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a b s t r a c t 

This paper presents an optimization approach to solve the short-term hydropower unit commitment and 

loading problem with uncertain inflows. A scenario tree is built based on a forecasted fan of inflows, 

which is developed using the weather forecast and the historical weather realizations. The tree-building 

approach seeks to minimize the nested distance between the stochastic process of historical inflow data 

and the multistage stochastic process represented in the scenario tree. A two-phase multistage stochastic 

model is used to solve the problem. The proposed approach is tested on a 31 day rolling-horizon with 

daily forecasted inflows for three power plants situated in the province of Quebec, Canada, that belong 

to the company Rio Tinto. 
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1. Introduction 

Hydroelectric producers invest time and resources in develop-

ing optimization tools to gain efficiency in the use of water, since

even small improvements lead to significant savings. Short-term

optimization is used at the power plant level to dispatch available

water for production between the turbines. Each turbine has a

different efficiency. The amount of water available for production,

or reservoir trajectories, is determined from the medium-term

optimization and considers demand, uncertainty in the inflows,

and travel time of the water between the plants. Short-term

optimization is often considered to be deterministic ( Taktak &

D’Ambrosio, 2016 ) by making the assumption that the inflows are

known ( Finardi & da Silva, 2006 ) or by neglecting water balance

constraints ( Arce, Ohishi, & Soares, 2002 ) at such a short time

scale, but does not allow planning under different forecasts. Also,

Schwanenberg et al. (2015) have shown that considering uncer-

tainty in short-term decision models may lead to improvements. 

The focus of this paper is stochastic optimization applied to

the short-term hydropower optimization problem. By considering
∗ Corresponding author. 
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ncertain inflows, turbines will be used in a more efficient manner

ince the stochastic model results in a compromise between high

nd low forecasted inflows. For example, in situations where

eservoirs are nearly full, considering uncertain inflows when high

nflows are expected prevents lowering the reservoir and force

urbines into inefficient zones, which results in energy production

oss in the future if these high inflows do not occur. 

Few papers have looked specifically into short-term hy-

ropower models with uncertain inflows. In Séguin, Côté, and

udet (2016) , a short-term hydropower optimization model treats

eterministic inflows. Water head variations are considered and

onlinearities and nonconvexities of the hydropower production

unction are accounted for. In Fleten and Kristoffersen (2008) ,

ncertainty of prices and inflows is considered. The authors use

ime series analysis to model the water inflows, which is repre-

ented by a scenario tree in the stochastic programming model.

tart-up costs are considered and a multistage stochastic model

s approximated by a two-stage model. A mixed-integer linear

rogram is used. The net water head is assumed to vary with the

ater discharge only, so hydropower production functions depend

nly on the water discharge. 

In Philpott, Craddock, and Waterer (20 0 0) , the only uncertainty

onsidered is demand. The deterministic model is a linear integer

odel, which is an approximation of a nonlinear mixed integer

odel. Once again, the hydropower production function depends

nly on water discharge. For some hydropower systems, neglecting

he water head is not a possible avenue since many of the reser-

oirs have small capacities. Consequently, the water head effect

http://dx.doi.org/10.1016/j.ejor.2016.11.028
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s important in a short-term optimization, even with short time

teps. 

Many assumptions are made when solving the short-term

nit commitment model, since they are complex to solve. They

ave a large amount of variables, power production functions are

onlinear and efficiency is different for every turbine. The most

ommon assumption is to neglect water head variations leading to

inear power production functions. 

When uncertainty arises and one wants to solve the optimiza-

ion models, two main streams of ideas have been applied in

he optimization community. Stochastic dynamic programming

as been used extensively to solve hydropower optimization

odels ( Siqueira, Zambelli, Cicogna, Andrade, & Soares, 2006;

ejada-Guibert, Johnson, & Stedinger, 1993 ), as well as variants

uch as sampling stochastic dynamic programming ( Côté, Haguma,

econte, & Krau, 2011 ) or stochastic dual dynamic programming

 Shapiro, 2011 ). These models are well suited for long or medium-

erm horizons but for short-term models, the state space is huge

nd it is very difficult, if not impossible, to solve them. In order

o prevent the optimization process to empty out the reservoirs

n the short-term model, values are assigned to the remaining

ater at the end of the planning horizon, which are obtained

ith stochastic dynamic programming or stochastic dual dynamic

rogramming for example. In Lohmann, Hering, and Rebennack

2016) , a new method to generate inflows, based on periodic au-

oregressive models, is used as input to a stochastic dual dynamic

rogramming algorithm that allows to schedule a hydro-thermal

ystem located in Brazil. 

The other stream is stochastic programming. A two-stage

tochastic model ( Birge & Louveaux, 2011 ) consists of two stages

f decisions. The first-stage decisions need to be taken without

nowing the realization of the uncertainty in the future, while the

econd stage decisions are taken when the uncertainty is revealed.

Usually, uncertainty is represented by scenarios. Each scenario

s a possible realization of the uncertainty. Multiple scenario

eneration methods have been used in the past to approximate

he distributions of the stochastic parameters. An overview of

hese methods, as well as evaluating the quality of a scenario tree

s found in Kaut and Wallace (2003) . In De Ladurantaye, Gendreau,

nd Potvin (2009) , a periodic autoregressive process is used to fit

istorical data of the prices and to generate prices for the stochas-

ic model. The scenario tree is built by sampling the distribution

tted with the model for the different nodes. Another method cre-

tes a discrete distribution of the uncertain parameter by matching

ome specific statistical properties. In Høyland and Wallace (2001) ,

he first four moments, mean, variance, skewness and kurtosis

re matched. Multiple pitfalls arise from this method and one

ust ensure the scenario tree represents possible outcomes of the

ncertainty. A survey of techniques for generating scenario trees

ppears in Dupa ̌cová, Consigli, and Wallace (20 0 0) and includes

ecombining of data paths, contamination method and matching.

lso, copulas have been used to generate scenarios for two-stage

tochastic problems ( Kaut & Wallace, 2003 ). This method offers

he advantage of treating dependencies better than with correla-

ion alone. Other methods are scenario reduction ( Feng & Ryan,

014; Growe-Kuska, Heitsch, & Romisch, 2003 ). An initial scenario

ree is required and forward selection, or backward reduction is

pplied in order to reduce it and minimize the computational time

equired to solve the stochastic optimization model. The effect

f the reduction on the solution accuracy, applied to a cascaded

ystem of hydropower reservoirs is found in Xu, Zhong, Zambon,

hao, and Yeh (2015) . 

Other methods to deal with uncertainty on the inflows include

obust optimization techniques ( Babonneau, Vial, & Apparigliato,

010 ) and probabilistic constrained programming ( van Ackooij,

enrion, Möller, & Zorgati, 2013 ). Robust optimization solves
odels that have uncertain parameters over uncertainty sets.

herefore, the optimization seeks to find a solution that is feasible

egardless of the outcome of the uncertainty. In Apparigliato

2008) , a rolling-horizon scheme is used and robust optimization

s applied to the decision of day 1 while the rest of the horizon is

onsidered deterministic. This is interesting as the uncertainty is

pplied to the important decisions. A drawback of robust optimiza-

ion is the formulation of the uncertainty. In the historical records,

ome values of inflows may be very low and others very high.

herefore, it is difficult to define what are the best bounds for

he uncertainty set, as well as capturing any nonlinear dynamics

resent. In probabilistic constrained programming, constraints are

o be respected given a certain probability. A cascaded hydropower

ystem is optimized with probabilistic constrained programming in

an Ackooij et al. (2013) . As with robust optimization, parameters

n security-level and probability measures are to be given to the

odel, which is a difficult task in practice. 

We contribute to the existing literature by considering inflow

ncertainty in the short-term hydropower model. Few papers

ave looked specifically in stochastic short-term models and we

xtend the modeling proposed in Séguin et al. (2016) to consider

ncertain inflows. For the producer, it is interesting to consider

 stochastic model since it gives a production plan for the whole

lanning horizon. Applying the theory outlined in Pflug and Pichler

2015) , we also detail/provide a nonparametric scenario generation

pproach that relies on the information in the history of inflows.

e expand ( Séguin et al., 2016 ) by introducing stochasticity to

oth the loading and unit commitment problems. 

he paper is organized as follows. Section 2 presents data available

or inflows. Section 3 describes the method to generate scenario

rees. Section 4 gives an overview of the short-term hydropower

roblem and details the optimization models. Numerical results

re presented in Section 5 and final remarks are presented in

ection 6 . 

. Scenario fan of inflows 

This section presents the data available for the inflows. In

he province of Quebec in Canada, consumers and producers of

ydroelectric energy, except Hydro-Quebec, are not allowed to

id on the spot markets ( Boomsma, Juul, & Fleten, 2014 ). The

rovince-owned integrated utility performs all power market ac-

ivities. Hence, only uncertainty related to inflows in the reservoirs

s considered in this paper. 

Before presenting the method for generating the scenario trees

sed in the optimization models, we describe the available data

ets. Precipitation forecasts are obtained from Environment Canada

 Environment Canada prevision models ). A 7 day deterministic

recipitation forecast is issued. The 7 day forecast is split in

wo groups: the first 3 and the last 4 days. We make the as-

umption that the error for both groups is independent from a

eteorological point of view, as the correlation in precipitations

etween days is negligible. This assumption is motivated by the

igh variability of the weather conditions on our watershed from

 day to the next. For example, we could have a few days of snow,

ollowed by no precipitations then a few days of rain. The last 15

ears of historical data of precipitation forecasts is searched for

 given number ( a ) of precipitation forecasts that are the closest,

n precipitation forecast (millimeters) to the first 3 days, and

hey are retained. The same is conducted for the second group.

ince the error is assumed independent, the scenarios found for

he first and second group are mixed and matched to create a 2 

recipitation scenarios for the first 7 days. Note that the actual

ealizations of precipitation on these days are used as scenarios.

hen, considering that the forecast has no value after 7 days,
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Fig. 1. Building inflow scenarios from a 7 day deterministic precipitation forecast. 
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the 62 years of available history of realizations is appended to

all of the scenarios for the first 7 days with a = 7 , yielding a

total of a 2 × 62 = 3038 scenarios of precipitation for 30 days of

prevision. Then, these precipitation scenarios are given as input to

the CEQUEAU hydrological model ( Brisson, Boucher, & Latraverse,

2015 ) which outputs inflow previsions for the reservoirs. 

Fig. 1 illustrates this process. The goal of the scenario tree

generation method, in Section 3 , is to create a scenario tree from

the scenario fan of inflows. 

3. Scenario tree generation 

The method chosen to construct a scenario tree suitable

for the stochastic optimization is taken from Pflug and Pichler

(2016 , 2015) . The method is applied to real hydropower data.

First, the structure of the scenario tree is fixed, then stochastic

approximation is used to improve the values of inflow of the

nodes, considering all the data available for every approximation.

Improvement goes on until a convergence criterion, based on the

nested distance and explained in Section 3.4 , is reached. 

3.1. Fixing the initial scenario tree structure: k-means clustering 

The number of stages and the number of nodes per stage

of the tree are fixed initially. Aggregation is necessary since the

scenario tree structure can be different from the data available.

The aggregation is straightforward: values of inflows for each day

are summed up. 

K-means clustering ( Lloyd, 1982 ) is used to partition the data

paths into clusters in order to assign initial values to the scenario

tree nodes. Note that initially no probabilities are allocated to

the nodes: simply values for the nodes. This clustering method

minimizes the distance from every data point to the mean of the

cluster to which it belongs. As an example, the k-means algorithm

is applied to the 3038 inflow scenarios to form a scenario tree

which has a structure as shown in Fig. 3 b. 

3.2. Improvement of the clusters 

The method to improve the scenario tree nodes consists of two

steps. First, from the initial data paths, a random data path, that is

not in the paths available, is generated using density estimation.

Next, the distance between this random path and the closest state

of the scenario tree nodes is minimized in a stochastic approxima-

tion step in order to improve the tree. This method is repeated for

a given number of iterations and is explained in what follows. 

3.2.1. Step I: density estimation 

In order to generate a new random path, kernel density esti-

mation is used. We generate a random path that is close to the
istribution of the data paths and conditional on previous stages.

o do so, the conditional probability density function is estimated.

or each stage of the desired scenario tree structure, a value of

nflow is generated that is close in distribution to all of the data

aths and incidental to the past. 

A random path ξ d 
k 

= (ξ d 
1 
, . . . , ξ d 

K 
) T is to be generated using

vailable data paths X d 
ik 

= (X d 
i 1 

, . . . , X d 
iK 

) T where i is the index of

vailable data paths, d is the dimension and K is the number of

tages. The conditional density estimator ( Pflug & Pichler, 2016 )

s: 

ˆ f ( ξk | ξ1 , . . . , ξk −1 ) = 

n ∑ 

i =1 

k −1 ∏ 

j=1 

κ
(

ξ j −X i j 

h j 

)
∑ n 

m =1 κ
(

ξ j −X m j 

h j 

) × κ

(
ξk − X ik 

h k 

)

× 1 

h k 

, (1)

here the dimension d is dropped for clarity, n is the number

f available data paths, κ is the kernel and h j and h k are the

andwidths. 

The analytical representation of the actual distribution is not

omputed, as only samples from Eq. (1) are necessary which can

e generated quickly. In practice, this is achieved by assigning

eights to every data path available. The closer the observation

s to the path, the higher is the weight. For every stage from

 , . . . , k − 1 , the weights of the data path at each stage are mul-

iplied. With these weights calculated, a value of inflow is to be

enerated at stage k . 

To illustrate refer to Fig. 2 . There are three data paths of inflow.

he random value of inflow has been generated for stage 1 and is

ocated with a star marker. From there, a value of inflow is to be

enerated for subsequent stages, always conditional on the past.

s per the figure, it is necessary to find a value of inflow at stage

 that is consistent with the conditional distribution. Therefore,

eights are calculated as follows, in this case for stage k : 

 i (ξ1 , . . . , ξk −1 ) = 

k −1 ∏ 

j=1 

κ
(

ξ j −X i j 

h j 

)
∑ n 

m =1 κ
(

ξ j −X m j 

h j 

) , (2)

here 
∑ n 

i =1 w i = 1 and w ≥ 0 . 

The value of inflow ξ k at stage k is generated as follows. A data

ath with index i ∗ is chosen randomly among the available data

aths at stage k − 1 to satisfy 

 

∗−1 ∑ 

i =1 

w i (ξ1 , . . . , ξk −1 ) ≤ rand u ≤
i ∗∑ 

i =1 

w i (ξ1 , . . . , ξk −1 ) , (3)
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Fig. 2. Generation of a random path based on three available data paths of inflows. 

The generated value of inflow for stage 1 is shown with a star marker. 
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here rand u is chosen from the uniform random distribution on

he interval [0, 1]. The cumulative sum of the weights leads to a

igh probability of picking a data path near an observation. 

The value of inflow ξ k is obtained by setting the value at stage

 to 

k = X i ∗k + rand κh k 
, (4) 

here rand κh k 
is a random value sampled from the kernel

stimator using the composition method ( Pflug & Pichler, 2015 ). 

This newly generated inflow value is according to the distribu-

ion of density of the current stage and dependent on the history

f all the data paths. 

Referring again to Fig. 2 , weights are calculated for the 3 data

aths as per Eq. (2) . Then, a data path is chosen randomly at

tage 1 and the solid line has a high probability of being picked.

onsider it is the case. To generate the value of inflow at stage

, the value of the solid line at stage 2 is perturbed randomly.

his method is then repeated at each stage in order to generate

 random data path and is represented on Fig. 3 a with a thick

ashed line. 

It is shown that the choice of the kernel does not have an

mportant effect on the density estimation ( Jones, 1990 ). Hence, in
ig. 3. Illustration of the two steps of the algorithm. Generation of a random path of infl

he value of some scenario tree nodes. 
his paper, the logistic kernel is used: 

(ξ ) = 

1 

e ξ + 2 + e −ξ
. (5) 

The bandwidth is the smoothing factor applied to the estima-

ion of the density. Silverman’s rule of thumb ( Silverman, 1986 ) is

mployed to determine the optimal bandwidth: 

 k = σ (X ik ) n 

− 1 
d+4 = σ (X ik ) n 

− 1 
7 , (6) 

here n is the number of data paths, d is the dimension and σ
s the standard deviation. In this paper, d = 3 because there are

hree values of inflows per scenario tree node, representing three

ifferent reservoirs. 

.2.2. Step II: stochastic approximation 

Once the new random path of inflows is generated, a stochastic

pproximation step is conducted. This step allows to update the

alue of some scenario tree nodes. During this step, a scenario

rom the scenario tree, more precisely a path of nodes in the

cenario tree is identified. This path of nodes in the scenario tree

inimizes the Wasserstein distance W between the randomly gen-

rated path during Step I of the algorithm, found in Section 3.2.1 ,

nd current scenario tree nodes values. 

The Wasserstein distance is minimized as follows: 

 

2 = min 

ω∈ �

K ∑ 

k =1 

|| �(ω) − ξk || 2 , (7) 

here � are the scenario tree paths, �( ω) are the states

orresponding to the nodes in the path ω in the scenario

ree, from the set of all possible scenarios �, and ξ k is the

alue of inflow generated randomly at stage k . Referring to

ig. 3 b, � = { (1 , 2 , 3 , 5) , (1 , 2 , 3 , 6) , (1 , 2 , 4 , 7) , (1 , 2 , 4 , 8) } . Eq.

7) allows to find this path of nodes and is identified as nodes (1,

, 4, 8) on Fig. 3 b. 

To achieve this, a stochastic gradient descent method that

inimizes the nested distance is used. Starting from the root

f the scenario tree, W is computed for the children node. The
ows from available data paths of inflows and stochastic approximation to improve 
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Fig. 4. A scenario tree with node probabilities (over the node) and scenario i prob- 

abilities (indicated with π i ). 
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children node with the smallest value of W becomes the parent

node. W is then computed for the children node of the new parent

node and so on until a leaf node has been reached. 

The identified path of scenario tree nodes values �( ω) that

minimizes the Wasserstein distance for the current stochastic

approximation iteration p = 1 , 2 , . . . is updated in the following

manner: 

�(ω) p+1 = �(ω) p − αp ∇W p , (8)

where �(w ) are the values of the scenario tree nodes to improve,

αp is the step-size and ∇W p the gradient of the distance. 

The step-size αp = 

1 

( p+30 ) 3 / 4 
, where p is the stochastic approx-

imation iteration, is chosen since it is shown that the method will

converge ( Pflug & Pichler, 2016 ) given αp > 0, 
∑ 

p αp = ∞ and


p ( αp ) 
2 < ∞ . 

As an illustration, consider one iteration of the algorithm and

refer to Fig. 3 . First, a random data path of inflows is generated

using kernel density estimation. This can be seen on Fig. 3 a: it is

the thick dashed line. The Wasserstein distance between this new

generated path of inflows and the current values of the scenario

tree nodes is minimized and a path of nodes in the scenario

tree is retrieved for potential improvement. The path of nodes

minimizing this distance is shown on Fig. 3 b. Hence, the value of

the inflows for the thick nodes, which are 1, 2, 4 and 8 will be

improved using Eq. (8) . 

3.3. Probabilities 

During the first stochastic approximation iteration, assigned

probabilities of the nodes are 0 since, as explained in Section 3.1 ,

the scenario tree is initialized with values for the nodes only. 

Node probabilities are updated at every stochastic approxima-

tion iteration. A counter is assigned to each node and initialized at

0. Every time a path of nodes minimizing the Wasserstein distance

is retrieved, the corresponding counters of the nodes in this path

are incremented by 1. 

Once the stochastic approximation iterations are completed,

probabilities are computed by dividing the counter value by the

number of stochastic approximation iterations, which yields sums

of child nodes probabilities equal to 1, as in Fig. 4 . 

In a multistage stochastic program, each path from the root to

a leaf node represents a scenario. The unconditional probabilities

of a scenario is obtained by multiplying the unconditional proba-

bilities of all the nodes in the scenario, yielding probabilities π j ,

where j is the scenario in Fig. 4 . 
An interesting feature of the scenario tree generation method

s that the extreme (low and high) scenarios are accounted for,

ccording to their occurrence in the historical data set. The law

f large numbers insures that the probabilities are asymptotically

onsistent. 

.4. Termination criterion 

The scenario tree generation algorithm terminates when the

ested distance has converged to a certain ε for the 10 last itera-

ions. Thus, Step I and Step II of the algorithm are repeated until

onvergence is obtained. Depending on the inflow forecasts, the

umber of iterations to converge varies. As an example, for a given

est case, it took an average of 1038 iterations for the method to

onverge and generate one scenario tree. 

The main advantage of the scenario tree generation method

resented in this section is that all of the data paths are used at

very iteration to improve the value of the scenario tree nodes.

y doing so, the underlying discrete distribution of the available

ata paths, approximated by a scenario tree, is improved consis-

ently with the data. The scenario trees are prepared before the

ptimization is conducted. 

. Stochastic short-term hydropower model 

The two-phase deterministic optimization models taken from

éguin et al. (2016) are updated to consider stochastic inflows.

his section presents the modeling of the short-term problem as

ell as the mathematical formulations. 

.1. Modeling of the short-term problem 

The modeling of the problem considers head-dependency, as

ell as efficiencies of each turbine. Power P ( kilowatt ) produced

y a single turbine is defined as 

 (h n , Q ) = η(Q ) × G × Q × h n (Q tot , v ) , (9)

here G is the gravitational acceleration (meter per square sec-

nd), Q is the unit water flow and Q tot is the total water flow

cubic meter per second), η( Q ) is the efficiency of the turbine

nd h n is the net water-head (meter). The net water-head is a

unction of the forebay elevation h f (meter), the tailrace elevation

 t (meter) and losses in the penstock ϕ (meter) that is given by: 

 n (Q tot , v ) = h f (v ) − h t (Q tot ) − ϕ(Q tot ) , (10)

here v is the volume of the reservoir (cubic hectometers). For

otational purposes and since there is a relation between net

ater head and volume, we consider that power is a function of

he volume and water flow. We propose a modeling with combi-

ations of units instead of single units. To achieve this, a dynamic

rogramming algorithm, where each sub-problem is a turbine, is

sed to calculate the power produced by a combination of units.

s an example, if a power plant has a total of 5 turbines and

equires three active turbines, there is a total of 10 combinations

f 3 turbines, 5 combinations of 4 turbines and 1 combination of

 turbines. Water flows are discretized and the dynamic program-

ing algorithm is executed for each possible combinations, 16

n this case, for each power plant and discretizations of reservoir

olumes and water flows. 

.1.1. Dynamic programming algorithm 

The objective of the problem is to maximize the power output

nd it is found recursively. Given state s j , the dynamic program-

ing algorithm seeks to choose decision variables q j that solves: 

f ∗ j (s j ) = max 
q j 

P (s j , v ) + f ∗ j+1 (s j − q j ) , (11)



S. Séguin et al. / European Journal of Operational Research 259 (2017) 1156–1168 1161 

Fig. 5. Maximum output surfaces. 
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here j = n − 1 , n − 2 , . . . , 1 , n is the number of turbines

t the power plant, s j ∈ { 1 , 2 , . . . , r} is the remaining wa-

er to dispatch given the number of discretizations r and

 

j ∈ { 1 , 2 , . . . , min { q j , Q}} the water flow with q j maximum water

ow. The optimal water flow is q ∗ j = s j that maximizes f ∗j ( s j ). For

j = n, the optimal power output is given by f ∗ j (s j ) = P (s j ) . 

.1.2. Maximum power output surfaces 

We then build a set of surfaces of the maximum power output

or each power plant. For a plant with 5 turbines requiring at

east 3 working, three surfaces are built, more precisely one for

 turbines working, one for 4 turbines working and one for 5

urbines working. The maximum power output for every possible

ombination of number of working turbines is retained for every

iscretization of volume and water flow. Such surfaces can be

iewed in Fig. 5 . To obtain them, the dynamic programming algo-

ithm is executed for every number of turbines in the combination,

very discretization of the reservoir volume, every discretization of

he water flow and every power plant. The surfaces of maximum

ower outputs are then modeled using polynomial equations in

he objective-function of the optimization problem. Modeling of

he hydropower production functions is done by constraining

hese functions with two surfaces. 

One constrains the water discharge without spill and the

ther constrains the water discharge with spill. Therefore, in the

ptimization problem, we have only one variable of the water

ischarge, which combines processed and spilled. But since we

re constraining with the two different surfaces and that we are

aximizing, the model will try and avoid spill since it reduces

ower production. When redistributing the total water discharge

o the plant, we can then see if there is some spill or not. There

s an upper bound on the water discharge, which is the maximum

ncluding spill. 

A two-phase optimization strategy is used to penalize the

tartup of turbines. The first phase, namely the loading problem,

ptimizes values of water discharges, volumes and number of

urbines in the combination for every plant and node. The second

hase, namely the unit commitment problem, uses the solution of

he first optimization model to determine the exact combination

f turbines working at each plant and node in the scenario tree.

tartups of turbines are penalized with a fixed cost. Multistage

tochastic models are developed for both optimization phases, in

rder to consider uncertainty in the inflows of the reservoirs. 

.2. Phase I: loading problem 

Optimization variables of this nonlinear stochastic multistage

ixed integer problem are water flows, volumes and number of
orking turbines, for each node and plant in the scenario tree.

here is only one variable for the water flow, but it includes

rocessed and spilled water. We have shown ( Séguin et al., 2016 )

hat relaxing the variables that determine the number of working

urbines leads to an integer solution. Therefore, we solve a nonlin-

ar stochastic multistage continuous problem, as the coefficients

f the matrix of constraints are also totally unimodular given the

tochastic version of the model. 

The objective is to maximize total energy production in stage

, expected energy production in future stages and expected value

f the water remaining in the reservoir at the end of the planning

orizon: 

ax 
y,q, v 

∑ 

c∈ C 

n c 0 ∑ 

s =1 

χ c 
s 0 y 

c 
s 0 ζ0 + 

∑ 

c∈ C 

∑ 

j∈ K 
π c 

j 

( ∑ 

i ∈ N j 

n c 
i ∑ 

s =1 

χ c 
si y 

c 
si ζi + 

∑ 

p∈ E j 
�c 

p (v c p ) 

) 

(12) 

ubject to: χ c 
si ≤ �Ac 

s (q c i , v 
c 
i ) , ∀ c ∈ C, ∀ i ∈ N, 

 s ∈ { 1 , 2 , . . . , n 

c 
i } , (13) 

c 
si ≤ �Bc 

s (q c i , v 
c 
i ) , ∀ c ∈ C, ∀ i ∈ N, 

 s ∈ { 1 , 2 , . . . , n 

c 
i } , (14) 

c 
i = v c i +1 − v c i + γ w i q 

c 
i 

−
u c ∑ 

m =1 

γ w m 

q m 

i , ∀ i ∈ N j , ∀ j ∈ K, ∀ c ∈ C, (15) 

n c 
i 
 

s =1 

y c si ≤ 1 , ∀ i ∈ N, ∀ c ∈ C, (16) 

 

c 
s 0 = 

ˆ y c s 0 , ∀ s ∈ { 1 , 2 , . . . , n 

c 
i } , ∀ c ∈ C, ∀ i ∈ N, (17) 

 

c 
min ≤ v c i ≤ v c max , ∀ i ∈ N, ∀ c ∈ C, (18) 

 

c 
min ≤ q c i ≤ q c max , ∀ i ∈ N, ∀ c ∈ C, (19) 

 

c 
i ≥ 0 , ∀ i ∈ N, ∀ c ∈ C, (20) 

 

c 
i ≥ 0 , ∀ i ∈ N, ∀ c ∈ C, (21) 

 

c 
si ≥ 0 , ∀ s ∈ { 1 , 2 , . . . , n 

c 
i } , ∀ i ∈ N, ∀ c ∈ C. (22) 

Hydropower production surfaces are constrained by (13) –(14) .

ater balance constraints are represented by (15) and the choice

f a single number of active turbines is shown in (16) . Constraints
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Fig. 6. Hydroelectric system studied. 
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(17) are the initial number of active turbines while constraints

(18) –(19) are the bounds on reservoir volumes and water dis-

charges. Finally, constraints (20) –(22) impose nonnegativity. Index

i + 1 of variables v c 
i +1 

takes the value of the node in the set N j .

For example, if N j = { 1 , 3 , 5 , 7 } and i = 1 , i + 1 = 3 since the index

takes the value of the node at position i = 2 in the set N j . 

The above short-term loading problem is described in more

details in Séguin et al. (2016) . We now show how to integrate a

water-value function for the remaining water at the end of the

planning horizon. 

Water-value function. The water-value function is the expected en-

ergy production in the future at the end of the planning horizon.

In a deterministic framework, inflows are known with certainty,

thus volume in the reservoir at the end of the horizon is easier

to determine. In a stochastic framework, it is not possible to give

a goal for the volume at the end of the horizon since it may

not be feasible for every scenario. On the other hand, neglecting

this feature will cause the optimization to empty the reservoir

at the end of the horizon, since the objective is to maximize

energy. Hence, maximizing the expected value of future energy

production, or water-value function, will prevent the optimization

of doing this. The water-value functions are computed with a

stochastic dynamic algorithm ( Côté & Leconte, 2015 ) at Rio Tinto.

A planning horizon of 1 year, with weekly time steps is used. 

4.3. Phase II: unit commitment 

This linear stochastic multistage integer model is solved using

solution found in Phase I. The purpose of this model is to deter-

mine the on-off schedule of the turbine combinations (found in

Phase I). Given water flows and reservoir volumes found in the

loading problem, the dynamic programming algorithm is used

to calculate power outputs for every possible combination of

turbines, given the number of working turbines found in Phase I,

and are stored in parameter βc 
li 

. The model maximizes the energy

production and penalizes turbine startups. Initial combination of

turbines working at stage 0 is given in ˆ x c 
l0 

. 

The objective is to maximize energy production at stage 0 and

future energy production and penalize startup of turbines at stage

0 as well as future expected startups: 

max 
x,d 

∑ 

c∈ C 
ζ0 

( 

n c 0 ∑ 

l=1 

βc 
l0 x 

c 
l0 −

T c ∑ 

t=1 

d c t0 θ

) 

+ 

∑ 

j∈ K 

∑ 

c∈ C 

( 

π c 
j 

( ∑ 

i ∈ N j 
ζi 

( 

n c 
i ∑ 

l=1 

βc 
li x 

c 
li −

T c ∑ 

t=1 

d c ti θ

) ) ) 

(23)

subject to: 

n c 
i ∑ 

l=1 

x c li = 1 , ∀ i ∈ N, ∀ c ∈ C, (24)

x c li f 
c 
lit − x c li −1 f 

c 
li −1 t ≤ d c ti , ∀ l ∈ { 1 , 2 , . . . , n 

c 
i } , 

∀ i ∈ N j , ∀ j ∈ K, ∀ c ∈ C, ∀ t ∈ { 1 , 2 , . . . , T c } , (25)

x c l0 = 

ˆ x c l0 , ∀ l ∈ { 1 , 2 , . . . , n 

c 
i } , ∀ i ∈ N, ∀ c ∈ C, (26)

x c li , d 
c 
it ∈ B , ∀ l ∈ { 1 , 2 , . . . , n 

c 
i } , ∀ i ∈ N, ∀ t ∈ { 1 , 2 , . . . , T c } , 

∀ c ∈ C. (27)

The choice of a single turbine combination is given by (24) .

Constraints that allow to penalize a startup by flagging them is

shown in constraints (25) . The initial combinations are given in

(26) and imposition of binary variables are constraints (27) . Index

i − 1 of parameters f c 
li −1 t 

takes the value of the node in the set N j .
or example, if N j = { 1 , 3 , 5 , 7 } and i = 4 , i − 1 = 5 since the index

akes the value of the node at position i = 3 in the set N j . 

This two-phase optimization process allows to find a solution

fficiently. Also, even though an approximation of the energy

roduced is conducted in the first phase, the actual energy pro-

uction is retrieved in the second phase, seeing that the actual

ydropower production functions are used to compute the actual

nergy production given a water discharge and volume, which are

olutions of the first phase. 

. Results 

This section details the system on which the stochastic hy-

ropower models are tested and results are presented. 

.1. Hydroelectric system studied 

The hydroelectric system studied is situated in the Saguenay

ac-St-Jean region in the province of Quebec, Canada and is owned

y Rio Tinto. For the purpose of this paper, three hydroelectric

lants, which are Chute-du-Diable, Chute-Savane and Isle-Maligne

re considered. The two first plants have 5 turbines each and

he latter has 12. Fig. 6 represents the system studied. Triangles

epresent reservoirs and squares power plants. 

Chute-du-Diable, Chute-Savane and Isle-Maligne plant reser-

oirs are quite small, respectively 344 . 6 cubic hectometers ,

5 cubic hectometers and 120 cubic hectometers . In the optimiza-

ion model, there is no water value function associated with

hese plants since they have small reservoirs. Instead, a full

eservoir constraint at the last period is imposed as a goal in the

odel. The only water-value function used is for the Lac-St-Jean

eservoir, therefore volume of this reservoir at the last period

s an optimization variable. The capacity of this reservoir is of

500 cubic hectometers . Water flow in Petite décharge is limited

y a function dependent on the volume of Lac-St-Jean. 

.2. Rolling-horizon procedure 

A rolling-horizon methodology is retained to validate the

ptimization models developed in this paper. The planning hori-

on of the rolling-horizon is of 31 days. For every day of the

olling-horizon, the forecast is for 30 days. For day 1 of the

olling-horizon, previsions are from days 2 to 31, for day 2 of

he rolling-horizon, previsions are from days 3 to 32, and so on.

he stochastic optimization models presented in Section 4 are

olved every day, but only the solution for the first-stage is re-

ained. Forecasts are updated daily. Once the forecast is updated,



S. Séguin et al. / European Journal of Operational Research 259 (2017) 1156–1168 1163 

Fig. 7. Average computational time of scenario tree generation and optimization for 

1 day in the rolling-horizon. 
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he scenario tree is generated for the corresponding day. The

wo-phase optimization process is launched and the first-stage

olution is retained, that is: volume, water discharge and turbine

ombination. Then, considering the actual realization of the inflow,

he water balance constraints are used to determine the actual

olume of the reservoirs at the end of the period. More precisely,

he water discharge from the optimization is combined with the

ctual realization of the inflow in order to calculate the reservoir

olumes. The same process is repeated for the 31 days. In the

nd, a production plan for 31 days is available, which consists

f the reservoir volumes, total water discharges at the plants

nd turbine combinations in use. See Aasgård, Andersen, Fleten,

nd Haugstvedt (2014) for a different approach to rolling-horizon

valuation of short-term hydropower operation. 

The solution obtained from the scenario tree generation is

ompared to the solution obtained from the median scenario

f the inflows. Therefore, we compare our method to a rolling

edian. Every day, the median scenario is found throughout all

vailable scenarios and a scenario tree of 1 node per stage is

olved in a deterministic fashion. 

.3. Numerical results 

The scenario tree generation method is coded in Matlab

 MATLAB, 2015 ). The optimization models are coded using AMPL

 Fourer, Gay, & Kernighan, 2003 ). The optimization software

or the loading problem, which is the relaxation of a nonlinear

ixed-integer problem, is IPOPT ( Wächter & Biegler, 2006 ) and

he unit commitment model, a linear integer problem, is solved

ith XPRESS ( Xpress ). 

Six test cases, which consist of monthly periods are available.

he biggest problems to solve have 7 stages with 48 scenarios,

123 nonlinear variables, 33 linear variables and 1237 constraints

or the loading problem and 3475 binary variables and 825

onstraints for the unit commitment problem. 

Different stages, more precisely 5, 6 or 7, as well as different

umber of scenarios, namely 16, 32 or 48 are tested. 

.3.1. Computational time 

The average time to construct the scenario tree and to optimize

s shown on Fig. 7 . The average time is in seconds, for a single day

n the rolling-horizon procedure, more precisely for one problem

ncluding construction of the scenario tree and optimization of

he two-phase process. It takes less than 5 seconds to build the

cenario trees for all test cases, while the optimization requires
ore time given higher numbers of scenarios. Less than 42

econds, for a single day in the rolling-horizon are necessary to

onstruct the scenario tree and optimize the two-phase process,

hich is acceptable in the real operating environment. The cur-

ent implementation of the scenario tree generation method and

ptimization is tested on three cascaded hydropower plants. For

his specific producer, the whole hydropower systems consists

f five hydropower plants, therefore calculation time would be

cceptable for the whole system. Considering another system of,

or example, 50 hydropower plants, the actual method would

ake approximately 350 minutes. The proposed method in this

aper is applicable to a larger system, probably by decomposing

he system in smaller sub-systems. To do so, the system is to be

tudied and depending on its configuration, distances between

lants and others, modeled in an acceptable manner. Depending

n the scope of the application, the calculation time may or may

ot be satisfactory. If a producer does not mind solving a 7 hour

odel every day, then the computational time is satisfactory. In

rder to diminish computing time, an avenue is to solve the model

or a given number of days then weeks. In this way, the number

f variables is greatly reduced and so is the computing time. This

odel is applicable to a larger hydropower system, but it would

e necessary to decompose the system in sub-systems and review

he modeling to diminish the number of optimization variables,

iven a producer requiring fast computational time. 

.3.2. Results 

Table 1 illustrates the difference in energy, in terawatt hours,

roduced throughout the 31 days rolling-horizon combined with

he value of water remaining in the reservoir at the end of the

lanning horizon. This implies that the difference in energy can

e compared to annual production but absolute numbers are

nfortunately not thus interpretable. A positive value indicates the

cenario tree method produces more than the median scenario

nd a negative value indicates the contrary. For 4 of the test cases,

he stochastic solution produces more energy. For 1 test case, the

edian scenario solution produces more energy. Finally, for the

ugust case, the stochastic solution produces more energy with a

 stage or 6 stage scenario tree, and the median scenario with a

 stage. For the 4 test cases for which the scenario tree produces

ore energy than the median scenario, average improvements are

.0679812% for June, 0.0273551% for July, 0.1620522% for Septem-

er 2011 and 0.0251653% for September 2010. Despite the low

ercentages, this represents significant savings for the producer. As

n example, the current value of a 1 gigawatt hour improvement,

n the province of Quebec, is around 20,0 0 0$. Therefore, for June,

he 0.0679812% higher production translates into 10,932,489$. 

.3.3. In-sample stability test 

An in-sample stability test allows to verify if the scenario tree

eneration method is consistent. It is taken from King and Wallace

2012) . Since the scenario tree is generated from random samples,

ne wants to verify if the solution given by the optimization, with

 different scenario tree each time, give more or less the same

olution. If so, then the scenario tree method is consistent. 

As an example, July 2011 and June 2011 data sets were chosen

or this verification. For both data sets, 6 scenario trees were gen-

rated with the same number of stages and scenarios. Then, the

ptimization was conducted on all of these scenario trees to verify

he effect on the objective function value. Table 2 gives, for these

wo data sets and 6 instances each, the values of the objective

unction, for the scenario tree and median scenario methods. 

Results show that the scenario tree generation method is

onsistent, as the difference between the objective functions of the

tochastic and median scenario methods present slight variations.

or the July test case, the median is 0.2077 terawatt hours, the
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Table 1 

Results for 6 test cases (5 are data sets from the year 2011 and 1 from 2010). Energy produced by the stochastic solution and the median scenario rolling-horizon is given. 

Also, the difference in energy between both solutions is shown. 

June 2011 July 2011 August 2011 

Nb. Stoch. Median Diff. Stoch. Median Diff. Stoch. Median Diff. 

Sc. (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) 

5 stages 

16 804.5143 804.0265 0.4878 740.2678 740.0631 0.2047 710.1115 710.0795 0.0320 

32 804.7050 804.0251 0.6799 740.2783 740.0631 0.2152 710.1108 710.0794 0.0314 

48 804.6894 804.0249 0.6645 740.2496 740.0631 0.1865 710.0988 710.0794 0.0194 

6 stages 

16 804.5059 804.1495 0.3564 740.2698 740.0665 0.2033 710.0783 710.0733 0.0050 

32 804.6796 804.1479 0.5317 740.2652 740.0665 0.1987 710.1139 710.0733 0.0406 

48 804.6715 804.1481 0.5234 740.2608 740.0665 0.1943 709.9826 710.0732 −0.0906 

7 stages 

16 804.5171 804.0881 0.4290 740.2676 740.0578 0.2098 710.0693 710.0867 −0.0174 

32 804.7166 804.0881 0.6285 740.2566 740.0578 0.1988 710.0732 710.0867 −0.0135 

48 804.7063 804.0879 0.6184 740.2686 740.0578 0.2108 710.0806 710.0867 −0.0061 

September 2010 September 2011 October 2011 

Nb. Stoch. Median Diff. Stoch. Median Diff. Stoch. Median Diff. 

Sc. (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) (terawatt hours) 

5 stages 

16 729.5792 729.3811 0.1981 733.0375 731.6799 1.3576 704.7842 704.8494 −0.0652 

32 729.5841 729.3821 0.2020 733.0530 731.6799 1.3731 704.7847 704.8494 −0.0647 

48 729.5810 729.3804 0.2006 733.0818 731.6799 1.4019 704.7877 704.8496 −0.0619 

6 stages 

16 729.5856 729.3917 0.1939 732.9971 731.7773 1.2198 704.7690 704.8636 −0.0946 

32 729.5779 729.3929 0.1850 733.0188 731.7773 1.2415 704.7928 704.8636 −0.0708 

48 729.5800 729.3924 0.1876 733.0937 731.7774 1.3163 704.7326 704.8634 −0.1308 

7 stages 

16 729.5854 729.4151 0.1703 732.9428 731.9647 0.9781 704.7608 704.8566 −0.0958 

32 729.5775 729.4156 0.1619 732.9599 731.9647 0.9952 704.7879 704.8566 −0.0687 

48 729.5834 729.4139 0.1695 732.9702 731.9648 1.0054 704.7873 704.8567 −0.0694 

Table 2 

Objective function values for 6 random scenario trees with the same number of 

stages and scenarios, on two data sets. 

Data Inst. Stoch. Median Diff. 

(terawatt hours) (terawatt hours) (terawatt hours) 

July 1 740.2652 740.0665 0.1987 

2 740.2759 740.0665 0.2094 

3 740.2725 740.0665 0.2060 

4 740.2581 740.0665 0.1916 

5 740.2799 740.0665 0.2134 

6 740.2878 740.0665 0.2213 

June 1 804.6715 804.1481 0.5234 

2 804.6707 804.1484 0.5223 

3 804.6709 804.1474 0.5235 

4 804.6824 804.1489 0.5335 

5 804.6769 804.1486 0.5283 

6 804.6571 804.1472 0.5099 
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affirmation is to be used with caution as situations like these have 
mean 0.2067 terawatt hours and the variance 0.9308 terawatt

hours and for the June test case, the median and the mean are

0.5235 terawatt hours and the variance 0.0516 terawatt hours. 

5.3.4. Interpretation of the results 

The following figures illustrate the 31 day rolling-horizon

backtesting solution more precisely: water discharge and reservoir

levels for the power plants and reservoirs studied in this paper. 

Fig. 8 pictures June 2011 data set with 5 stages and 16 sce-

narios. Solutions obtained from the scenario tree method and the

median scenario are quite similar. Also note that when a method

turbines more water, it is penalized accordingly so it is not ad-

vantaged. The absolute difference between the volume, at the end

of the 31 day horizon, between the solution obtained with the

stochastic model and the solution obtained with the deterministic

model is calculated. This volume is then transformed into energy,

then added to the method which has a higher end volume, since
t is disadvantaged, given the other method processed more water

hroughout the 31 day planning horizon. 

Fig. 9 also illustrates the June 2011 data set with 7 stages and

6 scenarios. Again, results are very similar. 

Without any surprise, the numerical experiments reveal that

he solutions to the cases with more stages are closer to the

perational ones because the hydropower system operation is

ore realistic. For example, Figs. 8 and 9 show that the solutions

ith 5 and 7 stages lead to a similar improvement, but the im-

lementation with 7 stages is preferable. Fig. 9 a, b and d presents

eservoir volumes that are more stable than Fig. 8 a, b and d. 

The October data set is the only one for which the median sce-

ario produces more energy for all number of stages. The interest

f a stochastic method is to account for uncertainty in the future.

s we compare our method with the median scenario, if the ac-

ual realization of the inflows is close to the median scenario, the

tochastic solution will not produce more energy, as the median

cenario depicts correctly the future. In practice, this may happen

uring the fall period, for example when low variability exists

n the weather and storms have less chances of developing. This

an be seen on Fig. 10 . Each subfigure corresponds to a reservoir.

ig. 10 a is Chute-du-Diable. The top figure is the day 1 October

orecast and the bottom figure is the day 1 September forecast. For

he first 15 days, the October forecast median scenario is very close

o the inflow realization and therefore, as we keep the day 1 de-

ision only, the median scenario produces more energy. The other

ubfigures are represented in the same fashion. Again, Fig. 10 b and

 shows that for Chute-Savane and Lac-St-Jean, the actual inflows

n October are very close to the median scenario, therefore there

s no gain in using a stochastic optimization model, as the deter-

inistic median scenario allows to obtain a good solution. For this

nusual October case, solving the short-term unit commitment

nd loading problem with a median scenario is acceptable. This
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Fig. 8. Water discharges and reservoir levels for the case June 2011, 5 stages, 16 scenarios. 

Fig. 9. Water discharges and reservoir levels for the case June 2011, 7 stages, 16 scenarios. 
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Fig. 10. Comparison of September (lower figures in each subfigure) and October (upper figures in each subfigure) day 1 data sets. The dashed lines are the minimum and 

maximum scenarios. The median scenario is the solid line. The actual realization of the inflows is the plus sign line. 
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a low probability of occurring. These results show that there is

certainly a gain in using a stochastic model for the short-term

hydropower optimization model, as relying on the median scenario

offers a less robust solution than multiple scenarios. 

6. Conclusion 

This paper presents a stochastic short-term hydropower op-

timization method which emphasizes inflow scenario trees. Few

papers looked specifically into stochastic short-term models and

we extend the modeling presented in Séguin et al. (2016) to

consider uncertain inflows. The optimization method considers

inflow uncertainty, head variations and nonlinear and nonconvex

relationship between discharge and power output. The scenario

tree generation method first uses kernel density estimation to

generate random values of inflows. Then, the path of nodes, from

root to leaf, that minimizes the Wasserstein distance is found

in the scenario tree and the corresponding nodes are updated

using stochastic approximation. The process is repeated until the

termination criterion, which is the convergence of the tree in

Wasserstein distance, has been reached. A stability test has shown

that the scenario tree generation method is consistent. A highlight

of this method is that it uses all data available at each iteration
o improve the values of the scenario tree nodes. The scenario

rees are inputs to a two-phase optimization process. The first

hase, loading problem, allows to find water discharge, volume

nd number of turbines working in each plant. The second phase,

nit commitment, chooses the exact combination of turbines to

se, to maximize energy production and penalize unit startups. A

ajor feature of this modeling of the problem is that the water

ead is not neglected. For this paper, the models are tested on

hree hydropower plants. A rolling-horizon procedure is retained

n a 31 day planning horizon. The stochastic solution is compared

o the median scenario. Furthermore, fast computation time allows

his method to be scaled in order to be applied in full to the

aguenay-Lac-St-Jean hydroelectric system. Future work based on

his paper consists on investigating the complexity required in

he scenario tree structure. Since a rolling-horizon framework is

etained and that only the solution of the first-stage is kept, tests

ith scenario fans instead of scenario trees will be conducted. 
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ppendix A. Notation 

The following notation is used throughout the paper: 

N set of nodes 

E set of leaf nodes 

K set of scenarios 

C set of hydroelectric plants 

u c number of hydroelectric plants upstream of plant c ∈ C
s ∈ { 1 , 2 , . . . , n c 

i 
} index of surfaces corresponding to number 

of active turbines with 

hydroelectric plant c and node i 

l ∈ { 1 , 2 , . . . , n c 
i 
} index of combinations with 

hydroelectric plant c and node i 

t ∈ { 1 , 2 , . . . , T c } index of turbines of hydroelectric plant c

π c 
j 

probability of scenario j for plant c

v c 
i 

volume of plant reservoir c at node 

i (cubic hectometers) 

q c 
i 

water discharge at plant c and node 

i (cubic meter per second) 

θ start-up penalty for any turbine (megawatt) 

βc 
li 

power generated by combination l ∈ n c 
i 

at plant c and node i 

y c 
si 

= 

⎧ ⎨ 

⎩ 

1 if surface s is chosen at node i 

for plant c 

0 otherwise 

f c 
lit 

= 

⎧ ⎨ 

⎩ 

1 if turbine t of combination l 

for plant c is active at node i 

0 otherwise 

x c 
li 

= 

⎧ ⎨ 

⎩ 

1 if combination l of plant c 

is chosen at node i 

0 otherwise 

d c 
ti 

= 

⎧ ⎨ 

⎩ 

1 if turbine t of plant c is started 

at node i 

0 otherwise 

χ c 
si 

power for surface s at node i and plant c (megawatt) 

�Ac 
s (q c 

i 
, v c 

i 
) power production function without spillage for surface s 

and plant c

�Bc 
s (q c 

i 
, v c 

i 
) power production function with spillage for surface s and 

plant c

δc 
i 

inflow of plant c at node i (cubic meter per second) 

w i duration of node i ( h ) 

γ conversion factor from water discharge (cubic meter per 

second) to (cubic hectometers per hour) 

�c 
j 
(v c 

j 
) water-value function for plant c and scenario j

ζi conversion factor to energy units (gigawatt hours) 

v c 
min 

minimal volume of plant c reservoir (cubic hectometers) 

v c max maximum volume of plant c reservoir (cubic hectometers) 

q c 
min 

minimum water discharge at plant c (cubic meter per 

second) 

q c max maximum water discharge at plant c (cubic meter per 

second). 
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