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Abstract

In this paper we forecast the day-ahead electricity spot price. We show that

taking into account the intra-day relation between individual hourly prices leads

to significant improvement in forecast accuracy. Several multivariate models are

estimated, models that allow for cross lags effect, as opposed to just own lags. We

compare these models with a viable univariate modelling alternative, a dynamic

ARX(p). We deal with the inherent over-fitting problem using shrinkage and di-

mension reduction methods such as Bayesian VAR, reduced-rank regression and

principal components regression. We find that additional gain is achieved using

forecast combination, an average reduction of 16% for the RMSE metric, compared

with the flexible benchmark model.

1Corresponding author, Email: raviv@ese.eur.nl



1 Introduction

Electricity prices exhibit several unique features, mainly due to the non-storable nature

of this flow commodity. Shocks to demand caused by, say, extremely low temperature can

not be smoothed out using pre-stored inventory as it happens for other, stock commodi-

ties. As a direct result electricity prices display extremely high volatility, much higher

than other energy products. Other unique characteristics include possible negative prices,

weekly and monthly seasonality, sudden large price changes (”spikes”), and a mean re-

version effect, see Knittel and Roberts (2005), or Longstaff and Wang (2004) for more

details.

The market in which short term electricity contracts, hourly and day ahead contracts,

are traded is referred to as a spot market or day-ahead market. In this paper we use data

from Nordpool spot market. It is a physical market where participants trade electricity for

the next day. The quotes are submitted simultaneously for all hours of the next day and

market prices are determined by the intersection point of the aggregate demand and supply

curves and is quoted for delivery for every hour of the next day. As a result, in contrast to

the stock market, information about the price for contract that delivers electricity between

20:00-21:00h, cannot be exploited to predict the price of a contract that delivers electricity

between 21:00-22:00h, as these two prices are determined simultaneously. Hourly prices

should not be modelled as a time series process but as a cross sectional panel that vary

from one day to the next. (See Huisman et al., 2007). The spot price itself is defined as

the average of the 24 individual hourly prices.

A good prediction of both hourly prices and the spot price itself is important for

several reasons. Firstly, the spot price is used as a reference for derivative pricing, e.g.

hourly power options or daily callable options. Secondly, companies that use electricity for

production might want to trade contracts that deliver electricity for specific hours of the

day, rather than the standard Base load contract that covers all 24 hours. Lastly, using

improved set of forecasts, market participants may develop efficient bidding strategies
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that help to control risk and increase profits.

Our objective in this paper is twofold. First, we show that taking into account the

intra-day relation between the individual hours is beneficial for spot price forecasting.

Second, we show that we can further benefit from a more complex multivariate framework

which allows each hourly price to be modelled and predicted separately, the forecast for

the spot price is then the average of the 24 individual hourly price forecasts.

In the last couple of decades there has been an ongoing liberalization of electricity

markets. This fact has created an increasing interest in building econometric models for

electricity prices. Weron and Misiorek (2008) report forecasting results for the spot price

from a variety of linear and non-linear models, including basic autoregressive models,

jump-diffusion models and regime-switching models. Bunn and Karakatsani (2008) add

fundamental variables such as fuel prices and level of demand. ? implement regression

model with seasonal periodic autoregressive fractionally integrated moving average dis-

turbances, but do not report any forecasting results. ? use data from Leipzig Power

Exchange (LPX), they implement univariate time series models such as AR, ARMA and

unobserved components, they also allow for jumps and time-varying intercepts. Upon

comparison, they conclude that modelling every hour separately produces better forecast-

ing results when compared with a model for the spot price itself. We find that modelling

each hour separately is not sufficient to produce superior forecasting results. The intra-

day relation between the individual hours is the information source which leads to more

accurate forecast of the spot price.

Modelling the individual hours separately increases complexity. In order to extend

our model and forecast the spot price using its individual components, i.e. hourly prices,

we inflate the number of parameters. A comparison between AR(1) model, say, for the

spot price and AR(1) model forecasts averaged across the 24 hours is somewhat unjust.

A practitioner who wishes to avoid the curse of dimensionality and forecast the spot price

using a univariate model, will not necessarily opt for AR(1) but a more flexible alternative,
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e.g. AR(7), which is less parsimonious, yet is nonetheless much less parametrized than the

multivariate, 24 hourly price forecasts alternative. Hence, we should compare our more

complex multivariate model with a flexible alternative model for the univariate spot price,

for example, an AR(p) model, as this is a more realistic and viable alternative in practice.

Hendry and Hubrich (2006) show that forecasting the aggregate, or the spot price in our

case, is theoretically never better than forecasting the aggregate using its disaggregate

components, the hourly prices in our case. Nevertheless, their result is complicated in

practice by possible parameter instability and measurement error, thus it is not straight

forward to argue in favour of forecasting the spot price using its individual components.

A trivial way to forecast the spot price using the 24 daily hours, and also to allow

for cross relation between the individual hours, is via VAR-type models with lagged and

cross lags coefficients. Such models are highly flexible but far from parsimonious. A

VAR model for the 24 hourly prices holds a large number of parameters, and hence high

estimation uncertainty, e.g. VAR(3) with no exogenous variables apart from the intercept

has (1 + 3 × 24) × 24 = 1752 parameters that are essential for point forecasting. This

effectively dissipates our degrees of freedom, which brings about potential over-fitting.

The model will not only fit the data, but also the intrinsic noise in it. The problem

worsens for data with such large short term swings as electricity prices, the model is

much more likely to overshoot its forecasts due to estimates that are too close to the

in-sample behaviour.

We cope with this problem of over fitting in two ways. The first is through dimension

reduction techniques such as Reduced Rank Regression and Factor Models. The second

is via regularization, or shrinkage. A Bayesian VAR model can be viewed as one such

method. We enforce a prior on the parameters, efficiently shrinking parameter estimates to

mitigate over-fitting. We also combine these two methods by way of forecasts averaging, in

section 4 we report results for simple model averaging, and for constrained OLS averaging.

We investigate the forecasting performance of our set of models using data from ”Nordpool
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power exchange”, covering hourly electricity prices during [4th May, 1992 - 4th March,

2010]. We compare the accuracy of our models for both the spot price forecasts and

the individual hours forecasts. We find that for spot price forecasting a multivariate

framework which allows for hourly cross section relation has substantial forecasting gains.

These gains can be further improved upon by combining forecasts from different models.

The comparison is done with respect to a flexible alternative, a dynamic ARX(p) model

for the spot price. On average, we achieve a reduction of 16% for the RMSE evaluation

metric. The rest of the paper is organized as follows, Section 2 describes the data, Section

3 introduces the set of models we use for forecasting, Section 4 presents the results, discuss

their significance and assess their robustness, we conclude in Section 5.

2 Data Analysis

We use data from the Nordic power exchange, Nordpool, which includes Denmark, Nor-

way, Sweden, Finland, and Germany. Elspot is Nord Pool Spot’s day-ahead auction

market. It is the largest market for electrical energy in the world. About 330 companies

from 20 countries trade on the market and participants include both producers and large

consumers. Every day participants submit bids and offers hour by hour, through Nord

Pool Spot’s web-based trading system. They can place their orders until 12:00 CET. Buy

and sell orders are aggregated into demand and supply curves for each delivery hour. The

system price for each hour of the next day is then determined by the intersection of these

curves. Prices are quoted for megawatt per hour (MWh). Our sample covers twenty-four

hourly prices for each day for the period 4th May, 1992 - 4th March, 2010 (6519 days).

Since our sample dates back to the pre-euro currency era, prices are quoted in Norwegian

krone (NOK). Table 1 presents the descriptive statistics.

We see the high volatility feature typical for electricity prices. Standard deviation is

about half the mean price. Excess kurtosis is high for hours (8-10) in the early morning

and early evening (18-19), these hours are more likely to exhibit extreme prices.
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Hour Mean SD Skewness Excess Kurtosis

1 194.23 111.40 1.07 1.89

2 188.73 109.34 1.07 1.87

3 185.03 108.48 1.10 2.02

4 182.29 107.09 1.08 1.95

5 183.12 108.54 1.12 2.09

6 189.36 111.52 1.11 2.07

7 199.10 114.84 1.08 1.91

8 211.83 123.76 1.47 5.71

9 221.98 140.12 3.09 30.68

10 221.74 132.29 2.31 19.44

11 221.33 126.88 1.53 6.75

12 219.47 123.52 1.26 3.43

13 215.94 120.78 1.14 2.39

14 213.46 119.08 1.11 2.11

15 211.57 118.16 1.11 2.08

16 210.71 118.42 1.12 2.01

17 212.37 122.95 1.32 3.42

18 217.25 131.10 1.72 7.18

19 216.52 126.81 1.40 4.21

20 212.72 120.84 1.15 2.32

21 209.26 117.25 1.08 1.84

22 207.96 115.85 1.07 1.85

23 204.89 114.01 1.04 1.66

24 197.20 110.49 1.05 1.72

Spot 206.16 116.63 1.13 2.21

Table 1: Descriptive statistics of Nord-Pool hourly electricity prices. Prices are quoted
in Norwegian krone (NOK). During the sample period one Euro was approximately 8.5
NOK.

Figure 1 provides a more visual description of our dataset. Spikes are clearly visible

in the top left quadrant. Looking at the correlation structure at the top right of figure 1,

we can see that night hours vary together while early morning and early evening hours

have a more independent nature, e.g. hour number 9 (between 08:00 AM and 09:00 AM)

has relatively weak correlation with the rest of the day. Having said that, correlation is
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Figure 1: Top left: Spot price over time. Top right: Hourly correlation structure, the
darker the square, the higher the correlation between the hours. We can see for example
that hour number 9 has relatively lower correlation with the rest of the hours. Bottom
left: Average price according across days of the week. Bottom right: Average hourly
price across months, the different colors represent different seasons.

generally high, between 0.85 and 0.99. The bottom half of the figure displays the other

two seasonality components observed for electricity prices. We see that weekdays have
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generally higher prices than weekends, but also that the two weekend days are slightly

different, so one might want to address them separately. In the bottom right we observe

that, as expected, winter months experience higher prices than summer months, and that

the pattern is quite monotonic, with summer months having the lowest average and winter

months having the highest.

2.1 Principal Component Analysis (PCA)

In the previous section we mentioned the high cross correlation between the hourly prices,

thus it is reasonable that few common factors drive the bulk of co-movement. In order

to get more insight about these determinants we perform Principal Component Analysis

using the correlation matrix.1 Figure ?? presents the first two principal components

along with their corresponding loadings. Not surprisingly, the first factor is simply a level

factor. We interpret the second factor as the spread between prices during peak hours

(8-12, 17-19) and prices during off-peak hours. The first common factor explains about

96.2% of the joint variation, the second component adds another 2.2%. The remaining

22 components account for the last 1.6% of variability in the data. The high percentages

of explained variance for the first few factors encourages the use of dimension reduction

techniques for forecasting, e.g. Principal Component Regression (PCR). The loadings

of the first principal component naturally indicate that this is a level factor. We can

interpret the second factor as the spread between prices during peak hours (7:00-11:00

and 18:00-20:00) and off-peak hours.

3 Models and Estimation

In this section we describe the models used for prediction. Mean reversion is a well

documented property of short term energy prices, see for example Knittel and Roberts

1For more details on these procedure see ?.
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Figure 2: Top left: First Principal Component over time. Top right: Second Principal
Component over time. Bottom left: Loadings on the first principal component. Bottom
right: Loadings on the second principal component.

(2005). Thus, for forecasting purposes, we carry out our analysis working with price levels

and avoid any data transformation. We adopt a rolling window scheme for parameter

estimation for all models. We do so to account for the potential problem of structural
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breaks, Pesaran and Timmermann (2005).). For example, dynamics might have changed

during the worldwide electricity market deregulation over the last decade.

3.1 Univariate Models

The spot price is a univariate time series defined as a the average price over the 24

individual hourly prices:

ȳt =

∑24
j=1 yjt

24
(1)

yjt denotes the price for hour j at day t.

We aim (1) to stress the importance of the information embedded in intra-day relation

between hours for forecasting the spot price, and (2) give evidence for the benefits of using

a multivariate framework, that is, modelling every hourly price series individually. In order

to show that it is indeed preferable to use more complex multivariate models, we want to

compare these with a reasonable univariate alternative, a benchmark that may be used in

practice, as oppose to a random walk benchmark2. We now present two univariate models

which capture solely spot price dynamics, and ignore the idiosyncratic information of each

individual hour. A Heterogeneous Autoregressive model (HAR) model and a Dynamic

ARX(p) model which will also serve as our benchmark model, as it is a sensible alternative

to the more complex multivariate models that follow.

3.1.1 Heterogeneous Autoregressive model (HAR)

The Heterogeneous Autoregressive model (HAR) is an AR-type model which was recently

used by Corsi (2009) to forecast realized volatility. The model is designed to capture long

memory behaviour, also observed in energy prices. The advantage of this model is that it

circumvent the need to estimate every lag coefficient separately, and so it allows a more

parsimonious framework. Taking this approach, we implicitly assume constant influence

2Results from a Random Walk model that includes only the seasonality components are available upon
request, they are less competitive and hence are omitted here.
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throughout the time scale. For example, if we model the series as an AR(7) process, we

implicitly assume a constant coefficient for lags 2 through 7, so the HAR model will only

have 3 parameters in this case, an intercept, the first lag and the average for lags 2-7.

The model is formally written as

ȳt = α0 + α1ȳt−1 + α2ȳt−1,ω1 + α3ȳt−1,ω2 +
K∑
k=1

ψkdt,k + εt (2)

where yt−1,ωl
=

yt−1+...+yt−ωl−1

ωl
, l = 1, 2. We use ω1 = 7 and ω2 = 30, corresponding

with one week and one month. dt,k is the exogenous variables at time t, the dummies for

weekend days, dummies for month of the year and an intercept term.

3.1.2 Dynamic ARX model

An ARX(p) model for the daily spot price is defined as:

ȳt = ϕ0 +
P∑
i=1

ϕiȳt−i +
K∑
k=1

ψkdt,k + εt

where P is the number of lags included in the model. We estimate this model with a

maximum of P = 14 lags. It is dynamic in a sense that P is chosen at every point in

time according to the Akaike information criterion (AIC). That is, at every time point

we choose the number of lags that minimizes AIC(p) = −2 logL + 2k Where k is the

number of parameters in the model and L is the likelihood value.3 We will use this model

as our benchmark for comparison.

3.2 Multivariate Models

The dataset contain 24 series and so, multivariate modelling framework requires estima-

tion of a large number of parameters. When we consider VAR-type models we must limit

the number of lags we use. The number of parameters sharply rises with the inclusion of

3We also performed this with the Bayesian information criterion but its results were less competitive.
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an extra lag, and with it, model complexity. We use the first, second and the 7th lag. The

choice is motivated by the mean reversion property observed in electricity prices (Knittel

and Roberts, 2005) as well as the weekly seasonality pattern (see bottom left of figure

one). Same lag structure was also used by Weron and Misiorek, (2008). .

An unconstrained model with a large number of parameters might be ill behaved when

it comes to forecasting. The appended flexibility potentially creates in-sample over-fitting

at the expense of forecast accuracy. Our framework is especially prone to this problem as

the spot price series is the average 24 individual components, as oppose for example, to

a yearly figure that is the average of four quarters.

3.2.1 VAR Type Models

Autoregressive models are a natural choice for electricity price forecasting, as they exhibit

strong mean reversion properties. Consider a panel {yj,t}, t = 1, ..., T , and j = 1, ...,M .

Denote P and K as the number of lags and number of exogenous variables respectively.

M is 24 in our case. Define Yt = (y1,t, ..., yM,t)
′, let ιM×1 = (1, 1, ..., 1)′, and Dt =

(d1,t, ..., dK,t) with dk,t, a dummy variable, for example, dSunday,t = 1 if day t is a Sunday

and otherwise dSunday,t = 0. Finally Xt = (Yt−1, Yt−2, Yt−7, ι, Dt)
′. We can now write the

V AR model as

Yt = ΦXt + et, et ∼ i.i.N(0,Σ) (3)

It is convenient to rewrite the model in even more compact form:

Y = XΦ +E (4)

where Y = (Y1+P , ..., YT )′ is a (T −P )×M matrix of dependent variables, in our case the

hourly price series, X = (X1+P , ..., XT )′ is the (T −P )×(MP +K) matrix of explanatory

variables, Φ is a (MP + K) ×M coefficient matrix, and lastly E = (e1+P , ..., eT )′ is the

(T − P )×M error matrix.
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In order to examine the contribution of using a multivariate framework we consider

three VAR-type models. A model where we restrict the cross lags coefficients to zero,

we dub it Diagonal VAR (DVAR). The model essentially boils down to 24 simple au-

toregressive models. We will see that despite the flexibility of this model where every

hour is modelled separately, it does not significantly outperform the dynamic univariate

ARX(p) benchmark model. A model with no restriction on the cross lag coefficients, an

unrestricted VAR (UVAR) and a Baysian VAR, (BVAR) which will be discussed in the

following subsection. The UVAR model has many parameters, with three lags, and 14

exogenous variables, for each series we have 2064 coefficients so the model is likely to over

fit the in-sample period. We use the BVAR as a simple way to shrink the estimates for

the lags towards a random walk, and by that prevent the inherent over-fitting problem.

3.2.2 Bayesian VAR

DefineαM(MP+K) = vec(Φ), and yM(T−P ) = vec(Y ), where vec(·) is the stacking operator.

We can now rewrite the model as:

y = (IM ⊗X)α+ ε, (5)

where ε ∼ N(0,Σ ⊗ IT−P ), and I(�) is an identity matrix.

In the classical approach, this model can be estimated using standard least squares.

Despite its simplicity, the large number of parameters produces high estimation uncer-

tainty and may over-fit the data. In turn, this will affect the model forecasts. In order to

deal with this caveat, we can do three things. The first is to impose some restrictions on

the coefficients. The second is to reduce the dimension of the problem, and lastly, a com-

bination of the two. The BVAR model belongs to the first category. In later subsections

we present few models which belong to the other two.

We choose a Minnesota prior distribution with mean and variance so that the final

estimates are shrunk, effectively mitigating the over-fitting problem. The Minnesota
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prior assumes that α is normally distributed with αprior and V prior, the prior mean and

covariance matrix for the parameters joint distribution. For αprior, we take a value of zero

for own lags of order larger than one and cross lags, thus ensuring shrinkage. A value of

1 for own first order lag coefficients. So:

Φij
(MP+K)×M =

 1 if i = j

0 otherwise

(6)

These are traditional choices for the prior means, e.g. Koop and Korobolis (2010)).4

The prior covariance matrix V prior
MP+K determines the amount of tightness around the

prior mean. The higher the prior variance, the closer is the final estimate to its unre-

stricted VAR estimate. For example, we do not impose shrinkage on the coefficients of

the exogenous variables by assigning large values on their prior variances, letting the data

determine their final values. So their mean posterior values are the OLS estimates. It is

natural to assume smaller variance for higher order lags, reflecting the assumption that

these should have smaller overall impact in prediction. The Minnesota prior assumes the

prior covariance matrix to be diagonal. Let Vj be the block associated with the coeffi-

cients in equation j, and let Vj,ii be its diagonal elements, i = 1, ...,MP +K. We specify

the prior variance of the coefficient associated with lag p for variable j as:

Vj,ii =


λ1
l2

for coefficients on own lag for lag l = 1, ..., P

λ2
l2
σii
σjj

for coefficients on cross lags for lag l = 1, ..., P

λ3σjj for coefficients on exogenous variables

(7)

We estimate σjj recursively at every time point t using the standard error of the residuals

from a univariate autoregressive model for each of the 24 series. The ratio σii
σjj

accounts

for the different variability of the series. A more volatile hour will be assigned a lower

4We can also rely on the fact that energy prices are mean reverting, and use a value smaller than 1.
We do not follow this path to avoid a somewhat arbitrary choice.
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prior variance, effectively keeping coefficients of cross lags shrinkage constant across the

different hours. The λ′s are hyper parameters, they control for amount of shrinkage

applied. The exact choice for these values depends on the application at hand. In this

paper we simply follow ? and set λ1 and λ2 to 0.5 and λ3 to 100, which essentially is large

enough not to shrink exogenous variables at all.

Given these choices for the prior mean and prior covariance matrix, the posterior for

α is given by:

α | y ∼ N(αpost,V post) (8)

with

V post = {(V prior)−1 + Σ̂−1 ⊗ (X ′X)}−1 (9)

αpost = V post{(V prior)−1αprior + (Σ̂−1 ⊗X)′y} (10)

It is easy to see why the Minnesota prior is a popular choice. First, the posterior

and predictive results are analytically solvable, which greatly facilitates our recursive

computation. Second, there are many adjustments one can apply in practice. The choice

of prior mean vector, the choice of hyper parameters and even the choice of the shrinkage

structure. We use the exponentially declining weights as in the original prior, but one

can address the exponent as an extra hyper-parameter and optimize its value over the

in-sample period, e.g. ? use linearly declining weights and ? grid search over different

combinations of hyper parameters. We tested other methods for choosing the λ’s such

as optimization and grid search. We found no evidence for a better way to chose these

values so we simply follow ”Occam’s razor” principle here.

3.2.3 Factor Models (FM)

Another common way to account for the curse of dimensionality is through dimension re-

duction techniques such as Factor Models advocated, among others, by Stock and Watson
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(2002). The idea is to summarise variability in the data using few G, say, linear combi-

nations of the variables. Stock and Watson (2002) established the theoretical results for

a two-step procedure where in the first step we extract the time series of the G factors

{F̂t}Ti=1 and forecast the dependent variables in the second step. Forecasting can be done

in two ways. Firstly, we can project each yj,(t+1) onto the space spanned by {F̂t} using the

standard OLS, i.e. ŷj,t+1 =
∑G

i=g α̂g,j f̂t,g, where α̂g,j is the OLS estimate for variable j of

the marginal effect of factor g. Secondly, we can model the G factors as a VAR time se-

ries model, obtain forecasts {F̂t+1} and use these in the regression ŷj,t+1 =
∑G

i=g α̂g,j f̂t+1,g.

The approach is also referred to as a VAR-PCA model. We performed both, we report

the latter since results are slightly better. For compatibility, the factor VAR process has

the same lag structure as in the other models, namely the first, second, and one week

lag. The factors are extracted using the deseasonalized price series, and the forecasts are

adjusted accordingly. More formally, the forecast is given by:

F̂t+1 = δ1F̂t + δ2F̂t−1 + δ3F̂t−6 (11)

Ŷt+1 = ΘF̂t+1 + ΓDt+1 (12)

where in (??), F̂ on the right hand side is the estimated vector of G of principal compo-

nents obtained using singular value decomposition. δ(�) is a G × G estimated coefficient

matrix, and as before, Dt = (d1,t, ..., dK,t) is the vector of exogenous variables. Θ and

Γ are of dimensions M × G and M × K respectively. All coefficients together with the

extraction of the principal components are estimated using the five year rolling window

up to time t.

3.2.4 Reduced Rank Regression (RRR)

While Principal Component Analysis forms the set of orthogonal latent variables from a

subspace spanned by the explanatory matrix X, an alternative is to reduce the dimension

looking at the subspace spanned by the orthogonal projection of Y on X. Reduced Rank
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Regression does just that. It has long been utilized for time series analysis (Velu and

Reinsel, 1998), Carriero et al. (2011) prove consistency and provide rate of convergence

for the estimates when the number of explanatory variables in the system tends to infinity.

They apply the method on a large dataset to forecast economic variables. The basic idea is

to impose a rank restriction on Φ(MP+K)×M), the matrix of coefficients in (??), and by that

focus on a smaller number of underlying components. A solution can be employed using

the Eckart-Young theorem. Say Ŷ(T−P )×M is the matrix of fitted values given by standard

OLS solution that minimizes the error matrix in (??), and let UΛV ′ be its singular

value decomposition, where ΛM is a diagonal matrix with the singular values arranged in

decreasing sequence λ1 ≥ ... ≥ λM on its diagonal. We can now cast Ŷ onto a subspace

Ŷ s = UΛ(s<M)V
′,where Λ(s<M) equals Λ with last M − s elements on the diagonal set

to zero. We can see that in contrast to Principal Component Analysis, RRR pays more

attention to the output matrix Y then to the input matrix X. Define Υs =
∑s

i=1 νiν
′
i,

where νi is the ith right singular vector from the singular value decomposition of Ŷ , we

can easily proceed to get the constrained coefficient matrix and the new fitted values

through:

Φ̂(s) = Φ̂Υs (13)

Ŷ
(s)
t = Φ̂(s)Xt t = p+ 1, ..., T (14)

For more details on this procedure see ?.

3.2.5 Reduced Rank Bayesian VAR (RRP)

So far we have outlined few models that try to avoid the over-fitting problem via shrinkage

of the parameters (BVAR) or dimension reduction (RRR and FM). A model that combines

these two approaches is the Reduced Rank Baysian VAR. Carriero et al. (2011) suggested

a new method that implement both rank reduction and shrinkage. A Reduced Rank

Bayesian VAR, or Reduced Rank Posterior (RRP). We apply a rank reduction on the
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posterior estimates obtained from the BVAR. The implementation is similar to the RRR,

but instead of the right singular vector νi from the singular value decomposition of Ŷ

that was obtained via the UVAR model, we now use Ŷ which was obtained using the

BVAR model, and so our RRP estimator is

Φ̂RRPs = Φ̂BV ARΥs (15)

where here Υs =
∑s

i=1 νiν
′
i, νi now is the ith right singular vector from the singular value

decomposition of Ŷ BV AR, and Φ̂BV AR is the posterior mean estimate of the BVAR model

coefficients.5

3.3 Forecasts Combination

Forecasting performance of different approaches may vary both over time and across the

different time series. There is no apparent reason to restrict ourselves to one method or

another. It is now well established that averaging forecasts of different models may very

well perform ”better than the best”, see for example Timmermann (2005). As we shall

see, it is so in our case. We report the performance of two possible ways for forecast

averaging. The first is the simple average (AV E), i.e.

ŷt =

∑W
w=1 ŷt,w
W

, (16)

where W is the number of models used, and ŷt,w =
∑M

j=1 ŷt,j,w

M
, the average across the 24

hours for model w, or simply the spot forecast from model w.

5Another closely related model is the Bayesian Reduced Rank Regression introduced by Geweke
(1996). A drawback of this model is that it is computationally challenging. Estimation requires simulation
involving high dimensional matrix inversion, and can be even more cumbersome in our case, as we perform
a recursive forecasting exercise. Moreover, Carriero et al. (2011) report similar forecasting performance
and so we do not implement this model here.
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Another common way to combine the forecasts is a simple linear regression, i.e.:

ŷt = a0 +
W∑
i=1

aiŷt,w, (17)

We estimate the coefficients using the most recent year, (365 data points). This approach

has some drawbacks. Firstly, we lose the interpretation of the coefficients, as the weights

can result in any value. Negative values or large absolute values are hard to interpret in

this context. Secondly, there is a multicollinearity issue since it is reasonable to assume

that the forecasts will be highly correlated and hence the coefficients may vary drastically

with extreme positive or negative values. We therefore choose to pursue a more stable

approach. We use a constrained least squares (CLS), which we can interpret with less

difficulties. At every time point t we numerically solve:

ŷt =
∑W

w=1 awŷt,w (18)

s.t ∑W
w=1 aw = 1 (19)

aw ≥ 0, ∀w ∈ W (20)

We use a rolling window of one year. The first 365 days of the out-of-sample period are

used to estimate the initial weights. Hence, when we compare the performance of this

method with the other models, we omit the first 365 values so that all methods have the

same number of forecasts for evaluation.

We also test another common weighting scheme, the inverse of the mean squared

forecast error, i.e. aw = 1/MSFEw∑W
w=1 1/MSFEw

. Results from both the simple linear regression

and the inverse of the mean squared forecast error are similar and therefore omitted.

We prefer the CLS scheme over the simple linear regression since we can easily examine

the contribution of each model. The weights are all positive and sum up to one which
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facilitates interpretation of model importance in the overall weighting.

4 Forecasting Results

In this section we set up the evaluation criteria and examine the forecasting results. We

show there is valuable information in the intra-day hourly profile that is important for

forecasting. We compare the models using the Giacomini-White test for unconditional

predictive ability, and investigate their performance over time.

4.1 Forecasting performance evaluation

We examine the forecasting performance for the spot price. That is, after we obtain the

forecasts for the 24 daily hours, we average them and compare with the actual spot price.

In addition, it is interesting look at the performance of each model with regards to the

individual hours. It is sensible to assume that the best model for the individual hours

will perform best for the spot price itself. That is, if model A performs better than model

B for each individual hourly price series, model A will also perform better than model B

forecasting the spot price. Yet it must not be the case, especially if we do not account for

the variance of each individual series. A model may perform well for volatile hours and

fail for other less volatile hours such that the average across hours is a poor forecast for

the spot price. We now outline few measures that attend to these issues.

The most common metrics for forecast evaluation are the root mean squared error

(RMSE) and mean absolute error (MAE). In addition to these we add two more measures.

The first is the mean percent error (MPE), which reflects that the absolute distance of a

forecast from its observed value has different economic impact when the price level is very

different. For example, a 5 NOK error when the price is 200 NOK is not the same as an

error of 5 when the price is 800 NOK, the volatile nature of electricity prices highlight the

need for this measure. The second is a Weighted Root Mean Squared Error (WRMSE)
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,see for example Christoffersen and Diebold, 1998.

The measures are calculated as:

RMSE =

√√√√ 1

(T − h)

T∑
t=h+1

(ŷt − yt)2, (21)

MAE =
1

(T − h)

T∑
t=h+1

|ŷt − yt|, (22)

MPE =
1

(T − h)

T∑
t=h+1

|ŷt − yt|
|yt|

, (23)

where ŷt,j, j = 1, ..., 24 is the hourly price forecast, ŷt =
∑M

j=1 ŷt,j

M
is the spot forecast, T

is the total number of observations, and h is the window length. When we compare the

performance for the individual, we report the average across the 24 hours. We examine

the stability over time in a later subsection.

Some hours are more volatile than others, and therefore are harder to predict. When

we evaluate the overall accuracy of a model with respect to its individual hourly forecasts,

it is reasonable to weigh the series according to their volatility, so that the more volatile

hours will not dominate the evaluation. A WRMSE is calculated as RMSE ′Q where

RMSE1×24 is a vector of the RMSE measure given above for the individual hours, and

Q is a (1×24) vector with (
var(yj)∑24
j=1 var(yj)

)−1 at its jth entry. The WRMSE measure is only

relevant when we look at forecasts of prices for individual hours.

4.2 Results

We start with the results for the spot price forecasts. The forecasting performance for

the spot price itself is shown in table ??. The first line is the performance measures for

our ARX(p) benchmark model. The performance of the other models are presented with

respect to the this model in the form of perfromance measure for specific model
performance measure of the ARX(p) model

, so for example,
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the first 1.01 for the RRR(1) model in the RMSE column means that the RMSE for

the RRR(1) model was slightly higher than 23.41.

Table ?? presents results for the forecasts of the individual hours. Every column corre-

sponds with one of the aforementioned evaluation measures. Apart from the multivariate

WRMSE measure, the others quantities are calculated for each hour and averaged across

the hours. The WRMSE is just a weighted average of the RMSE as explained in the

previous section. We can see that in both tables, ?? and ??, the Forecast Combination

method performs best. On average, it provides above 15% improvement over what is

achievable using a univariate framework. Among the models the BV AR and the five

factors model stand out as the best individual performs, but are still trailing forecast

averaging.

It is interesting to examine which models performs better in which period. In order

to do so, we plot the weights for each model formed via the (CLS), as the weights are

determined using the accuracy of each model during the most recent 365 days. Figure ??

outlines the weights given for selected models over time. For convenience, the spot price

process is plotted as well. We can see that most of the time the BV AR model dominates

the UV AR model with the highest weight in most of the forecasting period. The RRP

model, despite its mediocre individual performance, has an overall noteworthy weight in

combination with the other models. We can also see that the weight of the more flexible

BV AR model is increased during more volatile periods of the spot price, not necessarily

with the price levels, e.g. around 2004, This suggests that the information in the hourly

profile is more important during these periods.

4.3 Testing For equal predictive accuracy

We now address the question of whether the difference in forecasting performance between

the models is indeed significant. We use the Giacomini White test for unconditional

predictive ability. The computation of the test statistic is identical the test for predictive
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MODEL RMSE MAE MPE

ARX(p) 23.41 11.93 0.054

HAR 1.33 1.44 1.432

RRR(1) 1.01 0.89 0.906

RRR(2) 0.98 0.88 0.896

RRR(5) 0.98 0.85 0.896

FM(1) 0.96 0.93 0.927

FM(2) 0.91 0.91 0.905

FM(5) 0.90 0.88 0.891

DVAR 1.007 1.03 1.026

UVAR 0.978 0.88 0.896

BVAR 0.89 0.83 0.841

RRP(1) 0.92 0.91 0.962

RRP(2) 0.91 0.90 0.954

RRP(5) 0.91 0.90 0.955

AVE 0.88 0.82 0.834

CLS 0.84 0.80 0.819

Table 2: Performance comparison between the different models, for the spot price. The
first line is the benchmark ARX(p) model, the rest of the models are presented as a ratio:

perfromance measure for specific model
performance measure of the ARX(p) model

. RRR: Reduced Rank Regression with rank in parenthe-
ses, FM is factor model with the number of factors in parentheses, DVAR: Diagonal VAR,
UVAR: Unrestricted VAR, BVAR: Bayesian VAR, RRP: Reduced Rank Posterior with
rank in parentheses, HAR: Heterogeneous Autoregressive model, AVE stands for simple
averaging and CLS stands for Constrained Least Squares weights, both for the Forecast
Combination method. The forecasting exercise is performed using a rolling window of five
years. The first estimation period starts at 4th may, 1992.
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MODEL WRMSE RMSE MAE MPE

RRR(1) 33.08 34.56 16.07 0.080

RRR(2) 28.82 31.07 13.83 0.069

RRR(5) 27.44 29.81 12.73 0.062

FM(1) 30.67 32.23 15.31 0.074

FM(2) 27.69 29.52 13.67 0.065

FM(5) 26.80 28.73 12.94 0.062

DVAR 28.45 30.62 14.03 0.067

UVAR 27.17 29.56 12.47 0.061

BVAR 26.36 28.59 12.30 0.058

RRP(1) 31.60 33.11 16.15 0.082

RRP(2) 28.33 30.46 14.70 0.072

RRP(5) 26.94 29.18 13.73 0.066

AVE 27.83 29.83 13.16 0.065

CLS 25.29 27.31 11.97 0.057

Table 3: Performance comparison between the different models. The quantities were
calculated for each individual hour and were averaged. RRR: Reduced Rank Regression
with rank in parentheses, FM is factor model with the number of factors in parentheses,
DVAR: Diagonal VAR, UVAR: Unrestricted VAR, BVAR: Bayesian VAR, RRP: Reduced
Rank Posterior with rank in parentheses, HAR: Heterogeneous Autoregressive model,
AVE stands for simple averaging and CLS stands for Constrained Least Squares weights,
both for the Forecast Combination method. The forecasting exercise is performed using
a rolling window of five years. The first estimation period starts at 4th may, 1992.
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Forecast Combination Weights for Selected Models
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Figure 3: weights given to each model at each time point. The weights are determined
using a constrained least squares procedure over the most recent 365 days in a rolling
window scheme, the constraints are: weights are positive and sum up to one (not to
clutter the graph, not all model weights are presented). The bottom panel is the spot
price itself over time.
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accuracy in Diebold-Mariano (1995). However, Giacomini and White (2006) generalize

the test and develop the theoretical basis for a comparison between methods, as opposed

to models. As a results we can compare between nested and non-nested models, and

allow for parameter estimation uncertainty. in the forecast evaluation the test statistic is

computed as

δt = L(e1
t+1|t)− L(e2

t+1|t) (24)

ewt+1|t is the forecast error from method w = 1, 2, at time point t. For a loss function

L(·), the null hypothesis is E[δt] = 0. Due to the spikes in the data we prefer to use

the absolute loss function which is more robust to outliers. Table ?? presents a pairwise

comparison between the different methods for the forecasts of the spot price. The statistic

was computed such that for entry ij, δt = L(eit+1|t) − L(ejt+1|t), so a positive statistic at

the entry ij means that the absolute residual from model i is on average, larger than the

absolute residual from model j.

We can observe few things. First, at reasonable confidence levels, the BV AR model

significantly outperforms its unrestricted version, the UV AR model, which demonstrates

the efficiency of the shrinkage procedure and appropriateness in this case, it also signif-

icantly outperforms the benchmark model. The five factor model FM(5) is also signif-

icantly better than the benchmark. The forecast combination method with the weights

determined by the constrained least squares has the largest absolute statistic value out of

those compared with the benchmark model for the absolute loss function and is signifi-

cantly different from the ARX(p) model at 99% confidence levels.

4.4 Stability Analysis

In previous sections we have shown that there is significant advantage to be gained by

implementing a multivariate framework. We now address the robustness of this result.

Figure ?? presents a rolling ratio between selected models and the benchmark model. We

use the MPE measure and a three year window length. We see that we can gain around
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BVAR UVAR DVAR RRP(5) FM(5) RRR(5) CLS

UVAR 5.52

DVAR 7.90 5.20

RRP(5) 10.47 1.73 -4.40

FM(5) 2.50 -0.72 -7.98 -2.33

RRR(5) 5.55 3.14 -5.20 -1.71 0.73

CLS -1.34 -5.50 -9.02 -9.92 -3.35 -5.53

ARX(p) 6.22 4.09 -1.93 3.18 5.58 4.08 6.96

Table 4: Giacomini White test statistics for the absolute loss function. The critical
value for the 95% confidence level is 1.65 or 1.96 for a two sided test. The statistic was
computed such that a negative statistic at the entry ij means that the absolute residual
from model i is on average, smaller than the squared residual from model j

15% improvement with respect to the benchmark, and that this gain is not attributed to

a specific sample period but is relatively stable. The Diagonal VAR, being restricted from

using the additional source of information, namely the cross sectional relation, performs

slightly worse then the benchmark. The FM(5) model was performing quite well up prior

to 2003 yet in recent decade, its performance deteriorated with respect to the benchmark.

This fact which displays its average good performance in Table ?? in a slightly different

light.

The UV AR manages to outperform the factor model most of the time. We can further

improve upon that using the BV AR model which mitigates the over-fitting problem. The

Forecast Combination using Constrained Least Squares method is dominant throughout

the sample. The improvement brought about by this methods is up to 20% at times and

never under-performs the benchmark.

5 Conclusion

The results presented in this paper suggests that, for forecasting purposes, it is beneficial

to exploit the information embedded in the cross correlation of the hourly price series.

This can be done by moving towards a multidimensional framework in which we forecast
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Figure 4: Three years rolling MPE measure. The ratio between selected models and the
ARX(p) benchmark. The horizontal line at value of one represents equal MPE between
the specific model and the benchmark.

28



each individual hour separately while allowing cross relation between the hourly prices.

Spot price forecast is obtained by taking the average across the 24 hourly prices. Di-

agonal VAR model does not outperform a univariate benchmark, however, allowing for

cross lags effects improves performance while using dimension reduction techniques and

forecasting averaging produce significant improvement of about 15% accuracy compared

with a flexible univariate approach.
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