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Abstract

In this paper we model in continuous time a gas swing contract in the spirit of [4],
with one additional state variable corresponding to a stochastic strike price. Since
in real contracts the strike is a market index which is updated monthly, this results
in a mixed discrete-continuous stochastic control problem. We reduce this to the
usual continuous time situation by adding a state variable, corresponding to an index
rolled-over in continuous time. Then we analyse the viscosity solution of the resulting
Hamilton-Jacobi-Bellman (HJB) equation, deriving results on existence, uniqueness
and smoothness of the solution. Finally, we present two numerical methods to derive
the price of a swing contract. The first one is based on finite differences applied to the
HJB equation. The second one is based on Least Square Monte Carlo and does not
use the HJB equation directly, focusing directly on a discrete-time approximation
of the continuous time problem. While we apply radial basis approximation in the
least square algorithm to avoid dimension issues, we also present a case when, under
some assumptions or approximation, the dimension issue can be avoided by a proper
quantization of the state space.
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1 Problem Framework

The physical nature of commodities, energy and gas in particular, such as their limited
storability or their strong link with complex customers’ patterns of consumption, had led
to design a lot of supply contracts which allow flexibility of delivery. In particular, in gas
markets many long-terms contracts (for 10 years or more) are embedded with flexibility
of delivery options known as swing or take-or-pay . Such contracts allow the option holder
to withdraw every day a quantity of gas subject to daily, as well as periodic (usually
monthly or annual), minimum and maximum constraints. This flexibility addresses the
need to hedge a frequent demand fluctuation which in practice is impossible to foresee in
the long period, being linked to exogenous variable such as weather, economic scenario,
changes in heating technology and power production and so on.

The correct valuation of these type of contracts is important for at least two reasons:
first of all, thanks to the liberalization of energy markets, the price of such contracts is
no more set by regulators under the assumption of cost recovery, as in the old regulated
markets, but it is negotiated between agents and it is mainly related to the financial
risks underlying the contracts. On the other hand, most of the existing contracts include
renegotiation clauses which permits to adjust the contract according to developments
in the markets. So it is very important for both contract parties to have methodologies
to understand which impact contract’s parameters have on the price. Finally, from the
point of view of a profit maximizing agent, the flexibilities embedded in the contract,
i.e. the possibility to decide how much quantity of gas to withdraw every day, should be
used not only to manage demand fluctuation, but also if possible to make profit against
local market price.

The structure of long term gas agreements is pretty standardized in Europe. The
strike price, which is the price paid by the owner of the contract to the seller of the
commodity, typically depends upon a basket of crude and refined oil products, which is
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averaged through time in order to smooth undesired volatility effects; for more details
we refer the interested reader to [2, Section 3.1]. Since oil products are traded in US
dollars, oil related indexes are also expressed in US dollars, thus typical market risk
factors perceived by European importers are represented both by USD/EUR exchange
risk, and price differential between import cost in Euros It and local market prices Pt
settled daily by local gas market exchanges. Clearly, the future prices It and Pt are not
known when pricing the contract so they have to be assumed as stochastic variables. It
is also natural to assume that the optimal withdrawn quantity should be also linked in
some way to prices, or at least to their expected future value.

Thus, pricing and hedging of swing contracts has to be performed dynamically
through time, has to take into account the stochastic dynamics of both market and
strike index prices and volume constraints and has to suggest an optimal withdrawal
policy which should maximise the expected revenues of the contract. This is exactly the
practical description of a so-called stochastic optimal control problem.

The scope of this work is to investigate this stochastic optimal control problem. We
formalize the mathematical problem taking into account both the stochastic nature and
the monthly structure also of the strike price as well as local market price. Then, by
using the theory of viscosity solution, we find out some properties of the value function
such as existence, uniqueness and smoothness. We then apply numerical schemes to find
out the price of some typical contracts.

1.1 Index price modelling

Let (Ω,F , {Ft}t,P) be a filtered probability space and W1, W2 two correlated Brownian
motions with correlation ρ defined on Ω. Let [0, T ] be a fixed interval on which the swing
contract is defined. This interval is then divided into subperiod {[Tmn−1, T

m
n ]}m=1,...,D

n=1,...,12 ,
where [Tmn−1, T

m
n ] represents the interval covered by month n of year m. We will suppress

the superscript m when not necessary.
Managing a swing contract basically leads to deal with, at least, two prices: one is

the so called contract price, which is the price the buyer of the swing option pays to the
seller for the withdrawal of a unitary quantity of gas. Let this price be I(t). The second
one is the gas spot price that the buyer can use to sell the gas to the market. Let us
denote this price with P (t). In practice, the owner of a swing contract can buy gas at
the price I(t) and then, eventually, sell this gas at the price P (t), realizing a profit (or
loss) equal to P (t)− I(t) for each unitary quantity of gas withdrawn.

Before approaching the modelling of price dynamics, a short description of how
contract price behaves could be explanatory.

The price the buyer of the swing option pays to the seller typically depends upon a
basket of crude and refined oil products traded every day in the market. This oil-linked
pricing scheme is pretty typical for European gas markets since most of the gas arriving
to Europe is a complementary output of oil extraction; this feature is not typical in the
US gas market, since American gas production is almost totally disjoint from oil one.

Typically, the price of this basket of oil related products is averaged through time
in order to smooth undesired volatility effects. The averaging rule is related to a triplet
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of numbers (ξ1, ξ2, ξ3) respectively denoting the number of months composing the back-
ward looking average of prices, the number of months prior to delivery that should not be
included in the averaging process and the number of months between one index calcula-
tion and the following (almost always equal to one, but also three and six are common).
More formally, if we denote by I(t) the price of the index at time t, we have that I(t) is
a piecewise constant function on the intervals [Tn, Tn+k) for some n, with a jump at time
Tn+k. If B(t) = (B1(t) . . . Bb(t)) denotes the vector whose components are the price at
time t of the oil-related products in the basket, α is a vector of weights, and we define
the set I(ξ) ⊆ N as

I(ξ) = {k|k = ν · ξ, ν ∈ N, k + ξ 6 12}

we can express the index price I(t) as the weighted average

I(t) = (Tn−ξ2 − Tn−ξ2−ξ1)−1

∫ Tn−ξ2

Tn−ξ2−ξ1

αB(s)ds, ∀t ∈ [Tn, Tn+ξ3),∀n ∈ I(ξ3) (1)

Notice that the following relationship holds:

I(t) ≡ I(Tn), ∀t ∈ [Tn, Tn+ξ3),∀n ∈ I(ξ3) (2)

It follows that the index price I(t) could be modelled in two ways. The first obvious
way, given the identity in Eq. (2), is to model the sequence of monthly prices {ITmn }

m
n as

a discrete sequence of random variables. The second way is a little more sophisticated.
We can assume that the index price has itself a spot continuous time dynamics. If we use
a different parametrization of the couple (ξ1, ξ2) by introducing `1, `2 which represent the
length of the averaging window and the length prior to delivery on which this window
ends, we can rewrite Eq. (1) as

I(t) = `−1
1

∫ Tn−`2

Tn−`1−`2
αB(s)ds, ∀t ∈ [Tn, Tn+ξ3),∀n ∈ I(ξ3)

We may take into account that `1, `2 should be functions of Tn because the length of the
month is not equal for every month. This is barely an improvement and to avoid huge
notations we don’t care about this. Now we can re-define the index price I(t) using its
spot value

I(t) = `−1
1

∫ t−`2

t−`1−`2
αB(s)ds (3)

Notice that Eq. (1) and Eq. (3) give the same value at the points {Tmn }mn , but have
different values for others t. We then use this index spot value in this way: at the
beginning of every month n, at time Tn, we fix the strike price for the swing contract
as the realixed index price ITn = î. This will be the fixed index price paid by the buyer
of the contract for month n, coerently with the behaviour of Eq. (1); on the other hand
for the instants t ∈ [0, T ] \ {Tmn }mn we have a dynamics coherent with the one in Eq. (3)
and not a constant one as in Eq. (1).
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Unfortunately, the definition in (3) is clearly non-Markovian, being an average on
past values of B(t). Here we make the following assumption: the dynamics in (3) can
be approximated by a new markovian one, solution of the following SDE

dI(t) = µi(t, I(t))dt+ σi(t, I(t))dWi(t) (4)

for some functions µi, σi : [0, T ]×R→ R.
In contrast with the contract index price, the spot price P (t) is directly traded on

local market and it changes (at least) once a day, depending on the liquidity of the local
market. So we make the following (continuous time) assumption for the dynamics of the
spot price P (t):

dP (t) = µp(t, P (t))dt+ σp(t, P (t))dWp(t) (5)

for some functions µp, σp : [0, T ]×R→ R.
We will specify other assumptions on the functions µp, µi, σp, σi later.

1.2 One year problem

In this and in the following sections we deal with the problem of finding the value of a one
year contract. For a standard swing contract, this is not a restriction or a simplification
of our problem: even if the contract is written over a longer period of time, in the
absence of constraints between two different years (such as make-up, carry forward, . . . )
the problem of pricing and manage the contract is independent for every year. In fact,
ordinary swing contract permits to the owner to buy in every sub-period a quantity
of gas, which we denote by u(t), bounded between a minimum (mDQ) and maximum
(MDQ) level which usually reflect physical effective transportation capacity limitations;
thus for every instant t

mDQ 6 u(t) 6 MDQ ∀t ∈ [0, T ] (6)

In addition, for every contractual year , minimum and maximum quantities are also
established, called respectively minimum annual quantity (mAQ) and annual contract
quantity (ACQ). If we introduce the cumulated quantity zm(t) for year m, at time t

Zm(t) =

∫ t∧Tm12

Tm0

u(s)ds

we have the constraints

mAQ 6 Zm(Tm12) 6 ACQ ∀m = 1, . . . , D

but also the relationship

Zm(Tm0 ) = 0 ∀m = 1, . . . , D (7)

Thus the admissible area for the control u(t) is exactly the same for every year, and it
is given by

Am = {u ∈ [mDQ,MDQ] s.t. mAQ 6 Zm(Tm12) 6 ACQ} ∀m = 1, . . . , D
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Sometimes the bounds on mAQ and ACQ can be overridden, but a penalty is paid. In
this case

Am = {u ∈ [mDQ,MDQ]} ∀m = 1, . . . , D

We will concentrate on the last case. In both cases, if no other inter-temporal constraints
are imposed to the problem (for instance make-up clauses), this fact and Equation (7)
lead to notice that the pricing problem is exactly the same in every year, and can be
faced separately year by year. So, from now on, we focus on a one-year problem.

Let [0, T ] be the reference interval of the year and let {[Tn−1, Tn]}n=1,...,12 be the
sequence of intervals describing every month, with T0 = 0 and T12 = T .

We notice that Eq. (6) forces the buyer of the contract to buy, during a year, at least
the quantity mDQ ·T . This quantity, called the take-or-pay quantity, has to be paid,
and may safely not be taken in consideration in our optimization, i.e. we can always
consider a decomposition of a swing contract in the same spirit of [3, Section 2]. We let

u(t) ∈ U = [0, ū]

with ū = MDQ−mDQ.
To keep a general view, we also let

Z(t) =

∫ t

0
u(s)ds (8)

Penalties are often imposed if the constraint Z(T ) ∈
[
M, M̄

]
is not satisfied. An example

of such penalties can be given by the function

Ψ(z) =


p ·M z ∈ (−∞, 0)

p ·
[
(z − M̄)+ + (M − z)+] z ∈ [0, ūT ]

p · (ūT − M̄) z ∈ (ūT,+∞)

(9)

where p > 0 is a proportional amount paid if the yearly constraints are not satisfied.
Other kinds of penalty functions can be considered, but in any case, from a mathematical
point of view, we can not assume that those functions are neither C2 or C1. A more
realistic assumption could be the continuity and the polynomial growth of the function
Ψ, so we make such assumptions. Finally, notice that the piecewise definition is only
a mathematical trick used to have a continuous and bounded function on the whole
space R. This will be an important assumption for Theorem 6. In practice, thanks
to the physical constraint ut ∈ [0, ū], at any time t ∈ [0, T ] the cumulated quantity z
always lies in the interval [0, ūT ] and so the maximal possible final penalty is given by
p ·
[
(z − M̄)+ + (M − z)+].
By introducing the function

ϕ(t) = max{Tn|Tn 6 t}

and defining
Î(t) = I(ϕ(t)) (10)

6



we can now write our value function: we want to maximize the expected value of the
discounted profit and loss i.e. we are interested in finding the contract value V 1(0, X0)
at the beginning of the year

V 1(0, X0) = sup
u∈A

E

[∫ T

0
e−rs(Ps − Îs)usds+ e−rTΨ(ZT )

]
(11)

where, for the sake of notation, we write the states as a four dimensional vector Xt:

Xt =
(
PtItÎtZt

)T
∈ R4

where the superscript T stands for the transposed. For a fixed interval t ∈ (Tn, Tn+1)
the dynamics of Xt is

dXt = f(t,Xt, ut)dt+ Σ(t,Xt, ut)dW (t) =

=


µp(t, Pt)
µi(t, It)

0
u(t)

 dt+


σp(t, Pt) 0

σi(t, It)ρ σi(t, It)
√

1− ρ2

0 0
0 0

( dW1(t)
dW2(t)

)
(12)

where W1, W2 are two uncorrelated Brownian motion, linked to Wp, Wi by the relation-
ship {

Wp(t) = Wi(t)
Wi(t) = ρW1(t) +

√
1− ρW2(t)

The contract value at terminal time T is the penalty function

V 13(t, x) ≡ Ψ(z)

Remark 1 The function V requires two separate arguments for the index part. The
first argument It represents the index spot value. This price is neither traded nor really
used in the contract, but it becomes useful to predict the future strike price ITn using
the (assumed) Markov property of It. The second argument Ît, represents the present
(traded) value at time t of the index, that is the strike price of the swing option for
month n. This is the realized price of the index at the beginning of the month.

We now use the dynamic programming principle on months. Taking into account
that the realized value of the index for month n is Iψ(t) = ITn = î and it is known
for t > Tn, we can define in every month n a value function V n(t, x) which represents
contract’s value during month n, when the index strike price î is known and fixed. Let
us define:

V 13(t, x) = Ψ(z) ∀(t, x) ∈ [0, T ]× S

V n(t, x) = sup
u∈A

Et,x

[∫ Tn

t
e−r(s−Tn−1)(Ps − î)usds

+e−r(Tn−Tn−1)V n+1(Tn, XTn)
] n = 1, . . . , 12

t ∈ [Tn−1, Tn]
(13)
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where in Et,x[·] is the expectation with respect to Pt,x which is the probability under
which X has the dynamics given by Eq. (12) with initial condition Xt = x. Formally

Et,x[φ(X(s))] =

∫
Rn

φ(y)Pt,x(s, dy)

where
Pt,x(s,B) = P(X(s) ∈ B|X(t) = x)

for every measurable function φ and every B in the σ-algebra of Borel sets of Rn.
We notice that

V n(Tn, ·) = V n+1(Tn, ·)

At this stage we have no hint about the smoothness of the functions V n, so in what
follows we derive the HJB equation for V n using the theory of viscosity solutions and
proving the required smoothness for the functions V n and their derivatives.

For every n = 1, . . . , 12 we introduce the following notations:

Ln(t, x, u) = −e−r(t−Tn−1)(p− î)u, s ∈ [Tn−1, Tn] (14)

ψn(x) = −e−r(Tn−Tn−1)V n+1(Tn, p, i, î, 0)

and substitute them in the function V n , rewriting Eq. (13) as

V 13(t, x) = 0 ∀(t, x) ∈ [0, T ]× S

V n(t, x) = − inf
u∈A

Et,x

[∫ Tn

t
−e−r(s−Tn−1)(Ps − î)usds

−e−r(Tn−Tn−1)V n+1(Tn, XTn)
]

= (15)

= − inf
u∈A

Jn(t, x;u)

having defined the functions Jn(t, x;u) as

Jn(t, x;u) = Et,x

[∫ Tn

t
Ln(s,Xs, us)ds+ ψn(XTn)

]
(16)

From now on in this section, we mainly apply, and when necessary extend, the results
of [11]. There, the general problem faced has as value function of the form

V (t, x) = inf
u∈A

J(t, x;u) (17)

We should introduce a new sequence of value functions Vn(t, x) = −V n(t, x) for which
the results in [11] hold or, as an alternative, take always into account the negative sign.
To avoid involved notation we will still write V n instead of −V n and when necessary we
will come back to the original problem by doing the sign substitution.
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2 Main theoretical results about viscosity solution

Let us start this section with a definition which will be very important in the rest of the
paper.

Definition 1 We say that a function f(x) and its derivatives until the k-th order have
polynomial growth, and we indicate it with f ∈ Ckp (Rn), if for all i = 1, . . . , k there exist
C,m such that:

|f (i)(x)| 6 C(1 + |x|m) ∀x ∈ Rn

The method of dynamic programming provides a powerful tool for approaching the
problem in Eq. (17). When the value function V (t, x) of the problem is smooth enough,
it can be proved that it is a solution of a non-linear equation, known as the dynamic pro-
gramming equation or Hamilton-Jacobi Bellman equation (see for example [23, Chapter
19]). However, in general (and in particular in our case) the value function is not smooth
enough to satisfy the HJB equation in the classical sense, or we have no hints, at this
stage, that the value function is smooth. A weaker formulation of solution to this equa-
tion is necessary if we want to pursue the method of dynamic programming. Crandall
and Lions provided in [9] such a weak formulation which they called viscosity solution.
In this and in the following section we introduce the definition of such a solution and we
face the problem of pricing a swing contract with the theory arising from viscosity solu-
tion in order to show that the value function satisfies a dynamic programming equation
and has some regularity.

This section is devoted to the definition of viscosity solutions of a general class of
partial differential equation; here we prove some general results which will be used in
the rest of this work. We end the section showing the links between viscosity solution
and stochastic optimal control problems.

Let O be an open subset of Rn and define

Q = [0, T )×O, Q = [0, T ]× Ō, Q0 = [0, T )×Rn, Q0 = [0, T ]×Rn

Let

• C(Q) be the set of continuous real valued functions defined on Q

• C1,2(Q) be the set of all real valued functions on Q which are once continuously
differentiable in the first variable and twice continuously differentiable in their
second argument

• Cp(Q) be the set of all real valued function on Q with polynomial growth.

Consider an equation of the kind

− Vt(t, x) +H(t, x,DxV (t, x), D2
xV (t, x)) = 0 (18)

with H a continuous real valued function defined on the space Q×Rn ×Sn (here Sn is
the set of all n× n symmetric matrices) such that

H(t, x, p, A+B) 6 H(t, x, p, A)
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for all (t, x) ∈ Q, p ∈ Rn, A,B ∈ Sn with B > 0. We introduce the following definition
of viscosity solution:

Definition 2 We say that a function V ∈ C
(
Q
)

is

• a viscosity subsolution of Eq. (18) if for each v ∈ C1,2(Q)

−vt(t̄, x̄) +H(t, x,Dxv(t̄, x̄), D2
x(t̄, x̄)) 6 0

at every (t̄, x̄) ∈ Q which is a local maximum of V − v on Q

• a viscosity supersolution of Eq. (18) if for each v ∈ C1,2(Q)

−vt(t̄, x̄) +H(t, x,Dxv(t̄, x̄), D2
x(t̄, x̄)) > 0

at every (t̄, x̄) ∈ Q which is a local minimum of V − v on Q

• a viscosity solution of Eq. (18) if it is both a viscosity subsolution and a viscosity
supersolution of Eq. (18) in Q

We call reference probability system ν a 4-uple ν = (Ω, (Fs)s∈[t,T ],P,W ) where
(Ω,FT ,P) is a probability space, and W is a Brownian motion adapted to the filtration
(Fs)s∈[t,T ]. Given a compact set U ⊆ Rn1 , we denote by

At,ν = {u s.t. u is a progressively measurable U -valued process defined on ν}

We then suppose that X is aRn-valued process governed by the stochastic differential
equation

dXs = f(s,Xs, us)dt+ Σ(s,Xs, us)dWs, s ∈ [t, T ] (19)

given the initial data X(t) = x and with u ∈ At,ν . We make the following

Assumption 1 We assume that:

a) U is compact

b) f,Σ are continuous on Q0 × U and f(·, ·, u) and σ(·, ·, u) are of class C1
(
Q0

)
for

each u ∈ U ;

c) f , Σ are itz with respect to their second argument, i.e. there exists a constant L > 0
such that for all t ∈ [0, T ] and for all u ∈ U the following hold:

|f(t, x, u)− f(t, y, u)| 6 L|x− y|
|σ(t, x, u)− σ(t, y, u)| 6 L|x− y|

d) for suitable C1, C2

|ft|+ |Dxf | 6 C1, |σt|+ |Dxσ| 6 C1

|f(t, 0, u)|+ |σ(t, 0, u)| 6 C2, ∀u ∈ U
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Remark 2 Assumption 1(c) and 1(d) lead to (both for f and Σ):

|f(t, x, u)| 6 |f(t, 0, u)|+ |f(t, x, u)− f(t, 0, u)| 6 C2 + C|x| 6 Ĉ(1 + |x|)

for a suitable constant Ĉ, i.e. the drift and the volatility have linear growth in x.
Let us consider the following general optimal control problem. We want to choose a

control ũ ∈ At,ν which minimize the function

J(t, x;u) = Eνt,x

[∫ T

t
L(s,Xs, u)ds+ ψ(XT )

]
where Eνt,x is the expectation with respect to Pνt,x which is the probability under which
X has the dynamics given by Eq. (19) with initial condition Xt = x and L and ψ are
continuous functions with polinomial growth, i.e. such that

|L(t, x, u)| 6 C3(1 + |x|m) (20)

|ψ(x)| 6 C3(1 + |x|m) (21)

for suitable constants C3 > 0 and m > 0. Then we consider, for a fixed probability
system ν, the infimum of J among all u ∈ At,ν :

Vν(t, x) = inf
u∈At,ν

J(t, x;u) (22)

and finally we define the value function as:

V (t, x) = inf
ν
Vν(t, x) (23)

This problem is linked, and in this section we will detail this link, to a partial
differential equation of the kind of Eq. (18), called dynamic programming equation or
Hamilton-Jacobi-Bellman equation (HJB equation), obtained by imposing

H(t, x, p, A) = sup
u∈U

{
−f(t, x, u) · p− 1

2
tr(A · (ΣΣ′)(t, x, u))− L(t, x, u)

}
(24)

and the boundary condition

V (T, x) = ψ(x) ∀x ∈ Rn

One important tool in proving that V is a viscosity solution of Eq. (18), with H as
in Eq. (24), is the so called dynamic programming property for the value function.

Definition 3 We say that a function W has property (DP) (dynamic programming) if
for every reference probability system ν, for every control u ∈ At,ν and every stopping
time θ taking values in [t, T ] we have

W (t, x) 6 Et,x

[∫ θ

t
L(s,Xs, us)ds+W (θ,Xθ)

]
and for every δ > 0 there exists a ν and a control u ∈ At,ν such that

W (t, x) + δ > Et,x

[∫ θ

t
L(s,Xs, us)ds+W (θ,Xθ)

]
for every stopping time θ taking values in [t, T ].
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2.1 Existence

The next result shows the links between the notion of viscosity solution of HJB equation
and the corresponding stochastic optimal control problem.

Theorem 1 If Assumption 1 holds, Q and the control set U are bounded and

i. ψ ∈ C2(Rn), i.e. the final condition ψ is a continuous function, twicely continuously
differentiable on Rn

ii. the running cost L is a continuous function on Q0 × U and has polynomial growth
on its second argument, i.e.

|L(t, x, u)| 6 C3(1 + |x|m) ∀(t, u) ∈ [0, T ]× U

for some C3 > 0,m > 0

then:

a) V ∈ C(Q̄o), i.e. the value function V (t, x) defined in Eq. (23) is a continuous function
on Q̄0

b) property (DP) holds for the value function V (t, x) defined in Eq. (23)

c) V = Vν for every reference probability system ν

d) V is a viscosity solution of Eq. (18), with H defined in Eq. (24), in Q0

Proof For (a-c) see [11, Theorem 7.1 pag. 178]. For (d) see [11, Corollary 3.1 pag.
209]. �

Summing up, under the hypothesis of Theorem 1, the PDE (18) can be used to
find out a solution of our problem. Unfortunately, in our case (and in a lot of other
cases arising from financial application) the functions V n(t, x), which are both the value
function for month n but also the final condition for the problem at month n−1, are far
from being bounded, mainly because the spread Pt − It is not bounded. In this case we
can not use Theorem 1. What we want to do in the following is to prove an extension
of Theorem 1, which uses only the polynomial growth of the final condition.

Theorem 2 If Assumption 1 holds and ψ ∈ Cp(Q0), then V is a viscosity solution
Eq. (18), with H defined in Eq. (24). Moreover, V = Vν for every reference probability
system ν.

In order to prove this theorem, we state and prove two intermediate results. The
first one states that if the value function has property (DP) and it is a continuous
function with polynomial growth, then it is a viscosity solution of the HJB equation.
Let us remark that the weak condition ψ ∈ Cp(Q0) ensures (in the same way of the
next Proposition 1) only the polynomial growth of V and nor the property (DP) nor the
continuity.

12



Theorem 3 If property (DP) holds for the value function V and V ∈ Cp(Q0) then V
is a viscosity solution of Eq. (18), with H defined in Eq. (24), in Q0.

Proof See [11, Theorem 5.1, pag 72] �

Lemma 1 If ψ ∈ Cp(Rn), then there exists a sequence (ψm)m∈N in C2
p(Rn) such that

ψm → ψ uniformly on compact sets. Moreover, there exists C, k > 0 such that

|ψm(x)| 6 C(1 + |x|k)

uniformly with respect to m.

Proof For m ∈ N, let us define the sequence of functions (ρm)m∈N ⊆ C∞(Rn) such
that ρm > 0, ρm(y) = 0 if |y| > 1

m and∫
Rn

ρm(y)dy = 1

Now introduce the sequence (ψm)m∈N as

ψm(x) = (ψ ∗ ρm)(x) =

∫
Rn

ψ(y)ρm(x− y)dy

Then ψm ∈ C∞(Rn). Moreover, being ψ ∈ Cp(Rn) then ψ is uniformly continuous on
each compact set K: for all ε > 0 there exists δ > 0 (which depends on ε and K) such
that

|ψ(x− y)− ψ(x)| < ε, ∀x ∈ K, |y| 6 δ

Then for all x ∈ K, m > 1
δ

|ψm(x)− ψ(x)| =
∣∣∣∣∫
Rn

ψ(x− y)ρm(y)dy − ψ(x)

∣∣∣∣ =

=

∣∣∣∣∫
Rn

(ψ(x− y)− ψ(x))ρm(y)dy

∣∣∣∣ 6
6
∫
|y|6 1

m

|(ψ(x− y)− ψ(x))|ρm(y)dy 6

6 ε
∫
|y|6 1

m

ρm(y)dy = ε

So ψm → ψ uniformly on compact sets. Moreover because ψ ∈ Cp(Rn)

|ψm(x)| 6
∫
|y|6 1

m

|ψ(x− y)|ρm(y)dy 6

6
∫
|y|6 1

m

C(1 + (|x|+ |y|)k)|ρm(y)dy 6

6 C(1 + (|x|+ 1

m
)k)

∫
|y|6 1

m

ρm(y)dy 6 C(1 + (|x|+ 1)k)

13



so also ψm has polynomial growth and the uniform estimate holds. �

Let us now recall that in [11, Appendix D] the following inequality is proved:

Et,x[‖X·‖m∞] =6 ξm(1 + |x|m) (25)

which holds ∀m > 0, with ξm constant depending only on T − t and on C1, C2 of
Assumption 1. Finally, using the Markov inequality we get

Pt,x{‖X‖∞ >M} 6
ς

M
(1 + |x|) (26)

We can now prove Theorem 2.
Proof We would like to use the result of Theorem 1 applied to the value function V . In
order to do this, we need to prove that V is a continuous function with property (DP).

Let (ψm)m∈N be a sequence in C2
p(Rn) such that ψm → ψ uniformly on compact

sets, as described in Lemma 1. Let Vm,ν and Vm the corresponding value functions, i.e.
the value functions of stochastic optimal control problems with final conditions ψm. Let
V the value function with final condition ψ.

Thanks to Theorem 1 we know that Vm,ν = Vm for every reference probability system,
property (DP) holds for Vm and Vm are continuous functions.

We now prove that Vm → V uniformly on compact sets and so that V is continuous.
By definition of V and Vm, for each δ > 0 there exists ν and u ∈ At,ν such that

V (t, x) + δ − V (t, x) 6

Et,x

[∫ T

t
L(s,Xs, u)ds+ ψm(XT )

]
− V (t, x) 6

6 Et,x[ψm(XT )− ψ(XT )] =

= Et,x[(ψm(XT )− ψ(XT ))(1|XT |6M + 1|XT |>M )] 6

6 ‖ψm − ψ‖B(0,M)︸ ︷︷ ︸
=I1

+Et,x[(ψm(XT )− ψ(XT ))1|XT |>M ]︸ ︷︷ ︸
=I2

where ‖ · ‖B(0,M) denotes the sup norm in B(0,M). An analogous inequality holds for
V (t, x)− Vm(t, x) + δ.

We have that, for all M > 0, I1 → 0 as m → ∞ thanks to the uniform convergence
of (ψm)m∈N on compact sets. Since ψ and ψm have polynomial growth, using Jensen’s
inequality, the well known inequality 2xy 6 x2 + y2 and the ones in Eq. (25 - 26), we

14



obtain:

I2 = Et,x[(ψm(XT )− ψ(XT ))1|XT |>M ] 6

6 Et,x[|ψm(XT )|+ |ψ(XT )|1|XT |>M ]

6 Et,x[2C(1 + |XT |k)1|XT |>M ]) 6

6 (Et,x[4C2(1 + |XT |k)2]Et,x[1|XT |>M ]) =

= (Et,x[4C2(1 + |XT |k)2]Pt,x{|XT | > M}) 6
6 (4C2

Et,x[1 + 2‖X·‖k∞ + ‖X·‖2k∞]Pt,x{‖X·‖∞ > M}) 6

6
(

8C2(1 +Et,x[‖X·‖2k∞])
ς

M
(1 + |x|)

)
6

6

(
C1

M
(1 + |x|2k)(1 + |x|)

) 1
2

6
C2

M
(1 + |x|k+1)

so I2 can be made arbitrarily small by choosing a suitable M . This imply that Vm → V
on compact sets, hence V is continuous.

We now prove that property (DP) holds for V . Given an arbitrary stopping time θ∣∣∣∣Et,x [∫ θ

t
L(s,Xs, us)ds+ V (θ,Xθ)−

∫ θ

t
L(s,Xs, us)ds− Vm(θ,Xθ)

]∣∣∣∣ 6
6 |Et,x[V (θ,Xθ)− Vm(θ,Xθ)]| 6
6 Et,x[(1|Xθ|6M + 1|Xθ|>M )|V (θ,Xθ)− Vm(θ,Xθ)|] 6
6 ‖V − Vm‖B(0,M)︸ ︷︷ ︸

=I3

+Et,x[1|Xθ|>M |V (θ,Xθ)− Vm(θ,Xθ)|)︸ ︷︷ ︸
=I4

We just proved that that I3 → 0 as m→∞. Let us remember that we are assuming that
the running cost L and the final condition ψ has polynomial growth in x. This implies
that, by its definition, also V has polynomial growth in its second argument. Combined
with the results in Lemma 1 and using the same strategy used for I2, we get:

I4 = Et,x[1|Xθ|>M |V (θ,Xθ)− Vm(θ,Xθ)|) 6
6 (Pt,x[|Xθ| > M ]Et,x[4C2(1 + |Xθ|k)2]) 6

6 (Pt,x[‖X·‖∞ > M ]C1(1 +Et,x[‖X·‖2∞])) 6
C2

M
(1 + |x|k+1)

also I4 can be made arbitrarily small by choosing a suitable M and x in a given compact
set. Summing up, for each δ > 0 there exist M and m such that I3 < and I4 <. Finally,
thanks to property (DP) of Vm, there exists a ν and a control u ∈ At,ν such that

Vm(t, x) +
δ

3
> Et,x

[∫ θ

t
L(s,Xs, us)ds+ Vm(θ,Xθ)

]
for every stopping time θ taking values in [t, T ]. By putting together these three in-
equalities, we obtain property (DP) for V .

In conclusion, we have proved that V is continuous, has polynomial growth, and has
property (DP). From Theorem 1 we can conclude. �
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2.2 Uniqueness

Theorem 4 Let us assume the hypothesis in Assumption 1 and in addition that

i. the running cost L(t, x, u) and the final condition ψ(x) are continuous functions with
quadratic growth, i.e. m 6 2 in Eq. (20) and (21)

Let V1, V2 be two viscosity solution of problem (18), with H as in Eq. (24) and the final
condition V (T, x) = ψ(x), having quadratic growth, i.e.

|Vi(t, x)| 6 C(1 + |x|2) ∀(t, x) ∈ Q0, i = 1, 2

Then V1 = V2.

Proof The proofs follows from Theorem 2.1, Corollary 2.1 and Remark 2.2(iii) in [16].
�

2.3 First Derivative

In this subsection we present a general result which gives the existence of the first
derivative for a general control problem. We continue to assume Assumption 1 and the
result found in Eq. (29). In addition, we need the following stronger assumption on Ln

and ψn:

Assumption 2 We assume that:

i. Ln is continuous on Q0 × U , Ln(·, ·, u) ∈ C1(Q̄0) for each u ∈ U and:

|Lnt |+ |Lnx| 6 C4(1 + |x|`) (27)

ii. ψn is locally Lipschitz

Let us now introduce the definition of different quotients ∆h
ξV

n, which is fundamen-
tal in this section because in order to prove existence and smoothness of V n(t, x), we
first need bounds for those quotients, and then a general result allows to conclude the
existence of the derivatives V n

x (t, x) = DxV
n ∈ Lploc for p > 1.

Definition 4 We call difference quotients of the function f(t, x) of size h and direc-
tion ξ the quantities:

∆h
ξ f(t, x) =

f(t, x+ hξ)− f(t, x)

h

where ξ ∈ Rn is a direction, i.e. it is such that |ξ| = 1.

As for the existence of the solution, a lot of results on the existence of the derivatives
are available for the case ψ ∈ C2(Rn), for instance [11, Lemma 8.1, pag 183], but this
is not our case. So we now extend the results to the case where ψ ∈ C0

p(Rn) and it is
also locally Lipschitz. This result can be used in a straightforward manner for n = 12
using the piecewise linear definition of Ψ(x) and needs to be adapted by induction for
n = 1, . . . , 11. We state the lemma for a generic ψ and L.
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Lemma 2 If Assumptions 1 and 2 hold and the first derivative of the final condition
ψx(x) exists a.s. and has polynomial growth

|ψx| 6 C4(1 + |x|k) (28)

then there exists M1 which depends on C1, C2, C4, k, T such that for all directions ξ

|∆h
ξJ | 6M1(1 + |x|k)

for every h ∈ (0, 1].

Proof Given (t, x0) ∈ Q0, let (Xz)z∈[t,T ] be the solution of

dXs = f(s,Xs, us)dt+ σ(s,Xs, us)dWs, s ∈ [t, T ]

with the initial condition Xt = x0 and (Xh
s )s∈[t,T ] the solution with initial condition

Xt = x0 + hξ. Also, let ∆hXs = Xh
s−Xs
h . Since L and ψ are Lipschitz, then their

restriction to each line segment {Xλ
s |Xλ

s = (1 − λ)Xs + λXh
s , λ ∈ [0, 1]} is absolutely

continuous and the Fundamental Theorem of Calculus holds (see [12, pag. 102]), so we
have

∆h
ξJ(t, x;u) = E

[
1

h

∫ T

t
(L(s,Xh

s , us)− L(s,Xs, us))ds+
1

h
(ψ(XT )− ψ(Xh

T ))

]
=

= E

[∫ T

t

∫ 1

0
Lx(s,Xλ

s , us) ·∆hXsdλ

]
+E

[∫ 1

0
ψx(Xλ

T ) ·∆hXTdλ

]
By Equation (27)∣∣∣∣∫ 1

0
Lx(s,Xλ

s , us)

∣∣∣∣ 6 ∫ 1

0
C4(1 + |Xλ

s |k)dλ 6M(1 + |Xs|k + |Xh
s |k)

By Equation (28)∣∣∣∣∫ 1

0
ψx(Xλ

T )dλ

∣∣∣∣ 6 ∫ 1

0
C4(1 + |Xλ

T |k)dλ 6M(1 + |XT |k + |Xh
T |k)

By Cauchy-Schwartz

|∆h
ξJ | 6 2M

(
E

[∫ T

t
(1 + |XT |k + |Xh

T |k)2

])
(E[|∆Xh

T |2])

We bound the first term on the right hand side using (25) with m = 2k and x =
x0, x0 + hξ. We also have that E[|∆Xh

T |2] 6 B (see [11], Appendix D) where B depends
on bounds for |fx| and |σx| and the costant C1 on Assumption 1. Since |ξ| = 1 and
0 < h 6 1

1 + |x|2k + |x+ hξ|2k 6 Ck(1 + |x|2k)
for suitable Ck. �

The following Theorem gives the existence of Vx(t, x) and it is stated for generic final
condition ψ and running cost L.

17



Theorem 5 If Assumption 1, 2 and Equation (28) hold, then Vx(t, x) exists and it is
in Lploc(Q0) for every p ∈ (1,∞]. Moreover

|Vx(t, x)| 6M1(1 + |x|k)

for almost every (t, x) ∈ Q0, where M1 depends on C1, C2, C3, C4, k, T .

Proof We take a generic open bounded set B. Then by Lemma 2 we have

|∆h
ξJ(t, x, u)| 6M1(1 + |x|k) ∀(t, x) ∈ B

Since these bounds are the same for all controls u, we obtain that

|∆h
ξV (t, x)| 6M1(1 + |x|k)

Then we take p > 1 and an open set A such that B ⊆ A and dist(B, ∂A) < min{1, T}
and we have that ∆h

ξV (t, x) ∈ Lp(B) and

‖∆h
xV ‖Lp(B) 6M3‖1 + |x|k‖Lp(B)

for all h ∈ (0,min{1, T}), where M3 depends on M1 and M2. This implies (see [15], pag
246-248) that Vx(t, x) ∈ Lp(B) and ‖Vx‖Lp(B) 6 ‖M3(1 + |x|k)‖Lp(B). Moreover, Vx(t, x)
is also the derivative in the Sobolev sense. In fact, for each ϕ ∈ C∞0 ((0, T )×Rn)∫

ϕVi =

∫
lim
h→0

ϕ∆h
i V = lim

h→0

∫
ϕ∆h

i V = − lim
h→0

∫
V∆h

i ϕ = −
∫
V ϕi

and the conclusion follows. �

3 Viscosity solution for swing contracts

In this section we apply results in Section 2 to the one year problem presented in Section
1. We continue to make the hypothesis in Assumption 1.

3.1 Existence

First of all, we notice that the functions Ln(t, x, u) as defined is Eq. (14), being a linear
function of p and î, has polynomial growth in its second argument x, i.e.

|Ln(t, x, u)| 6 C3(1 + |x|m) ∀t ∈ [0, T ],∀u ∈ U,∀n = 1, . . . , 12 (29)

In particular, being Ln(t, x, u) a linear function of x, we can assume quadratic growth,
i.e. m 6 2. The same for Ψ(x) defined in Eq. (9). As a consequence, also the functions
V n(t, x) has quadratic growth, as proved by the following proposition.

Proposition 1 The functions V n(t, x), as defined in formula (15), have quadratic
growth for all n = 1, . . . , 13.
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Proof By backward induction. V 13(t, x) = Ψ(z) has quadratic growth.
Now assume that V n+1(t, x) has quadratic growth, i.e. for some constants Bn+1 and

mn+1 6 2 we have
|V n+1(t, x)| 6 Bn+1(1 + |x|mn+1) (30)

Using notation in Eq. (14), the result in Eq. (29), the inductive hypothesis in Eq. (30)
and the inequalities (25) we get:

|Jn(t, x, u)| =
∣∣∣∣Et,x [∫ Tn

t
Ln(s,Xs, us)ds+ ψn(XTn)

]∣∣∣∣ 6
6 Et,x

[∫ Tn

t
|Ln(Xs, us)ds|+

∣∣V n+1(Tn,XTn)
∣∣] 6

6 Et,x

[∫ Tn

t
C3(1 + |Xs|m)ds+Bn+1(1 + |XTn |mn+1)

]
6

6 Et,x

[∫ Tn

t
C3(1 + ||X·||m∞)ds+Bn+1(1 + ||X·||mn+1

∞ )

]
=

= C3(Tn+1 − t)(1 +Et[||X·||m∞]) +Bn+1(1 +Et[||X·||mn+1
∞ ]) 6

6 ς + ξm(1 + |x|m) +Bn+1Bmn+1(1 + |x|mn+1) 6 (31)

6 Bn(1 + |x|mn)

with mn = max{m,mn+1} 6 2 being both m 6 2 (see Eq. (29)) and mn+1 6 2 (inductive
hypothesis). Bn is a suitable constant which depends only on Tn − t, C3, Bn+1. �

We prove now that V 12 is continuous and has property (DP). Then by induction we
will extend the same results also to other functions V n for n = 1, . . . , 11

Theorem 6 If Assumptions 1 hold, then V 12(t, x) ∈ C([T11, T ]×R3) and has property
(DP). Moreover, V 12 = V 12

ν for every reference probability system.

Proof Being Ψ(z) a bounded and uniformly continuous function, we can apply Corollary
7.1, pag 181, in [11].

Alternatively, we can use the same idea in the proof of Theorem 2 since Ψ(z) has
polynomial growth. �

Now the main result for V 12(t, x).

Theorem 7 The function V 12(t, x) is a viscosity solution of the dynamic programming
equation:

− V 12
t +H(t, x,DxV

12, D2
xV

12) = 0 (32)

in [T11, T )×R4, where H in this case reads:

Vt +
1

2
σ2
pVpp + ρσpσiVpi +

1

2
σ2
i Vii +µpVp +µiVi− sup

u∈U
{e−r(t−T11)(p− î− Vz)u} = 0 (33)
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Proof See [11, Corollary 3.1, pag 209]. Alternatively, we can use Theorem 2 since Ψ(z)
has polynomial growth. �

Remark 3 We now come back to our original problem with the right minus sign by
substituting the function V with −V in Eq. (33). Thus the correct equation satisfied by
the value function in formula (15) is:

Vt +
1

2
σ2
pVpp + ρσpσiVpi +

1

2
σ2
i Vii + µpVp + µiVi+

+ sup
u∈U
{e−r(t−Tn−1)(p− î+ Vz)u} = 0 (34)

V 12(T12, x) = e−r(T12−T11)Ψ(x)

Note 1 By substituting Ṽ (t, x) = e−r(t−Tn)V (t, x) in Eq. (34) we obtain an equation
analogous to the one in [4]:

Vt − rV +
1

2
σ2
pVpp + ρσpσiVpi +

1

2
σ2
i Vii + µpVp + µiVi + sup

u∈U
{(p− î+ Vz)u} = 0

We now extend the results for V 12(t, x) also to the other value functions V n for
n = 1, . . . , 11.

Theorem 8 For every n = 1, . . . , 12 the function V n is a viscosity solution of the HJB
equation (33) in [Tn, T )×R4, with V replaced by V n, and with final condition:

V n(Tn, x) = ψn(x) = e−r(Tn−Tn−1)V n+1(Tn, x)

Moreover, V n = V n
ν for every reference probability system.

Proof Going backward in time, by induction, Theorem 7 states that V 12(t, x) is
a viscosity solution of Eq. (33). Let us suppose that V n+1(t, x) is a viscosity solu-
tion of Eq. (33). Thanks to Proposition 1, V n+1(t, x) ∈ Cp(Q0). By Theorem 2,
the functionV (t, x) = V n(t, x) is the solution of

−Vt +H(t, x,DV,D2V ) = 0

with boundary condition

V n(Tn, x) = e−r(Tn−Tn−1)V n+1(Tn, x)

�
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3.2 Uniqueness

We want to apply Theorem 4 to our problem.
To do this, we notice that the control set U is bounded, the running cost functions

Ln(t, x, u) are continuous with quadratic growth in x and thanks to Proposition 1 and
Theorem 6 the final conditions

ψn(x) = e−r(Tn−Tn−1)V n+1(Tn, p, i, ι, 0)

are also continuous functions with quadratic growth in x. Assumptions (1) are supposed
to be satisfied. We can apply Theorem 4.

3.3 First derivative

In this section we prove that the first derivatives of our value functions, V n
x , exist.

We notice that condition (i) of Assumption 2 is verified for all n = 1, . . . , 12 in our
case, that is when Ln is the one in Equation (14). Also condition (ii) can be easily
proved:

Proposition 2 For every n = 1, . . . , 12, the value functions V n(t, x) are Lipschitz.

Proof For all u ∈ U , Ln(t, x, u) are Lipschitz for every n = 1, . . . , 12:

|Ln(t, x1, u)− Ln(t, x2, u)| =
= | − e−r(t−Tn−1)(p1 − î1)u+ e−r(t−Tn−1)(p2 − î2)u| 6
6 |(p2 − p1) + (̂i2 − î1)|ū 6
6 (|p2 − p1|+ |̂i2 − î1|)ū 6
6 ‖x1 − x2‖1ū

Starting from n = 12, the final condition Ψ defined in Eq. (9) is a piecewise linear
function and so it is Lipschitz. This implies that for all control u also J12(t, x;u) is
Lipschitz and so V 12(t, x) is Lipschitz. Backward induction on n completes the proof.

�

The main result of this section is the following theorem.

Theorem 9 For every n = 1, . . . , 12, if Assumptions 1 and 2 hold, then the derivatives
V n
x (t, x) exist, they are in Lploc(Q0) for every p ∈ (1,+∞] and for almost every (t, x) ∈ Q0

we have
|V n
x (t, x)| 6M1(1 + |x|`)

where M1 depends on C1, C2, C3, C4, k, T .

Moreover, we prove that also the derivatives have polynomial growth. Again, back-
ward induction is the key to prove that the value function has a first derivative. We
start with two corollaries.
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Corollary 1 There exists M1 which depends on C1, C2, C4, k, T such that for all direc-
tions ξ

|∆h
ξJ

12| 6M1(1 + |x|k)

for every h ∈ (0, 1].

Proof Apply Lemma 2 with the final condition Ψ(x) defined in Eq. (9) which is a piece-
wise linear Lipschitz function with Ψx(x) piecewise constant defined almost everywhere.

�

Corollary 2 The first derivative V 12
x exists and it is in Lploc(Q0) for every p ∈ (1,∞].

Moreover
|V 12
x (t, x)| 6M1(1 + |x|k)

for almost every (t, x) ∈ Q0, where M1 depends on C1, C2, C3, C4, k, T .

Proof Thanks to the result of Corollary 1 we can apply Theorem 5 to V 12(t, x) with
the final condition Ψ(x). �

Now we prove the main result of this section, i.e. Theorem 9.
Proof We know that ψn(x) are Lipschitz thanks to Proposition 2. Let us suppose that
for n 6 11 the derivatives ψnx exists and satisfies

|ψnx(x)| = |V n+1
x (Tn, x)| 6M1(1 + |x|`) (35)

This is true for n = 11, as proved in Corollary 2. We apply Lemma 2 to bound the
difference quotients

|∆h
ξJ

n(t, x;u)| 6 M̃(1 + |x|`)

and then apply Theorem 5 to obtain the existence of V n
x (t, x) ∈ Lploc and its polinomyal

growth:
|V n
x (t, x)| 6Mn(1 + |x|`)

This completes the proof. �

3.3.1 Existence of the optimal control

We proved that the first derivatives V n
x exists. Coming back to our HJB equation in

(34), we can state that also a candidate for the optimal control is a.s. well defined. In
fact, a straight calculation leads from (34) to:

u∗ = u∗(t, x) =

{
0 if p− î+ Vz(t, x) 6 0

ū if p− î+ Vz(t, x) > 0
(36)
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Remark 4 As observed in [4], the candidate optimal control in Eq. (36) has a nice
economical interpretation. In fact, the marginal value Vz says how much the contract
value falls down if we increase the cumulted withdrawn quantity z, i.e. if we decide to
exercise the swing option (i.e. to buy gas). What this control says is that we have to
exercise the option only if the spread payoff p− î (which is the marginal profit we face
if we exercise) dominates the lost option value Vz.

By inserting the candidate optimal control (36) into HJB Equation (34), we obtain a
linear partial differential equation for the value function V for which classical smoothness
results hold (see, for instance, [18]).

4 Numerical methods

This section focuses on numerical methods to find the price of swing contracts. First of
all, in Section 4.1 we introduce a more concrete dynamics for the prices: we use particular
cases of the model in [22] which are rather standard models for energy prices (see for
example [13, Chapter 23.3] and [20]). In Section 4.2 a finite difference method for Eq.
(34) is presented. Section 4.3 deals with a popular method used among practitioners:
Least Square Monte Carlo, which works on a discrete version of the value function in
Eq. (11), and does not use the HJB equation. This method is not accurate as finite
differences, but it is easy to implement, even if it suffers of some drawbacks we will
discuss later.

All the algorithms we present work in discrete time. In the whole chapter we assume
that the time intervals [0, T ] and [Tn, Tn+1] are discretized into appropriate sequences
which will be defined time by time when necessary. For the finite difference algorithm,
also the intervals on which the prices lie has to be bounded and discretized, while the
other method takes advantage from Monte Carlo simulations of path prices.

4.1 Price dynamics

We assume that the log-prices of the spot gas price Pt = logPt and spot index price
It = log It follow the mean reverting dynamics

dP(t) = θp(µp − P(t))dt+ σpdWp(t)

dI(t) = θi(µi − I(t))dt+ σidWi(t)

whose solutions at time s, given the states P(t) and I(t) at time t < s, are

P(s) = (P(t)− µp)e−θp(s−t) + µp + σp

∫ s

t
eθp(u−s)dWp(u) (37)

I(s) = (I(t)− µp)e−θi(s−t) + µi + σi

∫ s

t
eθi(u−s)dWi(u) (38)
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The processes Wp and Wi are two Brownian motions with mutual correlation ρ. The
realizations of the log-prices are defined using the notation:

pt = log(pt) = log(Pt(ω)) = Pt(ω)

it = log(it) = log(It(ω)) = It(ω)

We suppress the subscript t when clear from the context.
The conditional mean and variance for the log-processes P(t) and I(t) can be derived

from Equations (37-38)

mp(t, p, s) = Et,x[P(s)] = (P(t)− µp)e−θp(s−t) + µp = (p− µp)e−θp(s−t) + µp

νp(t, s) = Vart,x[P(s)] = σ2
p

∫ s

t
e2θp(u−s)du =

σ2
p

2θp
(1− e2θp(t−s))

mi(t, i, s) = Et,x[I(s)] = (I(t)− µi)e−θi(s−t) + µi = (i− µi)e−θi(s−t) + µi

νi(t, s) = Vart,x[I(s)] = σ2
i

∫ s

t
e2θi(u−s)du =

σ2
i

2θi
(1− e2θi(t−s))

For the price processes P (t) and I(t) we obtain:

dPt = d exp{P(t)} = Pt

((
θp(µp − log(Pt)) +

1

2
σ2
p

)
dt+ σpdWp(t)

)
dIt = d exp{I(t)} = It

((
θi(µi − log(It)) +

1

2
σ2
i

)
dt+ σidWi(t)

)

Et,x[P (s)] = Et,x[eP(s)] =

= exp

{
Et,x[P(s)] +

1

2
Vart,x[P(s)]

}
=

= exp

{
mp(t, p, s) +

1

2
νp(t, s)

}
=

= exp

{
(log(pt)− µp)e−θp(s−t) + µp +

σ2
p

4θp
[1− e2θp(t−s)]

}
Finally, we calculate the conditional joint density fP,I of the log-price random vector

(P, I) at time t given the realization p and i

gP(p; t, x, s) =
p−mp(t, p, s)

νp(t, s)

gI(i; t, x, s) =
i−mi(t, i, s)

νi(t, s)

fP,I(p, i; t, x, s) =
e

−1

2(1−ρ2)
((gP (p;t,x,s))2+(gI(i;t,x,s))2−2ρgP (p;t,x,s)gI(i;t,x,s))

2πνp(t, s)νi(t, s)
√

1− ρ2
(39)
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4.2 Finite difference alghoritm

Finite difference methods are numerical methods for approximating the solutions to
differential equations, which use finite differences to approximate derivatives. In our
case, we build a numerical scheme, using a finite difference method, for the HJB equation
(34) to find out an approximation of the value functions V n.

The first step to build such an algorithm is to bound and discretize all the intervals
on which the arguments of V n lie. This methology requires bounds also in the price
dimensions, so we assume that we have chosen appropriate intervals P = [pmin, pmax]
and I = [imin, imax] such that the processes Pt and It are unlikely to be outside that
intervals. This can be a reasonable assumption if we use, for instance, processes such as
the ones in Eq. (37-38) which exibits mean reversion: we can assume that pmin, imin are
so small that the dominating behavior of the log-price process until the time of maturity
T is to increase due to mean reversion, while pmax, imax are so large that the process is
dominated by a decreasing behavior. Let us introduce the notation used.

Tn = [Tn−1, Tn] → Tn−1 = t1 < . . . < tν < . . . < tNt = Tn δt = tν+1 − tn
P = [pmin, pmax] → pmin = p1 < . . . < pm < . . . < pNp = pmax δp = pm+1 − pm
I = [imin, imax] → imin = i1 < . . . < il < . . . < iNi = imax δi = im+1 − im
Z = [0, ūT ] → 0 = z1 < . . . < zr < . . . < zNz = ūT δz = zr+1 − zr = ū

We notice that, having choosen such compact intervals P and I, Assumption 1 are
satisfied also for the price processes (37-38).

The covariance matrix A(t, x) = (ΣΣ′)(t, x) is given by:

A(t,Xt) = (Aij(t,Xt))i,j∈{1,...,4} =


σ2
p(t, Pt) σi(t, It)σp(t, Pt)ρ 0 0

σi(t, It)σp(t, Pt)ρ σ2
i (t, It) 0 0

0 0 0 0
0 0 0 0


Being Aij(t, x) > 0 we can follow [14, Section 5.3.1 and 12.1] and use the following finite

difference approximation. We use the notation V n
ν (m, l, l̂, r) for the approximation of

V n(tν , pm, il, il̂, zr) and we suppress the superscript n when not needed for the sake of
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notation. The HJB equations becomes:

1

δt
Vν(m, l, l̂, r) =

(
1

δt
−
σ2
p

δp
+
ρσpσi
δi
− σ2

i

δi
− µp
δp
− µi
δi

)
Vν+1(m, l, l̂, r)+

+

(
σ2
p

2δp
− ρσpσi

2δi

)
(Vν+1(m+ 1, l, l̂, r) + Vν+1(m− 1, l, l̂, r))+

+

(
σ2
i

2δi
− ρσpσi

2δi

)
(Vν+1(m, l + 1, l̂, r) + Vν+1(m, l − 1, l̂, r))+

+
ρσpσi
2δiδp

(Vν+1(m+ 1, l + 1, l̂, r) + Vν+1(m− 1, l − 1, l̂, r))+

+
µp
δp
Vν+1(m+ 1, l, l̂, r)+

+
µi
δi
Vν+1(m, l + 1, l̂, r)+

+
ρσpσi

2δi
(Vν+1(m+ 1, l + 1, l̂, r) + Vν+1(m− 1, l − 1, l̂, r))+

+ e−r(tn−Tn−1)

(
p− î+

[Vν+1(m, l, l̂, r + 1)− Vν+1(m, l, l̂, r)]

δz

)
·

u∗

(
m, l̂,

[
Vν+1(m, l, l̂, r + 1)− Vν+1(m, l, l̂, r)

δz

])
(40)

Remark 5 An important feature of the Kushner scheme we presented in (40) is that
the discretized HJB equation is iself the dynamic programming equation for a suitable
defined stochastic control problem for Markov chains. This fact is used in [14] to prove
the convergence of the discrete value function to V n(t, x). Another proof, which make
use of the viscosity solution, can be found in [11, Chapter IX, Sections 4-5].

4.2.1 Boundary conditions

In order to implement the numerical scheme in (40), we need some boundary conditions.
The key point of this subsection is the remark that the spot index price I, that is an
average in past values, has a mean reversion whose speed should be significantly lower
than the mean reversion of the spot price P .

Boundary conditions on P and I. Regarding the boundary conditions on p and
î, the key idea is to use the mean-reversion behaviour of prices to determine how the
holder will optimally use her optionality, i.e., determine the optimal control u∗s.

When p = pmax, being the mean reversion of the spot P higher than the mean
reversion of the index I, we can assume that in the future this spread is likely to decrease.
In this view, even if pmax − î < 0, the optimal operational behavior should be to use as
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much of the swing option as possible until z 6M . If we denote

τ1 = τ1(t, z) = min

{
t+

M − z
u

, Tn

}
then we can assume the boundary condition

V n(t, pmax, i, î, z) =

= u1z<M̄Et,x

[∫ τ1

t
e−r(s−Tn−1)(Ps − î)ds

]
(41)

+Et,x

[
e−r(Tn−Tn−1)V n+1

(
Tn, PTn , ITn , ÎTn , z + u(τ1 − t)1z<M̄

)]
When p = pmin the spread p− î is expected to increase. This implies that the optimal

operational behavior when p = pmin should be to wait as long as possible before exercise.
Then, by introducing

τ2 = τ2(t, z) = max

{
t, T − M − z

u

}
and using the convention

∫ b
a f(x)dx = 0 if a > b, we can assume

V n(t, pmin, i, î, z) =

= u1z<M̄Et,x

[∫ Tn

τ2

e−r(s−Tn−1)(Ps − î)ds
]

(42)

+Et,x

[
e−r(Tn−Tn−1)V n+1

(
Tn, PTn , ITn , ÎTn , z + 1z<M̄

∫ Tn

τ2

uds

)]
We next calculate the stochastic integrals (41-42) defined by the boundary conditions

on the truncated boundary. We have, for a 6 b

Et,x

[∫
b

a
e−r(s−Tn−1)Psds

]
=

=

∫ b

a
e−r(s−Tn−1)

Et,x[Ps]ds =

=

∫ b

a
exp

{
−r(s− Tn−1) + (P(t)− µp)e−θp(s−t) + µp +

σ2
p

4θp
[1− e2θp(t−s)]

}
ds =

= exp

{
µp +

σ2
p

4θp
+ rTn−1

}∫ b

a
exp

{
−rs+ (P(t)− µp)e−θp(s−t) −

σ2
p

4θp
e2θp(t−s)

]}
ds =

= g(a, b,P(t))
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Let us define for any a, b ∈ R the function:

E(a, b, p, î) = Et,x

[∫ b

a
e−r(s−Tn−1)(Ps − î)ds

]
= 1a6b

(
g(a, b, log(p))− î

∫ b

a
e−r(s−Tn−1)ds

)
= 1a6b

(
g(a, b, log(p)) +

î

r
erTn−1(e−rb − e−ra)

)
For the boundaries on I, as a first approximation, we take a linear interpolation, i.e. we
set:

V n(t, p, imin, î, z) = V n(t, pmin, imin, î, z)+

+
V n(t, pmax, imin, î, z)− V n(t, pmin, imin, î, z)

pmax − pmin
(p− pmin)

V n(t, p, imax, î, z) = V n(t, pmin, imax, î, z)+

+
V n(t, pmax, imin, î, z)− V n(t, pmin, imin, î, z)

pmax − pmin
(p− pmin)

Boundary conditions on Tn. The terminal condition at time Tn is well known:

V n(Tn, x) = e−r(Tn−Tn−1)V n+1(Tn, x)

Boundary conditions on Z. The only boundary condition on the set [0, ūT ] needed
for our numerical scheme is on the right boundary ūT . This quantity can be reached
only at the end of the year and in this case the contract value is given by Ψ(ūT ). This
implies

V n(t, p, i, î, ūT ) = Ψ(ūT )

Notice that, in principle, the feasible support for the variable z depends on the month
n. In particular, we can restrict the solution of V n to the interval z ∈ [0, ūTn], but we
have no hint about the boundary condition V n(t, p, i, î, ūTn). To avoid this problem, we
let Z be the same for every n.

Example 1 Let us give a first example for n = 12. We have, for the relevant functions
needed:

V 12(T12, p, i, î, z) = e−r(T12−T11)Ψ(z)

V 12(t, p, i, î, uT ) = e−r(T12−T11)Ψ(ūT )

V 12(t, pmax, i, î, z) = ū1z<M̄E(t, τ1, pmax, î)+

+ e−r(T12−T11)Ψ(z + 1z<M̄ (τ1 − t)ū)

V 12(t, pmin, i, î, z) = ū1z<M̄E(τ2, T12, pmin, î)+

+ e−r(T12−T11)Ψ(z + 1z<M̄1τ2<T12(T12 − τ2)ū)
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Notice that, in this case, V 12(t, pmax, i, î, z) and V 12(t, pmax, i, î, z) do not depend on i.
This is intuitive, because during the last month the knowledge of the spot index value
give no extra information from the market.

We can now use the numerical scheme in (40) to find out an approximation of V 12.

Example 2 Once V n+1(t, p, i, î, z) is known, the relevant boundary conditions on V n

reads

V n(Tn, p, i, î, z) = e−r(Tn−Tn−1)V n+1(Tn, p, i, î, z)

V n(t, p, i, î, uT ) = e−r(Tn−Tn−1)Ψ(ūT )

V n(t, pmax, i, î, z) = ū1z<M̄E(t, τ1, pmax, î)+

+ e−r(Tn−Tn−1)
Et,x[V n+1(Tn, PTn , ITn , ÎTn , ZTn)] =

= ū1z<M̄E(t, τ1, pmax, î)+

+ e−r(Tn−Tn−1)
Et,x[V n+1(Tn, PTn , ITn , ÎTn , z + 1z<M̄ (τ1 − t)ū)]

= ū1z<M̄E(t, τ1, pmax, î)+

+

∫
R2

V n+1(Tn, e
x, ey, ey, z + 1z<M̄ (τ1 − t)ū)fP,I(x, y; t, x, Tn)dxdy

(43)

V n(t, pmin, i, î, z) = ū1z<M̄E(τ2, Tn, pmin, î)+

+ e−r(Tn−Tn−1)
Et,x[V n+1(Tn, PTn , ITn , ÎTn , z + 1z<M̄1τ2<Tn(Tn − τ2)ū)] =

= ū1z<M̄E(τ2, Tn, pmin, î)+

+

∫
R2

V n+1(Tn, e
x, ey, ey, z + 1z<M̄1τ2<Tn(Tn − τ2)ū)fP,I(x, y; t, x, Tn)dxdy

(44)

4.3 A Least Square Monte Carlo algorithm

The Least Square Monte Carlo (LSMC) approach was originally developed by Longstaff
and Schwartz [17] for valuing American options. Today, it is widely used also in the
energy field to evaluate structured products, see for instance [5],[6] and [8] for application
of LSMC to Virtual Storage structured products and [24] for applications to Virtual
Power Plant structured products. A summary of existing research on swing option
valuation can be found in [1].

The Least Square Monte Carlo works with a discrete time version of the problem
(11), which we present in the next Eq. (47). To reduce dimensionality, it does not
take care about the spot index price It, and works only with the traded price Ît with
monthly granularity, eventually stretched to daily granularity as we did in Formula (1),
if the time step of the algorithm is daily. In practice, Least Square Monte Carlo is
losing the information given every day about the knowledge of the index spot price.
As a consequence, the algorithm does not need to distinguish value functions between
months, as did before.
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To avoid huge notation, in this section we set the risk free r to be 0.

Assumption 3 In this section, the notation V n stands for the value function calculated
for path number n in a Monte Carlo environment, where N paths for stochastic dynamics
have been simulated.

The LSMC method is based on the intuition that conditional expectations in the
dynamic programming pricing algorithm can be replaced by its orthogonal projection on
some space generated by set of basis functions of the present state, obtained using Monte
Carlo simulations and least-squares regressions to estimate numerically said ortjogonal
projection. Let us introduce the key idea in whole generality, and then focus on the
swing problem. Time interval [0, T ] is now discretized into a sequence {tj}j=0,...,NT with

0 = t0 < t2 < . . . < tNT = T

and where tj+1 − tj represents, most of the times, one day. If X is the state process
(underlying the general control problem) adapted to the filtration {Ft}t, given the real-
ization at time tj denoted by Xtj = xj , the key idea of the LSMC algorithm is to replace
in the dynamic programmig equation in discrete time

V (tj , xj) = sup
uj
{L(tj , xj , uj) +E[V (tj+1, Xj+1)|Ftj ]}

Xj+1 = f(xj , uj ,Wj+1)

the conditional expectation E[V (tj+1, Xj+1)|Ftj ] with

E[V (tj+1, Xj+1)|Ftj ] =

+∞∑
ξ=1

αj+1
ξ fξ(xj , uj) (45)

where fξ are functions taken from a basis of a functional space (polynomials of degree

ξ, Laguerre polynomials, radial basis functions, ...) and αj+1
ξ ∈ R.

From a computational point of view, we can not work with infinite sums and so a
first choice need to be done on the number of basis function we want to use. Let Nξ be
this number.

4.3.1 Least Square Monte Carlo for swing problem

Let us now focus on a swing problem. As said, here we consider only the spot gas price
P (t) and monthly index price Î(t). The value function in discrete time for this problem
is (see [10])

V (tj , pj , îj , zj) = sup
u
Etj ,xj

NT∑
k=j

(Pk − Îk)uk + Ψ(ZT )

 (46)
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Using the dynamic programming principle, which states that if a control is optimal on
a whole sequence of periods than it has to be optimal on every single period, we obtain
in discrete time:

V (tj , p, î, z) = sup
uj ,...,uNT

Ej

NT∑
k=j

(Pk − Îk)uk + Ψ(ZNT )

 =

= sup
uj
{(p− î)uj +Ej [V (tj+1, Pj+1, Îj+1, Zj+1)]} =

= sup
uj
{(p− î)uj +Ej [V (tj+1, Pj+1, Îj+1, z + uj)]} (47)

where the notation Ej stands for Etj ,xj [·].
The Dynamic Programming Principle in (47) and the least square regression are now

used as follows by the LSMC algorithm. After having simulated N paths for the price
dynamics {pn(tj), î

n(tj)}i=1,...,N
j=1,...,NT

, which we will denote with pnj and înj , the algorithm
goes backward in time.
Algorithm 1

For every t = T, T − 1, . . . , 1:

→ if tj = T (i.e. j = NT ), set for every path n

V n(T, pnNT , î
n
NT
, z) = Ψ(z), ∀i = 1, . . . ,N

→ if tj < T find out the optimal control ũnj and the value function V n for every
path n = 1, . . . ,N with the maximization

V n(tj , p
n
j , î

n
j , z) = sup

u

(pnj − înj )u+

Nξ∑
ξ=1

αj+1
ξ fξ(p

n
j , î

n
j , z + u)


→ if tj > 0, calculate the coefficients αjξ by minimizing the norm

min
{αnξ }ξ=1,...,Nξ

⊂R

N∑
n=1

∥∥∥∥∥∥V n(tj , p
n
j , î

n
j , z)−

Nξ∑
ξ=1

αjξfξ(p
n
j−1, î

n
j−1, z)

∥∥∥∥∥∥ (48)

→ if tj = 0 then V 1(0, p1
0, î

1
0, 0) is the contract value

While the LSMC algorithm is very flexible, it may, on the other hand, be influenced
by many user’s choices which are capable of influencing the pricing procedure. For
instance, choices regarding the type and the number Nξ of basis functions as well as the
number N of Monte Carlo simulations used. These choices can be critical: as shown in
[19], while for some type of derivatives (such as the American put) the LSMC approach
is very robust, for more complex derivatives the number and the type of basis functions
can slightly affect option prices.
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4.3.2 Radial Basis Functions Approximation

In general, from Formula (48) it is evident that fξ shoud be of the form fξ : R3 → R for a
general swing problem. A 3-dimensional fitting may be computationally challenging. In
order to speed up the algorithm, sometimes we can simplify this point. We notice that,
in absence of any particular constraints linked to single price path, the spread Pj − Îj is,
in practice, the key quantity on which decisions are taken. We can define a new random
variable

Sj = Pj − Îj
and write the problem (47) as:

V (tj , s, z) = sup
uj
{suj +Ej [V (tj+1, Sj+1, z + uj)]} (49)

From a numerical point of view, we have reduced our state space to a 2-dimensional one,
and now for every tj a surface has to be fitted.

To avoid dimension problems, a good general idea can be to adopt numerical methods
based on radial basis functions. They are well known for their dimensional blindness,
which potentially allows to use them for solving very high dimensional problems. This
dimensional blindness comes directly from the definition of RBF.

A new approach based on radial basis function approximation applied to Least Square
Monte Carlo problems has been recently proposed in [7]. This approach may be very
promising in solving the curse of dimensionality arising from the pricing of energy struc-
tured products. In this subsection we apply exactly the same ideas of [7] to swing
contract. Our final aim is to compare the finite difference scheme presented in Section
4.2 with a more practitioner algorithm as the LSMC ones, in order to deduce if they give
similar results or if one perform better than the other in terms of computational time
and accuracy of the solution.

For the convenience of the readers, to fix notation, definitions, and general ideas, we
briefly re-propose in what follows the problem of interpolation and approximation with
RBF exactly as done in [7]. Next we apply the RBF approximation to our swing problem
and present the algorithm in two dimensions. This algorithm is the basic framework
of more sophisticated algorithms, where additional state dimensions may included, or
different strategies to sampling centres can be used, as proposed in [7]. it gives the idea of
the features of radial basis approach. Finally, next subsection 4.3.3 presents a particular
case when the two dimensional regression can be replaced by a simple one-dimensional
regression jointly with the use of a proper quantization of the cumulated quantity space.

Definition 5 A function Φc : Rn → R is called radial provided there exists a univariate
real valued function φ : [0,+∞) → R whose value depends only on the distance from
some point c, called centre, so that:

Φc(x) = φ(‖x− c‖)

The norm is usually the Euclidean norm, although other distance functions are also
possible.
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There are a lot of different choices for the radial functions φ. Some are globally sup-
ported like the Gaussian and the generalized multiquadratic while others are compactly
supported, such as the family of Wendland functions. Throughout this paper we use
the same RBF proposed in [7], i.e. a specific kind of this type of Wendland functions
defined in R3, which have smoothness of order 2 and can be used in problems up to and
including three dimensions. The functional forms of such radial function is

φ(r) = ((1− εr)+)4(4εr + 1) (50)

This choice is given, first of all, by the property of those functions, which are sufficiently
smooth for our problem, but not too smooth. As noted in [7], with a higher order of
smoothness we would risk to over-fit the problem, and with globally supported functions,
like Gaussians (which are infinitely smooth) the regression matrices would have very large
conditioning numbers, and would be harder to invert. Finally, those functions have given
good results for storage structured products: it is straightforward to use them as first
benchmark also for swing.

Interpolation and approximation with RBF: introduction. The problem of
RBF interpolation and approximation is posed as follows. Let {cj}j=1,...,M ⊂ R

n a
chosen set of centers for our basis function φ and let f : Rn ⊇ Ω → R be the function
we want to interpolate/approximate. Let us suppose we have measured the sequence
{yi}i=1,...,N ⊂ R whose values are realizations of f at a set of N distinct locations
{xi}i=1,...,N ⊂ Ω

yi = f(xi) ∀i = 1, . . . , N (51)

We want to find a function sf : Ω→ R who has a RBF expansion such as

sf (x) =
M∑
j=1

αjΦcj (x) =
M∑
j=1

αjφ(‖x− cj‖) x ∈ Rn (52)

where {αj}j=1,...,M ⊂ R are the regressor coefficients and φ is a RBF applied to the
center points cj and locations xi. We force the conditions

sf (xi) = f(xi) ∀i = 1, . . . , N

which can be rewritten using Equations (51) and (52) as

yi =

M∑
j=1

αjφ(‖xi − cj‖) ∀i = 1, . . . , N (53)

Formula (53) is a system of linear equalities with N equations (one for every measure
(xi, yi)) and M unknowns (the coefficients αj) that can be expressed in matrix notation

Y = Φα (54)
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where Y ∈ RN is the vector of observations Y = (y1, . . . , yN )T , α ∈ RM is the vector
of interpolation coefficients α = (α1, . . . , αM )T and Φ ∈ RN×M is a matrix resulting
from applying the RBF φ to every entry of the distance matrix D, whose entries are the
Euclidean norm of the data sites against the center points

D =


‖x1 − c1‖ · · · ‖x1 − cj‖ · · · ‖x1 − cM‖

...
...

...
‖xi − c1‖ · · · ‖xi − cj‖ · · · ‖xi − cM‖

...
...

...
‖xN − c1‖ · · · ‖xN − cj‖ · · · ‖xN − cM‖


It is clear that, whenever N = M , the matrix Φ is square and we can perform an
interpolation while when N > M the system in Eq. (54) is over-determined. Being D
generated by a set of distinct center points, it is always of full column rank M . If (54) is
over-determined, we can solve it by means of linear least square minimization, i.e. find
the solution α∗ such that

α∗ = arg min
α
‖Y −Φα‖ (55)

From linear algebra, a possible solution to (55) can be found using the Moore-Penrose
inverse Φ+ of the matrix Φ (see [21]) which leads to

α∗ = Φ+Y

Application to the swing problem. Coming back to our swing problem, the RBF
approximation can be used in Algorithm 4.3.1 to find out the coefficients in Eq. (48).
The algorithm rewrites as
Algorithm 2

Let [0, ūT ] be discretized into a sequence {zk}k=1,...,Nz . Let {cξ}ξ=1,...,M ⊂ R2 be the
sequence of centers we have chosen1 for the Radial Basis Functions.
For every j = NT , NT − 1, . . . , 1:

→ if tj = T set ∀n = 1, . . . ,N and ∀k = 1, . . . , Nz

V n(T, snNT , zk) = Ψ(zk)

→ if tj < T find out the optimal control ũnj and the value function V n for every

1Notice that we need centers both in the spread dimension as well as in the cumulated quantity
dimension, i.e. every center cξ takes the form cξ = (c1ξ, c

2
ξ)
T . A first choice for c1 can be chosen using

the simulated path as an equispaced grid with M1 points in the interval [minn,j{pnj },maxn,j{pnj }] while
for c2 we can choose an equispaced grid of M2 points in [0, ūT ], resulting in a total of M = M1 ·M2

centers. Other choices are possible, in particular for the cumulated quantity. As an example, in [7],
a non equispaced grid with higher density of points on the boundaries is used. Also time-dependent
centers can be used, at the expense of an increased effort in programming.
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path n and for every2 k = 1, . . . , Nz with a numerical maximization

V n(tj , s
n
j , zk) = max

u

snj u+

Nξ∑
ξ=1

αξj+1φ

(∥∥∥∥( snj
zk + u

)
− cξ

∥∥∥∥)
 (56)

→ if tj > 0 define the vector Yj and the matrix Φj−1 as

Φj−1 =



∥∥∥∥( s1
j−1

z1

)
− c1

∥∥∥∥ · · ·
∥∥∥∥( s1

j−1

z1

)
− cM

∥∥∥∥
...

...∥∥∥∥( sNj−1

z1

)
− c1

∥∥∥∥ · · ·
∥∥∥∥( sNj−1

z1

)
− cM

∥∥∥∥∥∥∥∥( s1
j−1

z2

)
− c1

∥∥∥∥ ∥∥∥∥( s1
j−1

z2

)
− cM

∥∥∥∥
...

...∥∥∥∥( sNj−1

z2

)
− c1

∥∥∥∥ · · ·
∥∥∥∥( sNj−1

z2

)
− cM

∥∥∥∥
...

...∥∥∥∥( snj−1

zk

)
− c1

∥∥∥∥ ∥∥∥∥( snj−1

zk

)
− cM

∥∥∥∥
...

...∥∥∥∥( sNj−1

zNk

)
− c1

∥∥∥∥ ∥∥∥∥( sNj−1

zNk

)
− cM

∥∥∥∥



(57)

Yj =



V 1(tj , s
1
j , z1)

...
V N (tj , s

N
j , z1)

V 1(tj , s
1
j , z2)

...
V N (tj , s

N
j , z2)

...
V N (tj , s

n
j , zk)

...
V N (tj , s

N
j , zNk)



(58)

and calculate the regression coefficients αj = (α1
j , . . . , α

M
j )T by solving the over-

determined system
Yj = Φj−1αj (59)

2We may restrict the calculation only to the values zk feasible at time tj , i.e. zk 6 ūtj
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For instance, you can use the Moore-Penrose pseudoinverse of Φj−1 and compute

αj = arg min
α
‖Yj −Φj−1αj‖ = Φ+

j−1Yj (60)

→ if tj = 0 the contract value is V 1(0, p1
0, î

1
0, 0)

4.3.3 Reduction to one dimension: cumulated quantity discretization

Even though the system of equations (59) should not require a long solution time, we
have to notice that Algorithm 4.3.2 requires NT ·N ·Nz numerical maximizations (non-
linear most of the times, and sometimes integer), coming out from Formula (56). They
may require a not negligible amount of time. With some stronger assumptions, or by
means of some approximation of our problem, the maximization in (56) can be avoided.
The key result is the following.

Theorem 10 Let us consider a general swing problem in discrete time defined on the
interval [0, T ] and with the constraints

uj ∈ [u, ū]

zT ∈
[
M,M

]
If the quantity

K =
M −M
ū− u

(61)

is an integer number, then there exists an optimal bang-bang Markovian control u∗j , i.e.
for all j = 1, . . . , NT we have u∗j = u or u∗j = u.

Proof See [3]. �

Thanks to Theorem 10, when assumption in Eq. (61) is satisfied, we can focus our
attention only to bang-bang optimal controls of the form u∗j ∈ {0, ū}. In other words,
we can discretize in a suitable way the interval [0, ūT ] on which zj lies. This leads to
a binomial tree for the cumulated quantity because the optimal values for z have the
form:

z = au+ bu a, b ∈ N

Let us suppose we have such tree, i.e. we have a suitable sequence {zk}k of values for the
cumulated quantity. For instance, if u = 0, at a first glance we can define zk = kū. Then
the maximization in (56) becomes a maximization between only two possible values, and
the two dimensional regression falls into a one dimensional regression. Algorithm 4.3.2
changes in this way. Having lost a dimension, now the centers {cξ}ξ=1,...,M of our RBF
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lie in R and the vector Yj in (58) and the matrix Φj in (57) read as

Φj =


Φ1
j

...
Φn
j

...

ΦN
j

 =

 |s1
j − c1| · · · |s1

j − cM |
... |snj − cξ|

...

|sNj − c1| · · · |sNj − cM |



Y k
j =

 V 1(tj , s
1
j , zk)

...
V N (tj , s

N
j , zk)


where Φn

j stands for n-th row vector of matrix Φj . Notice that Φj does not depend on
k, while Yj does it. Also the coefficients αj now depend on k, and for them we use the
notation αkj and compute them in the same way of Formula (60)

αkj = arg min
α
‖Y k

j −Φj−1α
k
j ‖ = Φ+

j−1Y
k
j

Formula (56) can now be rewritten. Being Φj independent from k, we can calculate it
only one time for every time step: at time tj+1 we compute Φj , and then we re-use its
rows at time tj being

V n(tj , s
n
j , zk) = max{snj ū+Ej [V (tj+1, Sj+1, zk+1)],Ej [V (tj+1, Sj+1, zk)]}

= max
u
{snj ū+ Φn

j α
k+1
j+1 ,Φ

n
j α

k
j+1}

4.4 Comparison between algorithms

Work in progress...
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