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Abstract 
Due to the possibility of storage, a simultaneous treatment of supply and demand is suitable in hydro 

dominated electricity markets. In this paper we reassess the predictive ability of a fundamental 

market model originally developed in the mid-1990s for the Norwegian electricity sector. Albeit 

improved when considering only one state for price change, we find that the fit and short-term 

performance of this model is poorer when applied with newer data from a Norwegian pricing area. 

As the model hinges on an assumption about physical constraints being non-binding, model 

extensions serve little purpose. Error correction models are applied in order to obtain a benchmark 

for the fundamental model.   
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1 Introduction 
In deregulated electricity markets the actual operation of the production units depends on the 

decisions of firms whose goals are to maximize profits. Hence, electricity firms are exposed to 

significantly higher risks and their need for suitable decision-support models has greatly increased 

since the time when production was determined by state based centralized procedures (Ventosa, 

Baillo, Ramos, & Rivier, 2005). According to Weron (2006) accurate load models reduce costs by 

improving economic load dispatching and unit commitment, but due to high volatility of electricity 

prices the market risk related to trading is also considerable. Weron & Misiorek (2005) stress that 

high volatility forces wholesale consumers and producers to hedge not just against volume risk but 

also against price movements. In order to hedge efficiently, it is thus important to study and then 

accurately model the dynamics of the electricity price. Forecasts emanating from these models will in 

turn support bidding strategies that will contribute to the maximization of profits. In addition, 

regulatory agencies are dependent on such models in order to monitor market behavior.  

In recent years various techniques have been applied to electricity price modeling. Weron (2006) 

classifies these as fundamental, stochastic and non-parametric models1. An alternative classification 

is made in Davison et al (2002) where electricity prices are modeled either through a top-down or a 

bottom-up approach. The latter approach refers to modeling of the electricity systems itself, whereas 

the former considers historic data of prices in order to directly infer aspects related to price trends 

and volatility. In the literature, many of the approaches considered are hybrid solutions. Depending 

on the purpose of the price model, the time horizon may vary from an hourly basis to several 

decades into the future. Motivated by a bottom-up philosophy, Johnsen (2001) develops a 

fundamental model of a hydro based electricity system. The focus of Johnsen (2001) is on short-term 

adjustments in the market.  

The Norwegian electricity sector is characterized by the dominance of hydro generation and the 

extensive use of electricity for heating purposes (Pettersen & Holstad, 2011). These characteristics 

make weather conditions very important in forecasting demand and supply. Due to the considerable 

storage capacity, hydro generators can deal with fluctuations in precipitation levels by storing water 

in wet periods to generate in dry periods. But in a typically cold and dry period, electricity demand 

will be higher and generation will be lower than in a normal year resulting in higher prices. 

Conversely, for a typically wet and warm period, electricity generation will be higher and demand 

lower compared to a normal year, leading to lower prices (Førsund, 2007). Therefore the Norwegian 

market is also characterized by volatility in electricity prices. This price volatility between wet and dry 

years is reduced through the ability to store water and the market integration with other Nordic and 

European countries (Johnsen & Willumsen, 2009). 

Johnsen (2001) made one of the first empirical electricity market studies with a simultaneous 

treatment of demand and supply. This simultaneity is especially important in the hydro based 

Norwegian electricity sector where storage of hydropower is possible. In this paper we replicate the 

modeling approach of Johnsen (2001) with an up-to-date dataset from a Norwegian pricing area. 

                                                           
1
 Further classifications are cost-based models that simulate the operation of generating units aiming to satisfy 

demand at minimum cost, and game-theoretic approaches such as cost-based models with strategic bidding or 
agent-based models. The modeling horizon is usually classified as long term (e.g. investment profitability 
analysis), medium term (e.g. derivatives pricing) or short term (e.g. bidding for spot electricity in a power 
exchange).    
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Then we evaluate the model, its limitations and possible extensions. We find that the fit and short-

term performance of the model is poorer when applied to the Norwegian electricity market as of 

today. Since the model is based on an assumption about physical constraints being non-binding, we 

cannot incorporate multiple producers in an adequate manner. Furthermore, we find that the time-

dependent effect of unexpected change in weather parameters is still present, and that the model 

does not manage the inclusion of several planning periods very well.  

In section 2, Literature review, we will go through the assumptions underlying Johnsen’s model from 

2001. We will further comment on these and verify the derivation of his market model. In addition, 

we consider more recent and related literature. The dataset is presented in section 3 with a focus on 

describing characteristics in a hydro based system. In section 4, Methodology, we explain the steps 

taken in estimating the model. The results are given in section 5 followed by a discussion in section 6. 

Finally, we conclude on the model in section 7.  

2 Literature Review 
In a fundamental modeling approach, price dynamics are described by modeling the impact of 

important physical and economic factors on the commodity price (Skantze, Gubina, & Ilic, 2000). As 

such, fundamental modeling is strongly related to a bottom-up approach of transforming data and 

theory into simulated prices, see Davison et al (2002) and Fleten & Lemming (2003). In a bottom-up 

model, theory is based on the structure of the system, typically demand and supply, and the data is 

related to physical conditions, such as load and hydro inflows. 

2.1 The fundamental approach of Johnsen (2001) 

Johnsen (2001) analyses the joint determination of electricity demand and price in the competitive 

Norwegian electricity market in the time period from 1994 to 1996. He considers variables that are 

assumed to be crucial for demand and supply in a hydro based system, and investigates whether 

demand is affected by changes in the price or not. Furthermore, the impact of inflow and demand 

shocks on the price is considered. In order to explain the observed price and demand figures, 

Johnsen (2001) applies rational expectations and a seasonal approach. 

Hydro power producers face a stochastic dynamic programming problem because the production or 

use of water in a particular week, and thereby the storage for next week, is decided under 

uncertainty about next week’s inflow and demand conditions (Johnsen, 2001). The arbitrage 

condition for competitive storage states that today’s price depends on the discounted present future 

price less storage costs. From this equilibrium condition Johnsen (2001) derives an expression where 

the change in the actual price from one week to the next depends on deviations between actual and 

expected weather conditions. The weather conditions in question are related to inflow, snowfall and 

temperature. Due to the non-negativity constraint on storage, the effect of deviations on the day-

ahead price change2 becomes stronger the closer one is to the next snow-melting period. Lucia and 

Schwartz (2002) find that this seasonal behavior of electricity prices has implications for derivatives 

pricing. They suggest that a simple sinusoidal function is adequate in order to capture the regular 

pattern of the futures and forward curve directly implied by the seasonal behavior of the electricity 

spot price.  

                                                           
2
 Since the data in the paper has a weekly time resolution, the notion of day-ahead price is here somewhat 

imprecise. 
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2.1.1 Assumptions 

The stored amount of water is an important variable in the producer’s optimization problem 

(Johnsen, 2001). Water and snow budgets thus constitute two fundamental pieces in the market 

model.  The producer is assumed to observe the inflow (which consists of both rainfall and snow 

melting), temperature and snowfall of the week before the production decision is made. In the final 

market model it is assumed that overflow will not occur.  

At the outset, Johnsen (2001) identifies a number of physical constraints relating to the management 

of hydro reservoirs, e.g. upper and lower filling constraints. However, in the derivation of his results, 

Johnsen (2001) assumes the constraints to be non-binding. This is partly supported by his data. 

Where no evidence is found in the dataset to support this simplification, it serves the purpose of 

making the derivation of his simultaneous equations possible.   

Johnsen (2001) focuses on short-term price movements and uses an annual planning period 

consisting of 52 weeks, where the final week of the period, T1, is the last week before the snow 

melting starts. In reality, the start of the snow melting period is random. Nonetheless, this implies 

that the planning period runs from week 19 in year t to week 18 in year t+1. Within this time period, 

price changes are random due to weather conditions. 

The individual producers take the day-ahead price as given, while at the market level the price is 

endogenous. Johnsen (2001) therefore reformulate the problem as a social planner’s problem. In 

other words, there is only one producer in the system. Risk neutrality is further assumed, and the 

weekly interest rate is assumed to be zero. For a given week, t, the social planner’s problem is thus to 

select a water storage level that maximizes the flow of expected future welfare. The welfare is 

measured as the area under the demand curve in each of the future periods plus the terminal value 

of water in the reservoir and the snow volume which in the future will melt and flow into the 

reservoirs (Johnsen, 2001).   

Johnsen (2001) assumes the expected weather – inflow, temperature and snowfall – for an arbitrary 

week to be the same and independent of which week the expectations are made. The intuition is 

that one week’s weather will not change the expectations about the weather in the next week. This 

means that the expected value of a variable is related to a ‘normal value’ that is based on historical 

data.   

The planning period is split in a snow-melting period of 15 weeks, and the rest of the year. Deviations 

between actual and expected inflow are assumed not to impact the day-ahead price in the snow 

melting period, since snow volume deviations are already discounted into the price when snowfalls 

were observed. A dummy variable is thus introduced to account for this relation.  

Finally, throughout the snow melting period the inflow to the hydropower plants may reach very 

high levels, and Johnsen (2001) allows for a very low price in weeks when total inflow exceeds a 

critical level. This leads to three additional state equations for the price change. The first state 

considers a situation where there is a sequence of weeks with high, non-storable inflow. 

Consequently there will be no price change. The second state applies to a week where high, non-

storable inflow starts to occur, but did not occur in the previous week, leading to a sudden price fall. 

In the third state the case is just the opposite, with high inflow not occurring in a week, but did so in 
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the previous week. Thus a sudden price jump is expected. For ordinary weeks, the price change is 

described by the interior and time-dependent solution. 

2.1.2 Fundamental dynamics 

The fundamental dynamic of Johnsen’s (2001) market model is that price changes occur when the 

actual weather values deviate from their expected, or normal, values. The magnitude of the 

influence, however, is time dependent. The effect of an unexpected high inflow is therefore much 

larger towards the end of the planning period than it is in the start of the period. If inflow, 

temperature and snowfall are equal to their expected values, the price will remain unchanged.  

2.1.3 Econometric specification 

A thorough understanding of the mathematical derivation of Johnsen’s market model is relatively 

hard to acquire from just reading the original paper. Therefore, we have derived and verified his 

results in Appendix A. The results of the derivation are presented in the following subsections.  

The demand side 

Based on the assumption of rational hydro power producers, a simple demand equation is applied. 

The intuition is that high inflow, which increases the supply, will lead to lower prices, which increases 

demand. Likewise, the producers know that cold weather results in higher demand and thus a higher 

price. Short term change in demand is specified as a linear auto-regressive distributed-lag function 

(1) 
0 1 2 1 3 1 4 5 1 6 7 1 1, ,...,j j j j j j j jy p p y w w j t T                             

where αi are unknown coefficients, w is a vector of exogenous explanatory variables such as day 

length, τ is temperature measured as heating degree days, and ϵ is the error term, ϵj      N(0,σ
2
ϵ). 

The supply side 

Backward induction and maximization of the terminal value gives the terminal condition 

(2) 
1 1 10 1 2T T Tr p s      

where βi are unknown coefficients, rT1 is the water reservoir filling measured in energy units, sT1 is 

snow volume measured in energy units, and pT1 is price at time T1. 

When the shadow prices for the physical constraints are zero, the arbitrage condition for competitive 

storage gives 

(3) 
11 2 ...t t t t t t Tp E p E p E p      

which implies no arbitrage from storing more or less water from today to future periods.  

Reformulating the above equation gives 

(4) 
1 11 1t t t t T t Tp p p E p E p       

Assuming no overflow in the water and snow budgets give 

(5) 
1

1

1

( )
T

T t j j

j t

r r I y
 

    
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and      

(6) 
1

1 1

1

( )
T

s

T t j j j

j t

s s I s 

 

    

respectively. I denotes inflow, Is denotes snowfall, y is production of hydropower in energy units, and 

ψ is a variable for snow melting. 

Combining the equations above yields the following equation for the short term change in price 

(7) 
3 1 2

1 2 3 0 6 7 6

(1 (1 ) ) ( ) ( )1
, (0, )

( 1) ( ( ) )( )

s s

t t t t

t t t u

t t t

L I EI I EI
p u u N

T t L E

 


        

           
           

where L indicates the lag operator. 

The system of equations 

By including a dummy variable for Christmas and Easter holidays and considering only day length in 

the vector for exogenous variables in the demand equation, and by including the state equations and 

a dummy variable for the snow melting period in the supply equation, the following system of 

equations is obtained 

0 1 2 1 3 1 4 5 1 6 7 1t t t t t Holiday t t ty p p y d d Dummy                          
 

 

0,tp   if It and It-1> K 

0 ,tp    if It> K or 

1,tp    if It-1> K or 

3

1

1 2 3 0

6 7 6

1 2 3 0

(1 (1 ) )
1

( ) ( ) ,
( 1)

( ( ) )( )

1

( 1)

s s

t Snowmelting t t t t t

t t t

t t t

L

p Dummy I EI I EI
T t

L E

u
T t



 
  

    

 
  

  
 
            
    

  
  

 

Problems with the error terms 

As is evident from the system of equations above, there are some problems with the error terms. 

First, the variance in the price equation is time-dependent and increases throughout the season, i.e. 

the variance is heteroscedastic. Second, the error terms in the two equations are not independent. 

Johnsen (2001) finds no satisfactory way to deal with these problems in the error terms. 

2.1.4 An alternative model - ECM 

In order to evaluate the above model’s out-of-sample predictive ability, Johnsen (2001) compares it 

with error correction models (ECM) for both price and demand. The snow melting period is treated 

as in the fundamental model. The main difference is the modeling of the price movements. In the 

fundamental price model, the coefficients change over the season, and actual generation is not an 

explanatory variable in the price. Furthermore, the price and demand equations have common 

coefficients in the fundamental model. In the ECM alternative, however, generation is included as an 
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explanatory variable in the price equation, coefficients are unchanged throughout the year and there 

are no cross-equation parameter restrictions (Johnsen, 2001). The price quantity endogeneity is still 

recognized and the following error correction models are suggested in the paper: 

0 1 2 1 3 1 4 5 1 6 7 1t t t t t t t Holiday ty p p y d d Dummy                          
 

 

0,tp   if It and It-1> K 

0 ,tp    if It> K or 

1,tp    if It-1> K or 

0 1 2 1 3 1 4 5 1 1

6 7 1 1 8 9 1 1

( ) ( )

( ) ( ) ( ) ( )

t t t t Snowmelting t t t t

s s s s

t t t t t t t t t Holiday t

p y y p Dummy I EI I EI

I EI I EI E E Dummy

     

        

   

   

          

           
 

 

Johnsen (2001) implicitly assumes that the individual time series are integrated of first order, I(1). So 

by first-differencing and through the existence of some cointegrating vector of coefficients, a 

stationary linear combination of them are formed, see Engle & Granger (1987) and Greene (2002). 

2.2 Related literature 

The fundamental approach of Johnsen (2001) has a bottom-up treatment of time-dependency in the 

electricity price equation. As such, it is unparalleled in the literature. During the last decade, 

however, several papers have been published on fundamental models in hydro based electricity 

markets. Among these are Vehviläinen & Pyykkönen (2005), and Tipping & Read (2010). 

Vehviläinen & Pyykkönen (2005) presents a stochastic factor based approach to mid-term modeling 

of spot prices in the Nordic electricity market. The fundamentals affecting the spot price are thus 

modeled as stochastic factors that follow statistical processes. As in Johnsen (2001), hydro 

production depends on the water level in the reservoirs, and hydro inflow results mainly from 

precipitation and the melting of snow-pack. Generation of the snow-pack is further directed by 

precipitation and temperature. Temperature is what governs the demand for electricity the most in 

Vehviläinen & Pyykkönen (2005). In contrast to Johnsen (2001), the market equilibrium is 

approximated by assuming that the electricity demand is inelastic.  

Tipping & Read (2010) claim that bottom-up analysis is suitable for modeling structural change and 

hydro variation, but such models must make assumptions about fundamental system data and 

rational optimizing behavior that leave significant unexplained price volatility. Hence, they describe a 

technique for fitting a hybrid model, in which they estimate parameters for a simplified bottom-up 

model of participant behavior from market data, together with a stochastic process describing 

residual price volatility. The fitted model is then used to simulate market behavior in the hydro 

dominated New Zealand electricity market, as fundamental parameters vary.  

Vehviläinen & Pyykkönen (2005) estimate a simplified Marginal Water Value (MWV) curve from 

Nordic market data on a monthly basis, and in addition to a piecewise linear supply curve for thermal 

power, they use this curve to calculate the level and price of both hydro and thermal power required 

to meet system load. The New Zealand model of Tipping & Read (2010) uses a similar MWV curve 

representation as its bottom-up model, but instead of assuming that the water value is to depend on 

the deviation from a constant storage level, they use a relative storage level. Even though 

http://en.wikipedia.org/wiki/Stationary_process
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Vehviläinen & Pyykkönen (2005) form a simulation model, they do not employ a complementary 

stochastic process as in Tipping & Read (2010). This complementary stochastic process is not 

included in Vehviläinen & Pyykkönen (2005) due to their bottom-up model’s ability to explain 

monthly prices in a market with significant storage. 

Recent work relating to the demand-supply simultaneity in the hydro based Norwegian electricity 

sector, tend to focus on ECMs. This is the case for the electricity market models applied by both NVE 

and Statistics Norway, compare Johnsen & Willumsen (2010) and Holstad & Pettersen (2011). ECMs 

are relatively straight-forward to specify, more data driven and not as mathematically complex as a 

fundamental model.  

3 Data 
The data sample in Johnsen (2001) is from 1994 to 1995 when the Norwegian market for electric 

power could be considered to be isolated, and the market was therefore easily identified through a 

dataset. Since the mid-1990s there have been major changes in the market conditions affecting the 

definition of a pure ‘Norwegian market’ for electricity. During the years after the making of Johnsen’s 

article several other countries have joined the Nord Pool spot market, making the system price from 

Nord Pool inaccurate for describing a Norwegian price for electricity. In addition to the market 

integration with other Nordic countries, there has been a subdivision of the Norwegian price into 

different price areas. Today this increased level of complexity makes it hard to capture and model a 

solely Norwegian market.   

To handle this complexity in a coherent manner, we will use data from one of the price areas in 

Norway. By using the price area NO1 from 2003 to 2008 with an out-of-sample period in 2009, we 

are trying to model the fundamental dynamics addressed in Johnsen (2001). 

Johnsen (2001) used a time span of two years (1994-1995) with an out-of-sample period of one year 

(1996). In this replication we will use a larger time span, covering a period of 5 years (2003-2008) and 

an out-of-sample period of one year (2009). The starting point of the dataset is chosen to exclude the 

extremely high and volatile prices during the winter of 2002-2003. Throughout our sample period the 

price areas in Norway are considered to be geographically stable and constant. From 2010 and forth, 

however, Statnett has made several changes to the price areas, making it difficult to collect data 

representative for the NO1 area. This instability in the price areas is the reason for ending the sample 

period in 2008 and using 2009 as the out-of-sample period.  

3.1 Collection of data 

Both political and market change in the electricity sector force us to look at a broad range of data 

providers to ensure that we are able to isolate and mimic the fundamental dynamics Johnsen (2001) 

is addressing. The main data sources are Statkraft, the Norwegian Water Resources and Energy 

Directorate (NVE) and Nord Pool spot. In addition, data on weather variables is collected from public 

databases like SeNorge.no and the Norwegian Meteorological Institute through met.no and 

eklima.no. There is little information available on snowfall for the price area used in the replication, 

and data representation of snowfall is thus generated from modeling. We determine the snowfall by 

looking at precipitation combined with temperature from the same measuring stations in the NO1 

area. When the temperature is below 0 degrees Celsius the precipitation is assumed to be snowfall. 
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This is a simplification and ideally snowfall should be simulated according to the HBV hydrology 

model (Bergström, 1992), but such an approach goes beyond the scope of this paper.  

3.2 Seasonability and deviations from normal 

During the estimation period, the day-ahead price has been fluctuating between a top level of 76.4 

Euro/MWh in week 34 of year 2006 and a bottom level of 3.8 Euro/MWh in week 34 of year 2007. 

The price spike in 2006 was due to high prices of fossil fuels and a strained hydrological situation with 

little snow in the winter, a dry summer and problems with the Swedish nuclear power plants3. In the 

out-of-sample period we see that the prices have been in the interval from 65.8 Euro/MWh in week 

39 in 2008 to 10.0 Euro/MWh in week 19 in 2008. High prices of fossil fuels, increasing CO2 prices and 

reduced capacity in the Swedish nuclear power plants are important factors that explain the peak in 

20084. As the explanations of the price spikes suggest, there are several factors which are not 

included in Johnsen’s model that also affect price. The spot prices used for estimation purposes in 

area NO1 are collected from Nord Pool.  

 

Figure 1: Spot price NO1 

The demand shows seasonal patterns and is significantly lower in the summer season than during the 

winter season as the graph below illustrates. The demand is from the area NO1, and the data is 

provided by Statkraft. We can see deviations from the normal pattern of demand in the early winter 

of 2007. During this period the temperatures were very high compared to the normal. 

                                                           
3
 E-CO, Third quarter results 2006: http://www.e-co.no/?module=Articles;action=Article.publicShow;ID=771 

4
 Statistics Norway, 2008: http://www.ssb.no/elkraftpris/arkiv/art-2009-01-08-01.html 

http://www.e-co.no/?module=Articles;action=Article.publicShow;ID=771
http://www.ssb.no/elkraftpris/arkiv/art-2009-01-08-01.html
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Figure 2: Demand NO1 

The actual inflow is calculated as the sum of production in the NO1 area and the change in reservoir 

level from one period to the other in the same area. This calculation assumes that all generation 

emanates from hydro reservoirs, and it is a realistic assumption for the price area in question. The 

actual inflow was less than normal for most of the period from 2003 to the end of 2004. In 2005 and 

2006 the inflow oscillates around the median level, while we observe an actual inflow higher than 

normal from the snow melting starts in 2007 and throughout 2008. High inflow persists in the out-of-

sample period 2008-2009. Even during the years of 2003 and 2004 we see that the spikes in inflow 

are higher than the normal. This is due to the fact that the beginning of the snow melting period 

varies from year to year. Since the peak inflow occurs in different weeks each year, and not in a 

particular week as the normal value suggests, inflow will tend to deviate substantially from normal 

around this period of the year. Johnsen’s assumption about the snow melting period starting in week 

19 every year will therefore explain some of the observed deviations of actual inflow from the 

normal values. 

 

Figure 3: Inflow NO1 

Temperature is measured in heating degree-days. Heating degree-days are calculated as the number 

of days times the number of degrees below 17 degrees Celsius. From the data we can see that the 

winters of 2005 and 2008 were warmer than normal, whereas the winter of 2006 was colder than 

normal. In the beginning of the winter of 2007, we have a short period where the temperatures were 

high compared to the normal. The other winters in the sample period are fluctuating around the 



 

Page 13 of 44 
 

normal value. In the out-of-sample period we have a small period in the end where we experience a 

few colder weeks than normal, otherwise the values are close to normal. 

 

Figure 4: Heating degree-days NO1 

The reservoir level has been deviating quite a lot from the normal through the sample period. In 

2003 and 2004 the reservoir content was lower than normal. During the autumn of 2005 the 

reservoir reached a relatively high level, but was significantly reduced throughout 2006. It reached 

another peak in 2007. The out-of-sample period in general experiences higher reservoir content than 

normal.    

 

Figure 5: Reservoir content NO1 

The snowfall data is obtained by looking at precipitation and temperatures from the three 

measurement stations Ringebu, Hol and Nissedal in the NO1 area. When the temperatures are below 

zero the precipitation is assumed to fall as snow. The average numbers from these stations are used 

to represent the deviation from normal snowfall, measured in mm water equivalents, in Figure 6.  
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Figure 6: Snowfall NO1 

The day length variable exhibits a deterministic and sinusoidal trend. Around mid-summer the day 

length is at its highest level. The day length variable is based on data from Blindern, Oslo, and is thus 

representative for the normal length of days in the NO1 area.  

 

Figure 7: Normal day length NO1 

4 Methodology 

4.1 Fundamental approach  

It is not entirely clear how Johnsen (2001) has estimated the simultaneous equations. This view is 

shared by other practitioners and researchers, including Pettersen (2011) and Skjerpen (2011). Due 

to the uncertainty concerning Johnsen’s methodology, we try two different approaches to solving the 

simultaneous equations5. The first approach considers multiple equation dynamic modeling using 

constrained full information maximum likelihood, see Doornik & Hendry (2009). However, we 

encounter numerical problems when estimating the constrained system, and the regression does not 

                                                           
5
 We use the statistical software packages PCGive and EViews to estimate the system of equations. 



 

Page 15 of 44 
 

converge even with a limited number of constraints6. According to Skjerpen (2011) the system should 

be solved as being non-linear in the parameters. The second approach estimates the parameters 

accordingly using full information maximum likelihood.  

The estimation technique full information maximum likelihood (FIML) estimates the likelihood 

function under the assumption that the contemporaneous errors have a joint normal distribution. 

Provided that the likelihood function is correctly specified, FIML is fully efficient. FIML is suitable for 

cross-equation parameter restrictions, hence the ‘constrained’ denotation is used.  

We formulate the simultaneous equations directly, including the interdependencies among the 

coefficients. The time dependent factor runs in cycles, from week 1 to week 52, through the planning 

periods. Changes in demand and price are defined as endogenous variables, and the state equations 

for price change are dealt with using dummy variables.  

In essence, we make use of three dummy variables to handle the state equations for the price 

change. The first dummy is unity if inflow exceeds the critical level, K, in the current week t, but not 

in week t-1. The second dummy is unity in weeks where inflow exceeded K in the previous week, but 

not this week. Both of these dummies are multiplied by unknown coefficients, δ0 and δ1, respectively. 

Finally, a third dummy is multiplied by the time-dependent expression for price change, i.e. the 

dummy is unity whenever inflow for the current and previous week is below K. Otherwise the price 

change equation is zero as in the first state equation.  

Just as in Johnsen (2001), we use a grid search procedure to find the value of critical inflow K that 

best fits the data. The procedure is discussion in Appendix B. 

4.2 Error Correction Model approach 

In the ECM alternative from Johnsen (2001) all variables are treated as if they are non-stationary. 

Note that this is an implicit assumption of his model, i.e. Johnsen never explicitly comments on it in 

his article from 2001. The assumption can be tested by studying the graphs of the variables, or, more 

formally, perform Dickey Fuller testing. However, we accept the assumption that all variables are 

integrated of first order, I(1). This means that the variables will be stationary when differencing them 

once. By differencing the non-stationary variables, we will be able to estimate the short term 

relationship between the variables. However, information on the long term relationship of the level 

values will be lost in the differencing process.  

An ECM enables both short and long term relationships to be present in the model. A requirement is 

that the variables are cointegrated, meaning that there exists an equilibrium relationship that the 

integrated variables will tend towards in the long run. We can test for cointegration by using 

Johansen’s maximum eigenvalue and trace tests (Greene, 2002). In addition to identifying the 

cointegrating relationship, Johansen’s tests can check the model’s assumptions about exogeneity. As 

the purpose of the paper at hand is to replicate the models of Johnsen (2001) with an up-to-date 

                                                           
6
 Based on the analysis of parameter stability from Johnsen (2001), we interpret the last week in the sample as 

being the value of t in the price change equation. We thus get a constant term instead of the time-dependent 
factor in the equation. This makes sense, as the final values in the parameter stability graphs correspond to the 
estimated coefficient values in Johnsen’s article. Hence, we can treat the system as linear and constrain the 
coefficients through algebraic expressions. We essentially get six equations with six unknowns for the 
constrained coefficients. 
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dataset, we rely on the assumptions that Johnsen makes based on his understanding of the market. 

Hence, we do not test for cointegration.   

As the ECMs are linear in the parameters, multiple-equation dynamic modeling is suitable (Doornik & 

Hendry, 2009). We specify changes in demand and price as the endogeneous variables, and solve the 

system using FIML. The dummy variable for snow melting is multiplied with the change in the 

deviation from normal inflow from the previous week to the present week. Thus we set the deviation 

from normal inflow to zero in the snow melting periods directly in the dataset. Single equation 

misspecification tests are then performed.    

4.3 Specification of model extension 

The extension focuses on including a coal fired producer in the system to see what effect the 

flexibility of another energy source would have on the fundamental dynamics of the electricity price. 

Coal, gas and CO2 prices are affecting the price and demand for different sources of electricity, so it is 

interesting to see how a coal fired producer will influence the estimations. The total demand will 

then be covered by the sum of production from the hydro and the coal fired producer. To capture 

the essence of this extension an additional constraint is added for the physical maximum of coal fired 

production, denoted  ̅. 

(8) , ,...jx x j t   

where xt is the amount of energy produced from the coal fired power plant at time t. Following the 

derivation in Appendix A, we introduce the shadow price for coal production, λ9, when maximizing 

the value of the reservoir content. Johnsen’s original paper assumes all the constraints in the system 

to be non-binding, and this simplification is necessary to arrive at equation 3 which is the foundation 

for deriving the final model. By implementing the coal fired producer, the shadow price λ9 would also 

have to equal zero. There is no logical reason for such an assumption, and continuing with this 

approach would require a completely new model to be established. Hence, a simplified heuristic 

approach is done in an attempt to include the effects from including a coal fired producer.  

The coal fired producer is assumed to make his production decision based on the price of electricity 

and coal at time t-1, pt-1 and ct-1, respectively7. Whenever the electricity price is lower than the coal 

price, the coal fired production is set to zero by utilizing a dummy variable, dummycoal. Furthermore, 

it is assumed that coal fired production will constitute a maximum of γ % of the total power 

production in the system. Consequently the production from hydro power can be expressed as 

(9) 1 1
. . .

1

( )
1 t t

hydro producer coal fired producer coal

t

p c
y y y y dummy

p
  



 
    

 
 

Equation 9 enters the model as yj in the expression for the terminal level of the hydro reservoir, see 

equation 5. The modified expression for the price change equation after completing the calculations 

according to Appendix A is 

                                                           
7
 Using the p and c values at time t-1 is a simplification. Ideally the values at time t would be used, but this 

would lead to a polynomial expression of price change not suitable for regression purposes. 
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Solving the model with the modified expression for the price change thus include the effect of a coal 

fired producer into the original hydro based system.  

5 Results and interpretation 

5.1 Fundamental approach 

When including the state equations for price change as in the original model by Johnsen (2001), we 

get the estimated coefficients and their estimated standard deviation as shown in Table 2. The 

estimated equations explain approximately 57.2 % and 7.5 % of the observed variation in the first 

difference of demand and price, respectively, see Table 1. Plots of actual and fitted values, as well as 

scaled residuals, are shown in Appendix C.  

Table 1: Summary statistics with state equations 

Dependent variable Mean R2 Sum of squared residuals Standard error of regression 

Δyt 0.019 0.572 102.36 0.637 
Δpt -0.061 0.075 1849.43 2.704 

    

As is evident from the sum of squared residuals and the scaled residuals plots, there are some very 

large residuals in the equations, especially for the price change. Despite the poor fit of the model, 

there may be interesting information on the fundamental dynamics from the estimated coefficients.  

Table 2: The estimated coefficients with state equations 

Coefficient Estimated value Standard error t-statistic Probability 

α0 3.841 0.465 8.267 0.000 
α1 -0.143 0.052 -2.764 0.006 
α2 -0.027 0.003 -0.979 0.328 
α3 -0.210 0.022 -9.394 0.000 
α4 0.011 0.016 0.703 0.482 
α5 -0.011 0.003 -4.199 0.000 
α6 0.041 0.002 20.619 0.000 
α7 0.010 0.002 3.929 0.001 

DummyHoliday -1.019 0.103 -9.862 0.000 
β0 -12.238 2.710 -4.516 0.000 
β1 -0.065 0.038 -1.712 0.087 
δ0 -2.203 0.655 -3.362 0.008 
δ1 1.636 1.511 1.082 0.279 

 



 

Page 18 of 44 
 

The variables of the two equations from the fundamental model have mathematical signs that 

appear to be reasonable. The negative sign of α1 indicates that an increase in price decreases the 

demand. Similarly the sign of the coefficient for lagged price, α2, is in line with the results of Johnsen 

(2001) and Johnsen & Willumsen (2010), but its insignificance is troublesome for the time-

dependency in the price change equation. The coefficient for last week’s demand, α3, is negative as 

expected. Consistent with the results from Johnsen (2001), the coefficient for change in day length is 

insignificant, whereas the level value, dt-1, is not. The coefficient for lagged day length, α5, has a 

negative sign. The significance of the coefficient for temperature level, α7, is not recognized in 

Johnsen (2001) while the coefficient for temperature change, α6, is significant and positive. However, 

the significance of the temperature level is supported in both Johnsen & Willumsen (2010) and 

Holstad & Pettersen (2011). During Christmas and Easter holidays, demand is significantly reduced. 

Both β0 and β1 are negative, and they thus have the right sign for the interpretation of equation 2. β1 

is nearly significant, compare Johnsen (2001). The signs of δ0 and δ1 are intuitively appealing, as a 

sudden high inflow in one week and a sudden absence of high inflow in another, will lead to a price 

fall and rise, respectively.  

To test the model we have carried out a dynamic simulation using the observed price and demand 

values for weeks 18 and 19 in 2008 as starting values. For the rest of the simulation the calculation of 

the endogenous variables of change in price and demand are used in combination with the real 

values of the exogenous variables to see how well the model performs. As Johnsen (2001) notes in 

his original paper, the additional year in the out-of-sample period may represent a too large 

challenge to this short term model, which does not handle the connection between subsequent 

planning periods very well.  

As we can see from Table 2, the parameter α2 is insignificant, but it has the right sign and by including 

the parameter we get a better out-out-sample performance of the model. The dynamic simulation of 

demand reproduces the observed demand pattern quite well throughout the whole estimation 

period. We note that the model overestimates the demand in the winter of 2004, while it 

underestimates the demand in the winter of 2008.  

 

Figure 8: Dynamic simulation of demand with state equations for price change 

In the price change equation the parameters α2, β1 and δ1 are insignificant, but they have the right 

signs and improve the out-of-sample performance of the model. Consequently, they are included in 
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the dynamic simulations. As we see from the simulations, several drops in the price are captured by 

the model, albeit with much lower amplitude. The price drops captured include the one in the 

autumn of 2003, the spring of 2004, the autumn of 2005 and the spring of 2006. In the out-of-sample 

period the model also detects the drop in the summer of 2008. When it comes to the price spikes, 

the model is not able to simulate any of them. The two spikes in 2006 and the spikes in the winter of 

2008 and 2009 are not reflected in the simulation at all.  

 

Figure 9: Dynamic simulation of price with state equations for price change 

In general, the fit of the price change is poor when the model is replicated with up-to-date data. We 

also observe a negative trend in the model, where the price tends to move towards zero in the end 

of the sample. The main reason for this trend is the inclusion of the state equations in the price 

change, compare section 2.1.1. By including the state equations, the effect of price spikes caused by 

high non-storable inflow, is minimized for the time-dependent model. In the short term, this is not a 

problem and the simplification can be accepted. This is the case in Johnsen (2001) where only two 

planning periods are included in the estimation, and the negative trend can therefore not be 

observed. However, when the estimates are a result of looking at several planning periods, this 

simplification does not behave in the intended way. By construction, each δ-value will appear only 

once for each time where price spikes due to high, non-storable inflow, occur. As the values of δ0 and 

δ1 are -2.203 and 1.636 respectively, this will in the long term give a negative net influence on the 

price, leading to a negative trend in the simulated price. The longer the period included in the 

estimation, the closer the simulated price will move towards zero, which clearly is not the intention 

of including the state equations. Our grid search procedure for the K-value, see Appendix B, shows 

that the best fit for demand is obtained when the K is infinite, which basically means that the state 

equations of the price change are ignored.  

To compare with ECMs that includes both short and long term dynamics, we continue our 

estimations with K equal to infinity to exclude the negative long term trend caused by the state 

equations.  

5.1.1 Removal of the state equations for price change 

Exclusion of the state equations for price change gives the estimated coefficients and their estimated 

standard deviation as shown in Table 4. The estimated equations explain approximately 62.7 % and 

6.1 % of the observed variation in the change of demand and price, respectively, compare Table 3. 

Plots of actual and fitted values, as well as scaled residuals, are shown in Appendix C.  
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Table 3: Summary statistics without state equations 

Dependent variable Mean R2 Sum of squared residuals Standard error of regression 

Δyt 0.019 0.627 89.32 0.595 
Δpt -0.061 0.061 1878.36 2.714 

 

Compared to the previous case, where the state equations were included, the demand change 

equation now achieves a better fit with the data, whereas the price change equation fits the data 

marginally worse. The residuals remain very high. 

Table 4: The estimated coefficients without state equations 

Coefficient Estimated value Standard error t-statistic Probability 

α0 3.878 0.471 8.225 0.000 
α1 -0.122 0.061 -1.995 0.046 
α2 -0.029 0.003 -0.977 0.328 
α3 -0.211 0.022 -9.631 0.000 
α4 0.013 0.016 0.781 0.435 
α5 -0.011 0.003 -4.103 0.000 
α6 0.041 0.002 20.009 0.000 
α7 0.010 0.002 3.912 0.001 

DummyHoliday -1.018 0.106 -9.613 0.000 
β0 -14.482 3.389 -4.273 0.000 
β1 -0.0833 0.050 -1.662 0.097 

 

In general, the removal of the state equations for price change does not alter our interpretation of 

mathematical sign and significance. The most prominent difference is perhaps that the coefficient for 

price change in the equation for demand change, α1, is now significant only on a 5 % significance level 

compared to the 1 % significance level obtained with the inclusion of state equations.  

To test the performance of the model with infinite K, we carry out a dynamic simulation by applying 

starting values for the price and demand in week 18 and 19 in 2008. As can be seen in Table 4 the 

coefficient α2, representing the lagged value of price, is still insignificant. Again, it has the right sign 

and we get a better out-of-sample performance for the model by including the parameter. When we 

compare the dynamic simulations with K equal to 26 and K equal to infinity, we recognize the same 

general patterns in the estimation period. If we look closely however, we can identify some 

differences, especially in the periods where we have spikes and falls in demand. During the first two 

years the simulated values follow the actual values pretty closely, while in the early spring of 2005 

we start to see minor differences between the two alternatives. From this point of time and 

onwards, we see that for every spike and fall we have small differences between the two simulations, 

where the simulation with K equal to infinity gives us the best result.   
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Figure 10: Dynamic simulation of demand without state equations for price change 

For the price equation the parameters α2 and β1 are still insignificant, but have the right signs and 

they improve the out-of-sample performance of the model. Therefore we continue to include them 

in the dynamic simulations. Compared to the simulation with K equal to 26 we have a slightly poorer 

performance of the price change. While the K equal 26 alternative captures more drops in the price 

than the alternative with K equal to infinity, we have now managed to remove the negative trend, 

which ultimately will make the model more appropriate for comparing with an ECM. In the 

simulation with K equal to infinity we see that the model only identifies a few drops in the price, 

including the price drop in the spring of 2004, the autumn of 2005 and the spring of 2008. 

 

Figure 11: Dynamic simulation of price without state equations for price change 

5.1.2 Problems with the error terms 

Both single misspecifications tests and graphs of scaled residuals, see Appendix C,  indicate 

autocorrelation problems in the price change equation, i.e. the model’s residual in one period appear 

to be correlated with residuals in the previous periods. In the presence of autocorrelation, the 

estimators are still unbiased, but the variances, and hence the t-values of the estimates, will be 

affected. In addition, there are problems with conditional heteroscedasticity in the equation for price 

change. As pointed out in section 2.1.3, autoregression conditional heteroscedasticity (ARCH) is 

inherent in the model for price change and the evidence is therefore not surprising. The ARCH effect 
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will not bias the estimates, but will cause the estimators to be inefficient. Consequently, the 

conclusions we draw from the estimation may be deceptive. 

5.2 Error Correction Model approach 

When estimating the system applying error correction models, the goodness of fit for the demand 

and price change equations are 57.9 % and 22.0 %, respectively. The summary statistics in Table 5 

show that there still are very high residuals. This is also evident from the plots in Appendix C.  

Table 5: Summary statistics for ECM alternative 

Dependent variable Mean R2 Sum of squared residuals Standard error of regression 

Δyt 0.019 0.579 100.76 0.632 
Δpt -0.061 0.220 1559.29 2.497 

 

More coefficients are to be dealt with in the estimation of the ECMs than in the fundamental model. 

The upside is that their interpretation is rather obvious as there no longer are cross-equation 

relationships among the coefficients. The results from the estimation are given in Table 6.   

Table 6: The estimated coefficients for ECM alternative 

Variable Coefficient Standard error Probability 

Change in demand Δyt 

Constant 3.231 0.719 0.000 
Δpt -0.154 0.084 0.069 
pt-1 -0.007 0.004 0.079 
yt-1 -0.230 0.036 0.000 
Δdt -0.025 0.029 0.382 
dt-1 -0.003 0.005 0.552 
Δτt 0.051 0.006 0.000 
τt-1 0.016 0.005 0.002 

DummyHoliday -1.097 0.459 0.017 

Change in price Δpt 

Constant 0.461 0.947 0.626 
Δyt 0.839 0.336 0.013 
yt-1 0.023 0.054 0.674 
pt-1 -0.022 0.011 0.045 

Δ(It-E It) -0.267 0.064 0.000 
(It-1-E It-1) -0.043 0.044 0.330 
Δ(It

s-E It
s) -0.027 0.023 0.245 

(It-1
s-E It-1

s) -0.015 0.030 0.611 
Δ(τt-E τt) 0.037 0.015 0.016 
(τt-1-E τt-1) 0.046 0.011 0.000 

DummyHoliday 0.438 2.661 0.869 

 

There are discrepancies in the mathematical sign and significance between some of the coefficients 

in the ECM models in Johnsen (2001) and the ones reproduced above. For the demand change 

equation the mathematical signs of the coefficients are in line with Johnsen’s results. Surprisingly, 

the coefficient for the level of day length, dt-1, is insignificant in our estimation. The values for change 

and level of price in the demand change equation are significant on a 10 % level. In the price change 
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equation the lagged value of demand, yt-1, has the opposite sign of Johnsen (2001), and is 

insignificant in our estimation. The level value of deviation in inflow has the right sign, but is not 

significant. Both the change and level value of deviation in snowfall have the wrong signs, but they 

are insignificant in the above estimation. The constant and the dummy variable for holidays are 

insignificant in the price change equation, but they do have the right signs. 

In the dynamic simulations of the ECMs8, the parameter for the level of day length in the demand 

change equation, dt-1, is included because it gives a better out-of-sample result for the model. The 

values for change and level of price in the demand change equation are also included in the 

simulation. The differences between demand in the ECM and the fundamental model are found in 

the early summer of 2004 where the ECM performs a little worse. We see the same pattern in the 

winter of 2006, while the ECM performs marginally better than the fundamental model in the 

summer of 2007 and 2008.  

 

Figure 12: Dynamic simulation of demand using ECM 

In the price change equation the lagged value of demand, yt-1, is included along with the lagged value 

of inflow and the dummy variable for holidays as well as the constant. These parameters improve the 

out-of-sample performance of the model. However, the change and lagged values of deviation in 

snowfall are excluded. Compared with the fundamental model, the ECM performs a lot better for the 

price, compare Figure 13.The ECM simulates the variations to a larger extent, and exhibits a shape 

that follow the actual spot price pattern in a much better way. Even though the ECM cannot capture 

the spikes in an adequate manner, smaller increases in the spot price like the one in the winter of 

2003, are identified. During the winter of 2006, 2008 and 2009 we see that the actual price increased 

heavily, and to some extent the ECM manages to mimic the increasing trend during these periods. In 

the same way as the fundamental model, there is the tendency that the ECM captures falls in the 

price more accurately than the spikes. In general we can conclude that the model mostly 

underestimates the amplitude of changes in the price.  

                                                           
8
 The dynamic simulation of the fundamental equations is straightforward, as change in demand does not 

appear in the price change equation. For the ECMs the change in demand is present in the equation for price 
change, and vice versa. The dynamic simulation is therefore done by rearranging the equations and solving 
them through matrix algebra before drawing the graphs. 
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Figure 13: Dynamic simulation of price using ECM 

5.3 Extended model 

When adding a coal fired producer to the price dynamics in the fundamental model, the highest fit 

achieved by adjusting the γ variable in equation 10, is 0.61 and 0.06 for the change in demand and 

price, respectively. In other words, the goodness of fit is not improved with the suggested extension 

to the fundamental model, compare Table 7.  

Table 7: Summary statistics for extended model 

Dependent variable Mean R2 Sum of squared residuals Standard error of regression 

Δyt 0.019 0.610 94.21 0.611 
Δpt -0.061 0.055 1890.51 2.723 

6 Discussion 

6.1 The fundamental model 

When replicated with the dataset from 2003 to 2008, the fit of the fundamental model is relatively 

poor, especially when it comes to the price change equation. In Table 8 the values for R2 and the 

standard error of regression achieved in the replication are compared with the values found in 

Johnsen (2001). 

Table 8: Fit of the fundamental model - replication versus original 

 R2 Standard error of regression 

 Replication Johnsen (2001) Replication Johnsen (2001) 

Δyt 0.63 0.90 0.60 0.45 
Δpt 0.06 0.35 2.71 1.54 

 

The mean square errors (MSE)9 from dynamic simulation of the fundamental model are given in 

Table 9. When comparing the MSE from the simulation of 2008-2009 with the results in Johnsen 

(2001), it is evident that the price model performed far better in the mid-1990s. Interestingly, the 

                                                           
9
 Here we have computed the MSE values in accordance to Johnsen (2001), i.e. MSE is the sum of squared 

differences between simulated and actual values, divided by the total number of observations. The model with 
the smallest MSE is generally interpreted as best explaining the variability in the observations. 
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demand MSE of 3.35 obtained in the replication is lower than in Johnsen (2001). This may appear 

contradictory to the previous observation that the fit of the demand change is poorer in the 

replication. However, Taylor (2007) emphasizes that the forecasting method that has the least MSE 

not always is the method with the highest value of R2. 

Table 9: Mean square errors from dynamic simulation of fundamental model 

 Demand (yt) Price (pt) 

 Replication Johnsen (2001) Replication Johnsen (2001) 

Within sample  0.54 0.76 145.54 7.53 
Out of sample  3.35 4.65 960.19 16.99 

 

6.1.1 Time dependent effect of unexpected high inflow 

The time dependent effect of unexpected high inflow is reflected by the factor 

(11) 
1 2 3 0

1

( 1)T t     
 

appearing in the price change equation in the fundamental model. The interpretation of this factor is 

that unexpected high inflow early in the winter season has a small effect on the price since the price 

fall affects the demand throughout the whole winter. Depending on the time of the year, the price 

effect will vary in size. As we approach the end of the planning period, an unexpected high inflow will 

have a greater impact on the price compared with an equal inflow in the beginning of the planning 

period. This price effect can be shown by simulating unexpected inflows of 100 GWh throughout the 

winter season, compare Figure 14. Conceptually, this is the same effect as is observed in Johnsen 

(2001). 

 

Figure 14: The effect of 100 GWh of unexpected inflow at different times during the planning period 

6.1.2 Limitations of the model 

In general, bottom-up models incorporate as much information as possible relating to both sides of 

the demand-supply equation. Consequently, such models are both data and computationally 

intensive. Even though bottom-up models have high explanatory ability in the context of cause and 

effect, there is still a range of factors that drive the real-world market volatility that is not captured 
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by such models (Tipping & Read, 2010). In constructing the fundamental model, we make specific 

assumptions about economic and physical relationships in the marketplace. The price dynamics 

generated by the models are therefore sensitive to violations of these assumptions. Thus there exists 

a significant modeling risk in the application of the fundamental approach (Skantze, Gubina, & Ilic, 

2000). 

General limitations of fundamental and bottom-up models, may partially explain the relatively poor 

fit of the fundamental model with newer data. In the fundamental model of Johnsen (2001) specific 

assumptions were made about the relationships in the market, compare section 2.1.1. When 

applying this model to the current electricity market, it comes as no surprise that the price change 

equation has relatively little explanatory power. First of all, the assumption about all electricity 

generation coming from hydro power is an overly simplified approach to the electricity supply side as 

of today. Even though the NO1 pricing area is dominated by hydro production, market integration 

has led to increased influence from condensing power plants and the price of coal, gas, nuclear 

power and CO2. Transmission constraints between areas further impact the price movements in the 

respective areas. Secondly, literature suggests that even with extensive bottom-up models, 

electricity price dynamics is not adequately modeled. Tipping & Read (2010) claim that forecasting 

performance and modeling application can be improved by combining the bottom-up model with a 

complementary stochastic factor accounting for the price volatility not captured in the model. Such 

hybrid models are becoming increasingly popular, see Weron (2006). 

A specific limitation to the fundamental model is the poor ability to mimic price change between 

subsequent planning periods. Johnsen already pointed this out in his paper from 2001, but it first 

becomes apparent when multiple planning periods are actually included in the estimation, which is 

exactly the case in our replication. Albeit improved when removing the state equations for price 

change, the inclusion of more than two planning periods in the estimation reduces the model’s fit 

and predictive ability. Perhaps the most pronounced indicator of this phenomenon is the high 

absolute value of the estimated coefficient β0 that results when multiple planning periods are 

included. A relatively high β0 will strongly reduce the movements in the price caused by deviations 

from normal in the fundamental variables, such as inflow, snowfall and temperature. Hence the 

modest price variations in the dynamic simulation, compare Figure 11, can be explained. 

The significance of α1 in the demand change equation suggests that there is price elasticity of 

demand. According to Vehviläinen & Pyykkönen (2005) inelastic demand is the norm for the Nordic 

electricity market in all but the most extreme cases. On the other hand, Holstad & Pettersen (2011) 

find that if the spot price for Norway increases by 1 % from one month to another, the general 

electricity consumption falls by 0.05 %. However, they find support in the data that the price 

elasticity has become lower in absolute value in the last part of their data period, spanning from 

1996 to 2010. Since the market is treated as isolated in the fundamental model of Johnsen (2001), 

the significance of price elasticity found in our replication can to a certain extent be explained by the 

absence of flow between pricing areas as an explanatory variable in the model. In other words, the 

support in our data of price elasticity can be attributed to the fact there in reality is flow between 

interconnected price areas.  

As mention earlier, the insignificance of α2 is troublesome as it is the very coefficient that is 

multiplied by the time-dependent term in the price change equation, see equation 11. Because it, 
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according to theory, cannot be rejected that α2 is equal to zero, we may not want to include the 

coefficient in our model. Hence the time-dependent factor disappears. We find that the out-of-

sample ability is better upon inclusion of α2, but its insignificance is nevertheless a problem with our 

replicated model.   

6.1.3 Limitations in the data 

There are limitations in our dataset. The relatively poor performance of the fundamental model can 

thus partially be explained by shortcomings in the time series for the NO1 pricing area. Generalizing 

weather variables for an entire price area is a rather complex task, and simplifications are inevitably 

made. Above all, the modeling of the time series for snowfall is greatly simplified. Due to the 

excessive workload required to appropriately simulate the snowfall, we made several shortcuts in 

order to arrive at a reasonable time series, compare section 3.2. It is our hope that the time series 

calculated for snowfall indeed is proportional to usable inflow. The insignificance of the snowfall 

parameter in the ECM alternative, suggest that this is not the case.   

The derivation of inflow from changes in reservoir levels and production in the NO1 price area 

assumes no overflow and that all generation comes from one hydro reservoir. Conveniently this is in 

line with the rationales for Johnsen’s fundamental model, but the assumption of one hydro reservoir 

is deemed realistic due to the preponderance of hydro generation in the NO1 area. What is 

problematic about this derivation, however, is the fact that inflow will be correlated with production. 

Thus inflow could partly be considered an endogenous variable in the model10. This is unfortunate as 

inflow is declared an exogenous variable. The ramifications of this relationship are hard to trace in 

the model, and the consequences of it therefore remain dulled. As no overflow is assumed, water 

spillage is not accounted for in the fundamental model. This is another methodological weakness 

since inflow generally is larger than production.  

When considering the actual values for spot price in the NO1 area, the all-time high and low in our 

sample appear in week 34 in subsequent years, that is, 2006 and 2007, respectively. According to the 

fundamental model, this should imply that there were large deviations from normal in the weather 

variables at these instances. But no such deviation can be identified from the corresponding time 

series of weather variables. In fact, very few of the explanatory variables seem to indicate any of the 

price spikes or falls within the sample. Thus there is no wonder why the model’s fit is poor. The fact 

remains that the spot price in a Norwegian pricing area cannot be explained by looking at data from 

the Norwegian electricity sector alone. Furthermore, this supports the findings of Tipping & Read 

(2010) about bottom-up models inability to adequately capture observed price dynamics within 

hydro dominated electricity markets.      

6.2 The ECM alternative 

Although not as good as in Johnsen (2001), the price change equation achieves a significantly better 

fit with the data in the ECM alternative, see Table 10, than in the fundamental approach. In contrast 

to Johnsen’s findings – where the fit remains equivalently good in both the fundamental and the 

ECM approach – we find that the goodness of fit of the demand change equation is slightly lower in 

the ECM alternative.  

                                                           
10

 Johnsen (2001) does not comment on inflow as a potential endogenous variable in his original paper, but this should be 

considered in future work based on his model.   
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Table 10: Fit of the ECM alternative - replication versus original 

 R2 Standard error of regression 

 Replication Johnsen (2001) Replication Johnsen (2001) 

Δyt 0.58 0.90 0.63 0.45 
Δpt 0.22 0.45 2.50 1.49 

 

The MSEs from dynamic simulation of the ECMs are given in Table 11. Not surprisingly, the ECM for 

price in Johnsen (2001) performs better than the ECM based on the up-to-date data. The replicated 

ECM for demand however, seems to perform better than in Johnsen (2001). This is similar to what 

we observe for the fundamental model, compare section 6.1.  A potential explanation to this finding 

is that we have utilized a larger data sample for the estimation of demand dynamics, than Johnsen 

(2001) did.  

Table 11: Mean square errors from dynamic simulation of ECM alternative 

 Demand (yt) Price (pt) 

 Replication Johnsen (2001) Replication Johnsen (2001) 

Within sample  0.49 0.89 110.35 8.51 
Out of sample  2.94 16.34 915.86 118.08 

 

6.2.1 Limitations of the model 

The limitations of the ECMs concern the absence of formal testing of the time series and the 

relationships between these. We have replicated the approach of Johnsen (2001) regardless of 

whether the implicit assumptions of the models were valid or not, see section 2.1.4 on stationarity 

and cointegration. The focus of Johnsen (2001) was to provide a benchmark to the fundamental 

model. Therefore, the ECMs are formulated to resemble the same market dynamics as in the 

fundamental model. The same amount of effort is clearly not put into the specification of the ECMs 

as in the fundamental model. A more consistent treatment of ECMs is given in Johnsen & Willumsen 

(2010) where different lags for the regressors are included. The use of the natural logarithms in 

Johnsen & Willumsen (2010) is convenient as the estimated coefficients can be interpreted directly 

as the elasticity of the parameters in question.     

Single equation misspecification tests suggest that the distribution of the residuals is not normal, 

compare Appendix E. The most efficient estimation method in large samples is FIML, but in order for 

the FIML estimation to be consistent, the error terms must be normally distributed. The results from 

the Bera-Jarque tests imply that the FIML technique is not supported. Hence two or three steps least 

squares (2SLS or 3SLS) should have been considered for estimation purposes. This is in line with the 

findings of Holstad & Pettersen (2011). An alternative way of getting the residuals more normally 

distributed is to use the natural logarithms of the parameters.  

6.3 Implications from model extension  

In an attempt to make the model more robust with regards to today’s market conditions, we have 

extended Johnsen’s original model to include production from a coal fired producer as a fundamental 

explanatory variable. This implementation still recognizes the fundamental dynamics within a hydro 

dominated electricity sector. From Table 12 we can see that our heuristic approach does not improve 

the fit of model.  
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Table 12: Fit of the extended versus fundamental model 

 R2 Standard error of regression 

 Extended Fundamental Extended Fundamental 

Δyt 0.61 0.63 0.611 0.595 
Δpt 0.06 0.06 2.723 2.714 

 

An alternative to the heuristic simplification would be to establish a completely new model in order 

to incorporate the dynamics of other energy sources. Our calculations show that the incorporation of 

other energy sources cannot be done without violating the fundamental assumptions introduced by 

Johnsen (2001), see section 4.3. A new model could also have handled gas and CO2 prices as these 

factors will influence the electricity price, compare Burger et al (2007). 

Limited transfer capacity between price areas can lead to sudden spikes or falls in the electricity 

price, and the flow between interconnected price areas will largely depend on the relative prices in 

these areas. Modeling flow between areas is a rather involved task in the context of Johnsen’s work. 

It would have forced the model to treat flow as an additional endogenous variable, and this would 

have led to further complexity and more parameters to be fitted in the model. These implications are 

clearly not desirable if the purpose is to improve the explanatory power of the model. Therefore the 

system – represented by price area NO1 - is still considered to be isolated with no import or export of 

electricity. Nonetheless, an extension including flow could have been an interesting subject for 

further research.  

Alternatively, the model could introduce another hydro power reservoir to the system in order to 

model the market participants in a more realistic way. In the case of an additional hydro power 

producer, the added producer is typically assumed not to base his production decision on the price 

dynamics, but rather on the normal level of the hydro reservoirs in the Nordic electricity market. But 

this extension would violate Johnsen’s assumption regarding the shadow prices, compare appendix 

A, and is therefore not given further considerations.  

7 Conclusion 
We have replicated the work of Johnsen (2001) with an up-to-date dataset to see if his model for 

price and demand dynamics is suitable under present market conditions. In the replication we 

estimate a model for changes in weekly electricity demand and price for the Norwegian pricing area, 

NO1. Furthermore, we have investigated the possibilities of adding more producers to this hydro 

dominated system. 

Table 13: Summary of fit achieved in fundamental, ECM and extended model 

 R2 

 Fundamental model ECM approach Extended model 

Δyt 0.63 0.58 0.61 
Δpt 0.06 0.22 0.06 

 

The price change equation derived in Johnsen (2001) fits the up-to-date data poorly, compare Table 

13. The main reason for the poor fit is the profound changes that have taken place in the Norwegian 
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electricity market since the model was originally developed. In today’s market, parameters like coal, 

gas and CO2 prices, outage of nuclear power plants, flow between interconnected areas, and 

transmission constraints in the system are likely to affect the price movements. Consequently, short-

term deviation from normal weather values will explain the observed price dynamics to a limited 

extent – even when the system is largely supplied by hydro power. However, it is not possible to 

adequately incorporate multiple producers in Johnsen’s model without violating the key assumptions 

underlying his hydro based system. 

We find that the time-dependent effect of unexpected change in weather parameters is still present. 

This finding suggests that the same unexpected change in a weather parameter will influence the 

amplitude of price change differently, depending on how close the change is to the snow melting 

period. Another finding worth noting is that Johnsen’s model is strictly a short-term model. When 

employed to a larger time interval, the state equations in the original model induce a negative trend 

that biases the dynamic simulations of the model. The dynamic simulations thus improve upon 

removal of the state equations.  

Finally, we have seen that the short-term performance of the demand model from Johnsen (2001) 

remains relatively good. This is partly due to the temperature dependency of general consumption in 

Norway. We find evidence of price elasticity of demand, but this can largely be attributed to the 

absence of flow between pricing areas as an explanatory variable in the demand equation.    
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Appendix A: Derivation of the simultaneous equations 
The water reservoir budget is 

(A1) 
1 , ,...j j j jr r I y j t     

where r is the water reservoir filling measured in energy units, and y is the production of hydropower 

in energy units. Overflow gives inequality in the above equation. Since inflow consists of both rainfall 

and snow melting, we have 

(A2) 1, ,...W

j j j jI I s j t     

where IW is the inflow from rainfall in energy units, ψ is a variable for snow melting, and s is the snow 

volume measured in energy units. 

The snow budget is then 

(A3) 1 1, ,...s

j j j j js s I s j t      

Where Is is the inflow of snow, or snowfall, in energy units. 

The upper and lower reservoir filling constraints are given by 

(A4) , ,...jr r j t   

and 

(A5) , ,...jr r j t   

A constraint on weekly increase in reservoir level is expressed as  

(A6) 
1 , ,...j jr r c j t    

where c is the maximum weekly increase in the reservoir filling. 

An upper level on weekly generation capacity is deduced from the maximum generation capacity, k, 

measured in energy units 

(A7) , ,...jy k j t   

The terminal value, V*, depends on water and snow volumes left at the end of the planning horizon 

(A8) 
1 1 1 1

2* ( )T T T s TV Ar Bs C r s     

where A, B, C and γs are coefficients. At time t the complete value is 

(A9) 
1

1

0
( ) *

j j j

T
r I r

t t t

j t

V E p q dq EV
  



    
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Here Et indicates the expectation made in week t. It is evident from the above equation that no water 

overflow is assumed.  

The storage of week T1 is determined through backward induction and differentiation of 

(A10) 

11 1 1

1 1 1 1 1 1, 1

1, 1 1, 1 1 1, 1 1 1

2

5
0

6 7 1 8 1

( ) ( ) ( )

( ) ( ) ( )

T T Tr I r

T T T T s T T T

T T T T T T T T T

V p q dq Ar Bs C r s r r

r r r r c r I r k

 

  

  

 

       

       


 

where λi is the Lagrange relaxation, or shadow prices, of the above constraints on the reservoir. 

Using the fundamental theorem and the core rule for derivation yields 

(A11) 1

1 1 1 1 1 1 1, 1, 1, 1,

1

1 5 6 7 8( ) 2 ( ) 0
T

T T T T T s T T T T T

T

V
p r I r A C r s

r
    


           


 

If the constraints are non-binding , the first order condition for maximization is 

(A12) 
1 1 1 1

2 ( )T T T s Tp A C r s    

which can be written as a terminal condition for the reservoir 

(A13) 
1 1 10 1 2T T Tr p s      

For week T1-1 the storage is found by maximization of 

(A14) 

1
1

1 1 1 1 1

1

1 1 1 1 1 1 1 1 1

1 1 1 1,5 1
0

1

1,6 1 1,7 1 2 1,8 2 1 1

( ) * ( )

( ) ( ) ( )

j j j

T
r I r

T T T T T

j T

T T T T T T T T T

V E p q dq E V r r

r r r r c r I r k



  

  

    

 

        

    

       

 
 

with respect to rT1-1 and by using the fundamental theorem we the core rule for derivation we get 

(A15) 1

1 1 1 1 1 1 1 1 1 1 1

1

1

2 1 1 1 1 1,5 1,6 1,7 1,8

1

( ) ( ) 0
T

T T T T T T T T T T T

T

V
p r I r E p r I r

r
   



        




             

 

Generally we will get 

(A16) 1 1 1 1 ,5 ,6 ,7 ,8( ) ( )j j j j j j j j j j jp r I r E p r I r       
            

and if the shadow prices are assumed to be zero, we have 

(A17) 
11 2[ ] [ ]... [ ]t t t Tp E p E p E p     

which implies 

(A18) 
1 11[ ] [ ]t T t Tp E p E p    
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In the derivation of the price change equation the six following equations are combined 

(A19) 
1

1

1

( )
T

T t j j

j t

r r I y
 

    

(A20) 
1

W

t t t tI I s    

(A21) 
1

1 1

1

( )
T

s

T t j j j

j t

s s I s 

 

    

(A22) 
1 1 10 1 2T T Tr p s      

(A23) 
11[ ] ... [ ]t t Tp E p E p    

(A24) 0 1 2 1 3 1 4 5 1 6 7 1t t t t t t t ty p p y w w                         
 

We insert A20 in A19 

(A25) 
1

1 1

1

( )
T

W

T t j j j j

j t

r r I s y 

 

     

Equation A21 is then inserted into A22 

(A26) 
1

1 10 1 1 2

1

( ( ))
T

s

T T t j j j

j t

r p s I s   

 

      

The two equations above, A25 and A26, are equalized 

(A27) 
1 1

11 0 1 1 2

1 1

( ) ( ( ))
T T

W s

t j j j j T t j j j

j t j t

r I s y p s I s     

   

          

We find an expression for yj using 

(A28) 1t t ty y y   
 

so that 

(A29) 1 0 1 2 1 3 1 4 1 5 1 6 1 7 1( ) ( )t t t t t t t t t t t ty y p p y w w w                             
 

The lag operator L is introduced 

(A30) 0 1 2 1 3 1 4 5 4 1 6 7 6 1(1 ) ( ) ( )t t t t t t t t ty p p y w w                           
 

and 

(A31) 0 1 2 1 3 4 5 4 6 7 6(1 ) ( ( ) ) ( ( ) )t t t t t t ty p p Ly L w L                       
 



 

Page 36 of 44 
 

Then we solve this for yt 

(A32) 3 0 1 2 1 4 5 4 6 7 6(1 ) ( ( ) ) ( ( ) )t t t t t t ty Ly p p L w L                       
 

and 

(A33) 3 0 1 2 1 4 5 4 6 7 6(1 (1 ) ) ( ( ) ) ( ( ) )t t t t t ty L p p L w L                       
 

We thus get 

(A34)
0 1 2 1 4 5 4 6 7 6

3

1
( ( ( ) ) ( ( ) ) )
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t t t t t ty p p L w L
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   

Now we can insert A34 in A27, and we add the expression for rt to get the following 

(A35) 
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

 

We solve for pt 

(A36) 

1
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0 1 2 1 1 1
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We then multiply both sides with the denominator in the second term on the right hand side 

(A37) 
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Then we expand the lag expression for price 

(A38) 
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Now we take the expectation on both sides of A38 
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Using equation A23 gives us 
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If we also include A21 we get the following 

(A41) 
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Finally, using that the expected value of the error term is zero, we arrive at 
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(A42) 

1

1

1

1 2 0 3

1 1 1 2

1

3

1 1 1 1

1

0 4 5 40 4 5 4

6 7 6

1
[ ]

( 1) )

( )

(1 (1 ) )

( ( ))

( ( ) )( ( ( ) )

( ( ) )

t T

T
W W

t t t t t j t j j

j t

T
s s

t t t t t j t j j

j t

t

t t

E p
T t

r I s E I E s

L

s I s E I E s

LL w

L

  

  



  

      

    

  

 

  

 


  

 
     

 
   

     
 
 

     
  

    





1

1 6 7 6( ( ) )

T
j

j t t j

w

L E    

 
 
 
 
 
 
 

  
       



 

which is exactly the result of Johnsen (2001). 

In a similar way we derive the expression 

(A43) 
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From equation A18 we have that 

(A44)
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Note the term 
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so we get price change equal to 
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which the reader should recognize as the price change equation presented in Johnsen (2001). 

Appendix B: Grid search procedure 
Table 14: Grid search procedure 

 Δyt Δpt Probability 

K-value R2 
 SER R2

 SER α1 α2 

22.0 0.3993 0.7553 0.0513 2.7387 0.0096 0.2898 

24.0 0.4967 0.6913 0.0659 2.7176 0.0033 0.3304 

26.0 0.5723 0.6373 0.0754 2.7037 0.0057 0.3276 

28.0 0.5722 0.6373 0.0754 2.7037 0.0057 0.3276 

30.0 0.5669 0.6413 0.0758 2.7031 0.0067 0.3858 

Infinite 0.6267 0.5953 0.0609 2.7141 0.0461 0.3283 

 

As we can see from the table above, the fit of both demand and price change, tend to improve when 

the K-value increases. We note that α1 is only significant on a 5 % level when K is infinite, whereas α1 

is significant on a 1 % level for lower values of K. However, both the grid search procedure above and 

the plot of the dynamic simulation, compare Figure 11, imply that the exclusion of the state 

equations for price change, is a valid undertaking.    

Appendix C: Fitted values, cross-plots and scaled residuals 
The plots of actual and fitted values of demand and price change in the fundamental model, are 

given in the figures below. 
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Figure 15: Plots of actual and fitted value of demand change - fundamental model 
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Figure 16: Plots of actual and fitted value of price change - fundamental model 
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The plots of actual and fitted values of demand and price change in the ECM approach, are given in 

the figures below. 

 

 

 

Figure 17: Plots of actual and fitted value of demand change - ECM approach 

 



 

Page 43 of 44 
 

 

 

 

Figure 18: Plots of actual and fitted value of price change - ECM approach 
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Appendix D: Presentation of data for model extension 

 

Figure 19: Coal price 

Appendix E: Single equations misspecification tests 
Table 15: Single equation misspecification test - ECM 

Demand change equation 

Autocorrelation FAR 1-7(7,240) 1.45 
Autoregression conditional heteroscededasticity FARCH 1-7(7,247) 0.18 
Normality Χ2

NORM(2) 100.35** 
Heteroscedasticity FHET(25,235) 2.80** 

Price change equation 

Autocorrelation FAR 1-7(7,240) 7.69** 
Autoregression conditional heteroscededasticity FARCH 1-7(7,247) 2.99** 
Normality Χ2

NORM(2) 153.97** 
Heteroscedasticity FHET(25,235) 1.40 

A significance level of 5 % is indicated by **. 

 

 


