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Abstract

The literature on stochastic models for the spot market of gas is domi-
nated by purely stochastic approaches. In contrast to these models, Stoll
and Wiebauer (2010) propose a fundamental model with temperature as an
exogenous factor. In Central European markets there is another important
fundamental driver of the gas price, namely the oil price. This is due to
import contracts with Russia and Norway, where the import price is fixed by
so-called oil price formulas. In this paper the model of Stoll and Wiebauer
(2010) is extended by an oil price component. This component is an ap-
proximation of the unknown oil price formulas of the import contracts. It is
shown that this new model can explain the price movements of the last few
years much better than previous models.

1. Introduction

During the last years trading of natural gas has become more impor-
tant. The traded quantities over-the-counter and on energy exchanges have
strongly increased and new products have been developed. For example,
swing options increase the flexibility of suppliers and they are used as an in-
strument for risk management purposes. Important facilities for the security
of supply are gas storages. The storages are filled in times of low consump-
tion and emptied in times of high consumption which usually coincides with
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low and high prices of natural gas. Although the liquidity is comparably low,
a market for gas storages exists. This means, physical gas storages or gas
storage contracts are traded.

These two examples of complex options illustrate the need of pricing
methods. Due to the complexity analytic pricing formulas do not exist.
Therefore models for the use in Monte Carlo simulations are needed for val-
uation purposes. As both options (partly) rely on the spot market we need
a stochastic price model for the daily prices at the spot market generating
adequate gas price scenarios.

The literature on stochastic gas price models is dominated by purely
stochastic approaches. The one and two factor models by Schwartz (1997)
and Schwartz and Smith (2000) are general approaches applicable to many
commodities, such as oil and gas. Cortazar and Schwartz (2003) present a
three factor model for the term structure of oil prices. These models can be
applied to gas prices as well. The various factors represent short and long
term influences on the price.

Extensions of these factor models are given by Jaillet, Ronn and Tom-
paidis (2004) and Xu (2004). Especially the inclusion of deterministic func-
tions to cover the seasonalities within gas prices is considered. Cartea and
Williams (2008) introduce a two factor model including a function for the
seasonality. Their focus is on the market price of risk. An important appli-
cation of gas price models is the valuation of gas storage facilities. Within
this context, Chen and Forsyth (2006) and Boogert and de Jong (2011) pro-
pose gas price models. Chen and Forsyth (2006) analyze regime-switching
approaches incorporating mean-reverting processes and random walks. The
class of factor models is extended by Boogert and de Jong (2011). The three
factors in their model represent short and long term fluctuations as well as
the behavior of the summer-winter spread.

In contrast to these models Stoll and Wiebauer (2010) propose a funda-
mental model with temperature as an exogenous factor. They use the tem-
perature component as an approximation of the filling level of gas storages
which have a remarkable influence on the price. In this paper we will extend
the model of Stoll and Wiebauer (2010) by introducing another exogenous
factor to their model: the oil price. Our oil price component approximates
the influence of gas import contracts indexed by oil price formulas.

The rest of the paper is organized as follows. In chapter 2 we will intro-
duce the model by Stoll and Wiebauer (2010) including a short description
of their model for the temperature component. In their model the influence
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of the temperature is described by so called normalized cumulated heating
degree days. Then we describe our new oil price component in chapter 3. We
discuss the different oil price formulas used in the market, and how we have
chosen an approximation of it in our model. After introducing the stochas-
tic processes that we use to model oil prices and temperature, we finally fit
the model to data in chapter 4. It turns out that for the innovations of the
process a heavy tailed distribution like NIG is more appropriate than the
classical normal distribution. We finish with a short conclusion in chapter 5.

2. The model by Stoll and Wiebauer (2010)

Modeling the price of natural gas in Central Europe requires knowledge
about the structure of supply and demand. On the supply side there are
only a few sources in Central Europe. Most of the natural gas needs to be
imported from Norway and Russia. On the demand side there are mainly
three groups of gas consumers: Households, industrial companies and gas
fired power plants. While households only use gas for heating purposes at
low temperatures, industrial companies use gas as heating and process gas.
Households and industrial companies are responsible for about 90 percent of
total gas demand.

These two groups of consumers cause seasonalities in the gas price:

• Weekly seasonality: Many industrial companies do not need gas on
weekends. Their operation is restricted to working days.

• Yearly seasonality: Heating gas is needed in winter when temperatures
are low.

An adequate gas price model has to incorporate these seasonalities as well
as stochastic deviations of these.

Stoll and Wiebauer (2010) propose a model meeting these requirements
and incorporating another major influence factor: the temperature. Some-
how the temperature dependency is already covered by the deterministic
yearly seasonality. The lower the temperature, the higher the price. But the
temperature influence is more complex than this. A day with average tem-
perature of zero degrees at the end of a long and cold winter has a different
impact on the price than a daily average of zero at the end of a ”warm”
winter. Similarly, a cold day at the end of a winter has a different impact on
the price than a cold day at the beginning of the winter.
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The different impacts are due to gas storages which are essential to cover
the demand in winter. The total demand for gas is higher than the capacities
of the gas pipelines from Norway and Russia. Therefore gas provider use gas
storages. These storages are filled during summer (at low prices) and emptied
in winter months. At the end of a long and cold winter most gas storages will
be almost empty. Therefore additional cold days will lead to comparatively
higher prices than in a normal winter.

The filling level of all gas storages in the market would be the adequate
variable to model the gas price. Unfortunately, there is no data covering
this information. Therefore we need a different variable describing the same
situation. As the filling levels of gas storages are strongly related to the
demand for gas which in turn depends on the temperature, an adequate
variable can be derived from the temperature.

Stoll and Wiebauer (2010) use normalized cumulated heating degree
days to cover the influence of temperature on the gas price. They define a
temperature of 15 ◦C as the limit of heating. Any temperature below 15 ◦C
makes households and companies switch on their heating systems. Heating
degree days are measured by HDDt = max (15− Tt, 0) where Tt is the av-
erage temperature of day t. As mentioned above the impact on the price
depends on the number of cold days observed so far in the winter. Cumula-
tion of heating degree days over a winter leads to a number indicating how
cold the winter was. In this context we refer to winter as the 1st of October
and the 181 following days till end of March. We will write HDDd,w for
HDDt, if t is day number d of winter w. Then we can define the cumulated
heating degree days on the day d in winter w as

CHDDd,w =
d∑

k=1

HDDk,w for 1 ≤ d ≤ 182.

The impact of cumulated heating degree days on the price depends on the
comparison to a normal winter. This information is included in normalized
cumulated heating degree days

Λd,w = CHDDd,w −
1

w − 1

w−1∑
`=1

CHDDd,` for 1 ≤ d ≤ 182.

We will use Λt instead of Λd,w for simplicity, if t is a day in a winter. The
definition of Λt for a summer day is described by a linear return to zero during
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summer. Although there might be cold days between April and September
this time of the year is usually used to refill gas storages. The impact of cold
days on the price decreases due to increasing filling levels. We take account
for this situation by the linear part of normalized cumulated heating degree
days (see figure 1). Positive values of Λd,w describe winters colder than the
average. Λt is included into the gas price model by a regression approach. As
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Figure 1: Normalized cumulated heating degree days in Düsseldorf, Germany, for 2003-
2011.

the seasonal components and the normalized cumulated heating degree days
are linear with respect to the parameters we can use ordinary least squares
regression for parameter estimation. The complete model can be written as

Gt = mt + α · Λt +X
(G)
t + Y

(G)
t (1)

with the day-ahead price of gas Gt, the deterministic seasonality mt, the
normalized cumulated heating degree days Λt, an ARMA process X

(G)
t and

a geometric Brownian motion Y
(G)
t . For model calibration day-ahead gas

prices from TTF and daily average temperatures from Düsseldorf, Germany,
are used. The fit to historical prices where outliers have been removed (see
section 4 for details on treatment of outliers) can be seen in figure 2.

3. The oil price dependence of gas prices

The model described in (1) is capable to cover all influences on the gas
price related to changes in temperature. But changes for economic reasons
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Figure 2: The model in (1) fitted to TTF prices from 2003-2009.

are not covered by that model. This was observable in the economic crisis
2008/2009 (see figure 5). During the crisis the demand for gas by industrial
companies decreased by more than 10 percent. As gas is imported by long
term oil price indexed supply contracts with take-or-pay clauses the gas
importers had to take large quantities of gas although their customers had
a low demand. These surplus quantities were sold at low prices on the day-
ahead market. In this period of time the temperature was not relevant for
the price as there was enough gas anyways.

The low prices on the day-ahead market were the result of high quantities
that had to be sold in times of low demand. As the oil price also was low
due to the crisis resulting in a low demand of oil, one could use the oil price
as an exogenous factor explaining the gas price. If we want to incorporate
the link between oil and gas in the model we need to know how the price
indexation in import contracts works. The import price of gas usually is an
average of past oil prices. The pricing in import contracts is done via oil
price formulas. These formulas consist of three parameters:

1. The number of averaging months. The gas price is the average of past
oil prices within a certain number of months.

2. The time lag. Possibly there is a time lag between the months the
average is taken of and the months the price is valid for.

3. The number of validity months. The price is valid for a certain number
of months.

An example of a 3-1-3 formula is given in figure 3.
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Figure 3: In a 3-1-3 formula the price is determined by the average price of 3 months
(March to May). This price is valid for July to September. The next day of price fixing is
the 1st of October.

The formulas used in the import contracts are not known for all market
participants. Therefore we have to do some sort of estimation for our model.
Theoretically any choice of three natural numbers is possible. But from other
products, like oil indexed swing options, we know that some formulas are
more popular than others. Examples of common formulas are 3-1-1, 3-1-3,
6-1-1, 6-1-3 and 6-3-3.

As there are many different import contracts with possibly different oil
price formulas we cannot ensure that one of the mentioned formulas is able
to explain the price behavior. The mixture of different formulas might affect
the price in the same way as one of the common formulas or a similar one.
Therefore we compare the different formulas in a regression model. Strict ap-
plication of the formula means that we have jumps in the price at each day of
price fixing. The impact on the gas price will be more smooth, however. The
new price determined on a fixing day is the result of averaging a number of
past oil prices. The closer to the fixing day the more prices for the averaging
are known. Therefore market participants have reliable estimations of the
new import price. If the new price will be higher it is cheaper to buy gas in
advance and store it. This increases the day-ahead price prior to the fixing
day and leads to a smooth transition from the old to the new price level on
the day-ahead market.

This behavior of market participants leads to some smoothness of the
price. In order to include this fact in our model we use a smoothed oil price
formula. A sophisticated smoothing approach for forward price curves is
introduced by Benth, Koekkebakker and Ollmar (2007). They claim some
smoothness conditions on the borders between different price intervals. It is
shown that splines of order four meet all these requirements and make sure
that the result is a smooth curve. As oil price formulas are step functions
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like forward price curves this approach is applicable to our situation.
If the number of validity months is equal to 1 we use a moving average

instead of a (smoothed) step function to simplify matters. This approach
takes account for increasing information about the future price. Both ap-
proaches lead to a significant improvement of the model fit. Regarding the
goodness of fit there is no remarkable difference between both approaches
which justifies the use of the simpler method (see figure 4).

2003 2005 2007 2009 2011 2012

40

60

80

100

120

140

O
il 

pr
ic

e

Figure 4: The price of oil (blue), the 6-0-1 oil price formula (red) and the moving average
of 180 days (green).

4. Model calibration with temperature and oil price

After justification of the oil price component as a fundamental factor for
our model we need to choose a way to include it in our existing model and we
need to decide about the oil price formula to be used. So far we took care to
keep our model linear in all parameters, i.e. that we can use ordinary least
squares regression methods for the parameter estimation. Thus, we include
the oil price component in a linear way as well.

For the choice of the best oil price formula we use the R2 as the measure
of goodness of fit. We choose the reasonable oil price formula leading to the
highest value of R2. Reasonable in this context means, that we restrict our
analysis to formulas that are equal or similar to the ones known from other oil
price indexed products (compare section 3). The result of this comparison is
a 6-0-1 formula (see figure 6). Although this is not a common formula there
is an explanation for it: The gas price decreased approximately six months
lather than the oil price in the crisis. This major price movement needs to be
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covered by the oil price component. As explained above we replace the step
function by a moving average. Taking the moving average of 180 days is a
good approximation of the 6-0-1 formula. All in all the oil price component
increases the R2 as our measure of goodness of fit from 0.35 to 0.83 (see figure
5).
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Figure 5: The model of Stoll and Wiebauer (2010) (green line) and our model (red line)
fitted to historical gas prices (blue line).

Therefore we model the gas price by

Gt = mt + α1Λt + α2Ψt +X
(G)
t (2)

with Ψt being the oil price formula.
For parameter estimation of our model we use day-ahead gas prices from

TTF. The trade on TTF has a longer history of high trading volumes than
the neighboring markets. Data from 2003-2011 is used for this model. Tem-
perature data from Düsseldorf, Germany, is available from 1969-2011. For
the estimation of the oil price component we use prices of Brent traded on
the IntercontinentalExchange (ICE). The data is available with a longer his-
tory than gas prices. We use the data from 2002-2011. Using this data we
can estimate all parameters applying ordinary least squares regression after
some outliers are removed from the gas price data, Gt.

Due to e.g. technical problems or a fire at a major gas storage the gas price
deviated from its normal price level which was determined by temperature
and oil price formulas. Thus, we exclude the prices on these occasions by an
outlier treatment proposed by Weron (2006). Values outside a range around
a running median are declared to be outliers. The range is defined by a

9



multiple of the standard deviation. The identified outliers are replaced by
an average of neighboring values.
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Figure 6: Comparison of different oil price components in the model: 6-0-1 formula (red
line), 6-1-1 formula (green line) and 3-0-1 formula (black line) fitted to the historical prices
(blue line).

Altogether these model components give fundamental explanations for
the historical day-ahead price behavior. Short term deviations are included
by a stochastic process (see 4.3). Long term uncertainty due to the uncertain
development of the oil price is included by the oil price process. Therefore
our model is able to generate reasonable scenarios for the future (see figure
7). We will specify the stochastic models for the exogenous factors Ψt and
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Figure 7: The historical gas price (2008-2012) and two realizations of the gas price process
for 2012-2013.

Λt as well as the stochastic process X
(G)
t in the following.
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4.1. Oil price model

As the time series of oil prices does not contain any seasonalities, we
model the oil price without any deterministic function or fundamental factors.
Instead we apply the two factor model by Schwartz and Smith (2000). They
divide the log price into two factors: one for short term variations and one
for long term dynamics.

ψt = exp (χt + ξt)

with an AR(1) process χt and a Brownian motion ξt. These processes are
correlated. Using price data of Brent Crude future contracts from the ICE we
can apply the Kalman filter to estimate the model parameters. The process
(ψt) is used to derive the process (Ψt) in (2).

4.2. Temperature model

When modeling daily average temperature we can make use of a long
history of temperature data. Here a yearly seasonality and a linear trend can
be identified. Therefore we use a temperature model closely related to the
one proposed by Benth and Benth (2007).

Tt = a1 + a2t+ a3 sin

(
2πt

365.25

)
+ a4 cos

(
2πt

365.25

)
+X

(T )
t (3)

with X
(T )
t being an AR(3) process. The model fit with respect to the de-

terministic part (ordinary least squares regression) and the AR(3) process is
shown in figure 8. The process (Tt) is then used to define the derived process
(Λt) of normalized cumulated heating degree days as described in 2.

4.3. Stochastic process

The fit of normalized cumulated heating degree days, oil price formula and
deterministic components to the gas price via ordinary least squares regres-
sion results in a residual time series. These residuals contain all unexplained,
”random” deviations from the usual price behavior.

The residuals exhibit a strong autocorrelation to the first lag. Therefore
an AR(1) process provides a good fit. The empirical innovations of the pro-
cess show more heavy tails than a normal distribution (compare Stoll and
Wiebauer (2010)). Therefore we apply a distribution with heavy tails. The
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Figure 8: Top left: Fit of deterministic function (green line) to the historical daily av-
erage temperature (blue) in Düsseldorf, Germany. Top right: Autocorrelation function
of residual time series (dotted) and innovations of AR(3) process (stems). Bottom: Two
realizations of the temperature process.

normal-inverse gaussian (NIG) distribution remarkably increases the good-
ness of fit (see figure 9). Recall that a random variable X is NIG-distributed
if there is a representation

X
d
= µ+ βY +

√
Y Z

with Z ∼ N (0, 1) and Y ∼ N− (−1/2, δ2, α2 − β2), the inverse Gaussian
distribution as a special case of the generalized inverse Gaussian distribu-
tion. The class of generalized hyperbolic distributions including the NIG
distribution was introduced by Barndorff-Nielsen (1978).

Both the distribution of the innovations and the parameters of autore-
gressive processes are estimated using maximum likelihood estimation.

5. Conclusion

The spot price model by Stoll and Wiebauer (2010) with only temperature
as an exogenous factor is not able to explain the gas price behavior during the
last years. We have shown that the extension by another exogenous factor
remarkably improves the model fit on the history. This factor, the oil price
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Figure 9: Top: Fit of deterministic function and exogenous components (green line) to
the historical gas price (blue). Bottom left: ACF of residual time series (dotted) and
innovations of AR(1) process (stems). Bottom right: Fit of NIG distribution (green) to
kernel density of empirical innovations (blue).

component, approximates the oil price formulas in gas import contracts. This
fundamental reason and the improvement of model fit give justification for
the inclusion of the model component. The resulting simulation paths from
the model are reliable and lead to reasonable valuation results.
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