
Modeling and Forecasting
Volatility of Energy Forwards∗

Evidence from the Nordic Power Exchange

Asger Lunde Kasper V. Olesen†

Aarhus University, Department of Economics and Business,
Fuglesangs Allé 4, Aarhus V, Denmark & CREATES

October 1, 2012

Preliminary. Please do not circulate.

Abstract

We explore the structure of transaction records from NASDAQ OMX Commodities

Europe back to 2006 and analyze base load forwards with the Nordic system price on electric

power as reference. Following a discussion of the appropriate rollover scheme we incorporate

selected realized measures of volatility in the Realized GARCH framework of Hansen et

al. (2011) for the joint modeling of returns and realized measures of volatility. Conditional

variances are shown to vary over time, which stress the importance of portfolio reallocation

for e.g. hedging and risk management purposes. We document gains from utilizing data

at higher frequencies by comparing to ordinary EGARCH models that are nested in the

Realized EGARCH. We obtain improved fit, in-sample as well as out-of-sample. In-sample

in terms of improved log-likelihood and out-of-sample in terms of 1-, 5- and 20-step-ahead

regular and bootstrapped rolling-window forecasts. For the most liquid series, the Realized

EGARCH forecasts are statistically superior to ordinary EGARCH forecasts.
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1 Introduction

The availability of high-frequency financial data has over the past decades opened a new field of

research and paved the way for improved measurement, modeling and forecasting of volatilities

and covolatilities (see Barndorff-Nielsen and Shephard (2007), Andersen et al. (2009) and Hansen

and Lunde (2011) for recent surveys). Recently, complete records of transaction prices have

become available for a range of derivative contracts that have the system price on power in the

Nordic countries as underlying reference.1 The trade in these products, and similar in other

regions, has emerged in the aftermath of the wave of liberalizations that has flooded numerous

countries and regions, spread over the world, in the last couple of decades. The Nordic countries

were the pioneers back in 1991 with Norway as spearhead. As of today, the price setting in

the Nordic physical spot markets, with actual delivery of power, is handled by Nord Pool

Spot (NPS). The day-ahead spot market serves as underlying reference for financial futures,

forwards, and options traded on NASDAQ OMX Commodities (NOMXC). With longer histories

and interesting data features, spot markets have in general been active fields of study in the

academic literature (see Higgs and Worthington (2008) for a recent survey). NPS related financial

contracts were introduced in 1995 motivated by a need for hedging possibilities for market

participants exposed to price changes. Activity measured by transactions, volume, and the

number of participants have increased steadily over the years, but albeit gradual progress the

liquidity is far behind other well-established financial markets with high-frequent trading (e.g.

some stocks, indices, and FX).

In this paper we conduct an analysis of the most liquid derivative products traded on

NOMXC; the base load forwards (referred to as NOMXC forwards in the following). To our

knowledge, most research conducted on this data use a daily, or lower, resolution (see e.g. Malo

and Kanto (2006) and Pen and Sévi (2010)). Only of a few Norwegian studies (Haugom et al.

(2010, 2011b,a)) use half hourly prices and we refer concurrently to their results for comparison.

We explore the transaction records, and rely on results from Lunde and Olesen (2012), who

analyze the statistical properties of NOMXC forwards. We use realized measures of volatility

to enrich the information set of the more conventional GARCH models, i.e. we utilize the

information contained in realized measures of volatility to estimate the conditional variance

of daily returns within the Realized GARCH framework of Hansen, Huang and Shek (2011).

Financial asset prices sampled at the daily frequency are often identified as processes that are

integrated of order one, I(1), and with leptokurtic returns. In particular, shocks to the mean of

an I(1) series are permanent, whereas shocks to the first-difference of the series are transitory

in nature. The latter property often manifests as volatility clustering and suggests that the

conditional variance of the return series may not be constant. We document such properties

1We refer to “electric power” as “power” throughout.
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for the NOMXC forwards. The time-varying property implies that shocks to the series affect

volatility for several periods into the future. Knowledge about the persistence of volatility can

enable researchers to obtain more efficient parameter estimates, as persistence suggests that

future volatility can be predicted. Precise volatility estimates and short term predictions for the

NOMXC forwards are important for producers, utility companies, and other participants in the

power sector. They are exposed to the physical spot market for power, and the financial products

traded on NOMXC provide important tools for hedging the risk inherent. The financial products

provide protection to rapidly changing prices, and to others they are vehicles for portfolio

diversification. In active risk and portfolio management, volatility estimates are needed for

traditional Markowitz portfolio theory, calculation of hedge ratios, value at risk (VaR) estimates

and so forth. Further, volatility estimates are needed in the pricing of options written on these

products. In this paper we show that the inclusion of intraday information and the use of more

sophisticated econometric methodologies improves the modeling and forecasting of volatilities.

The paper is constructed as follows. Section 2 briefly introduces the history of, and the

products traded on, NOMXC and related markets. Section 3 outlines the sorting and filtering

of the data, discuss the issue of rollover, and analyzes resulting continual series at the daily

frequency. Section 4 presents the econometric methodology used, the Realized GARCH class

of models, and Section 5 presents estimation results and diagnostics. In Section 6 we perform

regular and bootstrapped rolling-window forecasting and evaluate selected models in the model

confidence set (MCS) of Hansen, Lunde and Nason (2011). Section 7 concludes.

2 The Financial Market for Nordic Electric Power

Energy markets are commonly classified into three groups; “Fuels”, “Power”, and “Weather and

Emissions (W&E)”, which roughly corresponds to the historical pace at which these markets

were opened (see e.g. Eydeland and Wolyniec (2003)). We focus on “Power” for which the

wholesale markets were liberalized in numerous countries beginning in the early 1990s. Power

is technologically considered non-storable, which creates a need for real-time balancing of

locational supply and demand. In most countries an independent transmission system operator

(ITSO) maintains the system and manages provision, contracting and infrastructure for all

needed activities.2 The ITSOs are non-commercial monopolies that operate the high-voltage

grids and secure the supply of power. For example, actual consumption may exceed production,

which makes the frequency of the alternating current fall below the target (50 Hz in the Nordic

countries), and the ITSO procures “up regulating” (as opposed to “down regulating” in the

opposite case). In regulating markets, prices are volatile and most market participants seek

to forecast production and/or demand in order to take positions beforehand. Optimally, only
2In the Nordic countries the ITSOs are Energinet.dk (Denmark), Statnett (Norway), Svenska Kraftnät (Sweden)

and Fingrid (Finland).
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discrepancies between the expectations and actual needs are settled in the regulating market.

Positions can be taken bilaterally or through pools. NPS is, as the name suggests, of the latter

kind and operates a day-ahead double auction market, Elspot, in which market participants

submit supply and demand each day, no later than noon the day before the energy is delivered

to the grid. A market system clearing price for all hours in the following day is calculated and

announced (a day-ahead market).3 To further reduce the exposure to the balancing market, a

cross border intraday market, Elbas, opens two hours after the closure of NPS and closes one

hour prior to the operation hour. The structure, the deadlines etc. of such physical exchanges

vary between regions and we limit ourselves to this brief exposition of the Nordic market.

The system clearing price from the NPS day-ahead index is the underlying reference price

for a range of derivative contracts traded on NOMXC. Originally introduced as Eltermin by

Nord Pool in late 1995, which among other entities was acquired by NASDAQ OMX in 2008

and merged into NOMXC, the exchange is among the leading and most liquid exchanges in the

world for financial derivatives on power. In the financial markets the parties contract for the

delivery of power in the future. This can be only days ahead or up to years ahead. NOMXC is

exchange-based, but also bilateral or broker-based OTC trades are registered. Further, for some

products one or more market makers post two-sided quotes in the order book.

In this paper we consider the set of base load forward contracts traded on NOMXC with

the NPS day-ahead index as the underlying reference price. As outlined below this is by far

the most liquid subset of the traded products. Market participants enter into contracts with

a specified delivery period, monthly, quarterly or yearly, and contracts kept until expiry are

settled financially on every clearing day during this period. No physical supply or receipt occurs.

As of today, prices are quoted in EUR/MWh (contracts with a delivery period prior to 2006

were quoted in NOK/MWh), each contract specifies delivery of a continuous flow of power

during the delivery period of 1MW, and contracts are cash settled to the average spot price.4

Monthly contracts trade until the last trading day before the specified delivery period, and

settlement is spot reference cash on every clearing day during the delivery period. Quarterly

contracts are cascaded from yearly contracts and cascaded into monthly contracts on the last

trading day before the specified delivery period. Yearly contracts are cascaded into quarterly

contracts three trading days prior to the delivery period. All settling of accounts takes place

through NOMXC, and the two parties involved do not know each other’s identity. The settling

of accounts is guaranteed by NOMXC. The French EDF and the Swedish Vattenfall act as market

makers on base load forward contracts with commitments to continuously quote buy and sell

prices in the order book within a maximum spread determined by volatility and price levels.5

3The exposition is simplified. See www.nordpoolspot.com for details. Furthermore, due to grid bottlenecks,
bidding areas develop. Thus, different regions in the Nordic countries are exposed to different prices in some hours.

4The structure of derivatives traded on Nord Pool/NOMXC has gone through a number of adjustments since
the market opening but has remained unchanged since January 2006.

5See NASDAQ OMX Commodities (2011a) for details on traded products, and NASDAQ OMX Commodities
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3 Data

We have available transaction data for all contracts traded on NOMXC in the period 2 January

2006 to 31 May 2011 delivering 1359 distinct trading days. The raw data files have a total of

2.107.919 lines of transactions with information as outlined in the Appendix. Initially, we remove

products, which does not have the Nordic system price as spot reference (products on EEX Phelix,

APX, and UK are also included as well as trades in different European Union Allowances (EUAs)

and Certified Emission Reductions (CERs) are registered, see NASDAQ OMX Commodities

(2011a). A deal in CLICK Trade (the trading application provided by NOMXC) may consist

of two or more transactions, i.e. there is not a one-to-one relation between buy and sell as

one offer may hit several bids if price and volume match. Therefore, we remove duplicated

transactions according to DealNumber as they contain the same information. This leaves 954.248

unique transactions. The left part of Table 1 lists the division of these when sorted according to

DealSource and MainCategory.

Table 1: Overview of transactions in derivative contracts traded on NOMXC.

Product Specification OTC Transactions Exchange Transactions
Base 212.365 699.928

BaseDay 155 5.620
CfD 19.975 11.038

Option 5.064 23
Peak 36 44

237.595 716.653

Length of Delivery Period Transactions
Day (future) 5.620

Week (future) 31.278
Month (forward) 99.953

Quarter (forward) 424.272
Year (forward) 144.425

705.548

The sampling period is 02 January 2006 to 31 May 2011. Left part: Number of transactions sorted according to
DealSource (OTC: Over The Counter, Exchange) and MainCategory (Base: forward and future base load contracts with
a weekly, monthly, quarterly, or yearly delivery period, BaseDay: future base load contracts with a daily delivery
period, CfD: Contract for Differences, Option: European call and put options, Peak: forward and future peak load
contracts with a weekly, monthly, quarterly, or yearly delivery period). Right part: Number of exchange transactions
in future and forward base load contracts sorted according to length of delivery period.

The most traded contracts are found among the base load futures and forwards. A little

surprising, the trade in peak loads is limited, and also options are rarely traded.

The time stamps on OTC ticks are imprecise and make them unfit for an intraday analysis.

Another reason for exclusion is the often doubtful transaction prices.6 Hence, focusing on

exchange-traded base load futures and forwards, we are left with 705.548 ticks. From the

right part of Table 1 quarterly contracts are seen to be the most traded and the futures are the

least traded. With liquidity deemed important, we limit ourselves to consider the most traded

contracts, the forwards. In the period 2 January 2006 to 31 May 2011, the specification (delivery

(2011c) and NASDAQ OMX Commodities (2011b) for details on trading and clearing on NOMXC. Also see e.g.
nordpoolspot.com, nasdaqomxcommodities.com, and eex.com for further details on this Section.

6As an example the ENOMMAR-08 contract was traded to 1 EUR/MWh and 528.6 EUR/MWh at the same time
on 11 Feb 2008.
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period, contract size, currency quote, etc.) of the forwards have remained unchanged. Further,

the opening hours of the exchange have remained the same and no half trading days are present

as in some other markets.

3.1 Rollover Schemes

The limited life span of the individual forwards creates a need for rollover schemes between the

multiple time series, covering different trading days, in order to create continual time series. At

any point in time, there will be contracts trading for several expirations, and a rollover scheme

defines the linking procedure between them, i.e. the point in time at which one contract is

switched for the subsequent one (e.g. ENOQ1-10 to ENOQ2-10). We refer to this point in time

as the rollover date with the last possible rollover date being the last trading day of the expiring

contract. No rigorous theoretical justification has yet suggested that one linking method is better

than the other, and there does not appear to be a consensus in the literature regarding the exact

procedure for creating a rollover scheme (see e.g. Ma et al. (1992), Holton (2003) and references

herein). It depends on the use to which the data will be put, e.g. in this paper liquidity is deemed

to be an important concern as we work with realized measures of volatility. Alternatives to

rollover schemes are “artificial” series constructed from constant-maturity prices, the most liquid

contract, the mean of all traded contracts, etc. However, we want the continual series to reflect

a prespecified trading strategy, e.g. holding a contract and switching to the next contract on a

prespecified day before the expiry of the current contract, that does not rely on ex post measures.

We refer to a first nearby as the time series comprising the price of the nearest-to-expiration

contract. The second nearby comprises the price, at each point in time, of the second nearest-

to-expiration contract, etc. These are possible outcomes of rollover schemes that are easy to

implement. In the final days prior to a contract’s last trading date, distortions can be pronounced

as positions are closed out and liquidity migrates to the subsequent contract. Thus, the number

of transactions may provide indications on the behavior of traders that close positions. Table

2 summarizes the liquidity on average in the final days prior to maturity (recall the earlier

occurring cascading of the yearly contracts).
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Table 2: Liquidity in base load forwards traded on NOMXC.

Monthly Forwards

First Nearby Second Nearby

T − t # RK RV(1tick) # RK RV(1tick)

0 44 4.429 3.819 25 2.616 2.715

1 36 3.213 3.180 23 3.106 3.194

2 33 3.399 2.946 22 2.913 2.511

3 39 3.119 3.380 21 3.961 3.676

4 39 3.783 3.412 19 3.253 3.201

5 34 2.922 2.681 16 2.183 2.150

6 37 3.528 3.035 20 2.929 2.690

7 37 3.672 3.389 20 3.082 2.995

8 34 3.568 3.498 21 3.222 2.993

9 36 3.120 3.053 18 2.709 2.847

10 38 3.272 2.841 17 2.556 2.765

11 40 3.692 3.619 19 3.757 3.491

12 38 3.246 2.922 17 2.977 3.009

13 37 3.492 2.961 17 2.866 3.681

14 32 3.107 3.342 16 3.061 3.466

15 33 3.266 3.067 16 2.504 2.564

Quarterly Forwards

First Nearby Second Nearby

T − t # RK RV(1tick) # RK RV(1tick)

0 73 3.230 2.279 137 3.252 2.332

1 80 1.984 1.997 109 2.590 2.337

2 86 2.201 2.129 87 2.122 1.928

3 124 2.633 2.355 90 2.623 2.178

4 137 3.535 2.577 77 2.411 2.411

5 173 3.627 2.944 65 2.411 2.133

6 181 3.910 3.332 72 2.856 2.416

7 187 3.658 3.361 71 2.556 2.646

8 206 3.665 3.279 64 2.585 2.590

9 225 3.670 3.052 61 2.300 2.503

10 237 4.073 3.638 56 2.568 2.665

11 263 5.669 4.467 63 4.219 3.764

12 238 4.654 3.681 48 2.616 2.794

13 242 5.112 3.542 41 2.302 2.424

14 279 6.981 5.577 45 2.609 1.916

15 248 4.525 3.581 42 2.471 2.463

Yearly Forwards

First Nearby Second Nearby

T − t # RK RV(1tick) # RK RV(1tick)

- 0 − − 29 0.316 0.270

- 0 − − 23 0.562 0.876

0 26 1.030 0.603 26 0.406 0.359

1 38 1.363 1.393 24 0.519 0.509

2 53 2.119 1.659 33 1.500 0.942

3 52 1.412 1.642 33 0.843 0.862

4 48 1.261 1.409 23 1.074 1.235

5 63 2.007 1.904 30 1.145 1.343

6 66 1.595 1.527 33 1.086 1.306

7 66 1.798 1.675 49 1.117 1.231

8 67 3.396 2.834 31 1.807 1.327

9 66 2.741 2.187 29 0.890 1.004

10 49 1.638 1.576 22 1.083 0.871

11 50 2.939 2.699 25 0.737 0.894

12 75 1.863 1.727 31 0.877 1.153

13 85 2.403 3.221 39 0.647 1.027

The sampling period is 02 January 2006 to 31 May 2011. The first nearby refers to the time series comprising the price,
at each point in time, of the nearest-to-expiration contract. The second nearby comprises the price, at each point in
time, of the second nearest-to-expiration contract. T− t is time-to-maturity in days for the first nearby. The number of
transactions (#), the realized kernel (RK) of Barndorff-Nielsen et al. (2011) and the realized variance (RV) are daily
averages over the sampling period for the given time-to-maturity.

For the monthly and yearly series liquidity does not appear to migrate, i.e. the first nearby

remains the most liquid until it expires. For the quarterly series the second nearby becomes the

most traded two days prior to the maturity day of the first nearby on average. This may indicate

that speculators, with no interest in daily cash settlements during the delivery period, are more

active in the quarterly contracts. Further, we notice that the market for the second nearby quickly

becomes thin for the quarterly contract as time-to-maturity is increased. Thus, to avoid thin

market concerns we choose the rollover date to be the maturity day for months and years, and

two days prior to maturity for quarters. The heterogeneity of consecutive contracts introduces

characteristics in the data which are pure artifacts of the rollover scheme. The literature is rich

on suggestions on how to remedy this, e.g. scaling the old or the new contract. We stick to the

trading strategy and propose in Section 4 different ways to cope with the inherent seasonality,

and thus avoiding that artificially large positive and negative returns muddle the results.

3.2 Stylized Facts for the Price Process at the Daily Frequency

The existing literature on estimating and forecasting volatility in electric power futures and

forwards has mainly utilized observations at a daily frequency (see e.g. Malo and Kanto (2006),

Pen and Sévi (2010)). The classical GARCH framework often utilizes daily returns (or lower

frequencies) to extract information about the current and future level of volatility. This section
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motivates the application of GARCH models, i.e. we document the common stylized facts of

financial series at the daily frequency (unpredictability of returns, volatility clustering, lep-

tokurtosis, asymmetries, and so forth). In the discrete Realized GARCH framework we use

roc
t and rcc

t to denote open-to-close and close-to-close daily returns at day t, respectively, with

realized measures of volatility denoted by xt.7 Open-to-close returns are the daily changes in

the logarithm of the first and last transaction price each day, and close-to-close returns at time

t are the daily changes in the logarithm of the last transaction price at time t− 1 and t. The

information set is thus given by Ft =
{

roc
t , rcc

t , xt, roc
t−1, rcc

t−1, xt−1, . . .
}

, i.e. a richer information

set than in the conventional GARCH framework. Thus, the Realized GARCH should be more

responsive than conventional GARCH models.

In Figure 1 we present the continual monthly, quarterly, and yearly series in levels, and

in Figure 2 the daily changes in the logarithm of these, close-to-close returns, all at the daily

frequency with rollover schemes as defined in 3.1. Returns that straddle a rollover date are indicated

as a black dot.8
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Figure 1: Time series in levels of base load forwards traded on NOMXC. The sampling period is 02 January 2006
to 31 May 2011 and results are reported at a daily frequency. All series are constructed using rollover schemes as
specified in Section 3.1.

7An analysis of the use of realized measures of volatility in this market is found in Lunde and Olesen (2012).
8Some observations are outside the chosen range: rollover from ENOMAUG-07 to ENOSEP-07 resulted in a

return of around 21 pct., ENOSEP-07 to ENOOCT-07 17 pct., ENOOCT-07 to ENONOV-07 25 pct., ENOMAY-08
to ENOJUN-08 17 pct., ENOJUN-08 to ENOJUL-08 25 pct., ENOJUL-08 to ENOAUG-08 31 pct., ENOMAR-10 to
ENOAPR-10 −23 pct., ENOJAN-11 to ENOFEB-11 −16 pct., ENOQ3-07 to ENOQ4-07 32 pct., ENOQ4-07 to ENOQ1-
08 30 pct., ENOQ2-08 to ENOQ3-08 16 pct., ENOQ3-08 to ENOQ4-08 34 pct., ENOQ1-11 to ENOQ2-11 −23 pct., and
ENOY-11 to ENOY-12 −20 pct.
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From Figure 1 we notice that the series, covering different delivery horizons, have similar

patterns over time, but with changes more pronounced in the contracts with shorter delivery

periods. This is especially clear in the second half of the period. A possible reason being that

contracts with delivery close by is more affected by news and changes in fundamentals or the

arrival of such is more related to these contracts. Also notice that in the later years (2009-2011),

the monthly and quarterly contracts have not traded with a discount in spring as compared to

the yearly contracts, which was the case in 2008 and 2009. Weather fundamentals (“dry winters”)

being a likely explanation.

From Figure 2 we encounter periods with large changes in absolute sense (often characterized

as volatility clustering), e.g. in the second half of 2008 and the first months of 2009, and the

daily changes appear more erratic for the monthly series and less for the yearly. Returns that

straddle rollover dates are “extracted” from the series for clarity. Some are large in absolute

value (some are even outside the range of the plot), but a seasonal pattern is only partly evident.

For example, the monthly rollover returns are mainly positive from late spring and then turn

negative in the first months each year. The quarterly rollover returns have a similar pattern.

However, the changes are quite different from year to year.

In Table 3 we present summary statistics along with a range of diagnostic tests. Rollover

returns are omitted from the close-to-close returns as test statistics are sensitive to observations

large in value.
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Figure 2: Log-returns of base load forwards traded on NOMXC. The sampling period is 02 January 2006 to 31 May
2011 and results are reported at a daily frequency. The top row presents the monthly first nearby, the middle row the
quarterly first nearby, and the bottom row the yearly first nearby. All with rollover schemes as specified in Section
3.1. Returns that straddle a rollover date are indicated as a black dot with a few observations outside the chosen range
(see Footnote 8).
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Table 3: Descriptives and diagnostic tests for base load forwards traded on NOMXC.

Levels Open-to-Close Returns Close-to-Close Returns
Month Quarter Year Month Quarter Year Month Quarter Year

Mean 45.010 46.102 45.786 −0.066 −0.021 −0.016 −0.084 −0.050 0.024
Median 44.800 45.700 45.200 0.000 0.000 0.000 0.000 0.000 0.099
Min 19.500 22.860 27.600 −8.931 −13.911 −9.118 −12.104 −15.649 −9.639
Max 90.500 83.000 69.700 10.407 11.902 8.829 15.536 13.090 8.413
Std.Dev. 13.496 12.518 7.540 2.177 2.268 1.574 3.073 2.858 1.888
Skewness 0.338 0.361 0.458 0.087 −0.118 −0.016 0.128 −0.189 −0.387
Kurtosis 2.764 2.585 2.996 5.104 5.895 6.924 5.157 5.061 5.840
Jarque− Bera 29.094∗∗ 39.237∗∗ 47.593∗∗ 252.454∗∗ 477.819∗∗ 872.147∗∗ 267.103∗∗ 248.520∗∗ 490.264∗∗

ACF(1) 0.991∗∗ 0.991∗∗ 0.992∗∗ 0.105∗∗ −0.022 −0.079∗∗ 0.116∗∗ 0.054∗∗ 0.050
ACF(2) 0.979∗∗ 0.981∗∗ 0.983∗∗ 0.014 −0.016 −0.102∗∗ 0.030 −0.012 −0.051
ACF(4) 0.955∗∗ 0.961∗∗ 0.968∗∗ 0.009 0.005 0.079∗∗ 0.003 0.001 0.043
ACF(5) 0.943∗∗ 0.952∗∗ 0.960∗∗ −0.058∗∗ −0.047 −0.058∗∗ −0.006 −0.017 −0.017

Q(4) 17.208∗∗ 1.035 31.433∗∗ 21.728∗∗ 4.966 9.929∗

Q(12) 31.965∗∗ 9.975 52.378∗∗ 25.444∗ 15.318 14.319
Q2(4) 100.929∗∗ 52.936∗∗ 263.093∗∗ 41.879∗∗ 40.315∗∗ 139.715∗∗

Q2(12) 296.237∗∗ 203.358∗∗ 478.923∗∗ 164.109∗∗ 169.655∗∗ 363.200∗∗

Aug.DF∗ −0.533 −0.486 0.005 −33.100∗∗ −37.621∗∗ −12.872∗∗ −32.751∗∗ −34.846∗∗ −26.710∗∗

Aug.DF? −2.472 −2.784 −2.303 −33.115∗∗ −37.611∗∗ −12.887∗∗ −32.759∗∗ −34.843∗∗ −26.706∗∗

Aug.DF• −2.593 −2.861 −2.315 −33.142∗∗ −37.659∗∗ −12.996∗∗ −32.805∗∗ −34.885∗∗ −26.745∗∗

KPSS† 0.215∗∗ 0.151∗∗ 0.223∗ 0.063∗∗ 0.106∗∗ 0.045∗∗ 0.063∗∗ 0.069∗∗ 0.083∗∗

KPSS‡ 0.448∗∗ 0.193∗∗ 0.278∗ 0.170∗∗ 0.288∗∗ 0.054∗∗ 0.233∗∗ 0.202∗∗ 0.112∗∗

#Obs 1359 1359 1356 1359 1359 1356 1358 1358 1355

The sampling period is 02 January 2006 to 31 May 2011 and results are reported at a daily frequency. Two asterisks
indicate rejection at 1 percent significance level (for ACF() that the estimate is outside the 95 pct. confidence band)
and one asterisk rejection at the 5 percent level. The Jarque-Bera (JB) test the null of normality and ACF(L) the
empirical auto-correlation function at lag L (only lag lengths with estimates significantly different from zero for
one or more of the returns series are shown). Q(L) is the Ljung-Box test of no autocorrelation in up to L lags and
Q2(L) is the Ljung-Box test on squared log-returns to test for homoscedasticity. The augmented Dickey-Fuller (DF)
tests use automatic lag selection (by the Akaike information criterion) and have DGP and estimated model in the
ADF-regression with no deterministic trends in either DGP or estimated model (Aug.DF∗), no deterministic trend in
the DGP but a constant and a time-trend in the estimated model (Aug.DF?), and a constant or time trend in the DGP
and both in the estimated model (Aug.DF•). The KPSS test of Kwiatkowski et al. (1992) tests the null of stationarity
with (KPSS†) and without (KPSS‡) a trend in the structural model, and with a number of autocovariance lags in the
Newey-West estimator of the long-run variance of the order of

√
T.

Excluding rollover returns in rcc
t removes the largest observations (in absolute sense) such

that min, max and kurtosis are roughly similar for roc
t and rcc

t . In that respect the information

flow outside the market opening hours does not appear to showcase itself as large (absolute)

price changes, which would show up as outliers in rcc
t (if present they are damped over the

trading day). On the other hand, rcc
t has a slightly higher standard deviation and is in that

respect more volatile. Normality is clearly rejected in all cases by the Jarque-Bera test as expected

for the skew level series and the slightly skew and leptokurtic returns. We are unable to reject

the presence of auto-correlation in some of the series, which motivates an ARMA structure for
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the conditional mean. For example, the monthly rcc
t has first-order empirical autocorrelation

significantly different from zero. Naturally, the small empirical autocorrelations, in most cases

insignificant from zero, render the returns unpredictable. For the squared series the null of no

autocorrelation is readily rejected in all roc
t and rcc

t series, which point towards the presence

of (G)ARCH effects and the possibility for volatility prediction. For the price levels we are

unable to reject the presence of a unit root for all specification of the DGP and the model in the

ADF-regression using augmented Dickey-Fuller tests with automatic lag length selection. The

presence of a unit root is readily rejected for all return series. The KPSS test rejects stationarity

in levels and returns. This causes a concern for fractional integration, which due to similar

test results was investigated in more detail in Haugom et al. (2011a). Summarizing, they were

unable to find evidence for a d parameter significantly different from zero when fitting an

ordinary ARFIMA(p, d, q) to the returns. Similarly, the autocorrelogram does appear to exhibit a

hyperbolic decay. Hence, we proceed as if the return series are stationary.

4 Econometric Methodology

We propose to model returns and realized measures of volatility jointly within the Realized

GARCH model framework of Hansen, Huang and Shek (2011). The key variable of interest is

the conditional variance ht = Var [rt |Ft−1 ]. In the Realized GARCH framework ht depends on

its own (truncated) past as usual, but where the traditional framework includes lagged squared

returns, the Realized GARCH framework incorporates a realized measure of volatility (or a

vector of these), xt.9 As such, the model defines a class of GARCH-X models, as in Engle (2002)

and Barndorff-Nielsen and Shephard (2007), where xt is exogenous.10 However, an additional

equation that ties the realized volatility measure to the latent volatility completes the model

and the dynamic properties of both returns and the realized measure are specified. We use a

variant of the Realized GARCH model discussed in Hansen et al. (2010), which is denoted the

Realized EGARCH as it shares certain features with the EGARCH model of Nelson (1991). As

outlined below, the Realized GARCH framework can be compared to nested and more standard

GARCH models, which provides an elegant way to certify possible benefits from utilizing high-

frequency data in a particular market. In applications Hansen, Huang and Shek (2011) showed

with DJIA stocks that the Realized GARCH class led to substantial improvements in in-sample

and out-of-sample empirical fit. Similarly, the chosen subclass here can verify the potential in

the unexplored transaction data considered in this paper. We stress this as the primary interest

of the paper and a horserace between competing models is left for future research.

9Hansen, Huang and Shek (2011) finds that the ARCH-term is insignificant in the Realized GARCH model and
we omit it in the model formulation and in the empirical analysis.

10See also Hansen, Huang and Shek (2011, Section 3) for a comparison to the Multiplicative Error Model (MEM)
by Engle and Gallo (2006) and the HEAVY model by Shephard and Sheppard (2010).
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4.1 The Realized EGARCH Model

The Realized EGARCH model for returns and realized measures of volatility is given by the

mean equation, the GARCH equation and the measurement equation, respectively

rt = µ +
s

∑
i=1

φi · rt−i + η′Et +
√

htzt,

log ht = ω +
p

∑
j=1

β j · log ht−j +
q

∑
k=1

γ′k · log xt−k + τ (zt−1) ,

log xt = ξ +ϕ log ht + δ (zt) + ut,

(1)

where

zt ∼ nid (0, 1) and ut ∼ nid (0, Ωu) ,

with m being the number of measurement equations, i.e. we allow for multiple measurement

equations, and zt and ut are mutually independent. We write vectors in bold and matrices

in capital bold. The autocorrelation documented in Table 3 for some of the series motivates

the inclusion of autoregressive terms in the mean equation, and various rollover dummies

and possibly other exogenous terms can be included in Et. We assume market efficiency, i.e.

that such terms are already incorporated in the price, and a refinement of the mean equation

is left for future research. In the GARCH eq. we experiment with the number of lags and

the number of measurement equations. The so-called Samuelson effect is often claimed to be

present in energy markets (see e.g. Benth et al. (2008)), which made us include different time

dependencies in the GARCH eq. However, none of these was found significant and the absence

of the Samuelson effect is further stressed in Table 2, where the realized measures of volatility

do not show signs of time-dependence. Regarding measurement equations, the inclusion of

multiple realized measures is a neat way to show the superiority of some measures over others.

The functions τ (z) and δ (z) are called leverage functions because they model aspects related to

the leverage effect, which refer to the dependence between returns and volatility (see remark

below). Hansen, Huang and Shek (2011) found that a simple second-order polynomial form

provides a good empirical fit and that log z2
t was inferior to z2

t . We will adopt this structure and

set τ (z) = τ1z + τ2
(
z2 − 1

)
and δi (z) = δi

1z + δi
2
(
z2 − 1

)
, i = 1, . . . , m. Hence, E [τ (zt)] = 0

and E
[
δi (zt)

]
= 0, i = 1, . . . , m, for any distribution of zt so long as E [zt] = 0 and Var [zt] = 1.

The normality of ut is motivated by the findings in Andersen, Bollerslev, Diebold and

Labys (2001), Andersen, Bollerslev, Diebold and Ebens (2001), and Andersen et al. (2003), that

document that realized volatility is approximately log-normal. The normality of zt is motivated

by the findings in Andersen, Bollerslev, Diebold and Ebens (2001), that documents that returns

standardized by realized volatility are close to normally distributed. We standardize returns

13



by the conditional variance, which incorporates the realized measure. However, due to results

in Lunde and Olesen (2012) that questions the normality assumption, we compare regular

and bootstrapped forecasts in Section 6. That is, the normality assumption is not crucial to the

estimation, but important for forecasting.

The “intercept” ξ and “slope” ϕ add flexibility to the measurement equation, which may

be required when we link realized measures of volatility that span a shorter period than the

return. As long as xt and ht are roughly proportional we should expect ϕ ≈ 1 and ξ < 0. By

the presence of zt in the measurement equation, it provides a simple way to model the joint

dependence between rt and xt. Tying the realized measure to the conditional variance is nicely

motivated by the fact that the return equation implies that log r2
t = log ht + log z2

t , and because

xt is similar to r2
t in many ways, albeit a more accurate measure of ht, one may expect that

log xt ≈ log ht + f (zt) + errort. This motivates a logarithmic measurement equation, which

further makes a logarithmic GARCH eq. convenient. A logarithmic specification automatically

ensures a positive variance and as log r2
t−1 does not appear in the GARCH eq. (it is replaced by

log xt−1) zero returns do not cause havoc for the specification.

Notice that (1) gives a GARCH eq. similar to an EGARCH-type model motivating the

benchmark

rt = µ +
s

∑
i=1

φi · rt−i + η′Et +
√

htzt,

log ht = ω +
p

∑
j=1

β j · log ht−j + τ (zt−1) .
(2)

As outlined below the log-likelihood function of (1) can be expressed in a way such that it

can be directly compared to the log-likelihood function of (2). Hence, we can easily detect

whether realized measures of volatility lead to improved empirical fit. In-sample in terms of

the log-likelihoods in optimum (Section 5), and out-of-sample in terms forecasting performance

(Section 6).

Remark. The term leverage effect is used to describe the asymmetry in volatility following big

price increases and decreases, respectively. In the classic Black 76’ leverage story an increase

in financial leverage level leads to an increase in equity volatility level with business risk

held fixed. A financial leverage increase can come from stock price decline while the debt

level is fixed. In energy markets there is evidence of a so-called inverse leverage effect. The

volatility tends to increase with the level of prices, since there is a negative relationship

between inventory and prices (see for instance Deaton and Laroque (1992)). Little available

inventory means higher and more volatile prices. The application will show whether or

not this effect carries over to the forward market.
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4.2 Estimation

The log-likelihood function is given by

` (r, x; θ) = −T (m + 1)
2

· log 2π − 1
2

T

∑
t=1

(
log ht + z2

t + log |Ωu|+ u′tΩ
−1
u ut

)
,

where |A| is the determinant of the matrix A and θ is the parameter vector

θ = (µ, φ, η, ω, β, γ, τ1, τ2, ξ,ϕ, δ1, δ2, Ωu)
′ .

The value of Ωu that maximizes the likelihood among the class of all symmetric positive definite

matrices is (see e.g. Hamilton (1994))

Ω̂u =
1
T

T

∑
t=1

utu′t,

such that by the rules of the inverse we can express the log-likelihood function as (constant

omitted)

−2` (r, x; θ) =
T

∑
t=1

[
log ht + z2

t
]

︸ ︷︷ ︸
=−2`(r)

+ T
(
log
∣∣Ω̂u

∣∣+ 1
)︸ ︷︷ ︸

=−2`(x|r )

. (3)

This reduces the parameter set that the optimizer has to search over. If one is only interested

in one-step ahead modeling, specifying the measurement equation becomes redundant and

the parameters in the model are further reduced. Standard GARCH models do not model

xt, so the log-likelihood we obtain for these models (here the EGARCH model) cannot be

compared to those of the Realized GARCH model. However, the expression for the log-likelihood

above proves useful in this respect as the first term is a partial log-likelihood, which is directly

comparable to the log-likelihood of standard models.

5 Estimation Results

In this section we present empirical results for the Realized GARCH model with a range

of specifications. We limit the exposition to the quarterly contract, which is the most liquid

of the three.11 We focus on close-to-close returns and use open-to-close returns only for one

specification of the Realized GARCH and its benchmark to highlight characteristics of the

parameters in the measurement equation. We utilize primarily the realized kernel as the realized

measure of volatility (columns 2− 9), but present results for five realized variances for one

11A web appendix with results for the nearby month and nearby year contracts is available upon request.
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model specification for comparison.12 We use EG to denote the conventional EGARCH in Eq. 2

and REG to denote the Realized EGARCH in Eq. 1 with the choice of p and q in parenthesis.

Focusing on parameter estimates, the realized measure loadings are large and the typical

GARCH effects are of a smaller magnitude compared to conventional GARCH models. However,

the lagged conditional volatility is still the dominant term. These findings are in line with results

for individual stocks in Hansen et al. (2010). The estimates of the parameters in the leverage

function δ are similar to the ones reported in Hansen, Huang and Shek (2011) and Hansen et al.

(2010) and describe an asymmetric volatility response to positive vs. negative shocks. However,

the τ1 estimate is in most cases found to be insignificant from zero, where Hansen, Huang and

Shek (2011) and Hansen et al. (2010) found negative parameter estimates. This is in line with the

comments above on the interpretation of leverage effects in energy markets. The presence of a

leverage effect in NOMXC forwards is questionable and omitting τ leads only to a negligible

drop in the log-likelihood function. Omitting δ leads on the other hand to a rather large drop in

the log-likelihood. The roll-over effect was included in different ways and results are reported

for the simplest one; one dummy in the mean equation. The estimate is hardly significantly

different from zero and other parameter estimates are similar to those of the other specifications.

The realized measures are based on data spanning the trading session only, and as expected ξ is

negative and ϕ close to one in all cases. Notice also, that the estimates are smaller (in absolute

sense) as expected for the open-to-close series.

Comparing models, REG(1, 1)? has the best empirical fit in-sample measured by the log-

likelihood, ` (r, x), and the realized kernel appear inferior. However, for the partial log-likelihood

the results are more unclear, and the performance of models based on the realized kernel appear

similar to that of models utilizing realized variances.13 The partial log-likelihood is directly

comparable to the log-likelihood of traditional EGARCH-models, and the improvements are

unquestionable for all series.14 That is, utilizing transactions data improves the empirical fit

of the model. To visualize the time-dependent level and pattern of the conditional volatility,

which stress the importance of active risk and portfolio management, we present in Figure 3 the

resulting conditional variances of time for the underlined model specification in Table 4.

12RV(1 tick), RV(1800 sec), RV(1800 sec)∗, RV(300 sec) RV(300 sec)∗ in columns 10− 14, respectively.
13One should compare column 4 to columns 10− 14.
14One should compare column 1 to 2, and column 3 to 4.
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Figure 3: Conditional Variances for base load forwards traded on NOMXC. The sampling period is 02 January 2006
to 31 May 2011. EG denotes the conventional EGARCH in Eq. 2 and REG denotes the Realized EGARCH in Eq. 1.
Results are for the quarterly first nearby utilizing the realized kernel as the realized measure of volatility. The model
specification is the one underlined in Table 4. The benchmark is the RV(900 sec)∗(unscaled) plotted in thick dim gray.

5.1 Multiple measurement equations

The Realized GARCH framework provides an elegant way to incorporate multiple realized

measures of volatility and verify possible superiority of some over others. We are especially in-

terested in the comparison of the realized kernel with the different realized variances computed.

In Table 5 we present results for pairwise comparisons with RV(1 tick), RV(1800 sec), RV(1800 sec)∗,

RV(300 sec), RV(300 sec)∗. Parameter estimates are overall in line with those of Table 4. The γ1

estimate to the left corresponds to the realized kernel. The estimates are of equal magnitude,

and one is not superior to the other. The estimates in ξ′, ϕ′, δ′1and δ′2 are roughly equal (again,

the left hand estimate belong to the realized kernel). Finally, notice that the large differences in

log-likelihood value are caused by det
(
Ω̂u
)

being well below 1.
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Table 5: Results for the Realized EGARCH model with multiple measurement equations.

Model REG(1,1) REG(1,1)? REG(1,1)• REG(1,1)† REG(1,1)‡

Panel A: Point Estimates and Log-Likelihood

log h0 0.148
(0.841)

1.095
(0.686)

0.998
(0.713)

1.089
(0.734)

1.106
(0.719)

µ 0.091
(0.081)

0.088
(0.081)

0.086
(0.081)

0.089
(0.081)

0.091
(0.082)

φr; . . . ; φ1

η

ω 0.917
(0.069)

0.736
(0.062)

0.783
(0.065)

0.843
(0.067)

0.816
(0.067)

βp; . . . ; β1 0.457
(0.033)

0.549
(0.030)

0.524
(0.031)

0.486
(0.032)

0.482
(0.032)

γq; . . . ; γ1 0.195
(0.032)

; 0.212
(0.039)

0.230
(0.035)

; 0.104
(0.030)

0.148
(0.039)

; 0.198
(0.041)

0.173
(0.039)

; 0.195
(0.044)

0.166
(0.040)

; 0.196
(0.045)

τ1 −0.002
(0.010)

0.006
(0.010)

0.008
(0.010)

0.006
(0.010)

0.005
(0.010)

τ2 −0.001
(0.002)

−0.003
(0.003)

−0.003
(0.002)

−0.002
(0.002)

−0.002
(0.002)

α

ξ −1.934
(0.231)

;−1.804
(0.209)

−1.839
(0.220)

;−1.727
(0.217)

−1.869
(0.225)

;−1.840
(0.226)

−1.957
(0.234)

;−1.832
(0.230)

−2.026
(0.247)

;−1.687
(0.242)

ϕ 1.226
(0.098)

; 1.114
(0.089)

1.188
(0.093)

; 1.160
(0.092)

1.201
(0.095)

; 1.199
(0.096)

1.235
(0.099)

; 1.218
(0.098)

1.264
(0.105)

; 1.245
(0.103)

δ1 −0.059
(0.016)

;−0.058
(0.013)

−0.062
(0.016)

;−0.064
(0.019)

−0.061
(0.016)

;−0.068
(0.017)

−0.059
(0.016)

;−0.065
(0.015)

−0.059
(0.016)

;−0.064
(0.015)

δ2 0.014
(0.004)

; 0.011
(0.003)

0.014
(0.004)

; 0.021
(0.004)

0.013
(0.004)

; 0.017
(0.004)

0.014
(0.004)

; 0.015
(0.003)

0.014
(0.004)

; 0.013
(0.003)

`(r, x) −294.728 −686.078 −326.674 −196.738 −81.320

Panel B: Auxiliary Statistics

`(r) −2254.311 −2249.588 −2249.210 −2254.241 −2255.960

σ̂2
u

[
1.00 0.29
0.29 1.00

] [
1.00 0.30
0.30 1.00

] [
1.00 0.29
0.29 1.00

] [
1.00 0.29
0.29 1.00

] [
1.00 0.29
0.29 1.00

]

The sampling period is 02 January 2006 to 31 May 2011. Results are for the underlined model specification in Table 4.
REG denotes the Realized EGARCH in Eq. 1 with the choice of p and q in parenthesis. REG(1,1) uses RK and RV(0 tick)

as the realized measures of volatility, REG(1,1)? uses RK and RV(1800 sec), REG(1,1)• uses RK and RV(1800 sec)∗,
REG(1,1)† uses RK and RV(300 sec), and REG(1,1)‡ uses RK and RV(300 sec)∗. Standard errors in parenthesis below the
estimates.

5.2 Diagnostics

We present now a limited number of diagnostics for the underlined REG(1, 1) model specification

in Table 4 utilizing the realized kernel. To check the model assumption of normality we present

quantile-quantile plots in Figure 4, which compare the empirical distribution of the standardized

residuals, ẑt and ût, to a normal distribution. The normality of ẑt is clearly rejected with excess

kurtosis far beyond 0. The results suggest that for forecasting one may consider a bootstrap

approach (see Section 6).
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Figure 4: Residual QQ-plots for the REG(1, 1) fitted to base load forwards traded on NOMXC. The sampling period
is 02 January 2006 to 31 May 2011. Results are for the standardized residuals from the REG(1, 1) for quarterly first
nearby utilizing the realized kernel as the realized measure of volatility, and using the underlined model specification
in Table 4.

Table 6 presents results on autocorrelation and heteroscedasticity in the standardized residu-

als. We do not detect signs of heteroscedasticity, and hence, the model is successful in this sense.

With respect to autocorrelation, the results point towards the inclusion of a autoregressive term

in the mean equation.

Table 6: Residual diagnostics for the REG(1, 1) fitted to base load forwards traded on NOMXC.

ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) Q(5) Q(10) Q(15)
ẑt 0.06∗∗ −0.01 0.04 −0.01 0.00 7.29 11.68 14.95
ẑ2

t −0.00 −0.00 0.02 0.01 0.01 0.89 1.61 3.56

The sampling period is 02 January 2006 to 31 May 2011. Results are for the standardized residuals from the REG(1, 1)
for the quarterly first nearby utilizing the realized kernel as the realized measure of volatility, and using the
underlined model specification in Table 4. ACF(L) is the empirical autocorrelation function at lag L and Q(L) is the
Ljung-Box test of no autocorrelation in up to L lags. Two asterisks indicate rejection at 1 percent significance level
(for ACF() that the estimate is outside the 95 pct. confidence band) and one asterisk rejection at the 5 percent level.
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6 Forecasting

We now discuss how multi-step predictions of volatilities as well as return density forecasts can

be obtained from the Realized EGARCH(1,1) model in the case of one measurement equation.

Generalizations are straightforward. Let h̃t+1 := log ht+1. Point forecasts turn out to be easy

to obtain owing to the fact that the vector h̃t+1 can be represented as an ARMA(1,1) system.

Substituting the measurement equation into the equation for the corresponding conditional

moment one obtains

h̃t+1 = C + Ah̃t + Bεt,

where εt = (δ(zt), τ(zt), ut)ᵀ, and C, A and B are given by

C = ω + γξ, A = β + γϕ, B =
[

γ 1 γ
]

,

which follow from the estimation up until time t. The innovation process, εt, is a martingale

difference sequence and it follows that

E(h̃t+k|h̃t) = Ak h̃t +

k−1

∑
j=0

AjC,

which can be used to produce a k-step ahead forecast of h̃t+k. We note that non-linearity implies

E
[
exp(h̃t)

]
6= exp E

[
h̃t
]
. Forecast of the conditional distribution of h̃t+k|Ft, which can be used to

deduce unbiased forecasts of the non-transformed variables, e.g., ht = exp(h̃t), can be obtained

by simulation methods or the bootstrap. In the simulation approach, we first generate

ζt =

(
zt

ut

)
∼ N

(
0,

[
1 0

0 σ2
u

])
, t = 1, . . . n,

and thus εt can be computed. Based on S simulations we estimate ht+k as 1
S ∑S

s=1 exp(h̃t+k).

Alternatively, a bootstrap approach can be preferable if the Gaussian assumption concerning the

distribution of ζt is questionable. From the estimated model we obtain residuals, (ζ̂1, . . . , ζ̂n),

from which we draw re-samples instead of sampling from the Gaussian distribution. Time series

for h̃t can now be generated from the bootstrapped residuals {ζ̂∗t } in the same manner as with

simulated {ζt}.
Below we present point forecasts and results for 1-step-ahead predictions, and 5-step and 20-

step ahead predictions with bootstrapped innovations.15 We set S = 1000 and use the REG(1, 1)

with no deterministic components and with the realized kernel as the realized measure of

15Results based on simulated innovations can be found in the web appendix. However, differences to the ones
presented here are not visible.

21



volatility. The horizon is set to 500 leaving 858 observations for each estimation in a rolling-

window setup. Figure 5 displays the resulting series. The thick dim gray line is the 15 minute

realized variance subsampled every minute, RV(900 sec)?, scaled by a factor of 3.2 (= 24/7.5)

used as benchmark, the black line is forecasts from the REG(1, 1) and the blue line is forecasts

from the EG(1, 1). For the 1-step ahead predictions shaded areas correspond to percentiles from

the unconditional distribution of h, and for the 5-step and 20-step ahead predictions shaded

areas are percentiles from the S simulations.

Looking at the 1-step-ahead predictions in the top row of Figure 5, improvements are not

easily seen by the naked eye. However, we will argue that for the quarterly series in particular,

REG(1, 1) has better capabilities to follow the pattern in the RV(900 sec)? benchmark. Results

are sligtly clearer in the middle and bottom row in Figure5, where the REG(1, 1) appear more

responsive than the EG(1, 1), which is inadequately smooth. To more formally compare the

forecast performance of the models we apply the model confidence set (MCS) of Hansen,

Lunde and Nason (2011) in Table 7. Results for the monthly and yearly contracts are included.

Briefly, the objective of the MCS procedure is to determine the set of “best” models,M?, from a

collection of modelsM0, where “best” here is defined by a loss function. Thus, one can view

the MCS as a set of models that includes the “best” models with a given level of confidence.

With informative data the MCS will consist only of the best model, and less informative data

may result in a MCS with several models. We refer to Hansen, Lunde and Nason (2011) for

details. In Table 7M0 consists of two models in the case of 1-step ahead predictions, and four

models for 5- and 20-step ahead predictions. We take as loss function the mean squared error

(MSE), where the “true value” is taken to be RV(900 sec)?. In Table 7 one asterisk indicates that the

model belongs to M̂?
90%. For 1-step ahead predictions is REG(1, 1) consistently in M̂?

90% with

pMCS ' 1. Only for the monthly series is EG(1, 1) in M̂?
90%. For 5- and 20-step ahead predictions

for the quarterly and yearly series is the REG(1, 1) with bootstrapped innovations consistently in

M̂?
90%, which is never the case for EG(1, 1). For the monthly series is the EG(1, 1) with simulated

innovations consistently in M̂?
90%. This is in line with expectations, as we would expect the

Realized EGARCH to perform better as compared to a conventional EGARCH when liquidity is

improved.
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Figure 5: k-step ahead volatility forecasts (bootstrapped innovations) for base load forwards traded on NOMXC
(top row has k = 1, the middle row has k = 5, and the bottom row has k = 20). The sampling period is 02 January
2006 to 31 May 2011. Results are for the REG(1, 1) and EG(1, 1) using the underlined model specification in Table
4, and for the first nearby constructed using rollover schemes as specified in Section 3.1. The thick dim gray curve
is the scaled realized kernel used as benchmark, the black curve is the REG(1, 1) k-step ahead volatility forecasts,
and the navy blue curve is the EG(1, 1). The shaded areas in the middle and bottom rows display percentiles of the
bootstrapped REG(1, 1) as stated.
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Table 7: MCS Results for base load forwards traded on NOMXC.

1-step 5-step 20-step
Variable, ht+s MSE ·103 pMCS MSE ·103 pMCS MSE ·103 pMCS

Monthly
REG (sim.) 67.36 1.000∗ 46.84 0.003 82.93 0.076
REG (boot.) 67.36 1.000∗ 47.23 0.003 83.80 0.076
EG (sim.) 75.38 0.782∗ 31.92 1.000∗ 153.00 0.076
EG (boot.) 75.38 0.782∗ 81.61 0.000 68.05 1.000∗

Quarterly
REG (sim.) 76.45 1.000∗ 87.68 1.000∗ 105.0 1.000∗
REG (boot.) 76.45 1.000∗ 87.70 0.909∗ 105.2 0.732∗
EG (sim.) 130.00 0.009 111.80 0.000 116.3 0.081
EG (boot.) 130.00 0.009 115.30 0.000 1589.0 0.081

Yearly
REG (sim.) 16.30 1.000∗ 15.09 0.112∗ 15.12 0.072
REG (boot.) 16.30 1.000∗ 14.92 1.000∗ 14.69 1.000∗
EG (sim.) 59.97 0.037 16.75 0.076 32.76 0.062
EG (boot.) 59.97 0.037 54.43 0.076 47.11 0.072

MSEs and MCS p-values for the different forecasts. The forecasts in M̂∗90% are identified by an asterisk. Results are
for the underlined model specification in Table 4. EG denotes the conventional EGARCH in Eq. 2 and REG denotes
the Realized EGARCH in Eq. 1.

7 Conclusion

In this paper we have explored the transaction records from NOMXC back to January 2006

and discussed the issue of construction of continual nearby contracts. We have estimated a

range of realized measures of volatility, and investigated similarities and differences of such.

The realized volatility measures are used to enrich the information set of GARCH models in

the Realized GARCH framework of Hansen, Huang and Shek (2011) and Hansen et al. (2010).

Estimations clearly reveal a gain from utilizing data at higher frequencies. Compared to ordinary

EGARCH models, which is nested in the Realized EGARCH considered, improved empirical fit

is obtained, in-sample as well as out-of-sample. The out-of-sample assessment is based on 1-, 5-

and 20-step-ahead regular and bootstrapped rolling-window forecasts. The Realized EGARCH

outperforms its nested benchmark visually and in terms of the MCS of Hansen, Lunde and

Nason (2011). Throughout, the obtained results illustrate the importance of careful volatility

estimation as the level is time-dependent but predictable. An appealing extension is in the

multivariate setting, where covolatilities between the different NOMXC forwards, and between

the forwards and other energy markets as coal, gas, and oil, are important to many (e.g. energy

and utility companies).
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8 Appendix A

Information Contained in Data Files

Date The date of registration of a trade on the form ’yyyy-mm-dd hh:mm:ss’ (time indication is superfluous, and

00:00:00 in all lines, and thus removed)

ContractTime The time of trade on the form ’yyyy-mm-dd hh:mm:ss’. For trades on exchange Date and ContractTime

are in agreement. For over-the-counter trades, dates in ContractTimes are often earlier than Date, and time

indications are imprecise - most appear to be a rough estimate, e.g. ’12:00:00’.

DealNumber A unique identification number for all deals entered. Both buy-side and sell-side ticks are included

in the data set with the same DealNumber. That is, a deal in CLICK Trade may consist of 2 or more trades,

i.e. there is not a one-to-one relation between buy and sell, as one offer may hit several bids if price and

volume match. Two for low volumes and only one counterpart. Three for larger volumes and two or more

counterparts.

TradeNumber A numbering of each tick. Not used.

DealSource The origin of the trade. On exchange (“Exchange”) or over-the-counter (“OTC”).

BuySell A buyer (“B”) or seller (“S”) indication. In the CLICK Trade system a “B” (“S”) is used for the deal if the

buyer (seller) is the so-called “Aggressor” accepting the lowest ask (bid) quote(s). Unfortunately, trades are

not saved using this definition, but instead using “B” for the buyside(s) and “S” for the sellside(s).

Market Id A market identification. All ticks in the raw data set have the same prefix, “ENO”, which is an abbrevation

of the underlying commodity (Electricity) and market (NOrdic). Not used.

MainCategory A product categorization into base load futures/forwards with a delivery period longer than one day

(“Base”), base load futures with a delivery period of one day (“BaseDay”), forward contracts-for-difference

(“CfD”), (“EUA”), European options (“Options”).

Category For MainCategory “EUA” either “EUA Forward” or “EUASPOT and for all other MainCategories a delivery

period specification; “Day”, “Week”, “Month”, “Quarter” or “Year”.

ContractTicker The ticker of the traded contract.

DealPrice The transaction price in EUR/MWh.

NbrOfContracts The traded number of contracts.

ContractSize The number of delivery hours in the traded contract.

Volume A multiple of NbrOfContracts and ContractSize.

Earlier versions of the files may use different headers and contain slightly different information (e.g. the column

InstrumentTypeID containing the type of the traded product, i.e. forward (ENFW), future week (ENFU), future day

(EDAY), forward CfD (ENCD), and European option (ENOC/ENOP), is no longer included.
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