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Abstract

We propose a model for the evolution of forward prices of several commodi-
ties, which is an extension of the two-factor forward model by Kiesel et al. (2009),
originally conceived for the electricity forward market, to a market where multi-
ple commodities are traded. We then show how to calibrate this model in a mar-
ket where few or no derivative assets on forward contracts are present. We thus
perform a calibration based on historical forward prices. First we calibrate sepa-
rately the four coefficients of every single commodities, using an approach based
on quadratic variation. Then we pass to estimate the mutual correlation among
the Brownian motions driving the different commodities, the estimates being based
now on the quadratic covariation between forward prices of different commodities.
This calibration is compared to a calibration method used by practitioners, which
uses rolling time series, which however requires a modification of the model.

Keywords: two-factor model for forward prices, historical calibration, quadratic varia-
tion, quadratic covariation.

1 Introduction

When dealing with forward prices of a single commodity having different maturities,
the two-factor model proposed by Kiesel et al. [6] is quite simple to understand, ana-
lytically tractable and gives a good fit of several stylized fact. The first is the so-called
Samuelson effect, i.e. the local volatility of a short-term forward contract is greater
than the local volatility of a long-term contract, and in particular an exponential de-
cay is observed as the time to maturity of the contract grows. The second stylized fact
∗enricoedoli@gmail.com
†Corresponding Author, +39 049 8271383 vargiolu@math.unipd.it.
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is that this volatility does not go to zero, but rather to a fixed value, called long-term
volatility, due to long term uncertainty factors like technological innovations, change in
geo-political equilibria, structural modifications to commodity prices, and so on. More-
over, the model is consistent with market data and with the Schwarz-Smith model for
the spot price [8], (see [1] for details), which exibits mean reversion, another stylized
fact which is observed in the markets.

We extend this model by assuming to have K > 2 commodities in our market, and
that, for each one of the commodity, their forward prices follow the following two-
dimensional model: by denoting with F k(t, T ) the price at time t of a forward contract
on the commodity k = 1, . . . ,K with maturity T , we assume that under a forward-
neutral probability measure QT its dynamics are

dF k(t, T ) = F k(t, T )(e−λ
k(T−t)σk1 dW

k
1 (t) + σk2 dW

k
2 (t))

where W k
1 and W k

2 are two correlated Brownian motions with correlation ρk and the
other parameters represent, respectively:

• σk1 - spot volatility, i.e. how much the forward price is influenced by short period
shocks;

• σk2 - long term volatility, i.e. how much the forward price is influenced by long
period uncertainty;

• λk - mean-reversion speed, or speed of decaying of the spot volatility.

Thus, when fitting this model to the market data of the k-th commodity, we have to
calibrate the four parameters pk = (σk1 , σ

k
2 , λ

k, ρk). Moreover, we assume that the Brow-
nian motions of the commodities also have an inter-commodity correlation, given by
the correlation matrix

ρk,ma,b := corr(W k
a (t),Wm

b (t)) = Cov (W k
a (t),Wm

b (t))/t, i.e. ρk,ma,b := Cov (W k
a (1),Wm

b (1))

for all a, b = 1, 2 and k,m = 1, . . . ,K: of course

ρk,k1,2 = ρk,k2,1 = ρk

Thus, the 2K-dimensional Brownian motion (W 1
1 ,W

1
2 , . . . ,W

K
1 ,WK

2 ) has correlation
matrix

ρ = (ρk,m)16k,m6K :=

 ρ1,1 · · · ρ1,K

...
. . .

...
ρK,1 · · · ρK,K

 (1)

where

ρk,m = (ρk,ma,b )16a,b62 :=

(
ρk,m1,1 ρk,m1,2

ρk,m2,1 ρk,m2,2

)
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Recall that, being ρ a correlation matrix, it is symmetric, semi-positive definite, with
ρk,ka,a = 1 for all k = 1, . . . ,K and a = 1, 2 and ρk,m1,1 ∈ [−1, 1] for all k,m = 1, . . . ,K and
a, b = 1, 2.

This model is analytically tractable because, under the forward measure QT , each
F k(·, T ) has a lognormal evolution, given by

F k(t, T ) = F k(t0, T ) exp
(∫ t

t0

e−λ
k(T−s)σk1 dW

k
1 (s) +

∫ t

t0

σk2 dW
k
2 (s)− 1

2

∫ t

t0

Σk(s, T )2 ds

)
where Σk(s, T ) is a sort of local volatility at time s, given by

Σk(s, T ) :=
√
e−2λk(T−s)(σk1 )2 + 2ρke−λk(T−s)σk1σ

k
2 + (σk2 )2

Thus, logF k(t, T ) has a Gaussian distribution, with mean

EQT [logF k(t, T )] = logF k(t0, T )− 1
2

∫ t

t0

Σ2
k(s, T ) ds

and variance

Var QT [logF k(t, T )] =
∫ t

t0

Σ2
k(s, T ) ds

In this paper we want to calibrate this model in a situation where, for each com-
modity k = 1, . . . ,K, forward contracts with (a finite number of) different maturi-
ties T k1 , . . . , T

k
Nk

are present, and few or no derivatives on these forward contracts are
traded, as can be the case of some markets and/or some commodities. We thus per-
form a calibration based on historical forward prices. The strategy is first to calibrate
separately the four coefficients of every single commodities, as we want them to have
priority and greater precision than the correlations among different commodities: in
fact, the main aim of our calibration is that it should reproduce well first of all the price
behaviour of single-commody products. Secondly, we estimate the correlation matrix
also in the inter-commodity correlations.

More in detail, Section 2 shows the calibration procedure of the four parameters of a
single commodity, with an approach based on quadratic variation-covariation. Section
3 shows the calibration procedure of the residual parameters, i.e. the inter-commodity
correlations, again with an approach based on quadratic covariation. Section 4 present
an alternative calibration method which is mostly used by practitioners and uses rolling
time series: this method is simpler but, to be made rigorous, it requires to work with a
modified model. In Section 5 we show how to perform the intercommodity calibration
of the global correlation matrix ρ in a way which is numerically efficient, based on the
Cholesky decomposition. In Section 6 we test the two methods against simulated data
at two different time scales, namely with daily data and with high-frequency data (200
per day). Section 7 concludes.
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2 Single commodity calibration

We now fix the commodity k = 1, . . . ,K and assume that, as already mentioned in
the Introduction, we have a market where forward contracts with maturities T1, . . . , TN
are traded (in this section we omit the dependences on k of the maturities). Then, by
denoting Xk

i (t) := logF k(t, Ti), we have that

dXk
i (t) = e−λ

k(Ti−t)σk1 dW
k
1 (t) + σk2 dW

k
2 (t) + drift

under the forward-neutral probability QT . Since we want to perform an historical cal-
ibration, we need dynamics under the real world probability P. By the Girsanov theo-
rem, the dynamics of Xk

i under P is given by

dXk
i (t) = e−λ

k(Ti−t)σk1 dW̃
k
1 (t) + σk2 dW̃

k
2 (t) + drift

where W̃ k
1 and W̃ k

2 are Brownian motions under P, still with mutual correlation ρk, but
the drift in the two dynamics are different, as in the second drift also the market price
of risk is present. We notice that the coefficients pk = (σk1 , σ

k
2 , λ

k, ρk) can be estimated
directly under P. A more direct writing of the dynamics of Xk

i under P is

dXk
i (t) = Σk

i (t) dW
k(t) + drift

where

Σk
i (t) := Σk(s, Ti) =

√
e−2λk(Ti−t)(σk1 )2 + 2ρke−λk(Ti−t)σk1σ

k
2 + (σk2 )2

and W k is a suitable 1-dimensional Brownian motion under P.
The fact that the diffusion coefficient of the Xk

i , i = 1, . . . , N , under P is determin-
istic gives us a easy way to estimate the parameters. In fact, the quadratic variation of
Xk
i under P is given by

〈Xk
i 〉tt0 := lim

n→∞

n∑
l=1

(Xk
i (tl+1)−Xk

i (tl))2 =
∫ t

t0

(Σk
i (u))2 du (2)

where t0 < t1 < . . . < tn = t are suitable sequences, and the quadratic covariation of
Xk
i , Xk

j , always under P, is given by

〈Xk
i , X

k
j 〉tt0 := lim

n→∞

n∑
l=1

(Xk
i (tl+1)−Xk

i (tl))(Xk
j (tl+1)−Xk

j (tl)) =
∫ t

t0

Σk
i,j(u) du (3)

(for more details, see [7]). Now, the last term of these equalities is explicitly computable
(Σk

i,j(u) will be specified later in the next Lemma 2.2), while the middle term can be
approximated with historical observations. This gives us an idea to calibrate the model:
given the historical quadratic covariations, our aim is to find coefficients pk such that
the theoretical quadratic covariations of all forward contracts match as close as possible
the historical quadratic covariations.

In order to do this, we must calculate analytically the integrals in Equations (2–3).
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Lemma 2.1 The quadratic variation of the process Xk
i is given by

〈Xk
i 〉
T 1
i

T i0
=

∫ T 1
i

T i0

(Σk
i (u))2 du =

=

(
σk1
)2

2λk
(
e−2λk(Ti−T 1

i ) − e−2λk(Ti−T 0
i )
)

+
(
σk2

)2 (
T 1
i − T 0

i

)
+

+
2σk1σ

k
2ρ

k,k
1,2

λk

(
e−λ

k(Ti−T 1
i ) − e−λk(Ti−T 0

i )
)

Proof. We have∫ T 1
i

T 0
i

(
Σk
i (t)

)2
dt =

∫ T1
i

T 0
i

(
e−2λk(Ti−t)

(
σk1

)2
+
(
σk2

)2
+ 2e−λ

k(Ti−t)σk1σ
k
2ρ

k,k
1,2

)
dt

=
(
σk1

)2 [
e−2λk(Ti−t)

]T1
i

T 0
i

+
(
σk2

)2 (
T 1
i − T 0

i

)
+ 2σk1σ

k
2ρ

k,k
1,2

[
e−λ

k(Ti−t)
]T1
i

T 0
i

=

(
σk1
)2

2λk
(
e−2λk(Ti−T 1

i ) − e−2λk(Ti−T 0
i )
)

+
(
σk2

)2 (
T 1
i − T 0

i

)
+

+
2σk1σ

k
2ρ

k,k
1,2

λk

(
e−λ

k(Ti−T 1
i ) − e−λk(Ti−T 0

i )
)

�

Lemma 2.2 The quadratic covariation of the processes Xk
i , Xk

j is given by

〈Xk
i , X

k
j 〉
T 1
i

T i0
=

(
σk2

)2 (
T 1
i,j − T 0

i,j

)
−
e−λ

k(Ti+Tj)
(
σk1
)2

2λk
(
e2λkT 1

i,j − e2λkT 0
i,j

)
+

+
σk1σ

k
2ρ

k,k
1,2

(
e−λ

kTi + e−λ
kTj
)

λk

(
eλ

kT 1
i,j − eλ

kT 0
i,j

)
Proof. The best way to proceed is to use the so-called polarization identity

2
〈
Xk
i , X

m
j

〉T 1
i,j

T 0
i,j

=
(〈

Xk
i +Xm

j

〉T 1
i,j

T 0
i,j

−
〈
Xk
i

〉T 1
i,j

T 0
i,j

−
〈
Xm
j

〉T 1
i,j

T 0
i,j

)
(4)

(which will valid also for inter-commodity covariations), where the only missing thing

here is
〈
Xk
i +Xk

j

〉T 1
i,j

T 0
i,j

: in order to calculate this, first we obtain the stochastic differen-

tial of Xk
i +Xk

j as

d
(
Xk
i +Xk

j

)
=
(
e−λ

kTi + e−λ
kTj
)
eλ

ktσk1dW
k
1 (t) + 2σk2dW

k
2 (t) + drift
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The variation
〈
Xk
i +Xk

j

〉T 1
i,j

T 0
i,j

is then equal to

〈
Xk
i +Xk

j

〉T 1
i,j

T 0
i,j

=
∫ T 1

i,j

T 0
i,j

(
e−λ

kTi + e−λ
kTj
)2
e2λkt

(
σk1

)2
+ 4

(
σk2

)2
+ 4σk1σ

k
2ρ

k,k
1,2

(
e−λ

kTi + e−λ
kTj
)
eλ

kt dt =

=

(
e−λ

kTi + e−λ
kTj
)2 (

σk1
)2

2λk
(
e2λkT 1

i,j − e2λkT 0
i,j

)
+ 4

(
σk2

)2 (
T 1
i,j − T 0

i,j

)
+

+
4σk1σ

k
2ρ

k,k
1,2

(
e−λ

kTi + e−λ
kTj
)

λk

(
eλ

kT 1
i,j − eλ

kT 0
i,j

)
By putting all together, the result is

2
〈
Xk
i , X

k
j

〉T 1
i,j

T 0
i,j

= 2
(
σk2

)2 (
T 1
i,j − T 0

i,j

)
−
e−λ

k(Ti+Tj)
(
σk1
)2

λk

(
e2λkT 1

i,j − e2λkT 0
i,j

)
+

+
2σk1σ

k
2ρ

k,k
1,2

(
e−λ

kTi + e−λ
kTj
)

λk

(
eλ

kT 1
i,j − eλ

kT 0
i,j

)
which gives the desired result �

As already pointed out, our strategy is to have the model quadratic covariations〈
Xk
i , X

k
j

〉T 1
i,j

T 0
i,j

as close as possible to the market quadratic covariations, which are esti-

mated using the realized variation estimators

〈
Xk
i

〉T 1
i

T 0
i

:=
n∑
j=1

(
Xk
i (tj+1)−Xk

i (tj)
)2

(5)

and the realized covariation estimators〈
Xk
i , X

m
j

〉T 1
i,j

T 0
i,j

:=
n∑
l=1

(
Xk
i (tl+1)−Xk

i (tl)
) (
Xm
j (tl+1)−Xm

j (tl)
)

(6)

(which in this section we will use only with k = m). Ideally, we would impose that〈
Xk
i , X

k
j

〉T 1
i,j

T 0
i,j

=
〈
Xk
i , X

k
j

〉T 1
i,j

T 0
i,j

for all i, j = 1, . . . , Nk

However, the second terms of this system depend only on the four parameters pk =
(σk1 , σ

k
2 , λ

k, ρk), so the system is likely to be overdetermined for Nk > 2. For this reason,
we estimate the four parameters with a mean-square estimation, i.e. define p̂k as the
4-dimensional vector which solves

min
pk

Nk∑
i,j=1

(〈
Xk
i , X

k
j

〉T 1
i,j

T 0
i,j

−
〈
Xk
i , X

k
j

〉T 1
i,j

T 0
i,j

)2
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In this way we obtain all the parameters pk for all the single commodities, while the
inter-commodity correlations (ρk,ma,b )a,b=1,2,k 6=m still remain to be estimated.

3 Calibration of the intercommodity correlations

In order to calibrate for the intercommodity correlations, we continue to use the idea of
using the quadratic covariations among the log-forward prices Xi

k for k = 1, . . . ,K and
i = 1, . . . , Nk. In fact, for all suitable i, j, k,m, the quadratic covariations of Xi

k, Xj
m is

given by

〈Xk
i , X

m
j 〉tt0 := lim

n→∞

n∑
l=1

(Xk
i (tl+1)−Xk

i (tl))(Xm
j (tl+1)−Xm

j (tl)) =
∫ t

t0

Σk,m
i,j (u) du

As before, the middle term of these equalities can be estimated with historical obser-
vations, while the last term is explicitly computable, in a slightly more complex way
than the previous case. In fact, as done in the single commodity case, the best way
to calculate it is via the polarization inequality (4), which leads us to calculate first〈
Xk
i +Xm

j

〉
t
.

Lemma 3.1 We have

〈
Xk
i +Xm

j

〉T 1
i,j

T 0
i,j

=
∫ T1

i,j

T 0
i,j

(
Σk,m
i,j (t)

)2
dt =

∫ T1
i,j

T 0
i,j

Θk,m
i,j R

k,m
(

Θk,m
i,j

)T
dt

where
Θk,m
i,j =

(
e−λ

k(Ti−t)σk1 , σk2 , e−λ
m(Tj−t)σm1 , σm2

)
and

Rk,m =
(
ρk,k ρk,m

ρm,k ρm,m

)
=


1 ρk,k1,2 ρk,m1,1 ρk,m1,2

ρk,k1,2 1 ρk,m2,1 ρk,m2,2

ρk,m1,1 ρk,m2,1 1 ρm,m1,2

ρk,m1,2 ρk,m2,2 ρm,m1,2 1


Proof.

d
(
Xk
i +Xm

j

)
= Θk,m

i,j dW k,m(t) + drift (7)

where W k,m(t) :=
(
W k

1 (t),W k
2 (t),Wm

1 (t),Wm
2 (t)

)T results in a Gaussian process with
independent stationary increments, zero mean and self-correlation matrix given by
Rk,m.

In order to calculate the quadratic variation of Xk
i +Xm

j , we now want to represent
W k,m as a linear function of a 4-dimensional Brownian motion W̄ k,m, i.e. W k,m =
Λk,mW̄ k,m (where the components of W̄ k,m are independent 1-dimensional Brownian
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motions), then we have Rk,m = Λk,m(Λk,m)T . We can choose to perform a Cholesky
decomposition, so that Λk,m can be taken as a lower triangular matrix: in fact, since
Rk,m is semipositive definite, it can be written as Rk,m = Lk,mDk,m

(
Lk,m

)T , with Lk,m

unitary and lower triangular andDk,m diagonal; we can then let Λ̃
k,m

:= Lk,m
(
Dk,m

) 1
2 ,

with
(
Dk,m

) 1
2 the matrix having the diagonal elements which are square roots of those

of Dk,m, we have that

Λ̃
k,m
(

Λ̃
k,m
)T

= Lk,m
(
Dk,m

) 1
2

(
Lk,m

(
Dk,m

) 1
2

)T
= Lk,mDk,m

(
Lk,m

)T
= Rk,m

Then,
d
(
Xk
i +Xm

j

)
= Θk,m

i,j Λ̃k,mdW̄ k,m + drift

so that 〈
Xk
i +Xm

j

〉T 1
i,j

T 0
i,j

=
∫ T1

i,j

T 0
i,j

Θk,m
i,j R

k,m
(

Θk,m
i,j

)T
dt

�

The integrand, in extended form, is given by

Θk,m
i,j R

k,m
(

Θk,m
i,j

)T
=

(
σk1

)2
e−2λk(Ti−t) + 2

(
σk2ρ

k,k
1,2 + σm2 ρ

k,m
1,2

)
σk1e
−λk(Ti−t) +

+ (σm1 )2 e−2λm(Tj−t) + 2
(
σk2ρ

k,m
2,1 + σm2 ρ

m,m
1,2

)
σm1 e

−λm(Tj−t) +

+2σm1 σ
k
1ρ

k,m
1,1 e

−λkTi−λmTje(λ
k+λm)t + 2σm2 σ

k
2ρ

k,m
2,2 + σk2 + σm2

This results in

〈
Xk
i +Xm

j

〉T 1
i,j

T 0
i,j

=

(
σk1
)2 (

e−2λk(Ti−T 1
i,j) − e−2λk(Ti−T 0

i,j)
)

2λk
+

+
2
(
σk2ρ

k,k
1,2 + σm2 ρ

k,m
1,2

)
σk1

(
e−λ

k(Ti−T 1
i,j) − e−λ

k(Ti−T 0
i,j)
)

λk
+

+
(σm1 )2

(
e−2λm(Tj−T 1

i,j) − e−2λm(Tj−T 0
i,j)
)

2λm
+

+
2
(
σk2ρ

k,m
2,1 + σm2 ρ

m,m
1,2

)
σm1

(
e−λ

m(Tj−T 1
i,j) − e−λ

m(Tj−T 0
i,j)
)

λm
+

+
2σm1 σ

k
1ρ

k,m
1,1 e

−λkTi−λmTj
(
e(λ

k+λm)T 1
i,j − e(λ

k+λm)T 0
i,j

)
λk + λm

+

+
(

2σm2 σ
k
2ρ

k,m
2,2 + σk2 + σm2

) (
T 1
i,j − T 0

i,j

)
8



Plugging this into the polarization identity (4), we obtain〈
Xk
i , X

m
j

〉T 1
i,j

T 0
i,j

= ρk,m1,2 A
k,m
i,j + ρk,m2,1 B

k,m
i,j + ρk,m1,1 C

k,m
i,j + ρk,m2,2 D

k,m

where

Ak,mi,j :=
σm2 σ

k
1

(
e−λ

k(Ti−T 1
i,j) − e−λ

k(Ti−T 0
i,j)
)

λk

Bk,m
i,j :=

σk2σ
m
1

(
e−λ

m(Tj−T 1
i,j) − e−λ

m(Tj−T 0
i,j)
)

λm

Ck,mi,j :=
σm1 σ

k
1

(
e−λ

k(Ti−T 1
i,j)−λm(Tj−T 1

i,j) − e−λ
k(Ti−T 0

i,j)−λm(Tj−T 0
i,j)
)

λk + λm

Dk,m
i,j := σm2 σ

k
2

(
T 1
i,j − T 0

i,j

)
are known from the calibration of the previous section, and the ρk,ma,b are still to be esti-
mated. As before, one should aim to solve the linear system

〈
Xk
i , X

m
j

〉T 1
i,j

T 0
i,j

= ρk,m1,2 A
k,m
i,j + ρk,m2,1 B

k,m
i,j + ρk,m1,1 C

k,m
i,j + ρk,m2,2 D

k,m
i,j

∀k,m ∈ {1, . . . ,K} ∀i ∈ Nk ∀j ∈ Nm

which, as before, is overdetermined as soon as |Nk|×|Nm| > 4. Thus, again we estimate
the ρk,ma,b with a mean-square estimation, i.e. define the ρk,ma,b as the minimizers of the
problem

min
ρk,ma,b

∑
i,j,(k 6=m)

(
ρk,m1,2 A

k,m
i,j + ρk,m2,1 B

k,m
i,j + ρk,m1,1 C

k,m
i,j + ρk,m2,2 D

k,m
i,j −

〈
Xk
i , X

m
j

〉T 1
i,j

T 0
i,j

)2

(8)

Remark 3.1 If one minimizes over the original correlations ρk,ma,b , then one must im-

pose, besides ρk,ma,b ∈ [−1, 1], that the global correlation matrix ρ is semipositive definite,
which is computationally very demanding. An alternative way is to make, similarly to
what done in Lemma 3.1, a Cholesky decomposition of ρ: this allows to not impose the
positive semidefiniteness of the global correlation matrix ρ. This will be done more in
details in Section 5.

4 An alternative calibration

Now we present an alternative calibration method, which is used among practitioners,
but has the fault that, to be rigorous, works on an approximation of the original model.
This method is based on the use of the so-called rolling time series. Assume from
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now on, as is quite realistic for those commodities which do not have forward contracts
with long deliveries traded in the market, that the maturities T1,. . . ,TN are consecutive
ends of months. Then the method of rolling time series consists in taking the forward
contract with maturity month Ti and treating it, in the current month, as if its volatility
were constant (and thus approximately equal to Σk(s, Ti) with s a suitable point in
the current month). When the current month ends and the next begins, take these
observations and paste it to the observations of the forward with maturity month Ti+1:
in this way, we obtain a time series of a forward contract with more or less the same
relative maturity.

This method can be made rigorous by redefining the model as

dF k (t, T )
F k (t, T )

= e−
λk

12
d12(T−t)eσk1dW

k
1 (t) + σk2dW

k
2 (t) ∀k = 1, . . . ,K (9)

If we, as before, denote Xk
i (t) := logF k(t, Ti), then we have that

X̄k
i (t1, t2) := Xk

i (t2)−Xk
i (t1) =

∫ t2

t1

σk1e
−λ

k

12
d12(T−s)edW k

1 (s) +
∫ t2

t1

σk2dW
k
2 (s) + drift

(10)
where ”drift” denotes a quantity which is deterministic both under the risk-neutral
probability as well as the real world probability (but of course possibly different). Thus,
if we have an equispaced grid t1 < . . . < t`, with tl+1 − tl ≡ ∆ in a given month, then
(X̄k

i (tl, tl+1))l=1,...,`−1 are i.i.d. Gaussian random variables with variance

Σk,k
i,i =

(
σk1

)2
e−2λkTi∆ + 2ρk,k1,2σ

k
1σ

k
2e
−λkTi∆ +

(
σk2

)2
∆ (11)

(recall that, being the Ti ends of months, one has 1
12d12Tie = Ti) and the same applies

when we extend this to the rolling time series in the following months. Moreover, if
we take two different maturities Ti, Tj , then the two sequences of Gaussian random
variables (X̄k

i (tl, tl+1))l=1,...,`−1 and (X̄k
j (tl, tl+1))l=1,...,`−1 have covariance given by

Cov (X̄k
i (tl, tl+1), X̄m

j (tl, tl+1)) = Σk,k
i,j := (12)

:=
(
σk1

)2
e−λ

k(Ti+Tj)∆ + σk1σ
k
2ρ

k,k
1,2

(
e−λ

kTi + e−λ
kTj
)

∆ +
(
σk2

)2
∆

Finally, if we take two different maturities Ti, Tj , then the two sequences of Gaus-
sian random variables (X̄k

i (tl, tl+1))l=1,...,`−1 and (X̄m
j (tl, tl+1))l=1,...,`−1 have covariance

given by

Cov (X̄k
i (tl, tl+1), X̄m

j (tl, tl+1)) = Σk,m
i,j := ∆× (13)

×
[
ρk,m1,1 σ

k
1σ

m
1 (e−λ

kTi + e−λ
mTj ) + ρk,m1,2 σ

k
1σ

m
2 e
−λkTi + ρk,m2,1 σ

k
2σ

m
1 e
−λmTj + ρk,m2,2 σ

k
2σ

m
2

]
These model variances and covariances can be estimated using the standard esti-

mators

Σ̄k,m
i,j := sX̄k

i ,X̄
m
j

=

∑
l X̄

k
i (tl, tl+1)X̄m

j (tl, tl+1)
n

−
∑

l X̄
k
i (tl, tl+1)
n

∑
l X̄

m
j (tl, tl+1)
n

(14)

10



where n is the number of contemporary realizations of the time series (X̄k
i (tl, tl+1))l

and (X̄m
j (tl, tl+1))l. Define then Σ̄k,m as

Σ̄k,m :=
(

Σ̄k,m
i,j

)
i6Nk,j6Nm

=


Σ̄k,m

1,1 · · · Σ̄k,m
1,Nm

...
. . .

...
Σ̄k,m
Nk,1

· · · Σ̄k,m
Nk,Nm


and Σ̄, which will be our realized covariance matrix, as

Σ̄
(

Σ̄k,m
)
k,m6K

=

 Σ̄1,1 · · · Σ̄K,1

...
. . .

...
Σ̄1,K · · · Σ̄K,K


This has to be compared to the model covariance matrix Σ, defined as

Σ :=
(

Σk,m
)
k,m6K

=

 Σ1,1 · · · ΣK,1

...
. . .

...
Σ1,K · · · ΣK,K


where

Σk,m :=
(

Σk,m
i,j

(
pk,m

))
i6Nk,j6Nm

=


Σk,m

1,1 · · · Σk,m
1,Nm

...
. . .

...
Σk,m
Nk,1

· · · Σk,m
Nk,Nm


As in the previous sections, one is tempted to let

Σ (p) = Σ̄

which is, as usual, overdetermined. We thus proceed as in the previous calibrations:
first of all we estimate all the parameters for each commodity k = 1, . . . ,K separately,
by making a least-square estimation in the usual way:

min
pk

Nk∑
i,j=1

(
Σk,k
i,j

(
pk
)
− Σk,k

i,j

)2

Once that the pk = (σk1 , σ
k
2 , λ

k, ρk) have been estimated, they are kept fixed and the
second calibration is performed, again by least-squares, as

min
ρk,ma,b

∑
k 6=m

Nk∑
i=1

Nm∑
j=1

(
Σk,m
i,j − Σk,m

i,j

)2
(15)

which gives the intercommodity correlations ρk,ma,b , a, b = 1, 2, k 6= m.
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Remark 4.1 As in Section 3, here too it is convenient to work with the Cholesky de-
composition of the matrix Σ: in this way, analogously with what happens in Remark
3.1, one has the same number of coefficients (in fact, Σ is symmetric and its Cholesky
square root is lower triangular with the same dimension), but one has the constraint
of Σ being positive semidefinite which is automatically satisfied. As in the previous
method, this is done with more details in the following Section 5.

5 Calibration of the intercommodity correlation matrix

Both the calibrations based on the quadratic variation-covariation approach (Sections 2
and 3) as well as on the variance-covariance of rolling time series (Section 4) are based
on the two-steps procedure: first calibrate the 4 parameters pk = (σk1 , σ

k
2 , λ

k, ρk) for
each commodity k = 1, . . . ,K, and then calibrate the intercommodity correlations ρk,ma,b
for a, b = 1, 2 and k 6= m. This second step must be self-consistent, in the sense that
the resulting global correlation matrix ρ, defined in Equation (1), must be nonnegative
definite, being the correlation matrix of a 2K-dimensional Brownian motion.

As reported in Remarks 3.1 and 4.1, if one imposes this constraint naively on the
functions to be minimized in Equations (8) and (15), the resulting problem is highly
nonlinear in its constraints, thus very time consuming as soon as K > 2.

A more clever way to formulate the semi-definiteness constraint is based, as antici-
pated in both 3.3 and 4.1, on the Cholesky decomposition of ρ. Recall that the Cholesky
decomposition states that, being ρ semipositive definite, it can be written as ρ = WW T

for a suitable square lower-triangular matrix W .
The advantage of the Cholesky decomposition is that, by calling Wi the i-th row of

W for i = 1, . . . , 2K, we can express the constraints on ρ via bilinear constraints on the
Wi. More in details, the fact that the principal diagonal of ρ has unitary elements is
translated into the condition

‖Wi‖2 = 1 ∀i = 1, . . . , 2K, (16)

where ‖ · ‖ denotes the Euclidean norm.
The fact that the elements of ρ which correspond to a ρk which was already cali-

brated (i.e. ρk,k1,2 = ρk,k2,1 = ρk) must be taken as already assigned is translated into

W2k−1W
T
2k = ρk ∀i = 1, . . . ,K, (17)

Finally, the fact that |ρk,m1,2 | 6 1 follows from the Cauchy-Schwarz inequality for
Euclidean norm and scalar product in 2K and from Equation (16): in fact,

|ρk,m1,2 | = |W2k−1W
T
2m| 6

√
‖W2k−1‖ · ‖W T

2m| = 1

and the heaviest constraint, i.e. the semipositive definiteness of ρ, is automatically
satisfied by the very definition of W .

12



Now, the functions to be minimized in Equations (8) and (15) can be written, in a
more abstract form, as

G(ρ) := ‖Ξρ−E‖22
with Ξ and E suitably defined in the two problems. This minimization problem trans-
lates into

min
W

∥∥ΞWW T −E
∥∥2

2

where W varies over the space of all lower-triangular matrices with the constraints
in Equations (16-17). This is a quadratic problem with quadratic constraints, which is
numerically time-efficient and quite stable.

6 Empirical findings

In order to test the two methods, we simulate daily prices of 36 futures of a single
commodity, where maturities are equispaced with a 1-month interval. The parameters
that we impose are σ1 = σ2 = 0.02, λ = 0.04, ρ = 0.3.

The green circles represent the square of the local volatility structure calculated with
the true parameters, while the red curve represents the estimate with the covariation
method (Sections 2-3) and the blue curve represents the estimate with the method of
rolling time series (Section 4). The results can be seen in Figure 1.
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Figure 1: Log-return variance, i.e. squared local volatility, with respect to time to ma-
turity, daily simulation. The green circles represent the square of the local volatility
structure calculated with the true parameters, while the red curve represents the es-
timate with the covariation method (Sections 2-3) and the blue curve represents the
estimate with the method of rolling time series (Section 4).
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We can see that the rolling time series method gives quite a good fit, while the
covariation method gives a fit which is quite far from the real volatility shape. The
reason for this misbehaviour could be that the quadratic covariation needs a limit to be
performed, while we only have a finite number of observation.

Of course, the more the interval between observations becomes thinner, the more
the estimators that we use come near to the theoretical quadratic covariations. For
this reason, we do another simulation, with the same parameters, but now with 200
observations per day. This results in a much better fit for the covariation method, but it
is also evident that the method based on rolling time series gives now a perfect fit.
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Figure 2: Log-return variance, i.e. squared local volatility, with respect to time to matu-
rity, 200 simulations per day. The colors are as in Figure 1.

This is actually bad news, at least for the quadratic covariation approach. In fact, it is
true that some commodities (e.g. Brent) have a number of transactions on some forward
contracts which allow this daily number of observations to be performed. However it is
also true that, for maturities from 9 months on, exchanges of forward contracts are less
frequent. This would result in covariation estimators performed on real data to give
many zeroes in the estimators of Equations (5–6), resulting in a bias towards zero: this
is known as the Epps effect [3]. One way to circumvent this would be to use estimators
which prevent the Epps effects in asynchronous observations, such as for example the
Fourier estimators studied in [5].

7 Conclusions

We present a multicommodity model for forward prices which extends the single-
commodity model presented by Kiesel et al. [6]. We show two calibration methods
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based on time series of past forward prices, which can be used when liquid derivatives
are not traded in the market. The first calibration method, presented in Sections 2 and
3, is based on the quadratic variations and covariations of log-prices, which are ana-
lytically computable, while the second method, presented in Section 4, uses the idea of
rolling time series, but requires a modification of the model to be used exactly. Both
the methods require to estimate first four parameters per commodity, and then a global
intercommodity correlation matrix. For this last step, it is numerically convenient to
express the global correlation matrix via its Cholesky decomposition: this results in
a quadratic minimization problem with quadratic constraints, which is numerically
tractable, as detailed in Section 5. Finally in Section 6 we test the two methods against
simulated data, and find out that the first method performs poorly when dealing with
daily data, while the second method gives already a good fit at this time scale. We then
test the two methods with high-frequency simulated data (200 observations per day):
the first method now performs much better, but still the second method is the best. The
conclusion is that the rolling series method seems to perform well at very different time
scales, while the first one needs high-frequency data to produce reliable results. This
can be perhaps improved with more sophisticated estimators, like those presented in
[5], but we leave this improvement to a future work.
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