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Abstract

Aluminium smelters are important cornerstone businesses that are exposed to a wide range
of risk factors, and have been under strong pressure the last few years due to oversupply and
low aluminium prices in the market. Under unfavourable market conditions temporary or
permanent shutdowns of a smelter may help limit losses, and a valuation of a smelter should
incorporate this optionality.

In this thesis we model such an aluminium smelter with operational flexibility and anal-
yse to what extent, and under which conditions this operational flexibility is most value
adding. We apply a modification of the least squares Monte Carlo method to solve the com-
bined optimal control and valuation problem numerically. The aluminium price, electricity
prices and relevant exchange rates are treated as correlated mean reverting stochastic vari-
ables. Since the model is based on cash flows from a generic smelter, it is straightforward to
evaluate the profitability and draw general conclusions based on the results. Especially the
choice of electricity sourcing is an important aspect as it is a major input cost, and choos-
ing the right type of electricity contracts can strongly impact the profitability as well as the
probability of having to shut down the smelter over its lifetime.

We found that adding temporary shutdown options when already having permanent shut-
down options is value adding, and of highest value for expected aluminium mean prices
where permanent shutdown options go from being in the money to out of the money. The
level of this region was found to be dependent on the length of pre-purchased electricity
contracts. For long-term contracts, the region is centered around higher expected mean lev-
els of the aluminium price than for short-term contracts. However, the value added was
found to be higher for short-term contracts.

Finally, we found that having full operational flexibility compared to no flexibility is
most value adding for long-term electricity contracts. The slope for the decrease in proba-
bilities of permanent shutdowns with respect to an increasing mean of the aluminium price
was found to be steeper for short-term contracts. Correspondingly, we found that the range
of mean aluminium prices for which permanent shutdowns are likely is wider for the long-
term contracts.
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Chapter 1

Introduction

Aluminium production is a classic industrial process, in which a smelter transforms alu-
mina and carbon into aluminium through a very power-intensive electrolysis process. A
convenient way to look at the profitability of a smelter is thus to regard it as a spread option
between the volatile aluminium and power prices. Power is a dominating production cost,
and reliable access to power is critical (Øye and Sørlie, 2011). Access to energy is therefore
an important aspect in deciding where to locate an aluminium smelter. Smelters are thus
typically constructed close to reliable and cheap power sources, and often take the role of
being cornerstone businesses in their respective districts due to labour demands. This intro-
duces a whole set of political aspects when the aluminium producer considers and decides
on future strategies as e.g. secure workplaces. A proper valuation of an aluminium smelter
to be used as basis for decision-making is therefore of high importance both in business and
social terms. Especially an evaluation of the risk of permanent or temporary shutdowns is
of high importance, as the consequences of such outcomes are undesirable from a socioeco-
nomic point of view. However, including all considerations, such as political issues, in the
valuation of a smelter would make the model highly subjective, and in many cases it would
be very hard to derive realistic estimations of the monetary impacts from such considera-
tions. The socioeconomic aspect of running an aluminium smelter is thus considered to be
a motivation for precise valuations rather than part of the valuations. A static approach to
valuating a smelter does not encapsulate the value of operational flexibilities that may be
available to management, such as temporary shutdown options. Using the static approach
thus produces less precise results of the value of a smelter. An alternative approach is to
use real options valuation which encapsulates the full optionality, produces a more precise
value estimate and derives an optimal operating policy. Being able to properly evaluate the
option to temporarily shut down operations for a few years may in fact reduce the risk of
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a permanent shutdown, which is the worst case outcome in local communities. Since the
value of the smelter may appear to be higher when using a real options approach, rather
than a static NPV approach, the risk of all shutdown types may be reduced by providing
management with a more accurate decision basis.

The literature on real options is extensive. Dixit and Pindyck (1994) were the first au-
thors to publish a textbook devoted to real options theory. They characterized the investment
decision as partially or completely irreversible, subjective to uncertainty over future awards
and time dependent. As opposed to the static net present value approach, Dixit and Pindyck
argued that the real options approach to valuate an investment decision can capture the value
of being able to delay investments, which comes from gaining more information about the
market conditions before investing. The investment opportunity is thus not regarded as
a now-or-never opportunity, but as a call option with strike price equal to the investment
cost and maturity equal to how long you may postpone the investment. Another important
characteristic of the investment decision described by Dixit and Pindyck (1994), is that the
option to close down a non-profitable plant could be value adding, which lowers the in-
vestment threshold, and should therefore be included in the capital budgeting process. This
option has the characteristics of a put option with strike price equal to the saved costs and a
potential salvage value.

An extension to the single option approach is discussed by Kulatilaka and Trigeorgis
(1994), which is relevant to the smelter problem in terms of including the optionality to
switch between multiple operating modes. The authors propose a general method to valuate
a project with options to switch between alternative technologies or operating modes. The
optionality can thus be considered as a strip of call options on switching operating modes,
with a strike prices equal to the switching cost. The valuation problem studied has one
stochastic continuous state variable, and discrete-time approximations (binomial lattices or
Markov chains) are used in order to define points in time where switching decisions are
undertaken. This method will however be computationally inefficient when modelling an
aluminium smelter, where we have a multivariate problem to be solved, due to an exponen-
tial increase in possible states.

In fact, most capital budgeting decisions are dependent on multiple state variables, stud-
ied by Boyle (1977). Boyle develops a Monte Carlo simulation method to obtain numerical
solutions to option valuation problems where the expected payoff of the underlying asset de-
pends on multiple state variables. Cortazar and Schwartz (1998) later use the Monte Carlo
approach in a real option study to evaluate an oil field investment opportunity. They define a
two-factor stochastic model and use the Monte Carlo method to determine the optimal time
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of investment, that is the time of investment that maximises today’s value of the payoff from
the investment opportunity. Even though the Monte Carlo approach allows us to describe
the payoff of an underlying asset dependent on multiple stochastic variables, the approach
becomes biased in a real option case where the underlying asset has the switching optional-
ity discussed by Kulatilaka and Trigeorgis (1994). This is because the original Monte Carlo
approach introduced by Boyle (1977) is a forward-looking technique.

Brekke and Øksendal (1994) redefine the optimal switching problem as a generalized
impulse control problem in order to give a mathematical proof that optimal entry and exit
strategies exist. Under the assumption that the state of the system is a stochastic process,
they optimize the timing of when to open and close a multi-activity project, called an im-
pulse control, given the cost of opening, operating and closing the activities. The optimal
impulse control is then used to derive the value of the option to switch operating modes.

The least squares Monte Carlo (LSM) approach is a modification of the Monte Carlo
method, first introduced by Carriere (1996), and later used by Tsitsiklis and Roy (2001)
and Longstaff and Schwartz (2001). This method applies the concept of Monte Carlo, but
uses least squares regression to determine the continuation value at each time step. The
regression is used to approximate the continuation value of keeping the option alive for one
more time step, thus penalising the unrealistic assumption that one knows what scenario has
materialised. Values of the state variables at the current time step are used as explanatory
variables in the regression, and the continuation values of the next time step are regressed on
these. Gamba (2003) later extends this model by applying the LSM method in real options
problems. Hence, he defines an extension to Longstaff and Schwartz (2001) by studying
investment projects with embedded switching options using the optimal impulse control
introduced by Brekke and Øksendal (1994). The valuation technique used in this thesis
is based on the method introduced in Gamba (2003), since it allows us to use backwards
dynamic programming to solve the switching option problem. The method also allows us
to describe the payoff of the underlying asset using multiple correlated stochastic variables,
which makes it suitable for the aluminium smelter case.

Bastian-Pinto et al. (2013) is another paper of high relevance. They study the effects
of operational flexibility for the specific case of an aluminium smelter. Their approach is to
use a Monte Carlo method to estimate the value of a smelter with flexible choices regarding
power sourcing, and with embedded temporary shutdown and restart options. The paper
includes a thorough description on how to model the spot electricity and aluminium price
using a mean reverting process with jumps.

The problem studied in this thesis is similar to the one in Bastian-Pinto et al. (2013),
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but with some important differences. Rather than a bundle of European options, we use
embedded American options to valuate the aluminium smelter. The options, referred to as
switching options, are valuated by applying the LSM approach, using backwards dynamic
programming and multivariate regressions to estimate the continuation values at each time
step. The latter is an important extension to Bastian-Pinto et al. (2013) where they assume
perfect foresight.

The dynamics of the options regarding operational flexibility are defined by consulting
with industry sources, thus switching costs and time constraints are carefully chosen in order
to realistically estimate the value of a generic smelter. As opposed to Bastian-Pinto et al.
(2013) we also include a third unique state in which the smelter can shut down permanently,
thus differentiating between temporarily and permanently shut down. We will evaluate the
market conditions for which the temporary shutdown options are value adding. For power
sourcing, we allow flexibility in contract lengths and currencies, and discuss how the choice
of power sourcing affects the probability for shutdowns as well as risk profile of the smelter
under different market conditions. Hence, we believe that the insight offered in this paper
will not only be helpful in terms of smelter valuation, but can also give valuable input
regarding risk management in the aluminium industry. Finally, the paper offers an up-to-
date overview of the aluminium value chain, and important market characteristics for readers
not familiar with the aluminium market.

The paper is organized as follows. Chapter 2 will give an introduction to the value
chain in aluminium production and the aluminium market, and introduce some valuation
techniques known to be applied by industry players. In chapter 3 we develop a model to
valuate the smelter with switching options by using the LSM method, while in chapter 4 we
evaluate the results of solving the latter and analyse the probability of smelter shutdowns
in varying market conditions. We conclude in chapter 5 by discussing our approach and
highlighting possible extensions and improvements for further work.



Chapter 2

Market and Institutional Context

This chapter starts by giving a brief introduction to the value chain of aluminium producers.
Section 2.2 describes a general mathematical model for the cash flows of a generic smelter,
while a more specific model for the case of own power sourcing is formulated in 2.3. Fur-
ther on, in sections 2.4, 2.5 and 2.6 different closure triggers are evaluated based on NPV
analysis of cash flows that are adjusted by applying the respective closure triggers in dif-
ferent scenarios. The analysed closure triggers are known to be applied by current industry
players. An average of the NPV calculated in each scenario is used as proxy for the true
value of the smelter when comparing different closure triggers.

2.1 Aluminium producer value chain

Following is up-to-date business insight for readers not familiar with the aluminium mar-
ket. Three different inputs are required for aluminium production; alumina, electricity and
carbon. Alumina is the direct base for aluminium and is refined from bauxite, a mineral
that contains about 15-25% aluminium. It is mostly found several meters underground in
a belt around the equator (Norsk Hydro, 2012). After recovery of bauxite the mineral is
transported to crushing or washing plants before it is processed into aluminium oxide, com-
monly known as alumina. Bauxite extraction requires a large logistics network as well as
high investment and operating costs. Mining of bauxite has become multinational and large
aluminium producers tend towards complete vertical integration. Aluminium producers
often have their own mining facilities or engage in joint ownerships with mining compa-
nies (Garen et al., 2009). Bauxite is heterogeneous in terms of chemical characteristics
based on its origin. In addition bauxite is bulky in nature. Therefore, alumina refineries
are often constructed close to and dedicated to specific areas of bauxite mining. The coun-
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tries with the largest production of bauxite are Australia (30%), China (18%), Brazil (13%)
and Indonesia (12%) (U.S. Geological Survey, 2013). However, in January 2014 Indonesia
banned bauxite exports in order to motivate investments in domestic aluminium smelters.
This could potentially have some impact on the global market for bauxite, as China is a net
importer of bauxite, mainly from Indonesia. Thus global prices of bauxite could strengthen
somewhat due to lower supply (Norsk Hydro, 2014).

Carbon accounts for about 13% of the total production cost of primary aluminium (Garen
et al., 2009), and is used for the cathodes and anodes in the electrolysis step of aluminium
production described later in this section. It is common for aluminium producers to own
carbon electrode plants close to the smelter. The usage of carbon electrodes does lead to
carbon emissions and certain countries have introduced a tax on carbon emissions, giving
local producers a competitive disadvantage.

Electrical power stands on average for one third of the production cost of primary alu-
minium, but may be a source of competitive advantage for some producers. The average
cost per mt produced aluminium can vary from $400-1,000 between industry players (Garen
et al., 2009). Aluminium producers have two options for sourcing of electricity; they can en-
ter into long-term commitments with electricity producers or invest in power plants. Often,
industry players with long-term commitments to electricity producers pay a lower price than
players with short-term commitments. Despite investing in power plants being considered
a capital-intensive strategy, several European aluminium producers own power generating
assets since electricity is a dominating cost. In addition, to soften the effect of electricity
price spikes aluminium producers also commonly trade in energy derivatives.

The production process of aluminium goes as follows. In a metal plant alumina is pro-
cessed into aluminium using the Hall-Héroult process. In this process alumina is dissolved
into molten cryolite and undergoes an electrolytic reduction to obtain aluminium. The Hall-
Héroult process is extremely energy intensive, as a direct current of 150 to 250 kA is neces-
sary to obtain the electrolytic reduction (Harton, 2003). The process takes place in a bath of
hot cryolite (around 960◦C), hence access to reliable power sources is a necessity to ensure
a high temperature in the bath at all times (Dubal Aluminium, 2014).
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Fig. 2.1 Illustration of the Hall-Héroult process (Dubal Aluminium, 2014)

After the molten aluminium is extracted from the smelter, the aluminium is placed in
large furnaces before being casted into other products. In the furnaces, the pure aluminium
holds a temperature higher than 700◦C while it is alloyed by combining it with other ele-
ments to further strengthen the material. The metal is then casted into different products
specified by the end user. This final step is done in a casthouse.

Producing aluminium is considered continuous, meaning that once the smelter plant is
operating, it must continue to operate at all times in order to maintain a high temperature
in the electrolytic baths. Short interruptions in the production process could potentially
damage and reduce the lifetime of the pots due to cooling cracks in the cathode (Øye and
Sørlie, 2011). Aluminium producers do, however, have the optionality to shut down the
smelter for longer time periods in cases of unfavourable market conditions, but restarting
the smelter entails high costs.

In recent years, the aluminium market has been experiencing low prices due to oversup-
ply. As a consequence, high-cost producers have been forced to shut down production. As
optimism returns to the market the producers speculate at which price level it is economi-
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cally viable to restart production again. Thus, developing a composite model for valuating
a smelter with operational flexibility is of high importance to evaluate the risk of shutting
down or starting up aluminium smelters.

A final remark is that we in this thesis always will refer to the unit USD per mt produced
aluminium, and valuate the smelter on this basis rather than based on an aggregate amount of
USD derived from total amount of installed capacity. We thus disregard economies of scale.
To see why this is a reasonable approach it is important to understand the rationale behind
the geographic location of an aluminium smelter, which is mainly motivated by variations
in energy prices and not the prices of other inputs as alumina or bauxite (Nappi, 2013). This
is despite the fact that alumina and electricity account for approximately equal fractions of
the total production costs. The reason for this is that the cost of electricity varies much more
between different geographical locations than the cost of other inputs, as e.g alumina for
which the cost is approximately at the same level regardless of geographic location (Center
for European Policy Studies and Economisti Associati, 2013). In fact, according to Nappi
(2013) and the latter, energy cost is the major determinant of international differences in alu-
minium production costs. In addition, electricity together with other costs as alumina and
carbon are approximately linearly related to the amount of aluminium produced. Thus, hav-
ing optimised the location of the smelter to minimise energy costs, the remaining economies
of scale are mainly related to the initial capital investment since indirect variable costs only
constitute a small fraction of total costs ( Center for European Policy Studies and Economisti
Associati (2013)). Having already invested, the depreciated capital cost is of less interest
when comparing relative cost positions. One would rather look at the direct costs, which by
the arguments above do not exhibit strong economies of scale. Modelling the smelter on a
basis of USD per mt produced aluminium is thus relevant.

2.2 General cash flows of a smelter

In order to study the problem of an aluminium smelter with permanent and temporary shut-
down options, a description of the smelter cash flows under different scenarios must be
derived. The following section introduces such a description based on the cash flows of a
generic aluminium smelter located in Norway, with cash flows stated in terms of USD/mt
aluminium produced. Note that the parameters and variables presented in this section are
limited to the most important ones, while additional parameters and variables can be found
in appendix A.

In reality smelters are assumed to have a very long lifetime, but for simplification of
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the calculations we model the smelter within a time frame of 20 years. After 20 years we
assume that the smelter continues operating forever, but estimate the value of this as a per-
petuity of the cash flow received in the 20th year. Further on we assume that the investment
has already been made and that the operating mode for the following year is decided at the
beginning of each year. Scenarios for the stochastic correlated input variables are generated
in order to create an outcome space to be used for the numerical solution. Further on, as
electricity is an important input factor and a dominant operating cost, we assume manage-
ment has several choices when deciding on the type of contracts for electricity sourcing.
Long-term contracts may offer hedging opportunities against spikes in the spot electric-
ity price, thus reducing the risk of closing the aluminium smelter when electricity prices are
high. Locking in electricity prices may, on the other hand, increase the risk of shutting down
if aluminium prices drop. To evaluate how this choice may affect the value of a smelter as
well as shutdown probabilities, we assume management can choose between pre-purchased
electricity contracts of different lengths and in different currencies. More specifically the
contracts in this problem can have lengths of 1 year, 5 years, 10 years or 20 years, and may
be in the currencies NOK, EUR or USD. The dynamics of such contracts are that for the
5-, 10- and 20-year contracts the aluminium producer agrees to buy a certain amount of
power for a fixed price over the defined time period. This fixed price is the long-term power
forward price. Base currency for power is assumed to be EUR/MWh so for contracts in
NOK or USD the producer must pay the EUR/MWh base price multiplied with the relevant
exchange rate that materialises. When considering contracts with length of one year the
producer buys power in the spot market and only the EUR currency is considered, as this is
an approximate of the spot price that is stated in EUR/MWh. In addition we consider the
case in which the smelter owns a power asset from which it sources electricity. This choice
of electricity sourcing will be referred to as contract length Own sourcing and is in currency
NOK.

Thus we have the following sets:

N = time [1 : T ]

S = scenarios [1 : M]

L = contract length [1,5,10,20, Own sourcing]

C = contract currency [NOK,EUR,USD]

The letters t, s, l, c will be used to index time, scenario, contract length and contract
currency respectively.

We assume here that the smelter is exposed to two different electricity prices, three
different exchange rates and finally the aluminium price. All of the above prices are assumed
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to follow some time series model calibrated to historical data (refer to section 3.5). We
define the following variables to be used in the model:

ls,t = spot aluminium price, London Metal Exchange, at time t in scenario s

y1
s,t = electricity price 1-year (EUR/MWh) at time t in scenario s [Price for a 1-year elec-

tricity forward contract, used as proxy for the spot electricity price]

y3
s,t = electricity price 3-year (EUR/MWh) at time t in scenario s [Price for a 3-year elec-

tricity forward contract, used as proxy for the long-term electricity price]

xN
s,t = exchange rate USD/NOK at time t in scenario s

xE
s,t = exchange rate USD/EUR at time t in scenario s

The aluminium price is based on the official price from the London Metal Exchange (LME)
and we will later use LME as an abbreviation for aluminium price. The aluminium variable
will be explicitly included in the simplified cash flow description, while the other variables
will only be implicitly included through help variables in order to avoid making the descrip-
tion too complex to interpret. These help variables are:

os,t = net operational expenses from electrolysis and LME casthouse at time t

ps,t,l,c = power contract price (USD/mt produced aluminium) at time t in scenario s

with contract length l and in currency c

taxs,t,l,c = tax paid (USD/mt produced aluminium) at time t in scenario s with contract

length l and in currency c

qs,t,l,c = remaining exposure (USD/mt production) from power contracts at time t, in

scenario s, with contract length l and in currency c

Finally, the following parameters are used:

Raw = raw materials (USD/mt prod. aluminium)

ρ = weighted average cost of capital (%)

Otemp = yearly operating cost for a temporarily shut down smelter (USD/mt prod. alu-

minium)

Kdirect perm = cost of switching mode from operating to permanently shut down (USD/mt prod.

aluminium)

Ktemp = cost of switching mode from operating to temporarily shut down (USD/mt prod.

aluminium)

K perm = cost of switching mode from temporarily shut down to permanently shut down

(USD/mt prod. aluminium)

Koperate = cost of switching mode from temporarily shut down to operating (USD/mt prod.

aluminium)
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Having introduced the above notation, we can now state the expression for the unadjusted
cash flow (USD/mt) from a smelter at time t in scenario s, under power contract length l and
with power contract in currency c, FCFunad justed

s,t,l,c , as:

lt,s

−Raw

− ps,t,l,c

−os,t

= PretaxCFs,t,l,c

− taxs,t,l,c

= FCFunadjusted
s,t,l,c

This FCF will be used in upcoming subsections in order to valuate the smelter under differ-
ent closure triggers assumptions.

2.3 Cash flows with power sourcing

Electricity for the electrolysis process is, as earlier described, one of the main sources of
production costs for an aluminium producer. It is therefore of interest to study the case
where the aluminium producer owns a power asset from which electricity is sourced. The
cash flows related to such power assets are highly industry specific and will therefore not
be discussed in detail in this thesis. However, we will elaborate on a regulatory requirement
for hydropower assets located in Norway.

By regulation, a hydropower asset located in Norway is required to sell a fixed share of
its production to the municipality for a fixed price that is lower than the spot price (Norwe-
gian Water Resources and Energy Directorate, 2001). Due to this, for each MWh produced
by the power asset to supply the smelter, a certain percentage of the production must be sold
externally to a regulated price. If the power asset only produces the amount of MWh that is
required for the smelter, a way to fulfil its regulatory requirements is to buy the remaining
required amount of electricity in the spot market and sell it for the regulated price. The
owner of the power asset thus incurs a cost to meet the regulation, and this cost must be
included in the contract price for the smelter. Refer to appendix A for the extensive model
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with all details on how to derive the smelter cash flows in the case of own power sourcing.

2.4 Value of smelter without optionality

When there is no option to permanently shut down the smelter it is straightforward to calcu-
late the NPV of the smelter in each scenario, as the cash flows are just the unadjusted free
cash flows calculated in section 2.2 .

NPV noclosure
s,l,c =

20
∑

t=1

FCFunad justed
s,t,l,c
(1+ρ)t ∀s,∀l,∀c

The estimated NPV of the smelter is then just the average of the NPV across all scenarios.

2.5 Value of smelter with cumulative margins trigger

Cumulative margins trigger is an approach that investigates whether unadjusted free cash
flows have been negative the two previous years and will be negative the next two years in
the current scenario. In other words, if the smelter experiences negative cash flows in four
consecutive years during a given scenario, the smelter is permanently shut down and the
cash flow of the upcoming year is not received. In other words, if the following condition is
true, the smelter shuts down in year τ:

t+1

∏
τ=t−2

1{FCFτ<0} = 1 (2.1)

Upon permanent shutdown the company incurs a shutdown cost, and is further on as-
sumed to sell remaining exposure from power contracts to the spot price at the time of the
shutdown.1 The cash flow in the closure year is then adjusted to include the sale of remain-
ing power exposure and the shutdown cost that is incurred. Having calculated the adjusted
free cash flows, FCFad justed

s,t,l,c , it is straightforward to calculate the NPV of the smelter in
each scenario:

1In the case of power sourcing the remaining exposure is the NPV at time t of all future after-tax stand-
alone cash flows from the power asset. Refer to appendix A for calculations of remaining exposure in the case
of own power sourcing
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NPV c.tigger
s,l,c =

20
∑

t=1

FCFad j.c.trigger
s,t,l,c
(1+ρ)t ∀s,∀l,∀c

The estimated NPV of the smelter is then just the average of the NPV across all scenarios.

2.6 Perfect foresight - permanent shutdown

Perfect foresight is an unrealistic closure trigger, since it assumes that one knows exactly
how the current scenario will materialise and hence at any point in time can calculate the
NPV of continuing operations. Comparing the NPV with the costs of shutting down (direct
shutdown cost and remaining exposure) at any point in time, one makes the decision whether
to continue operations or shut down. In the case of own power sourcing the NPV is only
compared with the direct shutdown costs. In other words, the remaining exposure can be
considered to be zero. For the perfect foresight method the smelter shuts down permanently
if the following condition holds:

NPV table
s,t−1,l,c < Kdirect perm +qs,t,l,c ∀t,∀s,∀l,∀c (2.2)

Where we calculate the rolling NPV at each time step:

NPV table
s,t,l,c =

20

∑
i=t

FCFs,i,l,c

(1+ρ)i ∀t,∀s,∀l,∀c (2.3)

Once again it is straightforward to calculate the NPV of the smelter in each scenario know-
ing the adjusted free cash flows under the perfect foresight approach:

NPV per f . f oresight
s,l,c =

20
∑

t=1

FCFad j.per f . f oresight
s,t,l,c
(1+ρ)t ∀s,∀l,∀c

The estimated NPV of the smelter is then again the average of the NPV across all scenarios.
Note that with the procedure above the value of the smelter is calculated in a forward-
looking manner, hence it does not represent the true upper bound to the smelter value. Cal-
culating this true upper bound would require a backwards dynamic-programming approach.
In chapter 4 all references to perfect foresight refer to the true upper bound derived through
backwards dynamic programming.



Chapter 3

Least Squares Monte Carlo Option
Valuation

3.1 Least squares Monte Carlo option valuation

In the previous chapter, different closure triggers were applied and the free cash flows were
adjusted according to what state of operation the respective closure trigger implied. There
are several drawbacks with these methods, whereas the most significant drawback is that
one assumes that one knows exactly which scenario has materialised. This is a bias inde-
pendent of whether looking two years ahead or until the end of the period. In reality one
has no way of knowing which scenario has materialised. Therefore one has to stick with
expectations based on the current values of fluctuating variables as e.g. exchange rates. A
more sophisticated way to evaluate a smelter with shutdown options is through a real op-
tions approach. As the complexity of the problem prevents us from deriving an analytical
solution, a numerical method must be applied. One such method is the least squares Monte
Carlo (LSM) method which we will apply in this thesis. In short terms, the procedure in
the LSM approach is to use dynamic programming working backwards from t=T to t=0,
and for each time step compare the continuation value from operating the smelter with the
value of exercising the option to shut down. The key idea of the LSM approach is to esti-
mate the continuation value by regressing the discounted continuation value of the next time
step on the current state of the stochastic variables. This means that for each time step the
approximation of the continuation value at time t is the expected continuation value given
the values of the stochastic variables at time t. A clear advantage of using this technique
is that one avoids perfect foresight, and given a sufficiently high number of scenarios, the
approximated value is a fair expectation as it is based on an exhaustive sample space. In
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addition, one is able to capture the full value of the available operational flexibility in the
valuation of the smelter.

3.2 Operational flexibility in terms of permanent and tem-
porary shutdown options

In chapter 2 the only operational flexibility available to management was the option to close
down operations permanently. When applying the LSM method, a more realistic case may
be considered in which management has full flexibility regarding operating modes. A way
to look at this combined optionality is to note that the smelter has three different operating
modes; fully operating, temporarily shut down or permanently shut down. This implies that
in order to find the NPV of the smelter with operational flexibility one must also determine
the optimal operating mode at any given time. A technique for solving this combined prob-
lem, commonly referred to as a problem of switching options, is presented in Brekke and
Øksendal (1994), where two interdependent problems are solved; the Valuation Problem

and the Impulse control problem. An extension of the former paper is to apply the find-
ings in a least squares Monte Carlo setting. This is done by Gamba (2003), whose method
and notation will be used as framework for the solution of the problem studied in this the-
sis. Problems with a similar structure have also been discussed by Mazières and Boogert
(2013), who study the use of LSM valuation for gas storage. In this section, a general model
is presented before a model specific to our problem is formulated.

Let there be three operating modes, where z denotes the general operating mode and
Z = {operating, temporarily shut down, permanently shut down}. The different operating
modes are described in table 3.1 and an example operating plan is illustrated in figure 3.1.

Operating mode Description
Fully operating Smelter is operating and owners receive the cash flows from sale of aluminium.

Temporarily shut down Smelter is currently not operating. Owners receive the proceeds from sale of
pre-purchased electricity and may have to pay some operating expenses. The
work force has been laid-off and production may restart if favourable market
conditions occur.

Permanently shut down Owners have closed the smelter permanently and there is no optionality to restart
operations. After paying the closure cost the smelter will not generate any future
cash flows, but upon closure the owners receive today’s value of the remaining
amount of pre-purchased electricity.

Table 3.1 Explanation of operating modes
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Fig. 3.1 Example of optimal operating policy in a given scenario

Figure 3.1 illustrates how shutdown and restart decisions are undertaken given the level
of free cash flow from the aluminium smelter. Since the problem is multivariate with com-
plex interdependencies, we cannot define one single cash flow threshold level for each op-
erational decision, as in a single factor model.

Let Yt(t,Xt ,Zt) denote the state of the system at time t. An impulse control is defined by
w = {τ1,τ2, . . . ,τk;ζ1,ζ2, . . . ,ζk} where τn ≤ T denotes an optimal switching time and ζn

is the associated operating mode that is switched to at t = τn, n+1 ≤ k, both based on the
current system state Yt(t,Xt ,Zt). Note that k is the number of resulting switching times where
k ≤ T and e.g. k = 5 means that there are five points in time where the operating mode is
switched. We can now let W denote the set of optimal controls for the problem. If an impulse

control w ∈W is applied at Yt then we get that Yt =Y (w)
t =

 t

Xt

ζn

 ∀ τn ≤ t ≤ τn+1. The cost

of switching from z to ζ at time t and given state x is denoted by K(t,x,z,ζ ) and is assumed
to be strictly positive for every z ̸= ζ . In addition, the cheapest way to switch from z to ζ

is to do it directly and not through another mode ζ ′. That is, the cheapest way to go from
operating to permanently shut down at time t is to do a permanent shutdown directly, and
not stepwise through a temporary shutdown. This implies that Kz,ζ (tn,Xtn)≤ Kz,ζ ′ (tn,Xtn)+

K
ζ
′
,ζ (tn,Xtn). To take into consideration irreversible states, such as permanently shut down,

we just set the switching cost from this state arbitrarily large. Let Π(y) be the cash flow paid
out at y(t,x,z). The optimal switching problem given state y= (t,x,z) is now the one finding
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w such that the expected discounted total cash flow net switching costs is maximised. This
is formulated as:

F(y) = F(t,x,z) = max
w∈W

{
E∗

y

[ T∫
i=t

e−ρ(i−t)
Π(Y (w)

i )di−
∞

∑
n=1

e−ρ(τn−t)K(Y w
τn−

,ζn)

]}
(3.1)

We have that F(Y ) is the value function at y with the corresponding Bellman equation for-
mulated as:

F(y) = F(t,x,z) = max
τ,ζτ

{
E∗

y

[ τ∫
i=t

e−ρ(i−t)
Π(Yi)di−e−ρ(τ−t)(K(τ−,Xτ ,z,ζτ)−F(Yτ)

)]}
(3.2)

We can now tackle the optimal switching problem. Given that we are in operating mode
z, the net payoff of a transition to mode h can be written as Π

′
z,h(tn,Xtn) =

△tΠh(tn,Xtn)
1+ρ

−
Kz,h(tn,Xtn) where Πh(tn,Xtn) is the payoff from mode h and Kz,h(tn,Xtn) the cost of switch-
ing from mode z to h, e.g. cost of switching from operating to temporarily shut down
(note that discrete discounting is used in our problem as opposed to continuous discounting
in Gamba (2003)). Using the latter and expressing the optimal stopping time problem in
discrete time, equation (3.2) can be rewritten to:

Fz(tn,Xtn) = max
h

{
Π

′
h,z(tn,Xtn)+

1
(1+ρ)△t ×E∗

tn[Fh(tn+1,Xtn+1)]

}
(3.3)

The intuition of equation (3.3) is that it is optimal to switch from mode z to mode h, z ̸= h,
at (tn,Xtn) if the expected continuation value of mode h plus immediate payoff from mode h

exceeds the expected continuation value from staying in mode z plus the immediate payoff
from mode z. By defining Φh(tn,Xtn) =

1
(1+ρ)△t ×E∗

tn[Fh(tn+1,Xtn+1)] to be the continuation
value of mode h, an explicit decision rule for switching mode along a path ω is formulated
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to:

If
(

Π
′
z,z(tn,Xtn(ω))+Φz(tn,Xtn(ω))< max

h ̸=z

{
Π

′
h,z(tn,Xtn(ω))+Φh(tn,Xtn(ω))

})
Then

τ = tn and ζ (τ,ω) = argmax
h

{
Π

′
h,z(tn,Xtn(ω))+Φh(tn,Xtn(ω))

}
Otherwise

Switching time not updated

It is at this point that the least squares Monte Carlo method is applied. Since we want to
avoid perfect foresight in the valuation, the continuation value, Φz(tn,Xtn(ω)), of the smelter
along each path is estimated by using the values of a set of explanatory variables known at
each point in time. There are five stochastic variables in the smelter problem described
in this thesis, all which are implicitly included in the help variable FCFs,t . Further on the
remaining time of a power contract δt,l is an important input variable when determining
whether to switch operating modes, as it explicitly defines the magnitude of the smelter’s
obligations from pre-purchased electricity contracts that must be fulfilled even in the case
of a permanent shutdown. The latter together with the electricity spot price y1

s,t are used to
determine the value of these obligations, later referred to as remaining exposure.1 Finally,
as pre-purchased electricity contracts are based on the 3-year electricity price y3

s,t , quoted
in terms of euros, we also include this and the USD/EUR exchange rate xE

s,t as explanatory
variables.

Based on the above discussion we therefore choose FCFs,t , δt,l , y1
s,t , y3

s,t and xE
s,t as ex-

planatory variables in a multivariate linear regression performed at each time step to approx-
imate the continuation value of a given operating mode at time t. Choosing the functional
form of the regression is also a challenge as the function should resemble the shape of the
value function. Rodrigues and Armada (2006), Carmona and Ludkovski (2010), Areal et al.
(2008), Longstaff and Schwartz (2001) and Moreno and Navas (2003) argue that regressing
on simple powers of the explanatory variables and cross products provide fairly accurate
numerical results compared to other forms of the explanatory variables. This is, among
other, because the least squares Monte Carlo algorithm only depends on the fitted value of
the regression, and not on the correlation between the independent variables. An additional

1Note that if the electricity spot price is high the remaining exposure may have a positive sign meaning that
the smelter can sell pre-purchased electricity with a net gain. Evidently, such considerations are of relevance
in the decision-making process.
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argument is that that the method is fairly robust to the choice of basis functions, as using
different polynomials of any degree yield highly similar results due to the fact that these
polynomials are linear combinations of each other. Hence, we perform the regression on
powers of the chosen explanatory variables, up to and including degree 2, with cross prod-
ucts. This yields the following regression equation for each type of contract currency, c, and
contract length, l over a number of scenarios:

Φs,t = β
t
1×FCFs,t +β

t
2×δt,l +β

t
3×y1

s,t +β
t
4×y3

s,t +β
t
5×xE

s,t +β
t
6×FCF2

s,t +β
t
7×δ

2
t,l

+β
t
8 × (y1

s,t)
2 +β

t
9(y

3
s,t)

2 +β
t
10(x

E
s,t)

2 +β
t
11 ×FCF3

s,t +β
t
12 ×δ

3
t,l +β

t
13 × (y1

s,t)
3

+β
t
14(y

3
s,t)

3 +β
t
15(x

E
s,t)

3 +β
t
16 ×FCFs,t ×δt,l +β

t
17 × y1

s,t ×δt,l +β
t
18 ×FCFs,t × y1

s,t

+β
t
19 ×FCFs,t × y3

s,t +β
t
20 ×FCFs,t × xE

s,t +β
t
21 ×δt,l × y3

s,t +β
t
22 ×δt,l × xE

s,t

+β
t
23 × y1

s,t × y3
s,t +β

t
24 × y1

s,t × xE
s,t +β

t
25 × y3

s,t × xE
s,t

(3.4)

Since this is a multivariate regression with cross products, we need to calculate a large
number of coefficients for each approximation. A more sophisticated way to do this could
be to perform the regression using radial basis functions, a procedure described by Mazières
and Boogert (2013), but this is left as a proposed further extension.

To initiate the LSM method, we define realistic continuation values for the last time step
when t = T . In this thesis we use a relationship between the weighted average cost of capital
and the cash flow in year T as an approximation of the continuation value when all options
regarding operational flexibilities expire:

Φz(T,XT ) =
Π

′
z,z(T,XT (ω))

ρ
,∀z (3.5)

Having defined the continuation values at the last time step, we can now use backwards
dynamic programming and multivariate regression to estimate the value of the aluminium
smelter at each time step from t = T to t = 0. The discounted expected continuation values
of keeping the smelter operating or temporarily shut down at time t in scenario s are easily
calculated by β tβ t

β tRt,s, where Rt,s is the matrix (25x1) with the values of the explanatory
variables at time t in scenario s and β tβ t

β t is the vector of the regression coefficients at time
t.2 To ensure that we do not get a biased approximation of the continuation values, we

2We actually do two regressions at each time step. The first regression is conducted in order to approximate
the continuation value of an operating smelter while the second regression is conducted in order to approximate
the continuation value of a temporarily shut down smelter.
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generate the coefficients matrix, β tβ t
β t , by regressing on a different set of simulated values for

the explanatory variables. This means that we generate two sets of scenarios; an in-sample
set of M’ scenarios to generate the coefficient matrix via conducting multivariate regressions
and an out-of-sample set with M scenarios for the explanatory variables used to estimate the
continuation values. Hence, the Rt,s matrix will be the explanatory variables at time t in
scenario s from the out-of-sample set of scenarios. The expected continuation values of
keeping the smelter operating or temporarily shut down are then calculated by multiplying
the coefficients generated from the in-sample set with the values of the explanatory variables
from the out-of-sample set.

Fig. 3.2 Illustration of approximating the continuation value with the LSM method

By repeating the above procedure at every time step and for every scenario we can derive
an optimal operating policy for the smelter. The continuation value, Φz(tn,Xtn(ω)), for any
mode h is approximated by performing the multivariate regression defined by equation (3.4).
Let Az(t, j,ω) be the optimal cash flow at time j given that you are in mode z at time t along
the path ω , (t,ω). The recursive equation is then defined as:
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Az(t, j,ω) =

{ifτ(ω) ̸= t,
{

Az(t +1, j,ω) for all j = t +1, . . .
Π

′
z,z(t,Xt(ω)) for j = t

ifτ(ω) = t,
{

Aζ (t +1, j,ω) for all j = t +1, . . .
Π

′

z,ζ (t,Xt(ω)) for j = t

(3.6)

Given that you are now at (tn,Xtn) the continuation value of mode h is:

Φh(tn,Xtn) = E∗
tn

[
N

∑
i=n+1

1
(1+ρ)ti−tn

×A(tn, ti, ·)

]
The optimal policy found by the LSM method can be applied to estimate the smelter value.
For each scenario, the value of the smelter is the discounted cash flows received by operating
the smelter under the derived policy. Note that when calculating the estimated smelter
value actual cash flows are used, as opposed to the approximated continuation values used
when deriving the operational policy. After estimating the NPV of the smelter under each
scenario, the smelter value is then approximated by averaging over all scenarios.

The recursive equation (3.6) is not directly intuitive, therefore a brief qualitative expla-
nation is provided given that you are now in the state (t,Xt ,z). The main idea is to calculate
the value of future payoffs net switching costs given an optimal policy at all future dates
conditional on being in the current state. If t is not a stopping time and j = t, you get the
payoff of being in mode z. When j > t, you get the optimal payoff according to (3.6), but
with t increased by one time step. If t is a stopping time, you switch mode and get the
immediate payoff from switching and the optimal payoff according to (3.6), only with t in-
creased by one time step and with mode switched from z to ζ . In fact, the recursion works in
a backward fashion, as you move down to the deepest recursion level before working your
way back up.

We can now finish the formulation of a model for the smelter problem studied in this
thesis by replacing parts of the equations above with problem specific variables. Let z1

denote an operating smelter, z2 a temporarily shut down smelter and z3 a permanently shut
down smelter.
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Fig. 3.3 Illustration of LSM method for smelter with operational flexibility

The payoffs, Πz (USD/mt), when holding contract length l and contract type c fixed for
the different operating modes in a given scenario s are:

Π(t,Xt ,z1) = FCFs,t

Π(t,Xt ,z2) =−Otemp +(M× y1
s,t − ps,t,l,c)×d, where d = 0 if t mod l = 0,

d = 1 otherwise

Π(t,Xt ,z3) = 0

Π
′
z1,z1(tn,Xtn(ω)) = FCFs,t

Π
′
z1,z2(tn,Xtn(ω)) =−(Ktemp +Otemp)+(M× y1

s,t − ps,t,l,c)×d where d = 0 if

t mod l = 0,

d=1 otherwise

Π
′
z1,z3(tn,Xtn(ω)) =−Kdirect perm +qs,t,l,c

Π
′
z2,z3(tn,Xtn(ω)) =−K perm +qs,t,l,c

Π
′
z2,z1(tn,Xtn(ω)) =−Koperate +FCFs,t

Π
′
z3,z2(tn,Xtn(ω)) =−∞ and Π

′
z3,z1(tn,Xtn(ω)) =−∞

In addition to the payoffs defined above, we also limit the maximum number of time steps
for which it is possible to stay temporarily shut down without shutting down permanently or
reopening the smelter. As the smelter stays temporarily shut down, the cost of reactivating
the smelter furnaces will with time increase to the point where reopening the smelter will no
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longer be an option (Bastian-Pinto et al., 2013). In this thesis we have defined three years
as a maximum limit to stay temporarily shut down. This means that the option to restart the
smelter after a temporary shutdown will be an American option with maturity of three years,
and will have a penalty equal to the cost of shutting down permanently if it is not exercised.

Equations (3.3) and (3.6), as well as the decision rule for switching mode presented
above, apply to the specific smelter problem when the latter definitions of operating modes,
Z, and payouts, Π(t,Xt ,z) and Π

′
z,h(tn,Xtn(ω)), are used. We have hence derived a com-

plete formulation of the real option problem of an aluminium smelter with temporary and
permanent shutdown options, solved by using the least squares Monte Carlo method.

3.3 Operational flexibility with own power production

In the case of own power sourcing, where the aluminium producer has the option to produce
the power required rather than purchase the power through external contracts, a different set
of regressions is more suitable to approximate the continuation values. If the decision to
temporarily or permanently shut down the smelter is undertaken, the producer will pay the
shutdown cost and receive the stand-alone cash flows generated from selling the produced
power on the spot market. The future stand-alone cash flows from the power asset are also
uncertain and must be approximated by performing a regression, in a similar manner as
for the future cash flows from the smelter. Since the produced power can be sold in the
spot market, the spot price is a relevant explanatory variable for the power asset cash flows.
The smelter is valued on basis of USD/mt produced aluminium while the spot electricity
price is given in EUR/MWh. We therefore include the USD/EUR exchange rate as a second
explanatory variable. Hence, for each scenario we get the following regression:

Φ
Power
s,t = β

t
1×y1

s,t +β
t
2×xE

s,t +β
t
3× (y1

s,t)
2+β

t
4× (xE

s,t)
2+β

t
5×y1

s,t ×xE
s,t +β

t
6× (y1

s,t)
3

+β
t
7 × (xE

s,t)
3 +β

t
8 × (y1

s,t)
2 × xE

s,t +β
t
9 × y1

s,t × (xE
s,t)

2

(3.7)

The regression result, ΦPower
s,t , will be an approximation of the continuation value when only

receiving the future stand-alone cash flows from the power asset after having conducted a
permanent shutdown of the smelter. It is therefore comparable to the remaining contract
exposure when purchasing power through external contracts. To approximate the continua-
tion value of mode z at time t, we again have to use a regression to avoid perfect foresight.
As opposed to the case with external power contracts, the continuation value of the option
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when producing own power is not correlated with the remaining time left on any contract.
We therefore regress on FCFs,t , the expected value of cash flows from power production
ΦPower

s,t , the spot electricity price y1
s,t and the USD/EUR exchange rate xE

s,t . Hence, in the
case of own power sourcing the expected continuation value of the option is approximated
using the following regression:

Φs,t = β
t
1×FCFs,t +β

t
2×Φ

Power
s,t +β

t
3×y1

s,t +β
t
4×xE
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5×(FCFs,t)
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6×(ΦPower
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10 × (ΦPower

s,t )3 +β
t
11 × (y1
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3

+β
t
12 × (xE

s,t)
3 +β

t
13 ×FCFs,t ×Φ

Power
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t
14 ×FCFs,t × y1

s,t +β
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15 ×FCFs,t × xE

s,t

+β
t
16×Φ

Power
s,t ×y1
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17×Φ

Power
s,t ×xE

s,t +β
t
18×y1

s,t ×xE
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(3.8)

By using equation (3.6) to derive an operating policy and calculating the net present value
back to t = 0, we can estimate the value of the smelter with own power production as
described in section 3.2.

3.4 Special case: only option to shut down permanently

Having defined the option to operate the smelter with multiple operating states, it is straight-
forward to formulate a model for the special case of only having the option to shut down
the plant permanently. When valuing the smelter with only the option to shut down perma-
nently, we define two operating modes where z again denotes the general operating mode
and Z = {operating, permanently shutdown}. The payoffs, Πz (USD/mt), when holding
contract length l and contract type c for different operating modes in a given scenario s will
then be formulated as:

Π(t,Xt ,z1) = FCFs,t

Π(t,Xt ,z2) = 0

Π
′
z1,z1(tn,Xtn(ω)) = FCFs,t

Π
′
z1,z2(tn,Xtn(ω)) =−Kdirect perm +qs,t,l,c

Π
′
z2,z1(tn,Xtn(ω)) =−∞

In theory, these are the same payoffs as for the switching option described in section 3.2, but
where we define an infinitely large cost to switch from operating to temporarily shut down.
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Hence, we exclude the possibility to temporarily shut down. We can now derive an estimate
of the smelter value by using the LSM method in the same way as described in section 3.2.

3.5 Price processes and scenario generation

The price processes adapted in this thesis are chosen according to the type of processes one
of the major aluminium producers use in their models, in order to derive comparable re-
sults. The rationale behind the choice of price processes will thus not be further elaborated
in this thesis. Let T” denote the number of quarters in the historical time series, and I denote
the number of stochastic variables. We can then define H to be a (T”xI) matrix containing
historical quarterly prices for the stochastic variables. Assuming that the aluminium price,
electricity prices and exchange rates follow AR(1) processes (Alexander, 2008) with an ex-
plicit mean expectation, the price process for the ith variable is then described by:

pt,i = αi + γi × pt−∆′t,i + εt,i , εt,i ∼ N(0,σ2
i ) and i.i.d.

The parameters αi and γi are estimated through linear least squares regression of the time t

prices on the time t −∆′t prices from H.3 The residuals εt,i of the regressions are used to
derive the covariance matrix. Note that ∆′t and T ′ used in the simulations of time series are
based quarters whereas ∆t and T used in the aluminium smelter option problem are based
on years. Let E be the matrix containing all the residuals for the different prices, then the
covariance matrix, ∑, is defined by ∑ = ET×E

T−1 .
Having defined the price process, we will now describe the procedure that must be under-

taken to generate a scenario of prices, a procedure that is well described by Haugh (2004).
First, the main part of the scenario generation is to generate random draws, L(T ′, I) =

ε1,1 · · · ε1,I
... . . . ...

εT ′,1 · · · εT ′,I

 where εt,i ∼ N(0,∑). Note that since we are generating scenarios for

3The long-term unconditional mean for the ith price process is defined by µi =
α

(1−γi)
, however note that

this is in most cases different from the explicit expected mean. In order to derive processes that converge to
explicitly stated expected long-term means the αis must be adjusted by assuming µi is fixed and solving the
equation α

′
i = µi × (1− γi). The p0,is are set equal to the assumed long-term expected means of the variables.

Finally, half-life of process i, hi, is a measure of the speed of mean reversion and is given by the formula:
hi =

−ln(2)
ln(γi)

(Mark, 2000). The interpretation of the half-life measure is that it denotes the time process i needs
to halve its distance from its mean. A higher value of the half-life measure is thus equivalent to slower mean
reversion.
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correlated processes, the epsilons should be correlated. To do this, we first generate ran-
dom variables that are normally distributed with zero mean and variance 1, this yields
for each t: Lt,i ∼ N(0,1). Thus c1Lt,1...ciLt,I ∼ N(0,σ2) where σ2 = c2

1 + ...+ c2
I . Then

CL ∼ N(0,CT C), which reduces our problem to finding C such that CT C = ∑. The matrix
C is commonly referred to as the Cholesky-decomposition of ∑. From linear algebra we
know that a symmetric positive-definite matrix K can be expressed as K = UT DU where U
is an upper-triangular matrix and D a diagonal matrix with non-negative elements. In our
problem we have that ∑ = UT DU, which yields the result C =

√
DU.4 Thus the correlated

random draws εt,i are calculated by ε(T ′, I) = CL. The matrix ε(T ′, I) now represents ran-
dom price movements. Using the above, the simulated prices can now be calculated by the
formula pi,t = α

′
i + γi × pi,t−1 + εi,t where the εt,is are the epsilons derived above.

4If the covariance matrix is not positive definite it can be transformed through regularization, which works
if the negative eigenvalue is close to zero.



Chapter 4

Results

The model described in the previous sections has been implemented in Matlab in order to
derive solutions for given parameter values (see Appendix E for a validation of the Matlab
routine). Realistic parameter values have been collected from industry sources and are listed
in table 4.1:

Parameter Parameter name Parameter value
Ca Carbon Price 400 USD/mt
A Alumina price 400 USD/mt
ρ WACC 5%
Tax Company tax rate 27%
EL Electrolysis cost local currency 482 USD/mt
EU Electrolysis cost USD 163 USD/mt
CL Casthouse cost local currency 257 USD/mt
CU Casthouse income USD 425 USD/mt
M MWH/mt produced aluminium 14
Otemp Yearly operating cost for a temporarily shutdown smelter 0 USD/mt
Kdirect perm Cost of switching mode from operating to permanent shutdown 2000 USD/mt
Ktemp Cost of switching mode from operating to temporarily shutdown 1000 USD/mt
K perm Cost of switching mode from temporarily shutdown to permanently shutdown 1000 USD/mt
Koperate Cost of switching mode from temporarily shutdown to operating 1000 USD/mt
µXE Long-term expected mean of the USD/EUR exchange rate 1.3
µXN Long-term expected mean of the USD/EUR exchange rate 0.17
µY 1 Long-term expected mean of the 1-year electricity price 40 (EUR/MWH)
µY 3 Long-term expected mean of the 3-year electricity price 40 (EUR/MWH)

Table 4.1 Parameter values

Estimation of the parameters for the different autoregressive time series is based on
historical quarterly prices of the respective variables from December 2002 to June 2014 and
the first values of the different time series are set equal to the respective expected long-
term means. After calibrating the autoregressive processes the estimated intercepts must
be adjusted to fit the expected long-term means of the respective processes, a procedure
that is described in section 3.5. Estimated parameters and half-life (in terms of quarters)
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of the different processes can be found in table 4.2, while figures 4.1- 4.5 show examples
of 30 sample paths for the stochastic variables over 20 years. Note that since the price
processes in this thesis are modelled based on price levels, the value of out of the money
shutdown options may be overestimated if modelling log-level prices in fact provides a
better fit to reality. This is due to the fact that the lognormal distribution is positively skewed,
while a normal distribution has no skewness. A normal distribution may therefore tend to
overestimate the size of the left tail of the distribution of prices compared to a lognormal
distribution. Thus, the probability of incurring lower prices may be too high.

Fig. 4.1 Thirty sample paths - USD/EUR Fig. 4.2 Thirty sample paths - USD/NOK

Fig. 4.3 Thirty sample paths - LME price Fig. 4.4 Thirty sample paths - El. price 1-year

Fig. 4.5 Thirty sample paths - El. price 3-year

Stochastic variable αi
1 γi Half-life [quarters]

Estimate p-value Estimate Lower SE Upper SE Lower 95% Upper 95%
USD/EUR 0.2714 0.791 6.27×10−15 2.9600 2.1353 4.5833 1.6284 9.4278
USD/NOK 0.0346 0.797 1.42×10−12 3.0489 2.0662 5.3412 1.5111 17.5125
LME price 337.5555 0.853 1.63×10−15 4.3672 2.8240 8.7839 2.0270 177.2684
El. price 1-year 5.1758 0.871 1.20×10−15 5.0022 3.0876 11.6599 2.1660 n.a.
El. price 3-year 11.7297 0.707 3.13×10−8 1.9971 1.3627 3.3325 0.9835 8.2366

Table 4.2 Estimated parameter values for the autoregressive processes

1This will vary dependent on the explicitly stated long-term expected mean of the respective processes
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The intercepts shown in table 4.2 are fitted to the long-term expected means listed in
table 4.1 and a base case of 2,300 for the long-term expected mean of the LME price. In
table 4.2, we also see that there is evidence of mean reversion in the processes followed
by the stochastic variables within a 95% confidence interval, except for the electricity spot
price. For the latter there is only evidence of mean reversion within a 90% confidence
interval. Despite this, we use the estimated coefficient for the process followed by the
electricity spot price for two reasons. First, the electricity spot price only has strong impact
on the cash flows of the smelter when electricity is purchased in the spot market. Secondly,
as stated in section 3.5 the price processes adapted in this thesis are chosen according to
the type of processes one of the major aluminium producers use in their models in order to
derive comparable results and the focus in this thesis is primarily on real options modelling
of the operational flexibilities of a smelter. Note that the 95% confidence interval for the
LME price is wide and that one must have this in mind when doing analyses varying the
speed of mean reversion. A thorough empirical study of the stochastic variables is a highly
recommended further extension to this thesis.

To limit the scope of the analyses, long-term expected means of exchange rates and
electricity prices are held constant throughout the model simulations. This is because the
smelter value and related operational policies are more sensitive to changes in the relative
changes in the aluminium price than to similar relative changes in the two former (refer to
appendix C for details). Expanding the scope of the analyses is left as a recommendation for
further work. Thus, in subsequent analyses, only the long-term expected mean of the LME
price is varied. Finally, note that the investment cost and potential selling cost of the power
asset have not been included in the smelter value estimated under own power sourcing.
Therefore, the smelter value calculated in the case of own power sourcing is not directly
comparable to the smelter value calculated with other contract types since the electricity
cost is artificially low.

4.1 LSM valuation of smelter with operational flexibility

Varying the expected long-term mean of the LME price yields a range of different smelter
values as well as different operational policies. Analysing the profitability and operational
policy of the smelter under different long-term LME price expectations is of high value to
management as the LME price is the only external variable directly impacting the revenues
of an operating smelter. Low LME prices directly impact the profitability of the smelter and
longer periods with lower LME prices have historically led to shutdowns ( United States
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International Trade Commission (1987), Geological Survey US (2011) & Alcoa (2014)). In
figures 4.6- 4.20 we therefore do analyses where the long-term expected mean of the LME
price is varied and used as independent variable in the plots.

Below are numerical solutions to the switching option problem derived by running the
Matlab model. 1,000 scenarios have been used to derive the regression coefficients to be
used in the approximations of continuation values while 10,000 scenarios have been used
when calculating operational policies and smelter values. The value plots exhibit the same
traits for different currencies when holding the contract length fixed, we thus include only
the value plots for USD contracts in this section, plots for other currencies may be found in
appendix B.

Fig. 4.6 Value plot - Own sourcing Fig. 4.7 Value plot - 20-year USD contract

Fig. 4.8 Value plot - 10-year USD contract Fig. 4.9 Value plot - 5-year USD contract

Figures 4.6- 4.10 show that the smelter values with only permanent shutdown options
and the smelter values with full operational flexibility, both derived by the LSM approach,
mostly stay within their lower and upper bounds. The lower bounds are the smelter values
when operating the whole time period. The upper bounds are the smelter values calculated
under perfect foresight, and have been derived through the same steps as with the LSM ap-
proach excluding the approximation of continuation values through multivariate regression.
The bounds are defined as follows:
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Fig. 4.10 Value plot - Spot contract

Value(No closure) <= Value(Full operational flex. - LSM) < Value(Full operational flex. - perf. foresight)

Note that if the smelter has permanent and/or temporary shutdown options another strict
lower bound for the smelter value can be defined, namely the smelter value if an immediate
permanent shutdown is conducted:

Value(Imm. shutdown) <= Value(Only permanent shutdown option) <= Value(Full operational flex. - LSM)

This additional bound has also been included in figures 4.6- 4.10. As the figures show,
the value of the smelter with full operational flexibility tends to marginally move out of its
lower bound when the smelter value converges to the value of immediate shutdown. This
happens for low expected long-term means of the LME price, and is caused by regression
errors as the continuation values of temporary shutdowns may be overestimated in cases
where a more optimal policy actually would be to permanently shut down right away.

Contract
type

Probability of
perm. shutdowns

Probability of
temp. shutdowns

Avg. # of temporary
shutdowns/scenario

Scenarios without
shutdowns

Own sourcing 99.3 % 32.1 % 0.53 0.1 %
20-Nok 97.2 % 5.5 % 0.09 0.5 %
20-Eur 97.2 % 5.3 % 0.09 0.5 %
20-Usd 97.4 % 5.0 % 0.08 0.4 %
10-Nok 98.4 % 37.2 % 0.82 0.3 %
10-Eur 98.3 % 37.7 % 0.88 0.3 %
10-Usd 98.4 % 36.6 % 0.96 0.3 %
5-Nok 99.8 % 94.1 % 2.63 0.0 %
5-Eur 99.5 % 88.3 % 2.31 0.1 %
5-Usd 99.5 % 86.0 % 2.34 0.0 %
Spot 99.4 % 99.9 % 2.99 0.1 %

Table 4.3 Closure dynamics when µLME = 2,000 USD/mt

The results shown in tables 4.3- 4.8 for three different values of µLME represent a low
case, a base case and a high case, respectively. One would therefore expect very different
results in terms of closure dynamics and smelter values as well as to what extent the options
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Contract
type No closure Only permanent

shutdown
Full operational

flex. - LSM
Full operational

flex. - perf. foresight
Own sourcing -970 2,891 2,953 3,085
20-Nok -5,309 -337 -333 390
20-Eur -5,310 -227 -197 522
20-Usd -5,306 201 245 1,001
10-Nok -5,301 -1,347 -1,302 -721
10-Eur -5,308 -1,302 -1,299 -658
10-Usd -5,337 -1,162 -1,141 -440
5-Nok -5,302 -1,684 -1,690 -1,203
5-Eur -5,297 -1,678 -1,682 -1,209
5-Usd -5,351 -1,619 -1,629 -1,087
Spot -5,312 -1,853 -1,729 -1,641

Table 4.4 Smelter value ranges (USD/mt produced aluminium) when µLME = 2,000 USD/mt

Contract
type

Probability of
perm. shutdowns

Probability of
temp. shutdowns

Avg. # of temporary
shutdowns/scenario

Scenarios without
shutdowns

Own sourcing 12.1 % 50.4 % 0.52 39.0 %
20-Nok 67.5 % 20.5 % 0.21 16.2 %
20-Eur 69.3 % 19.4 % 0.20 15.4 %
20-Usd 75.2 % 16.3 % 0.17 12.2 %
10-Nok 34.0 % 43.1 % 0.45 33.1 %
10-Eur 36.2 % 42.9 % 0.45 31.9 %
10-Usd 42.0 % 41.2 % 0.43 28.2 %
5-Nok 25.6 % 47.0 % 0.51 38.0 %
5-Eur 26.4 % 47.4 % 0.51 37.7 %
5-Usd 28.9 % 48.5 % 0.52 35.2 %
Spot 0.2 % 50.5 % 0.51 49.4 %

Table 4.5 Closure dynamics when µLME = 2,300 USD/mt

Contract
type No closure Only permanent

shutdown
Full operational

flex. - LSM
Full operational

flex. - perf. foresight
Own sourcing 3,381 4,088 4,503 4,675
20-Nok -930 707 791 1,324
20-Eur -930 807 907 1,453
20-Usd -929 1,217 1,323 1,896
10-Nok -925 -172 98 685
10-Eur -933 -133 128 749
10-Usd -971 -7 258 951
5-Nok -918 -279 104 444
5-Eur -926 -256 132 484
5-Usd -960 -251 200 588
Spot -967 -387 -185 -34

Table 4.6 Smelter value ranges (USD/mt produced aluminium) when µLME = 2,300 USD/mt

Contract
type

Probability of
perm. shutdowns

Probability of
temp. shutdowns

Avg. # of temporary
shutdowns/scenario

Scenarios without
shutdowns

Own sourcing 4.0 % 23.4 % 0.24 72.9 %
20-Nok 12.2 % 15.3 % 0.15 73.3 %
20-Eur 14.1 % 15.3 % 0.15 71.4 %
20-Usd 20.3 % 15.9 % 0.16 64.8 %
10-Nok 12.0 % 18.1 % 0.18 72.3 %
10-Eur 12.6 % 18.4 % 0.19 71.5 %
10-Usd 14.9 % 20.0 % 0.20 68.3 %
5-Nok 11.2 % 17.0 % 0.17 73.5 %
5-Eur 11.9 % 17.5 % 0.18 72.3 %
5-Usd 14.0 % 19.7 % 0.20 69.1 %
Spot 0.1 % 20.1 % 0.20 79.7 %

Table 4.7 Closure dynamics when µLME = 2,600 USD/mt
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Contract
type No closure Only permanent

shutdown
Full operational

flex. - LSM
Full operational

flex. - perf. foresight
Own sourcing 7,810 7,968 8,094 8,128
20-Nok 3,473 3,646 3,766 3,957
20-Eur 3,473 3,676 3,798 4,019
20-Usd 3,467 3,733 3,929 4,232
10-Nok 3,448 3,625 3,757 3,820
10-Eur 3,437 3,633 3,771 3,844
10-Usd 3,408 3,645 3,817 3,932
5-Nok 3,463 3,636 3,765 3,796
5-Eur 3,453 3,645 3,778 3,813
5-Usd 3,414 3,561 3,808 3,859
Spot 3,432 3,588 3,629 3,636

Table 4.8 Smelter value ranges (USD/mt produced aluminium) when µLME = 2,600 USD/mt

to permanently- and/or temporarily shut down operations are value adding. Starting with
the base case where µLME = $2,300, table 4.6 shows that introducing managerial flexibility
in terms of different operating modes increases the value of the smelter (USD/mt produced
aluminium) from a negative number to a positive number, an increase of approximately
$1,300− $2,000 under different contract types, compared to having no shutdown options.
Table 4.5 shows that the percentage of scenarios in which one or more temporary shutdowns
have occurred is more than 40% for most of the contract types. This clearly shows that
having temporary shutdown options is value adding compared to having only permanent
shutdown options. In contrast, when analysing the high case in tables 4.7 and 4.8 it is evident
that the value added by operational flexibility is as expected smaller, because it would much
more seldom be rational to shut down operations with expectations of high LME prices. On
the other hand, in a low case having the option to shut down operations adds much value,
but the value added by the temporary shutdown options is however not as high as in the
base case, this is because early permanent shutdowns is the most rational strategy in most
scenarios. When analysing low case and base case mean aluminium prices, the tables 4.3
and 4.6 show that the value of the smelter is substantially larger for the 20-year contracts.
We believe this is due to speculative positions in electricity prices and exchange rates. More
precisely, the value of closing a 20-year contract in favourable market conditions is higher
than closing a 10-year contract. Managers will thus wait for more favourable electricity spot
prices before shutting down the smelter, hence increasing the total value of the smelter. We
emphasise that this is a hypothesis that need further investigation.

Another pattern that materialises in the tables displaying smelter value ranges is that
the USD contracts are always higher in value than otherwise identical contracts under full
operational flexibility. A reason for this may be that all revenues for an operating smelter are
in USD, so purchasing the main cost element, namely electricity, in the same currency may
severely reduce currency risk. We recommend that a further investigation of this observation
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should be conducted in further work.
As discussed in chapter 1 shutdowns of smelters, both temporary and permanent, may

have wider negative economic impacts than for just the smelter owner. The LME price is one
of the critical variables affecting the decision. It is thus of interest to study the probabilities
of different types of shutdowns given different levels for the long-term expected mean of the
LME price. Figures 4.11- 4.14 show the probabilities of shutdowns under different contract
types, given different levels of the long-term mean LME price, holding long-term mean ex-
pectations of all other stochastic variables constant. The data series "Permanent shutdown"
plots the percentage of all scenarios in which a permanent shutdown was conducted at some
point in time against the long-term expected mean of the LME price, and will be denoted as
the probability of permanent shutdowns. Similarly, the data series "Temporary shutdowns"
plots the percentage of scenarios in which one or more temporary shutdowns occurred2 and
will be referred to as the probability of temporary shutdowns. Finally, the series "Operating
with no shutdowns" plots the percentage of scenarios in which no types of shutdowns have
occurred at any point in time and will be referred to as the probability of no shutdowns.
Since the shutdown patterns exhibit the same traits for different currencies when holding
the contract length fixed, we include only the USD contracts in this section. Plots for other
currencies may be found in appendix B.

Fig. 4.11 Shutdown risk: Own sourcing Fig. 4.12 Shutdown risk: 20-year USD contract

Although own power sourcing has different underlying dynamics than, and is not di-
rectly comparable to, the other types of power contracts, it is still of interest to do a high-
level comparison of the shutdown profiles. From figure 4.11 it is evident that when the
long-term expected mean of the LME price passes $2,000 there is a sharp decrease in the
percentage of scenarios in which permanent shutdowns occur, a decrease that is offset by
an increasing percentage of scenarios with temporary shutdowns. That is, temporary shut-

2Note that there may be scenarios where temporary shutdowns are followed by permanent shutdowns later
in time, so the two latter measures are not mutually exclusive.



4.1 LSM valuation of smelter with operational flexibility 35

Fig. 4.13 Shutdown risk: 10-year USD contract Fig. 4.14 Shutdown risk: 5-year USD contract

Fig. 4.15 Shutdown risk: Spot contract

downs seem to take the place of permanent shutdowns at this point with the percentage mea-
sure peaking when the long-term expected mean of the LME price is $2,200, then slowly
decreasing. In addition, even though the plots of the percentage of scenarios in which no
shutdowns occur have very similar patterns across all contract types, own electricity sourc-
ing clearly seems to be the best power input option for reducing the risk of shutdowns for
lower ranges of the long-term expected LME-price. This is, as previously mentioned, be-
cause the investment cost and potential selling cost of the power asset is not included in
the analysis leading to an artificially low electricity cost. However, this observation may be
used in the decision-making process when determining whether to invest in a power asset. If
the electricity cost from the power asset is lower than external power contracts, even when
including the investment cost, the probability of shutdowns is reduced at lower levels of the
expected mean LME price.

When comparing the different contract lengths in figures 4.12- 4.15, two observations
are worth elaborating. First, it is clear that the shorter the contract length the sharper the
decline in the probabilities of permanent shutdowns when the long-term expected mean of
the LME price exceeds $2,100. Nevertheless, the pattern of permanent shutdown proba-
bilties is the same when comparing the different contract lengths. Interpreting the sharp
declines in permanent shutdown probabilities it is clear that long-term expected means of
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the LME price of approximately $2,300 or higher, are the price levels for which it is prof-
itable with aluminium production. Lower price levels entail having either permanent or
temporary shutdowns.

Secondly, the probabilities of temporary shutdowns also follow the same patterns across
different contract lengths, but only when the long-term expected mean of the LME price is
greater than $2,100. Left of that point, the shorter the contract length, the higher the ratio
of temporary shutdowns. Around that point it seems that the sharper the decline in proba-
bilities of permanent shutdowns the higher the probabilities of temporary shutdowns. This
is an observation illustrating that for shorter contract lengths, having temporary shutdown
options enables the aluminium producer to quickly reduce the risk of permanent shutdowns
as soon as the long-term expected mean of the LME price reaches profitable levels. Hav-
ing to operate the smelter when the LME price is low may not be rational compared to a
permanent shutdown, even though one would expect the LME price to return to its mean
level. Exercising the temporary shutdown option in such a scenario may however be more
profitable than a permanent shutdown. The temporary shutdown option thus acts as a hedge
against downturns in the LME price when the long-term expected mean of the LME price is
right above profitable levels. Note that the region around a long-term expected mean of the
LME price of around $2,300 is a region in which the permanent shutdown options go from
being in the money to out of the money. One would therefore expect that temporary shut-
down options are most often exercised in this region. This pattern is observed in figures 4.12
and 4.13 where the probabilities of temporary shutdowns have local peaks.

An interesting analysis to conduct is to study how the probabilities of different shutdown
types are affected by a change in the speed of mean reversion of the price process followed
by the LME price. Figures 4.16- 4.20 are plots similar to figures 4.11- 4.15, but with the
speed of mean reversion increased by forcing a lower γi on the price process that the LME
price follows. Whereas the estimated γi of the price process followed by the LME price
is 0.853 we now force it to have the value of 0.600 for the sake of this analysis, which
increases the speed of mean reversion. The associated half-life then becomes 1.4 quarters
as opposed to the previous 4.4 quarters.

The dotted lines in figures 4.16- 4.20 illustrate the shutdown probabilities for the case of
slow mean reversion, while the thick lines show the shutdown probabilities for the case of
quicker mean reversion. It is evident from the figures, that the increase in the probability of
operating with no shutdowns when the long-term expected mean of the LME price increases,
is greater when the speed of mean reversion is higher. This result was expected and the
intuition behind it is that as long as the long-term expected mean of the LME price is at a
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Fig. 4.16 Shutdown risk: Own sourcing Fig. 4.17 Shutdown risk: 20-year USD contract

Fig. 4.18 Shutdown risk: 10-year USD contract Fig. 4.19 Shutdown risk: 5-year USD contract

Fig. 4.20 Shutdown risk: Spot contract
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profitable level the aluminium producer is less likely to benefit from shutdowns in the case
of low prices, because the price will quickly revert back to profitable levels. On the other
hand, in the case of slow mean reversion the price may strongly deviate from its mean for
longer time periods increasing the benefits and thus probabilities of shutdowns, especially
permanent ones. This can also be observed in the figures by studying the difference between
the thick and dotted dark blue lines. Another observation worth to comment is that the
chosen base case level of the long-term expected mean of the LME price of $2,300 and
nearby levels make up a region in which the smelter seems to go from being non-profitable
to profitable illustrated by line intersections and strongly changing trends. Varying the mean
reversion speed only tightens this region.

Volatility of the stochastic process followed by the LME price impacts the value of
the smelter with operational flexibility and thus also the operational policy. An aluminium
producer with an operating smelter is concerned about the risk of having to shut down the
smelter and it is of special interest to analyse the risk of having to shut down the smelter
within a shorter time horizon of 1-5 years.

Fig. 4.21 Shutdown triggers: Own sourcing Fig. 4.22 Shutdown triggers: 20-year USD contract

Fig. 4.23 Shutdown triggers: 10-year USD contract Fig. 4.24 Shutdown triggers: 5-year USD contract

Figures 4.21- 4.25 show the lowest and highest LME prices in year 1 for which a perma-
nent or temporary shutdown was conducted within 5 years in one of the simulated scenarios,
given different quarterly volatility levels. These volatility levels are expressed as multiples
(0.4x−1.6x) of the volatility of the LME price derived from the historical time series. Plots
for other contract currencies can be found in appendix B. The analysis is based on the base
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Fig. 4.25 Shutdown triggers: Spot contract

case in which the long-term expected mean of the LME price is $2,300. The figures can help
the aluminium producer assess the probability of having to shut down the smelter within the
next few years. For instance if the year 1 LME price is above the highest shutdown trigger
the producer can be confident that no shutdowns will be conducted the next few years. On
the other hand, if the year 1 LME price is below the lowest shutdown trigger the producer
has all reasons to expect shutdowns within the next few years. If the year 1 aluminium
price is between the two triggers the risk picture is not that clear, but one should expect
some shutdowns. The relationship between the triggers and level of volatility in the LME
stochastic process followed by the LME price is evident. Higher volatility yields a greater
highest shutdown trigger and smaller lowest shutdown trigger. Conversely lower volatility
yields a smaller highest shutdown trigger and a greater lowest shutdown trigger.

To what extent the full optionality is value adding depends on both the volatility of the
stochastic process followed by the LME price as well as the expected long-term mean of the
LME price. Tables 4.9- 4.18 are sensitivity tables that show the nominal value increase in
USD/mt produced aluminium of having full operational flexibility compared to not having
any shutdown options and having only permanent shutdown options respectively, for differ-
ent expected long-term mean LME-prices and different levels of volatility. The low, base
and high cases are the same as in tables 4.3- 4.8 while volatility is set to different multiples
of the actual estimated volatility. Ideally such tables would express the value increase in
terms of percentage, but as the smelter value in several cases changes from a negative to
a positive number, percentage as a measure would not be meaningful because percentage
change is based on change in magnitude regardless of sign. The sensitivity tables exhibit
approximately the same patterns for different currencies when holding the contract length
fixed, we thus include only the USD contracts in this section, sensitivity tables for other
currencies may be found in appendix B.

It is clear from tables 4.9- 4.18 that the value increase of having full operational flexibil-



4.1 LSM valuation of smelter with operational flexibility 40

O
w

n
so

ur
ci

ng Quarterly volatility
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E High 45 284 740
Base 680 1,121 1,708
Low 3,834 3,923 4,177

Table 4.9 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x
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E High 44 127 197
Base 432 415 468
Low 48 62 112

Table 4.10 Value over only perm. shut. options
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SD Quarterly volatility
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E High 282 461 863
Base 2,131 2,252 2,511
Low 5,492 5,551 5,618

Table 4.11 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
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E High 49 195 244
Base 32 106 145
Low 42 44 25

Table 4.12 Value over only perm. shut. options
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SD Quarterly volatility
0.5x 1.0x 1.5x
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E High 124 409 843
Base 977 1,229 1,726
Low 4,032 4,196 4,317

Table 4.13 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x
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E High 431 172 312
Base 179 266 387
Low −6 21 −4

Table 4.14 Value over only perm. shut. options
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Quarterly volatility
0.5x 1.0x 1.5x
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E High 118 394 837
Base 804 1,161 1,678
Low 3,666 3,722 3,935

Table 4.15 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
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E High 12 247 273
Base 386 452 393
Low 20 −10 42

Table 4.16 Value over only perm. shut. options

Sp
ot

co
nt

ra
ct Quarterly volatility

0.5x 1.0x 1.5x

L
M

E High 21 197 593
Base 406 782 1,286
Low 3,550 3,583 3,775

Table 4.17 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
M

E High 60 41 138
Base 142 201 183
Low 128 123 139

Table 4.18 Value over only perm. shut. options

ity, compared to having no shutdown options, is larger the lower the long-term expected
LME price and the higher the volatility. These are reasonable results that one would expect,
because for the low case of the long-term expected LME price the smelter is experiencing
severe losses and a permanent shutdown would be the only rational strategy. However, when
the volatility increases, having temporary shutdown options entails that the aluminium pro-
ducer may exploit periods of short jumps in the LME price while at the same time limiting
losses when the price is low. This pattern is evident in the sensitivity tables that show the
value increase of introducing full operational flexibility when already having the option to
permanently shut down the smelter. A second pattern that is evident is the fact that when
comparing contract lengths, the nominal value increase of full operational flexibility versus
no operational flexibility is larger the longer the contract length. This may be explained
by the plots of permanent shutdowns in figures 4.12- 4.15 where one can observe that the
shorter the contract length the steeper the decrease in probabilities of permanent shutdowns,
hence for shorter contract lengths the option to permanently shut down is of less value. A
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third pattern in the sensitivity tables that is worth noticing is that the value increase of intro-
ducing full operational flexibility when already having the option to permanently shut down
operations is largest for short-term electricity contracts and in the base case of the long-term
expected mean of the LME price. For the 10-year and 20-year contracts this value increase
is approximately the same in the base and high case. Again, a possible explanation to this
may be found by studying figures 4.12- 4.15. In the base case the long-term expected mean
of the LME price is $2,300, around this point the probabilities of permanent shutdowns
have decreased drastically for shorter contract lengths. The same is observed for 10-year
and 20-year contracts only for a long-term expected mean of the LME price at a somewhat
higher level. In addition, the probabilities of temporary shutdowns have upward bumps
for the 20-year and 10-year contracts in this region. For the 5-year and spot contracts the
probabilities of temporary shutdowns are already high. Thus, it seems that the temporary
shutdowns replace permanent shutdowns in these regions, but since the risk of periods with
unfavourable LME prices and negative profitability is still high at this point the temporary
shutdown options are actively used. That is to say that the temporary shutdowns options
add more value at this point than e.g. in a high case where the risk of unfavourable LME
prices is much lower. Finally, we see that in the low case the additional value of full oper-
ational flexibility when already having permanent shutdown options is sometimes negative,
but small in magnitude. This is most likely due to small numerical errors. For this level of
the long-term expected mean of the LME price permanent shutdowns occur at an early point
in approximately all scenarios, and the value-added by temporary shutdowns is negligible
and not captured in the continuation value approximations.

4.2 Accuracy of the regressions

Approximating the continuation values by regressing them on the current values of the state
variables is, as described in section 3.2, the technique that is used in the LSM method when
deriving operational policies in order to avoid the bias of perfect foresight. The accuracy of
these regressions thus has direct impact on the final results, and it is important to do analyses
of the explanatory power for different regression equations and use this as a decision basis
when choosing explanatory variables. Further on, the results are sensitive to the number
of scenarios chosen. As previously stated we have used 1,000 scenarios, referred to as
in-sample scenarios, for estimating the regression coefficients to be used in continuation
value approximations. 10,000 scenarios, referred to as out-of-sample scenarios, are used
to estimate smelter values and operational policies. The rationale behind using 1,000 in-
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sample scenarios is illustrated in figure 4.26, which shows a scatter plot of the smelter values
under a 10-year USD power contract when varying the number of in-sample scenarios and
running the model six times for each set of the number of the latter holding the number of
out-of-sample scenarios fixed at 10,000. It is clear that the smelter value estimates increase
with the number of in-sample scenarios, up to 1,000 in-sample scenarios. The reason for this
is that the optimal operating policy is determined using approximated continuation values,
while the estimated value is calculated by applying this policy and working with the actual
simulated continuation values. When the number of in-sample scenarios is low, the sample
set is not representable and the estimated regression parameters provide a poor fit when used
for another sample. Therefore, the resulting estimated policy is far from optimal resulting
in a low estimated smelter value as well as a large spread in estimated values (refer to
Longstaff and Schwartz (2001) for details on convergence of the LSM method). From
the figure we see that the smelter value estimates converge for 1,000 or more in-sample
scenarios, hence choosing 1,000 in-sample scenarios seems sufficient.

Fig. 4.26 Convergence of smelter value estimates for different number of in-sample scenarios

Table 4.19 shows the average degrees of explanatory power, R-squared, for different
sets of explanatory variables on a per contract basis for the base case of long-term expected
mean of the LME price. Note that since we are only interested in the approximated value,
the regression coefficients are only used for this purpose and are not basis for any further
analysis. This means that our goal is to maximise R-squared and not R-squared adjusted.
Columns Operating and Temporary denote what continuation value the statistic is linked
to. Since there are two potential continuation values, namely the two former, these must
be approximated at each step in order to have the correct decision basis. Further on, since
the regression in the case of own power sourcing is different from the other contract types
the regression statistics from the own sourcing case are included in a separate table. We
use polynomials of power 1 and 2 of the explanatory variables in addition to cross products.
The variable sets considered for the cases with external power contracts are:
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Contract type Variable set 1 Variable set 2 Variable set 3 Variable set 4 Variable set 5
Operating Temporary Operating Temporary Operating Temporary Operating Temporary Operating Temporary

20-NOK 0.371 0.220 0.378 0.209 0.370 0.214 0.367 0.221 -0.266 0.074
20-EUR 0.376 0.208 0.384 0.190 0.379 0.202 0.375 0.208 0.272 -0.037
20-USD 0.401 0.156 0.408 0.141 0.402 0.154 0.402 0.159 0.278 0.040
10-NOK 0.305 0.241 0.305 0.228 0.307 0.248 0.294 0.258 0.277 -0.649
10-EUR 0.308 0.228 0.305 0.217 0.309 0.242 0.296 0.252 0.277 -0.570
10-USD 0.324 0.204 0.320 0.197 0.323 0.216 0.306 0.234 0.288 -0.386
5-NOK 0.300 0.259 0.295 0.210 0.295 0.239 0.280 0.245 0.253 -1.550
5-EUR 0.305 0.249 0.296 0.199 0.297 0.235 0.282 0.237 0.251 -1.452
5-USD 0.332 0.239 0.321 0.185 0.315 0.219 0.298 0.221 0.250 -1.183
Spot 0.292 0.309 0.205 0.246 0.215 0.250 0.211 0.259 0.123 -3.806

Table 4.19 Explanatory power for different variable sets in the case of external power contracts

Variable set 2 Variable set 3 Variable set 4 Variable set 5Contract type Operating Temporary Operating Temporary Operating Temporary Operating Temporary
20-NOK 0.007 -0.012 -0.001 -0.006 -0.005 0.001 -0.637 -0.146
20-EUR 0.007 -0.018 0.003 -0.006 -0.001 0.000 -0.105 -0.245
20-USD 0.007 -0.016 0.001 -0.002 0.001 0.002 -0.123 -0.116
10-NOK 0.000 -0.013 0.002 0.007 -0.012 0.016 -0.029 -0.890
10-EUR -0.003 -0.010 0.002 0.014 -0.012 0.024 -0.030 -0.798
10-USD -0.004 -0.008 -0.001 0.011 -0.017 0.030 -0.036 -0.590
5-NOK -0.006 -0.049 -0.005 -0.020 -0.020 -0.014 -0.047 -1.809
5-EUR -0.009 -0.049 -0.008 -0.014 -0.023 -0.012 -0.053 -1.700
5-USD -0.011 -0.053 -0.017 -0.020 -0.034 -0.017 -0.082 -1.422
Spot -0.088 -0.064 -0.077 -0.060 -0.081 -0.051 -0.170 -4.115

Table 4.20 Difference in explanatory power compared to variable set 1 in the case of external power contracts

Variable set 1: y1
s,t , y3

s,t , xE
s,t , FCFs,t and δt,l

Variable set 2: y1
s,t , xE

s,t , FCFs,t and δt,l

Variable set 3: y1
s,t , FCFs,t and δt,l

Variable set 4: y1
s,t and FCFs,t

Variable set 5: FCFs,t

Table 4.20 shows the difference in explanatory power with respect to variable set 1,
which is the set that has been used in this thesis. From the table it is clear that for close to
all contracts the variable set we are using in the model yields the highest explanatory power
to approximate the continuation values, especially for the spot contract type.

In the case of own power sourcing we have defined the following variable sets:

Variable set 1’: y1
s,t , xE

s,t , FCFs,t and ΦPower
s,t

Variable set 2’: y1
s,t , FCFs,t and ΦPower

s,t

Variable set 3’: FCFs,t and ΦPower
s,t

Variable set 4’: FCFs,t

Contract type Variable set 1’ Variable set 2’ Variable set 3’ Variable set 4’
Operating Temporary Operating Temporary Operating Temporary Operating Temporary

Own sourcing 0.29 0.26 0.28 0.24 0.28 0.22 -3.36 0.17

Table 4.21 Explanatory power for different variable sets in the case of own power sourcing

Variable set 2’ Variable set 3’ Variable set 4’Contract type Operating Temporary Operating Temporary Operating Temporary
Own sourcing -0.01 -0.02 -0.01 -0.04 -3.65 -0.09

Table 4.22 Difference in explanatory power compared to variable set 1’ in the case of own power sourcing



4.2 Accuracy of the regressions 44

Table 4.22 shows the difference in explanatory power with respect to variable set 1’,
which is the set that has been used in this thesis. From the table it is clear that the variable
set we are using in the model yields the highest explanatory power.

A final remark is that since papers as Gamba (2003) and Bastian-Pinto et al. (2013)
do not include any statistics from the regressions performed when using the least squares
Monte Carlo method, there is little basis to be used for comparison. The decision on what
set of explanatory variables to use has therefore been made based on our analysis above,
which shows that variable set 1 and variable set 1’ yield satisfactory explanatory power
compared to other variable sets for the cases of external power contracts and own sourcing
respectively.



Chapter 5

Conclusion

The global market for aluminium has the last few years been characterised by low LME
prices and oversupply. This has put aluminium producers in a challenging position and
increased the probability of smelter shutdowns, which has wider negative economic impacts.
Capturing the flexibility available for an aluminium producer when valuating smelters is
therefore of high relevance in order to create a good decision base for decision makers when
developing strategies to meet the current market challenges.

In this project thesis we have defined an approach to value and derive an optimal opera-
tional policy for an aluminium smelter that is exposed to five different correlated stochastic
variables and which has operational flexibility in terms of permanent and temporary shut-
down options. The approach entails modelling the smelter cash flows under different elec-
tricity contract schemes as well as in the case of owning a co-generation unit and simultane-
ously solving the two interdependent problems of maximising the smelter value and deriving
the optimal operating policy. Since no analytical solution to the defined problem exists the
problem was solved numerically by using a modification of the least squares Monte Carlo
valuation technique described in Gamba (2003). The generic nature of the latter made the
technique directly applicable to the aluminium smelter problem and we found it to be fairly
robust to the choice of explanatory variables to be used when estimating the continuation
values through least squares regression.

In the analysis of the results we found that adding temporary shutdown options when
already having permanent shutdown options is of highest value in cases where the permanent
shutdown options go from being in the money to out of the money. Exercising the temporary
shutdown option in such a scenario can be more profitable than conducting a permanent
shutdown, thus acting as a hedge against downturns in the LME price. In this region, the
dynamics of the shutdown probabilities with respect to the long-term expected mean LME
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price change the most, and the series of permanent shutdown probabilities intercept with the
series of probabilities of operating without any shutdowns. Outside this region we found that
under expectations of a low long-term mean of the LME price, direct permanent shutdown
is a more rational strategy than temporary shutdowns, and under expectations of a high
long-term mean of the LME price, no shutdowns is the most rational strategy.

When comparing the different contract lengths we found that short-term electricity con-
tracts experienced the sharpest decrease in probability of permanent shutdowns when in-
creasing the long-term expected mean of the LME price. In order to minimise the risk of
shutdowns, own power sourcing seems to be the most attractive choice, but this result is
however biased as the power asset investment cost is not included in the resulting electric-
ity cost incurred by the smelter. For the external electricity sourcing contracts, we found
that the nominal increase in the smelter value when introducing full operational flexibility
compared to having no operational flexibility is larger for long-term contracts. A possible
explanation to this is that when having large amounts of pre-purchased electricity, the alu-
minium producer can exploit peaks in the spot price for which this pre-purchased amount
of electricity is sold.

The results did as expected prove to be dependent on the speed of mean reversion. A
higher speed of mean reversion yields a stronger increase in the probability of operating with
no shutdowns when the long-term expected mean of the LME price increases compared to
a low speed of mean reversion. Thus, a higher speed of mean reversion yields a steeper
decreasing curve for the probability of permanent shutdowns, as well as a more narrow
region where temporary shutdowns are value adding with respect to increasing levels of the
expected mean LME price.

In summary, introducing full operational flexibility to an aluminium smelter can in-
crease the smelter value since management may earn positive profits for lower levels of
the long-term expected mean LME price, while also reducing the probability of permanent
shutdowns. Analysing such a smelter from a real options approach helps capture the value
of these benefits, and the least squares Monte Carlo method has shown to be a suitable way
of doing this.

5.1 Further extensions

There are several potential future extensions of the work in this thesis. First, the assumption
that the values of all stochastic variables follow AR(1)-processes is subject to discussion.
There are possibly several different dynamics for the underlying stochastic processes that
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have not been captured by the AR(1)-modelling, which is clear from the wide confidence
intervals in table 4.2 Another remark regarding the time series modelling is that the long-
term expected means of the variables are based on input from industry sources, there is
thus room for improving the model through a more thorough analysis of the long-term
expected means. Therefore a complete empirical analysis of the stochastic variables should
be conducted.

Secondly, the analysis was based on holding the expected long-term means of all stochas-
tic variables except for the LME price constant. Analysing the closure dynamics and smelter
value varying one or more of these could definitely be of relevance.

Recent papers such as e.g. Nadarajah et al., 2014 study how to derive tighter lower and
upper bounds for the real options valuation when using LSM as well as a modification of
LSM. Figures 4.6- 4.10 show that there is a gap between the upper bound and smelter value
estimate when full operational flexibility is in place. Conducting an analysis on lower-and
upper bounds could help assess the accuracy of the model and help further assessment of
its validity. Another related extension could be to use the values derived from the in-sample
scenarios as upper bound.

Finally, another assumption of the model in this thesis is that the smelter can only hold
one type of electricity contract during the simulated time period. In order to increase to what
extent the model can be used as a valuable decision-making tool for industry players the
model should be extended to include an optimization of a portfolio of electricity contracts
to be held over the simulated time period.
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Appendix A

Details of the mathematical model

Definitions of help variables

Extensive model for aluminium smelters

Parameters for aluminium smelters

Ca Carbon Price USD/mt prod.al

A Alumina price USD/mt prod.al

Raw Ca+A: raw materials USD/mt prod.al

Tax Company tax rate %
EL Electrolysis cost local currency given today’s xN

s,0 USD/mt prod.al

EU Electrolysis cost USD USD/mt prod.al

CL Casthouse cost local currency given today’s xN
s,0 USD/mt prod.al

CU Casthouse income USD USD/mt prod.al

M Power input per production volume MWh/mt prod.al

µXE Long-term expected mean of the USD/EUR exchange rate USD/EUR

µXN Long-term expected mean of the USD/NOK exchange rate USD/NOK

µLME Long-term expected mean of the LME price USD/mt prod.al

µY 1 Long-term expected mean of the 1-year electricity price EUR/MWh

µY 3 Long-term expected mean of the 3-year electricity price EUR/MWh
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Help variables

os,t =
EL×xE

s,0
xE

s,t
+EU +

CL×xE
s,0

xE
s,t

−CU ∀t,∀s

ps,t,1,EUR = y1
s,t−1 ×M× xE

s,t ∀t,∀s

ps,t,5,EUR = y3
s,0 ×M× xE

s,t t = 1 : 5,∀s

ps,t,5,EUR = y3
s,5 ×M× xE

s,t t = 6 : 10,∀s

ps,t,5,EUR = y3
s,10 ×M× xE

s,t t = 11 : 15,∀s

ps,t,5,EUR = y3
s,15 ×M× xE

s,t t = 16 : 20,∀s

ps,t,10,EUR = y3
s,0 ×M× xE

s,t t = 1 : 10,∀s

ps,t,10,EUR = y3
s,10 ×M× xE

s,t t = 11 : 20,∀s

ps,t,20,EUR = y3
s,0 ×M× xE

s,t t = 1 : 20,∀s

ps,t,5,USD = y3
s,0 ×M× xE

s,0 t = 1 : 5,∀s

ps,t,5,USD = y3
s,5 ×M× xE

s,5 t = 6 : 10,∀s

ps,t,5,USD = y3
s,10 ×M× xE

s,0 t = 11 : 15,∀s

ps,t,5,USD = y3
s,15 ×M× xE

s,5 t = 16 : 20,∀s

ps,t,10,USD = y3
s,0 ×M× xE

s,0 t = 1 : 10,∀s

ps,t,10,USD = y3
s,10 ×M× xE

s,10 t = 11 : 20,∀s

ps,t,20,USD = y3
s,0 ×M× xE

s,0 t = 1 : 20,∀s

ps,t,5,NOK = y3
s,0 ×M× xE

s,0

xN
s,0

xN
s,t t = 1 : 5,∀s

ps,t,5,NOK = y3
s,5 ×M× xE

s,5

xN
s,5

xN
s,t t = 6 : 10,∀s

ps,t,5,NOK = y3
s,10 ×M× xE

s,0

xN
s,0

xN
s,t t = 11 : 15,∀s

ps,t,5,NOK = y3
s,15 ×M× xE

s,5

xN
s,5

xN
s,t t = 16 : 20,∀s

ps,t,10,NOK = y3
s,0 ×M× xE

s,0

xN
s,0

xN
s,t t = 1 : 10,∀s

ps,t,10,NOK = y3
s,10 ×M× xE

s,10

xN
s,10

xN
s,t t = 11 : 20,∀s

ps,t,20,NOK = y3
s,0 ×M× xE

s,0

xN
s,0

xN
s,t t = 1 : 20,∀s

taxs,t,l,c = PretaxCFs,t,l,c ∗Tax, ∀s,∀t,∀l,∀c

qs,t,1,c = 0 ∀s,∀t,∀c

qs,t,5,c = 0 t = [5,10,15,20],∀s,∀c

qs,t,10,c = 0 t = [10,20],∀s,∀c

qs,t,20,c = 0 t = 20,∀s,∀c
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qs,t,5,c = (
5
∑

i=t+1
M)× (y3

s,t × xE
s,t −

ps,t,l,c
M ) t = 1 : 4,∀s,∀c

qs,t,5,c = (
10
∑

i=t+1
M)× (y3

s,t × xE
s,t −

ps,t,l,c
M ) t = 6 : 9,∀s,∀c

qs,t,5,c = (
15
∑

i=t+1
M)× (y3

s,t × xE
s,t −

ps,t,l,c
M ) t = 11 : 14,∀s,∀c

qs,t,5,c = (
20
∑

i=t+1
M)× (y3

s,t × xE
s,t −

ps,t,l,c
M ) t = 16 : 19,∀s,∀c

qs,t,10,c = (
10
∑

i=t+1
M)× (y3

s,t × xE
s,t −

ps,t,l,c
M ) t = 1 : 9,∀s,∀c

qs,t,10,c = (
20
∑

i=t+1
M)× (y3

s,t × xE
s,t −

ps,t,l,c
M ) t = 11 : 19,∀s,∀c

qs,t,20,c = (
20
∑

i=t+1
M)× (y3

s,t × xE
s,t −

ps,t,l,c
M ) t = 1 : 19,∀s,∀c

Extensive model for power sourcing

Parameters Power Sourcing

OPEX Opex + sustaining capex NOK/MWh

P Yearly production MWh

GF Fixed grid tariff NOK/MWh

GR Variable grid tariff rate of electricity spot price NOK/MWh

TaxP Property tax NOK/MWh

LME1976 1976-price in year t=0 NOK/MWh

SR Rate of production to regulated sales NOK/MWh

SP Sales price regulated sales NOK/MWh

A Asset value for tax purposes NOK

D Depreciation period Years

TaxI Free allowance of taxation asset value %
TaxR Resource rent tax rate %
π Inflation rate %
G1976 Yearly growth rate of the 1976-price %
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Help variables own sourcing

gs,t = (GF +GR × y1
s,t)×P× xN

s,t [grid tariff (USD/mt) at time t in sce-

nario s]

l1976
s,t = LME1976 × (G1976)

t × xN
s,t [1976-price (USD/mt) at time t in sce-

nario scenario s]

iSA
s,t = ((1−SR)× y1

s,t +SR ×SP)×P× xN
s,t [income stand-alone (USD/mt) at time

t in scenario s]

iOU
s,t = ((1−SR)× l1976

s,t +SR×SP)×P×xN
s,t [income own use at time t in scenario

s]

tP
s,t = P×TaxP × xN

s,t [property tax own sourcing (USD/mt)

at time t in scenario s]

opowerasset
s,t = P× (OPEX +gs,t + tP

s,t)× xN
s,t [opex, grid cost and property tax

own sourcing (USD/mt produced alu-

minium) at time t in scenario s]

ds,t = P×A×(1+π)t

D × xN
s,t ×1000) [depreciation (USD/mt) at time t in

scenario s]

fs,t = P×A× τI × xN
s,t ×1000 [free allowance (USD/mt)]

ms,t = P×SR × (SP − y1
s,t)×M× xN

s,t [regulated sales margin cost USD/mt

produced aluminium at time t in sce-

nario s]

CF_pretaxOU
s,t = iOU

s,t −OPEX ×P× xs,t −gs,t − tP
s,t [the income component of the cash

flow is calculated by multiplying the

yearly production with the 1976-price]

CF_pretaxSA
s,t = iSA

s,t − opexpowerassetSA
s,t × xs,t − gs,t −

taxs,t

[the income component of the cash

flow is calculated by multiplying the

yearly production with the spot elec-

tricity price]

rrtOU
s,t = (CF_pretaxOU

s,t −ds,t − fs,t)×TaxR [resource rent tax as explained later in

this appendix]

Tax_sourceds,t = (PretaxCF_sourceds,t −ds,t)×Tax [corporate tax with own sourcing]

rrtSA
s,t = (CF_pretaxSA

s,t −ds,t − fs,t)×TaxR [resource rent tax as explained later in

this appendix, but with income compo-

nent based on spot electricity price]

Tax_SAs,t = (PretaxCF_SAs,t −ds,t)×Tax [corporate tax stand-alone power asset]
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Detailed explanation of cash flows with own power sourcing

Let "Regulated sales margin cost" be denoted by ms,t in terms of USD/mt produced
aluminium. Further on, let opowerasset

s,t (defined in appendix A) be the sum of operational
expenses, grid tariff and variable property tax for the power asset (USD/mt produced alu-
minium), then the power contract price for the smelter, ps,t , in the case of own power sourc-
ing is just ms,t + opowerasset

s,t , also in terms of USD/mt produced aluminium. An additional
cost incurred by the owner of the power asset is the so-called industry specific resource rent
tax, rrtownuse

s,t , which is derived from the power asset cash flows linked to the 1976 reference
price. Thus, we get the following unadjusted cash flow (USD/mt produced aluminium) for
the smelter which is only dependent on time and scenario, FCF_sourcedunad justed

s,t , when
power is sourced from an own power asset:

lt,s

−Raw

−opowerasset
s,t

−ms,t

= PretaxCF_sourceds,t

− tax_sourceds,t

− rrtownuse
s,t

= FCF_sourcedunad justed
s,t

The after-tax stand-alone free cash flows for the power asset must also be calculated as these
are received if the smelter is shutdown at any given point thus selling the output of the power
asset externally. Let iSA

s,t be the stand-alone income (USD/mt planned produced aluminium)
of the power asset, which is the sum of revenues from unregulated- and regulated power
sales (see appendix A for detailed derivation). The after-tax stand-alone free cash flows can
then be formulated the following way:
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istandalone
s,t

−opexpowerasset
s,t

= PretaxCF_standalones,t

− tax_standalones,t

− rrtstandalone
s,t

= FCF_standaloneunad justed
s,t



Appendix B

Additional result figures

Value plots

Fig. B.1 Value plot -20-year NOK contract Fig. B.2 Value plot - 20-year EUR contract

Fig. B.3 Value plot - 10-year NOK contract Fig. B.4 Value plot - 10-year EUR contract

Fig. B.5 Value plot - 5-year NOK contract Fig. B.6 Value plot - 5-year EUR contract
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Shutdown ratios

Fig. B.7 Shutdown risk: 20-year NOK contract Fig. B.8 Shutdown risk: 20-year EUR contract

Fig. B.9 Shutdown risk: 10-year NOK contract Fig. B.10 Shutdown risk: 10-year EUR contract

Fig. B.11 Shutdown risk: 5-year NOK contract Fig. B.12 Shutdown risk: 5-year EUR contract

Shutdown triggers

Fig. B.13 Shutdown triggers: 20-year NOK contract Fig. B.14 Shutdown triggers: 20-year EUR contract
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Fig. B.15 Shutdown triggers: 10-year NOK contract Fig. B.16 Shutdown triggers: 10-year EUR contract

Fig. B.17 Shutdown triggers: 5-year NOK contract Fig. B.18 Shutdown triggers: 5-year EUR contract

Sensitivity tables

20
-y

ea
rN

O
K Quarterly volatility

0.5x 1.0x 1.5x

L
M

E High 112 294 716
Base 1,578 1,720 2,031
Low 4,918 4,976 5,064

Table B.1 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
M

E High 44 120 239
Base 60 83 127
Low 10 4 −6

Table B.2 Value over only perm. shut. options
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20
-y

ea
rE

U
R Quarterly volatility

0.5x 1.0x 1.5x

L
M

E High 142 325 739
Base 1,699 1,837 2,134
Low 5,037 5,113 5,193

Table B.3 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
M

E High 43 122 234
Base 72 100 152
Low 22 30 27

Table B.4 Value over only perm. shut. options

10
-y

ea
rN

O
K Quarterly volatility

0.5x 1.0x 1.5x

L
M

E High 65 310 753
Base 728 1,022 1,564
Low 3,834 4,000 4,142

Table B.5 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
M

E High 9 133 298
Base 167 270 357
Low 6 45 42

Table B.6 Value over only perm. shut. options

10
-y

ea
rE

U
R Quarterly volatility

0.5x 1.0x 1.5x

L
M

E High 76 334 776
Base 782 1,061 1,595
Low 3,886 4,009 4,185

Table B.7 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
M

E High 20 138 299
Base 181 261 353
Low 4 3 38

Table B.8 Value over only perm. shut. options

5-
ye

ar
N

O
K Quarterly volatility

0.5x 1.0x 1.5x

L
M

E High 63 302 743
Base 659 1,022 1,554
Low 3,576 3,612 3,798

Table B.9 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
M

E High 10 129 236
Base 333 383 346
Low 51 −6 16

Table B.10 Value over only perm. shut. options

5-
ye

ar
E

U
R Quarterly volatility

0.5x 1.0x 1.5x

L
M

E High 72 325 765
Base 691 1,058 1,583
Low 3,600 3,615 3,843

Table B.11 Value over no closure

Quarterly volatility
0.5x 1.0x 1.5x

L
M

E High 12 133 244
Base 343 388 357
Low 44 −4 33

Table B.12 Value over only perm. shut. options



Appendix C

Sensitivities to expected long-term mean
of the different stochastic variables

Tables of smelter value and shutdown probabilities sensitiv-
ities to the expected long-term mean of the different stochas-
tic variables

The sensitivites in the following tables are based on the differences compared to a base case.
In this base case the following assumptions are made:

• µY 1 = 40 EUR/MWh

• µY 3 = 40 EUR/MWh

• µl = $2,300

• µXE = 1.17

• µXN = 0.17

Here µl denotes the expected long-term mean of the LME price, while descriptions of
the other notations are listed in table 4.1.
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O

w
n

so
ur

ci
ng

Variable Multiple Value difference
[USD/mt]

Difference prob.
perm. shutdown

Difference prob.
temp. shutdown

Difference prob.
no shutdowns

El. price 1-year mean 0.7x 91 -3.5 % -13.6 % 16.4 %
El. price 1-year mean 1.3x 85 42.1 % 7.9 % -25.4 %
El. price 3-year mean 0.7x -125 1.0 % 0.5 % -0.7 %
El. price 3-year mean 1.3x 551 -2.2 % 0.9 % 0.8 %
LME price mean 0.7x -1,548 88.9 % -46.4 % -39.7 %
LME price mean 1.3x 9,111 -10.5 % -47.1 % 56.9 %
USD/EUR mean 0.7x -85 -6.4 % -10.4 % 16.5 %
USD/EUR mean 1.3x 486 45.4 % 2.7 % -26.3 %
USD/NOK mean 0.7x 1,275 -3.4 % -10.0 % 13.0 %
USD/NOK mean 1.3x -1,001 20.6 % 6.4 % -16.5 %

Table C.1 Own sourcing - deviations from base case when varying long-term expected means of the
stochastic variables

20
-y

ea
rU

SD

Variable Multiple Value
difference

Difference prob.
perm. shutdown

Difference prob.
temp. shutdown

Difference prob.
no shutdowns

El. price 1-year mean 0.7x -1,409 4.2 % -2.1 % -2.3 %
El. price 1-year mean 1.3x 2,786 4.8 % -2.5 % -2.0 %
El. price 3-year mean 0.7x 3,430 6.4 % -3.6 % -3.7 %
El. price 3-year mean 1.3x -3,183 26.5 % -13.0 % -14.8 %
LME price mean 0.7x -1,890 31.1 % -10.4 % -15.9 %
LME price mean 1.3x 7,923 -67.2 % -17.1 % 80.0 %
USD/EUR mean 0.7x 1,493 -48.2 % 2.1 % 44.7 %
USD/EUR mean 1.3x -212 25.6 % -12.8 % -14.8 %
USD/NOK mean 0.7x -30 7.7 % -3.8 % -4.5 %
USD/NOK mean 1.3x 44 4.9 % -2.8 % -2.2 %

Table C.2 20-year USD - deviations from base case when varying long-term expected means of the
stochastic variables

10
-y

ea
rU

SD

Variable Multiple Value
difference

Difference prob.
perm. shutdown

Difference prob.
temp. shutdown

Difference prob.
no shutdowns

El. price 1-year mean 0.7x -448 -1.2 % 0.5 % 0.4 %
El. price 1-year mean 1.3x 1,150 -0.7 % 0.0 % 0.9 %
El. price 3-year mean 0.7x 3,262 -1.2 % 0.7 % 0.3 %
El. price 3-year mean 1.3x -2,630 48.7 % -10.8 % -25.9 %
LME price mean 0.7x -1,554 56.8 % 20.5 % -27.9 %
LME price mean 1.3x 8,973 -40.4 % -37.3 % 66.2 %
USD/EUR mean 0.7x 2,475 -27.8 % -16.0 % 36.0 %
USD/EUR mean 1.3x -1,048 45.7 % -17.6 % -25.6 %
USD/NOK mean 0.7x -7 -0.2 % 1.4 % -0.5 %
USD/NOK mean 1.3x 75 -1.7 % -1.5 % 1.6 %

Table C.3 10-year USD - deviations from base case when varying long-term expected means of the
stochastic variables

10
-y

ea
rN

O
K

Variable Multiple Value
difference

Difference prob.
perm. shutdown

Difference prob.
temp. shutdown

Difference prob.
no shutdowns

El. price 1-year mean 0.7x -525 -8.9 % 2.8 % 5.0 %
El. price 1-year mean 1.3x 981 -7.8 % 1.5 % 5.3 %
El. price 3-year mean 0.7x 3,214 -9.2 % 2.6 % 5.2 %
El. price 3-year mean 1.3x -3,011 49.8 % -3.3 % -26.0 %
LME price mean 0.7x -1,621 56.8 % 37.3 % -27.9 %
LME price mean 1.3x 8,981 -41.8 % -38.2 % 68.4 %
USD/EUR mean 0.7x 2,443 -30.3 % -17.3 % 39.1 %
USD/EUR mean 1.3x -1,322 46.0 % -14.7 % -25.5 %
USD/NOK mean 0.7x -221 -11.1 % 4.3 % 5.9 %

Table C.4 10-year NOK - deviations from base case when varying long-term expected means of the
stochastic variables
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10

-y
ea

rE
U

R

Variable Multiple Value
difference

Difference prob.
perm. shutdown

Difference prob.
temp. shutdown

Difference prob.
no shutdowns

El. price 1-year mean 0.7x -502 -6.7 % 2.0 % 3.9 %
El. price 1-year mean 1.3x 1,019 -6.6 % 1.3 % 4.5 %
El. price 3-year mean 0.7x 3,224 -7.0 % 2.3 % 4.0 %
El. price 3-year mean 1.3x -2,920 49.8 % -6.8 % -26.1 %
LME price mean 0.7x -1,604 56.8 % 28.5 % -27.9 %
LME price mean 1.3x 8,979 -41.5 % -38.0 % 67.9 %
USD/EUR mean 0.7x 2,433 -30.0 % -17.6 % 39.3 %
USD/EUR mean 1.3x -1,234 45.5 % -17.0 % -25.4 %
USD/NOK mean 0.7x -115 -6.4 % 3.4 % 3.4 %
USD/NOK mean 1.3x -34 -7.3 % -0.2 % 5.4 %

Table C.5 10-year EUR - deviations from base case when varying long-term expected means of the
stochastic variables

5-
ye

ar
U

SD

Variable Multiple Value
difference

Difference prob.
perm. shutdown

Difference prob.
temp. shutdown

Difference prob.
no shutdowns

El. price 1-year mean 0.7x -410 -0.8 % -0.2 % 0.7 %
El. price 1-year mean 1.3x 999 -0.5 % 0.1 % 0.3 %
El. price 3-year mean 0.7x 3,251 -0.2 % -0.3 % 0.2 %
El. price 3-year mean 1.3x -2,576 64.0 % 35.4 % -33.5 %
LME price mean 0.7x -1,832 71.0 % 42.5 % -35.0 %
LME price mean 1.3x 9,015 -26.2 % -45.7 % 59.3 %
USD/EUR mean 0.7x 2,534 -13.5 % -23.9 % 28.9 %
USD/EUR mean 1.3x -1,635 62.8 % 31.6 % -33.2 %
USD/NOK mean 0.7x 12 -0.7 % 2.4 % -0.5 %
USD/NOK mean 1.3x 50 -0.9 % -1.9 % 1.8 %

Table C.6 5-year USD - deviations from base case when varying long-term expected means of the
stochastic variables

Sp
ot

Variable Multiple Value
difference

Difference prob.
perm. shutdown

Difference prob.
temp. shutdown

Difference prob.
no shutdowns

El. price 1-year mean 0.7x 2,687 0.1 % -23.7 % 23.5 %
El. price 1-year mean 1.3x -1,539 91.6 % 47.3 % -47.1 %
El. price 3-year mean 0.7x -17 -0.2 % 0.2 % -0.1 %
El. price 3-year mean 1.3x -12 -0.3 % -0.3 % 0.6 %
LME price mean 0.7x -1,629 99.6 % 49.8 % -49.5 %
LME price mean 1.3x 9,301 -0.4 % -47.9 % 48.2 %
USD/EUR mean 0.7x 2,695 -0.3 % -24.3 % 24.6 %
USD/EUR mean 1.3x -1,537 92.3 % 47.7 % -47.5 %
USD/NOK mean 0.7x -52 -0.1 % -0.1 % 0.2 %
USD/NOK mean 1.3x -12 -0.3 % -0.9 % 1.1 %

Table C.7 Spot - deviations from base case when varying long-term expected means of the stochastic
variables
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Comments to the tables

The degree of impact from the different stochastic variables on the free cash flows of an
aluminium smelter is varying due to the heterogeneous composition of cost and revenues.
When analysing e.g. the smelter value or the shutdown probabilities one would ideally take
into account varying expectations about all stochastic variables, but this could potentially
produce results that are hard to interpret. In order to limit the scope of such analyses a natu-
ral approach is to vary expectations about only one of the stochastic variables while holding
all other expectations constant. Note that all variables are still stochastic, but that the long-
term expected means of the non-analysed variables are now held constant. Intuitively the
stochastic variable for which to vary expectations should have large impact on the free cash
flows of the smelter. First, tables C.1- C.7 clearly show that when doing the same relative
change of the long-term expected mean of one of the stochastic variables, the LME expecta-
tions have the strongest impact on the free cash flows as well as on shutdown probabilities.
The natural interpretation of this is that the LME price is the main source of revenues for the
smelter. We therefore argue that doing analyses for different expectations of the long-term
expected mean of the LME price should be of highest priority. Secondly, it is clear that the
USD/EUR exchange rate also has a significant impact on the free cash flows and shutdown
probabilities. This is probably because the base currency of electricity is EUR. Thus, even if
entering long-term electricity contracts in other currencies than EUR, the net gain from the
position is still dependent on how the USD/EUR exchange rate evolves. This is illustrated
by tables C.3- C.5. The impact on free cash flows and shutdown probabilities from varying
the long-term expected mean of the USD/EUR exchange rate is approximately the same for
the 10-year contracts in USD, NOK and EUR. Consequently, after the LME price, doing
analyses varying the long-term expected mean of the USD/EUR exchange rate should be
prioritized. Finally, varying the long-term expected mean of the 3-year electricity price has
a noticeable impact on the free cash flows and shutdown probabilities except for the spot
contracts which intuitively are noticable impacted by the 1-year electricity price.



Appendix D

Pseudocode for the MATLAB program

Below is the pseudocode for the most important routines of the Matlab program that was
written to solve the problem described in this thesis. A few comments to the attached pseu-
docode:

• The code for the cases of own power sourcing is very similar to the other contract
types with only a few minor differences. Therefore this has not been attached.

• The only difference between the LSM approach and perfect foresight is that one uses
the actual continuation values along a path and not the approximated ones in order to
derive an operating policy. The code for perfect foresight is thus not attached.

• Scenarios for the time series of the stochastic variables are generated following the
procedure described in sections 3.5. Scenarios are generated on quarterly basis and in
our model we then just pick the generated data from each 4th time step to be used for
each respective year. The associated code is not attached.

• The Matlab program also involves a number of other functions that are used to analyse
the data and write out the results presented in section 4, this is not attached.

• In order to solve the smelter problem when only having permanent shutdown options
one only has to set the cost to go from operating to permanently shutdown as well as
temporary shutdown opex arbitrarily large.
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Main Program 
Get input data on assumptions and historical time series for variables from external file 
For Each TimeSeries Do  %Calculate AR-parameters 
    [Coefficients(i, :, :), Residuals(:,i)] = Regression(NominalValues(:,i), LongTermMean(i,1), ExplicitLongTermMean);   %Calculate 
AR-parameters 
End 
InSampleScenarios= call GenerateScenarios  %generates scenarios for all the variable types to be used for regressions 
OutSampleScenarios= call GenerateScenarios  %generates scenarios for all the variable types to be used for valuations 
For Each ContractType Do  %calculate FCFs of smelter and RemExp at each time step for each scenario 
 If ContractType="Own sourcing" Then 
  [InFcfScenarios, InRemExp, InCfPowerAsset] = call ContractPower(InSampleScenarios, ContractType) 
  [OutFcfScenarios, OutRemExp, OutCfPowerAsset] = call ContractPower(OutSampleScenarios, ContractType) 
 Else 
  [InFcfScenarios, InRemExp, InContractPrice] = call Contract(InSampleScenarios, ContractType) 
  [OutFcfScenarios, OutInRemExp, OutInContractPrice] = call Contract(OutSampleScenarios, ContractType) 
 End If 
End For 
For Each ContractType Do    %calculate the average NPV of all scenarios for the different closure triggers 
 AverageNpvNoClosure = call NoClosure(OutFcfScenarios, RemExp) 
 AverageNpvComboLogic = call CumulativeMarginsTrigger(OutFcfScenarios, RemExp) 
 AverageNpvPerfForesight = call PerfectForesight(OutFcfScenarios, RemExp) 
End For 
For Each ContractType Do   %calculate the average NPV of all scenarios when only permanent shutdown option and store the  
  results 
 If ContractType="Own sourcing" Then 
  [CoefsContinuationOperating, CoefsContinuationTemporary, CoefsRemExp]=call     
   CoefGeneratorPermShutOwnSourcing(InFcfScenarios,InSampleScenarios,InRemExp, 
    InCfPowerAsset) 
  [AverageNpvPermShutOwnSourcing,  PolicyPermShutOwnSourcing]=call PermShutOwnSourcing   
   (OutFcfScenarios,OutScenarios,CoefsContinuationOperating, 
  CoefsContinuationTemporary, CoefsRemExp, OutCfPowerAsset) 
 Else 
  [CoefsContinuationOperating, CoefsContinuationTemporary]=call CoefGeneratorPermShut   
   (InFcfScenarios,InSampleScenarios,InRemExp, InCfPowerAsset) 
  [AverageNpvPermShut, PolicyPermShut]=call Permshut      
   (OutFcfScenarios,OutScenarios,CoefsContinuationOperating,      
  CoefsContinuationTemporary) 
 End If 
End For 
For Each ContractType Do   %calculate the average NPV of all scenarios when full operational flexibility using the LSM method and store 
the results 
 If ContractType="Own sourcing" Then 
  [CoefsContinuationOperating,  CoefsContinuationTemporary,  CoefsRemExp]=call      
   CoefGeneratorOwnSourcing(InFcfScenarios,InSampleScenarios,InRemExp, 
    InCfPowerAsset) 
  [AverageNpvPermShutOwnSourcing, PolicyPermShutOwnSourcing]=call SwitchingOwnSourcing   
   (OutFcfScenarios,OutScenarios,CoefsContinuationOperating, 
  CoefsContinuationTemporary, CoefsRemExp, OutCfPowerAsset) 
 Else 
  [CoefsContinuationOperating, CoefsContinuationTemporary]=call CoefGenerator    
   (InFcfScenarios,InSampleScenarios,InRemExp, InCfPowerAsset) 
  [AverageNpvPermShut, PolicyPermShut]=call Switching      
   (OutFcfScenarios,OutScenarios,CoefsContinuationOperating,      
  CoefsContinuationTemporary) 
 End If 
End For 
For Each ContractType Do   %calculate the average NPV of all scenarios when full operational flexibility under perfect f 
  oresight and store the results 
 If ContractType="Own sourcing" Then   
     [AverageNpvPermShutOwnSourcing, PolicyPermShutOwnSourcing]=call SwitchingOwnSourcingPerfForesight   
   (OutFcfScenarios,OutScenarios,CoefsContinuationOperating,     
  CoefsContinuationTemporary, CoefsRemExp, OutCfPowerAsset) 
 Else   
  [AverageNpvPermShut, PolicyPermShut]=call SwitchingPerfForesight     
   (OutFcfScenarios,OutScenarios,CoefsContinuationOperating,         
  CoefsContinuationTemporary) 
 End If 
End For 
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CoefGeneratorFullOperationalFlexibility 
Note that 0 = operating, 1 = temporarily shutdown and 2 = permanently shutdown 
Initiate parameters: 
- NumScen = # of scenarios 
- T = lifetime 
- InSampleScenarios = scenarios for the short-term electricity price 
- ShutdownCostOtoP = switching cost from operating to permanent shutdown 
- ShutdownCostOtoT = switching cost from operating to temporary shutdown 
- StartupCost = switching cost from temporary shutdown to operating 
- ShutdownCostTtoP = switching cost from temporary shutdown to permanent shutdown 
- ShutdownOpex = operational expenses incurred while in temporary shutdown 
- TempDuration = maximum number of years in temporary shutdown 
- Wacc = discount rate for the cash flows of the smelter 
Initiate variables and arrays: 
- ElSale = net value of selling current year’s pre-purchased electricity in the spot market 
- yOperating = array to store NPV of coming from an operating state at each time step 
- yTemporaryShutdown = array to store NPV of coming from an operating state at each time step 
- yTemporaryShutdownAdjusted = array used to temporarily store values when maximum limit of periods in temporary shutdown is exceeded 
- CoefOperatingStorage = store coefficients used to approximate continuation values of beingin operating mode 
- CoefTemporaryStorage = store coefficients used to approximate continuation values of in temporary shutdown 
- Tarray = array that holds the remaining time of a contract given time t.  
- TemporaryShutdownCounter = counts the number of executive time periods in which the smelter has been temporarily shutdown 
- RegressionParameters = array that temporarily stores values of explanatory variables for the multivariate regression 
 
% Filling Tarray and ElSale 
    For t = 2:T  
        For s = 1:NumScen, 
            if mod(t-1,ContractLength)==0 
            else 
                Tarray(s,t) = ContractLength-mod(t-1,ContractLength); 
            end 
            if mod(t-1, ContractLength) == 0  
                ElSale(s,t) = 0; 
            else 
                ElSale(s,t) = 14*InSampleScenarios(s,t)-ContractPriceUsdTon(s,t); 
            end 
        end 
    end 
 
%Calculate smelter values at time T and respective terminal values. Store in index t-1. 
    For s = 1:NumScen,    
        %Create terminal value estimates 
          yOperatingTerminalValue=InSampleFcf(s,T)/Wacc; 
          yTemporaryShutdownTerminalValue=(ElSale(s,T-1)+ShutdownOpex)/Wacc;              
         
        % Calculate values for yOperating - that is given that you at T-1 is operating, what operating mode should be  chosen at T 
        If (InSampleFcf(s,T)+yOperatingTerminalValue> ShutdownCostOtoT+ElSale(s,T-1)+ShutdownOpex      
 +yTemporaryShutdownTerminalValue && InSampleFcf(s,T)+yOperatingTerminalValue>(ShutdownCostOtoP                                             
  +RemExp(s,T-1))),  %Choose to remain operating 
               yOperating(s,T-1,1)=(InSampleFcf(s,T)+yOperatingTerminalValue)*(1/(1+Wacc));   
        Else If (ShutdownCostOtoT+ElSale(s,T-1)+ShutdownOpex+yTemporaryShutdownTerminalValue>InSampleFcf(s,T)   
  +yOperatingTerminalValue && ShutdownCostOtoT+ElSale(s,T-1)+ShutdownOpex       
 +yTemporaryShutdownTerminalValue>ShutdownCostOtoP+RemExp(s,T-1)), %Choose to temporarily     
        shutdown 
               yOperating(s,T-1,1)=(ShutdownCostOtoT+ElSale(s,T-1)        
      +ShutdownOpex+yTemporaryShutdownTerminalValue)*(1/(1+Wacc)); 
        Else  %Choose to permanently shutdown 
               yOperating(s,T-1,1)=(ShutdownCostOtoP+RemExp(s,T-1))*(1/(1+Wacc)); 
        End If 
         
        % Calculate values for yTemporaryShutdown- that is given that you at T-1 are temporarily shutdown, what  operating 
mode should be chosen at T. Store in index t-1. 
        If (InSampleFcf(s,T)+StartupCost+yOperatingTerminalValue> ElSale(s,T-1)+ShutdownOpex     
 +yTemporaryShutdownTerminalValue && InSampleFcf(s,T)+StartupCost+yOperatingTerminalValue>   
 (ShutdownCostTtoP+RemExp(s,T-1))), % Chose to open the smelter at time T 
               yTemporaryShutdown(s,T-1,1)=(InSampleFcf(s,T)+yOperatingTerminalValue)*(1/(1+Wacc)); 
               TemporaryShutdownCounter(s)=0;  
        Else If (ElSale(s,T-1)+ShutdownOpex+yTemporaryShutdownTerminalValue>InSampleFcf(s,T)+StartupCost+   
  yOperatingTerminalValue && ElSale(s,T-1)+ShutdownOpex+yTemporaryShutdownTerminalValue>   
  ShutdownCostTtoP+RemExp(s,T-1)), % Choose to remain temporarily shutdown at time T  
               yTemporaryShutdown(s,T-1,1)=(ElSale(s,T-1)+ShutdownOpex+yTemporaryShutdownTerminalValue)  
       *(1/(1+Wacc)); 
               TemporaryShutdownCounter(s)=1; 
        Else  %Shut down permanently at time T 
               yTemporaryShutdown(s,T-1,1)=(ShutdownCostTtoP+RemExp(s,T-1))*(1/(1+Wacc)); 
               TemporaryShutdownCounter(s)=0; 
        End If 
    End For 
t=T;  
While t>2  %The backwards dynamic programming routine. Starts at t=T and works  backwards. 
% Regress continuation value of operating and temporary shutdown at time t on values of the explanatory variables at time t-1 and store 
the coefficients 
[CoefOperating,~,statsOper]=MultiVarRegressionFiveVariables(InSampleFcf(:,t-1), InSampleScenarios(:,t-1),InSampleUsdEur  
   (:,t-2), InSampleNpy3(:,t-1), Tarray(:,t-1), yOperating(:,t-1,1), NumScen); 
[CoefTemporary,~,statsTemp]=MultiVarRegressionFiveVariables(InSampleFcf(:,t-1), InSampleScenarios(:,t-1),InSampleUsdEur  
   (:,t-2),InSampleNpy3(:,t-1),Tarray(:,t-1), yTemporaryShutdown(:,t-1,1), NumScen); 
-> Store the regression coefficients in CoefOperatingStorage and CoefTemporaryStorage 
-> Create an array with the values of the explanatory variables at time t 
For s=1:NumScen,               % For each scenario determine the optimal operating mode at time t 
 % Calculate approximations of the continuation values of operating and temporarily shutdown 
         ContinuationOperating=(RegressionParameters(s,:)*CoefOperating); 
         ContinuationTemporary=(RegressionParameters(s,:)*CoefTemporary); 
             
         % Calculate values for yOperating - that is given that you at t-1 is operating, what operating mode should be  chosen at 
t. 
         If (InSampleFcf(s,t-1)+ContinuationOperating> ShutdownCostOtoT+ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary  
 && InSampleFcf(s,t-1)+ContinuationOperating>(ShutdownCostOtoP+RemExp(s,t-2))), %Choose to remain    
          operating at time t 
                  yOperating(s,t-2,1)=(InSampleFcf(s,t-1)+ContinuationOperating)*(1/(1+Wacc));                  
         Else If (ShutdownCostOtoT+ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary>InSampleFcf(s,t-1)   
 +ContinuationOperating && ShutdownCostOtoT+ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary>   
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 ShutdownCostOtoP+RemExp(s,t-2)), % Choose to temporarily shutdown at time t 
                 yOperating(s,t-2,1)=(ShutdownCostOtoT+ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary)*(1/(1  
     +Wacc)); 
         Else  %Shut down permanently at time t 
                 yOperating(s,t-2,1)=(ShutdownCostOtoP+RemExp(s,t-2))*(1/(1+Wacc));                   
         End If 
         
         % Calculate values for yTemporaryShutdown- that is given that you at t-1 are temporarily shutdown, what  
 operating mode should be chosen at t. Store in index t-1. 
         If (InSampleFcf(s,t-1)+StartupCost+ContinuationOperating> ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary &&   
 InSampleFcf(s,t-1)+StartupCost+ContinuationOperating>(ShutdownCostTtoP+RemExp(s,t-2))), %Choose to re-  
            open at time t 
                  yTemporaryShutdown(s,t-2,1)=(InSampleFcf(s,t-1)+StartupCost+ContinuationOperating)*(1/(1+Wacc)); 
                  yTemporaryShutdown(s,t-1,2)=0; 
                 TemporaryShutdownCounter(s)=0; 
                 For i=t:T 
                      yTemporaryShutdown(s,i,2)=yOperating(s,i,2);  %Since choose to re-open ,the optimal operating   
           modes after time t correspond to yOperating 
                 End For 
         Else If (ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary>InSampleFcf(s,t-1)+StartupCost+ContinuationOperating  
 && ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary>ShutdownCostTtoP+RemExp(s,t-2)), %Choose to remain   
           temporarily shutdown 
                 yTemporaryShutdown(s,t-2,1)=(ElSale(s,t-2)+ShutdownOpex+ContinuationTemporary)*(1/(1+Wacc)); 
                 yTemporaryShutdown(s,t-1,2)=1;  
                 TemporaryShutdownCounter(s)=TemporaryShutdownCounter(s)+1; 
         Else  %Choose to permanently shutdown at time t 
                 yTemporaryShutdown(s,t-2,1)=(ShutdownCostTtoP+RemExp(s,t-2))*(1/(1+Wacc)); 
                 yTemporaryShutdown(s,t-1,2)=2; 
                For i=t:T 
                    yTemporaryShutdown(s,i,2)=2;  %Since permanent shutdown, operating mode at all times after time t is  
     permanently shutdown 
                End For 
                TemporaryShutdownCounter(s)=0; 
            End  If       
        End For 
 
If t<T 

yTemporaryShutdownAdjusted= array to store temporary choices when solving violations 
-> Check if TemporaryShutdownCounter(s)=3 , then set Violation=1 %If so the maximum number of periods in temporary  
        shutdown has been exceeded in scenario s 
              
If Violation==1;   %If maximum number of periods in temporary shutdown exceeded then check if best to change the  
    operating mode at the end of the violation period to operating or permanently shutdown. This is done  
   working on with the yTemporaryShutdown array. 
-> Store values of explanatory variables at time t+2     
w=t+1                                   
For s=1:NumScen                                   

                        If w==21  %The last period in the violation period is the final node 
                            yOperatingTerminalValue=InSampleFcf(s,w)/Wacc; 
                            If (InSampleFcf(s,w)+StartupCost+yOperatingTerminalValue>(ShutdownCostTtoP+RemExp(s,w-1)))   
   && TemporaryShutdownCounter(s)==3, %Choose whether to operate or permanently shutdown at   
       t+2 if violation in scenario 
                              yTemporaryShutdownAdjusted(s,w-1,1)=(InSampleFcf(s,w)+ StartupCost    
         +yOperatingTerminalValue)*(1/(1+Wacc)); 
                                 yTemporaryShutdownAdjusted(s,w,2)=0;                                 
                            Else If TemporaryShutdownCounter(s)==3 
                                 yTemporaryShutdownAdjusted(s,w-1,1)=(ShutdownCostTtoP+RemExp(s,w-1))*(1/(1  
         +Wacc)); 
                                 yTemporaryShutdownAdjusted(s,w,2)=2; 
                            End If 
                        Else %The last period in the violation period is not the final node 
                            If TemporaryShutdownCounter(s) == 3, 
                                  %Approximate continuation value of operating 
    ContinuationOperating=(RegressionParameters(s,:)*CoefOperatingStorage(:,w+1,1));  
                            End If 
                         If(InSampleFcf(s,w)+StartupCost+ContinuationOperating>(ShutdownCostTtoP+RemExp(s,w-1)))   
   && TemporaryShutdownCounter(s)==3, %Choose whether to operate or permanently shutdown at   
      t+2 if violation in scenario s 
                                 yTemporaryShutdownAdjusted(s,w-1,1)=(InSampleFcf(s,w)+ StartupCost+    
         ContinuationOperating)*(1/(1+Wacc)); 
                                 yTemporaryShutdownAdjusted(s,w,2)=0; 
                                 For i=w+1:T  
                                      yTemporaryShutdownAdjusted(s,i,1)=yOperating(s,i,1);  %Since choose to   
         re-open ,the optimal operating modes    
        after time t correspond to  yOperating 
                                      yTemporaryShutdownAdjusted(s,i,2)=yOperating(s,i,2);   
                                 End 
                         Else If TemporaryShutdownCounter(s)==3 
                                 yTemporaryShutdownAdjusted(s,w-1,1)=(ShutdownCostTtoP+RemExp(s,w-1))*(1/(1  
         +Wacc));   
                                 yTemporaryShutdownAdjusted(s,w,2)=2; 
                         End  If 
                    End If 
          End For 
 
 
          For i=w:-1:t   %Work backwards in the violation period just like in the standard procedure to determine   
  optimal control.                   
           -> Store the values of the explanatory variables in a matrix 
  % Regress continuation value of temporary shutdown at time i on values of the explanatory variables at   
 time i-1 and store the coefficients 
                 [CoefTemporary,~,stataAdj]=MultiVarRegressionFiveVariables(InSampleFcf(:,i-1),     
  InSampleScenarios(:,i-1),InSampleUsdEur(:,i-2),InSampleNpy3(:,i-1), Tarray(:,i-1),     
 yTemporaryShutdownAdjusted(:,i-1,1), NumScen); 
                 -> Store the regression coefficients                            
                  For s=1:NumScen,                            
                         ContinuationOperating=(RegressionParameters(s,:)*CoefOperatingStorage(:,i,1)); %Approximate  
            continuation value  
            of operating 
                         ContinuationTemporary=(RegressionParameters(s,:)*CoefTemporaryStorage(:,i,1)); %Approximate   
            continuation value   
           of temporary shutdown 
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                         % Calculate values for yTemporaryShutdown- that is given that you at i-1 are temporarily   
  shutdown, what operating mode should be chosen at i. Store in index i-1. 
                          If (InSampleFcf(s,i-1)+StartupCost+ContinuationOperating> ElSale(s,i-2)    
   +ShutdownOpex+ContinuationTemporary && InSampleFcf(s,i-1)+ StartupCost+     
  ContinuationOperating>(ShutdownCostTtoP+RemExp(s,i-2))&&TemporaryShutdownCounter(s)==3), 
                                   yTemporaryShutdownAdjusted(s,i-2,1)=(InSampleFcf(s,i-1)+ StartupCost+    
            ContinuationOperating)*(1/(1+Wacc)); 
                                  yTemporaryShutdownAdjusted(s,i-1,2)=0;                              
                                  For k=i:T 
                                       yTemporaryShutdownAdjusted(s,k,1)=yOperating(s,k,1); 
                                       yTemporaryShutdownAdjusted(s,k,2)=yOperating(s,k,2); 
                                  End For 
                          Else If (ElSale(s,i-2)+ShutdownOpex+ContinuationTemporary>InSampleFcf(s,i-1)+StartupCost+   
   ContinuationOperating && ElSale(s,i-2)+ShutdownOpex+ContinuationTemporary>    
  ShutdownCostTtoP+RemExp(s,i-2) && TemporaryShutdownCounter(s)==3), 
                                 yTemporaryShutdownAdjusted(s,i-2,1)=(ElSale(s,i-2)+ShutdownOpex+    
          ContinuationTemporary )*(1/(1+Wacc)); 
                                 yTemporaryShutdownAdjusted(s,i-1,2)=1; 
                                 Counter(s)=Counter(s)+1; %Count new number of temporary shutdowns in the   
       violation period 
                          Else If TemporaryShutdownCounter(s)==3 
                                 yTemporaryShutdownAdjusted(s,i-2,1)=(ShutdownCostTtoP+RemExp(s,i-2))*(1/(1  
          +Wacc)); 
                                 yTemporaryShutdownAdjusted(s,i-1,2)=2; 
                                 For k=i:T 
                                      yTemporaryShutdownAdjusted(s,k,2)=2; 
                                 End For 
                          End If 
                  End For                      
          End For 
 %Determine optimal operating mode at time t given that you at time t-1 is temporarily shutdown. Now possible to 
 choose temporary shutdown since removed the violation in the violation period. 
         i=t; 
         -> Store the values of the explanatory variables in a matrix 
 % Regress continuation value of temporary shutdown at time t on values of the explanatory variables at time t-1 
 and store the coefficients 
         [CoefTemporary,~,statsTemp]=MultiVarRegressionFiveVariables(InSampleFcf(:,i-1), InSampleScenarios(:,i-  
 1),InSampleUsdEur(:,i-2),InSampleNpy3(:,i-1), Tarray(:,i-1), yTemporaryShutdownAdjusted(:,i-1,1),   
 NumScen); 
         -> Store regression coefficients 
         For s=1:NumScen                     
          ContinuationOperating=(RegressionParameters(s,:)*CoefOperatingStorage(:,i,1)); %Approximate continuation  
           value of operating 
                 ContinuationTemporary=(RegressionParameters(s,:)*CoefTemporaryStorage(:,i,1));%Approximate continuation  
          value of temporary shutdown                         
         End For     
 If TemporaryShutdownCounter(s)==3 
  If (InSampleFcf(s,i-1)+StartupCost+ContinuationOperating> ElSale(s,i-2)+ShutdownOpex+    
  ContinuationTemporary && InSampleFcf(s,i-1)+StartupCost+ContinuationOperating>    
 (ShutdownCostTtoP+RemExp(s,i-2))), %Choose to re-open at time t 
                           yTemporaryShutdown(s,i-2,1)=(InSampleFcf(s,i-1)+StartupCost+ContinuationOperating)*(1/(1  
       +Wacc)); 
                                 yTemporaryShutdown(s,i-1,2)=0; 
                                 TemporaryShutdownCounter(s)=0; 
                                 For n=i:T 
                                  yTemporaryShutdown(s,n,2)=yOperating(s,n,2); 
                                 End For 
                 Else If (ElSale(s,i-2)+ShutdownOpex+ContinuationTemporary>InSampleFcf(s,i-1)+StartupCost+    
  ContinuationOperating && ElSale(s,i-2)+ShutdownOpex+ContinuationTemporary>     
 ShutdownCostTtoP+RemExp(s,i-2)), %Choose to remain temporarily shutdown at time t        
 yTemporaryShutdown(s,i-2,1)=(ElSale(s,i-2)+ShutdownOpex+ContinuationTemporary)*(1/(1     
      +Wacc)); 
                                  yTemporaryShutdown(s,i-1,2)=1; 
                                  TemporaryShutdownCounter(s)=Counter(s); 
                                  For p=i:T %Note that the violation adjusted values and operating modes are now stored  
     in yTemporaryShutdown 
                                   yTemporaryShutdown(s,p-2,1)=yTemporaryShutdownAdjusted(s,p-2,1);  
                                     yTemporaryShutdown(s,p-1,2)=yTemporaryShutdownAdjusted(s,p-1,2); 
                                  End For 
                 Else   %Choose to permanently shutdown at time t 
                   yTemporaryShutdown(s,i-2,1)=(ShutdownCostTtoP+RemExp(s,i-2))*(1/(1+Wacc)); 
                                  yTemporaryShutdown(s,i-1,2)=2; 
                                  For r=i:T 
                                   yTemporaryShutdown(s,r,2)=2; 
                                  End For 
                                  TemporaryShutdownCounter(s)=0; 
                            End If                                              
                        End If 
                    End For 
                End If 
             End If 
         
 t=t-1; %Decrease the time step with one 
 -> Reset counter 
End While 
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ValueWithFullOperationalFlexibility 
Equal to the code for CoefGenerator only that no new regressions are conducted and out-of-sample 
scenarios are used. Instead the already stored regression coefficients are used to approximate 
continuation values by multiplying them with the out-of-sample values of the explanatory variables. 
In addition, the smelter value is calculated in the end based on the derived policy. The code for this 
is as follows: 
 
%Calculate values given derived non-optimal policy 
    yCFs=zeros(NumScen, T); % Create array to store the calculated cash flows     
    For s=1:NumScen 
        PermanentIndicator=0; % Indicator variable to keep track whether a permanent shutdown has already been conducted 
        % Fill cash flows at time 1. We know that we come from an operating state. 
 If yOperating(s,2,2)==0  %Operating at this time in this scenario 
            yCFs(s,2)=Fcf(s,2); 
        Else If yOperating(s,2,2)==1  %Temporarily shutdown at this time in this scenario 
            yCFs(s,2)=ShutdownCostOtoT+ElSale(s,1)+ShutdownOpex; 
        Else 
            yCFs(s,2)=ShutdownCostOtoP+RemExp(s,1); 
            PermanentIndicator=1; 
        End If 
         
 %Fill cash flows for the rest of the period. Uncertain what state we come from. 
 For t=3:T 
           If PermanentIndicator==0  % If no permanent shutdown has been conducted in this scenario 
               If yOperating(s,t,2)==0  %Operating at this time in this scenario 
                   If yOperating(s,t-1,2)==0  %Come from an operating state 
                       yCFs(s,t)=Fcf(s,t); 
                   Else If yOperating(s,t-1,2)==1  %Come from a temporarily shutdown state 
                       yCFs(s,t)=Fcf(s,t)+StartupCost;               
                   End 
               Else If yOperating(s,t,2)==1  %Temporarily shutdown at this time in this scenario 
                   If yOperating(s,t-1,2)==0 %Come from an operating state 
                       yCFs(s,t)=ShutdownCostOtoT+ElSale(s,t-1)+ShutdownOpex; 
                   Else If yOperating(s,t-1,2)==1  %Come from a temporarily shutdown state 
                       yCFs(s,t)=ElSale(s,t-1)+ShutdownOpex;               
                   End 
               Else  %Shutdown permanently at this time in this scenario 
                   If yOperating(s,t-1,2)==0  %Come from an operating state 
                       yCFs(s,t)=ShutdownCostOtoP+RemExp(s,t-1); 
                   Else If yOperating(s,t-1,2)==1   %Come from a temporarily shutdown state 
                       yCFs(s,t)=ShutdownCostTtoP+RemExp(s,t-1);      
                   End 
                   PermanentIndicator=1;  %Set indicator value to true. 
               End 
           Else  %We have already shutdown permanently 
               yCFs(s,t)=0; 
           End If       
        End For 
         
 %Include terminal values given state at time T if not permanently shutdown 
        If PermanentIndicator==0 
            If yOperating(s,T,2)==0 
                yOperatingTerminalValue=Fcf(s,T)/Wacc; 
                yCFs(s,T)=yCFs(s,T)+yOperatingTerminalValue; 
            Else If yOperating(s,T,2)==1, 
                yTemporaryShutdownTerminalValue=(ElSale(s,T-1)+ShutdownOpex)/Wacc; 
                yCFs(s,T)=yCFs(s,T)+yTemporaryShutdownTerminalValue; 
            End If 
        End If         
    End For 
     
    yNPV=zeros(NumScen); %Array to store NPV 
     
%Calculate and store NPV from each scenario 
    For s=1:NumScen; 
        Npv=0; 
        For t=1:T-1 
            Npv=Npv+yCFs(s,t+1)*(1/((1+Wacc)^t)); %Calculate NPV of the cash flow given that we are now in year 0 
        End For 
        yNPV(s)=Npv; 
    End For 
    
%Calculate average NVP across all scenarios 
    Npv=0; 
    For s = 1:NumScen, 
       Npv = Npv + yNPV(s); 
    End For 
    
    Npv = Npv/NumScen; 
     
    %Store the previously derived policy 
    yPolicy=ones(NumScen,T)*7; 
    For s = 1:NumScen, 
        For t = 1:T, 
            yPolicy(s,t)=yOperating(s,t,2);  %Store the optimal policy at each time step 
        End For 
    End For           
 
         
 
 
 

 

 



Appendix E

Validation of the Matlab routine

Due to the number of industry specific constraints, we applied the MATLAB code and
LSM logic described in this paper on a different real option problem with the intention
to validate the code. A fairly simple real option problem was found in the appendices
of Lemelin (2009). The paper presents a method to valuate mining investments by using
the LSM approach, and a simple case of timing when to produce gold from a gold mine is
used as a demonstration in the appendix of the paper. As the policy differs slightly from
the aluminium smelter case we evaluated the investment decision by first using the policy
presented in Lemelin (2009), and later by using the valuation technique we have used in the
smelter case.

The mining investment case is a single factor model where the payoff of the underlying
asset, the gold mine, is explained by the price of gold. The simplified numerical example
in Lemelin (2009) maximizes the expected value of extracting gold from a mine using three
time steps. The gold can either be extracted in time t +1 or t +2 given that we are in time
t. Thus, the owners have the option to shut down the mine temporarily and extract gold
at a later time for a given shutdown, reopen and maintenance cost. Since there is a short
time horizon, the optimal operating policy is derived by comparing the expected payoffs of
the two operating modes at time t, meaning that the payoff in time t + 1 and the payoff in
time t + 2 are both regressed on the same explanatory variables from time t. This differs
from the aluminium smelter case where continuation values from t + 2 are regressed with
explanatory variables from time t +1, and an optimal policy is derived at each time step.

In order to properly validate the code we first valuate the mine by using the method
in Lemelin (2009). The following parameters and gold price paths was used in order to
calculate cash flows and continuation values:

By regressing the cash flows on gold prices and squared gold prices from time t we
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Item Description
Production rate $500,000 oz/year
Production cost $450/oz
Risk-free interest rate 3%/year
Cost inflation 3%/year
Maintenance cost $10M/year
Shutting cost $5M
Reopening cost $5M
Abandonment cost $0

Table E.1 Parameter values

Path Year t Year t+1 Year t+2
1 563.33 541.81 550.83
2 336.63 469.55 512.54
3 549.68 537.65 487.7
4 390.65 350.84 483.28
5 643.49 728.94 632.73
6 350.03 420.12 430.79
7 634.19 804.16 748.41
8 424.45 519.34 595.31
9 597.71 700.17 615.59

10 440.83 540.34 674.47

Table E.2 Simulated gold prices

estimated the value of both producing gold now and receive a cash flow in time t + 1 and
delaying investments with one time step and receive a cash flow in time t + 2. The opti-
mal operating policy was derived by choosing the maximum value from the two operating
modes. When using the same calculation method as in Lemelin (2009), our optimal oper-
ating policy table matched the policy in table C.8 from the paper. The mine was valued at
$62.43M using the option, and $65.13M using the actual simulated cash flows.

We now use the same approach and decision methods as applied on the aluminium
smelter to valuate the gold mine. This implies that an optimal operating mode is decided
at time t + 2 for each scenario. The discounted continuation values are then regressed on
explanatory variables at time t+1 and a new optimal operating mode is derived in time t+1
from maximizing the value at that time. Thus, regressions are performed and optimal oper-
ating modes are decided for each time step rather than regressing every value back to time t

at once and then make a decision. When applying this approach, our optimal operating table
deviates in two scenarios compared to the table in Lemelin (2009), as illustrated below:

Path Operating mode from Lemelin Operating mode with smelter approach
1 Keep open Keep open
2 Shut down Shut down
3 Keep open Keep open
4 Shut down Shut down
5 Keep open Keep open
6 Shut down Shut down
7 Keep open Keep open
8 Shut down Keep open
9 Keep open Keep open

10 Shut down Keep open

Table E.3 Optimal policies

When calculating the value of the mine using option pricing we arrive at $61.88M com-
pared to $62.43M in Lemelin (2009). Our approach seems fairly accurate despite evaluating
the mine with a different approach and with fairly few price scenarios.
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