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Abstract

Recently regime-switching models have become the standard tool for modeling electricity prices.
These models capture the main properties of electricity spot prices well but estimation of the
model parameters requires computer intensive methods. Moreover, the distribution of the price
spikes must be assumed given although the high volatility of the spikes makes it difficult to check
this assumption. Consequently, there are a number of competing proposals. Alternatively we
propose the use of a semiparametric Markov regime-switching model that does not specify the
distribution under the spike regime. To estimate the model we use robust estimation techniques
as an alternative to commonly applied estimation approaches. The model in combination with
the estimation framework is easier to estimate, needs less computation time and distributional
assumptions. To show its advantages we compare the proposed model with a well established
Markov-switching model in a simulation-study. Further we apply the model to Australian log-
prices. The results are in accordance with the results from the simulation-study, indicating that
the proposed model might be advantageous whenever the distribution of the spike process is not
sufficiently known. The results are thus encouraging and suggest the use of our approach when
modeling electricity prices and pricing derivatives.

Keywords: electricity spot prices, mean-reversion, Markov regime-switching, robust estimation,
semiparametric estimation, simulation-study

1. Introduction

In the past it has been frequently shown that electricity prices are mean-reverting (see e.g. Lucia
and Schwartz, 2002, Huisman and Mahieu, 2003 and Weron, 2006). Unfortunately the mean-
reverting model is known to be hampered severely through spikes when estimated using standard
estimation techniques as quasi maximum likelihood (QML) estimation. For that reason model
extensions (which nest the mean-reverting model) were introduced into the literature on electricity
price modeling. A first extension was proposed by Deng (2000) using jump-diffusion models to
model electricity spot prices. Although jump-diffusion models are still used it is commonly known
that they are not well suited to cope with price spikes, regularly observed on electricity markets.

For this reason regime-switching models, which distinguish between the base and the spike
process, were introduced as a next step (see e.g. Robinson, 2000, Huisman and Mahieu, 2003,
Huisman and De Jong, 2003 and Rambharat et al., 2005).

It is important to note that the specifications of regime-switching models differ in the way
the regime-switching mechanism is implemented and that in this context two main classes can be
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distinguished when modeling electricity prices. For the first class, called threshold autoregressive
(TAR) models, the regime at time t can be determined by an observable variable at time t − d
(with 0 < d < t) and thus the regimes that have occurred in the past and present are known with
certainty. For the second class, called Markov-switching (MS) models, the regime is determined
by an unobservable, latent variable. In this case one cannot be certain that a particular regime
has occurred at a particular point in time but can only assign or estimate probabilities of their
occurrences. MS models further use information up to time t to assign probabilities concerning
the state of the process at this time.

As shown, for example, by De Jong (2006) and Misiorek et al. (2006) these models seem to
be better suited to account for the distinct nature of electricity prices. In this context it is not
surprising that a lot of research has been focused on the extension and evaluation of different
regime-switching models. Rambharat et al. (2005) and Misiorek et al. (2006) extended the TAR
model by an exogenous variable (temperature recorded at the same time as the maximum price of
the day and load). For MS models Weron et al. (2004) and Bierbrauer et al. (2007) compared the
model introduced by Huisman and De Jong (2003) using different distributional assumptions for
the spike process, while Misiorek et al. (2006) compared the regime-switching model with other
model classes evaluating their short-term forecasting power. Extensions were for example given
by Kosater and Mosler (2006) who introduced a third regime to account for the occurrence of
negative spikes and by Mount et al. (2006) who allowed the transition probabilities to depend
on the load and/or the implicit reserve margin. A further extension where given by Janczura
and Weron (2009), who extended the base regime to account for time-varying volatility, while
restricting the spike process to follow a shifted distribution. Haldrup and Nielsen (2006) proposed
a Markov-switching type long memory model. In difference to the standard MS approach which
uses a latent state variable, they used congestion as an observable state variable. An extension for
VAR models followed in Haldrup et al. (2010). An overview concerning the different extensions
can be found in Janczura and Weron (2010).

Although regime-switching models might be better suited to capture the characteristics of
electricity prices than their predecessors, their implementation is often quite complicated, compu-
tationally demanding and individual parameters might be unidentified.1 Rambharat et al. (2005)
used a block Metropolis hastings algorithm, whereas Huisman and De Jong (2003) applied a
Kalman filter based approach with Bayesian updating. With reference to gains in computational
intensity Janczura and Weron (2012) propose to adapt the estimation technique used by Huisman
and De Jong (2003) and replace the latent variables from the base regime with their expectations.

In the face of the given problem the contribution of the paper at hand is two-fold. First we
propose a semiparametric Markov regime-switching model that does not specify the distribution
under the spike regime. The extension of the original model by Huisman and De Jong (2003) can
thus be seen as a direct response to several earlier publications, which treated the question of the
correct choice for the distribution of spikes (see e.g. Bierbrauer et al., 2007 and Janczura and
Weron, 2009).

Further to estimate the model we use robust estimation techniques as an alternative to com-
monly applied estimation approaches. To our knowledge the only attempt to introduce robust
statistics into the literature on electricity price modeling has been made by Trueck et al. (2007),
analyzing the effects of different prefiltering techniques on model estimation and outlier detection.
The idea is based on Clewlow and Strickland (2000) who proposed recursive prefiltering using non-
robust scale estimates. Our approach is different insofar that we use estimation techniques which
by construction in a first step neglect the influence of spikes when estimating the parameters of
the base process. The advantage of our multi-step based approach, compared to the approaches
mentioned before to estimate MS models, is that neither complicated numerical optimization nor
any distributional assumption concerning the spike process are needed. Therefor the estimation is
extremely time efficient and flexible. The procedure further allows to account for negative outliers
without making it necessary to model them explicitly thus providing a valid alternative to the

1This is for example the case when assuming a compound poisson process for the spikes.
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three-regime models which where e.g. used in Lindstroem and Regland (2012). This robustified
estimation is advantageous when modeling data that exhibits very scarce occurrence of negative
outliers.

The paper is organized as follows. In Section 2 we present the theoretical framework of the
semiparametric model while the proposed estimation technique is described in Section 3. In Section
4 we evaluate the properties of the proposed approach in a simulation-study and compare it to a
standard fully parametric Markov regime-switching model. In Section 5, we discuss an application
to electricity spot prices from the Australian market. Section 6 concludes.

2. Model specification

In absence of spikes electricity spot prices are generally assumed to be log-normally distributed.
For this reason it is a common convention in the literature to model log-spot prices instead. When
applied to log-spot prices, Pt, the price process can be assumed to be separable into a deterministic
part, Dt, and a stochastic part, Xt:

Pt = Dt +Xt. (2.1)

While Dt accounts for a possibly time-varying deterministic component including mean, trend
and seasonal effects, Xt represents the stochastic component, which is generally assumed to be
mean-reverting. For this reason one of the first models proposed by Lucia and Schwartz (2002) to
examine dynamics on electricity markets was based the assumption that electricity prices follow
an Ornstein-Uhlenbeck process. In this framework changes in Pt can be written as:

dPt = dDt + α (Dt − Pt) + σdWt

= dDt − αXtdt+ σdWt. (2.2)

Here α measures the speed with which Pt reverts to Dt (or Xt to 0) and σ is a positive real
constant, scaling movements in the Wiener process, Wt. Following the literature we concentrate on
modeling the stochastic component of the log-price process after applying an appropriate procedure
to eliminate Dt. With respect to equation (2.2) this leaves:

dXt = −αXtdt+ σdWt. (2.3)

As the paper at hand is concerned with modeling the stochastic part using regime-switching models,
we will leave the explanation of the demeaning procedure for Section 5.

The disadvantage of model 2.3 is the fact that it abstracts from the existence of price spikes. As
already pointed out to overcome this problem, different model specifications have been proposed
in the past (for overviews see e.g. Misiorek et al., 2006, Bierbrauer et al., 2007 and De Jong, 2006).
The possibly most successful one is the MS model of Huisman and De Jong (2003) on which we
are going to extend by loosening its distributional assumption for the spike process.

The proposed semiparametric MS (SMS) model is in spirit close to the MS model of Huisman
and De Jong (2003). To incorporate the important feature of extreme price movements, we as-
sume that the (discretized) stochastic component, Xt, follows a regime-switching process with two
independent states. The base regime, Rt = B, models the ordinary price dynamics from equation
(2.3) and the spike regime, Rt = S, models times of extreme prices. In this context Rt ∈ {B,S}
represents a time-homogenous (hidden) two-state Markov-chain with transition matrix, Π, which
gives the conditional probabilities, πij , of switching from regime i (in t) to j (in t+ 1):

Π =
(
P(Rt+1 = j|Rt = i)

)
i,j∈{B,S} =

(
πBB πBS
πSB πSS

)
. (2.4)

Thus Xt = Xt,Rt
with:

Xt,B = γ Xt−1,B + εt, (2.5)

Xt,S
iid∼ F, (2.6)
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As equation (2.5) is the discrete time equivalent to (2.3), Xt,B converges with speed (1−γ) to zero
and the innovations, εt, are assumed to be independent and identically normal distributed with
mean zero and variance σ2

ε . In the parametric model the spike regime (see equation 2.6) is assumed
to follow an iid process, represented by a known distribution F . Our model is insofar different that
we do not make any distributional assumptions for the spike process and require (for its simplest
specification) only that F has support [a,∞) for some threshold a corresponding to a pre-specified
quantile of the time-series. The assumption that observations from the spike regime should not
be smaller than a seems reasonable as the spike regime is used to model extreme (positive) prices
and was already made earlier in the literature (see Janczura and Weron, 2009 and Janczura and
Weron, 2010).

So far the estimation methods proposed in the literature (see e.g. Huisman and De Jong, 2003,
Janczura and Weron, 2012 and references therein) do need a distributional assumption for the
spike process in order to be applicable. To allow for the proposed generalization concerning the
spike process, we will thus introduce an alternative estimation approach which will be presented
in the next section.

3. Estimation

We present robust estimation techniques to estimate the model. The logic behind our proposal
to use a robust estimation approach is to treat the base regime as the underlying dynamic core
process. Observations belonging to the spike regime are in contrast treated as extreme observations
with respect to the base regime.

This reasoning suggests to first estimate the parameters of the base regime by use of robust
estimation techniques. In a second step, the parameters for the spike regime are estimated. The
latter is also needed to compute the Markov-transition matrix.

3.1. Robust estimation of the base regime

To properly model the base regime we have to adequately estimate γ and the variance of residuals,
σ2
ε , from equation (2.5). The needed procedures will be presented in the following.

3.1.1. Estimation of γ

The estimator for the autocorrelation coefficient γ proposed by Ma and Genton (2000), is based
on the following identity:

γ =
var (Xt +Xt−1)− var (Xt −Xt−1)

var (Xt +Xt−1) + var (Xt −Xt−1)
. (3.1)

Thus estimation of γ can be based on a robust estimate for var (Xt +Xt−1) and var (Xt −Xt−1).
To compute a robust scale estimator Ma and Genton (2000) used the Qn estimator, introduced

by Rousseeuw and Croux (1992, 1993):

Q̂n = dQn
{|Xi −Xj |; i < j}(l), (3.2)

which is defined as the lth order statistic of
(
n
2

)
interpoint distances between the observations of

sample X = (X1, . . . , XT )′ with l = d
(
n
2

)
/4e + 1. The correction factor dQn

= 1/(Φ−1(0.625)
√

2)
is needed to ensure consistency in the case that X is normally distributed as in this case Qn
corresponds with the 62.5% quantile of (Xi − Xj) ∼ N(0, 2σ2

x). The estimator has the highest
breakdown point possible (which in context of (3.1) corresponds to 25%). Furthermore it has a
high efficiency of 82% under normality.

Although, depending on the relative proportion and size of contamination, the Qn estimator
can have a non-negligible bias, the resulting autocorrelation estimate, γ̂, is highly robust. In other
words, despite the fact that the Qn estimator does exhibit a non-negligible maximal bias when
both location and scale of the contaminating outlier distribution tend to infinity, the Qn based
autocorrelation estimator stays unbiased in this case. If on the other hand outliers (even of high
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absolute value) do exhibit a standard deviation that is not significantly higher than the one of the
base process, the Qn based autocorrelation estimator might be biased. As will be seen later, for
electricity prices the absolute values of outliers as well as the corresponding standard deviation
appear to be high enough such that the autocorrelation coefficient stays unbiased.2

3.1.2. Estimation of µB and σ2
B

As stated before, despite its good efficiency under normality, theQn estimator has a non-neglectable
maximum bias caused by outliers of large absolute size and variance. This makes it less suited to
estimate the variance σ2

B of the base process since the observations in the spike regime consist of
extreme prices with high variance. However, under our assumption that observations in the spike
regime are above some threshold a, a consistent estimator of σ2

B can be obtained by the truncated
maximum likelihood approach (see e.g. Boudt et al., 2011 and Marazzi and Yohai, 2004). Such
if xB ∼ N(µB , σ

2
B) and letting y be distributed as a truncated normal, y ∼ TN(µB , σ

2
B , a), with

threshold a, the truncated likelihood function can be written as:

1

n
`(σ2

B) =
−1

2n

T∑
t=1

(yt − µB)2

σ2
B

1{yt≤a} −
1

2
log σ2

B − log Φ

(
a− µB
σB

)
, (3.3)

with 1{yt≤a} = 1 if yt ≤ a and zero otherwise while n =
∑T
t=1 1{yt≤a}. Consistent estimates for

µB and σ2
B can then be achieved by maximizing the truncated likelihood function as long as spikes

are greater than the chosen cut-off quantile of the time-series. The variance of residuals, σ2
ε , from

equation (2.5) can be calculated as a byproduct using σ2
ε = σ2

B (1− γ2).
We opted to include µB in the truncated likelihood function despite the fact, that a proper

detrending would make its estimation obsolete. Reasoning is that even robust detrending methods
can exhibit a small bias, for which the estimation of µB can (partly) correct. The needed numerical
optimization is non-iterative and thus advantageous against the Kalman filter based approach with
Bayesian updating by Huisman and De Jong (2003), which is known to be slow in convergence (see
also Janczura and Weron, 2012). Further in case that one opts to neglect µB solely one parameter
needs to be estimated and the procedure could even be run using a spreadsheet software.

3.2. Estimation of the spike process and the transition matrix

After having identified the correct parameters for the base process we still have to calculate the
probabilities of being in one regime or the other and to calculate the Markov-transition matrix
from equation (2.4). Further the mean and standard deviation of the spike process will be derived.

3.2.1. Spike probabilities and transition matrix

In order to be able to calculate the conditional probabilities which form the transition matrix we
first need to derive the unconditional probabilities for each of the two regimes. In this context to
estimate the unconditional probability of being in the base process, πB , the conditions implied by
the SMS model have to be fulfilled and µ̂B and σ̂B have to be consistent estimates for the mean
and the variance of the distribution that corresponds to the base regime. Using µ̂B and σ̂B and
having decided on the support of the spike process, b one can calculate P

(
XB
t ∈ (−∞, b]

)
. In

difference to a, which gives a quantile of the whole time-series, b does resemble a quantile of the
base process. We decided to implement this further assumption of spikes being greater than a

2It has to be noted that during a simulation study we found the Qn based AR(1) coefficients, which are unequal
zero, to be consistently (although by no means significantly) smaller than their theoretical value. Reason for this
observation seems to be the fact, that for an AR process Qn might tend to be (very slightly) biased by construction.
To correct for this problem we propose to solely use differences of observations that are far enough away from each
other, to not be influenced through the autocorrelation of the process anymore:

Q̂∗
n = dQn{|Xi −Xj |; (i+ 100) < j}(l).

We choose 100 as an arbitrary lag and found that the change in the calculation of Qn mitigates the biasing effect
when applied to an AR process.
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certain quantile of the base process in order to yield higher efficiency. This is guarantied whenever
b > a. Thus we can write:

P(XB
t ≤ b) = P(XB

t ≤ b|Rt = B) = P(Xt ≤ b|Rt = B) =
P(Xt ≤ b)
P(Rt = B)

,

whereas the last equality relies on Bayes’ theorem and the fact that P(Xt ≤ b ∩ Rt = B) =
P(Xt ≤ b) as P(Xt ≤ b) ⊆ P(Rt = B). Rearranging then yields the probability for an observation
of process X to be in the base regime:

πB = P(Rt = B) =
P(Xt ≤ b)
P(XB

t ≤ b)

The numerator can be estimated by the proportion of observations that do not exceed the threshold
b, P̂(Xt ≤ b) = 1

T

∑T
t=1 1{Xt≤b}, and the denominator is given by P(XB

t ≤ b) = Φ
(
(b− µB)/σB

)
,

which can be estimated by P̂(XB
t ≤ b) = Φ

(
(b− µ̂B)/σ̂B

)
.

After having correctly identified πB and thus πS one still has to calculate the transition prob-
abilities from equation (2.4). For this purpose we use µ̂B and σ̂2

B , assuming (as done before) that
XB
t ∼ N(µ̂B , σ̂

2
B). Further we state that for c being a sufficiently large quantile of XB

t , it is ap-
propriate to write P(XB

t > c) ≈ 0. We note that under these assumptions P(Xt > c) is equivalent
to P(XS

t > c ∩Rt = S). Thus we have

P(Xt > c|Xt−1 > c) = P(XS
t > c ∩Rt = S|XS

t−1 > c ∩Rt−1 = S)

and further by independence of the spike process XS
t and the regime process Rt

= P(XS
t > c)P(Rt = S|Rt−1 = S).

Since P(XS
t > c) = P(XS

t > c|Rt = S) = P(Xt > c|Rt = S) we finally obtain for πSS

πSS =
P(Xt > c|Xt−1 > c)πS

P(Xt > c)
. (3.4)

Using stationarity of the regime process, we further obtain for πBS

πBS =
πS (1− πSS)

1− πS
. (3.5)

The first part of the nominator from equation (3.4) can be calculated by counting all consecutive
pairs of observations greater than c and dividing them by all observations greater than c, π̂S =
1 − π̂B and P̂(Xt > c) can be estimated by counting the number of observations greater c. The
estimator π̂BS is then calculated using π̂S and π̂SS .

3.2.2. Estimating mean, µS, and variance, σ2
S, of the spike process

To calculate the mean and variance of the spike process we make use of the fact, that X is a
finite mixture process. Following Frühwirth-Schnatter (2006) the mean of the spike process can be
calculated as µX = πBµB + πSµS . Rearranging gives:

µS =
µX − πBµB

πS
(3.6)

Further the variance of the whole process X can be written as σ2
X = E(X2) − µ2

X . Making
use of the fact that E(X2) = πB(µ2

B + σ2
B) + πS(µ2

S + σ2
S) we can rewrite the variance of X as

σ2
X = πB(µ2

B + σ2
B) + πS(µ2

S + σ2
S)− µ2

X . Then solving for σ2
S yields:

σ2
S =

σ2
X − πB(µ2

B + σ2
B) + µ2

X

πS
− µ2

S . (3.7)
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Thus the mean and the variance of the spike process can be easily derived using the before calcu-
lated parameters.

To get further information concerning the empirical distribution of the spike process nonpara-
metrically Gaussian kernels can be fitted. The basic idea is to first fit a kernel to the complete
data-set. Next its theoretic counterpart, which is based on the assumption that the base process
is normally distributed with µ̂B and σ̂2

B , and further scaled down using π̂B , can be calculated.
In a last step the difference between the two kernels (with support [max(a, b),∞)) is multiplied
by π̂B/π̂S , scaling the spike process upwards. We thus get an empirical approximation of the
probability distribution function for the spike process with a scale that corresponds to the one of
the theoretical distribution of the base process. A graphical illustration is given in Figure 4.

3.3. Extension to include the possibility of negative spikes

Electricity prices sometimes exhibit extreme negative log-prices that are not in accordance with
the assumption of normality.

The Qn based autocorrelation estimator is robust against negative outliers and no further
adaption is needed when estimating γ̂.

To robustify the estimation of the standard deviation and the mean of the base process against
such rare events apart from an upper truncation we also can consider a lower truncation. In this
case we have to define an upper and a lower threshold, a1 and a2 with y ∼ TN(0, σ2

B , a1, a2) and
thus the truncated likelihood function is:

1

n
`(σ2

B) =
−1

2n

T∑
t=1

(yt − µB)2

σ2
B

1{a2≤yt≤a1} −
1

2
log σ2

B − log

(
Φ

(
a1 − µB
σB

)
− Φ

(
a2 − µB
σB

))
,

(3.8)

with 1{a2≤yt≤a1} = 1 if a2 ≤ yt ≤ a1 and zero otherwise while n =
∑T
t=1 1{a2≤yt≤a1}. The

resulting estimation is still consistent as long as spikes are greater in absolute value than the
corresponding chosen cut-off quantiles of the time-series. Consistent estimates for µB and σ2

B can
then be again achieved by maximizing the truncated likelihood.

In case that negative outliers are present some slight adjustments have to be further made for
the estimation of the spike probabilities and the transition matrix. Define b1 and b2 as an upper
and a lower threshold corresponding to certain quantiles of the base process that give support for
the spike process. Then one can write:

P(Xt ≤ b1|Xt ≥ b2) = P(XB
t ≤ b1|XB

t ≥ b2)P(Rt = B).

Alike before, rearranging allows to express πB in terms of a ratio:

πB = P(Rt = B) =
P(Xt ≤ b1|Xt ≥ b2)

P(XB
t ≤ b1|XB

t ≥ b2)
.

Here the nominator can be estimated by P̂(Xt ≤ b1|Xt ≥ b2) =
∑T
t=1 1{b2≤Xt≤b1}/

∑T
t=1 1{Xt>b2}.

The denominator is given by P(XB
t ≤ b1|XB

t ≥ b2) =
(
Φ
(
b1−µ
σ

)
− Φ

(
b2−µ
σ

))
/
(
1 − Φ

(
b2−µ
σ

))
and

thus can be estimated by P̂(XB
t ≤ b1|XB

t ≥ b2) =
(
Φ
(
b1−µ̂B

σ̂B

)
− Φ

(
b2−µ̂B

σ̂B

))
/
(
1− Φ

(
b2−µ̂B

σ̂B

))
.

In case of frequent negative spikes an additional second spike regime can be introduced to in-
clude these observations in the model (see e.g. Kosater and Mosler, 2006, De Jong and Schneider,
2009 and Janczura and Weron, 2010). The extension of the estimation method to this case is
straightforward.

4. Simulation-study

In order to check the performance of the proposed techniques we conduct a simulation-study. For
this purpose we will run simulations of the Markov-switching process presented in Section 2 with
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uniformly distributed spikes. For each specification we simulate 1000 sample trajectories for 1000,
2000, 5000 and 10 000 observations. Here 1000 observations can be interpreted as a lower bound of
the number of observations that are normally used in applications to data while 10 000 observations
will give a good idea of the underlying asymptotics.

As already mentioned, we first make use of the fact that the discrete version of the standard
mean-reverting model is a simple AR(1)-process. Further we do not account for seasonality nor
use a constant for the simulation-study. The resulting process of the base regime is then

XB
t = γXB

t−1 + ut, ut ∼ N(0, σ2
u). (4.1)

Next, the independent spike process, XS
t is simulated from a uniform distribution,

XS
t ∼ U(d, e). (4.2)

The regime process rt takes value one for a spike and zero otherwise. It is simulated as a series of
Bernoulli distributed random variables with probabilities depending on the previous state, that is,

rt|rt−1 ∼ Ber
(
rt−1 πSS + (1− rt−1)πBS

)
.

The resulting Markov regime-switching process Xt is given by

Xt = (1− rt)XB
t + rtX

S
t .

After having set the framework, we choose parameter values, based on results from former
publications using regime-switching models for electricity markets (see Janczura and Weron, 2010
and references therein) to conduct the simulation-studies. At the same time we restrict the spike
process not to yield values that are smaller than the 90% quantile of the base process:

Table 1: parameters used for simulations

γ σu µS σS πBS πSS πS
0.7 0.1414 2.2538 1.1547 0.06 0.4 0.0909

To check if the simulation framework can be interpreted as realistic we give a graphical exam-
ple. Figure 1 shows how the characteristics of a representative simulation, closely resemble the
characteristics of NSW.

For the estimation we use the one-sided estimation techniques, applicable when negative outliers
are not present. We choose a1 to equal the 80% quantile of the time-series whereas b1 and c are
chosen to correspond to the 90% and 99.9% quantile of the base process. Table 2 shows in the first
and second line the parameters used for the simulation of the process. Lines 3,5,7 and 9 give the
corresponding estimates for an increasing amount of observations. The standard deviations of the
estimates over the 1000 trajectories are given in parenthesis. It can be seen that the estimates do
not appear to be biased. This conclusion still holds when increasing the number of observations
to 10 000 for which the standard deviations are substantially smaller than for 1000 observations.

To show the relative strength of our approach we also calculate the MS model of De Jong (2006)
with the Kalman filter based approach and assuming compound poisson distributed spikes, while
using the same simulation framework as presented before. The corresponding results are given in
Table 3.

Although the parametric approach appears to yield more efficient estimates, it can be stated
(see underlined estimates) that the parameters, describing the distribution of the spike process are
significantly larger than the simulated ones at the corresponding 1% significance level. The fact that
the parameters are significantly biased can lead to serious problems when valuing derivatives. The
same holds when forecasting electricity prices. It thus can be concluded that the semiparametric
approach is advantageous whenever the distribution of spikes is not sufficiently known. Another
important point when considering to use this kind of MS type models in the context of high-
frequency data, is the immense speed difference between the algorithm proposed by Huisman
and De Jong (2003) and our approach (studies using Australian spot prices in the context of
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Figure 1: Simulated time-series with uniformly distributed spikes and robustly deseasonalized NSW starting in
January 2004.

high-frequency data are amongst others conducted by Chan et al., 2008, Thomas et al., 2011,
Christensen et al., 2012 and Eichler et al., 2012). The last column in Table 3 gives the needed
computation time in minutes to run the simulation-study. It can be seen, that our algorithm is
around 2000 times faster than the Kalman filter based one.

5. Data and empirical evaluation

To evaluate our approach we will use electricity prices from four regions in Australia, namely
Victoria (VIC), New South Wales (NSW), Queensland (QLD) and South Australia (SA) for the
period from 1st of January 2004 till 30st of June 2010. The data is publicly available at http:

//www.aemo.com.au/. In accordance with the literature we choose to analyze daily log-prices
instead of prices. Reason is the idea that under abstraction from spikes, electricity prices are

Table 2: Parameters estimated with the SMS model for simulated model with uniformly distributed spikes. Aver-
age parameter estimates for sample sizes of T = 1000, 2000, 5000, 10 000 were obtained over 1000 repetitions, the
empirical standard deviation of the estimates is given in parentheses. Line two gives the parameters used for the
simulations.

γ σu µs σs πBS πSS πS
Theory 0.7 0.1414 2.2538 1.1547 0.06 0.4 0.0909

1000 0.6896 0.1431 2.3701 0.9682 0.0590 0.3951 0.0924
(0.0254) (0.0068) (0.6534) (0.4118) (0.0122) (0.1139) (0.0269)

2000 0.6916 0.1430 2.2965 1.0527 0.0603 0.3943 0.0923
(0.0187) (0.0050) (0.3717) (0.2963) (0.0080) (0.0800) (0.0187)

5000 0.6928 0.1427 2.2652 1.1225 0.0605 0.3957 0.0917
(0.0114) (0.0031) (0.2165) (0.1327) (0.0050) (0.0500) (0.0120)

10 000 0.6931 0.1427 2.2574 1.1404 0.0606 0.3957 0.0915
(0.0082) (0.0022) (0.1505) (0.0765) (0.0036) (0.0355) (0.0086)
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Table 3: Parameters estimated with the SMS and the MS model for simulated model with uniformly distributed
spikes. Average parameter estimates for sample size of T = 10 000 were obtained over 1000 repetitions, the empirical
standard deviation of the estimates is given in parentheses. Line two gives the parameters used for the simulations.

γ σε µs σs πBS πSS πS time
Theory 0.7 0.1414 2.2538 1.1547 0.06 0.4 0.0909 -

SMS 0.6931 0.1427 2.2574 1.1404 0.0606 0.3957 0.0915 2
(0.0082) (0.0022) (0.1505) (0.0765) (0.0036) (0.0355) (0.0086) -

MS 0.6889 0.1418 2.9553 1.4001 0.0597 0.3993 0.0904 4058
(0.0085) (0.0012) (0.0684) (0.0338) (0.0026) (0.0182) (0.0043) -

Table 4: Descriptive statistics for detrended log-prices

VIC NSW QLD SA
Mean 0.0511 0.1004 0.0889 0.0903

Median 0 0 0 0
Std dev 0.4006 0.4704 0.4447 0.5216

Skewness 3.6320 4.2087 3.5392 3.7000
Kurtosis 30.9734 26.6940 25.7021 26.9188

approximately log-normally distributed. The calculation of daily prices is done by taking the
arithmetic mean of the 48 half-hourly prices that are recorded during a day.

Before comparing the SMS model with the MS model we detrend the data sets. To do so we
follow the idea of Rambharat et al. (2005) and subtract a time-varying mean, which we calculate
using robust locally weighted regression (see Cleveland, 1979) with a window of 100 observations.3

To account for weekly seasonality we subtract the median for weekdays, Saturdays and Sundays.
The characteristics of the detrended daily Australian log-prices are reported in Table 4. As can

be seen, the time-series exhibit high kurtosis and skewness with values that indicate non-normally
distributed data sets. This observation is supported by the positive difference between the mean
and the median.

The resulting fit for the different time-series is given in Figure 2. We observe that very few
extreme negative log-prices do occur for three of the four time-series. As those observations are
not in line with the assumption of a normally distributed base process, we do use the estimation
framework which is robust to negative outliers when calibrating the SMS model. The quantiles
for a1, b1 and c are chosen to be the same as already for the simulation-study. The quantiles for
a2 and b2 are chosen to be the 1% quantile for the whole time-series and the 0.1% quantile for
the base process. To allow for comparable conditions we delete negative observations which under
the assumption of a normally distributed base process would have a probability smaller than 0.1%
before fitting the MS model. We thus delete between 3 and 23 observations depending on the
time-series.

Next we control the stochastic part of log-prices (to which we will further refer as log-prices)
for the order of autocorrelation. To do so we calculate the partial autocorrelations for lags one to
ten for each of the time-series. To get results that are robust to outliers we replace the needed
autocorrelations by their robust counterparts using the Qn estimator. The results are shown in
Figure 3. The autocorrelation-function (AC) appears to decrease exponentially. This is in line with
the assumption that the log-prices follow an AR(1) process. Further support for this assumption is
given by the partial autocorrelation functions (PAC) and the corresponding 5% significance levels.
For the first lag, partial autocorrelations are far larger than the corresponding 5% significance lev-
els and thus can be considered significantly different from zero for all four time-series. For larger
lags partial autocorrelations are wether not significantly different from zero or do slightly pass the
corresponding level.

3The needed procedure is implemented in the Curve Fitting Toolbox of MATLAB.
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Figure 2: Time-varying mean using robust locally weighted regression, log-prices and detrended log-prices: The red
lines show the time-varying means, while the blue lines exhibit the log-prices of the different time-series. The green
lines finally show the difference between log-prices and time-varying mean. All data sets are plotted from 1st of
January 2004 till 30st of June 2010.

Table 5: Parameters estimated with the MS and the SMS model for log-prices from January 2004 to June 2010

γ µB σε µS σS πS πBS πSS

VIC MS 0.6818 -0.0215 0.1438 0.9210 0.5984 0.0819 0.0325 0.6197
SMS 0.6986 -0.0285 0.1342 0.7796 0.8846 0.0986 0.0226 0.7934

NSW MS 0.7065 -0.0161 0.1232 0.9619 0.7161 0.1233 0.0453 0.6764
SMS 0.7083 -0.0263 0.1134 0.8827 0.8449 0.1394 0.0212 0.8688

QLD MS 0.6939 -0.0177 0.1294 0.8531 0.6613 0.1291 0.0547 0.6309
SMS 0.6782 -0.0270 0.1220 0.8268 0.7934 0.1358 0.0442 0.7185

SA MS 0.6237 -0.0143 0.1518 1.1695 0.8127 0.0985 0.0516 0.5273
SMS 0.6308 -0.0140 0.1483 1.2126 1.3235 0.0850 0.0483 0.4803

After having analyzed and cleaned the time-series, we now turn our focus on the empirical ap-
plication. For this purpose we first compare the parameters yielded by the different models and
check if the results are in line with the theoretical expectations. As the robust locally weighted
regression and the median, which were used to account for the seasonal trend, can still be expected
to exhibit a small bias we extend the base process of the MS and the SMS model by a constant,
in order to model the mean of the base process, µB .

Columns 3 to 5 of Table 5 show that the parameters concerning the base process are close
to each other for the MS and SMS model, although the standard deviation of the error terms
is consistently smaller for the SMS model. As already seen in the simulation-study, concerning
the spike process the SMS model yields parameters that differ from the ones, that are based on
the MS model. For the first moments no clear pattern can be established meanwhile for second
moments the SMS appears to yield higher values for the data-sets at hand. Further the estimated
overall probability of spikes is for three out of four data-sets higher when using the SMS model.
This is in accordance with the fact, that the SMS model yielded smaller values for the standard
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Figure 3: (P)ACFs for log-prices of the four time series under consideration from January 2004 till June 2010: The
blue bars show the autocorrelation functions, while the blue circles exhibit the partial autocorrelation function. The
red asterisks give the corresponding 95% significance levels for the partial autocorrelation functions.

deviations of the error terms from the base process. Finally the estimated conditional probabilities
to move from the base to the spike process are lower for the SMS model whereas the conditional
probabilities to stay in the spike process are higher when using SMS with exception of πSS for SA. A
possible explanation for this fact could be that because of computational intensity, the algorithm of
Huisman and De Jong (2003) can just handle a certain amount of consecutive spikes. We followed
the recommendation of the authors and sat the maximum number of consecutive spikes, that the
algorithm accounts for equal to 10 (see also Janczura and Weron, 2012). The algorithm should thus
only be used if the probability of more than 10 consecutive observations from the spike regime is
negligible, whereas our approach does not exhibit any restrictions concerning the possible number
of consecutive spikes.

The quality of our model is assessed through a graphical illustration of nonparametric den-
sity estimates using gaussian kernels with a bandwith of 0.05.4 The first row of Figure 4 shows
estimation results that are based on the SMS model. The theoretic density of the base process
(represented by the red, dotted curve) relies on the assumption that the base process is normally
distributed with µ̂B and σ̂2

B . It is scaled down by multiplying it with π̂B and fits the kernel (given
by the blue curve) of the corresponding data set quite well up to a certain upper threshold. The
green curve gives the difference between the theoretical and the empirical density (multiplied by
the factor π̂B/π̂S in order to have the same scale for the spike distribution as for the theoretical
distribution of the base process) and has support [max(a1, b1),∞). The fact that it starts at zero
with respect to the y-axis for all four time-series, indicates that the assumption of spikes not being
smaller than the 80% quantile of the whole data set and 90% of the base process is sensible for
the data sets at hand. We thus get an approximation of the pdf for the spike process. It can be
seen that there is no clear pattern that could be associated with a specific theoretical distribution.
The lower row of Figure 4 shows the corresponding results for the MS model. From comparing
the center of the empirical kernel of the data and the theoretical one for the base process it can

4The bandwidth was chosen with the bandwidth selection algorithm proposed by Botev et al. (2010).
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Figure 4: Nonparametric density estimates via Gaussian kernel fits: The red, dotted curve shows the theoretical
kernel of the base process. It is calculated using µ̂B and σ̂B . The resulting kernel density is then scaled down
by multiplying it with π̂B . The blue curve shows the empirical density, which emerges when using log-prices.
The green line shows the difference between the theoretical (scaled) density and the empirical one with support
[max(a1, b1),∞]. To show how the resulting density of the spike process itself can be expected to look we divide
the resulting density by π̂S . The same is done for the dotted green line, which shows the theoretical density for the
spikes, which is used by the MS model. The time series under consideration are VIC and NSW and comprise again
observations from January 2004 till June 2010.

be intuited that the fit is slightly worse than for the SMS model. Further it can be seen, that
the theoretical distribution of the spike process (given in form of the green dotted line) is not
sufficiently capable of modeling an empirical spike distribution as the one given in the upper row
of Figure 4. These results indicate that the proposed semiparametric approach is recommendable
in order not to risk producing biased estimates.

6. Conclusion

Although MS models do demand a certain amount of prior assumptions, they are said to be excep-
tionally well suited to model electricity price characteristics. Reasoning is their ability to calculate
transition probabilities from one state to another. We propose a semiparametric extension, using
robust estimation techniques. The advantage of our approach is that neither complex forms of nu-
merical optimization nor any distributional assumption concerning the spike process are needed.
The approach offers a clear advantage in computational complexity and (under realistic condi-
tions) assures against biased estimates when the distribution of the spike process is unknown. As
a side product, the procedure allows to account for negative outliers without making it necessary
to model them specifically. In this context extensions to account for a third regime with negative
spikes as proposed in De Jong and Schneider (2009) and Janczura and Weron (2010) would be
straight forward. However the data at hand exhibited very scarce occurrence of negative outliers,
making it advantageous to robustify the estimation against these occurrences without modeling
them explicitly. Our approach is further in line with contemporaneous literature in which several
different distributions for the spike process (see Bierbrauer et al., 2007 and Janczura and Weron,
2009) were proposed. We take this idea consequently to a next step by leaving the spike distri-
bution apriori unspecified. Further Janczura and Weron (2012) recently proposed an algorithm to
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reduce the computational burden, that is faced by the algorithm used by Huisman and De Jong
(2003). Our proposed algorithm does not just lower the computational burden (measured in com-
putational speed) by a factor of 2000. For the simplest model specification without a constant for
the base model it even can be calculated using spreadsheet software.

To underpin our theoretical arguments, we ran a simulation study using uniformly distributed
spikes. The results show that the parametric nested MS model of Huisman and De Jong (2003)
estimated by a Kalman filter based approach yields biased estimates even when using the flexible
specification of a compound poisson distribution to model the spike process. The SMS model
however yields unbiased estimates. This result holds for small samples as well as asymptotically.

Further we applied the different approaches to four Australian electricity spot log-price time-
series. It can be stated that the only noteworthy difference in the parameters of the base process
concerned the standard deviation of the residuals, which where consistently smaller when using
the SMS model than when using the MS model. The estimates for the distribution of the spike
process however do (in accordance with the results from the simulation study) all differ between
the models. Furthermore the MS model seems to assign a lower probability to observe spikes than
the SMS model whenever the conditional probability of consecutive spikes is high. Reason could
be that because of the computational burden of the Kalman filter based algorithm, the probability
of more than 10 consecutive spikes is neglected when estimating the parameters of the MS model.
To control if the needed assumptions for the SMS model are well chosen we evaluated the empirical
density of two different data-sets and the density of the spike process graphically with help of a
nonparametric gaussian kernel estimation. The results indicate, that the assumptions for the SMS
model are sensible and that a parametric modeling of the spike process can lead to inadequate
results.

Although we were able to show the good properties through simulations and encouraging results
using Australian spot data, it would still be interesting to extend the presented model further.
Possible extensions could concern time-varying volatility for the base process. This was already
proposed by Janczura and Weron (2009) and shown to be important for only some of the electricity
spot markets by Lindstroem and Regland (2012). Extending our approach to allow the modeling of
two different spike regimes would be straight forward and might be interesting for alternate data-
sets in which negative prices are more frequent. Furthermore the use of a multivariate framework in
order to yield further results in the line with the publications of De Jong and Schneider (2009) and
Lindstroem and Regland (2012) would be of great interest. The last point is even more interesting
when considering the computational ease that the proposed approach offers compared to former
estimation procedures used in the literature. Implementing and testing these extensions will be of
future interest for the authors.
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