








Sammendrag

Denne oppgaven implementerer og tester en stokastisk optimeringsmodell for
anmelding og korttidsproduksjonsplanlegging gjennom en simuleringsalgo-
ritme kjørt over tid og for et komplekst vassdrag. Den samme simuleringsal-
goritmen er ogs̊a implementert for en multiscenario deterministisk heuristikk
tilsvarende den som brukes av mange produsenter i dag. Resultatene viser
at den stokastiske modellen gir en forbedring i oppn̊add gjennomsnittspris
og totalverdi sammenlignet med den deterministiske modellen.





Abstract

In this thesis a stochastic model for bid optimization and short-term pro-
duction scheduling has been implemented and tested trough a simulation
procedure run over a longer period of time for a complex real-life river sys-
tem. The same simulation procedure is also implemented for a multi scenario
deterministic heuristic similar to what is used in the industry, and the results
are compared. The comparison show that the stochastic model gives signifi-
cant improvements in terms of higher obtained average price and higher total
value than the equivalent deterministic model.
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1 Introduction

Agder Energi initiated this thesis in the fall of 2012 when they wanted to
investigate the potential for using stochastic optimization models to solve
the short-term production scheduling problem and specifically the determi-
nation of bids to Nord Pool. This thesis develops a stochastic model for
optimal bidding and short-term production scheduling with the objective to
maximize total profit from a given generation system. Our model is based
on Fleten and Kristoffersen (2007), which develop a stochastic mixed-integer
model for short-term production scheduling given uncertain prices. We also
include uncertain inflow. The system presented in Fleten and Kristoffersen
(2007) is a two-reservoir system without the option of bypass or spill. We,
however, implement the stochastic model for a complicated real-life system,
namely Mandalsvassdraget. This is a large hydropower cascade with several
reservoirs, river courses and power stations linked together. A more com-
plex system makes the formulation and implementation more challenging,
due to added constraints related to the reservoir topology and additional
dependence between hours.

Stochastic programming explicitly takes uncertainty into account and it
is therefore expected that a stochastic model will give increased profits and a
better reservoir management strategy than the currently used deterministic
model. Our hypothesis, which is investigated throughout this thesis, is that a
stochastic model for bid optimization will provide improved decision-making
support for producers.

First, we set the stage by giving a brief review of the scheduling hierarchy
for hydropower and the markets for power trade.

1.1 Hydropower scheduling

The objective of hydropower scheduling is to maximize the profits from avail-
able resources in the form of stored water and installed generation capacity.
Hydropower scheduling involves a number of different problems spanning
both short and long time horizons. In this thesis, short-term production
scheduling is the main emphasis, but this task is difficult to accomplish with-
out connections to longer-term models. Longer-term models calculate both
the value of water and forecasts of price, and these are necessary inputs for
short-term scheduling.

The hydropower scheduling process can be put into a hierarchy based on
the time horizon of the scheduling tasks. Figure 1 shows the division of the
scheduling process into long-term, seasonal-term and short-term scheduling,
with a final simulation step to verify the resulting plans.

5



Long-term scheduling (1-5 years)
Stochastic models for optimization and 

simulation

Seasonal scheduling (3-18 months)
Stochastic or multi-scenario deterministic 

optimization

Short-term scheduling (1-2 weeks)
Deterministic or stochastic optimization

Detailed simulation
Non-linear

Figure 1: The hierarchy of hydropower scheduling.

The objective of long-term scheduling is to obtain optimal use of resources
within a time horizon of 1 to 5 years. At this level statistical data is used
to describe meteorological and hydrological phenomena that are vital inputs
to the model. Forecast of demand, prices, inflow, planned outages, new
plants and so on play a vital role in a stochastic optimization model that
aims to optimize production resources on the basis of future prices. A major
challenge in long term scheduling is that a large and very complex physical
system is modelled over a long time horizon, leading to very large models.
Aggregation of reservoirs, areas and time is therefore necessary to keep the
models solvable. More information of long-term scheduling in the Norwegian
case can be found in Fosso, Gjelsvik, Haugstad, Mo and Wangensteen (1999).
The output from the long-term model is aggregated water values and target
reservoir levels, as well as price forecasts.

The seasonal model acts as an intermediate step between the long- and
short-term models. Aggregation is necessary in the long-term model while
the short-term model requires detailed information for each reservoir for a
shorter time step in order to successfully optimize individual resources. The
seasonal model interprets the output from the long-term model into a form
suitable for use in the short-term model. Particularly, the seasonal model
is coupled to the long term model at certain times of the year where the
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reservoir levels are considered known, such as just before the spring flood
when the reservoir levels should be low. From this coupling, water values
for individual reservoirs can be calculated. Today seasonal scheduling is
accomplished by running a deterministic optimization program several times
with different scenarios as input. More information of seasonal scheduling
can be found in Fosso et al (1999).

Finally, short-term scheduling involves the actual operation of available
resources for the nearest hours and days. The short-term optimization model
should result in an implementable production plan, and the model therefore
needs to have a degree of detail that is adapted to the actual decisions to
be taken. For instance, since market bidding is done at an hourly time step,
the model also operates with hours. Today, deterministic optimization is
normally used in scenario analysis, that is, several deterministic scenarios are
used as input in the model and then the solutions are combined. Scenario
analysis may be adequate in most cases, but we believe that a stochastic
optimization model will give potential for increased profits and an increased
understanding of the problem at hand. Literature covering the short-term
scheduling process can be found in the literature section of this thesis and
the references therein.

After the different optimization steps are accomplished, a final simula-
tion is done to verify the resulting production plans. Optimization models
for problems of this scale quickly become very large and hence have an unac-
ceptable solution time, especially since some of the models, such as bidding
determination, must be run on a daily basis. To overcome this difficulty,
some simplifications of the real world must be done, and the simulation part
verifies that the solution obtained is implementable in the real world. Simu-
lation models can handle more details because the nature of the calculations
is different than in an optimization model. The simulation model calculates
each step separately, while an optimization tries to find the best solution for
all time steps at once.

1.2 Power Market

Selling power into the day-ahead market constitutes a substantial part of the
total produced volume for Nordic power producers (The Nordic Blueprint,
2011). Finding a good solution for the bidding problem is hence one of the
most important tasks power producers are faced with. In the Nordic countries
the day-ahead market for physical contracts is called the Elspot market,
which is run by Nord Pool Spot AS. Buyers and sellers submit their bids for
the day-ahead operations to Nord Pool. The participants deliver their bids
in the form of a bidding matrix before 12:00 the day before operation, and
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Nord Pool then calculates the spot price by aggregating sales and purchase
curves for every hour of the following day. The spot price is found at the
intersection between demand and supply, trough a mixed-integer program
algorithm. A producer’s bid for a given hour is accepted if the bid price is
equal to or lower than the system spot price.

The transfer of power is subject to capacity constraints and if power flow
in or out of one area exceeds the available transmission capacity, the prices
are lowered in surplus areas and raised in deficit areas to facilitate the flow.
This results in different area prices. The area prices are calculated by Nord
Pool and are published together with the spot price every day before 13:30.

Once a producer has participated in the Elspot marked he is obligated
to deliver the volume bid for the realized area price. This volume is calcu-
lated by interpolation between the two nearest price points in the bidding
matrix for a given hour. The market is cleared up to 36 hours before actual
delivery of power and due to uncertainties in the production situation the
produced volume may not be in exact balance with the committed volume.
This imbalance can be handled in the Elbas market, where continuous trad-
ing of physical power is available up to one hour prior to delivery. The Elbas
market enables the producers to make trades much closer to the operating
hour.

In the hour of operation, total production has to be instantly balanced
by consumption, and this is the responsibility of the transmission system
operator (in Norway Statnett). Producers may participate in the market for
regulating power by committing to maintain available capacity to be called
upon in case of unbalances. These obligations are committed after the spot
market clears, but prior to the operating hour.

Both the Elbas market and the regulating power market are important
properties of the Nordic power system. Still, the objective of this thesis is to
optimize the bidding strategy for the Elspot market, and therefore neither
Elbas nor the regulating market will be modelled in detail. The power system
should be planned such that production is balanced by demand, and hence
it is wanted by the TSO that producers trade their expected production in
the Elspot market (Statnett, 2012).

1.3 Current practice at Agder Energi

Agder Energi and most other Nordic power producers use a deterministic
model to solve the bidding problem, although future prices and inflow are
stochastic variables in the short-term perspective. The producers use multi
scenario analysis to create a bid matrix that is adapted to uncertainty in
price. The multi scenario analysis is based on a single forecast of the prices
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of the coming operating day. This forecast is scaled with different weights to
create a set of price scenarios. A deterministic model is run for each of the
different price scenarios resulting in an optimal production volume for each
hour. The volumes are then sorted by increasing price scenarios, resulting in
a bid matrix.

The problem in Agder Energi’s bidding strategy arises when the realized
price profile does not match the profiles of the price scenarios. The multi
scenario method cannot handle crossing price scenarios and it may happen
that the realized price profile do not have the same profile as the scaled
forecasted price. The realized price profile then crosses the price scenarios,
as in Figure 2. This can cause unfortunate outcomes for the production plan,
making costly adjustments for production scheduling necessary.

Figure 2: Scenario Price Profiles and realized price.

In the situation displayed in Figure 2, the realized price is intersecting
a high price scenario for the first hours of the day and will therefore result
in planned production in large parts of the system. But when the morning
peak emerges the realized price increases less than the predicted profile of
the price scenario, resulting in crossing of a lower price scenario. The price
scenario that the realized price now intersects has over all such a low price
that production is never started in this scenario. Hence one can risk that
production is stopped even though the price actually increases in the morning
hours. As shown in the figure, the same problem can occur for the afternoon
peak. Situations like this is today sorted out by production planners at Agder
Energi, but a model which can avoid such problems is desirable, and hence
the motivation for this thesis.

9



1.4 Testing the short-term production scheduling model

In this thesis, a stochastic model for the short-term scheduling problem and
specifically bid optimization is developed and tested trough a simulation
procedure where the bid model is run over several weeks and the obtained
profits, reservoir management strategy and other results are recorded. This
is compared to a similar simulation using a deterministic model, and hence
the performance of the stochastic model over a longer period of time can be
assessed.

The simulation procedure is presented in Section 4 and cover the three last
stages of the overall hydropower scheduling hierarchy presented in Figure 1,
namely seasonal scheduling, short-term scheduling and a detailed simulation.
Short-term scheduling is the main emphasis, whereas the seasonal model
and the detailed simulation offer border conditions and verification. The
hierarchy for scheduling used in this thesis is presented in Figure 3.

Seasonal scheduling
Deterministic optimization

6 months

Short-term scheduling 
1 week

Detailed calculation
for non-linear head effects

Bid optimization
Stochastic

Production 
allocation

Deterministic

Water values

Production plan

Figure 3: The scheduling hierarchy used in this thesis.

The seasonal model developed is a deterministic optimization model with
a time horizon of 6 months, and is used to find the water values on a weekly
time step. Short-term scheduling is divided into two optimization models;
first, the bids are found in a stochastic bid optimization model and then,
once the price and inflow has become known, production is allocated to
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specific stations and turbines by a deterministic optimization model. The bid
optimization model has a time horizon of up to one week, while production
allocation is done on a daily basis. The output from the short-term scheduling
process is tested trough a final simulation that accounts for non-linear head
effects. The most important final results are the obtained profits, production
plans and reservoir management strategy.

The simulation procedure is developed for a stochastic bid optimization
model with uncertain prices and inflow, since this is the main contribution
of this thesis. In the case study, the simulation with the stochastic model is
compared to a deterministic model, a stochastic model that allows for block
bids and a stochastic model with uncertain prices and deterministic inflow.
In addition, when use of the deterministic model is simulated, this is done
for two different sets of input price scenarios. Finally, we also compare the
stochastic model and the deterministic model when there are no time delays
in the watercourses between reservoirs.

The layout of this report is as follows: In Section 2 we present related work
on the short-term production scheduling problem, before theory of stochastic
programming is presented in Section 3. Then the simulation procedure is ex-
plained in Section 4 and the following Sections 5 – 8 present the optimization
programs developed and used in the simulation. The simulation procedure
is implemented for a real-life reservoir system in the case study presented in
Section 9 and finally the results from this is presented in Section 10.
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2 Literature

In this section related work on the short-term production scheduling problem
is presented. Our modeling approach is to a far extent based on Fleten and
Kristoffersen (2007), where a stochastic mixed-integer model for optimizing
bids and scheduling the short-term production is developed and compared
to a deterministic approach were the uncertain prices are replaced by their
expected values.

The model developed by Fleten and Kristoffersen (2007) is applicable
to Nordic price-taking hydropower producers that participate in in a pool-
based day-ahead market, and where the aim is to optimize the bid curve for
both hourly and block bids under uncertainty in prices. The modeling of the
hydropower production and reservoir topology is kept simple, but we have
used the same principles in our model, adapting them to the case study. As
a first instance, we disregard block bids in our model, although Fleten and
Kristoffersen (2007) hold that block bids can be used to protect against major
price fluctuations over time. In the case study, we implement a stochastic
model that allows for block bids.

Belsnes, Fleten, Fleischmann, Haugstvedt and Steinsbø (2011) develop
an extension of Fleten and Kristoffersen (2007) that looks at a time horizon
from the day-ahead to the end of the drawdown season. This makes the
model less dependent on input in the form of water values from other long-
or intermediate-term models, but also creates a multistage problem where
in every stage one must balance the value of producing water now against
the value of storing it for later use. Our programming approach follow more
on the lines of currently used models in the industry, where several hydro
planning models with different time horizons are used, as explained in Section
1 and in Fosso, Gjelsvik, Haugstad, Mo and Wangensteen (1999) or Fosso
and Belsnes (2004).

Löhndorf, Wozabal and Minner (2011) take yet another programming ap-
proach, where the bidding problem is solved using stochastic dual dynamic
programming. This formulation integrates short-term intra-day decisions
such as bidding and production scheduling with longer-term inter-day deci-
sions of managing the reservoirs over time. Pritchard, Philpott and Neame
(2005) also use a dynamic programming approach with stages. Here, a stage
can have variable length and the first few stages represent a single trading
period, whereas the later stages represent gradually longer time periods up
to several days or even a week. The intra-stage sub problem computes the
bids for every trading period in the current stage to give maximum expected
revenue for a specified mean and variance of the water released over the
current stage. The inter-stage problem then uses the values from the first
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sub-problem to choose the mean and variance of the water release over the
stage to maximize revenue from the current stage plus the expected revenue
from future stages. The two aforementioned papers also lists other examples
where the short-term production scheduling is formulated and solved as a
dynamic program. We, however, choose to follow the scenario tree approach
presented by Fleten and Kristoffersen (2007) since it is easier to implement.
For large systems it may have its disadvantages in terms of computational
time, as explained by Cerisola, Fernández-Lópes, Ramos and Gollmer (2009)
which also suggests other solution approaches that have potential for shorter
solution times.

Ladurantaye, Gendreau and Potvin (2007) compares a stochastic model
that optimizes bids in a deregulated electricity market with a model where
the bidding process is disregarded as presented in Ladurantaye, Gendreau
and Potvin (2005). Their results show that a model where the bid matrix
is found with stochastic optimization is superior to a model that does not
integrate bids in the optimization. These findings support our hypothesis
that using a stochastic model when deciding what to bid in the spot market
will result in higher profits for the producers than when only production
allocation is optimized, not the bids.

In terms of approximations and limitations, Fleten and Kristoffersen
(2007) assume that hydropower generation is proportional to discharge, which
means that the relationship between produced power and discharged volume,
often called the production function, is constant and linear. This is a sim-
plification, as the generation efficiency is dependent on discharge level and
water head, thus making the problem non-linear. The water head is the
difference between the headwater elevation and the tailwater elevation, and
whereas the former is a function of the reservoir level, the latter is a func-
tion of discharge. If head effects are neglected, the generation efficiency and
hence the production function could be modeled by concave functions or
piecewise-linear approximations of concave functions, such as in Fleten and
Kristoffersen (2008), Faria and Fleten (2009) or Conejo, Arrayo, Contreras
and Villamor (2002). We also choose piecewise linear curves to model the pro-
duction functions. Catalao, Mariano, Mendes and Ferreira (2005) consider
the short-term scheduling problem with head-dependency in a determinis-
tic setting. The head-dependency makes the problem non-linear, but it is
stated that for cascaded hydro systems formed by several small reservoirs,
modeling of head-dependency gives more realistic results. Péréz-Diaz, Wil-
helmi, Sánchez-Fernández (2010) also proposes a non-linear method to model
head-dependency, and holds that more accurate modeling of these non-linear
effects are most important when the reservoirs are small and their volumes
can be significantly changed on a daily or hourly basis depending on the
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generation schedule.
Faria and Fleten (2009) consider the possibility of adjusting the dis-

patched power in the balancing market. After the spot market is cleared,
some adjustments may be necessary due to uncertain prices, inflow and load,
and the possibility of doing this can influence the bidding strategy for the
day-ahead market. Bidding strategies with intentional imbalances is not
wanted by the TSOs, as the spot market should be regarded as the “real”
market. We, and Fleten and Kristoffersen (2007) model the balancing market
by having penalties for producing in imbalance with the committed volume,
even if the producer in fact may make a profit by selling balancing power.
By having penalties, the producer still has the possibility to participate in
the balancing market if necessary, but does not let this influence the bidding
strategy as it is required that expected production is bid into the spot mar-
ket. Boomsma, Juul and Fleten (2012) formulate the short-term production
problem for coordinated bidding in sequential power markets.
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3 Stochastic programming

In this section we present the stochastic programming approach as a decision
support tool for hydropower producers. Hydropower producers face uncer-
tainty in electricity market prices and reservoir inflows. Therefore, they must
constantly evaluate the opportunity to release the available water and pro-
duce electricity today against the opportunity to save water for future use.
In fact, all users of natural resources face this trade-off between the value
of using the resource now and the value of saving it for use in the future.
This is a decision made under uncertainty of future development, and for hy-
dropower this relates to uncertain prices and availability of water, and hence
a stochastic solution method is deemed appropriate.

3.1 Converting a real-life system into a model

When converting a complex system in to a model it is challenging to know
which parts of the system needs to be described in detail and which parts
can be approximated by easier expressions. How detailed and how close to
the real world the model is, does not necessarily measure the quality of the
model. Instead one has to look at the purpose of the model and find out which
parts are essential to getting a satisfying result. In production scheduling it
is important to model the bidding process as accurate as possible, since the
bids in fact are sent to the market operator and used to allocate production.
It is also important to get a good description of the physical system and
what restrictions has to be followed in regards of reservoir storage level and
water flow in the river courses. Finally, for stochastic programming, it is
also of crucial importance to accurately model the uncertainty inherit in
the real-world problem. The quality of the solution to a stochastic program
heavily depends on the quality of the representation of uncertainty used as
input to the model. The model formulation itself and the input scenarios are
independent of each other, and the mathematical formulation presented in
Section 5 can be used with any preferred scenario generation method, but the
output will be of little use if the scenarios used do not adequately represent
the stochastic elements faced in the real-world.

3.2 Why stochastic programming?

There are two main ways to solve an optimization problem; deterministic and
stochastic modelling. A deterministic model builds on the assumption that
every parameter in the model is predictable and known with certainty. On the
other hand, a stochastic model takes uncertain parameters into account when
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solving the problem, under the assumption that the probability distribution
of the uncertain parameters is known. Most real life decision problems are
made under uncertainty. For the short-term production scheduling problem
were we regard the spot market price and inflow to the reservoirs to be the
most important stochastic parameters.

Today’s practice is to solve the production scheduling problem by running
a deterministic model several times for different set of input prices, and then
combine the solutions of these models, in what is called scenario analysis.
This is done at Agder Energi as explained in Section 1 and 9.2, and although
this approach solves the problem sufficiently in most cases, there are cases
where a deterministic model does not give good enough answers, as in the case
where the realized price profile does not match the one scaled price scenario
used by the deterministic model. Our hypothesis is that a stochastic model
will get reasonable results in the situations where today’s model fails to give
an adequate answer.

A stochastic approach explicitly accounts for uncertainty while solving
the problem, and thus offers a flexible solution, were the potential for profit
in good scenarios is weighted against the potential for loss in bad scenarios.
Looking at a deterministic future is far too optimistic, because if every pa-
rameter is known with certainty, the optimal decision will always be perfectly
adapted to these values and there is no need for contingencies. There are no
rewards for flexibility if flexibility is never needed. But what happens then,
when the realized price profile does in fact not match the input scenario?
Flexibility is needed in the real-life situation, and hence the stochastic so-
lution is better suited to handle a larger range of possible events. When
decision problems are solved as deterministic problems, odd and special sit-
uations are excluded from consideration, which can be dangerous since what
appears to be a detail in the time of analysis, may appear to have major
effect on future development (Wallace and Fleten, 2003).

A drawback is that stochastic programs usually are hard to solve for
large problems, and that the simpler deterministic program may be used
with acceptable losses in terms of solution quality. The differences between
stochastic and deterministic model formulation of the bidding problem is
further discussed in Section 10.

3.3 Deterministic equivalent

Another distinguishing feature between deterministic and stochastic models
is the fact that time is very important in stochastic models, whereas for
deterministic models time is irrelevant, since all information is known with
certainty from the start. Time is here related to the information flow, that is,
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the gradual revealing of uncertain parameters, and it becomes important if a
decision is to be made before or after uncertainty is revealed. For stochastic
programs, the word stage is used as the period between two points in time
were new information is uncovered. The bidding problem can be seen as
a problem with multiple stages, as the knowledge of prices over the week
gradually becomes known when the spot market is cleared every day.

To describe that uncertainty gradually becomes known, a set of finite
scenarios with known probabilities are used, were a scenario is a path of
realizations of the uncertain parameters over the time horizon of the model.
To represent the information flow, the scenarios are clustered together in a
scenario tree, and the structure of the tree and the stages when decisions
have to be made corresponds to each other. More on the tree structure for
our problem can be found in Section 6 and for general problems in Römish
and Schultz (2001) and Follestad, Wolfgang and Belsnes (2011).

In terms of mathematical formulation, we solve the stochastic short-term
production scheduling problem by solving its deterministic equivalent (Kall
and Wallace, 1994). When solving the problem stochastically the realiza-
tion of uncertain parameters, the scenarios, are described by ξ, where the
probability distribution of ξ is assumed known as stated above. The decision
variables, x, are independent of the distribution of ξ, but the decision on x
has to be made before knowing the realization of ξ; we have to bid in the
market before knowing the price. The general stochastic formulation can be
presented as (Kall and Wallace, 1994, Wets, 1974)

min g0(x, ξ̃) (1)

s .t gi(x, ξ̃) ≤ 0, i = 1...m

x ∈ X ∈ Rn

The model needs to have a way to describe how to take good decisions
on x, before knowing the realization of ξ. It is therefore necessary to do
a revision of the equations above. The model needs some kind of recourse
action to compensate for the deviation between the decision made under
uncertainty and the optimal solution when ξ is revealed. The difference
between this recourse or second stage activity and the choice made under
uncertainty has an extra cost or penalty, q, which will be minimized in the
objective function (Kall and Wallace, 1994, Wets 1974).

Q(x, ξ) = min
y

m∑
i=1

qiyi (2)

s .t yi(ξ) ≥ g+i (x, ξ̃), i = 1...m
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This gives the total cost to be minimized in the objective function

f0(x, ξ) = g0(x, ξ) +Q(x, ξ) (3)

We can easily relate this to the short-term production planning problem
were the producer face a cost for producing in imbalance with committed
volume. The possibility of participating in the balancing market can hence
be seen as the recourse activity for the bidding problem, since this is the
action that is used to compensate for not knowing the price when the bid
decision is taken. If the power company have a committed volume lower
than the produced volume there is a surplus of power that can be sold in
the balancing market. The cost associated with this is due to the fact that
the price the production company get in the balancing market is lower then
the spot price. If the power company have more committed power than the
volume produced, power has to be bought in the balancing market to a higher
price than the spot price. So either way, if there is an imbalance between
committed volume and produced volume the power company will loose profit
in our model formulation. In the real situation, however, the producer may
make a profit from selling regulating power.

The above pattern of bidding, market clearing, production and trading
in the balance market is repeated every day of the week, and hence we have
a multi-stage stochastic decision problem.
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4 Program Flow

The complexity of hydropower scheduling may make it difficult to follow the
simulation procedure. To ease the understanding of the program flow, a flow
chart is presented and explained in this section. The different programs will
be explained more thoroughly in separate sections, but it is important to
know how they communicate with each other and what values are changed
day by day in the simulation. The procedure will be explained for one day,
but in the case study the simulation is done over all consecutive days in a
period of seven weeks. Through the simulation we get results for reservoir
management and profits when using the stochastic model over time.

Scenario generator

Scenario tree

SCENRED

Creating tree input Bid Optimization

Deterministic price and 

PUÅV^
Seasonal Model

Water value

Production Plan

Bid Matrix

Results

Realized price and 

PUÅV^

Simulation Juvatn

Levels

>H[LY�ÅV^

Levels

>H[LY�ÅV^

Levels

Water value

Reservoir management

State of turbines

Discharge, bypass, spill

Production

Unbalance

7YVÄ[Z

3060 Scenarios

15-20 Scenarios

Figure 4: Flow chart for the simulation procedure.

The simulation procedure starts by setting initial values for the day
counter and the day-of-the-week counter. We need to keep track of both
of these counters due to the variable horizon of the bid optimization model,
and the interplay with the seasonal model to get water values at the end of
each week. Before the simulation is started, the seasonal model also needs
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to be run one time to get initial parameters for the water values.
On each day, the algorithm starts with sampling of individual scenarios

for price and inflow. This is based on price scenarios from SKM Market Pre-
dictor AS and Agder Energi’s ensemble scenarios for inflow. A given number
of individual price scenarios are obtained as explained in Section 6.2 and
combined with inflow scenarios. These are then sent trough the SCENRED
algorithm (Heitsch and Rømisch, 2006) to obtain a scenario tree needed as
input to the stochastic optimization model. The SCENRED algorithm also
reduces the tree according to reduction parameters settings as explained in
Section 6, so that the resulting tree is as small as possible according to the
settings and the statistical properties of the individual scenario input. To get
the tree into a form that is suitable as input to the bid optimization model,
a program that detects the structure of the tree and processes the results is
run. This program also adds a maximum and minimum scenario to the tree
from SCENRED, in order to be certain that no information is lost through
the reduction algorithm.

Meanwhile, the bid optimization model also needs as input deterministic
prices and inflow for the days that are modelled as deterministic, see Section
6. These data do not need to be put trough SCENRED, since they do not
represent any tree structure but only a single realization of the price and
inflow in each hour. We choose random realizations of the prices and inflow
scenarios as the deterministic values. The deterministic prices and inflow is
sent as input to the bid optimization model.

Finally, the bid model needs the resource cost of water as input in the
form of water values. Water values for each reservoir is output from the
seasonal model as explained in the introduction. Water values are dependent
on reservoir levels and time of year, but we have no guarantee that our
stochastic model will result in the same reservoir levels at the same time of
the year as the model currently used by Agder Energi, and hence we cannot
use historical water values directly. A simplified version of the seasonal model
is developed as explained in Section 8 and used to generate cuts to constrain
the value of the water left in the reservoirs after each week. It is common
practice in the industry to update the water values once a week, and this is
hence what we choose to do in our model. The seasonal model is therefore
only run each seventh day, and then it uses reservoir levels from the previous
day as input and calculates cuts based on the production capacity for each
reservoir. In addition, the seasonal model requires forecasts of future inflow
and future prices as input. For this we use historical data obtained from
Agder Energi and Nord Pool.

When all required input is generated, the bid optimization model is ready
to be run. This results in an optimal bid matrix with bids for each hour of

22



the following day. The bid matrix is sent to the optimization model for
production allocation. In this optimization, the spot price is known and
inflow is considered certain and hence this is a deterministic optimization
program. This optimization results in a realistic production schedule. Af-
ter the production allocation model is run, a final simulation procedure is
run that accounts for head effects at the reservoirs. This is done to verify
the results of the optimizations and make sure that the production plan is
implementable for the real life system.

The output from the production allocation in terms of reservoir levels,
daily production, daily profits and unit commitment will be considered the
main output from the simulation and are saved after each run. Reservoir
levels after each day and the state of the reservoirs in the last hour of the
day are sent as input to the bid optimization model for the next day. The
day counter then increases by one, and the whole simulation process is run
again for the next day. When the simulation has been run for all days in one
week, reservoir levels at the end of the week are sent as input to the seasonal
model for the next week and the week counter is increased by one.

The different programs and algorithms involved in the simulation process
are now presented separately. Some of the programs, such as the bid opti-
mization model and the scenario generation process are quite involved, but
also they constitute the largest theoretical effort of this thesis.
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5 Bid optimization model

In this section the mathematical formulation of the bid optimization model
is presented. For the sake of clarity, the model is first introduced without
uncertainty. The objective function is explained first, then the equations
related to the power market and finally the equations for the production
system. Uncertainty is introduced after all relevant explanations are given,
and then the equations for the stochastic model are given in full.

5.1 Objective function

The objective of the bid model is to maximize the profit from selling power
in the day-ahead market. The profit is the income from spot market sales
less the start-up costs and the penalty for using the balancing market. The
value of saving water for future use must also be taken into consideration,
and this is done by the water value. The short-term scheduling problem can
hence be described as finding the optimal balance between water used today
and water stored for future use, and also the bids that represent this balance.

The income from the day-ahead market is denoted by ρhyh where the
index h is defined for every hour of the operating day, ρh is the spot market
price and yh is the volume sold.

In hydropower production the variable costs of production are negligible
(Alnæs, Grøndahl, Boomsma and Fleten, 2013), and the real resource cost
of power generation is the opportunity cost of water, represented by the
marginal water value. The water value is denoted by ν, and is a non-linear
function of reservoir levels, future inflow and prices and also the time of year
as will be explained in Section 8. To keep the formulation linear, the value of
water is constrained by cuts given by the seasonal model presented in Section
8. The objective function strikes a balance between profits from using water
this week against saving water for next week, which is represented by the
water value at the end of the week.

Other costs associated with hydropower generation are start-up costs for
the turbines, St. These are subtracted from the revenue in hours where a
turbine is turned on, denoted by a binary variable δ. The start-up costs are
important for the bidding problem since it is undesirable to have frequent
starts and stops of turbines, due to tear on the turbines. The start-up cost
should reflect the fact that whenever there is a start or stop of production,
water is lost. In addition, frequent starts and stops cause unnecessary ex-
haustion of the turbines, increases the risks of component failure and requires
more work from the operator.

The last term in the objective function is the penalties for using the

25



balancing market. The spot market facilitates day-ahead trade of expected
production, but real-time imbalances may still occur, and the trading of these
imbalances is done in the balancing market. Both buying and selling power
in the balancing market is penalized in the objective function, even though
producers may make a profit by selling balancing power, see for instance
Boomsma, Juul and Fleten (2012) for an analysis of bidding strategies in
sequential power markets. We, however, want to optimize the bids for the
day-ahead market where the expected generation is traded, and hence use
the balancing market only when needed. In terms of stochastic modelling,
the volume bought or sold in the balancing market is the recourse action that
compensates for the difference between volume bid under uncertainty and the
optimal volume when actual inflow and price becomes known. The balancing
volume is denoted by z+ for upregulation and z− for downregulation, and
are both penalized with the same penalty µ. The objective function of the
bidding model is hence

max
∑
h∈H

ρhyh + νEnd − µ
∑
h∈H

(z+h + z−h )−
∑
h∈H

∑
t∈T

Stδth (4)

Where the symbols have the following meaning:
ρh : The spot market price in hour h
yh : The committed volume in hour h
νEnd : The water value at the end of the week
µ : The penalty for using the balancing market
z+h : The positive unbalance; volume sold in the balancing market
z−h : The negative unbalance; volume bought in the balancing market
St : Start-up costs for turbine t
δth : Binary variable with value 1 if turbine t is turned on in hour h and 0
otherwise

5.2 Markets and bidding

5.2.1 Modelling bids to Nord Pool

There are several ways to bid in the Nord Pool spot market; the common one-
hour bid, flexible bids and block bids. We first concentrate on one-hour bids,
where the market participants submit a set of price-volume bids for every
hour of the following operating day. The market operator then interprets the
bids as piecewise linear functions between the price-volume points.

The problem of finding optimal price and volume points simultaneously
results in a non-linear problem. We avoid this non-linearity by fixing price
points in advance and optimizing only the volume corresponding to each of
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the fixed prices (Fleten and Pettersen, 2005). When the market is cleared,
the supply and demand curves for all market participants are aggregated
and the equilibrium price is determined at the intersection of the aggregated
curves. The producers are notified of their committed volume and are obliged
to deliver this volume. For a single producer, the committed volume is found
by interpolation between neighbouring price points. The bidding curve and
the committed volume can be found as

yh =
ρh − Pi−1
Pi − Pi−1

xih +
Pi − ρh
Pi − Pi−1

xi−1h, Pi−1 ≤ ρh ≤ Pi, h ∈ H, i ∈ I (5)

Where yh is the committed volume from the bids in hour h that is decided
by the market clearing spot price ρh. As mentioned above, yh is found by
linear interpolation between the two nearest price-volume points (Pi, xih) and
(Pi−1, xi−1h) where the bid volumes x are decided by the optimization.

Due to the rules of how to submit bids in the spot market, the bids have
to represent monotone increasing curves. Because of this we get an additional
constraint for the volume points

xhi ≤ xhi+1, h ∈ H, i ∈ I \ {I} (6)

A question arises as to how many bid points are suitable in the model
formulation. In practical terms, the maximum number of bid points is limited
to 64 by NordPool, where two of these are reserved for pre-set maximum and
minimum prices. The number of bid points increase the computation time
and is also limited by the number of scenarios used as input. In all cases,
at least one scenario price has to fall between every set of price points, or
else the model will be indifferent of what to bid between these points. In a
stochastic model, there has to be more than one scenario price between price
points, or the model will in fact be deterministic, since the price realization
between two points then will be known with certainty. As Löhndorf, Wozabal
and Minner (2011) we choose the number of price points after the following
rule

I = max
(
64,

S − 2

2

)
(7)

Where I is the number of bid points and S is the number of scenarios. Having
64 price points then gives too many scenarios to handle in terms of computa-
tional time and hence we let the number of scenarios be the determinant of
the number of price points, not the other way around. The number of scenar-
ios may change every day, but for ease of comparison we choose to have the
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Table 1: Values of price points.
Number 1 2 3 4 5 6 7
Price 0 15 20 23 27 30 100

same number of bid points every day. The minimum number of scenarios in
our input data is 16, so we get 7 points to bid for. Agder Energi currently use
between 10 and 20 price points, but these are used for all reservoirs systems
owned by Agder Energi. When bidding only for Mandalsvassdraget, 7 price
points are sufficient.

Choosing these price points can be done in many ways, but they must at
least cover all possible outcomes for the spot price. In this thesis the price
points are selected based on an analysis of what effect different sets of price
points have on the result of the optimization model. The analysis shows that
as long as the area where a change in spot price means a significant change
in the bid volume has an adequate resolution of price points, the difference
in results are low. This is shown in Appendix B. The chosen bid points have
smaller intervals between 20 and 30 e/MWh where most of the spot prices
during the simulation period occur. For prices over 30 e/MWh the optimal
bid volume equals maximum production as long as there is enough water
available. Hence, there are no price points chosen between 30 e/MWh and
the upper boundary set at 100 e/MWh. The price points used can be seen
in Table 1. The price points used in this thesis is set somewhat arbitrarily,
but ideally the price points should reflect the marginal cost of water in the
reservoirs.

5.2.2 Modelling Balancing Power

As discussed briefly in association with the objective function, the model
needs a way to handle differences between committed volume and volume
actually produced. If there is imbalance between the committed and the
produced volume the producer has the opportunity to sell or buy this ca-
pacity in the balancing market closer to real time (Fleten and Kristoffersen,
2007). The variables z+h and z−h represent the imbalance in the system and are
calculated as slack variables in the balance between the committed volume,
yh, and the sum of production from the different power stations. As shown in
the objective function in Equation (4), the balance variables are multiplied
with a cost to penalize imbalances, since the aim is to obtain optimal bid-
ding for the day-ahead market. The penaties is chosen to have high values
compared to the spot price to reflect the fact that intentional imbalances is
not wanted. The volume balance equation is shown as Equation (8).
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∑
r∈R

wrh − yh + z+h − z
−
h = 0, h ∈ H (8)

5.3 Production System

The system consists of several reservoirs and power stations, each station
containing one or more turbines. The reservoirs are also connected to each
other according to the topology of the river system. Several constraints are
needed to model this; for instance how the stations and reservoirs are linked
together, how the discharge from one reservoir leads to production in the
underlying station and a reservoir balance for each reservoir. In our system,
each reservoir is connected to at most one station, so the index r is used for
both reservoirs and stations. A general system is pictured in Figure 5.

STATION 1

RESERVOIR 2

STATION 2

RESERVOIR 1

Spill Bypass

0UÅV^��

0UÅV^��

Figure 5: General system setup for a two-reservoir system.

5.3.1 Production

Each power station has one or more turbines where power is produced. The
turbines have bounds on minimum and maximum capacity, and this is mod-
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elled as in Equation (9), stating that if there is production in a turbine, the
binary variable uth is 1 and the production has to be within the bounds.

uthW
min
t ≤ wth ≤ uthW

max
t , t ∈ T, h ∈ H (9)

How much power a turbine generates, wth, from one unit of water dis-
charged, vth, is dependent on the efficiency of the turbine. Generally, this is a
non-linear relationship, due to dependency on both water head and discharge
level. To keep the model linear, the production functions for the turbines are
approximated by piecewise linear functions and head effects are disregarded
in the optimization model. For Mandalsvassdraget, this approximation is
appropriate, as most of the reservoirs are not affected by head effects. For
the reservoirs where head effects are important, the results are validated
trough detailed simulations as will be explained in Section 7.4. The produc-
tion function relates power produced to discharged volume. An example of
a production function can be seen in Figure 6, with the linearization also
indicated.

Figure 6: Piesewise linear approximation of the production function.

For the linearization we define a set of discharge-production points of the
form (Vti,Wti) and constrain the production, wht, to always be below the
curve between these points. Hence, we have
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wth ≤
vth − V t

i−1uth
V t
i − V t

i−1
(W t

i −W t
i−1) +W t

i−1uth, (10)

V t
i−1 ≤ vrh ≤ V t

t , t ∈ T, h ∈ H, i ∈ I

Where V t
hi and W t

hi are known volumes on the curve and wth is the produced
volume corresponding to the discharged volume vth. The binary variable uth
is included in the equation to make sure that the production functions also
are valid when production is turned off. This is diffrent from the formulation
in Fleten and Kristoffersen (2007). The breakpoints are selected so that they
cover the entire range of possible values for discharge and production, that is,
one breakpoint each for maximum and minimum. To best capture the effects
of the efficiency curves on the bidding strategy, one of the breakpoints should
be the best-point volume. More breakpoints give a better approximation of
the non-linear production functions, but also increase the solution time.

For each station, the sum of the power produced for all turbines in the
station is the total production for that station

wrh =
∑
t∈T (R)

wth, h ∈ H, r ∈ R (11)

The total amount of water discharged at each station is also equal to the
sum of water used in each turbine in that station

vrh =
∑
t∈T (R)

vth, h ∈ H, r ∈ R (12)

5.3.2 Other discharge

There are other forms of discharge from a reservoir than simply production
discharge, such as bypass or spill. Bypass is controlled flow of water leaving
the reservoir not used for production. Some reservoirs have bypass restric-
tions so that the river does not run dry or flood. Spill is uncontrolled water
flow from a reservoir and happens when the reservoir is over-full. The differ-
ent discharges may have different watercourses according to the topology of
the reservoir cascade, and have the following restrictions

V Bypass,min
r ≤ vBypasshr ≤ V Bypass,max

r , r ∈ R, h ∈ H (13)

31



5.3.3 Reservoir Balance

The reservoirs are modelled as units with constraints on minimum and max-
imum storage, and a balance equation that connects discharge and inflow
to the change in storage level. The storage level at the end of any given
hour is the reservoir level at the start of the hour minus the discharge used
for production, bypass and spill, plus inflow and water released from up-
stream reservoirs. The water from upstream reservoirs arrives at the current
reservoir after a given time delay. Time delays means that hours are more
dependent on each other and hence the degree of freedom when making bid
or production allocation decisions is reduced. Inflow to reservoir r in hours
h is denoted as rrh.

The reservoir topology may be more complex than just one reservoir di-
rectly below the next as in figure 5. A river system can have parallel or
crossing river courses and it is therefore not given that the discharge from
reservoir r ends up in reservoir r + 1, as in Figure 7 which is a schematic
of Mandalsvassdraget. Hence, a matrix that gives which reservoirs are con-
nected to each other is needed, denoted by Crk. This matrix consists of
binary parameters, equal to 1 if there is a direct waterway between reser-
voir r and k, and zero otherwise. Since there can be different waterways
for discharge from production, bypass and spill, we need different connection
matrixes. Hence, the reservoir balance equation is

lhr − lh−1r +
∑
k∈R

(vProdhk ∗ CProd
rk + vBypasshk ∗ CBypass

rk + vSpillhk ∗ CSpill
rk )

+rrh − vProdhr − vBypasshr − vSpillhr = 0, s ∈ S, r ∈ R, h ∈ H (14)

The storage level in the reservoirs can only be regulated within an upper
and lower boundary. These boundaries are either set by the physical con-
straints of the reservoir or by regulations set by the government through the
Norwegian Water Resources and Energy Directorate, NVE. Hence, we have

Lmin ≤ lrh ≤ Lmaxr , r ∈ R, h ∈ H (15)

5.3.4 Modelling start-up costs

Start-up costs are included in the model to represent the loss of water con-
nected to start and stops of turbines. It is undesirable to have frequent starts
and stops because this causes unnecessary exhaustion of the turbines and re-
quires attention from the operator. A production schedule where the same
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Figure 7: Schematic of the reservoir topology in Mandalsvassdraget.

33



turbine is turned on and off very frequently is not wanted. To model this
a binary variable, uth, for each turbine is created, having the value 1 if the
turbine is on and 0 otherwise. To find out if a turbine has changed state
from one hour to another, a new binary variable, δth is introduced. This
variable has value 1 if a turbine has started up in hour t, and zero otherwise,
according to Equation (16).

δth ≥ uth − uth−1, t ∈ T, h ∈ H (16)

5.3.5 Modelling the water value

The water value is the marginal opportunity cost of water in the reservoirs,
and hence the resource cost of power generation. The water value is a function
of future development depending on demand, market prices and inflow. The
short-term production scheduling problem is to choose the cheapest reservoir
to produce from, and the loss of water value represent this cost. The water
value is known from longer term models with a time resolution of one week,
as will b explained in Section 8. The water value function is in general non-
linear and is therefore approximated by adding cuts to constain the value of
water using information from the seasonal model. The cuts are on the form
of

ν ≤ Pc −
n∑
r=1

αrc(Lrc − lr) (17)

where Pc is the future profits for cut c, αrc is the dual variable for reservoir
r in cut c, Lrc is the storage level in reservoir r used in cut c and finally lr
is the current storage level. Finally, ν is the value of the water left in the
reservoir at the end of the current week. The generation of water value cuts
is explained in Section 8.

In addition, we need to give value to the water that is discharged from an
upstream reservoir but has not reached the downstream reservoir before the
end of the short-term planning horizon, due to time delay between reservoirs.
This water needs to be valued to avoid end of horizon effects, which for
instance may be that stations are turned off in the last hours of the day to
save water in the overlying reservoir, where is has value. If the water in the
watercourses at the end has value zero, the optimization will avoid releasing
water in the last hours. We let all water in the waterways at the end, that
is, production discharge, bypass and spill, have the same value as the water
in the reservoir where it is heading.
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5.4 Stochastic Model

Thus far, we have presented a general model for the short-term production
scheduling problem without uncertainty. In this section the stochastic model
is presented in full. A scenario tree is given as input to the model, with each
scenario having a known probability of πs. Then each parameter and variable
in the model that may have different realizations in the different scenarios has
to be defined over all scenarios in addition to whatever indices they already
have. For instance, the committed volume will vary with scenario and is now
denoted by ysh instead of just yh as before. The input parameters that differ
in the different scenarios is the scenario price ρh and inflow, rInflowrh . Every
variable calculated in the model, yh, lrh, z

+
h , z−h , δth, uth, wrh, vrh, v

Bypass
rh

and vSpillrh are all dependent on inflow and price, which vary in the different
scenarios. Therefore all the variables calculated in the model have to be
denoted with s. The stochastic model is thus given by Equations (18) - (36).

max
∑
s∈S

ps

(∑
h∈H

ρshysh + νEnds − µ
∑
h∈H

(z+sh + z−sh)−
∑
h∈H

∑
t∈T

Stδsht

)
(18)

ysh =
ρsh − Pi−1
Pi − Pi−1

xih +
Pi − ρh
Pi − Pi−1

xi−1h, (19)

Pi−1 ≤ ρh ≤ Pi, s ∈ S, h ∈ H, i ∈ I

xih ≤ xi+1h, h ∈ H, i ∈ I \ {I}, (20)

∑
r∈R

wshr − ysh + z+sh − z
−
h = 0, s ∈ S, h ∈ H (21)

ushtW
min
t ≤ wsht ≤ ushtW

max
t , s ∈ S, t ∈ T, h ∈ H (22)

wsht ≤
vsht − V t

i−1usht
V t
i − V t

i−1
(W t

i −W t
i−1) +W t

i−1usht, (23)

V t
i−1 ≤ vshr ≤ V t

t , s ∈ S, t ∈ T, h ∈ H, i ∈ I
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wsrh =
∑
t∈T (R)

wsht, s ∈ S, h ∈ H, r ∈ R (24)

vsrh =
∑
t∈T (R)

vsht, s ∈ S, h ∈ H, r ∈ R (25)

V Bypass,min
r ≤ vBypassshr ≤ V Bypass,max

r , s ∈ S, r ∈ R, h ∈ H (26)

lshr − lsh−1r +
∑
k∈R

(vProdshk ∗ CProd
rk + vBypassshk ∗ CBypass

rk + vSpillshk ∗ C
Spill
rk )

+Rrh − vProdshr − v
Bypass
shr − vSpillshr = 0, s ∈ S, r ∈ R, h ∈ H (27)

Lmin ≤ lsrh ≤ Lmaxr , s ∈ S, t ∈ T, h ∈ H (28)

δsht ≥ usht − ush−1t, s ∈ S, t ∈ T, h ∈ H (29)

νs ≤ Pc −
n∑
r=1

αrc(Lrc − lrs) (30)

ysh ≥ 0, s ∈ S, h ∈ H (31)

xhi ≥ 0, h ∈ H, i ∈ I (32)

usth ∈ (0, 1), s ∈ S, t ∈ T, h ∈ H (33)

δsth,∈ (0, 1) s ∈ S, t ∈ T, h ∈ H (34)

z+sh ≥ 0, s ∈ S, h ∈ H (35)

z−sh ≥ 0, s ∈ S, h ∈ H (36)
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6 Scenario generation

The quality of the solution to a stochastic program depends on how well the
uncertainty inherent in the real-world problem is modeled. Integrating too
little uncertainty will give too optimistic results, while on the other hand,
incorporating too much uncertainty will lead to prohibitively large models,
that are either unsolvable, too complex to be informative, or both.

For our approach, uncertainty is represented trough scenario trees, which
can be generated by many different methods. A review of methods most
commonly used for scenario generation is given in Mitra (2006) or Kaut and
Wallace (2003). In addition, Kaut and Wallace (2003) also give quality and
suitability measures for different scenario-generation methods. The method
we have chosen is only a suggestion for how the scenario generation could
be done, and we empathize that the model itself and the input scenarios are
independent from each other, as the model can be used with any scenario
generation method available.

6.1 Generating the scenario tree

The scenario tree is used to represent how the future prices and inflow de-
velops over time. What we bid in the market for tomorrow is dependent on
the balance between expected profits for tomorrow versus expected profits
for the rest of the short-term planning period, and the scenarios represent
the uncertainty in prices and inflow for tomorrow and the days after. The
expected profits after the short-term horizon are represented by the water
value. The bid volumes and produced volumes are dependent on the uncer-
tain prices, which again are dependent on uncertain inflow, and hence the
profits are themselves uncertain. Our objective is to find the bidding volumes
that give the optimal balance between quantity of power produced tomorrow
and quantity of water stored for later use.

Short-term scheduling of hydropower production has a time horizon of up
to seven days, which is also the longest horizon in our model. As explained
in Section 8, the water value is known from the seasonal model for a time
step of one week, so the short-term problem deals with production scheduling
within the week. If the water values are calculated each Sunday, then the
scenario tree needs to cover all possible realizations of prices and inflow for
the remaining days until next Sunday. The resulting scenario tree consists of
nodes representing different realizations of the future prices and inflow, and
one path trough the tree is equivalent to one specific realization of prices and
inflow for the rest of the week, which is called a scenario. If scheduling is
done for Monday, then all days up to Sunday have to be represented in the
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tree, and hence the tree will have 7 stages.
The tree structure is needed to represent the information flow inherent

in the problem; that is, it represents the timing of when new information
becomes available to the decision maker. On any given day, the bidding
decisions for the day ahead are dependent on the price realizations of all
following days in the week, not just the day one is actually bidding for. This
is exactly what the tree represents; it takes into account all future possible
realizations of prices for the remaining days of the week, and also the timing
of when these prices become known.

Deterministic

Two-stage tree

Three-stage tree

Figure 8: Development of scenario trees with none, one and two stages.

Looking at Figure 8, the scenario tree approach can be explained more
thoroughly. First, one individual scenario for prices and inflow in the 7 days
to come is shown to the upper left. If uncertainty of prices and inflow is
represented in this way, we actually have a deterministic problem since this
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single scenario is the only one that can occur and hence it has a probability
of 1. Down to the left in Figure 8 is shown a scenario tree with 4 differ-
ent possible realizations for the price and inflow tomorrow. After the price
tomorrow becomes known, the prices for the remaining days also become
known, and there is no more uncertainty. Hence this is a two-stage tree; we
only face uncertainty once while moving in the tree. Finally, the figure to
the right shows a tree with three stages and 16 scenarios in total. There are
4 different possible realizations for the price tomorrow, and then there are 4
different realizations for the day after tomorrow. At this point the prices for
the remaining days are assumed certain.

The tree to the right in Figure 8 can be expanded to include more stages
and more realizations per stage. In our case we need up to 7 stages in the
tree, since the water value is known on a weekly time step. If we only have 4
realizations in each stage as in the tree above, we get 47 = 16384 scenarios.
This illustrates that the tree structure grows rather quickly, and considering
that we need much more than 4 realizations per stage to adequately represent
the uncertainty in the real world problem, it is easy to imagine that the
problem can become too large to solve.

The tree structure suitable for our model will look different from the
trees in Figure 8, and an example of our tree structure is given in Figure 9.
The number of realizations in each stage will vary according to the individual
input scenarios and the reduction parameter settings in SCENRED. Another
feature is that our tree will have several time steps in each stage, representing
the 24 hours of a day. The next stage occurs when the market is cleared and
the prices for all hours of the next day are revealed. Having up to seven
stages means that the tree will become too big for the model to be solved
every day. A choice is therefore made of having at most three stochastic
days and the rest of the days until the water value is updated modeled with
known prices and inflow. This means that once the spot price and inflow is
revealed on the third day, then all future prices and inflow also is known, and
hence there is no more uncertainty in the tree. This is illustrated in Figure 9
by a scenario tree covering the first three days and then the rest of the days
of the week all have the same realization of price and inflow. This can also
be seen as a way of adapting the tree structure to the time horizon of the
seasonal model, since the value of available water in the last days of the week
is conditional on the price realization for these days. In practice, only the
first-stage solution, that is, the bid decisions for the first day, will be used
and the conditional decisions in later stages are only made in order to find
the right values for the first-stage solutions.

In our approach, we generate a scenario tree using a scenario tree genera-
tion algorithm called SCENRED, developed by Heitsch and Römisch (2006).

39



Figure 9: Scenario tree structure used as input to the bid optimization model.

See also GAMS Software (2002) for more information about the algorithm.
First, the scenarios for price are combined with scenarios for inflow, which
give us a discrete realization of the prices and inflow throughout the plan-
ning horizon, but not in the form of a tree where the realizations gradually
become known. The SCENRED algorithm takes the individual scenarios as
input and generates a scenario tree where new information is revealed at the
appropriate time. After the tree is created the algorithm reduces the tree to
the minimum number of nodes still needed for the tree to be representative
of the statistical properties of the input scenarios.

6.2 Price scenarios

There are different ways to generate scenarios for the future spot price, all
with its pros and cons. The current practice among hydropower producers is
to create price scenarios by weighting the price forecast by different factors,
and thereby produce price percentiles. This method is common because most
producers use a deterministic model for optimizing bids, which cannot take
crossing price scenarios as input. A stochastic model, however, can deal with
scenarios crossing each other; this opens for creating more realistic scenarios.
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We have looked at two methods for creating crossing price scenarios; one
based on historical data and one based on the physical properties of the
power system.

Price scenarios generated from historical data use historical price fore-
casts and realized prices for the same day. From this a distribution of the
forecasting error is calculated; from which random error terms can be drawn
and added to the latest forecast as an easy way to get different scenarios as
in equation (37).

ρsh = PriceForecast+ εh (37)

Using historical data and the statistical method above we can secure
correlations both between hours within a day and between different days by
drawing a series of errors spanning over several days. This method requires
a thorough collection and analysis of historical errors securing an acceptable
error distribution. The advantage of this method is that a producer relatively
easy can obtain and analyze its own forecasting errors and produce crossing
price scenarios. However, the method creates non-physical scenarios based
purely on statistical properties of historical errors. Scenarios with similar
statistical properties can be detected by SCENRED, and thus will be reduced
to one or just a few scenarios. This leaves a scenario tree not covering
the entire span of the input scenarios and so small that it almost can be
considered a deterministic scenario.

Price scenarios based on physical properties of the power system are a
more lifelike method for producing scenarios. In reality the spot price is de-
pendent on a range of different fundamental events occurring simultaneously.
Such events can be different consumption patterns for electricity, bottlenecks
in the power grid, different temperature profiles or the state of other gen-
erating units in the system. Some of these fundamental events are chosen
and a model for the entire power system is run for different combinations of
events producing a spot price series for each combination. The advantage
of the fundamental method is that each scenario can be tracked back to a
specific combination of physical events. The counter-argument is that the
method requires a large and complex model that requires resources from the
producer or a separate company.

We have chosen to use fundamental scenarios because this is the most
realistic representation of the spot price. Because we neither have access
to a model that calculates how the spot price is affected by changes in the
physical properties of the power system, nor the capacity to make such a
model, we have to use price scenarios made by an external company. Our
scenarios are obtained from SKM Market Predictor AS for the NO2 area in
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the period 16.8.2012 to 1.10.2012. SKM produce price scenarios to several
producers and retailers in the Nordic power system, and we consider it a
strength of our modeling approach that it directly can take input currently
used in the industry. The scenarios are a combination of 5 different consump-
tion patterns for electricity, 3 scenarios for flow on the NorNed connection
and 3 scenarios of nuclear power production. In addition we have 3 different
scenarios for temperature profiles that is matched with a base scenario for
transmission on NorNed and nuclear power and 5 different cases of consump-
tion patterns. This gives a total of 60 price scenarios that we match with
the inflow scenarios, resulting in the individual scenarios used as input to
SCENRED.

6.3 Inflow scenarios

The inflow scenarios are given by Agder Energi. They obtain a forecast of
inflow from the ECMWF model, a complex metrological model forecasting
the global weather up to 15 days ahead in time. From this forecast, 50
ensemble scenarios are generated using a less complex model. Hence we get
51 scenarios for inflow, 50 ensemble scenarios plus the one base scenario from
the ECMWF model. These 51 scenarios are combined with the scenarios for
price, making 3060 input scenarios for SCENRED.

6.4 Variable horizon

As mentioned in Section 6.1, short-term scheduling can have a time horizon
of up to seven days; in stochastic programming, this corresponds to up to
seven stages. In this thesis, the number of stages is chosen to be three as
a trade-off between correct modeling of uncertainty and computation time,
and hence the scenario tree covers the first three days of the week. For the
remaining days, the possible revenues from the spot market is determined
by the price realization for these days, which is the same regardless of what
scenario occurs for the first days. In this thesis the seasonal model is run
every Sunday, producing new water values after the price is reveled midday
Sunday. Thus the number of days represented in the model depends on which
day the bidding is done for. Bidding for Monday will have a total horizon of
7 days, where 3 days have uncertain prices and inflow and 4 days have known
prices and inflow. Bidding for Tuesday will have a horizon of 6 days; 3 days
with uncertain prices and 3 days with known prices, and so on throughout
the week. Figure 10 shows how the scenario tree looks each day of the week.
Even if the tree has three stages, each stage represents several time steps
since the prices for all hours of the following day are revealed at the same
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Monday Tuesday

Wednesday Thursday

Friday Saturday Sunday

Figure 10: The tree structure and its development over the week as we move
closer and closer to the new realization of water values at the end of the
week.

43



time when the market clears. Each node in the tree in Figure 10 therefore
represents the price and inflow realization of all the 24 hours in that stage.

6.5 Securing the span of the feasible region of scenarios

When the scenario tree is created and reduced in SCENRED the span of the
feasible range of the scenarios may decrease. SCENRED reduces the scenario
tree based on the assumption that the input scenarios cover a large area,
where the tails of the scenario distribution are extreme cases. A problem
occurs when SCENRED tries to reduce the price scenarios from SKM and
inflow scenarios from Agder Energi, where the tails of the distribution do
not take on extreme values because the scenarios are made by combinations
of physical events. Therefore, scenarios that are not extreme are reduced
together by SCENRED, and hence we lose the span of the region where the
scenarios can occur. To avoid the problem with a too small range we add
two extreme scenarios to the scenario tree given by SCENRED. It is most
important to maintain the span of scenarios the first 24 hours, since this are
the hours where the bids found by the bid optimization model are actually
implemented. Hence it is here the results will suffer the most damage if
the span of scenarios is too small. The extreme scenarios that are added to
the scenario tree are called the minimum and the maximum scenario. The
minimum scenario is created by taking the lowest values of price and inflow
in each of the 24 first hours and the maximum scenario is created with the
highest values.

The disadvantage of the method of adding extreme scenarios is that we
get scenarios that are not real scenarios in the sense that they are not made
from combinations of physical events. Adding the two scenarios is hence a
trade-off between securing the range of scenarios and having scenarios made
from real events. We choose to add the extreme scenarios to the scenario tree
because the weight, or probability, of these scenarios will be so small that
their presence will influence the solution less than what having a too small
range would.

Once the extreme scenarios are generated the weight of these has to be
decided. The goal when finding the weights is that the kurtosis and mean of
the scenario tree should be as close as possible to the same properties before
reduction in SCENRED. The probability of the highest scenario after the
reduction is split by the factor α, so the new weight of this scenario is (1−α)
multiplied with the old probability. α multiplied with the probability of the
highest scenario is then used as the weight of the maximum scenario, which
is added to the scenario tree as seen in Figure 11. The same is done when
finding the weight of the minimum scenario; we split the weight of the lowest
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scenario after reduction by a factor β. The value of α and β are found by
minimizing the difference in kurtosis and mean of the scenario tree before
reduction and the new scenario tree with the added extreme scenarios.

In hours 25 to 72 the maximum and minimum scenarios is equal to the
highest and lowest scenarios in the scenario tree before adding the extreme
scenarios, hence the structure of the scenario tree is preserved in hours 25 to
72 when adding the extreme scenarios. This is indicated in Figure 11, where
a copy of the subtree of the highest scenario is added to the new maximum
scenario.
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Figure 11: A new extreme scenario is added to the redced tree to secure the
span of possible prices.
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7 Production Allocation Model

After the bid optimization is done for one day, the bids are sent to Nord Pool
and the market is cleared. The spot price and the committed volume for each
market participant then become known. It is now up to the producer to assign
the committed volume to the specific stations and turbines where it is to be
produced. The production allocation model optimizes the unit commitment
decisions based on the spot price realization, the water value for the reservoirs
and the costs for each turbine. The production allocation model presented
here is based on the formulation in Fleten and Kristoffersen (2008) and is
equivalent to the currently much used Short-term Hydro Operation Planning
(SHOP) model (Flatab, Haugstad, Mo and Fosso, 2002, Fosso, Belsnes, 2004
and Fosso et al, 1999). The production allocation model is based on the same
equations and assumptions as the bid model, but with slight modifications.
The modelling of the production plan is model presented below.

7.1 Time horizon

The production allocation model has a time horizon of 24 hours. This is due
to the fact that even if the bid model takes decisions on the basis of a one-
week horizon, only the bids for the first 24 hours are actually implemented.
The day-ahead market clears for 24 hours at a time, and it is the bids for these
hours that determine the volume to be produced the next day. The spot price
is known when the production plan model is run, and following currently used
models, we also take inflow to be certain. Hence the production allocation
model is a deterministic mixed-integer program.

7.2 Objective function

The objective of the production allocation model is to choose a unit commit-
ment schedule that covers the committed volume while minimizes costs due
to start-ups and loss of water value. The production allocation model also
has the option of trading in the balancing market, but this is penalized as
in the bid model. The reason for this is that we want to fill the spot market
obligations from our own generation resources and that the use of the bal-
ancing market is regarded as the recourse action that compensates between
the volume bid under uncertainty and the truly optimal volume if the spot
price had been known in advance. The objective function of the production
allocation model is hence
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max
∑
h∈H

ρhyh − νEnd + µ
∑
h∈H

(z+h + z−h )−
∑
h∈H

∑
t∈T

Srδht (38)

where the symbols have the same meaning as for the bid optimization model.

7.3 Modelling of the production allocation model

The only equation that is different from the bid optimization model presented
in Section 5 is the interpolation between price points to find the committed
volume. Now, in addition to the price points being known, the bid volumes
and spot price are also known. Hence the linear interpolation is now

yh =
ρRealizedh − Pi−1
Pi − Pi−1

Xih +
Pi − ρRealizedh

Pi − Pi−1
Xi−1h,

(39)

Pi−1 ≤ ρh ≤ Pi, i ∈ I, h ∈ H

with yh as the only variable, and the volume points are taken as the optimal
volumes from the bid model.The modelling of the production system follows
the same equations as in the bid optimization model, and hence we do not
repeat them here but refer to Equations (9) – (17).

7.4 Accounting for head variations

For one of the reservoirs in Mandalsvassdraget, head effects are important
for the efficiency curves of the turbines in the belonging station. This non-
linearity is not taken into consideration in the optimization models, and hence
it is crucial to check if the actual results are feasible for the real situation.
This could be done for all reservoirs, but in our case we only have data for
head-dependent curves for this one reservoir, so running a simulation for
all stations would only increase computational time without any additional
insights. However, the importance of a final simulation to verify results still
remains, and if necessary the general algorithm explained here for Juvatn
could be done for every reservoir where head effects are present.

When the production allocation model is run, a volume for each hour is
assigned to Juvatn on the basis of the piecewise-linear production curves used
in the production allocation model. These curves do not account for head
effects, and may therefore not calculate the correct volume of water released
for a given amount of power produced. If the current head is lower than the
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middle value that is used in the optimization, then more water is actually
needed and the real storage level at the end of the day will be lower than
calculated. If only the calculated level is used as input for the next day’s
bidding model, the bid may be too large to be covered by the real reservoir
level. A simulation procedure that do account for head effects is therefore
run after the production allocation model is finished and the correct reservoir
storage level is then sent as input to the bid model for the next day.

Figure 12: Plot of the production function at Juvatn for different heads.

The simulation procedure takes as input the current level in the reservoir
and the committed volume to be produced at Juvatn for all hours of the
following day. An interpolation on a curve of known points for storage level
and reservoir head is performed, in order to find the present water head. The
equation for finding the present head is

hh =
lh − Li−1
Li − Li−1

(Hi −Hi−1) +Hi−1, Li−1 ≤ lh ≤ Li, i ∈ I, h ∈ H (40)

where (Li, Hi) are known points on a curve for storage level and head, lh is
the current storage level and hh is the calculated head.

When the current head is known, the current production curve can be
found by interpolation between the known curves for different water heads.
Volume-discharge points for the production curves are known for three dif-
ferent heads, so the interpolation is done between the neighbouring points
on each side of the current head as in

V new
i =

hh −Hi−1

Hi −Hi−1
(V Hi

i − V
Hi−1

i−1 ) + Vi−1, Hi−1 ≤ hh ≤ Hi, i ∈ I (41)
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where V new
i is the new volume point corresponding to the current head, hh.

(V Hi
i , Hi) are known points on the production curves for different heads. A

corresponding interpolation is also done to find the volume for produced
power, W new

i , for the different heads.
Finally, one last interpolation is done to find the actual released volume

for the committed generation volume at Juvatn. The committed volume for
each hour is known from the production allocation optimization, and the now
known head-dependent production curve is used to find the volume of water
released.

vht =
wht −W new

i−1

W new
i −W new

i−1
(V new

i − V new
i−1 ) + V new

i−1 ,

(42)

W new
i−1 ≤ wht ≤ W new

i , i ∈ I, h ∈ H

Using the above interpolations, a more realistic value of water released
is found for each hour of the operating day, and hence the correct reservoir
level can be sent as input to the bid optimization for the next day.
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8 Seasonal Model

The main role of the seasonal model is to establish boundary conditions for
decisions within the short-term horizon. The time horizon of the seasonal
model is up to 18 months, depending on the time of year and topology of
the system. With such a long time horizon, uncertainty must be modeled in
some way, either through an explicit stochastic model or using dynamic pro-
gramming. In this thesis, a simplified deterministic seasonal model is used
to calculate individual water values for each reservoir, but a more complex
model than ours could also be used for the calculation of forecasts of reservoir
levels, generation and spillage, or for maintenance planning or risk analysis.
More information on seasonal scheduling can be found in Fosso and Bel-
snes(2004), Mo, Haugstad and Fosso (1997), Gjelsvik(1982) or Røtting and
Gjelsvik (1992).

The seasonal model has a time step of one week, since some aggregation is
necessary due to the longer time horizon. The resulting output is information
about the water values for each reservoir on a time step of one week. This is
in line with the time steps and variable horizon of the bidding model, where
we at most look at one-week horizon, as explained in Section 6. The water
value is the marginal opportunity cost of water in the reservoirs, and hence
it is the resource cost of water. This cost must be compared with the spot
price in order to determine the optimal bids to NordPool. The water value
is hence a key input to the bidding model.

The water value is a function of future development depending on load,
market prices and inflow, which all are uncertain. The water value is hence
not a deterministic quantity; it changes over the year, with reservoir levels
and market conditions. What we call the water value is actually the function
of the expected marginal value of the water stored in the reservoirs.

The water value function is both non-linear and uncertain, which leads
to a very complicated model. Some approximations are therefore necessary.
Specifically, we approximate the water value function by developing cuts
to constrain the value of the water left in the reservoir at the end of the
week based on the reservoir level at the beginning of the week and installed
production capacity. The cuts are made with output from the seasonal model
and added as constraints in the bidding and production plan models.

It is challenging to find the correct cuts to value the water stored in
the reservoirs. A commonly used method is to use the dual variables of
the reservoir balance constraints in the seasonal model (Mo, Haugstad and
Fosso, 1997). We assume that the reservoir levels at the end of the seasonal
scheduling period are far enough ahead in time to be independent of the
current reservoir levels. For instance, we choose the end of the seasonal
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planning horizon to be in April, so that the reservoir should be nearly empty
after the winter to have enough capacity to store all the inflow coming when
the snow melts. We do not set the storage level specifically to minimum and
let the model choose this level in an optimal way, but end-of-horizon effects
will leave the reservoir nearly empty.

The objective of the seasonal model is to maximize profit from selling
power in the spot market. It is assumed that all power produced in a given
week is sold at the average price that week. It is also assumed that inflow
is equal to average inflow for that week. We use historical data for prices
obtained from NordPool and historical data for inflow from Agder Energi.
With known prices and inflow the model finds the optimal way of using the
water available. The profit is bounded by the reservoir balance constraints
and the dual values for these constraints will give the shadow price of water;
that is, the profit if one more unit of water was available at that time. The
dual variables hence gives the cost of using one more unit of water this week
compared to saving it for later weeks, and it is therefore the opportunity cost
of water. Water – or rain – is basically free, but it is limited by its availability,
and hence the opportunity cost of using water is the true resource cost of
hydropower generation.

The seasonal model used in this thesis is based on the same equations as
the bidding or production plan model presented earlier, so we do not repeat
the mathematical presentation. The most important differences are that the
time step is changed from hours to weeks, and that all power is sold to the
average price. Hence the model involves no bidding and no balancing market,
and can be roughly explained as finding the optimal production schedule on
a weekly basis when generations is constrained by efficiency curves, reser-
voir balances and generation capacities. The dual variables of the balance
constraints and the expected future profits are the outputs that are used to
generate the cuts, as in Equation (43) for one reservoir.

ν ≤ Pc − αc(Lc − l) (43)

Pc is the future profits for cut c, αc is the dual variable for the reservoir
in cut c, Lc is the storage level used in cut c and finally lr is the current
storage level. ν is the value of the water left in the reservoir at the end of
the current week.

The water value function gets even more complex with a cascaded river
system as Mandalvassdraget. The water value in one reservoir is dependent
on the amount of water in all the other reservoirs in the system. A cut is
therefore defined by a combination of reservoir levels, and the equation above
needs to be changed to
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ν ≤ Pc −
∑
r∈R

αrc(Lrc − lr) (44)

Where:
ν : Future profit [e]
Pc: Future income for cut c [e]
αrc: Dual values for reservoir r in cut c [e/kWh]
Lrc: Initial reservoir level for reservoir r in cut c [kWh]
lr: Reservoir level in reservoir r [m3]

Figure 13 illustrates the water value function for a system with two reser-
voirs. Mandalsvassdraget has seven reservoirs, which makes it difficult to
represent the water value function graphically.

Figure 13: Plot of water value function for two reservoirs.
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Table 2: Cuts used for water value approximation

Cut Name Production schedule Inflow
1 Maximum All turbines at maximum Average
2 Minimum All turbines at minimum Zero
3 Left Side West side at maximum Average
4 Right Side East side at maximum Average
5 Lower 3 lower stations at maximum Average
6 Upper Left 2 west stations at maximum Average
7 Upper Right 2 east stations at maximum Average
8 Best point All turbines at best-point Average
9 Large Inflow All turbines at minimum High

From Figure 13, we see that the relation between reservoir levels and
future profits is increasing, since higher initial reservoir levels give possibilities
for more profits in the long run. The relation is also concave, since the more
water available, the lower the average price will be. The water value is
approximated by this non-linear function. We need to generate cuts so that
the water value function in the neighborhood of the current reservoir level is
well represented, while the approximation could be coarser for reservoir levels
far from the current level to keep the number of cuts and hence the size of
the model as small as possible. The neighborhood where the water value
function needs to be well approximated is defined by the weekly production
capacity since this is the maximum change that can happen from the initial
reservoir level. For instance, if the maximum production capacity for one of
the reservoirs corresponds to releasing 200.000 m3 of water this week, than
this is the maximum the reservoir level can change. The reservoir level could
also increase with maximum weekly inflow and no generation.

To generate cuts, we could let the reservoir level in each reservoir vary
with for instance minimum generation, maximum generation, generation at
best point, average inflow, no inflow, large inflow or any combination of
these. Unfortunately, for a seven-reservoir system as Mandalsvassdraget,
the cut generation is severely affected by the curse of dimensionality since
all reservoirs change simultaneously. We therefore chose an approach were
the cuts are generated on the basis of some commonly occurring production
schedule due to the topology of the reservoir cascade. For instance we gen-
erate a cut consisting of all reservoirs producing at maximum capacity, or by
letting only the west or east side produce while the other side is turned off.
This gives us a manageable number of cuts as shown in Table 2.
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A question arises as to how many cuts are necessary to approximate
the water value function. Are the cuts listed in Table 2 adequate and by
what measure is this to be decided? As shown in the analysis of how many
cuts are necessary in Appendix C, the all nine different cuts result in a
nearly linear segment for all reservoirs. The difference in slope of the cuts
are marginal, and hence it would suffice to use just the most extreme cuts
in the optimization models since this creates a lower bound for the water
value. How many cuts are necessary depends on the cascade topology. Our
implementation of the seasonal model is deterministic and linear, so in terms
of computational time, one cut does not take long to execute by itself, but
each cut means an extra constraint in the stochastic mixed-integer bidding
model.

A drawback of our seasonal model is that it is deterministic, and that
the prices and inflow used are historical data for the actual development
of prices and inflow in 2012 and 2013. The actual development of price
and inflow over the seasonal horizon is shown in Figures 14 and 15. This
information was not available for the production schedulers at Agder Energi
at the time of operations, and hence our water values are not comparable
to the water values used by Agder Energi. The reservoirs may therefore
be managed diffrently than they would have been under actual conditions.
Because we do not face any unceratinty in prices or inflow in the long run
we have no reason to manage our reservoirs moderately in anticipation of
future adverse developments. Our water value is perfectly aligned with the
actual future development, and hence water is released in an optimal way
which only could have been found in hindsight. Remodelling of the seasonal
model in terms of incorporating uncertainty would be beyond the scope of
this text, but a small improvement could be made by using prices for forward
contracts instead of the historical price.
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Figure 14: Plot of the prices for the NO2 area from 12.Aug 2012 - 1.April
2013.

Figure 15: Plot of the local inflow from 12.Aug 2012 -1 april.2013.

56



9 Case study

The simulation procedure presented so far is implemented for Mandalsvass-
draget, a large Norwegian hydro system owned by Agder Energi. The system
contains twelve reservoirs and six power plants. When the system is modeled
some of the reservoirs, namely Storevatn, Kværnevatn, Langevatn, Stegil and
N̊avatn are accumulated into one big reservoir called N̊avatn. The reason for
doing this is that the reservoirs above N̊avatn are small and have a low degree
of regulation, which means that the water contained in these reservoirs will
end up in N̊avatn within a short period of time. Also, Agder Energi has plans
to build a bigger dam at N̊avatn, and demolish the dams of the overlaying
reservoirs (NVE, 2011). A simple representation of the topology of Man-
dalsvassdraget is found in Figure 7 in Section 5. The system also includes
other smaller river courses that have their outlets in Mandalsvassdraget and
these are included as inflow in the model.

All simulations are carried out over the same period of time and covers 46
days in late summer and early fall from 16. August 2012 til 30. September
2012. This period is chosen due to availability of data from Agder Energi.
The seasonal model used for all simulations has a time horizon of 34 weeks,
that is, until april 2013.

The stochastic bid optimization model is compared to a deterministic
model that uses the same bidding method as Agder Energi applies today.
The deterministic model is tested with two sets of input developed from dif-
ferent methods of price forecasting; one set of Agder Energi’s own forecast
and one set of forecasts obtained from SKM Market Predictor AS. In ad-
dition, a simulation were the stochastic bid model allows for block bids is
run, as well as a simulation of the stochastic model with only uncertainty
in prices. Finally, the stochastic model is implemented for the same river
cascade without time delays in the watercourses.

The test runs will first be presented on their own before a general com-
parison of the main results is done in Section 10. The stochastic model
simulation is presented in Section 9.1, the two deterministic runs in Section
9.2, the block bid simulation in Section 9.3, the stochastic model with only
price uncertainty in Section 9.4 and finally both the stochastic model and
the deterministic model simulation without time delays in Section 9.5.

9.1 Simulation with the stochastic bid optimization
model

The stochastic bid optimization model is presented in full in Section 5 and
the simulation procedure follows the flow chart of Section 4. The main output
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from the simulation is the obtained average price per MWh produced and
how the reservoirs are managed.

9.1.1 Results from the stochastic model

The average price per MWh is a measure of performance for the short-term
scheduling model and shows how improvements in modelling may increase
the price at which a producer can sell its power. The obtained average price
is the sum of all spot market revenues during the simulated period divided
by the total produced volume over the same period. Even though use of the
balancing market is penalized in the bid optimization model as explained in
Section 5, the producer may make a profit by participating in the balancing
market. When income from the market is calculated, real historical costs for
up regulation and profits from down regulation is included in the measure.

The obtained average price may not be an adequate measure of perfor-
mance, as it does not account for operational costs. The costs of hydropower
are related to start-ups of turbines and loss of water value. Hence another
measure of performance is the sum of total obtained profits over the simu-
lated period and the total value of the water left in the reservoirs. This is a
measure of the total value of water used in the simulation period and water
saved for later use. In this thesis, this is referred to as the total value.

Another measure of performance is defined here as odd starts, and is re-
lated to start-up costs. The hydropower producer incurs costs when turbines
are turned on or off. All start-ups have associated costs, but it is particu-
larly undesirable to have very frequent starts and stops of the turbines, as
this causes tear on the turbine, higher risk of damage and more attention
from the operator as explained in Section 5. We define a measure for these
unwanted starts as odd starts where we record the number of times a given
turbine is started and then stopped again after only one or two hours, and
then add these numbers for all turbines in the system. A low number of odd
starts is an indicator of a realistic and implementable production plan.

Finally, the managing of reservoir is important. The measure of total
value is a trade-off between using water now and saving it for later, since
releasing water and producing at high prices now means that less water will
be available for production later. Mandalsvassdraget as we model it here
has seven reservoirs, where N̊avatn and Juvatn are the largest and have the
highest degree of regulation. These reservoirs are used for storing water
over seasons, and we call this long-term reservoir management. The other
reservoirs have a small degree of regulation and can be emptied or filled within
the week and hence we refer to their management as short-term reservoir
management.
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The aforementioned measures of performance are the main emphasis of
the comparison between models in Section 10.

9.2 Simulation with the deterministic multi scenario
bid optimization model

To evaluate the stochastic model it is compared with results from a model
similar to what Agder Energi currently use for bid optimization. As men-
tioned in Section 1, Agder Energi, like most producers, use a deterministic
model with scenario analysis, where they run a deterministic model with dif-
ferent scenarios for price and linearize between the results from the different
scenarios to create a bid matrix. As Agder Energi we use 9 different price
scenarios; the forecasted price itself plus the forecasted price scaled by eight
different weights. The result from each deterministic run is a value for opti-
mal production given the deterministic price for each of the 24 hours of the
following operating day. With nine deterministic runs this results in a 24 ∗ 9
matrix that is used as a bid matrix to Nord Pool. The problem with this
matrix is that we cannot be certain that the bid volumes are increasing for
increasing price points, as is required by NordPool.

Producers commonly solve this problem using heuristics; solving the de-
terministic problem several times with restrictions of increasing bid volumes.
In our model we include a new restriction stating that the bid for a given
hour and price point has to be higher or equal to the bid given for all lower
price points. We start with the lowest price scenario, with no restriction
on the bids, and iterate over the increasing price scenarios taking the bids
from the previous price as input. This gives a bid matrix were legal bids are
secured.

9.2.1 Two sets of input

Another feature of the deterministic test run is that we test the deterministic
model for two types of input. First, we use the actual forecasted prices
developed and used by Agder Energi and weights of this as explained above.
In addition, we also use price forecasts from SKM and the same weighting of
this. The initial forecast is then the SKM scenario with average values for
consumption, nuclear power and transmission on the NorNed connection, see
Section 6.

The specific weights are found in Table 3, and are the same as currently
used by Agder Energi. This method of simply scaling the price profile may
not give very realistic results, since the rate of change may be dependent on
the overall price level. For instance, if the overall price level is moderate the
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Table 3: Weight factors used in making the deterministic scenarios
Scenario 1 2 3 4 5 6 7 8 9
Percent -17 -9 -6 -3 0 +3 +6 +9 +17

morning peak also rises only moderately, while if the overall level is high it
may happen that the morning peak spikes to very high levels. These and
similar effects will never be captured by the scaling method, because the
profile and hence the rate of change is the same for all scenarios. One could
solve this by letting the weights be dependent on price level or time of day. An
alternative would be to use deterministic scenarios with different profiles, but
as the current model cannot take crossing scenarios, the only valid alternative
is to use a stochastic model. How to better decide the weights is not tested
in this thesis, as we use the same weights for both runs of the deterministic
model.

The choice of having two sets of input to the deterministic model is made
for two reasons. First, we wanted deeper insight into current practice at
Agder Energi, and hence we use their forecasted prices. Second, for the
stochastic model, scenarios based on fundamental events were preferred over
purely statistically generated scenarios. Then, for fair comparison, the de-
terministic model also has to be tested with the fundamental scenarios as
input. The different sets of input scenarios are used to test if there is any
gain from switching price forecasting technique and if the stochastic model
is truly better or if it just has more accurate input.

9.2.2 Formulating the deterministic model

The deterministic simulation procedure follows the same simulation flow
chart presented in Section 4 for the stochastic case, but some algorithms
are unnecessary. The deterministic model does not require any scenario tree
as input, so all the programs related to the tree are replaced by algorithms
that construct suitable deterministic input. The other programs follow the
same simulation procedure.

The deterministic bid optimization model roughly follows the formula-
tion of the stochastic model, with the modifications presented below. The
objective function is given as

max
∑
h∈H

ρhyh + νEnd −
∑
h∈H

∑
t∈T

Stδtr (45)
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The objective function is the same as for the stochastic model, but with-
out the scenario indexes and without the penalty for using the balancing
market. The deterministic bid optimization model will never use the balanc-
ing market since it sees the future prices with certainty, and thus the model
will always give a solution were committed volume is the same as the pro-
duced volume. The production plan model, however, still has the possibility
to use the balancing market since this may be needed when the realized price
differs from the prices used in the bid model.

Since the deterministic model finds the optimal volume to produce given
a known market price there is no use for actual modeling of the bids. Hence,
Equations (5) and (6) are not necessary in the deterministic model. The
reservoir balance, and production and startup of turbines are the same as in
the stochastic model, and are not repeated here.

As mentioned the balancing market is not used in the deterministic model,
hence the sum of produced volume in all stations has to be equal to the
committed volume ∑

r∈R

whr − yh = 0, h ∈ H (46)

The new restriction used to secure increasing bids is given as

yjh ≥ Y j−1
h , h ∈ H (47)

Where the restriction bid matrix, Y j
h , in the first iteration is zero for all 24

hours, and is updated with the committed volume for each hour when the
deterministic model is run for j increasing price points.

9.2.3 Results from the deterministic model

For the deterministic test runs we use the same measures of performance
as explained for the stochastic model. That is, the long- and short-term
management of reservoirs, the obtained average price and the total value are
most important. In addition, we also look at odd starts.

9.3 Simulation with the stochastic model using block
bids

In addition to only using hourly bids we test how block bids affects the
results of the stochastic model. Block bids are bids that span over at least
two consecutive hours. A block bid is bid with an all-or-nothing condition,
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that is; a bid is to be accepted as a whole or not accepted at all. A block is
accepted if the average spot price in the hours of the block is lower than the
bidding price of the block. We assume that the producer is a price taker and
thus the spot price will not be affected by the amount bid in either hourly
nor block bids. Hence we avoid the problem regarding paradoxically rejected
blocks (Meeus, 2006). A paradoxically rejected block is when a given block
with block bid price lower then the spot price is rejected because accepting
the block would cause the spot price to decrease below the bid block price.
Such issues can occur in markets where the spot price depends on the bids
given, for instance if one of the market participants has market power.

Block bids are used in day-ahead market bidding as a way of solving
the problem of making decisions between hours that are dependent on each
other due to for instance time delay in the watercourses between reservoirs.
It is undesirable to have rapid changes in production even though the spot
price can change rapidly from hour to hour. One way of handling this is to
have a cost related to the start-up of new turbines, which has already been
implemented in the bid optimization model. Another embellishment is to
include the possibility of block bids as is done here. If the price peaks in one
of the hours in the block, the bid will not result in a peak in the produced
volume. Hence the use of block bids can give a more stable production plan
when the spot price has high peaks during the day. Another reason for using
blocks is that the criterion for acceptance of a block is related to the average
price over the hours of the block, which is less volatile then the price in one
single hour.

9.3.1 Formulating the stochastic model with block bids

When modeling block bids we include a new set of parameters B = {b1 . . . bB}
where bj is a given block covering some predetermined hours. Each block bid
is bid at bid price Pi, which are the same price points used for hourly bids.
For each price point, a volume bid is given for the block and if the average
price over the hours of the block is lower than the spot price in these hours,
the block volume is accepted.

yb =
∑

i∈I|Pi≤ρh∈b

xbi, i ∈ I, b ∈ B (48)

where yb is the block committed volume, xbi is the volume bidden for block
b at price point i and ρh∈b is the average spot price over the hours of block
b. As the equation above states, the committed volume from block bids is
the sum over the volumes bid at all price points where the bid price is lower
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than the average spot price. The volume bid at each price points is therefore
the incremental volume between two price points.

For all hours within a block, the bid volume from block bids for each hour
is equal to the sum of the volume bid for all blocks on lower price points.

xBlockh =
∑

i∈I,b∈B|h∈b

xbi, h ∈ H (49)

The total committed volume in each hour is the volume committed from
hourly bids and block bids in that hour

yTotalh = yh + yBlockh (50)

This total volume is sold to the spot market price and hence the income is∑
h∈H

ρhy
Total
h (51)

which is part of the objective function, Equation (18). The total committed
volume is also used in the equation for finding the balancing volumes, (21),
since total production has to cover all our commitments. In addition, for
every hour, the volume bid as hourly bids and the volume bid as block bids
cannot be more than the maximum production capacity

xBlockh + xhi ≤
∑
t∈T

WMax
t , h ∈ H (52)

In the stochastic model the block bid volume xbi, the committed volume from
block bids yBlockh and the average spot price ρh∈b are scenario-dependent, and
thus also has to be indexed with s ∈ S, where S is the set of all scenarios.

9.3.2 Including block bids in the study case

Before running the simulation with the possibility of block bids the set of
block needs to be determined. A block has to span over at least 3 hours, and
for a 24-hour horizon this means that there are 253 possible blocks. Because
each new block corresponds to a new variable in the bid optimization problem
the number of blocks has to be limited. We chose one block for each of the
following set of hours; morning, midday, afternoon, evening and night. Hence:

B = 5,

b1 = {1 . . . 6}, b2 = {7 . . . 10}, b3 = {11 . . . 14}, b4 = {15 . . . 18}, b5 = {19 . . . 24}
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The model formulation opens for crossing blocks, that is; one single hour
could be included in several blocks. This is not implemented at present. The
performance of the model would be improved if the optimization model also
chose the combination of blocks (Alnæs et al, 2013).

The block bid simulation procedure follows the exact same flow chart as
the stochastic model, see Section 4 with the only addition that the stochastic
bid optimization model opens for block bids as explained in Equations (48)
– (52).

9.3.3 Results from stochastic model with block bids

From the simulation with block bids we look at obtained average price, but
the main effort is concerned with the number of odd starts. The purpose
of block bids is to lock in a more stable production schedule, which means
less frequent starts and stops. In addition, we look at how much block bids
are used, and if this has any additional benefits in terms of obtained average
price or total value.

When block bids are allowed, a substantial part, about 65%, of the total
volume is committed as blocks. This is more than the about 20 % which is
usual in the industry and sometimes leaves us with committments that are
difficult to cover.

9.4 Simulation with the stochastic model having only
price uncertainty

The stochastic model presented so far face uncertainty in both prices and in-
flow. We want to investigate what effects the uncertainty in inflow actually
has, in particular when it comes to reservoir management. With uncertain
inflow, the reservoirs should be handled more moderately and not tend to-
wards the reservoir boundaries. If the reservoir level is high or maximum over
a long period of time there is increased risk of spillage. Spillage is equivalent
with loss and should therefore be limited. A stochastic representation of in-
flow may lead to a better reservoir management, and we want to investigate
this effect separate from the result when having uncertainty in both prices
and inflow. Thus, we implement a test run where the stochastic model only
has uncertain prices.

The simulation procedure follows the same flow chart as in Section 4
and the scenario tree structure is not altered other than the fact that every
scenario in the tree now has the same scenario for inflow. The probability of
the scenarios adds to one, and hence the one inflow realization is in principle
deterministic.
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9.4.1 Results from using only uncertain prices

From this simulation we particularly look at the short-term reservoir man-
agement and spillage. The obtained average price and the total value are
also used in the comparison.

9.5 Simulation without time delays

To investigate how the complexity of the river cascade affects the results,
the stochastic model is implemented for the same reservoir topology as Man-
dalsvassdraget, but without time delays in the watercourses between reser-
voirs. Time delay is the time it takes the water that is released from an
upstream reservoir to reach the downstream reservoir. Having time delays
means that hours are more strongly dependent on each other, because large
discharged volumes from upstream reservoirs in high priced hours may force
production in downstream reservoirs a few hours later when the price is lower.
An extreme case would be that the downstream reservoirs are flooded and
water is lost. These dependencies must be taken into consideration when the
bids and the following production allocation are determined.

Our hypothesis is that a stochastic model is even more applicable when
the reservoir topology is complex. With a complex river system, and hours
being more dependent on each other as explained above, it is crucial that
the bid decisions are flexible enough to account for possible adverse develop-
ments.

We run both the stochastic model with uncertain price and inflow and
the deterministic model with prices from SKM without time delays. This is
because these are the two runs that are most fairly compared since they use
the same input. Both simulation runs follows exactly the same program flow
as explained in Section 9.1 for the stochastic model and in Section 9.2 for the
deterministic model, with the only difference that the values for time delays
in the different water courses is set to zero.

9.5.1 Results without time delays

From this simulation run we compare the obtained average profit and the
total value for the stochastic and deterministic run without time delays.
Without time delays, it is expected that the difference between the stochastic
and the deterministic model is smaller since the system is less constrained.
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10 Results

In this section, the main results from the different simulations presented in
Setion 9 is compared to each other and explained.

10.1 Average price and total value

A measure of performance of the bid model is the obtained average price the
model achieves when bidding in the spot market. As explained in Section
3 the average price is found as the sum of total revenue from the spot and
balancing market divided by the total produced volume. Table 4 shows the
results for obtained average price for some of the simulation runs done in this
case study.

The main result is to compare the average price obtained by the stochastic
model with the average price obtained with the two runs of the deterministic
model. The improvement in average price over the entire simulation period
with the stochastic model is 0,69% and 4,39% compared to the deterministic
model with prices from SKM and Agder Energi, respectively. A comparison
of the obtained average profits each week can be found in appendix A.

A high average price indicates a good fit between the spot price and how
production is allocated; that is, production is allocated to the hours where
the price is at its highest. To get a good fit between volume produced and the
spot price profile the model needs to have a good representation the prices for
tomorrow and the days to come. Because the stochastic model has a more
accurate description of the future spot price than the deterministic model
using scenario analysis, it is as expected that the stochastic model achieves a
higher average price. Figures 16, 17 and 18 shows the fit between produced
volume and the spot price for the stochastic model and the deterministic
model with prices from both SKM and Agder Energi.

As we see in the figures, all three models give a reasonably good fit be-
tween the produced volume and the price, with the stochastic model slightly
better. Our simulations may give an unrealistically good fit between price
and production, due to the fact that our models use water values from a deter-
ministic seasonal model that is based on historical prices and inflow. Hence,
in principle we make decisions based on information that is not available at
the time of operations. However, all of the models use the same water value,
so the result of a better fit between prices and production by the stochastic
model remains valid. This means that the stochastic model better exploits
the high-price hours and release more water during these hours.
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Table 4: Results for the obtained average price per MWh for the different
models.

Stochastic Deterministic
SKM

Deterministic
AE

Block
bids

Deterministic
inflow

Euro 23.084 22.925 22.070 21.281 22.939
Percent -0.686 -4.391 -7.814 -0.627

Table 5: Results for the total value of production and water left in the
reservoirs.

Stochastic Deterministic
SKM

Deterministic
AE

Block
bids

Deterministic
inflow

Euro 14442784 14354771 14322764 13690314 14363333
Percent -0.61 -0.83 -5.21 -0.55

Figure 16: Plot of prices and production for the stochastic model.
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Figure 17: Plot of prices and production for the deterministic model with
prices from SKM.

Figure 18: Plot of prices and production for the deterministic model with
prices from Agder Energi.

69



Although the obtained average price over the simulation period is a com-
mon measure of model performance, the amount of water used and the value
of stored water needs to be taken into account. A model can achieve a very
high average price if it chooses to produce with full capacity in hours with
high price and not care about the value of water left in the reservoirs after
the simulation period. As mentioned in Section 9 the obtained average price
may not be an adequate measure of performance, as it does not account for
the operational costs and loss of water value. Hence we use another measure
of performance, namely the total value, which is the sum of total profits
obtained over the simulation period and the value of the water left in the
reservoirs at the end of the period. The total value for the different runs is
given in Table 5.

In Table 5 we see that the stochastic model has a total value that is 0,61%
higher than the deterministic model using prices from SKM and 0,83% higher
than the deterministic model using prices from Agder Energi. The stochastic
model uses more water than the deterministic models and hence has a lower
value of the water left in the reservoirs, but as a total achieves a higher total
value.

The run with the stochastic model with deterministic inflow achieves a
0,67% lower average price and a 0,55% lower total value than the stochastic
model. This is due to the deterministic description of inflow, which leads to
somewhat more spill than the model with stochastic inflow, as described in
Section 10.3. The model also achieves a lower total value since spill equals
loss of water value.

When we include the possibility of block bids in the stochastic model,
the result is a significant lower average price and total value. As mentioned
in Section 9.3, about 65% of our total produced volume is bid as block bids
when this is allowed. This locks in a stable production schedule, but leaves
little room for exploiting high price hours resulting in a lower average price.
The reason that such a large volume is bid as blocks is that the model with
block bid makes decisions that are too adapted to specific high probability
scenarios, which has adverse effects when this scenario does not occur.

10.2 Long-term reservoir management

How the reservoirs are managed is important for the validation of the ob-
tained average price and other results. The reservoirs should not reach un-
desirable or unrealistic levels, and for the reservoirs with a higher degree of
regulation the ability to store water over seasons should be maintained. For
Mandalsvassdraget, N̊avatn and Juvatn have the highest degrees of regula-
tion, and have enough capacity to cover several weeks of full production.

70



Figure 19: Plot of reservoir level at N̊avatn over the simulation period.

Figures 19 and 20 show how the level in N̊avatn and Juvatn develop
over the simulated weeks. From these reservoirs, quite large amounts of
water are drawn and this might not be realistic for the time of year as the
reservoirs should be quite full before the winter sets in. When our simulation
procedure ends in September, there may not come enough inflow to fill the
reservoirs before the winter season when inflow comes as snow and electricity
consumption and therefore also prices are at their highest. For reservoirs
with a high degree of regulation, we expect the reservoir levels to follow a
yearly profile with a filling season during summer and fall, and a drawdown
season during winter until the reservoirs are nearly empty before the spring
flood. The weekly water value given by the seasonal model should represent
the value of storing water over seasons; for instance, the water should be
more worth saving in the fall in expectation of higher prices and less inflow
in the winter months, than in the spring when large inflows are expected.

N̊avatn and Juvatn do not show the behaviour just explained following a
yearly profile. This is mainly due to the simplified seasonal model used in the
simulation, which give unrealistically good water values. The water values we
use are based on perfect information of future development over the seasonal
horizon, and this is information that is not available to Agder Energi or any
other hydropower producer at the time of production scheduling. A plot of
the real historical prices used in the seasonal model is shown is Figure 14
in Section 8 along with the historical weekly average inflow in Figure 15.
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Knowing inflow and prices, the seasonal model correctly allocates water to
the highest priced weeks trough the water value.

Figure 20: Plot of reservoir level at Juvatn over the simulation period.

The seasonal price has a high peak around week 20, and then decreases
towards spring. Taking this into account, as long as there is enough water to
cover full production in the peak weeks, it is actually better to release water
in the first few weeks of the seasonal horizon, since besides the dip around
week 5 prices are actually higher here, and this is the reason why N̊avatn
and Juvatn release so much of their capacity.

Agder Energi, however, could not have anticipated this rather unusual
development of the spot price, as the expectation is that the prices during
the winter months are higher than in the fall. The water value used by Agder
would have reflected this and the actual reservoir management would have
been different, and our results are therefore not directly comparable to the
real situation. For the purpose of comparing the stochastic and deterministic
models, the simplified seasonal model is deemed sufficient since the same
water values are used in both models.

Looking again at Figure 19, the resulting reservoir levels at N̊avatn for
the simulation using the stochastic model and the simulations using the two
sets of input for the deterministic model is shown. The level decreases at
first but stabilizes towards the end of the period. The realized spot price
is highest in the beginning, has a dip around week three and then increases
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again with more fluctuation than before the dip. The reservoir level at N̊avatn
is controlled by the water value and even though this may not be a realistic
development of the reservoir level at N̊avatn, it is the correct behaviour
according the water values used. The stochastic model always has the lowest
reservoir level, and hence releases more water. The reason for this is that the
stochastic model has more production at maximum capacity to exploit the
high price hours, as explained more thoroughly in Section 10.5.

Juvatn is drawn down to about half of its starting reservoir, which is
perhaps the most unrealistic of our results. Juvatn is the largest reservoir
in Mandalsvassdraget, and in reality it would be beneficial to store water
here in anticipation of higher prices during winter. This is not the case in
the simulation, and water is drawn from the reservoir as long as the price
is higher than the water value even though this means very low reservoir
levels. Juvatn exhibits the same general behaviour as N̊avatn, where the
level decreases at first and then stabilizes. The stochastic model often has
the lowest level, but not always as for N̊avatn.

10.3 Short-term reservoir management

The reservoirs with a smaller degree of regulation are managed differently
than the larger reservoirs. The smaller reservoirs can be filled and emptied
within the week, and does not have the capability to store large amounts
of water for longer periods of time without overflow. The water in these
reservoirs hence has to be produced within a shorter period of time to leave
room for new expected inflow.

For Mandalsvassdraget, Skjerkevatn, Lognavatn, Tungesjø and Mannfl̊avatn
all have small degrees of regulation, but we look specifically at Skjerkevatn
and Lognavatn as these are the reservoirs where the differences between mod-
elling the inflow as stochastic or deterministic are most evident. We look at
the results from the stochastic model with uncertainty in both prices and in-
flow and the stochastic model where inflow is modelled as deterministic. The
uncertainty in prices is kept for both models, since we here try to capture
the effect of the inflow uncertainty by itself. The pure deterministic model
and the differences regarding the bidding matrix are independent from the
reservoir management, and so the results for reservoir management from the
purely deterministic model will be comparable the stochastic model with
certain inflow.

Figure 21 show the reservoir levels for Skjerkevatn for the stochastic model
with uncertainty in prices and inflow and the stochastic model with determin-
istic inflow. There is a regular pattern where the reservoir level is decreased
when production is on during the day, and the rises again during night hours
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where the prices are lower. This regular pattern is evident for both models.
The interesting result is in the period where this pattern is broken, as is
the case around week three where the prices are lower and more fluctuating
than usual. In this period, production is stopped and the reservoir is at its
maximum level for a longer period of time. Higher levels mean a higher risk
of spillage, and as spillage is equivalent with loss, this behaviour should be
limited.

Figure 21: Plot of reservoir level at Skjerkevatn over the simulation period.

The model with uncertain inflow is more moderate in its reservoir man-
agement than the model with deterministic inflow, as can be seen in the figure
where the stochastic inflow model has lower reservoir levels than the deter-
ministic one towards the end of the period. Also, in Table 6, the number of
hours where the reservoir is at its maximum is presented, and the stochastic
inflow model has about 25% less hours at maximum, indicating a reservoir
management strategy that does not tend as much towards the boundaries of
the reservoir as the deterministic inflow model.

The same results are evident for Lognavatn, as can be seen in Figure 22
which shows the equivalent plot for the reservoir levels at Lognavatn over the
simulated period. Here, the reservoir level results are further apart than at
Skjerkevatn, and from Table 6, the stochastic inflow model has about 32 %
less hours at its maximum level than the model with deterministic inflow.
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Table 6: Results for the number of hours where the reservoir level is at
maximum.

Stochastic Deterministic
inflow

Skjerkevatn Hours 135 181
Percent 25%

Lognavatn Hours 112 165
Percent 32%

Table 7: Results for the number of hours and the amount of spill.
Stochastic Deterministic inflow

Skjerkevatn Hours 4 6
m3 3156 5039

Lognavatn Hours 8 12
m3 201338 354784

Figure 22: Plot of reservoir level at Lognavatn over the simulation period.
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Table 7 shows the actual number of hours with spill and the volume of
water lost at Skjerkevatn and Lognavatn for the simulated period. The results
from above are strengthened as spill actually occurs more often when inflow
is modelled as deterministic. Skjerkevatn has few incidents of spill and low
values, whereas Lognavatn spills rather frequently in comparison. As spill is
unwanted, we deem the stochastic representation of inflow to yield the best
reservoir management strategy since it avoids extreme reservoir levels to a
larger degree than the model with deterministic inflow.

10.4 Odd starts

A result that directly relates to the original problem received from Agder
Energi is the number of odd starts and stops of the turbines. To turn the
stations on or off for just a few hours at a time is an undesirable production
schedule due to the fact that frequent start and stops cause tear on turbines
and loss of water. Table 8 shows the number of odd starts of all nine turbines
over the whole simulation period.

The stochastic model has fewer odd starts and stops than both the de-
terministic model with SKM prices and with prices from Agder Energi. Odd
starts often come from sudden changes in the spot price over few hours.
When the stochastic model finds the bid matrix it takes into account scenar-
ios with different price profiles and hence different scenarios for where the
price peaks can occur. The deterministic model, on the other hand, sees the
same profile scaled equally in all hours, resulting in a bid matrix that is not
as robust to sudden changes in price. The simulation over seven weeks shows
a 17,03% improvement in odd starts when using the stochastic model versus
the deterministic model with prices from SKM, and a 30,41% improvement
versus the deterministic model with prices from Agder Energi. This is a
significant improvement of how the turbines are run, but if we include the
possibility of block bids in the stochastic model, we see an even more radical
change in the number of odd starts and stops.

When including the option of block bids in the stochastic model, a more
stable production plan may be achieved. If price peaks occur in hours with
block bids, the bid will not result in a peak in the produced volume. As
shown in Table 8 the amount of odd starts and stops improve drastically
when including block bids.

76



Table 8: Results for the total number of odd starts over the simulated period.
Stochastic Deterministic SKM Deterministic AE Block bids

Hours 151 182 217 33
Percent -17.03 -30.42 78.15

10.5 Best-point and maximum-point production

A result relating to both production and reservoir management is the per-
centage of time the turbines are run at best-point or maximum production,
as this can be an indicator of how well the model exploits high price hours.

Best-point production is production as the best possible efficiency for the
turbine, while maximum production is production at the maximum capacity.
The production curves used in the optimization models are linear approxima-
tions of concave efficiency functions for each turbine, as explained in Section
5.3. One of the breakpoints of the linear curves approximating the efficiency
curves is chosen to be the best-point production, and another one is chosen
to be the maximum. From this we can compare how often production is run
at best-point or maximum by noting which breakpoint is actually used.

For our data set, the production function for almost all turbines is nearly
linear, due to the actual turbines installed in Mandalsvassdraget. This means
that best-point production is less frequent, since in most cases there is really
no gain from scheduling production at this breakpoint compared to other
points. The loss of efficiency due to moving from best-point to maximum-
point is offset by the fact that more power can be produced and sold at a
high price.

Regardless, the different models show slightly different tendencies when
it comes to choosing breakpoints for production, as shown in Table 9 and
10 which show the percentage of time the turbines are run at best-point
production and maximum production, respectively.

The deterministic model, regardless of whether the prices from Agder
Energi or SKM are used, always has a larger percentage of the time where
the turbines are run at best-point than the stochastic model. This may stem
from the fact that the scenarios used for the different runs of the deterministic
model are a pure weighting of the same base price profile, and hence the price
always change at the same time and with the same rate for all scenarios. This
makes it possible to lock in a specific schedule where the turbines are steadily
run at best-point. In the hours where the price peaks, the turbines are turned
up to maximum or other turbines are turned on.

Overall, maximum production is far the most common, but the stochastic
model always has a higher percentage of time where the turbines are run at
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Table 9: Results for the number of hours where the turbines produce at
best-point.

Stochastic Deterministic
SKM

Deterministic
AE

Skjerkevatn 0.72 2.81 1.54
Juvatn 8.24 14.13 14.76
Lognavatn 2.54 4.35 1.27
Ørevatn 1 2.08 10.05 5.43
Ørevatn 2 1.00 2.99 1.81
Tungesjø 1 2.17 7.70 6.70
Tungesjø 2 2.99 6.97 3.08
Mannfl̊avatn 1 8.70 8.70 7.25
Mannfl̊avatn 2 4.80 5.80 5.07

Table 10: Results for the number of hours where the turbines produce at
maximum capacity.

Stochastic Deterministic
SKM

Deterministic
AE

Skjerkevatn 62.77 46.74 54.17
Juvatn 78.17 68.30 69.02
Lognavatn 74.46 6.21 73.82
Ørevatn 1 56.16 44.20 51.45
Ørevatn 2 57.88 51.09 56.79
Tungesjø 1 82.25 66.58 74.73
Tungesjø 2 81.43 67.39 78.62
Mannfl̊avatn 1 49.09 37.23 44.20
Mannfl̊avatn 2 51.36 39.04 44.47
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maximum. The price scenarios used in the stochastic model has a different
nature than the deterministic scenarios; that is, they can be crossing, and
the prices do not peak in the same hours for all of them, and not with
same rate. The stochastic model hence have a better understanding of how
the price may realize, and exploits this by scheduling maximum production
in the hours where the price is expected to be high. This may lead to a
production schedule with more variation in production volumes, and it is
more difficult to lock in a steady schedule. The larger variation in prices
leads to a more extreme unit commitment schedule where the volume may
change quite rapidly to exploit high prices.

The use of the balancing market is connected to the choice of production
at best-point or maximum-point by the fact that if production is scheduled
below maximum, it is easier and cheaper to regulate the produced volume
by changing the level of the producers own generation resources, instead of
buying up regulation. Hence, with a tendency to production below maximum
capacity, the deterministic model uses less regulating power than expected.
The balancing volume is still larger for the deterministic model, and both up
and down regulation are used. This indicates that the price scenarios used
in the deterministic model not always captures the actual realization of the
spot price.

The stochastic model use almost only up regulation, which follows from
the fact that if the committed volume is the maximum volume, and it is not
possible to produce this volume with own resources, then the missing volume
has to be bought in the regulating market. Since the stochastic model more
often produce at maximum, it is clear that this effect is more present than
in the deterministic model.

10.6 Simulation without time delays

The simulation without time delays in the watercourses between reservoirs re-
sults in a higher obtained average price and total value for both the stochastic
and the deterministic model. Without time delays both the bid optimization
and the production allocation model are less constrained when finding the
optimal solution. The models without time delay can move water from an
upstream to a downstream reservoir within the hour, resulting in a more flex-
ible system. The obtained average price using the stochastic model for bid
optimization increased with 0,16 % to 23,12 e/MWh when no time delays
are present. The deterministic model’s obtained average price increased from
22,93 e/MWh to 22,98 e/MWh; an improvement of 0,22 %. As seen in Table
11 and 12, the difference in both average price and total value between the
stochastic and deterministic model decrease when the time delay is removed
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Table 11: Results for the obtained average price per MWh for the stochastic
and deterministic models with and without time delays.

Stochastic Deterministic
SKM

Stochastic
without delays

Deterministic
without delays

Euro 23.08 22.93 23.12 22.98
Percent -0.69 -0.61

Table 12: Results for the total value for the stochastic and deterministic
models with and without time delays.

Stochastic Deterministic
SKM

Stochastic
without delays

Deterministic
without delays

Euro 14442784 14354771 14467069 14384291
Percent -0.61 -0.57

from the formulation. For instance, the difference in obtained average profit
between the stochastic and deterministic model is 0.67 % with time delays,
and 0.61 % without. Our results show that the potential improvement by
using the stochastic model is larger when the system is more complex.
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11 Conclusion

11.1 General results

In this thesis, a stochastic model for bid optimization and short-term produc-
tion scheduling has been implemented and tested trough a simulation pro-
cedure run over a longer period of time for a complex real-life river system.
The results show that the stochastic model gives significant improvements
in terms of higher obtained average price and higher total value than an
equivalent deterministic model.

Our results also indicate that the reservoir management strategy is im-
proved, as the stochastic model obtains a 0.6 % higher total value than the
deterministic model. This is due to the fact that more water is scheduled
for production now when prices are higher and not saved for later. This
leaves lower reservoir levels at the end of the simulated period. Hence the
stochastic model has a slight shift towards producing now instead of saving
the water for later in comparison with the deterministic strategy. The bal-
ance between producing now and saving water for later is controlled by the
water value and the results may have been different if other water values
were used. As the two models tested in this thesis see the same water values,
and the stochastic model has higher total value, our results indicate that the
implementation of a stochastic bid optimization model may give hydropower
producers a potential for increased profits.

In addition, the unit commitment results in a steadier schedule when
using the stochastic model. In this thesis, this is measured by the number of
odd starts, which is decreased by 17 % when using the stochastic model. This
number may be further reduced by including the possibility of block bids in
the stochastic model, but for our case this as adverse effects on the obtained
average price and the total value. This is due to an unusual large volume
committed as blocks, and hence a rather inflexible production schedule.

The stochastic model also results in a more moderate reservoir manage-
ment strategy where the risk of spillage is reduced. The stochastic model
has a less percentage of time where the reservoir level is at its maximum,
and hence leaves room for flexibility. The number of hours with maximum
reservoir level is reduced by about 20 – 30 % depending on the reservoir.

Having uncertainty in both market prices and inflow means a more real-
istic representation of the actual conditions when the bid decision is to be
made. The output from the model is therefore more reliable than the output
from a deterministic model, which requires more analysis from the operator.
The stochastic model gives a weighted decision that accounts for a larger
range of possible future events than the deterministic model, and hence the
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solution is better suited for both good and bad outcomes, whereas the deter-
ministic model is optimally adapted to only one outcome. The deterministic
model may perform adequately in most cases, but over time we see that it is
outperformed by the stochastic model.

The fact that the use of the stochastic model is tested over a longer time
period gives validity to the results. Still, some moderation is necessary since
the procedure is not tested for various times of year or other reservoir systems.
Hydropower production is very dependent on time of year and the amount
of available water. The time period used in this thesis was characterized
by large amounts of inflow and high prices. The results could have been
different depending on various conditions related to the power market or the
meteorological situation.

It is also a strength that the model is implemented for a complex real-life
system, and that the degree of physical detail is not compromised in the
modeling. Our results show that the potential for inceased profits by using
a stochastic model is larger when the system is more complex. In addition,
the stochastic model use inputs that are currently available to the actors
in the industry, namely price scenarios developed by market analysts or the
power company itself. The algorithm is also fast enough to be used on a
daily basis and is tailored to be included in the scheduling hierarchy used
by most producers today. This makes the shift to a stochastic model easier
since only small changes in the routines for bidding and price forecasting is
required.

A last result evident from our case study is that there may be potential
for increased profits by analyzing and improving the price forecasting and
scenario generation method used with the deterministic model. This would
be a smaller step than implementing a new stochastic bid optimization tool,
and may lead to both a better understanding of uncertain parameters and
increased profits.

11.2 Suggestions for further studies

The single largest drawback of the simulation procedure developed in this
thesis is the seasonal model that uses historical values for price and inflow.
This means that the water value used by the bid optimization model is too
good; that is, the available water is scheduled in an optimal way that only
could have been found in hindsight and not at the time of operations. Agder
Energi should test a stochastic model over time using actual water values
which would lead to a reservoir management strategy that is directly com-
parable to the real situation, and hence the other results would also be more
comparable.
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The simulation procedure should also be tested for other data sets, other
reservoir systems or other times of the year. High reservoir levels and large
inflows characterize the time of year when the simulation in this thesis is
performed. To get a good comparison between the stochastic and the de-
terministic model the simulation should cover a longer period of time with
more variation in regards to the availability of water or market prices. Agder
Energi should hence start collecting data on price forecasts, bid volumes
and water values in order to make future studies with more realistic results
possible.
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A Statistical test of the weekly obtained av-

erage profits

All bid strategies have a variance that is dependent on what the price actu-
ally turns out to be and other specific conditions at the time of operations.
This makes the comparison between the deterministic and stochastic model
more difficult, since it is hard to judge if the results show an actual signifi-
cant difference or if they are just due to the specific situation depending on
reservoir levels, price, water values and inflow. This should be judged by
statistical methods, but with only seven weeks of observations, the data set
is so small that only some statistical methods are appropriate.

We have used the paired sample Wilconxon signed rank test (Wilconxon,
1945) to test if the difference in profits between the stochastic and the deter-
ministic model each week is significantly different from each other. This is
done for the stochastic model and the deterministic model with input from
SKM since these are the runs that are most fairly compared. The calculations
are shown in Tables 13 and 14.

The test statistic W is calculated as the sum of the values of the sign times
the rank of the observed difference and has to be larger than a critical W to
reject the null hypothesis of the differences being equal. The test statistic
for our observations is 26, and the critical value for a 0.05 significance level
is 22, so the conclusion is that the stochastic and the deterministic model
have significant different obtained profits each week.

W =
∑
N

Sign ∗Rank = 26 (53)

W ≥ WCritical = 22 (54)

The number of observations is small, and we would be more confident if
the result were obtained from a larger data set. To do this the simulation
has to be run over a longer time period, and also for different times of the
year and other reservoir systems as suggested in suggestions for further work
in Section 11.2.
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Table 13: Test for difference in obtained average profits.
Week Stochastic

Average Price
Deterministic
Average Price

Difference Sign Absolute
value

1 25.59 24.89 0.71 1 0.71
2 26.55 25.84 0.71 1 0.71
3 25.76 24.34 1.41 1 1.41
4 18.75 19.14 -0.39 -1 0.39
5 17.60 16.93 0.68 1 0.68
6 17.96 17.50 0.46 1 0.46
7 25.67 24.45 1.22 1 1.22

Table 14: Test for difference in obtained average profits - sorted table.
Week Difference Sign Absolute

value
Rank Sign ∗ Rank

6 -0.39 -1 0.39 1 -1
4 0.46 1 0.46 2 2
5 0.68 1 0.68 3 3
2 0.71 1 0.71 4 4
1 0.71 1 0.71 5 5
7 1.22 1 1.22 6 6
3 1.41 1 1.41 7 7
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B Analysis of the choice of price points

To analyze the effect different sets of price points have on the results of the
bid optimization model the simulation is run for five different sets of price
points, see Table 15. The analysis is done for an eleven-day period, optimizing
the bid volume for different price points, and allocating production after the
spot price is realized. The sets represent different strategies for bidding in
the spot market. The difference in obtained revenue from the spot market
is shown in Table 16 and the spot price realization for the first 11 days in
Table 17.

In the first run quite large intervals between the price points is chosen,
with a higher density in the area between 20 e/MWh and 30 e/MWh,
which is the area where most of the realized prices occur. This is the base
run with which the results from the runs with other sets of price points will
be compared.

The second run has a high density of price points in the small area between
20 e/MWh and 23 e/MWh, which represents a strategy with more price
points in the area where it is expected that the optimal volume differs the
most with small changes in price. Throughout the entire simulation period
of seven weeks the low water values results in high or maximum production if
the price exceeds the mid-twenties and it is therefore expected that optimal
produced volume will differ the most in the area just below.

The third run has a poor choice of price point since the area with high
density of price points is chosen for very high prices, so that the optimal
volume will be maximum capacity for all bid points. Interpolation between
the high points is unnecessary; they all result in the same committed volume.
It is therefore the line segment between 0 e/MWh and 30 e/MWh that
decide the results of this run. We chose to include this run to prove that even
for poorly chosen price points, the obtained revenue from the spot market
differs by at most 0,25 %. As expected it is the day with the lowest average
price that differs the most form run 1, because this day the weight of price
point 0 e/MWh have a greater influence on the committed volume.

Run four is a linear line between price point 1 and 7 with equal intervals
between the points. This run results in small differences between obtained
revenue in the spot market from run 1. Since bid point 33,33 e/MWh almost
always results in maximum production it is the linearization on the line
segment between price points 2 and 3 that results in the change of committed
volume from run 1.

The last run has a big leap from price point one to two, with a 25 e/MWh
difference. In hours with spot price lower than 25, the slope of the line
segment is higher than the slope between line segments under 25 e/MWh in
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Table 15: Set of price points for the different runs of the stochastic model
Price Point 1 2 3 4 5 6 7
Run 1 0 15.00 20.00 23.00 27.00 30.00 100.00
Run 2 0 20.00 21.00 22.00 23.00 30.00 100.00
Run 3 0 30.00 40.00 41.00 42.00 43.00 100.00
Run 4 0 16.67 33.33 50.00 66.67 83.33 100.00
Run 5 0 25.00 28.75 32.50 36.25 40.00 100.00

Table 16: Difference in revenue for the different sets of price points
Run 1 2 3 4 5
Day 1 0,0000 -0,0022 0,2535 0,0045 0,0125
Day 2 0,0000 0,0000 0,1535 0,0465 0,0113
Day 3 0,0000 0,0000 0,1535 0,0456 0,0078
Day 4 0,0000 0,0000 0,1500 0,0156 0,0036
Day 5 0,0000 0,0000 0,1523 0,0427 0,0000
Day 6 0,0000 0,0000 0,1500 0,0025 0,0089
Day 7 0,0000 0,0000 0,1505 0,0264 0,0065
Day 8 0,0000 0,0000 0,1504 0,0017 0,0000
Day 9 0,0000 -0,0016 0,1502 0,0136 0,0000
Day 10 0,0000 0,0000 0,1505 0,0123 0,0000
Day 11 0,0000 0,0000 0,1545 0,0125 0,0019

run 1. The committed volume will therefore differ some for spot prices below
25 e/MWh. But the line segments between bid point 2 and 4 in run 5 has a
slope almost equal to the slope of the line segment between bid point 4 to 6
in run 1, hence for spot prices over 25 e/MWh run 1 and 5 gives quite equal
results.

This analysis proves that the committed volume from the spot market is
quite stable if the price points are chosen to cover the possible area for the
spot price and has a higher density of price points in the area where it is most
likely that variation in spot prices results in large changes in the committed
volume.
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Table 17: The spot market price in each hour of the first 11 days of the
simulation period.
Day 1 2 3 4 5 6 7 8 9 10 11
Hour 1 23.87 24.77 25.53 25.69 25.14 25.56 24.97 26.22 25.89 25.56 25.88
Hour 2 23.60 24.50 25.21 25.28 24.89 24.96 24.86 26.02 25.73 25.57 25.67
Hour 3 23.43 24.41 25.03 24.99 24.83 24.87 24.77 25.84 25.64 25.36 25.06
Hour 4 23.39 24.37 24.98 24.93 24.81 24.85 24.74 25.79 25.61 25.31 23.47
Hour 5 23.40 24.37 24.96 24.82 24.86 24.87 24.78 25.85 25.60 25.30 22.78
Hour 6 23.53 24.45 24.94 24.80 24.95 24.97 24.81 26.02 25.73 25.23 22.67
Hour 7 23.99 24.81 24.99 24.75 25.24 25.30 25.18 26.63 26.68 25.37 23.19
Hour 8 24.15 24.84 25.04 24.74 25.51 26.24 25.55 26.55 26.67 25.43 24.22
Hour 9 24.31 25.18 25.23 24.82 26.89 26.51 25.91 26.83 27.26 25.64 25.11
Hour 10 24.42 25.36 25.77 24.92 27.81 27.73 26.04 26.87 27.16 25.82 25.60
Hour 11 24.40 25.24 25.98 25.13 27.91 26.81 25.98 26.85 27.47 25.94 25.85
Hour 12 24.37 25.15 26.00 25.25 26.92 26.81 25.85 26.83 26.67 25.97 25.93
Hour 13 24.34 25.00 25.98 25.22 26.87 26.84 26.08 26.96 26.69 25.87 25.94
Hour 14 24.31 24.86 25.92 25.11 28.64 27.02 26.07 27.13 26.47 25.76 25.93
Hour 15 24.28 24.53 25.79 24.98 28.50 26.97 25.75 26.90 26.46 25.70 25.82
Hour 16 24.19 24.33 25.57 24.91 27.72 26.47 25.45 26.50 25.98 25.73 25.50
Hour 17 24.12 24.69 25.53 24.94 28.14 26.02 25.48 26.41 26.39 25.72 25.31
Hour 18 24.02 24.22 25.83 24.95 26.99 25.76 25.38 26.23 26.16 25.80 25.92
Hour 19 23.93 24.94 25.96 25.04 26.09 26.66 25.22 26.30 26.41 25.85 26.07
Hour 20 23.97 25.12 25.96 25.21 26.00 26.03 25.18 26.50 26.21 25.86 26.29
Hour 21 24.03 25.01 25.93 25.50 26.27 26.08 25.14 26.63 26.36 25.94 26.57
Hour 22 24.27 25.30 25.93 25.49 26.29 26.02 25.13 25.67 26.44 25.92 26.71
Hour 23 24.21 25.43 25.89 25.48 25.93 25.98 25.14 25.20 26.54 25.82 26.53
Hour 24 23.67 24.93 25.42 25.11 25.24 25.34 24.78 25.41 25.91 25.48 25.69
Average 24.00 24.87 25.55 25.09 26.35 25.99 24.34 25.47 26.34 25.6 25.32
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C Analysis of the number of cuts used to ap-

proximate the water value

To analyze the cuts used to constrain the water value in the bid optimization
and production allocation model, the cuts are plotted for the two largest
reservoirs in the system, N̊avatn and Juvatn. The smaller reservoirs can be
filled or emptied within the week and hence the water has the same marginal
value within the same week, since this is the time step of the seasonal model.
Plot of the cuts for N̊avatn and Juvatn with 25 % of the reservoir capacity
are shown in Figure 23 and 24, respectively. We choose to present the cuts
with low reservoir levels because it is in these situations that the marginal
value of water changes the most depending on the cut.

As seen in the plots, the cuts represent linear segments. For Juvatn, Cut
1 is restricting the water value for low reservoir levels, but for higher reservoir
levels Cut 3 is the active restriction. No other cuts are active, and hence in
this situation it would have been sufficient with two cuts. For N̊avatn, Cut 1
is the active cut for all reservoir levels. Cut 1 is made based in the extreme
event of maximum production and no inflow throughout the week.

Generally, for the reservoirs in Mandalsvassdraget and all combinations
of start reservoirs, the value of water is restricted by a nearly linear segment.
The marginal value of water in the reservoirs, or equivalently the dual variable
of the reservoir balance in the seasonal model, differs depending on the cut,
as seen in Table 18. The change of the dual variables is not enough to make
more than two cuts necessary to restrict the water value. It would therefore
be sufficient to include only the most extreme cuts from the seasonal model
in the bid optimizing or production allocation for Mandalsvassdraget.
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Figure 23: Plot of the cuts for the water value at N̊avatn.

Figure 24: Plot of the cuts ofr the water value at Juvatn.
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Table 18: Values of the dual variables for N̊avatn and Juvatn for the different
cuts

Unit N̊avatn Juvatn
Cut 1 e /m3 0.0365 0.0245
Cut 2 e /m3 0.0360 0.0238
Cut 3 e /m3 0.0365 0.0244
Cut 4 e /m3 0.0360 0.0244
Cut 5 e /m3 0.0360 0.0239
Cut 6 e /m3 0.0365 0.0239
Cut 7 e /m3 0.0360 0.0240
Cut 8 e /m3 0.0365 0.0245
Cut 9 e /m3 0.0360 0.0238
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