-than-perfect conditions (measured in the
value of the underlying π), since it will still be possible to expand should the conditions
improve. In the one-stage model, however, this future expansion is not possible, and the
agent will be more willing to wait for better conditions before making the final decision
to invest.

5.2 Capacity invested
If we instead turn towards the capacity invested in the one-stage model and compare it
to the capacity invested in the first stage of the two-stage model, we see that the choice
is to invest much less when there is an opportunity to increase the installed capacity at a
later date. In the one-stage model, the full capacity limit is installed as often as 40% of
the time, whereas the initial investment of the two-stage model almost never exceeds half
of the capacity limit. Two histograms of the chosen capacity levels of the two models can
be found in Figure 2:

Figure 2: Distribution of the (initial) capacity choice in the two models.

So, not only will the agent invest earlier, the chosen capacity level will also initially be
lower. The reason is of course as before, that the capacity can be increased at a later date.
This means that a small initial capacity project can still take advantage of improving
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conditions (by increasing the capacity), a feature which does not exist in the one-stage
model. The reason for this is that the profitability of the project is a concave function of
capacity - i.e. the marginal value of capacity is decreasing, which means that the first
capacity installed is also the most valuable. This suggests that the project should be
initiated much faster, since the first small investment will be profitable at much lower
values of the underlying π. And, if conditions improve, the size of the project can simply
be increased at a later time.

6 Conclusions
The possibility of stage-wise capacity choices in a project will lead the investor to
undertake investments sooner, but start off the project at a smaller scale. Including this
possibility vastly increases the value of the investment option as a whole, in our numerical
case the option value increased by 24%. Comparing the results of the two models we can
see that in the one-stage model the agent waits for the value of the underlying to reach
a level that will support a large investment, as this increases the expected value of the
project. In the two-stage model, the agent can instead make a small investment in the
project very early, start earning a payoff and once the value of the underlying reaches a
high enough level, the large scale expansion is made. The fact that future payoffs are
discounted (so, all else equal, a fast investment is worth more than a late investment)
only serves to magnify this effect.
This means that whenever the profitability of a project is a concave function of

installation size (for example large-scale wind sites which feature production losses due
to wake effects), the investors should consider splitting the projects into smaller stages
of investment, using the methods discussed in this paper to determine the size of each
stage. Empirically we already see that most large-scale off shore wind farms are indeed
being installed in smaller stages. Two examples include the German Innogy Nordsee 1-3:
a three stage 1000 MW site in the North Sea of which the first 330 MW stage has just
been approved, and the London Array: an offshore wind farm for which the first phase
of 630 MW capacity is being constructed in the outer Thames Estuary.
Potential extensions to the research covered in this paper includes a study of the

comparative statics, testing how changes in the different parameters will affect the results
of the analysis. The authors would also like to acquire a proper case study to fit the
model and test the results under a set of case-specific parameters. Finally it should
be noted that the assumption that the underlying should follow a geometric Brownian
motion is only needed to yield the analytical solutions, but a much wider selection of
models can be used, including mean-reverting or jump processes, to simulate the paths
of the underlying for the numerical analysis. Lastly the authors would also like to look
at including learning effects in the model. We note that most of these extensions are
straightforward to include.
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