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EXTENDED ABSTRACT
I. INTRODUCTION

Electricity price data display features that are unusual in
comparison to those of stock price data. Hourly electricity
prices p, show a complex mean reversion pattern, which
includes upward spikes and a baseline periodicity. These
features can be seen in Fig. 1, generated from data for the
year 2006 from the Alberta (Canada) AESO energy market
Ref.[1], where prices are shown in panel a). When data
include exchanged volume, electricity prices display a very
clear and strong correlation with volume levels (shown in
Fig. 1 b)), whereas correlation of stock prices with volume
is certainly not an obvious relation. Spikes appear only during
daylight, always in coincidence with volume crests and never
during night time. Even more interestingly, the mapping of
prices into logprices reveals the presence of many antispikes
(i.e. downward spikes), a feature that is not easily detectable
directly from prices. As it can be seen in Fig. 1 c), antispikes
appear only during night time, in coincidence with demand
troughs. Antispikes have a heavy statistical weight, as shown
in Fig. 2. Fig. 2 a) shows one year of logprices. Logprices
mean revert around a base level, and jump very frequently
upward and downward, with a quasi-symmetric, and somewhat
skewed, aggregate distribution (see Fig. 2 b)) which has a bell
shaped central part and thick tails. Since the Alberta market
has a cap price and doesn’t admit negative prices, both tails
are limited in extension. Antispikes are not an artifact of the
logaritmic mapping - which is just a way to emphasize them -,
and due to their heavy statistical weight, they must be included
in any econometric model that wants to model this kind of
prices.

II. MODELS

Advanced econometric models for electricity data make use
of continuous-time Lévy processes or discrete-time switching
Markov chains to reproduce baseline and spikes, and almost
never include antispikes. An alternative approach to model
electricity data was sketched in Ref.[2], where it was shown
that, both in continuous- and in discrete-time settings, the
sinusoidal price baseline, the spikes and the antispikes can
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Fig. 1. Alberta power market prices: two weeks from Sat Nov-04-2006 to
Sat Nov-17-2006, time in hours, time ticks in weekdays; a) prices in C$, b)
demand in MWh, c) logprices.
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Fig. 2. Alberta power market prices: one year from Apr-07-2006 to Apr-
06-2007; a) logprices, time in hours, time ticks in months b) (normalized)
empirical distribution of logprices.



be modelled at the same time using a couple of sinusoidally
driven piecewise linear stochastic differential or difference
equations, i.e. using a Self-Exciting Threshold Vector Auto-
Regression (SETVARX). In Ref.[2] this threshold model was
discussed focussing on its remarkable dynamic property of
being able, in a special parametric range, to sustain occasional
firing of spikes in coincidence of demand crests and antispikes
in coincidence of demand troughs, being demand modelled
by a simple sinusoidal forcing term. In this model, it is the
very interaction of nonlinearity with forcing and noise the
combination that generates most interesting dynamic behavior.
This SETVARX model can also be used in a more standard
parametric range as a specially constrained TARX, useful
to model series in which, besides spikes, threshold effects
are considered important. In Ref.[3] a calibration technique
appropriate for this model was developed, valid for every
parametric regime. Another feature of the model is the fact
that data must not be pre-filtered for spike identification, but
simply fed directly to the calibration procedure. Since the
Alberta data seem to contain strong threshold effects, as it
will be now discussed, this SETVARX model can turn out
to be very useful in studying the dynamic properties of the
Alberta prices.

III. DATA

It is a well known fact that electricity prices incorporate
power stack effects. In the power industry, marginal costs
increase nonlinearly with quantity, and the analytical relation
between prices p,, (that in a perfect competition settings should
be equal to marginal costs) and demand d,, (i.e. the exchanged
volume) can be approximated by a ‘golf stick’ profile. This
relationship can be catched by eye from inspection of the
scatterplot shown in Fig. 3, where for each given time n the
n-th data point (py, d,,) is plotted on the price/demand plane.
On the left of the vertical line no price with level above that of
the horizontal line exists, i.e. for a demand below that demand
threshold, prices seem to be more or less following a linear
price/demand relation. On the right of the demand threshold
there is no clear price/demand relation, and for each demand
value it seems that prices can either choose to follow demand
linearly (remaining below the horizontal price threshold) or
take arbitrarily high values, with some preference for the cap
values. This means that above a certain demand, the prices
can spike, but they don’t necessarily do it, and when they
spike they can take any value. Below that threshold demand,
they never spike. In Fig. 4 for each given time n the n-
th data point (log p,, Alogp,) is plotted on the logprice /
logprice-increment plane. There seem to exist at least three
different regions in this plane, divided by the two vertical
price threshold lines. Starting with a low logprice log p,, say
on the left of the left hand side line, only moderate logprice
increments Alogp, can be attained. Starting with a high
price on the right of the right line, higher increments can be
attained. Starting between the two thresholds, low and high
increments are allowed (the diagonal global shape depends
on the existence of a cap and a floor for prices). Even more

interestingly, when a Poincaré plot of successive price levels
(log py, log pp+1) is formed like that in Fig. 5, five regions
divided by four thresholds become clearly visible. The graph
is obviously symmetric, and it can be divided also in five
horizontal regions, not shown in figure. It is apparent that when
a logprice belonging to one of the vertical regions is recorded,
the next logprice will be subject to strong and deterministic
constraints in value. For example, if the starting logprice is
located inside an antispike, i.e. in the second vertical region
counting from left, the maximum increment it can take would
move it to the third (central) horizontal region, i.e. near the
baseline. This goes in accordance with the already mentioned
fact that an antispike (which is fired only during night time)
reverts always to the baseline, never transforming itself into a
spike before daylight. The same in reverse would happen for
spikes, but with larger flexibility (the fourth region is wider).
All of this is also clear from direct inspection of the price series
in time. What instead comes strikingly out from this Poincaré
plot is the rigid thresholding of the dynamics. Logprices on the
left and on the right of one threshold have a sharply different
future. Restated in behavioral terms, investors seem to behave
differently depending on the region of the price they observe.
Any econometric model that wants to model this kind of prices
must incorporate this structure.
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Fig. 3. ‘Golf stick’ power stack on the price/demand plane. Near each axis
the marginal distribution of data is shown.

IV. MODEL

In the model of Ref.[2], in continuous time ¢, the logprice
process z(t) = Inp(t) is the solution of the stochastic
differential equations system

(1a)
(1b)

et = gr(z)—y
g = z—my+b+ft)+ok(t),
where y(t) is a coordinate complementary to x(t), gr(z) is a

piecewise linear function of z, €, v, b and o are constants, &
is Normal noise and f(t) = By sin wgt. When the dynamics in
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Fig. 4. Nonlinearity in logprice evolution: logprice increments.
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Fig. 5. Nonlinearity in logprice evolution: logprice constraints

Egs. (1) is quiescent, i.e. 0 = f =0 and £ = y = 0, Egs. (1)
read

(2a)
(2b)

y = gr(x)
(z +0) /7.

In the plane (z,y), i.e. in the phase-space of the dynamical
system (1), Egs. (2) can be drawn as two lines, called
nullclines. In order to model spikes and antispikes gr(z) is

chosen piecewise linear as

gr(x) =
—ap(x+ CL)+
YoDr + Br(=Cr + D), -0 <2< —Cf
R=R;
ﬂL(fv-i-DL)-l-"/oDL, -C, <z< -—-Djp
R=R,
—YZ, -D;, <x< Dpg
R =R3
Br(x — Dr) — YDk, Dr <x< Cg
R =Ry
—OzR(.’)S— CR)—
YDr + Br(Cr — Dg), Cr <z< +o00
R = Rs,

3)

where oy, agr, Br, Br, Y0, CL, D1, Dgr, Cr are constants.
The values of = where gr(x) forms kinks (—Cp, —Dyp,
Dg, CR), are the model thresholds. This model contains four
thresholds, as many as the scatterplot of Fig. 5 hints at. The
five regions indicated by R;, ¢ = 1,...,5 are the five regimes
of this threshold model. The special parametric range that
sustains spikes and antispikes is for v, ar, ar, Br, Br. Yo
all greater than zero. In discrete time Egs. (1) can be rewritten
as

zn At

0

< —e| A
{aIgR(xn) 6:| Zn At

+lgr(zn) = (W 0 +b) + f(£)] At
(4b)

(4a)

Tp+l — Tp =

€(znt1 — 2n) =

—VAto N1,

where now x,, = logp,, is the discrete logprice at time step

tn, 2y 1s a complementary coordinate with the meaning of a
logreturn intensity A logp,,/At, 1, is a normally distributed
noise variable, wg = 27 and At is set to 1/24. This dynamics
behaves in the same way as the dynamics of Egs. (1), i.e. as
a threshold vector autoregression where thresholds like — Dy,
and Dp segment the system dynamics into sectors (regimes)
and inside these sectors the dynamics is a standard (vector
and linear) autoregression of lag 1 (very short and economic
in terms of estimation time). A logprice x starting from one of
the regimes R; will follow a one-step-in-time evolution limited
by the regime local dynamic rule. If z ends up in another
regime, the next logprice will follow the next appropriate rule.
Differently from what can be seen in Fig. 5, the model offers
no limiting mechanism (capping or flooring) to the next values
that = can take, unless it finds itself in the special parametric
region. Anyway, in the generic parametric case, since within
each regime the velocity with which z can escape from its
original regime is regime-dependant, each regime has always
its own characteristic range of possible outputs.



V. CALIBRATION

When the SETVARX calibration procedure is fed with data,
it will output four optimal threshold values and their associated
estimated parameters. But since the data themselves seem to
offer the proper threshold values, which are the positions of
x that can be seen in Fig. 5, i.e. —-CL =1.9, —DL = 2.7,
DR = 3.6, CR = 6.3, in this case the calibration will be run
directly with these thresholds in order to see what happens
(e is set equal to 1/2). In Fig. 6 the autocorrelation of the
logprices is shown in panel a).
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Fig. 6. ACF of logprices, QQ plot of their distribution, ACF of residuals,
QQ plot of their distribution

The seasonality of demand results in seasonality of log-
prices. The QQ plot in panel b) puts in evidence the fact
that the logprices have a non-normal distribution (see again
Fig. 2 b)) - if they had it, the points would align on the
dashed diagonal. The parameter values that are obtained from
estimation are oy, = 14.5828, #;, = —14.1149, vy = 15.0727,
Br = —16.6730, ar = 12.5268, 7, = 28.4698, b =
—171.8155, By = —43.3043. The signs of the estimates
for 5, and Br show that the model is outside the special
parametric range, so that it behaves as a quasi-linear TARX.
More surprisingly, the residuals r are practically uncorrelated,
i.e. this simple five-regimes second order TARX model seems
to capture most of the dynamic linear dependence in the data,
even though not specifically designed for this. This can be
seen in Fig. 6 c). Fig. 6 d) shows that the distribution of the
residuals in strongly not normal. The shape of the residuals
distribution is shown in Fig. 7 a) and their dynamics in Fig. 7
b). Another surprise comes from the fact that the residuals
have a rather precise Double Gamma distribution. This can
be seen in Fig. 8 a), where the right portion of the empirical
distribution is fit by the distribution
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with v = 139.0928 and s = 0.85619. A fit by a purely
exponential distribution, as displayed in Fig. 8 b), is not able
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Fig. 7. Residuals from the estimation

to capture the kurtosis as well as the pole in the Gamma can
do.
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Fig. 8. Residuals distribution fits. a) Gamma, b) Exponential

Most of the model errors are then small errors. These
errors are uncorrelated, but could have a higher order dynamic
dependance. even though volatility clustering doesn’t seem
to be present in the series of Fig. 7 b). In facts, Fig. 9
a) shows that this is not much the case. In the Figure, the
ACF of the squared residuals is computed. Some correlation
indeed exists but it is very low for the first few lags (more or
less 7 hours), and it is very small (even though not zero) at
multiples of 24 hours. Fig. 9 b) shows the ACF of the squared
logprices, to be compared with the ACF of the logprices.
The two seem to be very similar, so that also the ACF of
residuals and squared residuals can be expected very similar.
An even weakly correlated squared residuals series suggests
the possibility of GARCH effects, but a GARCH analysis of
the residuals was carried out without any interesting outcome
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Fig. 9. ACF of a) squared residuals and b) squared loprices

- no GARCH effects are present. Some AR(q)X models with
an exogenous sine forcing term were also tested on data,
both on prices and logprices, up to ¢ = 6, but it seems
that the best model in terms of residuals uncorrelation is the
SETVARX model itself, since ARX models are not able to
remove correlation at all.

VI. CONCLUSIONS

To summarize, the main results of this analysis of the
Alberta electricity data by means of the threshold model
discussed in Ref.[2] seem to be the following. Besides spikes,
antispikes are present in the data, and, what seems mostly
important, there are four thresholds hidden in the data. After
calibration of the model on data, it turns out that spikes
are not generated by the mechanism that is at work in
the special parametric regime of the threshold model. This
notwithstanding, the threshold model in its generic parametric
range can be anyway very effective in modelling such data
in terms of removal of linear (and maybe higher) correlation
from the residual series that it generates.
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