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ABSTRACT

In this paper we are interested in the term structure of futures con-
tracts on oil. The objective is to specify a relatively parsimonious
model which explains data well and performs well in out of sample
forecasting. The dynamic Nelson-Siegel model is normally used to an-
alyze and forecast interest rates of different maturities. The structure
of oil futures resembles the structure of interest rates and this moti-
vates the use of this model for our purposes. The Dynamic Nelson-
Siegel model allows for a significant dimension reduction by intro-
ducing three factors. By performing a series of cross-section regres-
sions we obtain time series for these factors and we focus on modeling
their joint distribution. Using a copula decomposition we can set up
a model for each factor individually along with a model for their de-
pendence structure. When a reasonable model for the factors has been
specified it can be used to forecast prices of futures contracts with dif-
ferent maturities. The outcome of this exercise is a model which de-
scribes the observed futures contracts well and forecasts better than
conventional benchmarks. The model is flexible and is expected to
work well for other energy based commodities.



1 Introduction

Following the financial crisis commodity markets have received a lot of attention. Com-
modity markets pose a lot of interesting challenges and insights for practitioners as well
as people in academia. In this paper we set up a model which is very useful for ana-
lyzing and forecasting the term structure of energy based commodities. Data in these
markets present the analyst with a lot of problems which we normally do not encounter
in for example equity markets. The approach we undertake in this section is inspired
by the approach to the modeling of the forward curve of interest rates in Diebold and
Li (2006) and Noureldin (2011). The underlying assumption is that the term structure
of prices of futures contracts can be explained by unobserved factors. These factors can
be estimated and using the copula frame work we can model and forecast the factors
individually without ignoring their dependence. With forecasts for the factors we can
forecast the prices of futures contracts.

The rest of this paper is organized as follows. In section 2 we provide a thorough
description of the data set analyzed in this paper. Section 3 contains a description of
the model. In section 4 we present the results of the in sample analysis. Section 5
contains the results of the out of sample forecast analysis. Section 6 is devoted to the
development of a trading strategy. Finally, some concluding remarks are presented in
section 7.

2 Data

Data from futures contracts is very different from many other the financial data sets.
The unique features of the data make analyzing and forecasting challenging tasks. This
section serves to illustrate the features of the data and to highlight potential challenges
which we have to overcome.

The data set we consider consists of daily closing prices of monthly futures contracts
on oil. The contracts are on light sweet crude oil (WTI), more details can be found on
the CME Group homepage1. At every day a number of futures with different time to
maturity are traded. The maturities are approximately one month apart. Each contract
expires on the third trading day prior to the 25th calendar day in the month before
delivery. The first observation is from January 2nd 2005 and our estimation sample
ends on July 1st 2011. We use the period until February 8th 2012 for forecast evaluation.

It is important to understand the nature of the data in order to understand the prob-
lems that we analyze in this paper. In order to grasp the structure and complexities
of the data it is useful to consider an example of actual data. In figure 1 we have pre-
sented a small example of what data looks like. Dots are used to indicate that the data
set extends in this direction. There are several important things to notice. First, note
that on a given day only a limited number of contracts exists. Consider for example the
first row of the table, on this day a contracts with 495 days to delivery does not exist.

1http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contract_

specifications.html
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Date Price (time to maturity (trading days))

. . . . . . . . . . . . . . . . . . . . .
06.07.2010 . . . 81.50 (496) 82.48 (622) - 85.00 (875) 85.65 (1127) . . .
06.08.2010 . . . 81.37 (495) 83.10 (621) 83.70 (746) 84.60 (874) 86.22 (1126) . . .
06.09.2010 . . . - 84.70 (620) - 85.95 (873) 87.60 (1125) . . .
06.10.2010 . . . 83.70 (493) 85.60 (619) - 86.85 (872) 87.91 (1124) . . .
. . . . . . . . . . . . . . . . . . . . .

Table 1: Data example.

Such a contract exists on the next day, though. Secondly, the data contains a number
of missing observations. On 06.09.2010 it was possible to trade in a contract with 495
days to maturity, but no one did. This means that we have two kinds of ’holes’ in the
data set. Contracts that do not exist and contracts which exist but are not traded. Both
poses problems for a traditional time series analysis. Assume now that on 06.10.2010
we are interested in forecasting the price of a contract with 492 days to delivery which
is traded on 06.11.2010. Futures contracts are characterized by their time to delivery
so a good way of forecasting would be to consider a time series of prices of contracts
with the same time to maturity. Such a time series are not observed, but it could be
constructed by interpolation. Another possibility would be to consider the time series
of prices for this particular contract. The drawbacks here are that the previous observa-
tions of prices are based on an other time to maturity. Furthermore, we have to decide
what to do about missing values. If the contract was introduced to the market recently
this approach might be infeasible due to the limited number of observations.

The data example is too limited to fully understand the data. Therefore we have
sketched the structure of the data in figure 1. The figure illustrates how time to matu-
rity, τ, for a number of different contracts changes over time. At every point in time we
observe prices of a number of contracts with different maturities, these are represented
by black dots. The gray dots in the top of the figure illustrate that a much higher num-
ber of contracts are traded on a given day. The line at T illustrates the end of our sample.
This serves to highlight an important feature. namely that when we forecast, we know
for certain the maturities of the contracts potentially traded the next day. These are rep-
resented by gray squares and it is the prices of these contracts which we are interested
in forecasting.

In the top panel of figure 2 we present an example of how the observations from a
single day, t, could look like. The black dots represent the prices observed in the market.
And the line through the dots is the term structure of oil futures on this particular day.
Our objective is to model and forecast this term structure. We do this in the following
way. We analyze the observed data to determine which factors, Xt, determine the term
structure at time t. We forecast these factors, X̂t+1, to construct a term structure for time
t + 1 and because we know the maturities of the contracts traded at that time, we can
forecast their prices, as illustrated in the bottom panel of figure 2. .

The two figures presented here are simplifications and only used for illustrative
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Figure 1: Sketch of the structure of the data.

purposes. The actual data is far more extensive and not as nice and simple as these
sketches. One thing that complicates matters significantly is that the number of differ-
ent contracts which are traded differ from day to day. This is primarily a consequence of
very limited trading in contracts with long maturities. These may simply not be traded
every day. In figure 2 the prices are shown to lie on a nice smooth curve, but in the
actual data this need not be the case. One of the questions we address in this analysis is
whether a smooth curve is a reasonable approximation. Some days we might not have
sufficient observations to fit a smooth curve to the data.

3 Model

We want to analyze the term structure of energy based commodity futures. The term
structure of futures prices resembles the term structure of interest rates. Therefore we
will use a term structure model known from the fixed income literature to analyze the
commodity futures prices.

The model we use is the Dynamic Nelson-Siegel model. The Nelson-Siegel model
was introduced to model yield curves by Nelson and Siegel (1987). A dynamic version
of the model was introduced by Diebold and Li (2006). It states that at any time, t, the
k different yields can be explained by three factors according to the following model
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Figure 2: Sketch of the underlying idea for forecasting with the Dynamic Nelson-Siegel model.
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In this paper we consider futures prices. We use this model to describe the relation-
ship between futures prices and their time to maturity. We extract the factors by a series
of cross-section regressions.

We have time series for xi,t for i = 1, 2, 3, these are realizations of the random vari-
ables X = (X1, X2, X3)′ and we want to model their joint density, fX(x). For this pur-
pose we use the Copula-Margins decomposition as explained in Patton (2009). This
allows us to express the joint density as

fX(x) =
3

∏
i=1

fXi(xi)c (FX1(x1), FX2(x2), FX3(x3))

=
3

∏
i=1

fXi(xi)c (u1, u2, u3) , (1)

where fXi(xi) for i = 1, 2, 3 denote the pdfs for X1, X2 and X3, respectively. Similarly,
FXi(xi) denote the cdfs for the three factors. c() denotes the copula density. ui are
realizations from uniform distributed random variables, U1, U2, U3. Having established
this, we can now turn to specifying the marginal distribution, fXi(xi) and the copula
density.

3.1 Marginal Models

We must specify models for the conditional marginal distributions. To do this we first
introduce the information set available at time t, Ft. Each of the models will have the
following structure

xi,t = µi(Zi,t−1) + σi(Zi,t−1)ε i,t i = 1, 2, 3 and Zi,t−1 ∈ Ft−1 (2)
ε i,t|Ft−1 ∼ FXi(0, 1) ∀t.

FXi(0, 1) denotes the cdf of a standardized random variable. In order to keep the copula
decomposition valid we must make sure that Zi,t meet the requirements in Patton (2006)
for i = 1, 2, 3. Informally speaking this requirement states that the distribution of xi

6



conditional on Zi,t−1 must be independent from the distribution of xi conditional on
Zj,t−1 for j 6= i in the sense that

FXi |Zi,t−1
(xi|Zi,t−1) = FXi |Zi,t−1,Zj,t−1

(xi|Zi,t−1, Zj,t−1) for j 6= i

3.2 NIG-GARCH

I this analysis we use the NIG-GARCH class of models by Jensen and Lunde (2001) be-
cause of the great flexibility it offers. The Normal Inverse Gaussian (NIG) distribution
allows us to model both skewness and excess kurtosis and it nests popular distributions
like the normal and t-distributions as special cases. We assume that conditional on the
partition Zi,t−1, Xi,t follows a NIG distribution. That is

Xi,t|Zi,t−1 ∼ NIG
(
ᾱ, β̄, mt(Zi,t−1), σt(Zi,t−1)

)
Introducing the notation γ̄ =

√
ᾱ2 − β̄2 this implies that

E[Xi,t] = σt
β̄

γ̄
and V[Xi,t] = σ2

t
ᾱ2

γ̄3 ,

where the dependence on Zi,t−1 of mt and σt has been dropped to shorten notation. In
order to formulate the model according to the structure in (2) we respecify the model
slightly. We standardize εt in the following way

εt ∼ NIG

(
ᾱ, β̄,−

√
γ̄β̄

ᾱ
,

¯γ3/2

ᾱ

)
.

Now E[εt] = 0 and V[εt] = 1. We can now specify the model as in (2).

xi,t = mt +

√
γ̄β̄

ᾱ
σt + σtεt. (3)

Note, that the conditional mean of Xi,t is the same as before our respecification. From
(3) we can now see, that

Xi,t|Zi,t−1 ∼ NIG
(

ᾱ, β̄, mt, σt
γ̄3/2

ᾱ

)
which is very convenient because it implies that

E[Xi,t|Zi,t−1] = mt + σt

√
γ̄β̄

ᾱ
and V[Xi,t|Zi,t−1] = σ2

t ,

meaning that we can specify models for the conditional variance in terms of σt alone.
Models for the conditional mean are specified by choosing an appropriate model for
mt. Note, that the GARCH in mean effect maybe removed by including −

√
γ̄β̄
ᾱ σt in mt.

In this paper we consider models for µi(Zi,t−1) where we include lags of xi and
allow for lags of the other factors in mt, we also allow for GARCH in mean effects. For
the conditional variance we consider a standard GARCH model for σt.
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3.3 Misspecification tests

It is important to test for possible misspecification in the marginal models. The decom-
position in (1) is only valid if the marginal models are well specified.

We carry out two tests for the presence of autocorrelation as suggested in Patton
(2012). Both tests consider potential autocorrelation in the estimated probability inte-
gral transforms, ûi,t. These are constructed based on the estimated parameters, ψ̂i as

ûi,t = FXi(xi,t; ψ̂i).

ûi is sorted in ascending order and the Kolmogorov-Smirnov (KS) and the Cramer-von
Mises (CvM) test statistics are calculated

KS = max
t

∣∣∣∣ûi,t −
t
T

∣∣∣∣
CvM =

T

∑
t=1

(
ûi,t −

t
T

)2

In the case of NIG distributed error terms we have to estimate the parameters of the
distribution. This means that we can not rely on the asymptotic distribution of these
test statistics in our analysis. Instead we follow Patton (2012) and use a simulation
based method to calculate the p-values of the tests. We simulate a sample of x based
on the estimated parameters. Next, we estimate the model on the simulated data and
compute the values of KS and CvM. We repeat this S times in order to simulate the
distributions of the two test statistics.

3.4 Copula

The next step is to specify the copula density. For this purpose we consider the normal
copula. The copula density function is given as

c(u; Σ) =
1√
|Σ|

exp
{
−1

2

(
Φ−1(u1), . . . , Φ−1(u3)

)′ (
Σ−1 − I3

) (
Φ−1(u1), . . . , Φ−1(u3)

)}
,

where u = (u1, u2, u3)′, ui = FXi(xi) for i = 1, 2, 3 and Φ−1( ) denotes the inverse cdf of
a standard normal variable. Σ is a correlation matrix and given as

Σ =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1


3.5 Estimation

After specifying the marginal models and the copula density we turn to parameter
estimation. We collect all parameters in θ the log likelihood can now be written as

lx,t(θ; x) =
3

∑
i=1

lxi ,t(ψi; xi) + lc,t(κ; u),
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where ψi contains the parameters in marginal model i. κ contains the parameters from
the copula density and u = (u1, u2, u3)′.

θ can now be estimated using (conditional) maximum likelihood. The maximization
is carried out in two steps. First step is maximizing the likelihood functions associated
with the marginal model, lxi ,t(ψi; xi). In the second step we use the estimates, ψ̂i, to
construct ûi,t = FXi(xi,t; ψ̂i). We do not have a closed form expression for the cdf of the
NIG distribution, so the probabilities are found using simulation.

Statistical inference in this case is based on a bootstrap. The conventional methods
for statistical inference in two step estimation do not apply her because the analysis is
carried out on estimated factors.

4 Empirical Analysis

The first step in the analysis is to estimate the factors. We do this in the following way.
At each point in time we regress the observed futures prices on the matrix Z for a fixed
value of λ. The parameter estimates are estimates of the factors, (Lt, St, Ct)′ at time t. A
grid search is carried out to find the value of λ which minimizes the sum of the error
terms over time,

T

∑
t=1

e′tet.

The sum of the error terms in minimized for λ = 0.006. The estimated factors are
presented in figure 3.

We analyze the time series properties of the factors to determine how the our model
should be specified. We reject stationarity for Lt and St but not for Ct. In the following
we carry out the analysis on the first differences of Lt and St along with the level of Ct.
We introduce the following notation

xt =

∆Lt
∆St
Ct

 =

x1,t
x2,t
x3,t


For the marginal models we have chosen the NIG-GARCH(1,1) model. In each

model we have included enough lags to remove the auto correlation. For x1 and x2
we have included two lags while six lags were needed for x3. The test statistics and
p-values for the test for auto correlation are presented in 2.

The p-values of the Goodness of fit tests are based on 1000 simulations. For p-
values under 0.05 we reject that we have specified the distribution correctly. This is
essential for the copula decomposition. We have chosen the normal copula to capture
the dependence between the factors. The estimated parameters are presented in table
2. At this stage the table does not include p-values for the estimated parameters.

In figure 5 we have presented the estimated residual densities along with a NIG
reference. The NIG distribution offers a reasonable approximation for the residual den-
sity.
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x1,t x2,t x3,t

Conditional mean

Constant 0.1802 0.094487 0.15246
xi,t−1 -0.36331 -0.26337 0.45155
xi,t−2 -0.11348 -0.091155 0.20709
xi,t−3 - - 0.097801
xi,t−4 - - 0.11072
xi,t−5 - - 0.030774
xi,t−6 - - 0.080040

Conditional variance

Uncond. variance (σ̄) 5.0483 5.0757 23.560
ARCH term (α) 0.083791 0.057867 0.10711
GARCH term (β) 0.89895 0.93501 0.86245

NIG distribution
ᾱ 1.3737 2.4536 1.2873
β̄ -0.067616 -0.070186 0.0072728
Log-Likelihood -3406.14 -3381.72 -4678.82

Misspecification tests (p-values)

Breusch-Godfrey 16.861 13.123 12.722
[0.15489] [0.36004] [0.38815]

Kolmogorov-Smirnov 0.016476 0.013097 0.016978
[0.203] [0.63] [0.623]

CvM 0.035883 0.046861 0.053506
[0.593] [0.484] [0.738]

Copula

ρ12 ρ13 ρ23
-0.51602 -0.67572 0.39852

Likelihood 760.924

Table 2: Parameter estimates. Numbers in bold indicate statistically significant estimates. Results of mis-
specification tests with corresponding p-values.
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5 Forecasting

The forecasting exercise is quite simple. At every point in time we forecast the entire
term structure of futures prices. We know which contracts may potentially be traded
the next day, meaning that we know Zt+1 with certainty. For these contracts we cal-
culate the squared forecast error. The benchmark in this exercise is a simple autore-
gressive model using only previous observations of a contract to form the forecast. We
calculate the mean squared forecast error for each different maturity. This leads to ap-
proximately 2500 different mean squared forecast errors. To get a more clear picture
of which method is performing best we divide them into trading months and take the
average. The result of this is presented in table 6. The first column in the figure shows
us, that if we want to forecast the price of a contract with maturity within a month,
then we should use the Dynamic Nelson-Siegel model. We see that for the most cases
the Dynamic Nelson-Siegel model produces a significant improvement over the bench-
mark.

Mean squared forecast errors might not be the best way to asses the quality of our
model. It might be very interesting to consider directional forecasts. That is, we predict
whether a contract will increase or decrease in the next day. The accuracy of the direc-
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tional forecast is assessed in the following way. At every point in time, t and for each
contract, j we construct the following variables.

dj,t = sign
(
Yt(τj)−Yt−1(τj+1)

)
d̂j,t = sign

(
Ŷt(τj)−Yt−1(τj+1)

)
.

Such that dj,t indicates the direction of the actual change and d̂j,t indicates the direction
predicted by our model. If the two are equal the forecast is successful and if they are
not then the forecast is wrong.

The benchmark for forecasting is a simple autoregressive model fitted to the ob-
served prices of the contract in question.

In this analysis we only consider one-step ahead forecasts. We consider the direc-
tional forecast and asses whether we are performing better for some maturities than for
other. At every day in the out of sample period we perform the directional forecast. At
the end of the out of sample period we calculate the rate of success of our forecast for
all possible maturities.

The directional forecasts are unfortunately not implemented at this moment.

6 Trading Strategy

To come. . .

7 Concluding Remarks

To come. . .
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