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I Introduction

Following the liberalization of electricity markets in many countries, utility companies and

other market participants have been facing an increasing need for new pricing models in

order to accurately and timely evaluate spot and derivative electricity contracts that they

aim to buy and sell as part of their business. However, the end of cost-based pricing and

the transition towards a de-regulated market environment also gave rise to new financial

risks, threatening to impose substantial losses especially for, e.g., sellers of electricity

forward contracts. As such, the necessity to now optimize against the market for both

standard electricity products as well as tailored contingent claims additionally required

effective and integrated risk management strategies to be developed.

These developments have to be seen in the context of the unique behavior of electricity

(spot) prices, which is primarily induced by the non-storability of this commodity:

apart from hydropower with limited storage capabilities, an exact matching of electricity

demand and supply is required at every point in time. The resulting price dynamics

with their well-known stylized facts such as spikiness, mean-reversion, and seasonality,

have extensively been analyzed in related literature,1 yet still pose a challenge to both

practitioners and researchers in terms of adequately modeling and forecasting their

trajectories.

However, the non-storability of electricity has further implications on the price-formation

mechanism. First, it is the instantaneous nature of electricity that – other than in a classic

storage economy – causes the intertemporal linkages between economic agents’ decisions

today and tomorrow to break down. In fact, this forms the basis for electricity markets

being usually characterized as very transparent with respect to their underlying economic

factors, including electricity demand/consumption, available levels of generation capacity,

as well as the costs for generating fuels and emissions allowances. Against this background,

structural approaches taking this information explicitly into account appear especially

appealing to electricity price modeling (see, e.g., Pirrong, 2012). Second, and as the

above implies, the classic assumption that the evolution of all relevant pricing information,

i.e., the information filtration, is fully determined by the price process of the commodity

1See, e.g., Johnson and Barz (1999), Burger et al. (2004) or Fanone et al. (2012).
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itself, does not hold for non-storable assets such as electricity. In other words, today’s

electricity prices do not necessarily reflect forward-looking information that is publicly

available to all market participants.2 At the same time, legal requirements and voluntary

initiatives to increase data transparency have had power transmission system operators

(TSOs) publish (online) an increasing amount of data regarding the condition of their

network, including, e.g., forecasts about expected electricity demand or updated schedules

of planned short-term outages.3 Pricing electricity spot and derivatives contracts based

on models that make use of historical information only, may hence result in substantial

errors since the model leaves aside important (forward-looking) information, although it

is publicly available and very likely to play a key role for individual trading decisions.

In this paper, we hence focus on the prominent role of forward-looking information in

electricity markets and investigate its impact on empirical pricing performance. As such,

our study contributes to extant literature in the following ways:

First, we propose a new fundamental model for electricity pricing including fuel, demand,

and capacity dynamics that successfully captures the stylized facts of this commodity and

provides analytic derivatives pricing formulae.

Second, most studies that propose new fundamental electricity pricing models do not

calibrate the models to market data. If so, however, they mainly focus on time-series

fitting or provide pricing results for single, selected forward contracts as illustrative

examples only. In this article, we test our model in an extensive empirical study, using

a comprehensive data set of forward contracts traded in the British electricity market.

This also allows us to investigate several interesting implementation challenges that arise

during the calibration procedure.

2Benth and Meyer-Brandis (2009) provide several examples in support of this argument, such as the
case of planned maintenance for a major generating unit, which is likely to be public information available
to all market participants. Assuming a stylized setting, this outage will necessarily affect electricity spot
prices expected to prevail during the time the unit is offline. Likewise, the outage will also affect today’s
prices of derivative contracts such as forward/futures contracts if their delivery period overlaps with the
period of scheduled maintenance. However, in the absence of any means to economically store electricity
bought at (cheaper) spot prices today and to sell it at higher prices during the time of the outage, there
is no way to arbitrage such situation – implying, hence, that today’s electricity spot prices will remain
virtually unaffected by the announcement of the outage.

3Regulations (EC) No. 1228/2003, its follow-up No. 714/2009 and annexed “Congestion Management
Guidelines” (CMG) may serve as the most prominent example, requiring, e.g., that “the TSO shall publish
the relevant information on forecast demand and on generation (...)” (CMG, article 5.7).
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Third, and to the best of our knowledge, we are the first to empirically investigate the

pricing of derivative contracts in electricity markets by explicitly making use of forward-

looking information. By means of an enlargement-of-filtration approach, we show how to

properly integrate forecasts of electricity demand and available capacity into our setting

from a technical point of view, and thus account for the apparent asymmetry between the

historical filtration and the (enlarged) market filtration in electricity markets.

In a very rough distinction, existing literature on electricity spot price modeling can be

grouped into two categories: often allowing for analytic derivatives pricing formulae,

considerable attention has been devoted to reduced-form models that either directly

specify dynamics for the electricity spot price process itself or, alternatively, model

the term structure of forward contracts, in which case spot dynamics are derived

from a forward contract with immediate delivery (see, e.g., Clewlow and Strickland,

2000, Koekebakker and Ollmar, 2001, or Benth and Koekebakker, 2008). Starting

with traditional commodity modeling approaches via mean-reverting one- or two-factor

models (Lucia and Schwartz, 2002), a more adequate reflection of the stylized facts of

electricity spot price dynamics demands for more elaborate settings including (affine) jump

diffusion processes and/or regime-switching approaches (see, e.g., Bierbrauer et al., 2007,

Weron, 2009, or Janczura and Weron, 2010, for a comprehensive overview). However,

this may still not be sufficient to reliably differentiate between spike- and non-spike

regimes as observed in reality, or to adequately capture the (absolute) spikiness of

electricity prices. As a solution, additional enhancements have been proposed, such as

considering non-constant deterministic or stochastic jump intensities (see, e.g., Seifert and

Uhrig-Homburg, 2007) and their impact on possibly different speeds of mean-reversion

of the underlying Ornstein-Uhlenbeck (OU) process, which, in turn, negatively affects

analytic tractability. The same is true when trying to mitigate other common drawbacks

such as models precluding successive upward jumps or leaving jump intensities unaffected

by previous jumps. Extensions like Barone-Adesi and Gigli (2002) try to address

these problems but must resort to non-Markovian models, which, however, restricts

the applicability for contingent claim valuation. Finally, and as a point of structural
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criticism, reduced-form models obviously fail to analyze the dependence structure between

prices and the electricity markets’ underlying drivers, which not only leaves unexplained

important features such as the occurrence of price spikes, but also affects their applicability

for fields such as cross-commodity option valuation (unless, e.g., a co-integration setting

is employed such as in Emery and Liu, 2002, de Jong and Schneider, 2009, or Paschke and

Prokopczuk, 2009). In this context, and given the above mentioned increase in publicly

available (fundamental) data released by TSOs, it must be seen as a drawback of classic

reduced-form models that they obviously fail to take direct benefit from this increasing

transparency.4

On the other hand, the class of structural/fundamental electricity price models subsumes

a wide spectrum of more diverse modeling approaches; starting with equilibrium-based

models (Bessembinder and Lemmon, 2002, Bühler and Müller-Mehrbach, 2007) or even

more richly parameterized full production cost models (Eydeland and Wolyniec, 2002)

on the one end, but also including, on the other end, econometric approaches such as

regression-based settings (Karakatsani and Bunn, 2008) or time-series models whose

efficiency is enhanced by including exogenous fundamental variables (Weron, 2006, or

Misiorek et al., 2006).

Often referred to as hybrid approach, the class of models focused on in this study may

be seen in the middle of such spectrum.5 In its most general form, fundamental settings

of this kind comprise of a selection of separately modeled underlying factors, such as

electricity demand, available generation capacity, and fuels. Along with a specification of

the functional relationship between these factors and electricity (spot) prices, this setting

4We note that it is still possible to integrate information about the dynamics of fundamental state
variables (such as demand or, e.g., also temperature) into reduced-form models by means of correlated
processes; see Benth and Meyer-Brandis (2009) for an example. However, even though such models may
bridge the gap between classic reduced-form and fundamental approaches, it is still questionable whether a
single correlation parameter may be sufficient to reflect the rich dependence structures between electricity
prices and a fundamental state variable – all the more if the dynamics of several underlying variables are
to be taken into account at the same time.

5In order to avoid ambiguities, if we refer to fundamental electricity price models throughout the rest
of this paper, we shall actually mean the hybrid class of models within this category.
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can hence be interpreted as merit-order framework.6 The main challenge in this context

is to be seen in an adequate reflection of the characteristic slope and curvature of the

merit-order curve that is usually characterized by significant convexity.7 As a matter

of simplification, many studies (see, e.g., Skantze et al., 2000, Cartea and Villaplana,

2008, or Lyle and Elliott, 2009) propose to approximate the merit-order curve with an

exponential function. While there may be other functional specifications yielding a better

fit, such as a piecewise defined “hockey stick” function (Kanamura and Ohashi, 2007) or

power laws (Aı̈d et al., 2011), the exponential setting offers the key advantage of yielding

log-normal electricity spot prices, allowing for analytic derivatives pricing formulae.

Requiring our model to provide timely pricing information to market participants by

retaining tractability, we hence also adopt an exponential setting in order to represent

the merit-order curve; as regards the inclusion of generating fuels, we follow Pirrong

and Jermakyan (2008) by modeling a stylized one-fuel market, leaving aside more

flexible multi-fuel approaches such as presented in Aı̈d et al. (2009, 2011), Coulon

and Howison (2009) and Carmona et al. (2011). Whereas our one-fuel setting avoids a

model-endogenous determination both of the merit-order and the marginal fuel in place,

it remains to be discussed how this reduction in flexibility affects pricing results, and for

which markets such a simplification may be viable at all.

Regarding the question of how to account for forward-looking information in this

context, many of the above presented models could in fact be modified to accommodate

short-, mid- or long-term forecasts about future levels of electricity demand or available

capacity. However, extant literature mainly focuses on the benefits of using day-ahead

demand/capacity forecasts in order to improve day-ahead electricity pricing performance,

such as Karakatsani and Bunn (2008) or Bordignon et al. (2011). A different approach

6Alternatively, the functional relationship can also be seen as inverse supply curve or bid-stack, if we
abstract from generators submitting bids exceeding marginal costs. Also, our setting implicitly assumes
electricity demand being completely inelastic, which is a basic assumption for models of this kind. See
Carmona and Coulon (2012) for further reference as well as for a general and comprehensive review of
the fundamental modeling approach.

7This is a non-trivial issue given that the curvature is determined by both the individual composition
of generating units for each marketplace as well as their (marginal) cost structure which, in turn,
depends stochastically on other factors such as underlying fuel prices, weather conditions, (un-)planned
outages, and daily patterns of consumption. Additional factors to be considered may include market
participants exercising market power by submitting strategic bids, but also regulatory regimes awarding,
e.g., preferential feed-in tariffs to renewable energy producers.
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regarding the integration of forecasts into a pricing model is proposed by Cartea et al.

(2009). In their study, a regime-switching setting is invoked where the ratio of expected

demand to expected available capacity is used to determine an exogenous switching

component that governs the changes between “spiky” and “normal” spot price regimes. In

this way, the modeling of spikes present in spot prices can be improved, although the model

only resorts to very few forecast points per week and available forecasts are not explicitly

part of the price formation mechanism. Burger et al. (2004) also present a model that

requires as input normalized electricity demand, i.e. demand scaled by available capacity.

For the latter, the usage of forecasts of future capacity levels is suggested, but not focused

on in more detail.

Finally, the application of the enlargement-of-filtration approach to electricity markets was

initially proposed by Benth and Meyer-Brandis (2009). Focusing on risk premia rather

than on forward pricing, Benth et al. (2012) use this concept in order to analyze the impact

of forward-looking information on the behavior of risk premia in the German electricity

market. The authors develop a statistical test for the existence of an information

premium8 and show that a significant part of the oftentimes supposedly irregular behavior

of risk premia can be attributed to it.9

The remainder of this paper is structured as follows: in the next section, we develop

our underlying pricing model. Section III introduces the concept of the enlargement-of-

filtration approach and discusses how it can be applied in the context of fundamental

electricity price modeling. The empirical part of this article starts with Section IV where

the data used, the estimation of the model, and the general structure of the pricing study

are described. Section V presents the empirical results, Section VI concludes.

8The information premium is defined as the difference between forward prices, depending on whether
or not forward-looking information is entering the price formation mechanism.

9On a more general note, the idea to resort to forward-looking information, of course, extends
to numerous other fields of academic research. Another “natural” candidate is, by way of example,
the pricing of weather derivatives. For studies that resort to temperature forecasts in order to price
temperature futures, see, e.g., Jewson and Caballero (2003), Dorfleitner and Wimmer (2010) or Ritter
et al. (2011).
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II A Fundamental Electricity Pricing Model

A. Electricity Demand

Electricity demand is modeled on a daily basis with its functional specification chosen so

as to reflect typical characteristics of electricity demand such as mean-reverting behavior,

distinct seasonalities as well as intra-week patterns. On a filtered probability space(
Ω,FD,FD = (FD)t∈[0,T ?],P

)
with natural filtration Fq = (F q)t∈[0,T ?] (for FDt = F0∨F qt ),

demand Dt is assumed to be governed by the following dynamics:

Dt = qt + sD(t) (1)

dqt = −κDqtdt+ σDeϕ(t)dBD
t (2)

sD(t) = aD + bDt+
12∑
i=2

cDi Mi(t) + cDWEWE(t) +
4∑
j=1

cDPHj
PHj(t) (3)

ϕ(t) = θ sin
(
2π(kt+ ζ)

)
, (4)

where qt is an OU-process with mean-reversion parameter κD and a standard Brownian

motion BD
t . Since volatility of electricity demand has often been found to exhibit seasonal

levels of variation (see, e.g., Cartea and Villaplana, 2008),10 we apply a time-varying

volatility function as proposed by Geman and Nguyen (2005) or Back et al. (2012),

with θ ≥ 0, a scaling parameter k = 1
365

, and ζ ∈ [−0.5; 0.5] to ensure uniqueness

of parameters.11 In order to also reflect absolute-level demand-side seasonality, the

deterministic component sD(t) contains monthly dummy variables Mi(t) as well as

additional indicators for weekends WE(t) and public holidays.12 A linear trend is also

10As our estimation results will show, volatility of electricity demand in the British market is higher
during winter months than during summer months. However, this effect may be less pronounced or
even reversed for other markets where, e.g., the need for air conditioning during summer months drives
electricity demand to higher (and more volatile) levels than during winter months.

11This volatility specification allows for continuous differentiability, which is a technical necessity in
the context of the enlargement-of-filtration approach. See the technical appendix for further information.

12Since the extent of a demand reduction induced by a public holiday strongly depends on the
respective season prevailing, three different groups of public holidays shall be distinguished: those
occurring in winter (PH2), the Easter holidays (PH3), and the remainder (PH4). Additionally, the days
with reduced electricity demand between Christmas and New Year are treated as quasi-public holidays
(PH1). This may appear overly detailed, however, almost all coefficients turn out to be highly significant;
see Bühler and Müller-Mehrbach (2009) for an even more detailed approach.
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included in sD(t) in order to capture the effect of structural developments in the respective

market that may lead to an increase or decrease of electricity demand in the long-term.

B. Available Capacity

Available capacity Ct is modeled in a similar manner as electricity demand. Hence, on

a filtered probability space
(
Ω,FC ,FC = (FC)t∈[0,T ?],P

)
with natural filtration Fm =

(Fm)t∈[0,T ?] (for FCt = F0 ∨ Fmt ), we specify the following dynamics:

Ct = mt + sC(t) (5)

dmt = −κCmtdt+ σCdBC
t (6)

sC(t) = aC + bCt+
12∑
i=2

cCi Mi(t) + cCWEWE(t) +
4∑
j=1

cCPHj
PHj(t) + cCRR(t), (7)

where mt is again an OU-process with mean-reversion parameter κC and constant

volatility σC (in contrast to demand Dt, available capacity Ct is generally not found

to exhibit seasonality in volatility levels). BC
t is a standard Brownian motion and sC(t)

is defined analogously to sD(t). In addition, another dummy variable R(t) is included

in order to reflect the fact that, other than for the electricity demand data used in this

study, our capacity data includes generating units from Scotland only after April 2005.13

C. Marginal Fuel

In addition to the processes for electricity demand and available capacity, we introduce

the dynamics for our third state variable, i.e., the marginal fuel used for generation. As

a matter of simplification, we assume that the marginal fuel for the respective electricity

market under study does not change: while this certainly is a restrictive assumption, it

may still seem justified for markets that are strongly relying on one generating fuel only

so that during baseload/peakload hours, spot markets are primarily cleared by plants

13The introduction of the British Electricity Trading and Transmission Agreements (BETTA) as per
April 2005 is generally referred to as the starting point of a UK-wide electricity market. Prior to that,
and although linked via interconnectors, the electricity markets of England/Wales and Scotland were
operating independently.
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that use the same fuel for generation. Reflecting the dominant role of natural gas as

marginal generating fuel in the British market – and, more generally, in several other

major electricity markets – we include it as single fuel into our overall pricing model.

Although for modeling natural gas, a variety of multi-factor approaches with varying

degree of sophistication have been proposed by recent literature (see, e.g., Cartea and

Williams, 2008, for an overview), we seek to limit both complexity and (the already

high) parametrization of the model and, therefore, apply the mean-reverting one-factor

model initially proposed by Schwartz (1997). On a filtered probability space
(
Ω,Fg,Fg =

(Fg)t∈[0,T ?],P
)
, the log gas price, ln gt, is assumed to be governed by the following

dynamics:

ln gt = Xt + sg(t) (8)

dXt = −κgXtdt+ σgdBg
t (9)

sg(t) = ag + bgt+
12∑
i=2

cgiMi(t), (10)

where Xt is the logarithm of the de-seasonalized price dynamics and sg(t) reflects the

strong seasonality component that is inherent in natural gas prices. It should be noted

that the overall structure of our power price model as well as the availability of closed-form

solutions will be retained when introducing refinements such as a multi-factor log-normal

model for natural gas.14

D. Pricing Model

In order to link the three state variables – marginal fuel gt, electricity demand Dt, and

capacity Ct – with electricity (spot) prices Pt, we employ an exponential setting, thus

reflecting the convex relationship between prices and load/capacity as induced by the

merit-order curve. At the same time, we assume power prices to be multiplicative in

14While applying a one-factor model for natural gas prices may be seen as simplistic (since the
structure of this model implies that all natural gas forward/futures contracts are perfectly correlated
across maturities), we note that in this paper, we primarily focus on pricing short-term electricity forward
contracts for which only the short end of the curve may be relevant. However, when pricing longer-term
electricity contracts, we suggest a two-factor natural gas price model be employed instead.
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the marginal fuel; both these assumptions can be considered common practice (see, e.g.,

Carmona and Coulon, 2012) and yield the following structural relationship between power

prices and state variables:

Pt = α gδt eβDt+γCt (11)

Or, in log-form:

lnPt = lnα + δ ln gt + βDt + γCt (12)

where δ can be interpreted as the elasticity of the electricity spot price with respect to

changes in the natural gas price. Setting δ = 1 would thus allow to interpret eβDt+γCt

as heat rate function.15 However, given that we primarily investigate baseload power

prices in the empirical part of this paper, we acknowledge that the elasticity of baseload

power prices with respect to natural gas may be varying and, hence, do not impose the

restriction δ = 1.

Also, and as will be seen later, there is a subtle form of dependence between the parameters

α and γ. In order to give an intuition for the role of α, and providing an abstract link to

structural multi -fuel power price models at the same time, note that Equation (11) can

also be re-written as follows:

Pt = f
(1−δ)
t︸ ︷︷ ︸
α

gδt eβDt+γCt (13)

In Equation (13), α can hence be interpreted as reflecting the dynamics of another

generating fuel ft (such as coal) which, however, will be held constant for simplicity.

Following classic theory, (electricity) futures prices equal the expectation of the spot

price at maturity under a suitably chosen risk-neutral measure Q (Cox and Ross, 1976,

and Harrison and Kreps, 1979). However, the non-storability of electricity creates non-

15The heat rate indicates how many units of natural gas (or, more generally, of any other generating
fuel) are required to produce one unit of electricity. In our case, the “market” heat rate would refer to
the price-setting plant that generates the marginal unit of electricity.
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hedgeable risks, leading to an incomplete market setting. Therefore, the risk-neutral

measure Q cannot be determined uniquely, but will instead be inferred from market

prices of traded forward contracts, as will be shown in Section IV. In order to govern

the change of measure, and following Girsanov’s theorem, we introduce separate market

prices of risk λD, λC , and λg for the different sources of uncertainty in our model; these

market prices of demand, capacity, and fuel price risk are assumed constant. Given that

Pt is log-normal in the state variables, the log futures price, lnFt(T ), at time t and with

delivery date T is given as follows:

lnFt(T ) = EQ[lnPT ∣∣ Ft]+ 1
2
VQ[lnPT ∣∣ Ft] (14)

= lnα + δ EQ[ln gT ∣∣ Ft]+ β EQ[DT

∣∣ Ft]+ γ EQ[CT ∣∣ Ft]
+1

2
δ2 VQ[ln gT ∣∣ Ft]+ 1

2
β2 VQ[DT

∣∣ Ft]+ 1
2
γ2 VQ[CT ∣∣ Ft] (15)

where EQ[· ∣∣ Ft] and VQ[· ∣∣ Ft] indicate expectation and variance16 under Q and

conditional on Ft which is defined as Ft := FDt ∨ FCt ∨ F
g
t . As is further outlined

in Section III, when pricing forward contracts by making use of forecasts of electricity

demand and capacity, forward prices will be computed as risk-neutral expectations of

the spot during the delivery period, conditional on Gt rather than Ft. Consequently,

Equation (14) will need to be replaced by lnFt(T ) = EQ[lnPT ∣∣ Gt] + 1
2
VQ[lnPT ∣∣ Gt],

where Gt := GDt ∨GCt ∨F
g
t and (Gt)t∈[0,T ?] (or, more precisely, (GDt )t∈[0,T ?] and (GCt )t∈[0,T ?])

is the enlarged market filtration containing forecasts of expected demand and capacity

levels, respectively.

Also note that Equation (14) refers to a contract with delivery of electricity at some future

date T , whereas standard electricity forward contracts specify the delivery of electricity

throughout a delivery period [T , T ] (with T < T ), e.g., one week or one month. Following

Lucia and Schwartz (2002), we approximate the price of a forward contract with delivery

period [T , T ], containing n = T−T delivery days, as the arithmetic average of a portfolio of

n single-day-delivery forward contracts with their maturities spanning the entire delivery

16Note that the second part of Equation (14) reflects our implicit assumption of all state variables
being independent of each other.
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period, i.e.:

Ft(T , T ) =
1

T − T

n∑
i=1

Ft(τi) (16)

Finally, calculating electricity forward prices based on Equation (16) also requires us to

have available the corresponding fuel forward prices with single-day maturities, i.e., one

also needs to compute EQ[ln gτi ∣∣ Ft] (as well as the conditional variance) for every day τi

within the delivery period [T , T ]. For that purpose, we take the implied log-spot price of

natural gas at time t as a starting point to compute for every day τi within the delivery

period the price of a (hypothetical) natural gas forward contract that matures on that very

day. A simplified approach could be to use only one average value for EQ[ln gτi ∣∣ Ft] during

the entire delivery period (e.g., based on the current value of the month-ahead natural

gas forward, when pricing month-ahead electricity forwards). However, this may pose

problems for non-standard delivery periods as well as would require identically defined

delivery periods for gas and power.17

III The Enlargement-of-Filtration Approach

Non-storability of a given asset Z implies that forward-looking information can neither

be inferred from, nor is reflected in the historical evolution of its price trajectory Zt

(Benth and Meyer-Brandis, 2009). Mathematically speaking, given a finite horizon T ?

and letting
(
Ω,F ,F = (F)t∈[0,T ?],P

)
be a filtered probability space, the natural filtration

FZ = (FZ)t∈[0,T ?] (with Ft = F0 ∨ FZt ) may not reflect all forward-looking information

available to market participants. Assume that agents have access to some (non-perfect)

forecast of the price of Z at some future point in time t? ∈ [0, T ?]. Then, there exists a

sigma-algebra Gτ with Fτ ⊂ Gτ for all τ < t?, where Gτ reflects all available information

including the forecast, whereas Fτ does not. For τ ≥ t?, i.e. for times beyond the

17We note, however, that in the UK, electricity forward contracts (still) trade according to the EFA
(electricity forward agreement) calendar, following which every calendar year is grouped into four quarters
with three delivery months with lengths of 4/4/5 calendar weeks, respectively. Consequently, delivery
months of electricity forward contracts may not exactly overlap with corresponding delivery months of
traded natural gas futures contracts.
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forecast horizon, we however have Fτ = Gτ , since no further forward-looking information

is (assumed to be) available.

Next, note that whereas electricity clearly serves as most prominent example for non-

storable underlyings, the above outlined incompleteness of natural filtrations with respect

to forward-looking information can generally be extended to any kind of non-storable

underlying. Therefore, and strictly speaking, we do not enlarge the filtration of the

electricity spot price in order to incorporate forecasts, like Benth and Meyer-Brandis

(2009) do in their reduced-form setting. Instead, we focus on electricity demand Dt in

Equation (1) and available capacity Ct in Equation (5) which are, of course, non-storables

as well, and hence do not reflect forward-looking information either. Therefore, and more

precisely, it is the filtrations relating to the demand and capacity processes, respectively,

that need to be enlarged in order to integrate forecasts provided by the system operator.

In the following, all formulae derived in this section relate to available capacity and

forecasts thereof. Additional theoretical background as well as how to derive respective

formulae for the more general case of deterministic, but non-constant volatility (as for

electricity demand Dt) is provided in the technical appendix. For notational convenience,

we work with de-seasonalized forecasts that relate to mt instead of Ct; FCt and GCt are

defined as further above.18

In this setting, the (de-seasonalized) forecast of generation capacity available at time t

with forecast horizon T is interpreted as Gt-conditional expectation and can be expressed

as:

EP[mT

∣∣ GCt ] = mte
−κC(T−t) + σCEP

[∫ T

t

e−κ
C(T−u)dBC

u

∣∣∣∣ GCt ] (17)

This raises the question of how to treat expectations like EP[∫ T
t

e−κ
C(T−u)dBC

u

∣∣ GCt ] that

18One could argue that there exist, of course, numerous other forecasts about expected available
capacity that market participants might also have access to. E.g., capacity forecasts released by the
system operator that relate to intermittent energy sources (such as wind or solar power) might be
adjusted based on a utility’s proprietary model involving different meteorological assumptions, such
as more windy conditions or fewer sunshine hours. Likewise, the same is, of course, true for demand
forecasts if market participants expect, e.g., higher temperatures than implied by the forecast of the
system operator. Therefore, if we speak of G as the sigma-algebra “including forecasts”, we assume away
the existence of other forecasts and only mean to refer to those forecasts released by the TSO.
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are conditional on GCt (i.e., the sigma-algebra incl. forecasts) when BC
t , however, is an

FCt -adapted Brownian motion. Consequently, BC
t may no longer be a standard Brownian

motion with respect to (GCt )t∈[0,T ?]. Even more importantly, and following the “average

approach” in Equation (16), the pricing of, e.g., a forward contract with delivery period

of one month will require us to (ideally) have capacity forecasts at our disposal for every

day within the delivery period. Yet, as is outlined in Section IV, detailed forecasts on a

daily basis (as released by National Grid for the British market) always cover a window of

the next 14 days only. For longer-term prognoses, such as expected available capacity in

21 days, only forecasts of weekly granularity are published. Consequently, we may at best

cover a certain first part of the delivery period with daily forecasts, whereas for the rest of

the period, only few weekly forecast points will be available, thus leaving several delivery

days “uncovered” by forecasts. Therefore, another key question is how to consistently

determine EP[mT

∣∣ GCt ] when forecasts for capacity on delivery day T are not available,

but only for times T1 and T2 with T1 ≤ T ≤ T2. This leads to the following proposition:

Proposition III.1. Suppose that market participants dispose of forecasts of available

capacity at future points in time T1 and T2, i.e., EP[mT1

∣∣ GCt ] and EP[mT2

∣∣ GCt ]. Then,

for t ≤ T1 ≤ T ≤ T2, capacity expected to be available at time T is given as:

EP[mT

∣∣ GCt ] = EP[mT1

∣∣ GCt ]e−κC(T−T1)

+ EP
[∫ T2

T1

eκ
CudBC

u

∣∣∣∣ GCt ]σC eκ
CT
(
1− e−2κC(T−T1)

)
e2κCT2 − e2κCT1

(18)

The first part of the second term on the RHS of Equation (18) can be derived as follows:

EP
[∫ T2

T1

eκ
CudBC

u

∣∣∣∣ GCt ] =
1

σC

(
EP[mT2

∣∣ GCt ]eκCT2 − EP[mT1

∣∣ GCt ]eκCT1

)
(19)

Proof. This directly follows from Proposition 3.5 and Proposition 3.6 in Benth and

Meyer-Brandis (2009). Detailed derivations for the more general case of non-constant

deterministic volatility are provided in the technical appendix.

Note that we do not impose any specific structure on the nature of the enlarged filtration

14



(GCt )t∈[0,T ?] apart from (i) the fact that the forecasts released by the TSO are interpreted

as Gt-conditional expectations and (ii) that the Ft-adapted process BC
t (likewise BD

t ) is

a semimartingale under the enlarged filtration. The latter is a common and well-studied

approach in the enlargement-of-filtration theory, although more recent studies (Biagini

and Oksendal, 2005, or Di Nunno et al., 2006) have shown that such assumption could

in fact be relaxed. As is shown in the appendix in more detail, the general idea in this

case is that BC
t under the enlarged filtration (GCt )t∈[0,T ?] decomposes into a standard

Brownian motion B̂C
t and a drift term A(t) =

∫ t
ϑ(s)ds which is usually referred to as

the information drift. Hence, the additional information is essentially incorporated in the

drift term ϑ(t), so that the dynamics for mt in Equation (6) can be re-written as follows:

dmt = −κC
(
mt −

σC

κC
ϑ(t)

)
dt+ σCdB̂C

t (20)

Based on Equation (20) – or, equivalently, on Proposition III.1 – we can now compute Gt-

conditional expectations which relate to those points in time where no TSO forecasts are

available, but which are still consistent with the modified stochastic dynamics as imposed

by the available forecast points. Although a related concept, the change of the drift for the

above capacity process has not been obtained through a change of the probability measure,

i.e., B̂C
t is a Gt-adapted Brownian motion under the statistical measure P. Therefore,

when it comes to derivatives pricing under a risk-neutral measure Q in Section V, we

consequently look for a Gt-adapted standard Q-Brownian motion B̌C
t = B̂C

t − ΛC
G (t),

where ΛC
G (t) is a finite variation process representing the market price of risk that will be

inferred from prices of electricity derivative contracts.

Finally, we briefly discuss why we propose to use this specific approach of integrating

demand and capacity forecasts here. In fact, one may think of two alternative ways of

how the incorporation of forward-looking information could be dealt with technically.

Assuming the forecast data to be reasonably reliable, one approach would be to treat

the forecasts as deterministic. In such case, demand and capacity forecasts, ultimately

represented by expected values in Equation (14), would be replaced by constants, so

that the corresponding variance terms vanish. Although appealing by its simplicity, this
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approach raises several issues: first, when pricing, e.g., a forward contract with monthly

delivery period, it is often the case that detailed forecast data on a daily basis is not

available for all days of the delivery month. Especially for mid- to longer-term forecasts,

granularity of forecast points tends to be rather low, i.e., only expected maximum weekly,

monthly or seasonal demand (capacity) levels may be indicated. Irrespective of the

question of whether longer-term forecasts are still sufficiently accurate at all in order

to justifiably treat them as deterministic, choosing among different methods of how to

interpolate missing forecast data may appear arbitrary and pricing results would be quite

sensitive to the specific method chosen. Second, and as is analyzed further below, future

capacity levels are generally known to be hard to predict, in particular for the British

market (see Karakatsani and Bunn, 2008, on this issue). This results in slightly less

reliable forecasts, hence invalidating the assumption of deterministic forecasts in the first

place.19

Another approach could mitigate the above problem of interpolation in case of longer-term

forecasts, although this (again) requires daily forecasts to be considered deterministic

whenever available. For missing daily forecast points for periods beyond the horizon of

the daily forecasts, one could proceed as follows: A demand (capacity) process is estimated

based on the time series of historical data that has been extended to also include a given set

of available daily forecasts, treating the latter as if they were actually observed. Missing

forecasts are then replaced with expectations derived from the estimated process. This

approach is proposed by Ritter et al. (2011) and Härdle et al. (2012) in the context of

weather derivatives pricing. Roughly speaking, estimating parameters based on historic

and forecast data at the same time may come close to the general idea of enlarging the

information filtration. However, we argue that especially for electricity, this combined

estimation may level out expected future (demand/capacity) fluctuations too strongly

due to the (necessary) inclusion of historic data into the estimation. Assume, e.g., that

19Basically the same arguments apply if we instead retain the general structure of our stochastic
processes for demand and capacity in Equations (2) and (6), and include the forecast data (e.g., relating
to a future point in time T ) into the deterministic parts sD(T ) and sC(T ). Additionally, and at least
in the short-term, the deterministic part “within” EQ[·] is clearly overlaid with the mean-reverting OU-
component qte−κ

D(T−t) (likewise for capacity) so that the exact forecast values contained in sD(T ) will
be distorted.
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a longer-lasting period of very high electricity demand is expected. This will, of course,

be explicitly reflected in the daily forecasts. However, even if these days (for which high

demand is forecast) are added to the historical time series in the “combined” estimation

procedure, the derived demand expectations for periods thereafter will likely be lower,

owing to the influence of historic long-term average demand. Note that this very issue is

avoided by modifying demand and capacity dynamics as proposed in Equation (20), while

retaining the basic stochastic properties of the respective processes at the same time.

IV Data and Estimation Approach

A. Fundamental Data

The data set used in this study for the fundamental variables demand and capacity

comprises of ten years of historical data for the British electricity market, covering the

period from 2002 up to 2011. These contain both historical realized as well as historical

forecast data, and were obtained from National Grid, the British TSO,20 and Elexon,

the operator of the balancing and settlement activities in the British market.21 Figure 1

shows the development of the realized demand and capacity data during the period from

01-Jan-2007 to 31-Dec-2011, i.e., the period covered by our pricing study (whereas the

prior five years are used for estimation purposes).

With respect to electricity demand, the realized data used is based on the outturn average

megawatt (MW) value of electricity demand in England, Wales, and Scotland during the

peak half-hour of the day, as indicated by operational metering.22 Specifically, the demand

metric we use is classified as IO14 DEM, which includes transmission losses and station

transformer load, but excludes pump storage demand and net demand from interconnector

20National Grid both owns and operates the systems in England and Wales. Since the start of BETTA
in April 2005, it has also been operating the high-voltage networks in Scotland owned by Scottish and
Southern Energy as well as Scottish Power.

21The following websites were accessed: http://www.nationalgrid.com, http://www.bmreports.com,
and http://www.elexonportal.co.uk.

22Other than for most electricity markets, electricity in Great Britain is traded on a half-hourly basis,
corresponding to 48 settlement periods per day.
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imports/exports.23

As regards forecasts of expected electricity demand, two categories need to be

distinguished: first, National Grid releases daily updated demand forecasts covering the

next 2 weeks ahead with daily granularity. These are forecasts of electricity demand

expected to prevail during the peak half-hour of the respective day, which is the reason why

we are using peak demand instead of average (baseload) demand throughout this study.

Second, longer-term forecasts of expected demand are released once a week, covering the

next 2-52 weeks ahead with weekly granularity. These forecasts relate to expected demand

during the peak half-hour of the respective week. Figure 2 provides a schematic overview

of the different forecast horizons in the context of pricing a forward contract with monthly

delivery period. Finally, note that special attention was paid to the realized and forecast

data employed in our study being defined consistently.

In terms of realized capacity available, National Grid records maximum export limits

(MEL) for each of the units that are part of the overall balancing mechanism (BM).24

These limits quantify the maximum power export level of a certain BM unit at a certain

time and are indicated by generators to the TSO prior to gate closure for each settlement

period;25 should there be an (un-)expected outage for some generation unit, generators

will accordingly submit a MEL of zero during the time of the outage for this unit.

Moreover, since MEL do include volatile interconnector flows as well as generation from

intermittent/renewable sources, they can be seen as a good real-time proxy of available

generation capacity that either is in use for production, or could additionally be dispatched

into the transmission system immediately.

Capacity forecasts are released by National Grid, too, but primarily relate to the expected

“market surplus” SPLD. This variable gives an indication on expected excess capacity

beyond the levels required to satisfy (expected) demand and reserve requirements, but

23The British electricity market is connected to neighboring markets via interconnectors such as
to/from France (IFA), the Netherlands (BritNed) or the Moyle Interconnector (connection to Northern
Ireland).

24These are approx. 300 units in the UK (with one plant comprising several units).
25In the British market, gate closure is set at one hour before each half-hourly trading period. It refers

to that point in time by when all market participants have to give notice about their intended physical
positions so that the TSO can take action to balance the market.
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is structurally different from the MEL-approach that we follow for the realized capacity

data. This is, amongst other reasons, due to SPLD including a statistically derived

reserve-allowance which is based on average loss levels and forecast errors, rather than

actual reserve levels held in operational timescales (which are probably less pessimistic as

well). As such, and in order to consistently define realized and forecast capacity levels, we

instead use forecasts of expected total generation availability (which are also released by

National Grid) and adjust these for few additional items.26 Both timescale and updating

structure of these forecasts are similar to the demand case.

When feeding the forecast data into our model, note that the weekly updated demand

forecasts with a forecast horizon ranging from 2-52 weeks ahead are specified as relating

to the expected peak half-hour within the respective week, i.e., it is not tied to a specific

(business) day. Weekly capacity forecasts then relate to this very same half hour of

expected peak demand, but do not specify an exact date either, which, however, is required

in order to apply Proposition III.1. Based on historic data, the peak half-hour of demand

during a given week was most often found to occur between Tuesday and Thursday. As

a matter of simplification, we hence assume that weekly demand and capacity forecasts

always relate to the Wednesday of the respective week.27

Finally, an important caveat applies: while using forward-looking information may

presumably be beneficial for derivatives pricing purposes, using outdated forward-looking

information may certainly lead to the opposite. In fact, depending on both maturity and

length of the respective contract to be priced, it may be the case that EP[Dτ

∣∣ GDt ] and

26Even when using generation availability instead of SPLD, and unlike for the case of demand data,
capacity forecasts still slightly differ in definition from the capacity metric on which the realized data is
based (i.e., MEL). There are several reasons for this: Inter alia, volatile interconnector flows are hard to
predict and, hence, are set at float throughout all forecast horizons. Also, a small number of generating
units submit a MEL which, however, is not included into the forecast of generation capacity. We roughly
adjust for these items to still arrive at consistently defined metrics, e.g., by carrying over latest observed
values/forecast deviations into the future. At the same time, special focus is laid on our adjustments to
remain simple, easily reproducible, and hence likely to be used by market participants. Further details
are available from the authors upon request.

27Pricing results have proven to be rather insensitive to this assumption, i.e., fixing the weekly forecasts
to relate to each Tuesday or Thursday of a given week (or even alternating, based on the business day
for which the weekly peak-hour during the preceding week was observed) did not visibly change pricing
errors.
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EP[Cτ ∣∣ GCt ] for τ = T . . . T are exclusively determined based on longer-term forecast

points which are only updated weekly (as opposed to the daily updated 2-14 day-ahead

forecasts). Focusing specifically on capacity forecasts, it may, however, happen that a

major unplanned outage occurs just after the most recent weekly forecasts have been

released. Even worse, for few periods in our data sample, forecast updates are missing

altogether, leaving gaps of up to several weeks between successive forecast updates.

Feeding such outdated forecasts into our (or any other) model and not updating for

significant outages (whenever indicated) that move the market, hence unduly punishes

the forecast-based model.

Therefore, in case of missing updates or major unplanned outages not reflected in the

most recent set of capacity forecasts, we have adjusted for such events by combining the

forecast data with information provided on Bloomberg’s “UK VOLTOUT” page as well

as in news reports from ICIS Heren. Note that this information was available to market

participants at the time of trading. Prominent examples, amongst others, relate to several

of the unplanned trippings of nuclear generation units during 2007/08, which (along with

increased retrofitting activities of coal-based plants at that time) led to extremely tight

levels of available capacity in the British market.

B. Electricity Spot and Forward Data

Following the historic development of electricity market regulation and especially since the

inception of the New Electricity Trading Arrangements (NETA) regime in 2001, wholesale

trading in the British market is predominantly characterized by OTC forward transactions

with physical settlement. The forward market – defined as covering maturities from

day-ahead up to several years ahead of delivery – hence makes up for about 90% of

overall electricity volume traded in the UK (Wilson et al., 2011). Compared to other

major European electricity markets such as Germany or the Nordic market, financially-

settled trades are less common and mainly concentrate on limited exchange-based trading

activity such as at the Intercontinental Exchange (curve) or at the APX UK exchange

(prompt). More recently, the N2EX platform, operated by Nord Pool Spot and Nasdaq

OMX Commodities and established in order to re-strengthen exchange-based trading, has
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also started to list cash-settled power futures contracts for the British market. Despite

these developments, exchange-based derivatives trading activity still seems to be rather

limited, with member participation in futures trading increasing at slow pace only (see

OFGEM, 2011).

In view of this dispersed market structure with the vast majority of trades still being

bilateral or broker-based, our electricity price data is exclusively based on OTC contracts

and was obtained from two sources: first, Bloomberg provides historical forward prices

which are defined as composite quotes from a panel of OTC brokers. Second, we obtained

a comprehensive data set from Marex Spectron, a leading independent energy broker

that operates one of Europe’s largest and most established marketplaces for electricity.

This second data set is entirely based on trade data (including time stamp of trade,

executed through platform or voice brokers) and contains a variety of additional types of

electricity contracts, out of which a second OTC sample was formed. These two samples,

for which pricing errors are analyzed separately in Section V, contain the following types

of contracts:

“Bloomberg Data Set”:

� 1-month ahead forward contracts

“Marex Spectron Data Set”:

� 1-month ahead forward contracts

� 2-months ahead forward contracts

All selected forward contracts are baseload contracts. Moreover, electricity spot (i.e., day-

ahead) price data is additionally used for model calibration purposes, but is not analyzed

further in the main study. We deliberately focus on pricing the above types of baseload

contracts, leaving aside other instruments with quarterly, seasonal, or yearly delivery

periods. This is due to the following reasons: first, we are primarily interested in the

pricing impact of including demand and capacity forecasts into our model, compared to the

case when disregarding such forecasts. Since these forecasts are more accurate for short-

21



term horizons,28 our study focuses on contracts with short maturities and delivery periods.

Second, trading activity generally concentrates on front months with liquidity at the

longer end of the curve rapidly decreasing (OFGEM, 2011). Finally, and again primarily

for liquidity reasons, we have chosen to analyze baseload contracts instead of peakload

contracts. The fact that we are pricing baseload contracts, although using demand and

capacity during peak half-hours as inputs, may seem inconsistent, but is ultimately due to

the forecast data being available in this format only. It might be possible to convert the

peakload demand and capacity forecasts into corresponding baseload predictions, e.g., by

applying scaling factors that are based on historical averages. However, this is already

indirectly accounted for by the estimation procedure outlined in the following subsection.

An overview of the two data samples is provided in Table 1 where descriptive statistics

as well as further contractual characteristics for the day-ahead and forward contracts are

summarized. As can be seen, the data exhibits well-known characteristics of electricity

prices, such as substantial levels of volatility and excess kurtosis. While these effects are

– as expected – more pronounced for spot than for forward contracts, we also note the

obvious difference in skewness of log-returns between both types of contracts.

C. Estimation Approach and Estimation Results

The individual processes for the state variables demand (Dt) and available capacity (Ct)

are estimated by discretizing Equations (2) and (6) and using maximum likelihood. Based

on annually rolling windows of five years of time series data, parameters are re-estimated

annually, but held constant throughout every subsequent year when used for pricing

purposes. Estimation results and robust standard errors are presented in Tables 2 and 3.

The reported significance levels underline the distinct seasonalities for both demand and

capacity, with our chosen specifications capturing well the most prominent characteristics.

Given the already very high number of parameters to be estimated, we have chosen a

rather simple one-factor approach to model the dynamics of the marginal fuel used for

generation, i.e., natural gas in our case. Since the spot component Xt in Equation (8)

28Longer-term forecasts rely on statistical averages and, thus, should convey no significant additional
information as compared to the “no-forecast” case (that is characterized by filtration (Ft)t∈[0,T?]).
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cannot be observed directly, estimation of all parameters for the natural gas model is

instead performed based on futures data and using the Kalman filter and maximum

likelihood. Re-casting the model into state-space representation with corresponding

transition and measurement equations is a standard exercise which is outlined in more

detail, e.g., in Schwartz (1997). Since our study primarily focuses on pricing short-term

electricity forward contracts, we focus on the short end of the natural gas curve and hence

seek to infer the log-spot natural gas dynamics from corresponding short-term futures

contracts with maturities ranging from one to four months. Relevant data is sourced from

Bloomberg and relates to natural gas futures contracts traded at the ICE (Intercontinental

Exchange) with physical delivery at the National Balancing Point (NBP), the virtual

trading hub for natural gas in Great Britain. Parameter estimates for the dynamics of

natural gas are summarized in Table 4. Again, the estimates are statistically highly

significant and clearly reflect the strong seasonal component that is present in natural gas

prices.

Having estimated the parameters that govern the dynamics of the respective underlying

variables Dt, Ct, and gt, the parameters α, β, γ, and δ that link the three fundamental

factors yet remain to be determined. Generally, two approaches appear suitable:

1. Based on Equation (12), historic log electricity spot prices lnPt are regressed on

corresponding time-series data of Dt, Ct, and ln gt. This approach is proposed by

Cartea and Villaplana (2008) for a structurally similar model (that, however, does

not include marginal fuel dynamics or forward-looking information)

2. Implicit (re-)estimation over time, based on a cross-section of electricity spot and

forward prices

Given evidence that α, β, γ, and δ may not be constant over time, we favor the second

approach: in their study on electricity spot price forecasting in the British market,

Karakatsani and Bunn (2008), for example, also apply fundamentals-based models,

and conclude that the models with the best pricing performance are those that allow

for time-varying coefficients to link the fundamental factors. Moreover, some specific

structural aspects of the model proposed by Carmona et al. (2011) may be seen in the
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same spirit. Therefore, and although treated as constants in our model, the time-varying

nature of the parameters α, β, γ, and δ is captured by implicitly extracting and

weekly re-estimating them from the cross-section of quoted power prices. Likewise, the

parameters λD and λC governing the change of measure from P to Q are inferred in the

same way.29

In order to implicitly estimate these parameters, the following objective function is

minimized:

Φ?
W = argΦW

minRMSPE(ΦW )

= argΦW
min


√√√√ 1

NP
W

NP
W∑

i=1

(
P̂W,i(ΦP

W )− PW,i
PW,i

)2

+

√√√√ 1

NF
W

NF
W∑

i=1

(
F̂W,i(Φ

Q
W )− FW,i
FW,i

)2


where ΦW ≡ {α, β, γ, δ, λD, λC}, and with the two subsets ΦQ

W and ΦP
W defined as ΦW ≡

ΦQ
W and ΦP

W ≡ ΦQ
W \ {λD, λC}. To minimize the root mean squared percentage error

(RMSPE) over the in-sample period W , we assemble all available day-ahead prices PW,i

(totaling NP
W quotes) as well as all available forward prices FW,i (NF

W quotes) and compare

against prices P̂W,i and F̂W,i as predicted by our model according to Equations (12) and

(14). For in-sample estimation windows W , we use a length of eight weeks (e.g., w1−w8)

for the Bloomberg sample. Out-of-sample testing of the model is performed during the

subsequent week (i.e., w9), employing the parameters estimated over W – thus only using

information available up to the respective pricing day. Finally, the in-sample period is

shifted by one week (i.e., new window: w2−w9) and parameters are re-estimated. For the

Marex Spectron sample, we shorten the length of the in-sample estimation windows to

six weeks since more price observations per week are available, thus allowing for a robust

estimation with a shorter window. Furthermore, these changes in the in-sample set-up

may be seen as providing additional robustness to our findings examined in Section V, so

29Note that for pricing power derivatives in our structural framework, risk-neutral dynamics are also
required for the natural gas component of our model. The corresponding market price of risk λg (which
is assumed constant), however, has already been determined by Kalman filter estimation (see Table 4).
We hence assume that the “look-through” risk premium of natural gas indirectly inherent to power
derivatives is equal to the one for (outright) traded natural gas futures contracts. While λg could easily
be re-estimated by including it into the set of implicitly determined parameters Φ, we refrain from doing
so and instead prefer to reduce the number of free parameters here.
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as to ensure that pricing improvements when using forecasts do not rely on a specific mix

of contracts or length of in-sample estimation windows.

Different sets of implied parameter estimates Φ?
W are obtained for the Bloomberg and

Marex Spectron samples (which are priced separately), as well as depending on whether

or not forecasts of demand and/or available capacity are used during the estimation

procedure. As an example, implied estimates for the Bloomberg sample (when using

both demand and capacity forecasts) are summarized in Table 5.30 Although the table

only provides an aggregate view on the estimates, their corresponding means and standard

errors indicate significant weekly variation between the parameters which our model could

not capture when holding constant the “fundamental” parameters α, β, γ, and δ in Φ?
W

otherwise.

Examining more closely the development of the parameter estimates over time, we observe

that β and γ, the parameters governing the sensitivity of the power price with respect

to changes in demand and capacity, respectively, culminate in 2008 and gradually decline

thereafter. As is further outlined in the next section, this can be well explained by the

fact that in terms of (excess) capacity, the British power market was especially tight in

2008, as is clearly reflected in the behavior of day-ahead and month-ahead forward prices

displayed in Figure 3. The years to follow are marked by a massive increase in installed

generation capacity by more than 10 gigawatts (GW), leading to oversupply especially

of thermal generation and, consequently, to tightening spreads (especially spark spreads)

for generators. As a consequence of these abundant capacity levels, changes in demand

and capacity are of less importance for power price dynamics at that time, as evidenced

by rather small absolute values for the estimates of β and γ in the years 2009-11.31 As

will be seen, this strongly affects the relative advantage of using forecasts of demand and

capacity.

Recalling that δ can be interpreted as the elasticity of the power price with respect to

30Estimation results for the other sets of parameters are available from the authors upon request.
31However, we acknowledge that it may be up for debate whether the variation of β and γ (and

especially the increase in absolute values for 2008) could, at least to some extent, also be due to
insufficient convexity of our functional representation of the merit order curve which is likely to be much
steeper during times of low system margin than the corresponding levels implied by our exponential-form
representation.
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changes in the fuel price, we observe that between 2009 and 2011, the estimate for δ more

than doubles. This increase in the power-gas sensitivity may come as a surprise given

that at the same time, spark spreads have continued to decline. However, and as a matter

of fact, it is the heavily gas-based structure of the British generation park that causes

especially the short end of the power price curve to track the NBP gas curve very closely;

hence, the link between gas and power markets may have become even stronger recently,

owing to the fact that (i) the LCPD32 has started to reduce availability levels of coal plants

and that (ii) new generation coming online has primarily been of CCGT-type.33 We also

note that the increase in value for δ during 2009-2011 goes in line with a corresponding

decrease in value for α, which appears reasonable when recalling the interpretation of

α = f 1−δ
t in Equation (13).

Finally, in view of rather large estimates for the market prices of demand and capacity

risk, λD and λC , it is important to mention that since these two parameters are estimated

simultaneously, they interact with each other during the estimation procedure and cannot

be determined uniquely. It might hence be more convenient to think of a “combined”

market price of (reserve) margin risk βλD + γλC which is also shown in Table 5.

V Pricing Results

Pricing results for 1-month ahead forward contracts from the Bloomberg data set are

summarized in Table 6. In order to examine the pricing impact of using forward-looking

information in more detail, we distinguish between three cases: using (i) no forecasts, (ii)

demand forecasts only, and (iii) forecasts of both demand and available capacity. Results

are reported for each of the five years covered by our study as well as on an aggregate

basis (for 2007-2011). As can be seen, employing demand and capacity forecasts clearly

improves pricing performance on an overall basis, reducing pricing errors by up to 50%:

32The UK Large Combustion Plant Directive (LCPD) limits the amount of Sulphur Dioxide, Nitrous
Oxides, and dust that (coal- and oil-fired) power stations are allowed to emit. As an alternative to
complying with the tighter emissions regulations, power stations that were “opted-out” either face
restrictions of operational hours and/or have to close by 2015.

33Combined cycle gas turbine (CCGT) plants are natural gas fired generation plants which, thanks to
their technology, achieve high levels of thermal efficiency and offer sufficient flexibility in generation to
meet sudden fluctuations in electricity demand.

26



aggregate RMSPE over the entire sample period from 2007-2011 reduces to less than 6% as

compared to an RMSPE of about 10% when no forecasts are used; corresponding absolute-

level RMSE even halves and decreases by some £4.00/MWh, which also underlines the

economic significance of the pricing improvements achieved by incorporating forecasts

into our model – especially in view of average contract volumes of several thousands of

megawatt hours (MWh).

In order for the analysis of pricing errors to be consistent with our estimation procedure,

we mainly focus on root mean squared-based error measures, given that this objective

function has also been used for estimation. However, we also note that the relative

improvement in pricing performance when employing forecasts is generally smaller when

looking at the absolute percentage error (MAPE) as opposed to RMSPE, which underlines

that incorporating forecasts seems to pay off mainly in situations of unusually high or low

demand/capacity. Hence, before analyzing the breakdown of pricing errors on a yearly

basis, it is important to recall that primarily during the first 2-2.5 years covered in our

study, the British power market has suffered from exceptionally poor (expected) levels

of power plant availability, with reserve margins clearly falling below long-term averages

(especially in 2008). Consequently, the model excluding forecasts fares clearly worse than

during any other period of our study. By contrast, the model including both demand

and capacity forecasts gives strong evidence of its capabilities, reducing pricing errors

even in times of extreme fluctuations in day-ahead and forward price levels – i.e., during

times demanding utmost flexibility from any type of model. Reconsidering Figure 3,

the extreme spike in month-ahead forward prices during September/October 2008 was

clearly driven by ever-increasing supply fears,34 and it is obvious that such a trajectory

can only be captured (albeit not perfectly) by a model that includes forward-looking

information about the capacity levels that are expected to prevail during the respective

delivery months.

The pricing performance of the models during the year 2007 provides another opportunity

to further discuss what kind of forward-looking information we actually consider to be

contained in the enlarged filtration (GCt )t∈[0,T ?] – and what is not contained therein. Based

34This is supported by our analysis of market commentary covering the respective trading days.
Importantly, in these days, then prices of month-ahead natural gas were approximately flat.
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on a detailed analysis of single-day pricing errors, the model including both forecast types

yields very satisfactory pricing results throughout this year, except for a period of rather

poor pricing performance during November and December 2007, for which forward prices

are clearly underestimated. Although market commentary may generally be criticized for

over-emphasizing alleged causal relationships between specific events and strong market

movements, several of the reports released at that time stress, amongst other reasons,

the then very high continental power prices that are said to have impacted British power

prices as well. In fact, French power prices had reached record levels in November 2007,

fueled by strikes in the energy sector that led to temporary production cuts by some

8,000 MW. This, in turn, raised concerns about French electricity supplies for the rest

of the year, which ultimately could have resulted in Britain becoming a net exporter of

power to France via its interconnector, putting an additional drain on the already tight

British system.35 However, although market commentary indicates that (British) market

participants do seem to have “priced in” such a scenario, and although pricing errors for

the forecast-based variant of our model would have clearly been reduced, we have decided

not to incorporate this belief (i.e., interconnectors switching from imports to exports)

in our capacity forecasts: (GCt )t∈[0,T ?] is only based on forecasts released by the TSO

and supplemented with updates of major unplanned outages. Although likely to further

improve pricing performance, starting to integrate market beliefs about future available

import/export capacity levels would also require us to do so for the rest of our sample,

i.e., during times where such market sentiment may be more difficult to infer. Moreover,

it is obviously impossible to exactly observe and consistently quantify these beliefs, e.g.,

it is unknown how long exactly and to what extent market participants would expect the

above scenario to continue.

In the years 2009-2011, the relative improvement of the forecast-based models is smaller

than in previous years. As indicated by the corresponding parameter estimates for

β and γ, the influence of demand and capacity as fundamental factors driving power

prices has been much reduced during these years, primarily due to growing oversupply

35The interconnector that links British and French electricity markets has a capacity of approx. 2,000
MW; Britain has “traditionally” been an importer of French electricity – which (especially during peak
hours) tends to be cheaper, also in view of the higher share of nuclear baseload generation capacity.
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in generation capacities leading to permanently healthy reserve margin levels. As such,

given that (short- to mid-term) power prices at that time were almost exclusively driven by

natural gas dynamics under these conditions, the impact of incorporating forward-looking

information vanishes accordingly. Interestingly, pricing performance of the model for the

years 2009-2011 seems to be even slightly better when using demand forecasts only, and

leaving capacity forecasts aside. This could be due to the fact that in the British market

– as also stressed by Karakatsani and Bunn (2008) – the forecasts of available capacity

levels (or, equivalently, margins) released by the TSO tend to be received with slight

skepticism and, hence, are likely to be adjusted (or not used at all) by market players.

This adds to other, more general problems of capacity forecasts, such as accuracy in terms

of generation from renewables or their consistency in definition with realized data. This is

also reflected in Figure 4 where prediction errors between forecast and realized demand and

capacity levels are summarized.36 Capturing well the regular consumption patterns that

characterize the dynamics of electricity demand, related forecasts are subject to rather

low forecast errors only. By contrast, predicted future levels of available capacity are

significantly less accurate and this inaccuracy increases more strongly for longer forecast

horizons. While this certainly impacts pricing performance during 2009-11, such generally

higher inaccuracy of capacity forecasts nevertheless seems to be of minor importance

during times of exceptionally low reserve margins, as shown above.

The results based on the data obtained from Marex Spectron are presented in Table 7

and Table 8. Again, we observe an improvement in pricing performance when integrating

demand and capacity forecasts into our model – as evidenced by relative reductions in total

RMSPE of 8% and 15% for 1-month and 2-months ahead forward contracts, respectively.

Moreover, the overall pattern of pricing errors for both types of forward contracts is in

general agreement with the conclusions drawn based on the Bloomberg sample: notably,

integrating demand as well as capacity forecasts into our model again primarily pays

off during the years 2007-2008, reducing aggregate RMSE during these years by about

£1.20-2.00/MWh. Such economic significance is also confirmed statistically by applying a

36Note that especially for forecasts of available capacity, the input capacity data from National Grid
has been subject to further adjustments by the authors.
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Wilcoxon signed-rank test which shows that the reductions in errors are significant at the

1%-level. For the remaining years (during which the impact of the fundamental factors

Dt and Ct has been found to be rather muted) pricing errors can still be reduced by using

only demand forecasts as compared to the “no-forecast” case.

Obviously, the differences in error metrics between the models including and excluding

forward-looking information are not of the same order of magnitude as those reductions in

pricing errors observed for the Bloomberg sample. Importantly, however, the in-sample

fitting procedure for the Marex Spectron data sample additionally includes 2-months

ahead forward contracts. As such, the fact that the benefits of using forecasts still prevail

when calibrating our model to a broader cross-section of forward quotes may clearly be

seen as underlining the robustness of our general findings.37

Examining the pricing errors in more detail, the year 2008 may again serve as a key

example that illustrates another (and more subtle) effect when using forecasts as compared

to excluding them. For this year, and based on the Bloomberg data sample, pricing

performance of the “no-forecast” variant of the model is especially poor, as indicated by

an RMSPE of about 20%. For the Marex Spectron sample, by contrast, corresponding

pricing errors for 1-month ahead contracts are much lower, yielding an RMSPE of less than

10%. In this context, it is important to note that amidst the height of above mentioned

capacity shortage in 2008 (that led to the prominent spike in 1-month ahead forward

prices in September/October shown in Figure 3), supply fears primarily concentrated

on the front month. Consequently, 2-months ahead forward contracts at that time

(although, of course, not completely unaffected by the shortage) were clearly less subject

to such strong fluctuations in price levels. Therefore, the broader cross-section of forward

quotes in the Marex Spectron sample forces the “no-forecast” variant of our model to

simultaneously accommodate such contrary 1-month and 2-months ahead price dynamics,

which results in a “mediocre compromise” at best: 1-month ahead contracts are now

strongly underestimated (2008 MPE of -2.78% in Table 7 vs. 0.98% in Table 6), which,

however, halves RMSPE to less than 10%, given that underpricing pays off after the

sudden “collapse” in post-spike forward pricing levels. Yet on the other hand, the

37As a further robustness check, the in-sample estimation window was shortened from 6 to 4 weeks,
yielding similar pricing results.
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pronounced spike in 1-month ahead forwards has 2-months ahead contracts become

strongly overpriced post-spike (despite an overall 2008 MPE of -0.69%), which alone

contributes more than 2% to the overall RMSPE of 11.45%. By contrast, and again

comparing Table 6 and Table 7, all pricing errors for the model including demand and

capacity forecasts in 2008 are surprisingly similar – irrespective of whether 2-months ahead

contracts are included in the cross-section or not.

Put differently, the above example provides evidence of the additional benefits that arise

when including forecasts into our model. Forecasting low levels of capacity in the short-

term, but healthier levels in the mid- to long-term may help govern opposed dynamics of

contracts with differing maturities, such as outlined above. This flexibility is also reflected

in the implicitly estimated fundamental parameters α, β, γ, and δ. In fact (and although

not reported here), the implied estimates show clearly higher variation throughout 2007

and 2008 than if demand and/or capacity forecasts are accounted for during the estimation

procedure. This appears reasonable given the additional flexibility for the forecast-based

model variants in fitting observed prices, whereas the model variant without forecasts

always has expected demand and capacity mean-revert to the same (long-term) levels. As

a result, flexibility is reduced, which must be compensated for by higher variation in the

set of fundamental parameters. Altogether, this again underlines that excluding forecasts

from the pricing procedure not only affects pricing performance, but may also imply using

a mis-specified model.

VI Conclusion

Modeling the dynamics of electricity prices has traditionally been a challenging task

for market participants, such as generators/suppliers, traders, and speculators. The

strong links between power prices and their fundamental drivers make structural modeling

approaches especially appealing in this context, and it can be expected that both current

and future developments – such as further integration of geographic markets via market

coupling – will even further promote the importance of bottom-up modeling frameworks

(albeit at the cost of increasing complexity). At the same time, increasing transparency as

31



well as more reliable outturn and forecast data released by system operators help market

participants face these challenges and allow for more informed trading decisions.

In this paper, we develop and implement a model for electricity pricing that takes these

developments into account by integrating forward-looking information on expected levels

of electricity demand and available system capacity. Special focus is laid on calibrating

the model to market prices of traded electricity contracts and it is shown that the model

parameters are easily interpretable in an economic way. Being one of the key advantages

of the fundamental approach, this helps to provide deeper insight into the structure of

the market than standard reduced-form models could ever do.

Although hard to compare with other pricing studies (that focus on different markets or

periods), the pricing performance of our model appears very satisfactory. Importantly,

we find that out-of-sample pricing errors can be reduced significantly by making use of

forward-looking information. Especially during times of very tight reserve margins, as

witnessed for the British market in 2008 (and, to some extent, also in 2007 and 2009),

capacity forecasts are of crucial importance in order to track sudden outage-induced

changes in forward pricing levels and, therefore, significantly reduce pricing errors.

However, we have also found that if spare capacities or, equivalently, tightness of the

system is not perceived as playing a “fundamental” role, the advantage of employing

capacity forecasts reduces and, in some instances, may even lead to marginally lower

pricing performance. This is also strongly supported by our findings that capacity

forecasts are generally less accurate on average than demand forecasts. Nevertheless,

in these cases, it is still beneficial to keep using demand forecasts (rather than using no

forecasts at all), which still reduces pricing errors. This is especially true for the pricing

of forwards during the years 2009-2011, where, as our parameter estimates indicate, the

dynamics of natural gas prices are the main fundamental driver so that demand and

capacity only play a subordinate role for pricing.

Given the above mentioned challenges and future developments, there is ample room

for further research in the field of structural electricity price modeling. First, it would

be interesting to conduct empirical pricing studies for other electricity markets as well.
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Given that structural electricity price models may always appear somewhat “tailored”

to capture the characteristics of a specific electricity market, it would be interesting to

see how these types of models perform empirically in those markets where merit-order

dynamics are different. Second, given that our model is cast in a log-normal setting, it is

equally well-suited to option pricing like other previously proposed fundamental models

(see, e.g., Carmona et al., 2011). Further empirical studies might not only investigate

the impact of using forward-looking information on option pricing performance, but also

focus on the question of how pricing performance is affected depending on whether a 1-

or 2-fuel model is used. Finally, the continued shift towards renewable energy sources

in the generation mix of many European power markets poses new and highly complex

challenges regarding the forecasting of availability levels of intermittent generation, such

as for wind or solar power. These forecasts will play an indispensable role especially

when modeling geographic markets that are highly interconnected with each other, so

that abundant supplies are likely to “spill over” across borders and impact price levels in

neighboring markets.
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A Appendix

A. Conditional Expectations Based on Enlarged Filtrations

Under the Historical Measure

Let
(
Ω,FD,FD = (FD)t∈[0,T ?],P

)
be a filtered probability space and qt be specified as in

Equation (2). Assume that EP[qT1

∣∣ GDt ] and EP[qT2

∣∣ GDt ] (with FDt ⊂ GDt ) are available

from the system operator. Before computing a forecast of expected electricity demand at

time T with t ≤ T1 ≤ T ≤ T2, we first derive relevant formulae under the assumption

that only one forecast point for T1 is given by the system operator – hence neglecting for

the time being the existence of EP[qT2

∣∣ GDt ] – and that a forecast of electricity demand

is needed for time T with t ≤ T ≤ T1. Formally, this can be expressed as follows:

EP[qT ∣∣ GDt ] = qte
−κD(T−t) + σDEP

[∫ T

t

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDt ] (21)

In order to manipulate the conditional expectation on the RHS of (21), a standard

approach (see, e.g., Protter, 2004, or Biagini and Oksendal, 2005) is to exploit the

semimartingale-property of BD
t with respect to Gt, i.e., to decompose BD

t as follows:

BD
t = B̂D

t + A(t) (22)

where B̂D
t is a GDt -martingale (standard Brownian motion) and A(t) a continuous GDt -

adapted process of finite variation (commonly referred to as the ”information drift”).

Following Hu (2011) and Di Nunno et al. (2006), B̂D
t in Equation (22) can be written

more explicitly as:

B̂D
t = BD

t −
∫ t

0

bt(s)B
D
s ds︸ ︷︷ ︸

A1(t)

−
∫ t

0

a(s)

(
EP[Y ∣∣ GDs ]− ρ′(s)BD

s

)
ds︸ ︷︷ ︸

A2(t)

(23)

with A(t) = A1(t) + A2(t). Following Theorem A.1 in Benth and Meyer-Brandis (2009)

or, equivalently, Theorem 3.1 in Hu (2011) – a(s) and bt(s) in above Equation (23) are
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given as follows:

a(s) =
ρ′(s)

τ −
∫ s

0

(
ρ′(u)

)2
du

(24)

bt(s) = ρ′′(s)

∫ t

s

ρ′(v)

τ −
∫ v

0

(
ρ′(u)

)2
du

dv (25)

where ρ(t) = EP[BD
t Y ] is twice continuously differentiable, τ = EP[Y 2] and Y is a centered

Gaussian random variable with Y =
∫ T1

0
eϕ(s)eκ

DsdBD
s =

∫ T1

0
eθ sin(2π(ks+ζ))eκ

DsdBD
s .

Focusing on A1(t) and since bs(s) = 0, it holds that:

∫ t

0

bt(s)B
D
s ds =

∫ t

0

∫ s

0

∂bs
∂s

(u)BD
u duds

=

∫ t

0

a(s)

[∫ s

0

ρ′′(u)BD
u du

]
ds (26)

=

∫ t

0

a(s)

[
ρ′(s)BD

s −
∫ s

0

ρ′(u)dBD
u

]
ds (27)

where Equation (27) is derived from Equation (26) by applying Itô’s Lemma to ρ′(s)BD
s .

Based on the above, Equation (23) can now be re-arranged to yield:

B̂D
t = BD

t −
∫ t

0

a(s)

(
EP[Y ∣∣ GDs ]− ∫ s

0

ρ′(u)dBD
u

)
ds︸ ︷︷ ︸

A(t)

(28)

Given above definition of Y , and since it can be shown that ρ′(t) = eϕ(t)eκ
Dt, the

information drift A(t) can be further simplified, so that Equation (28) now reads:

B̂D
t = BD

t −
∫ t

0

a(s)EP
[∫ T1

s

eϕ(u)eκ
DudBD

u

∣∣ GDs ]ds
= BD

t −
∫ t

0

a(s)EP
[∫ T1

s

ρ′(u)dBD
u

∣∣ GDs ]ds (29)

= BD
t − EP

[∫ T1

t

ρ′(u)dBD
u

∣∣ GDt ] ∫ t

0

a(s) exp

(
−
∫ s

t

ρ′(v)a(v)dv

)
ds︸ ︷︷ ︸

A(t)

(30)

where Equation (30) is derived from Equation (29) based on Proposition A.3 in Benth
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and Meyer-Brandis (2009). Hence, in our initial setting of Equation (21) where a demand

forecast EP[qT ∣∣ GDt ] is to be determined that is consistent with the exogenously given

forecast point relating to T1, this can now be computed as follows:

EP[qT ∣∣ GDt ] = qte
−κD(T−t) + σDEP

[∫ T

t

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDt ]︸ ︷︷ ︸
IG(t,T )

(31)

= qte
−κD(T−t) + σDe−κ

DTEP
[∫ T

t

ρ′(s)dBD
s

∣∣∣∣ GDt ] (32)

= qte
−κD(T−t) + σDe−κ

DTEP
[∫ T

t

ρ′(s)d
(
B̂D
s + A(s)

) ∣∣∣∣ GDt ]
= qte

−κD(T−t) + σDe−κ
DT

∫ T

t

ρ′(s)dA(s)

= qte
−κD(T−t) + (33)

σDe−κ
DT EP

[∫ T1

t

ρ′(u)dBD
u

∣∣∣∣ GDt ]︸ ︷︷ ︸
(?)

∫ T

t

ρ′(s)a(s) exp

(
−
∫ s

t

ρ′(v)a(v)dv

)
︸ ︷︷ ︸

f(s)

ds

Note that the term IG(t, T ) is also referred to as information premium which is defined

as EP[qT ∣∣ GDt ] − EP[qT ∣∣ FDt ]. The term (?), in turn, can be extracted from the given

forecast as follows:

(?) =
1

σD

(
eκ

DT1EP[qT1

∣∣ GDt ]− qteκDt

)
(34)

The integral in the second term on the RHS of Equation (33) can be further simplified

significantly if volatility is constant, as is the case for the dynamics of the capacity process

in Equation (6). In the case of the seasonal volatility function for the demand process

(as specified in Equation (4)), however, no analytic solutions for the integral exist; still,

it can be approximated computationally in an efficient way by using standard numerical

integration techniques.

Having outlined the general procedure for the case T ≤ T1, we now turn to the more

relevant case where EP[qT1

∣∣ GDt ] and EP[qT2

∣∣ GDt ] (with FDt ⊂ GDt ) are released by the

system operator and a forecast EP[qT ∣∣ GDt ] needs to be computed with t ≤ T1 ≤ T ≤ T2.
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We proceed as follows:

EP[qT ∣∣ GDt ] = EP
[
qT1 + EP[qT − qT1

∣∣ GDT1

]︸ ︷︷ ︸
(??)

∣∣∣∣ GDt ] (35)

Re-arranging (??) and taking out what is known, i.e. GDT1
-measurable, we get:

EP[qT − qT1

∣∣ GDT1

]
= qT1

(
e−κ

D(T−T1) − 1
)

+ σDEP
[∫ T

T1

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDT1

]
(36)

Combining Equations (35) and (36) and using iterated conditioning now yields:

EP[qT ∣∣ GDt ] = EP[qT1

∣∣ GDt ]e−κD(T−T1)

+ EP
{
σDEP

[∫ T

T1

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GDT1

] ∣∣∣∣ GDt }

= EP[qT1

∣∣ GDt ]e−κD(T−T1) + EP[IG(T1, T )
∣∣ GDt ] (37)

The term EP[IG(T1, T )
∣∣ GDt ] in Equation (37), however, can be manipulated similarly to

Equations (31) - (33):

EP[IG(T1, T )
∣∣ Gt] = EP

{
σDe−κ

DTEP
[∫ T2

T1

ρ′(u)dBD
u

∣∣∣∣ GDT1

] ∫ T

T1

f(s)ds

∣∣∣∣ GDt }

= σDe−κ
DT EP

[∫ T2

T1

ρ′(u)dBD
u

∣∣∣∣ GDt ]︸ ︷︷ ︸
(???)

∫ T

T1

f(s)ds (38)

Analogous to Equation (34), the term (? ? ?) can be backed out from the given forecast

points relating to T1 and T2:

(? ? ?) =
1

σD

(
eκ

DT2EP[qT2

∣∣ GDt ]− eκ
DT1EP[qT1

∣∣ GDt ]) (39)
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B. Conditional Expectations Based on Enlarged Filtrations

Under an Equivalent Risk-Neutral Measure

For derivatives pricing purposes, and based on Equation (14), conditional expectations

EQ[· ∣∣ Gt] and variances VQ[· ∣∣ Gt] under the enlarged filtration (Gt)t∈[0,T ?] and a risk-

neutral measure Q need to be computed for both demand and capacity processes Dt and

Ct, respectively.

Defining A(t) =
∫ t

0
ϑ(s)ds, and based on the manipulations in the previous subsection,

the GD-adapted dynamics for Dt can now be stated as below (cf. Equation (2)):

dqt = −κD
(
qt −

σDeϕ(t)

κD
ϑ(t)

)
dt+ σDeϕ(t)dB̂D

t ,

where B̂D
t is a GDt -adapted standard P-Brownian motion.38 Applying Girsanov’s theorem,

and given that our market setting is inherently incomplete, we assume that under a

suitably chosen risk-neutral measure Q, B̂D
t is a semi-martingale and decomposes as

follows:

B̂D
t = B̌D

t + ΛD
G (t),

where B̌D
t is a GDt -adapted standard Q-Brownian motion and ΛD

G (t) =
∫ t

0
λDG (s)ds is a

finite variation process governing the change of measure as market price of (demand) risk.

The risk-neutral dynamics for Dt under the enlarged filtration now are:

dqt = −κD
(
qt −

σDeϕ(t)

κD
(
ϑ(t) + λDG (t)

))
dt+ σDeϕ(t)dB̌D

t ,

where conditional expectation EQ[· ∣∣ Gt] and variance VQ[· ∣∣ Gt] are then derived in

the standard way. As outlined in Section IV, the market price of risk will be assumed

constant and inferred from price quotes of traded derivative contracts. Depending on

whether or not forward-looking information will be used, it will be referred to as λDG or

λDF , respectively.

38Recall that we assume the filtration (GCt )t∈[0,T?] to be of such nature that BDt = B̂Dt + A(t) is a
semimartingale.
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Figure 1: Daily Electricity Demand and Available System Capacity
This figure shows the time series of realized daily electricity demand and available system capacity
in the British market during the period from 01-Jan-2007 to 31-Dec-2011. Displayed demand and
capacity data both relate to the same daily peak (demand) half hour. All data shown were obtained
from National Grid and Elexon.
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Figure 2: Schematic Overview of Forecast Horizons for the GB Market
Daily forecasts are available on a 2- to 14-days-ahead basis; additionally, forecasts of expected
maximum demand (capacity) per week are released for weeks 2-52. In this example, the first
nine delivery days of some given forward contract are covered by daily forecasts, expected demand
(capacity) for each of the remaining days must be derived based on Proposition III.1.
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Figure 3: 1-Month Ahead Forward and 1-Day Ahead Baseload Electricity Prices
This figure shows the time series of daily forward prices for 1-month ahead and 1-day ahead baseload
electricity contracts during the period from 01-Jan-2007 to 31-Dec-2011. All data shown were
obtained from Bloomberg; for dates with missing quotes/prices, the last observed historic price was
carried over.
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Figure 4: Performance of Demand and Capacity Forecasts
This figure shows the root mean squared percentage error (RMSPE) for the 2-14 days-ahead
forecasts of electricity demand and available system capacity during the period from 01-Jan-2007
to 31-Dec-2011. Note that especially for capacity forecasts, inputs are based on data released by
National Grid plc, yet have been further adjusted by the authors.
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Table 1: Samples of Baseload Spot and Forward Contracts

This table reports summary statistics for the samples of electricity spot (day-ahead) and forward
prices covering the period from January 2, 2007 until December 30, 2011. [T , T ] denotes the
average delivery period (in days) and T − t the average maturity (in days) as measured until the
start of the delivery period. All contracts from both the Bloomberg and Marex Spectron samples
are baseload contracts. Displayed log-returns for 1- and 2-month(s) ahead forward contracts are
adjusted to account for roll-over of contracts as well as for missing quotes.

Mean Median Std. Dev. Skewness Kurtosis [T , T ] T − t

B
lo

om
b
er

g
D

at
a

1-Day Ahead

lnPt 3.7543 3.7600 0.3891 0.0818 -0.1121 1.0 1.0
lnPt − lnPt−1 -0.0019 -0.0019 0.0717 1.2812 12.8443

1-Month Ahead

lnFt 3.7781 3.7899 0.3737 0.2196 0.2131 30.4 15.9
lnFt − lnFt−1 -0.0009 -0.0003 0.0219 -0.2365 5.4731

M
ar

ex
S
p
ec

tr
on

D
at

a

1-Day Ahead

lnPt 3.7500 3.7612 0.3829 0.1225 0.0516 1.0 1.0
lnPt − lnPt−1 -0.0027 -0.0021 0.0721 1.2138 10.9920

1-Month Ahead

lnFt 3.7856 3.7956 0.3604 0.2359 0.4641 30.4 16.1
lnFt − lnFt−1 -0.0010 -0.0014 0.0205 -0.1641 4.8328

2-Months Ahead

lnFt 3.8003 3.7975 0.3532 0.3031 0.4328 30.8 44.8
lnFt − lnFt−1 -0.0009 -0.0005 0.0177 -0.3552 4.5943
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