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Summary

In this thesis, we present a survey of available models for spot- and forward prices for
electricity, then the models are fitted to data obtained from the Scandinavian power
Exchange, Nord Pool using non-linear regression analysis. A through discussion of
the models is presented focusing on the relationship between the theoretical and
empirical price trends, volatility structure and seasonal fluctations inherit in power

prices.

Furthermore, using one of the frameworks originally suggested for power prices, we
construct a model for the Enron Scandinavian Precipitation Index and derive
analytical solutions for derivative instruments written on this thesis. Although a
market for weather derivatives is not present in Norway at present, we obtain market
guotes on precipitation options to estimate the market price of precipitation risk

present due to the non-tradable nature of precipitation.

Based on the precipitation time series, we move on to consider whether precipitation
derivatives can serve as a volumic hedge for a run-of-river power plant located at a
specific site in Norway. The conclusion from this analysis is negative, and we

consequently develop aternative methodol ogies for valuing such a power plant.

The first approach develops theoretical revenue futures by fitting a one-factor model
to observed revenues of a hypothetical run-of-river power plant using price data and
water discharge time series for the Gaula River. Through an arbitrage-free portfolio,
we develop call options on plant revenues, since the time-varying discharge levelsin
the river and the presence of a minimum and maximum production threshold gives a
payoff structure similar to a spread position engineered from plain vanilla options.
The second approach combines two stochastic processes — one for water discharge
assumed to follow zero-drift geometrical Brownian motion whereas prices follow a

one-factor process fitted to long-term forward contracts.

Finally, we attack the problem of finding the early exercise boundary for the option to

build a run-of-river power plant. Both a one-factor mean-reverting model for spot
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prices as well as the one-factor GBM model fitted to the observed long-term price

trend are analyzed using trinomial trees.
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1 Introduction

The final objective of this thesis is to value a run-of-river plant using a real option
approach. Real option methodology is a central contribution to modern finance theory
and incorporates factors such as for example the value of temporary project
suspension, and the value of managerial flexibility. The framework also has the virtue
of being independent of agent’s risk preferences; consequently the appropriate
discount rate is the risk-less rate. This introduces the concept of risk free valuation,
and the possibility of using and developing financial derivatives directly in the

analysis.

Much of the developed theory on continuous pricing using risk-neutral valuation is
based on stochastics and dynamical systems. Whereas advanced models may yield
more " correct” results, there is always a trade-off between analytical tractability and
the number of stochastic factors involved. If the model does not allow for analytical
solutions or if the analytical solutions are too complex, simulation might be necessary.

We limit our studiesto analytically tractable models.

Central to the value of a run-of-river plant is the risk in power prices and
instantaneous water discharge, since the plant has little or no storage capacity.
Furthermore, a run-or-river plant has an asymmetric revenue structure because of
upper and lower boundaries giving an upper bound of production and a minimum
discharge required for the plant to operate at all. Between these bounds, discharge risk
will be present most of the year. Due to this asymmetric revenue structure, we show

that the plant can be valued as a spread position on the plant revenues.

Two of the main challenges are to gain a sound understanding of the stochastic
processes assumed followed by power prices in the long and short run as well as the
hydrological dynamics driving water discharge levels. To apply the rea options
framework, we need a way of removing both the price and the discharge risk, or
obtain an estimate of the market price of these risks to develop a risk-natural
framework. Provided that the correlation between a weather variable such as

precipitation and instantaneous discharge is high, an aternative approach is to hedge

Real Option Analysis of a Hydropower plant 1
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the discharge risk using weather instruments, and move on to value the run-of-river

plant as a portfolio of forward contracts and precipitation derivatives.

The right to exploit a site in a river for power production is normally valid within a
time frame, and the real option approach allow us to model this as an American option
on investing in a plant. Given a model for plant value and a model for power prices,
we can find the early exercise boundary above which the option holder would benefit

more from investing in a plant compared to holding the option to invest.

In sum, we need a good understanding of power price dynamics both in the short- and
the long run as well as to investigate the relationship between precipitation and water
discharge. Furthermore, the special characteristics of run-of-river power plants have

to be taken into consideration.

Real Option Analysis of a Hydropower plant 2
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2 Background

2.1 The Nordic energy market
Although the Norwegian energy market was only deregulated in 1991, a power

exchange (market) has been present since the early seventies. After Norway’'s
liberation of the market, Sweden followed in 1996, and a Nordic Energy market
emerged. To organize the liberalized market, a common clearinghouse was needed,
and the Nordic power exchange Nord Pool was created.

Because of its short existence relative to other markets, most energy markets would be
categorized under emerging markets. Nord Pool is, however, one of the best-
developed power exchanges in the world. Still, economists would argue that the
volatility of the market is unnecessarily large, a sign of market immaturity. Energy,
being a commodity, will always be more volatile than ordinary investment assets.
Still, a closer integration of energy markets and other markets would increase market

liquidity, as more arbitrageurs would even out temporal variations.

Still, the Nordic energy market is growing in size, as more foreign investors are
entering the Nordic energy market. The secondary market, comprising energy
derivatives, is aso increasing. The gross turnover of the derivative markets increased
form about 8 times the physical market in 2000 to about ten timesin 2001. Thisis a
sign that the energy market is till developing. In addition to Nord Pool, severa
independent brokers are present in the market, increasing the market turnover.
Comparing the Nordic energy market to other energy markets, it is one of the best

developed in the world.

Despite this growing market, the energy market can never be truly international, like
the market for investment assets. Transmission grids limit the degree of energy export
and import. Because of this, the physical market can never be truly global. The

financial market, on the other hand, would in theory be open to anybody.

Real Option Analysis of a Hydropower plant 3
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2.1.1 Market structure and Energy Products

Nord Pool offers several products. These can roughly be separated into three main
categories, namely physical contracts, financial contracts and clearing. These will be
given abrief explanation under.

2.1.1.1 The Physical Market

The only way to buy energy in the Nordic energy market is through a physical
contract. Hence, the most basic product traded on the energy market, is spot electricity
(Elspot). The Elspot is an agreement to deliver one kWh during a specific hour the
following day for a settled amount of Norwegian Kroner (NOK). It could be argued
that Elspot is actually a one-day forward contract for a one-hour delivery. We will, as
Is conventional, refer to it as the spot price.

Everything not traded spot, is considered being a derivative on the spot. For the
practical purposes of this thesis, we will later let one-week forward contracts be a
proxy the spot price. Thisis mainly due to convenience, as a higher resolution would
not add anything significant to the analysis.

2.1.1.2 The Financial Market

Thefinancia (derivative) market is divided into forwards and options markets. In this

section, we will go through the most important characteristics of the two markets.

2.1.1.2.1 Forwardsand futures

Asin most developed markets, the energy business also has a secondary market. This
market comprises forwards and future contracts, based on the underlying spot price. A
forward is an obligation to buy stock at a predetermined price in the future, whereas a
future essentially works the same way, but is settled on a daily basis, requiring a
margin account’. At Nord Pool, as in most other markets, these contracts do not
involve physical delivery. Contracts are settled in cash, based on the difference
between the spot and the pre-settled delivery price.

! Forward and futures are identical for a constant risk free rate. See Cox, Ingersoll and Ross (1981) for
details.

Real Option Analysis of a Hydropower plant 4
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Energy forward contracts are traded in years and blocks. At Nord Pool, annual

MSc Thesis, Department of Industrial Economics and @ NTNU

forward contracts start trading three years before delivery, and are traded until the
start of the season preceding maturity. Then, annual contracts are split into seasonal
forwards. These forward contracts divide the year into three separate seasons, called

winter 1, summer and winter 2. Table 1 gives an overview of contracts and their

duration.
Contract Contract type Duration Hours of energy
(Leap-year)
Year Forward Weeks 1-52 8760 (8784)
Winter1(V1) Forward Weeks 1-16 2879 (2903)
Summer (S0) Forward Weeks 17-40 3672
Winter2 (V2) Forward Weeks 41-52 2209
Block (Month) Future 4-5 weeks 672
Week Future 1 week 168
Day Future 1 day 24

Table 2.1 Forward Contract structure at NordPool.
Source: www.nordpool.no
Seasonal forwards can be traded three years before actual delivery, until the beginning
of the season before maturity. The contracts are then split into 3-6 blocks of four
weeks that are tradable until the previous block matures, when the blocks are spilt into
four weekly contracts traded until the day before delivery. These, and shorter
contracts, are settled on a daily basis. Hence, they fall under the futures category.

Fleten and Lemming (2001) argued that the block structure complicated the process of
finding prices for specific maturity times, or constructing a continuous term-structure
curve. This is because the block structure only gives a partial picture of the prices.
Furthermore, although the market for power contracts at Nord Pool is reasonably

large and growing, long-term contracts are rather illiquid.

2.1.1.3 Contracts for difference

Due to capacity constraints on the transmission grids, Statnett has the possibility to
declare a specific power grid zone as specia when demand is high. Under these
conditions, the system price quoted by Nord Pool would be different from the price
prevailing in the actual area. In such situations, Nord Pool offers a contract for
difference (CfD), available for seasons and years, as protection against exposure to
these bottlenecks. CfD’s are only available for afew big cities, and are fairly illiquid.

Any hydropower plant will be exposed to risk of differences between system price

Real Option Analysis of a Hydropower plant 5
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and area price, if the system price is used for hedging. This exposure will not,

MSc Thesis, Department of Industrial Economics and @ NTNU

however, betreated in thisthesis.

2.1.1.4 Options

Belonging to the set of financial contracts, an option is a right, but not an obligation,
to buy an underlying asset at a given (usually predetermined) price. This is the third
“layer” in the electricity market. As for futures and forwards, electricity options are

pure financial products settled in cash rather than delivery.

The amount of options available in the electricity market is not enormous. Contracts
are mostly written on the longer-maturity forward contracts, and are mostly European
in nature. There has been a market for Asian options, but the market demand seemsto
be low for these contracts at the time being. In fact, Nord Pool has stopped listing
these products, and they are now traded over the counter (OTC).

During the recent years, a new market of various derivatives, modeled to fit other
variables than price, has developed. Specifically, the market for weather derivatives
has started growing. Thisis discussed in section 2.2.

2.1.1.5 Risk management and hedging in energy markets

Modigliani and Miller (1958) argued that a company’ s shareholders would always be
able to hedge arisk more efficiently than the company itself. This might not apply to
energy risk management. Due to the volatile nature of power markets, energy
companies and industries heavily dependent on energy, could suffer big losses due to
fluctuations in the market. Bjerkvoll et al. (2001) argued that due to market
“imperfections’, hedging at a company level might be profitable for shareholders.
They further contended that due to economies of scale in power derivatives markets,
firms are able to operate at lower cost than individual investors do. Traditionally,

companies operating in the energy business do hedge their exposure.

2.1.1.6 Hedging strategies and separation problems

The energy market comprises severa large actors that might see added value in
hedging their interests. To be efficient, hedging should be done at a corporate level.
Such hedging raises practical issues, however. Bjarkvoll et a (2000) claimed that

production uncertainties make hedging very difficult and not necessarily separable
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from production planning. In effect, hedging at a corporate level might prove to be
Impossible in practice.

Secondly, it is crucia to distinguish between price hedges and volume hedges. A
price hedge guarantees a price, but not a steady demand or supply. A volume hedge,
on the other hand, is an instrument made to ensure market size, either on the supply or
the demand side. Pure weather derivatives are volume hedges. Temperature mostly
affects the magnitude of the demand, whereas precipitation affects the magnitude of
supply. They both, of course, indirectly affect the price, but it is difficult to capture
this relationship exactly.

In conclusion, the combination of lack of separabilty and the difficulties quantifying
the exposure complicates energy risk management considerably. Nevertheless, the
number of participants in the market islarge and growing.

2.1.2 Transmission grids

In Norway, Statnett has controlled most transmission grids since the market
liberalization in 1991, because the grids were considered a natural monopoly.
Although afew minor interests still own some of the grid, this ownership is limited to
the more local distribution grids, making the monopoly comparison liable for the

main grids.

2.2 The weather market

Wesather derivatives were originally developed to facilitate against non-catastrophic
weather conditions that might negatively impact on a company’ s revenue stream. Two
key features of weather derivatives are that they are written on a non-tradable
underlying (some weather variable or weather index) and that they are used to hedge
volumetric risk, while traditional derivatives hedge price or financial exposure.

2.2.1 Market development

The US remain the most developed weather market, with almost 2500 contracts
traded in year 2000 amounting to a total volume of US$ 2.7 billion (Tigler and Bultte,
2001). While numerous studies point out the sheer vastness of businesses whose

revenues are affected by weather patterns, the market remains clearly dominated by
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energy companies. Temperature derivatives for ten major US cities are traded on the
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Chicago Mercantile Exchange. The European market is catching on, with the UK,
Germany and France being the most active markets. Again, energy companies are the
most active, while investment banks and insurance companies are gaining interest for
the weather derivatives business. However, the market still remains illiquid and all
contracts traded in Europe are arranged OTC?.

2.2.2 Common underlying variables

The most common underlying variable in the weather market is temperature (98% of

traded contacts); the rest of the market consists of precipitation (rain or snow),

sunshine hours and wind speed. The criteria for a weather variable to serve as

underlying can be listed in three main points:

» The variable needs measurable impact on enough agents to develop a market.

* Thevariable has to be accurately and objectively measurable.

» High-quality data and sufficiently long historical records are needed for agents to
price contracts and study the properties of the relevant weather variable.

Historically, weather protection has been supplied by the insurance industry, but for

several reasons, a weather derivatives market is a good supplement to traditional

insurance contracts. The key differences are summarized in the following table.

Insurance policies Weather Derivatives
Usage Protection against specific, Protection against high-
low-probability catastrophic  probability “continuous”
events risks or natural fluctations
of weather
Payment Proof of financial losses due Automatic payment based
preconditions to the occurance of events  on the realization of some
as specified in the insurance weather variable
contracts
Complexity Usually high Can be high for OTC-

contracts, lower for
exchange-traded contacts

Buyer’'s counterpart  Insurance company Arbitrary market
participants (OTC) or
clearing house (for
exchange-traded contracts)

Table 2.2 Insurance policies versus weather derivatives
Source: Tigler and Butte (2001), Element Re (2001)

2 Over The Counter. This refersto bilateral trading of contracts outside the ordinary exchange.
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2.2.3 The rationale behind indices

Weather indices are preferred to individual measurements for several reasons. The
most obvious is to make the instrument more liquid — in the Scandinavian power
market, the power reservoirs are located in sparsely populated areas, and it is unlikely
that there will be more than one actor interested in trading in the instrument for
hedging purposes. Secondly, for business with geographically diverse activities, the
outcome of some wesather variable over a larger area might be more important than
the outcome of the same variablein, say, agiven city.

2.2.4 The Nordic weather market

The market for weather derivatives has yet to boost in Scandinavia. The few contracts
traded are traded OTC. According to AEP Energy Norway, amost all current
contracts are in practice building blocks in larger structured deals in which weather is

one of more underlyings.

Enron Corp. developed a precipitation index to use as underlying for precipitation
derivatives, but after Enron went bankrupt, contracts were no longer traded on this
index. AEP Energy maintains the index and uses it as an internal reference for their
structured deals. We will return to this index in chapters 7and 8 when we model and

price precipitation derivatives.

2.2.4.1 Potential of the Nordic weather market

A commonly cited figure is that over 20% of the US economy is directly exposed to
weather risk (see i.e. Geman, 2001), and AEP Energy claims that the corresponding
number is at least as large in the Nordic market. The importance of hydropower could
pave the way for a market for precipitation-based instruments, but a problem is that
there is no natural counterpart for the generators. One could possibly expect that large
buyers of power could act as contractual counterparts, but this seems not to be the

case.

2.2.4.2 Reasons why the market has not caught on

The market lost its most central actor when Enron went bankrupt. Enron Nordic’s
operations were taken over by AEP Energy, but the market is not as big as it used to
be, and was never really big in the first place. Moreover, the second biggest player,
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Aquilla Energy has withdrawn the bulk of its operations from Norway and is no
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longer aplayer in the Norwegian weather market.

AEP Energy points to the fact that the potential actors have been very slow to catch
on, and experience shows that if the first weather deal struck ends with a loss, the
actor tends to conduct no further deals.

As pointed out above, the market is one-sided due to a lack of counterparts for the
energy businesses. This does not mean that there are no businesses with different
exposure profile to weather phenomenon, they are ssmply not actors in the derivatives
market. Smidt (2001) listed municipals, retailers, tourist operators, and breweries as
businesses with huge exposure to weather, but they quite ssmply do not use

derivatives to hedge or do not weather risk.

Cao and Wei (2001) claimed that large bid-ask-spreads caused problems in the US
and European weather markets, and Williams (1999) pointed out that triple-digit bid-
ask-spreads were not uncommon in the US market. Consequently, weather derivatives
might be ineffective as a hedging mechanism. In Norway, the bid/ask spread is non-
existing. It is either abid or an ask.

In sum, there is no efficient market in Norway for weather instruments, and at the
present time, not a market at al for pure weather instruments.
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3 Theoretical framework

3.1 Project valuation approaches

There are various ways of estimating the value of a project. In the following sections,

we will briefly touch upon the most common pricing methods.

3.1.1 Net Present Value

The net present value (NPV) approach was developed as a result of the risk-return
framework developed by Markovitz (1953) and extended by, amongst others, Sharpe
(1964). The approach comprises predicting future cash flows, and discounting at a
risk-adjusted rate of return. The popularity of NPV is enormous due to its simplicity,
and it is by far the most used pricing method today.

Whereas the NPV method is tractable due to its simplicity, it is inexact because of its
static nature. Trigeorgis (2000) claimed that NPV analysis was far too static to capture
the dynamic environment of a company. For example, NPV failed to capture the value
of project flexibility, such as options to abandon and temporarily suspend projects.
Trigeorgis (2000) further argued that traditional NPV was developed for passive
portfolio management and that the value of active management would be better
captured using other methods. Lastly, a fundamental problem with NPV is valuation

of investment opportunities involving asymmetric payoff.

Still, NPV anaysis could prove to be useful. Different projects have different
characteristics, and require different valuation methods. Fleten (2000) argued that
traditional NPV approaches would be adequate for pricing passive investments and

for decision support for now-or-never projects.

3.1.2 Decision Tree Analysis

Decision Tree Anaysis (DTA) is a project valuation approach similar to the NPV
analysis. It involves developing several scenarios for the future, and assigning
probabilities to these. The outcomes of the various scenarios are finally discounted at

appropriate discount rates.
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DTA is able to capture more flexibility than NPV anaysis, because of the
introduction of scenarios. It does, however, introduce other problems. Trigeorgis
(2000) claimed that although the DTA approach was correct in principle, and gave a

good overview over sequential investments, the approach had two major drawbacks.

Firstly, the appropriate discount rate has to be determined at every node. Say, for
example, that at node n, there are two possible outcomes, A and B, with probability p
and 1-p. A is dependent on the energy market, and should be discounted at a rate
reflecting the energy market risks. Outcome B, however, is risk-free. It should
therefore be discounted at the risk-free rate. At node n-1, the combination of the two
outcomes in n will need to be discounted at an appropriate combination of the two
rates. On every single point in the tree, this problem is repeated, resulting in multiple

discount rates, and increasing the complexity.

Secondly, the probabilities associated with the various scenarios would have to be set
explicitly for each scenario. Although tedious, this problem might be solved using
Monte Carlo methods. Finally, decision trees grow exponentialy in size as the time

horizon increases, making multistage problems difficult to handle.

3.1.3 Contingent Claims Analysis and Real Options

Contingent claims analysis is the “new” approach to project valuation. It was
developed on the basis of the work of Cox, Ross and Rubinstein (1979). They
developed a theory of replication of options in an arbitrage free portfolio, extending
the framework of, amongst others, Black and Scholes (1973). The result of these

advances, projects could be evaluated independent of individual risk preferences.

CCA uses a certainty equivaent approach, and utilizes the options framework instead
of the static approaches discussed above. Hence, CCA methods avoid some of the
problems introduced in the NPV and DTA approaches. The asymmetric payoff
problem is taken care of in the same way as in DTA, by alowing scenarios, or a

continuous specter of scenarios.
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In arisk neutral world, all individuals are indifferent to risk. Hull (2000) argued that if
the risk preference of the investors does not enter the equation, it could not affect the
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solution. Hence, utility theory is avoided, and individual preferences could be
ignored. CCA is based on risk neutral valuation, and the value of a real option can
essentially be found via a proper NPV analysis using risk-neutral valuation. The
discount rate would be the risk-free rate r, and not the rate given by the CAPM or any
other risk-adjusted discount-rate framework. This approach solves two problems.
Firstly, preferences are eliminated. Secondly, only one discount rate is needed, which
Is a significant improvement compared to the DTA analysis above. At any given node
in adecision tree, the discount rateisgiven asr.

3.2 Pricing of contingent claims

In this section, we are going to investigate how to price contingent claims using a
risk-neutral framework. The section is largely based on Trigeorgis (2000), Dixit and
Pindyck (1994) and Hull (2000). We start by investigating the statistical framework

for modeling investment and commodity prices.

3.2.1 Stochastic processes

The modeling framework used is based on stochastic processes. A pure stochastic
process is a process whose next step is independent of the previous steps. The process
will still be dependent of the previous state of the process. If it is only dependent on

the last state, the process possesses the Markov property.

The first building block is noise, based on the idea of Brownian motion, or Wiener
processes. A pure Wiener process, as described in Hull (2000), is a process with no
drift, given in equation (3.1).
dz = eJdt (3.1)

Here dz is a Wiener process, ¢ is a normally distributed value with mean zero and
variance of one unit, and dt is a small time step. The only movement is “noise’, or
random motion. In addition, a Wiener process noise € follows the normal
distribution, generally indicating that the likelihood of small movements is greater
that that of larger magnitudes.
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3.2.1.1 Geometric Brownian Motion

A pure Wiener process is not usually considered able to capture the movements of
security prices, since the Wiener process has zero drift. Due to the time value of
money, inflation, etc, a security would have an expected return, or a drift .
Therefore, it has been normal to use a geometric Brownian motion to capture the
movements of stock prices. Geometric Brownian Motion (GBM) is defined in
equation (3.1).
dP = 4Pdt + bPdz (3.2

Here, dP isasmall change in the security price,  isthe drift, dt isasmall time step, b

is the magnitude of the volatility®, and dzis given in equation (3.1).

3.2.1.2 Arithmetic Brownian Motion
Unlike the more familiar GBM, arithmetic Brownian motion has the generic from

dP = pdt + bdz (3.3)
An arithmetic Brownian motion is often referred to a generalized Wiener process. The
difference between GBM and ABM lies in the noise term. GBM generates noise

proportional to the stock price P, whereas ABM’s noise is independent of the price P.

3.2.1.3 Application to asset pricing

Asset prices are normally assumed to follow GBM. It can be shown that if a stock
price P follows GBM, then In(P) follows a generalized Wiener process. Since a small
increment dz is normally distributed, the Wiener process residuals should be normally
distributed. In effect, the GBM residuals should be lognormally distributed. Thisis an

important condition for the framework to be valid.

3.2.1.4 It6 processes
An Ito process is generally speaking the same as a Wiener process, only that the drift
W and the standard deviation b are replaced with functions p(P,t) and b(P,t). Hence,
we can restate equation (X) as

dP = u(P,t)dt +b(P,t)dz (3.4

% By volatility , we mean a standardized measure of the standard deviation.
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The difference is that a more genera drift and standard deviation can be incorporated.
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For example, the 1td process could allow seasona variations. This property is

particularly useful when modeling commodity prices with seasonal trends.

3.2.1.5 Mean reversion processes

A mean reversion process is a combination of a deterministic and stochastic process.
Whereas GBM processes are characterized by the Markov property (all previous
states are insignificant), the mean reversion process is dependent on the deviation
from along-term mean. A mean reversion process can be given as

dP = x(m- P)dt + odz (3.5)

In equation (3.5), K is a mean-reversion factor, m is the long-term mean, P is the
current state (price), o is the volatility, and dt and dz increments in time and the

Brownian motion.

3.2.1.6 The choice of process

The choice of process depends on the behavior of the price time series. The choice of
an adequate model is crucial, considering that the process forms the basis for the
pricing of an asset. Therefore, it is often necessary to try several models before
deciding which is most suited for the task. Furthermore, simplicity is an important
Issue, as a more advanced model might be notoriously difficult to communicate and

work with, without adding significant improvements compared to an easier model.

3.2.2 Creating a simple arbitrage-free portfolio
Consider the case of a tradable and storable underlying asset. In the discrete case, a
portfolio consists of N shares of one asset, financed by aloan B at therisk freerater.
For simplicity, we assume there are two possible outcomes, C* and C', with outcome
probability p and 1-p respectively. The value of the portfolio P at time 0 and 1 can be
visualized through atree:
NSt (4n)B=C*
P=145-B
p NS~ - (1+)B=C"
=0 t=1

Figure 3.1: The payoff of an asset S
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We now design a portfolio whose payoff at time t=1 does not depend on the path

chosen. In other words, we eliminate uncertainty. Setting the values at the two states,

C" and C, equal, we can find an N that makes the outcomes identical, regardless of

uncertainty. After rearranging, we get

_Cc'-C (3.6)
SHECH

At this ratio, the payoff is certain, and should be discounted at the risk free rate r.

N

Following Trigeorgis (2000), we hence define the risk-neutral probability as

A+r)-S (3.7)
SHECH

This is the probability that would prevail in a risk-free world. Furthermore, the

expected return on an option must equal the risk-free rate in arisk-free world, r:

pC’+1-pC” _,_, (3.8)
C

This exercise can be repeated for the continuous case, and has one important message.

If the risk-free return of the option is not equal to the risk-free rate, then arbitrage
opportunities would exist. In other words, the relationship in equation (3.8) must hold.

3.2.2.1 The market price of risk

Following Hull (2000), in absence of arbitrage, two derivatives, f; and f,, both
dependent on the underlying asset 6, must be priced internally consistent, so that a
risk-less portfolio comprising the two would provide the risk-free return. This can be

illustrated by the two derivative processes below, both dependent only of 6and dit:

39
% = u,dt +o,dz (39)

1

df—f; = 1,0t + 5,0z (3.10)
All the risk in the above securities liesin dz, which is equal for both securities. Hence,
eliminating dz would create a risk free portfolio. We construct this portfolio by the
use of f,0; portions of the first derivative, and 103 of the second. This portfolio will
have a certain payoff. The value /7 of the portfolio is then given in equation (3.11).
=(o,f,)f,—(o,f)f, (3.11)

A small changein Il can be written as
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dIl = (o, f,)df, - (o, f,)df, (3.12)

MSc Thesis, Department of Industrial Economics and @ NTNU

Since the portfolio is risk-less, it should earn the risk-free rate of return r. The payoff
of the portfolio over asmall time step dt is stated in equation (3.13):

dIT = rI1dt (3.13)
Substitution into this equation from (3.11) and (3.12) yields
(1 =1) _ (o) (3.14)
0, 0,

This term is commonly referred to as the market price of risk, and labeled A.
Dropping the indices, we can restate the market price of risk as

(u—r) _ 1 (3.15)

(o2

The market price of risk is hence a price of the volatility. The product of the volatility
and the market price of risk constitute the difference between the value of a security’s
expected value and its certainty equivalent, the futures/forward contract. This
difference is seen as a compensation for bearing the risk of trading spot. Pirrong
(2000) pointed out that there are large differences between these two values in the
PIM* market, even for one-day forward contracts. This indicates the presence of a
market risk premium. Rewriting equation (3.15), a risk-neutral measure of the return
of arisky asset is given in equation (3.16).

r=u-Aioc (3.16)

3.2.2.2 Ito’'s lemma

Hull (2000) contended that any derivative is afunction of itsunderlying and time. It is
difficult in practice, however, to derive the explicit relationship between the
derivative and its underlying. 1to's lemma provides us with the necessary tools to
perform the transformation of the stochastic process for the underlying processes to

the new derivative process.

The method Ito suggested involves simplifying the derivative expression through a
Taylor expansion. Ito claimed that using the first two Taylor expansions of the

function with respect to the underlying, and the first Taylor expansion of the function

* Pennsylvania, New Jersey and Maryland
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with respect to time would provide the necessary approximation. In other words, a
changein afunction G of an underlying stock u will be approximately equal to

2 31
d6 =20 au+ L+ 19°C gy (347
ou dt 2 du

For a stock following the dynamics given in equation (3.18), the process for a

derivative G will follow the relationship given in (3.19).

du = a(x,t)dt + b(x,t)dz (3.18)
2 (3.19)
4G =+ 98,10 ?bz t+ 9% baz
ou d 2du ou

3.2.2.3 Creating a continuous instantaneous arbitrage-free portfolio

After finding the process followed by G, we construct a risk-free portfolio of the
underlying and the derivative, by going short in the derivative and long dG/ du units
of in the underlying. This operation is funded® by a bank loan at the risk free rate. The
portfolio value I is then expressed in equation (3.20).

H=—G+d—Gu (3.20)
du
Correspondingly, achange in the portfolio value, All, is given in equation (3.21).
P L 21
ot 2 ou?
This portfolio is instantaneously risk-less. Therefore, it should earn the risk-less rate
of return:
(3.22
drt = ridt = ik 6 + 2 uf
C ou [
Rearranging, we obtain the differential equation satisfied by G:
G, 090G, 10°G (3.23)

ru— +=
ot du 20du?

b?u? Ez rG

Similarly, it can be proven that for a stock with convenience yield c, the process in
equation (3.23) changes to equation (3.24).

® Thisis only needed if the underlying requires investment at time 0. If the underlying is a forward
contract, no initial investment is needed.
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EL (r o a_G 19°G Ere (3.24)
du 2 4u?

Finaly, in asimilar way, it can be shown that if aforward contract is the underlying,
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the differential equation of the derivative G is given as

G 1026b LG (3.25)
ot 20F?

Here, F represents a forward contract. Because the forward contract has a fixed

contract price at a future time T, the drift term of (r-c) is not included in the
differential equation.

3.2.2.4 Forward risk neutrality and equivalent martingale measures

When the underlying is not tradable, we cannot use a derivative and its underlying to
find the risk-neutral probability measure, as given in equation (3.7). Instead, we need
two derivatives. Using the approach suggested by Hull (2000), we define f; and f, to
be two derivatives dependent on a single source of uncertainty. Let the relative price
of f; with respect to f, be expressed as 8 so that the relationship given in (3.26) holds.
f, (3.26)

A martingale is a stochastic process with zero expected drift. The equivalent
martingale measure result shows that, in the absence of arbitrage opportunities, is a
martingal e for some choice of the market price of risk. Furthermore, if the volatility of
f, is the market price of risk, then f1/f2 is a martingale for all security prices fi. A

complete proof of thisresult can be found in Hull (2000).

This result means that to appropriately value energy derivatives, we could use the
forward curve as the underlying asset, since this curve represents the risk-neutral
expected future spot price. Since the income from a predetermined forward contract is
fixed, there is no uncertainty in the future value. Consequently, valuation is risk-free,
and should be discounted at the risk-free rate.

3.2.2.5 Solving the differential equation

The differential eguation given in equation (3.24) has an unlimited set of solutions.

The appropriate solution is conditioned on the boundary conditions of the derivative.
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For forward contracts, the boundary condition would be Fo=E(S,T), making the
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portfolio instantaneously risk-less. For options, the boundary condition is given as
G=max(S-X,0) for call options, and G=min(S-X,0) for put options.

3.3 Options

In financial theory, an option is the right, but not the obligation to purchase spot at a
predetermined point in time. In practice, however, an option is a pure financia tool,
that will be settled in cash if the option expires in the money. The settlement will be
the difference between the actual price and a predetermined strike. If the option
expires out of the money, whatever the amount, the settlement is zero. Hence, an
option has a non-linear payoff structure. The tractability of options is mainly due to

the asymmetric payoff, giving it a unique position in risk management.

3.3.1 Purpose of options in this thesis

Within the framework presented in this thesis, options are used in several contexts. A
power plant with a lower capacity limit will have an asymmetric revenue structure
similar to that of options. Hence, the production could be viewed as an option.
Weather contingent claims are also, to a large extent, based on options. Finaly,
American options will be used to evaluate the value of delaying the investment
decision, and find an optimal investment price.

3.3.2 Framework

Options come in a variety of forms. To price an option, we need the following

parameters:

* Risk-neutral expected forward price Fo(T). As discussed in section 3.2.2.4, thisis
equivalent to the forward price.

» Strike price X. This is the predetermined price above or below which the option
generates payoff.

* Risk-freerater.

» Voldtility o. Thisis needed to find the accumulated variance.

* Timeto maturity T.
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The following table explains the most usual option types:

Optionsand payoffs

Option style Type Exercise Payoff

European Call At expiry Max(S7-X,0) at maturity
European Put At expiry Max(X- St,0) at maturity
American Call Within expiry Max(S1-X,0) at time of exercise
American Put Within expiry Max(X- St,0) at time of exercise
Asian European Put/Call At expiry Some average

Asian American Put/Call Within expiry Some average

Table 3.1: Option styles
In this thesis, European options are prices using the framework developed by Black
and Scholes (1973). This framework is based on a stock following GBM, and a
necessary condition for the framework to work, is that the price shocks are
lognormally distributed.

For American options, we use Clewlow and Strickland (1998) and Hull(2000). When
needed, the original framework is altered. This is especialy necessary when pricing

options based on mean-reversion.

3.3.3 Pricing of European Options

Options are priced using the risk neutrality framework. The differential equation
satisfied by all derivatives can be written as

2 3.27
@+rP£+iazP26—2:rc (3:27)
ot oP 2 oP

Here, cisthe call option, P the spot price, r therisk free rate and othe volatility. The
solution of this differential equation, using the boundary condition given in equation
(3.28) yields the option equation for acall option.

c=max(R — X,0) (3.28)

3.3.3.1 Variations of the differential equation

Equation (3.27) is a standard differential equation followed by any derivative. The
equation might change dlightly when a deterministic seasonal function and
convenience yield enters the equation. Of course, the solution of the equation is also

dependent on the boundary condition.
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3.3.3.2 European Options based on variables following GBM
A European option is an option with the only exercise possibility at maturity. Black
and Scholes (1973) showed that a European call option with strike X, forward price F,

volatility oand time to maturity T could be expressed as follows:

Cor =€ (For N(d,) - XN(d,)) (3.29)
3.30
|nEF;(—’TE+;c72T ( )

d,=d, +oT = e

Here, the parameters are the same as in equation (3.27), except for the forward price
at time O, maturing at time T, given as Fo 1. N(d;) is the cumulative normal distribution

function, and d; is given in equation (3.30).

3.3.3.3 Options based on mean-reversion dynamics

The option price formula in the previous section is subject to slight changes when
implemented. Looking at equation (3.30), mean reversion models have the same
payoff structure, but not the same volatility. This is because the volatility in a mean-

reversion isin itself mean-reverting.

3.3.3.3.1 Onefactor volatility

Using a one-factor model with no long-term price trend (and hence no uncertainty in

thelong run) the volatility is given as:
o, =oce™ (3.31)

The Black/Scholes equation requires the cumulative variance. For this model, the

cumulative variance can be given as

T T 2 (3.32)

_ 2 4 T — 90 (_ao

w—‘([ath—‘C[(ae )zdt—zK(L e )

Using this volatility, equation (3.30) can be replaced by equation 7.
F 3.33
In%)o(’T %;W (3.33
d, =d,+w= T

Here, w is the general cumulative volatility. Note that the volatility given in (3.31)

approaches zero. Thus, the cumulative volatility w approaches a limit given as 0%/2
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from equation (3.32). Thislimits the tractability of the problem to short-run problems,
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or long run problems without equilibrium uncertainty.

3.3.33.2 Volatlity

The cumulative volatility function of the simple mean-reversion model is given as

— 0'_2 —e T ) (3.34)
2K

This volatility approaches a limit, and is most appropriate when there is no

uncertainty in the long-run equilibrium.

In order to incorporate long-term realism into the option prices, we could assume that
amean-reversion model long-term trend follows GBM, and short term shocks follows
mean-reversion. Defining a short run volatility function f(os) and a long-run
equilibrium volatility o; equal to the long-run implied volatility or forward volatility,
the cumulative volatility wis given as
w=f(osf +o2+2pgo flos) (3.39)

Using these results, it can be shown that in the long run, prices using a two-factor
model approaches prices using a one-factor GBM model with accumulated variance
equal to o, °T plus a constant. Schwartz (1998) utilizes this relationship when reducing

atwo-factor model to a one-factor model for long maturity contracts.

3.3.4 Pricing of American Options

An American option can be exercised at any point within a predetermined period of
time. Due to the nature of the American option, there has not yet been developed an
analytical pricing tool for this type of option. Therefore, these options have to be
valued through the use of a tree structure, or aternatively, through Monte Carlo
simulation. This thesis will consider trees for option valuation, and the following
section explores a tree-fitting approach for a GBM process. Then, atree is fitted to a

mean-reversion process. Finally, the option is priced, and a brief discussion follows.

3.3.4.1 Tree-building using a GBM process

This section illustrates the procedure of pricing American options through a tree
structure. The precision of the solution will be dependent on both time steps and

branching complexity. This section is concerned with modeling the options using a
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trinomial tree, and will use an approach obtained from Clewlow and Strickland (1998)
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and Hull (2000). The section starts by investigating initial requirements and continues
by building atree for a GBM process.

3.34.1.1 Initia requirements

Tree building procedures are discrete in nature, and American option trees are not
radically different from other tree structures. Consequently, the building of American
style options involves the creation of discrete time steps. We furthermore need the
following information to build the tree:

» Transition probabilities

* Risk-freediscount rater. Thisis obtained in section 4.5.

* Risk-neutral drift a=r-c for commodities.

* Up- and down steps defined.

« Voldtility o.

* Initial price Py,

3.34.1.2 Transition probabilities

Transition probabilities are discrete probabilities of price movement in a tree. For a
trinomial tree, the natural choices of outcomes are moving up, staying in the middle or
moving down. For an asset following GBM, the transition probabilities are equal for
al nodes. Hull (2000) claimed that the following transition probabilities for a non-
dividend paying stock yielded good results:

At 1 (3.36)
PR =By = e 30 g
P(middle) = p,, =§ (3.37)

(3.38)
P(down) = p, = - /%[H —%JZEHJ

Of course, for these probabilities to be correct, prices must be lognormally distributed
and follow GBM. For a stock paying continuous dividend yield, or having
convenience yield ¢, r isreplaced by (r-c). Notice that the price drift is inherent in the

transition probabilities.
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3.3.4.2 Upwards and downward moves

In section 3.2.2, we investigated the up- and down states of an asset with two possible
outcomes. A trinomial tree is basically a discrete approximation of an asset having
continuously lognormally distributed payoff. Hull (2000), following Cox, Ross and
Rubinstein (1979), suggested three suitable outcomes from the lognormal distribution
as up u, down d together with the expected value:

U = eo V3 (3.39)

3N (3.40)

Since the drift is inherent in the probability measures, the total tree can still be
assumed to have an upward drift. Figure 3.2 illustrates the trinomial tree and its
corresponding values of p and d:
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O su?

Osu
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Figure 3.2: Trinomial lattice
After finalizing this part, the tree needs to be initialized and the option priced. Thisis
donein section 3.3.4.4.

3.3.4.3 Tree-building using mean-reversion

Although our analysis thus far has assumed a stock following GBM, the procedure
can be adjusted to fit alternative stochastic processes. This section outlines the
changes necessary to build a tree for assets following mean reversion dynamics. We
start by briefly introducing an appropriate mean-reversion model, and continue by
redefining branching, and defining the steps necessary to build the tree.
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3.34.3.1 A mean-reversion process
Hull and White (1990) extended an interest rate model introduced by Vasicek (1977),
of the following form:

dR=x é’? - Rajt + odz (341)
In this model, R represents an interest rate, but can easily be adopted as the asset
price, whereas k is the mean-reversion parameter as it is in Lucia and Schwartz
(2001). The model can be shown to be equal to our one-factor mean reversion model
presented in section 4.4.1, with a constant drift (r-c)R; replacing &t). A function &)
consistent with this model is then given as

dF, (t) o2 s (342
o) =—=+xF, () + —(L-e
O ==2" +xFy )+ (-e™)
In this equation, Fo(t) represents the present value of aforward maturing at time t. For

amore thorough discussion on mean-reversion models, see section 4.4.

3.3.4.3.2 Branching patterns

For mean-reversion processes, it is necessary to alternate the branching pattern
dightly. Figure 3.3 illustrates the three possible branching structures of a mean-

reversion tree.
@ (b) (©

Figure 3.3: Alternative branching for a mean-reversion process

3.3.4.3.3 Generating the mean-reverting noise term

The tree building requires two steps. The first step comprises building a tree for the
mean-reverting noise term, and the second step converts this tree to the term structure
of the mean-reversion process. As seen in section 4.4.1, a mean-reversion process has
a stochastic parameter following the dynamics given in equation (3.43):

dR" = —xRdt + odz (343)
The discrete version of the process will assume a constant time step 4t, and the

spacing between the nodes in the tree are taken as
AR = /3t (3.44)
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Hull (2000) then defined® (i,j) as node coordinates, so that t=iAt and R =j4R. A tree
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branching procedure with k>0 will then follow branching method (a) from figure 3.3
until a barrier is reached when | is sufficiently large. Hull (2000) defined this barrier
to be
i == = 01840 (345
Hxat 5
Beyond this barrier, the tree does not grow wider, and alternative branching procedure

(b) or (c) from figure 3.3 are used as lower or upper branch respectively.

3.3.4.3.4 Risk-neutra probabilities

Using the branching above, three sets of risk-neutral probabilities are necessary. For
branching method (a), the following set was suggested by Hull (2000):

1 xZjEAL? —KjAtL (3.46)
Py _g"' 5
Pu :é—xzjzmz
b _£+K2j2At2+KjAt
-6 2

Similarly, for branching method (b), the probabilities are given in equation (3.47):

1 KkZj2At? + KAt (3.47)
P =<7+
6 2
Py = —%—szzAtz — 21§ At
7 K7jPAL? + 3At
po=—+ J ")
6 2
Finally, the probabilities in atop node are given in equation (3.48):
7 Kk%jPAt2 - 3igAt (3.48)
Py _E"' >

Py = —%—xzjzmz + 2Kj At

_Z+K2j2At2 — KAt
6 2

P

® Observe that i is a positive integer indicating the depth of the tree, whereas j indicates the distance

from the expected return in units of 4AR. At any depthi, 2j+ 1 isthe number of nodes at the same level.
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3.3.4.35 Converting thetree
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Given the process tree for R of the previous section, the task now becomes
transforming thisinto atree for the price processR. Define
a(t) =R(t) - R (t) (3.49)
Now, knowing the process of R from equation (3.41) and R from equation (3.43), it
follows that
da = [6(t) - xa (t)]dt (3.50)
This means that the solution for a(t) is given as
alt) = Fy () + ;_: f-e) (3.52)

For small values of k, this convergesto a(t)=F(t)+Error! o’

3.3.4.4 Finalizing the tree and obtaining a call option value
The construction of the actual tree is then done by starting at node 0, multiplying S
by an appropriate u or d so that this price branches out to create three values at the
next level of the tree. The procedure is continued for the whole tree. Then, the value
of the call option of the termination node is found as

cy,; (T) = max(Su’d™ - X,0) (352)
Here, c,j(T) indicates the value of the call option at time T, the final termination date.
N indicates the number of subintervals, measured as T/At, and | is the number of up
movements at the current node. The value of an American option at earlier timet in
the tree is given as the maximum of early exercise and waiting:

Cy, (t) = max{Sou’d" - X, E [cy (t+ At |} (353
where At is the time step defined in the tree, S is the price in node t, and E(©O) is
defined below:

E, lcN’]. t+at)|=e*(p,Sud" + p, Su'd" + p,Su'd" ) (3.54)
After finding the value of the option in al the nodes by backtracking, the final value

of the call option at time zero isfound in the first node of the tree.

3.3.4.5 Discussion

Thisis ageneric presentation of the approximation of an American call option using a
trinomial tree. T solution is dependent on both the time resolution and branching rules

considered. The approach presented in this chapter has utilized recommendations
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from Hull (2000), and is by no means perfect. The method nevertheless gives a very
exact approximation for the option priceif the treeis sufficiently large.

3.4 Optimal investment timing

This section is concerned with the theory of optimal investment timing. It isto alarge
extent based on Dixit and Pindyck (1994). Optimal investment timing is concerned
with finding the maximum value of an investment by postponing it for the purpose of
increasing the overall value. In practice, the approach returns a price above which
investment is optimal.

McDonald and Siegel (1986) considered the following problem for an investment: At
what point is it optimal to pay a sunk cost | in return for a project whose valueis V,
given that V evolves according to GBM:
dVv =aVdt + oVdz (3.55)

Here, a represent the drift in the investment value, o its volatility and dz a standard
Brownian motion increment. Dixit and Pindyck (1994) commented that this implied
that the current project value is known, whereas the future value is lognormally
distributed with linear annual growth. The present value of the project payoff initiated
at any futuretime T is given in equation (3.56):

F(V) = maxE(v; -1)e™") (3.56)

Here, E is the expectation operator, Vy the value of the revenues at time T, | the
investment, and p the discount rate, in our case replaceable by r, the risk-free rate. V¢

Is assumed to follow GBM, and has expected value at time T given as
E(V,) =V,e” (3.57)

3.4.1 The deterministic case

The maximization of F(V) for a deterministic growth rate a, is trivial. This approach
returns an optimal investment time T . Dixit and Pindyck (1994) showed that this can
be done by setting the derivative of equation (3.56) equal to zero, and solving for T.
Thisyields the following first-order condition:

dF (V) _
ar

—(p—a)Ve ™7 + pleT (358)
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Provided’ o> a, solving for T yields the optimal waiting time:

. [] O (3.59)
T = maxgiln%‘LEOD
m dp-aVO QO

Looking at equation (3.59), it is evident that if Viscloseto |, T >0, and investment is
suspended until T'.

3.4.2 The stochastic case and the contingent claims approach

For the stochastic case, the previous approach is not possible, due to the fact that a
definite point in time where (V1-1) reaches the value of optimal investment is not
possible to determine. Instead, the decision rule changes into finding a minimum
value V', above which investment is optimal. The investment is then initiated once
V>V'. The solution for the optima value V', can be obtained either by dynamic
programming, or by contingent claims analysis (CCA). This thesis is concerned with

the latter approach.

3.4.2.1 A necessary precondition

Dixit and Pindyck (1994) described one necessary precondition for the CCA approach
to function satisfactory. The exiting assets in the economy must span the stochastic
changes in V. This means that it is essential that existing assets of the economy can
replicate asset V' s payoff. As aresult, there exists an asset X whose payoff is perfectly
correlated with V. Thisisto capture the nondiversifiable risk of V.

3.4.2.2 The value of the project

Assuming constant investment costs, the isolated decision to invest in a project F at a
time T in the future, has a present value in the form given in equation (3.56). This
value is the present value of initiating the project at time T, receiving the benefits
accrued from future contingent income, at the (sunk) investment cost I. McDonald
and Siegel (1986) claimed that this could be seen as an exchange of | for the

contingent asset F(V). The decision to exchangeis viewed as an irreversible decision.

3.4.2.3 The value of waiting

The value of waiting to invest can be seen as an option. This option is the right, but

not the obligation, to invest in project F at one point in the future. Let us assume this

"If a>p, it isalways optimal to wait, and the value of the project increases indefinitely.
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right can be exercised at any given point in a predetermined time period
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{Tmin-..Tmax} . For the sake of simplicity, we assume Ty IS zero. At any given time
T, the value of waiting Wr is given as
W, = max[Fy, ., W, JeT (3.60)

Equation (3.60) might require some explanation. The value of investing in the next
time period is Fr: 41, and the value of waiting is given as Wr. 41. This value of waiting
has structure similar to an American option, as discussed in section 3.3.4. The value
of the option at time T is given as the discounted maximum of the two future values.
Finally, the strike of the option to build is|.

3.4.2.4 Optimal exercise value
Following the above structure, the optimal exercise value V' is found as the project
value above which the value of investment exceeds the value of waiting. Specifically,
V" isthevalue of F, so that

F >W, (3.61)
Now, why not wait until prices increase even more? This can be explained by the
dynamic relationship between growth in prices and discount rates. If exercise is

delayed too long, the project might be worth less. This completes the option analogy.

3.4.2.5 Interpretation of the model

Recapping equation (3.59), this process tries to determine an optimal investment time,
or in the presence of uncertainty, the price above which exercising a right to build a
power plant yields the maximum payoff. The option structure uses the investment cost
| as the strike and V; as the project income. The value of an American option on the
right to delay is defined as the maximum of exercising the option in the next period,
or delaying the investment. The boundary value V' above which exerciseis optimal, is

then found by comparing the value of waiting to the value of exercising for each node.

As mentioned, the strike of the project is its investment cost I. If | is increasing, the
problem changes dightly. This was the origina idea, put forward by McDonad and
Siegel (1986), as they considered drift in both V; and I;. These is easily coped with by
implementing minor changes to the tree.
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4 Commodities and Energy models

4.1 Commodity characteristics

Energy is a commodity, or a consumption asset, as opposed to an investment asset,
representing ownership only. Commodities differ from investment assets in severa
aspects. In this section we will highlight the main distinctions between a commodity
and an investment asset. The differences can be categorized as follows:

1) Dedlivery

2) Convenience yield and storage costs

3) Volatility and price jumps

4) Short-run behavior

Finally, we will discuss the long-term properties for commodities, and some specia

features of energy prices.

4.1.1 Delivery

Commodities are based on actual delivery. The transfer of a commodity is hence
troublesome, as great resources are needed. For example, cotton and wheat requires a
vehicle, oil requires pipes, and energy requires a power grid. Investment assets are
essentialy paper assets, and delivery costs are virtually zero. Temporary delivery
problems might hence affect the commodity price.

4.1.2 Convenience yields and storage costs

The relationship given in (3.15) indicates a non-negative relationship between the
market price of risk and a positive return, since a risky asset would have higher
required return than a risk free. This is true for an investment asset, but not, in

general, for a consumption asset, due to convenience yield and storage costs.

4.1.2.1 Convenience yield

Hull (2000) defined convenience yields as the benefits obtained from owning an asset,
but not obtained by holding a futures contract. These benefits include the ability to
profit from local shortages, or the ability to keep production running. This effect has
been investigated by, amongst others, Telser (1958), who investigated futures prices

of cotton and wheat.
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Gjolberg and Johnsen (2002) added that if inventories are full, and shortages are
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extremely unlikely, convenience yield would approach zero. They furthermore
claimed that convenience yield for energy was highly convex in inventories, hence

preventing stock-outs and acute power shortages.

4.1.2.2 Storage costs

For most commodities, ownership involves storage costs, as commaodities involve
physical delivery. For some commodities, such as steel, these costs might be
substantial. Everything else equal, storage costs will shift the required return of the

commodity above the risk-free rate.

41221 Energy storability

For normal traders, energy is not storable. This has one major implication for pricing.
Setting up an arbitrage portfolio using spot prices can not be created. Following this
line of reasoning it is tempting to contend that if the arbitrage argument cannot be
used for pricing, it cannot be used to make risk-less excess returns either. Thisis only
partialy correct. Gjolberg and Johnsen (2002) reported that arbitrage opportunities
might occur for energy producers with water reservoirs, because a reservoir might be
considered a type of storage available to suppliers only. Provided that production can
be quickly initiated or increased, this could be considered an arbitrage opportunity.
For ordinary investors, however, energy can not be stored.

The non-storability amplifies the price jumps, and hence the volatility, because

inventories can not be used to “smooth away” temporary shortages.

4.1.2.3 Implications for pricing
In arisk neutral world, the growth of a commaodity should include convenience yield ¢
and storage cost u. The relationship in equation (3.16) should therefore be changed to
the following risk-adjusted expected growth:

r-(c-u=u-Ao (4.2
Here, u is the expected growth, A the market price of risk, o the volatility and r the
risk free rate of return. A positive convenience yield thus lowers the required return

on the asset, whereas the storage cost increases the required return. Finally, Gjolberg
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and Johnsen (2002) argued that the nature of hydropower producers implied that
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marginal storage cost u would be zero for electricity producers.

4.1.3 Volatility and price jumps

Due to the risk of temporary shortages, commodity prices are far more volatile than
ordinary asset prices. Extreme situations of price shifts are normally referred to as
jumps. These are results of either temporary supply shortages or demand shocks. For
example, a sudden temperature decrease increases the demand for heating. As
producers engage in arbitrage to benefit from these shortages, the prices are forced
down again, leading to a mean-reverting behavior. These temporary irregularities
finaly lead to an advantage to holding spot over holding a forward contract, as

discussed in the section above.

4.1.3.1 Energy volatility

In the Nordic energy market, hourly price jumps of 100% are known to happen. Lucia
and Schwartz (2001) studied the Nordic power market, and found that the annua
volatility of the daily log-prices was 189%. This is substantial, compared to other

markets. The effect is mainly due to non-storability and bottlenecks.

4.1.3.2 Long-run volatility and futures prices

The volatility of long-run energy contracts is known to be much less than the
volatility of short time contracts. As contracts are maturing and blocks are split up,
prices become increasingly volatile. Hence, a good volatility function should decrease
as a function of maturity. The low volatility of long-run prices has severa reasons.
Firstly, the uncertainty in long-term equilibrium should be reasonably unaffected by
temporary shortages. Secondly, due to the illiquid nature of long-maturity contracts,
the resulting volatility decreases. This can be viewed in light of non-trading effects, as
investigated by for example Lo and MacKinlay (1999).

4.1.4 Short-run behavior

Schwartz (1997), amongst others, analyzed price behavior in commodity markets. His
research indicated, as opposed to security markets, that prices did not seem to follow
geometric Brownian motion. The effects, mainly attributed to the preceding three
subsections, manifested themselves in autocorrelation patterns in commodity prices,

and a tendency of prices reverting to a long-term equilibrium. Schwartz (1997)
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commented that when prices move out of an equilibrium setting (because of the
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previously discussed jumps), producers would try to profit from these conditions by
adjusting supply, hence restoring equilibrium®. This pull-to-equilibrium pattern seems

to be typical for commodities, but not for investment assets.

Knittel and Roberts (2000) investigated US energy prices, and commented that the
prices in the Californian energy market did not pass unit root® tests for hourly price
data. This should not be surprising. Autocorrelation is a basic characteristic of any
mean-reverting model, due to the existence of a pull towards a long-term equilibrium.
As already discussed in section 3.2.1.5, consecutive prices in a mean-reversion model

are not as arbitrary as prices following a pure Markov process such as GBM.

4.1.4.1 Properties of energy price distributions

Because of the large volatility, and the likelihood of extreme price jumps, the
distribution of the random component of energy prices is very fat tailed. Knittel and
Roberts (2001) argued that the forecasting performance of energy models were
unacceptable for any practical purposes, such as pricing of energy based financial
products. They looked at heavy tailed distributions like studentst and Levy processes

as alternatives to the normal distribution.

Knittel and Roberts (2001) aso reported an inverse “leverage effect”. This effect
describes an asymmetric response in volatility to positive and negative price shocks.
This asymmetry is mainly due to the impossibility of negative prices. Large negative

price jumps are simply not possible.

Eydeland and Geman (1998) emphasized the need for a stochastic volatility model in
order to capture the fat tails and spikes displayed by the distribution of realized power

® Fleten (2000) argued that the downward pressure is due to high-cost manufacturers entering the
market, and consumers changing to cheaper sources of energy.

° A unit root test shows whether the difference between data at pointst and t-1 has a trend. A failed test
typically indicates possible autocorrelation in the data set, and that the time series is not stationary.
Most autocorrelation tests should, however, be judged with a healthy amount of skepticism, as results

in many cases are far from reliable.
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prices. In conclusion, a stochastic volatility model might be crucial for making a good
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energy price model.

4.1.5 Equilibrium prices

As has been noted earlier, normal stocks tend to follow Geometric Brownian Motion
(GBM), whereas commodity and energy prices are largely mean reverting. The
problem with the mean reversion is that the actual mean is not observable, due to the
reasons mentioned above. Nevertheless, using time series analysis, it is possible to
generate a price mean to be used for modeling purposes. Whereas mean reversion
models and autocorrelation can teach us a lot about short-time price behavior, it will
not add anything significant to a model in the long run. This is because the long-run

equilibrium is driven by the unobservable long-term mean.

Several authors have discussed the long-run characteristics of energy prices. For
example, Pilipovic (1997) modeled long-run energy prices as GBM. Her research

indicated the presence of along-run trend in energy prices.

4.1.5.1 Seasonal prices

Energy prices are subject to large seasonal variations. As can be seen from figure 4.1,
the one-week energy forward price is subject to large weekly variations. In the
summer, the spot price is a lot less than in the winter. The Nordic energy market is
different than most markets when it comes to this seasonal pattern. Because the
demand for cooling is low, and heating is high, the peaks are in the winter season,

instead of in the summer, likein, for example, California.
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Figure 4.1: Seasonal pattern in energy prices

4.1.5.2 Short-term patterns

Johnsen (1999) and Lucia and Schwartz (2001), amongst others, commented that

there are noticeable intra-week and intra-day patterns in the Nordic energy market.

Figure 3.1 is an excerpt of daily price patterns from Nord Pool’s spot (one-day

forward). The graph shows that prices are peaking around 9 am. in weekdays, and a

little later in the weekends. The genera demand for electricity is also less in the

weekends than in weekdays.

Intra-day and intra-week patterns will not have a large effect in our anaysis, as this

thesis will use one-week forward prices as basis for our decisions. If priced correctly,

the one-week forward contract should reflect the average price during a week’'s

production. For a run-of-river power plant that produces 24 hours a day and seven

days aweek, this should not have large impacts.
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Figure 4.2; Intra-day prices for arandom week. Source: www.nordpool.no

4.1.5.3 Market efficiency in electricity markets

Whereas normal capital markets are considered to be informationally efficient,
Gjolberg and Johnsen (2002) commented that this might not be true for the Nordic
energy market, and that arbitrage opportunities for producers might exist in
combining future positions with storage. The market is till immature, at worst

inefficient, although being one of the best-developed el ectricity markets in the world.

Market inefficiency istypical for amarket not yet fully developed. In stock markets, it
has been argued that brokers might be entitled to extraordinary returns because the
brokerage right is very expensive. A similar argument can be used with power plants.
For example, one might argue that the large investment costs of a power plant entitles
the owner to extra-ordinary income. In that case, flexibility should be embedded in

the sales price of traded power plants.
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4.2 Commodity price models

In this section, we will present some commodity price models. These models are
modeled for general commodities, or tailored to energy spot prices. They are,
however, transferable to other variables. In this thesis, we will model precipitation,

prices, revenues and river flow, so more than one pricing model is needed.

4.2.1 General commodity price models

Developed from the interest rate framework presented by amongst others, Vasicek
(1977), commodity price models are often based on mean reverson. A mean
reversion model is considered more able to capture the commodity characteristics
outlined in section 4, than GBM or ABM. This only provides half the picture,
however, as mean-reversion is a short-term property. Long-run commodity prices
might have patterns closer to GBM. Nevertheless, most commodity and energy price
frameworks utilize mean-reversion dynamics. The mean-reversion process has the
property of reverting to an underlying function with time, and deals at least partially

with local price jumps, by smoothing the differences down over time.

4.3 The number of factors

When working with stochastic models, we usually consider one, two or perhaps three
factors in our analysis. The number of factors refers to the stochastic components in
the model, and it isusually fair to assume that the addition of an extra factor increases

the model complexity.

The tractability of the model depends on its purpose and the resources involved in
maintaining it. Lucia and Schwartz (2001) commented that one-factor models were
anayticaly very tractable. The ssimplest models might have an added advantage of
being easy to communicate. Their explanatory powers, however, might be
significantly lower compared to more advanced systems. The art of modeling is the
art of selecting the appropriate tradeoff between simplicity and accuracy.
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Pilipovic (1997) commented that the recent deregulation of the energy markets was
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bound to cause changes in the way the prices act. Hence, the price models working

today might not work tomorrow.

4.3.1 Analytical modeling or simulation

The number of price models availableislarge and increasing. There is a basic tradeoff
between deriving analytical solutions and obtaining prices through simulation. The
modelsin this thesis are limited to those whose solution is devel oped analytically. We
are aware of the fact that many good models may be based on simulation.
Nevertheless, we will, due to time and spatia considerations, base our analysis on
analytically tractable models.

4.4 Common spot price models

A number of authors have investigated commodity and energy spot price behavior.
Gibson and Schwartz (1990) analyzed oil prices using a two-factor model where the
long-run price followed geometric Brownian motion and the convenience yield
followed mean-reversion dynamics. Schwartz (1997) tested this model against a one-
factor pure mean-reversion model, and a three-factor model where the long-run price
followed GBM, and both interest rate and convenience yield were assumed to possess
mean-reversion characteristics. Although the models are based on various
commodities, they seem to be more or less transferable to energy pricing, and offer
analytical solutions of the SDE™. Gibson and Schwartz’ convenience yield model is,

however, perhaps not intuitive enough to catch the masses.

Lucia and Schwartz (2001) investigated various one-and two-factor models and their
behavior in a pure electricity perspective. Pilipovic (1997) aso developed a model,
named the long-run/short run model, where the short-run deviations in price mean-

revert to a stochastic long-term mean modeled as GBM.

19 Stochastic Differential Equation.
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Lucia and Schwartz (2001) discussed severa models based on mean reversion. The
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following sections are based on their framework for modeling energy prices. Their
models are largely based on Schwartz (1997). We start with the simple case of a

single factor model in the price P..

4.4.1 One-factor mean reversion model of P;
Let P; be the spot price at timet, f(t) a deterministic seasonal function of the price, and
X: the stochastic part so that prices follow the model given in equation (4.2).
P =f(t)+ X, 4.2
Furthermore, assume X; follows a stochastic process of the form
dX, = -xX,dt + odz (4.3)
where k>0, Xo = Xo, and dz represents an increment in standard Brownian motion,
explained in section 3.2.1. Then, letting X; = P;— f(t), and applying 1to’s lemma, we
can rearrange the equations to produce a mean reversion processin Px:
dP, = x(a(t) - P )t + odz (4.4)
where a(t) isadeterministic function of t, given as

am =T 0 +10 9

This processis often referred to as an Ornstein—Uhlenbeck process. Solving the above
one-factor model for P; yields the following solution of the PDE:

Pt — f(t) + Xoe—xt +O_I(;eK(S—I)dZ(S) (46)

This model has severa basic shortcomings. Firstly, it assumes the processes are risk-
neutral, a fact that might be far from true. Secondly, Lucia and Schwartz (2001)
commented that a great Brownian motion increment might result in negative prices,
and would hence lack realism. Finally, as the model stands here, its forward variance
approaches zero in the long run, as the long run mean is deterministic. Thisis a quite
unrealistic assumption. Finally, Pilipovic (1997) argued that the one-factor spot price
model performed unsatisfactory with respect to the fat-tailed distribution of returns.

4.4.2 One-factor mean reversion model of In(Py)

For log-prices, this relationship becomes more difficult. Let In(P;) follow the

dynamics given in equations (4.7) and (4.8).
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In(R) = f(O)+Y, (4.7)
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dyY, = —«Y,dt + odz (4.8)
After combining the two, we get the following mean-reverting process
dP, = x (b(t) - In P,)P,dt + oP,dZ (4.9)

102  df (4.10)
o) = 57+ GO 10

The derivation of equation (4.7) throughout (4.10) is given in appendix A. From the
above equations, it is relatively easy to see that a mean-reverting process reverts to a
long-term mean of f(t). It should aso be noted that the noise term in equation (4.9) is
geometric in nature, and will grow for increasing values of P;. The process for P,

given in equation (4.4) is, in contrast, following a generalized Wiener process.

The one-factor model in In(P;) solves one of the problems presented in the first model.
The Brownian motion increments in the log model can not result in negative prices. If
the random shocks of In(P;) are normally distributed, the shocks of the true process
will be log-normally distributed, and always positive. But the long-term volatility
problem will still prevail.

Secondly, Pilipovic (1997) argued that whereas the log of price mean-reverting model
seemed to perform satisfactory in capturing distribution width, it did not solve the fat-
tails problem. Despite this, the log-price model still provides useful improvements.

4.4.3 One-factor volatility
A volatility model shown to be consistent with both the above one-factor models is
given in equation (4.11). We will refer to this model as model A.

oA (t,T) = e (4.11)

In this equation, oisthe standard deviation, and « is the mean-reversion factor.

Clewlow and Strickland (2000) discussed this type of volatility models, based on the
analysis in Schwartz (1997). The model seemed to have great advantages in being
simple and easy to interpret. It performed reasonably well in the short run, but as
maturity increased, volatility approached zero. Consequently volatility in long

maturity forward contracts would be understated, and for long-term planning
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purposes, the model would lose its tractability. This is a common problem with one-
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factor models. To increase the volatility to fit longer maturity contracts, an empirical

model like the one presented in the next section could be used.

4.4.3.1 An empirical volatility model

Bjerksund, Rasmussen and Stensland (2000) suggested an approach to keep long-term
volatility at a sensible level. Instead of the volatility given in equation (4.11) they
introduced an empirical one-factor volatility model of the type given in equation
(4.12). We will refer to this model as model B:

a 4.12
T ‘e (4.12)

This model converges to a long-run volatility c. The parameters a, b and ¢ are

oB(t,T)=

constants given by a nonlinear regression of the volatility of observed forward prices.
Later, Koekebakker and Ollmar (2001) investigated this model and others by
decomposing the variance through principal component analysis. This model will

provide a more reasonabl e estimate for the long-term volatility.

4.4.4 Risk neutralization of the mean-reverting processes
To correctly price expected future spot prices, the spot price process has to be risk-
neutral. By subtracting the risk from the expected return function, we end up with the
risk-neutral function. From section 3.2.2.1, we know that if an asset follows a Wiener
process with return ¢ and a standard deviation of g, then the risk-neutral return is
given as

Hoora) = M —AC (4.13)
The mean-reverting processes can be neutralized in a similar way. Let equation (4.8)
be replaced by the following equation:

dX, =« (a” - X,)dt + odz’ (4.14)
where
B (4.15)
K

Investigating this equation, the only difference from equations (4.9) and (4.10), is that
the drift is reduced by a factor of Ao. In the above equations, dz represents a standard
increment in the risk-neutral Brownian motion process under the risk-neutral

probability measure and A is the market price of risk, assumed to be constant. After
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rearranging, following the same steps as before, Lucia and Schwartz (2001) derived
the following solution for the SDE:

P=ft)+Y,e™ " +a*(1l-e™)+0o I; e Vdz* (s) (4.16)

The above equation is equa to equation (4.10), except for the risk factor o*(1-€™)
and the risk-adjusted Brownian motion dz*(s). Consequently, the price of a forward
contract maturing at time T should be equal to the risk-neutral expected spot price at
the same point in time.
F(P.T)=EPR)=f(T)+(P, - f(0)e™ +a*@1-e™) (4.17)

As mentioned in section 4.4.1, one of the main disadvantages of the model above is
that alarge negative Brownian motion increment might result in negative prices. This
problem can be overcome by changing to alog-price process, i.e. defining the process
for In(P;) instead of P; as above. A risk neutral log price process has an analytical
solution given as

In F’t =f (t) +Yoe_Kt +a* (]_— e""‘) + O—I; (s gz* (S) (4.18)

The expected value of the price, E(P;) isgiven as
1 4.19
E(R) = exp[EEt (In(Ry) + S Var, [In(R)]EH (@19
The extra term including the variance of In(P;) is a consequence of Ito’s lemma.
Following this, the forward price is given as the expected future spot price under the
risk-neutral probability measure.

F(P,,T)=exp(f(T)+(nP, - f(0))e™ +a*1-e™) +Z_:(l_e_2m)) (4.20)

Clewlow and Strickland (2000) discussed the adequacy of the one-factor model
presented by Schwartz (1997). They concluded that it behaved reasonably well in the
short run, but equally bad in the long run, as the volatility function approaches zero
for long maturity contracts.

4.45 Performance of one-factor models

How do the models behave in the market? Clewlow and Strickland (2000) discussed
the adequacy of the one-factor model presented by Schwartz (1997). They concluded
that it behaved reasonably well in the short run, but lacked realism in the long run, as
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the volatility function approaches zero for long maturity contracts. The forward
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volatility isgiven as

o (t,T) = O'spote_K(T_t) (4.21)
The problem is that as the maturity T increases, volatility converges to zero. As we
will see later, Bjerksund, Rasmussen and Stensland (2000) avoided this problem by

changing the volatility function to one converging to a non-zero value.

Secondly, if a one-factor is used, it is normal to assume zero drift. This implicitly
means no uncertainty in the long run, making price predictions deterministic of
looking sufficiently into the future. For variables with non-zero time value, this

assumption is not adequate. We hence need a more sophisticated model.

Finally, the seasonal function of the one-factor models is very different. The model
for P, assumes constant seasonal variations, whereas the log-model has seasonal
variations growing with P.. For later models with drifts, this difference is not

unimportant.

4.4.6 The Lucia and Schwartz 2-factor model
Lucia and Schwartz (2001) suggested a model composed of two factors, short run
deviations x; and long-run equilibrium & where x; follows a mean-reverting process
given in equation (4.23) and & follows a Wiener process given by equation (4.22). For
brevity, the processes presented are assumed already risk-neutralized.

dé, = (u, —Ao,)dt +o,.dz, (4.22)

dy, =x(a-y)dt+o dz, (4.23)
In the equations above, k represents the mean-reversion parameter, £s the mean risk-
neutral drift, dt the standard time increment, and o, and of are the volatility
parameters of the processes. The Brownian motion increments dz, and dzs are
correlated as shown in equation (4.24):

dz,dz, = p . dt (4.24)

This model can be applied to several commodities. As we have previously seen, for

energy applications, the price seems to be best modeled using some seasonal factor
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f(t). Luciaand Schwartz (2001) incorporated a deterministic seasonal function into the
Schwartz and Smith (2000) two-factor model. This resulted in the following model:
P=f(t)+X, +¢ (4.25)

MSc Thesis, Department of Industrial Economics and @ NTNU

In the above model, f(t) is a deterministic function, X; follows mean reversion, and

& follows a generalized Wiener process.

4.4.6.1 Analytical solution for forward prices
Lucia and Schwartz (2001) presented the expected forward price for the two-factor
model as

F(P,T)=f)+e,+(P,-f(O))™ +a" Q- ) +u'T (4.26)
The model parameters Py, f(T) and « are the same as in the one-factor model. In
addition, & is the long-term mean, 1/ represents the risk-adjusted long-term drift, and
a isthe risk-adjustment in the mean reversion, given in equation (4.27). Finaly, osis
the short-run volatility.
Ao 4.27)

K

a:

4.4.6.2 Short- and Long-run risk premiums

Schwartz and Smith (2000) argued that using two-factor models of this type, the
short-term risk premium would be driven by the mean-reversion risk premium. The
value of the mean reversion risk approaches zero for long maturity contracts,
however, and will after approximately three years be very close to the long term risk
premium. Hence, for a long-term model, we might choose to ignore mean reversion
risk. This approach is similar to that of Schwartz (1998). This model will be discussed
shortly.

4.4.7 Schwartz’ one factor approximation

Schwartz (1998) suggested a different approach. A two-factor model following long-

term GBM, and short-term mean-reversion can be expressed as follows:

dP = (r —o)Pdt + o, Pdz, (4.28)
ds =k (a - 8)Sdt + ogdzg (4.29)
dz, dzg = pdt (4.30)
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This model has an analytical solution, but parameters are not easy to estimate. The
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model can, however, be approximated. Schwartz claimed that in the long run, this
two-factor model could be simplified to follow dynamics of a single factor model
following GBM:
dZ = (u - Ao )Zdt + oZdz (4.31)

Here, Z represents a shadow spot price, found by discounting long-term forward
contracts at the drift rate. Using this approach, short-term deviations from the mean
do not affect the shadow price Z. Continuing aong these lines, he claimed that the
risk-neutral drift should be fitted to forward prices. Hence, the drift in equation (4.31)
can be substituted by

dz = %g—i Zdt + 620z = (r —¢)Zdt + 0Zdz (4.32)

Schwartz commented that this model seemed to be working satisfactory when time to
maturity was more than three years. The fina issue of this approach, is volatility,
which is covered in section 4.4.7.2.

4.4.7.1 Seasonal variations on the Schwartz 1-factor approximation
Theinclusion of a seasonal factor using Schwartz' 1-factor istrivial. Let
P=f(t)+Z (4.33)
dZ = (r —c)Zdt + oZdz (4.34)
Combining the two yields
dP = f(t) +(r —c)(P - f (t))dt + o (P-f(t) oz (4.35)
A solution of thisdifferential equation is then given as follows:

R=10O+R - TR ™ = f(0)+ae" " + [ oedz (4.36)

This model assumes deterministic seasonal variations, and is very similar to the mean-
reversion model of section 4.4.1. In the model, & is the shadow spot price explained

in the model above. This grows geometrically using the risk-free rate r-c. On top of

this, a seasonal function f(t) gravitates around the long-term mean.

4.4.7.2 Two-factor volatility and Schwartz’ approximation

Schwartz (1998) suggested using the forward volatility as an estimate for the
variations in price. The volatility can be divided into long-run and short-run volatility.

Long-run volatility can be seen as macroeconomic changes, and uncertainties in the
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long-term risk-free rate, etc, whereas the short-run volatility is more or less taken as

temporary shortages, demand deviations, etc.

Now, for the two-factor model, volatility comprises a long-run part gir and a short-
run part o correlated with correlation coefficient o s. The forward variance is then
given in equation (4.37).

2 _ 2 + 2 1_e_KT _2 1_e_KT (4'37)
O =0 R TO0gx P PLsO 1RO

This model has several unobservable parameters, and the determination of the
parameters is beyond the scope of thisthesis.

4.4.8 Joining two dependent stochastic processes

A combined model for revenues has thus far not been discussed. This section gives a
brief introduction to haw such a model can be modeled. Let us assume that we have
two stochastic processes following GBM, whose dynamics are given in the equations
below:
dP = 4, Pdt + o, Pdz, (4.38)
dQ = 1, Qdt + o, Qdz, (4.39)
Dixit and Pindyck (1993) showed that these two processes, when multiplied together,
produced a new stochastic process following GBM, given as
dR = (up + g + Ppo0poo)RAt + (0pdz, +0,d2,)R (4.40)
In the above equation, R=PQ could be considered the revenues of a project. The

corresponding log-process follows a generalized Wiener process:

441
dInR=(up + 14 —%GPZ—%O‘QZ)dt‘FGPdZP +0,0z, (441)
Hence, over any time interval t, the changesin InR are normally distributed with mean

and variance stated in the equations under:

1 1 4.42
He = (Up * g __GPZ __GQZ)T ( )
2 2
O'RZ = (O'P2 + O'QZ + 2pPQO'PO'Q)T (4.43)

For commodity forward prices, the risk-neutral drift r-c replaces the former drift p.

Solving the differential equation with the appropriate boundary condition, the forward
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price of the product R, is given by the product of the two forward prices, correlated
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with a correlation factor peq:
F(RQ:)= R (PR @)el ™) (4.44)

This is an expression of the future value of revenues in one time period. The present

value of the forward contract for delivery at time T isthen given as follows:

Vo (Fo(R))= e TR, (PrQ ) = e (Pet 9T JlQue 7" Jptrmesae)™ (4.45)
Equation (4.45) contains several parameters. The shadow price Py, quantity Qo,
convenience yield c, correlation peg, volatility op and oo of price and quantity
respectively, and the risk-free rate r can be estimated from historical values. The
market price of discharge risk Aq is dightly worse to estimate, as forward contracts
are not traded in the market. The next section suggests how this still can be
determined.

4.4.8.1 Market price of risk

Essentially, equation (4.45) has two unknown parameters, Aq and V,(F,(R.)). In
other words, provided we can obtain an estimate for V; for another traded discharge
power plant the market price of risk is given by the parameters. Since single period

revenues are not traded, this means that the traded value of a power plant is required.

The next section gives the value of such a power plant.

Once Aq is determined, eguation (4.45) becomes risk free, and should therefore be
discounted at the risk-free rate. Rearranging the eguation, we can estimate the present

value of therevenuesin period T as

Vo(R,) = RQue e et (4.46)

4.4.8.2 Value of power plant
The accumulated value of the plant revenues is then the integral of the forward

contracts throughout the plant’s life, discounted at the risk-free rate.

—C—Ao00+Ppo0p0, 2 447)
Op et( Aq0q*+Preag) |j (
VO(R) - D OQO |:|

F~4q0q * PrTr0q B

Finally, the corresponding plant value is the revenues minus running expenses and

investment costs. These expenses are discussed in section 10.4. Note that the interest
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rate r does not enter equation (4.47) explicitly, because the forward prices are
assumed to follow arisk free trend given asr-c, and the risk free rate thus cancels out.
We will, however, need the risk-free rate, as the risk-neutra drift of the forward

pricesis given asr-c, in our case 3.15%.

4.4.9 Modeling the seasonal function

As explained above, the price process consists of a deterministic and a stochastic part.
The deterministic part of the equation is often considered being a seasonal factor.
Modeling the deterministic part of the equation is normally done using ordinary least
square (OLS) regression techniques. In some cases non-linear least squares (NLS)
methods are necessary. Other technigues include maximum likelihood methods and
filters, such as the Kalman filter. We will mostly use OLS and NL S methods to obtain
the desired estimates.

4.4.9.1 Selecting the deterministic model

Various models for modeling prices have been suggested. Lucia and Schwartz (2001)
suggested and tested four models, two based on In(P;) and two based on P; directly.
The seasonal variations are modeled either through a sine function, or twelve single
dummy variables. The four models are given as

Model 1 (4.48)

12
Pt:a+ﬂDt+ZlBiMit+Xt
2

Model 2
) (4.49)
Pt=a+ﬂDt+7cos((t+r)%)+Xt
Model 3
12
|nPt:a+ﬂDt+ZﬂiMit+Xt (4_50)
1=2
Model 4
INn P, =a + D, +ycos(( t+7)2)+ X, (4.51)

In the above models, P; isthe price, aisaconstant, B, 5 and yare coefficients, D;and
Mi; are binary variables indicating weekend or month, 7 is a phase-constant and X; a
stochastic factor. As always, t denotes time.

Models 1 and 3 use twelve independent seasons, where the individua (Bis are
measured as a monthly factor. Models 2 and 4, on the other hand, use a cosine factor

to model the seasonal behavior. Which approach is the best, depends on the
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conditions. The twelve dummies would be best if the months are clearly independent,
or if there is more than one demand peak a year. The dummy model will, however,
perform worse in the transition between two months, because the function would
jump to a new level. The sine function is smooth between the months, but fails to
capture a more sophisticated trend than patterns of one crest and one trough. Adding
higher order sine functions does, however, solve this problem.

Spot energy
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Figure 4.3: Spot prices with summer troughs.

In this thesis, we have based our analysis on one-week forward contracts, making the

weekend factor obsolete in our analysis. Other data set anomalies are dealt with in the

following manner:

» Thelast week of the year is combined with the first week of the next. Shiftsin the
seasonal function resulting from different week numbers are assumed minor and
ignored.

» Easter week might have shorter demand. Thisisignored.

*  Summer holidays and public holidays are ignored.

As the Nordic energy market does not have an air condition peak in the summer,

prices are assumed to be satisfactory modeled through a sine function. Looking at the

graph in figure 4.3 we can see that this assumption is reasonable, as no large peaks
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appear in the summer. Looking at the forward curves, this seasona pattern seems to
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be expected, at east in the near future. We hence model the seasonal factor as a cosine
or sine function with a phase shift 1. The model presented under was tried both as a

model for the spot price P, and its log price function In(P,).

f(t) =a+ycos(2:++7) (4.52)

45 Risk-free rate of return

The risk-free rate of return was estimated as a weighted average of Norwegian long-
term bonds. The data was obtained from Norges Bank (www.norges-bank.no), and
contained the bond rates over the last six years, divided into maturity of 3, 5 and 10
years. The risk-free rate was then estimated as the average of the three, using the bond

length as weights.

45.1 Results

The procedure presented above resulted in a risk-free fate estimate of 5.88%. Thisis
used throughout our analysis.
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5 Parameter estimation of Spot Price Models

To find the value of the power plant by the use of risk-neutral valuation, we need to
find a function for the risk-neutral expected forward prices. These prices will be used
as strike price for the option valuation approach in section 11.1, and as part of a
function for the implementation of the optimal exercise price. This section is therefore
devoted to the determination of energy price and forward price parameters. Although
we are aware there are more advanced models than the ones introduced in this section,

we will, due to smplicity, only investigate one-factor models.

The section starts with a description of the data set used and a discussion on the
possible candidates for a deterministic seasonal function. The expected spot prices are
then estimated, and a discussion on risk-neutralization based on forward prices
follows. The analysis is independent of model chosen, athough the final regressions

for the various spot models will be model specific.

5.1 Description of the price data set

To predict prices, an appropriate term structure model is necessary. In order to make
the problem analytically tractable we desire a collection of energy forward contracts
of equal length, for al desirable maturity dates. This is not readily available at Nord
Pool, because of the block structure, resulting in forward contracts of unequal length
and time of maturity. For planning problems with seasonal implications, this is
unsatisfactory. The problem does not disappear when contracts approach maturity,
although the number of short maturity contracts is greater. The second problem is that
energy is aflow commodity. Since a contract might span several days, its price needs
to reflect an average load during the contract delivery period. Lastly, long-term
energy contracts such as seasons or years are highly illiquid. This means they might

not reflect the actual prices at any given time.

To resolve the problems outlined in the above sections, and produce a sensible
resolution for planning problems, Fleten and Lemming (2001) made a data set
dividing energy contracts into one-week forward contracts. Thisis the data set we will

be using in the pursuing analysis. The data set has been created based on the available
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contracts in the Nordic energy market, and smoothed over the whole time specter. We
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will briefly explain how Fleten and Lemming has created the data set.

5.1.1 The Fleten and Lemming data set
Fleten and Lemming (2001) used a data set of contracts in the Nordic energy market.

By assuming that contracts were delivered at a constant rate throughout the year, the
large contracts were split into weekly contracts. Then, these contracts were averaged
over the delivery period. The method assumed a constant risk-free rate r to get the

following expression for the averaged forward price:

T, e (5.1)
F(T,,T,T,) :J; T—f(TO,S)dS

1 ﬁze—rsds

Here, the forward price F(To,T1,T2) is an average of the series of weekly forward
contracts f(To,S) over the time period T, to T, appropriately discounted at the risk-
freerater.

Finally, Fleten and Lemming (2001) smoothed the prices over the whole interval to
obtain a smoothed forward curve, utilizing the two contracts immediately preceding

and following the actual contract.

We have decided to use only the parts of the data set that includes a full two-year
forward curve of one-week contracts. To avoid overlapping, we use the closing price
of every Friday for contracts delivering on a Monday-to-Sunday basis. The 1-week
forward contract is thus three days from maturity, and is taken as our spot price.
Using this criterion, the procedure resulted in our data set, consisting of 319 two-year
(104 weeks) forward curves, or a total of 33176 points of data. The 319 data points
hence represent 319 spot™! contracts, i.e. approximately six years of data, ranging
from December 1995 to January 2002.

5.1.2 Ten year contracts

The second data set used comprises ten-year contracts from 1992 to 2001, given at a

weekly resolution. A ten-year contract is a contract for constant delivery for ten

™ As mentioned, spot in this context, means a three-day forward contract for steady delivery in one
week.
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consecutive years, starting at the beginning of the next calendar year. The price shown
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Is hence the expected average price during the next ten years.

5.1.3 One-year forwards

One-year forwards are contracts for constant delivery during a given year. Our third
data set comprises the longest maturity contracts for Nord Pool from the years 2000
and 2001. The set from 2000 therefore includes one-year forwards for 2001, 2002 and
2003, whereas the data from 2001 include one-year forwards for 2002, 2003 and
2004. The data set includes prices with weekly resolution.

5.2 Estimating the long-term drift
The long-term risk-neutral price trend should be fitted to match the forward data

available in the market, because forward prices represent arisk-neutral estimate of the
expected price. It is common practice to adjust only the drift term to make the process
risk-neutral. Hence, if the trend is risk neutral, then the prices based on the trend
should also be risk-neutral.

Since our project has alife span of 40 years, we need to obtain contracts maturing as

far as possible into the future. It will not be sufficient to estimate the trend over the

next three years. The following points are considered supportive evidence for this

conclusion:

» The unclear shape of the seasonal factor present in short term contracts makes the
trend blur.

» Short-term deviations from the long term mean, due to for example reservoir
levels will produce out-of-equilibrium prices.

* Thegenera unobservable nature of the long-term mean in short-run prices

Instead of using the Nord Pool prices, the market’s opinion on a future level of the

energy prices can be found in prices so far into the future that temporary deviations

are assumed to be zero. The problem with this approach is that the collection of

forward data available at Nord Pool does not include long maturity contracts, as the

longest contracts started trading three years before delivery. For longer maturity
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contracts, we need to turn to the OTC™ market, to obtain price data for ten-year

contracts.

5.2.1 Estimation approach®

To estimate the trend in the forward prices, we need as much information as possible.
Assuming that a ten-year contract starts the delivery next year, we will use the next
three one-year contracts to estimate the immediate prices. After year 3, Nord Pool
does not provide longer contracts. We then assume that beyond the closest three
years, forward prices grow at a constant rate, equal to g% annually, based on the
forward contract in the market with the longest time to maturity. In other words, the
forward contract for year 3 serves as a“ shadow price”’ for the trend beyond this point.
This forward growth rate is assumed to be risk free, as forward contracts are priced
using risk-neutral measures. If our first year of forwards is 2002, the structure

becomes as follows;

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
FWYR-02 FWYR-03 FWYR-04 (1+g)FWYR- (1+9)°FWYR-
04 05

Table 5.1: The growth structure of forward prices
Following this, we now have a series of actual and implied one-year contracts, up to
ten years into the future. The (risk-free) discounted value of these contracts should be

equal to the risk-free discounted value of the ten-year contract. Figure 5.1 summarizes

the approach.
Y to mat Year Cne-year Digcounted 10-year  Discounted|
A T

0.15 2001 139.30 13773 [ Actual l 160,50 165.70
1.19 2002 144 .32 134.55 160,50 149 54
2.19 2003 149.41 131.35 contracts/ yeneg  141.10
3.19 2004 £3.76 127 .46 Contracts 160,50 133.05

415 2005 163.25 123.70 based on 160.50 125.46
519 2006 162.86 120.04 160,50 118.30
B.19 2007 167 .51 116.45 trend 160,50 111.54
7.18 2005 172680 113.04 160,50 105.18
g.15 2005 17783 109.70 160,50 99,18
815 2010 182.71 106.46 160,50 4352

Difference
Sum 1323.8343]  -1.91719E-08| Sumn 1323.8343

Figure 5.1: The estimation procedure for the long-term trend.

12 Over the counter.
13 This approach is based on an approach in Dobbe and Sigmo (2002).
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5.2.2 Results of the long-term trend estimation

The procedure described above was run on a data set containing prices from the years
2000 and 2001. It should be noted that the ten-year contracts are quite illiquid, and
would hence probably produce an erroneous magnitude of the volatility. We therefore

do not attempt to use these prices to find volatility estimates.

Using the Excel solver, an average drift of the forward prices was estimated by
minimizing the squared difference between the discounted values of the ten-year
contracts and the trended data for 47 different trading days in 2000 and 2001. The
results are summarized in table 5.2. As can be seen, the geometric forward price trend
was estimated to be 3.15% on average. This corresponds to a drift™ in In(P,) was
0.61%. Looking at the last few years of actual spot prices, these are subject to a
negative trend. This is, however, mainly due to the dry year of 1996. Looking at the
two-year forward curves estimated from Nord Pool, an assumption of 3.15% growth

seems plausible.

Parameter Annual trend Low High Standard deviation

Geometric 3.15% 1.42% 5.45% 1.24%
trend in P;

Arithmetic 3.38% 1.46% 6.05% 1.41%
trend in P,

Implied trend 0.61% 0.25% 10.59% 0.27%
in InP;

Table 5.2: Results of the trend estimation

5.3 Seasonal function

Section 4.4.9 outlined severa candidates for the seasonal function for energy prices.
The presence of a price crest in the winter and a corresponding trough in the summer
suggests that a normal cosine function should have the ability to capture the long-term
trend. This selection is backed by the findings of, amongst others, Lucia and Schwartz
(2001). The seasonal function for pricesis therefore given as

f(t)= c+ycosEBZ7z(é+f)[H (5.2

¥ Thedriftin In(Py) is (r - ¢ - ¥40?). See for example Hull (2000). The trend was implied from the

results of the geometric trend, and requires a starting point. For P=172, the driftisError!.
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5.4 Appropriate spot price models

There are several approaches and models possible to estimate the model parameters
for the price. In section 4.4, we discussed severa candidate models for the spot price.
Since our planning project spans 40 years, a one-factor model without drift would be
worthless. We therefore impose a deterministic drift in the model. For the sake of
comparison, we will use the following two models:

Model 1: A one-factor mean-reverting price model, from Luciaand Schwartz (2001)
Model 2: A one-factor log-price model with short-term mean reversion, as given in

section 4.4.2.

5.5 Regression results for the spot price models
The following tables include the results of the parameter estimation of the spot price
models. The parameters are estimated using a non-linear regression approach. A total

of 319 spot prices were used in the regression.

1-factor spot price model

qugcclaecgzlt:ed spot price E,(P)=f@t)+(P, - f 0))e™
Parameter Estimate Std. Error Lower 95% CI  Upper 95% CI
CONSTANT 158.617 28.278 102.978 214.256
GAMMA 20.762 9.523 2.026 39.499
TAU -0.020 0.072 -0.161 0.122
KAPPA 0.029 0.013 0.002 0.054
R’ 0.946

Table 5.3: Parameters of the 1-factor model for price P,
In table 5.3, the constant given reflects the starting value at the beginning of the data
Set. A price series starting at alater time T using this value must therefore be adjusted
with a drift. This drift will be assumed constant, and was determined in section 5.2.
For example, the constant one year later, is expected to be
158.62e°*"* =163.69 (5.3)

The next model, is a one-factor log-price process. Here, the drift is dependent on the
starting point Po. The log-trend can then be determined as In(1+0.315)/In(Pg)=0.61.
This drift is not explicitly modelled here, but used later to take into account the drift

in energy prices.
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1-factor log-price model with deterministic drift

Expected spot price & (p) = explf () + (P, - (@) )
Parameter Estimate Std. Error Lower 95% CI  Upper 95% CI
CONSTANT 4.975 0.161 4.657 5.293
GAMMA 0.196 0.065 0.068 0.324
TAU -0.032 0.052 -0.135 0.070
KAPPA 0.035 0.015 0.006 0.064
R2 0.939

Table 5.4: Parameters of the 1-factor model for In(Py)

It should be noted that the phase angle T was not significant for any of the models.
This is mainly due to the peak in energy prices around January. A cosine function
starts at a maximum value when (Error!+1)=0, and t would hence bee too close to
zero to be significantly different from zero using only 319 data points. Another
problem is that « is quite small in these regressions. This might be explained by the
fact that the model does not capture the dry/wet season differences in a satisfactory
way. An aternative regression fitted to dry years, where the seasonla function fits
better, isincluded in appendix B. Using this approach, the magnitude of K increases to
about 0.135, amore realistic level.

5.6 Spot price volatility

Spot price volatility can be estimated in a number of ways. For a simple oberview of
the most common approaches, see Hull (2000). The methods include finding the
differences between consecutive prices, or calculating the standard deviation of
returns. The return can be calculated in different manners. One suggestion, used by
K oekebakker and Ollmar (2001) is asfollows:

P (5.4)
return = p,' = In%‘—ﬂg
R

Assuming that returns are “small”, this is an adequate approximation. A second
possibility isto calculate the returns as
P

t+1

R

-P

t

(5.5)

return = p,° =

The above approaches only work if seasonal and trend effects are significantly smaller
than the noise. If this condition is not appropriate, the data has to be de-trended before

the procedure can be used. Investigating energy prices, an assumption of volatility
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much greater than the trend seems plausible. Having obtained the returns, an estimate
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for the volatility of spot prices, can be found as the standard deviation of the returns.

. 1 v (5.6)
volatility = o = \/t_—lz (o, - P)

This gives the weekly volatility. An annualized measure can be obtained by
multiplying by v52.

5.6.1 Results

The estimation of spot price volatility was done using the 319 one-week forward

prices as proxies for the spot price. The results are presented bel ow:

Model  Weekly volatility  Annual volatility
Model 1 10.22% 73.73%
Model 2 10.48% 75.58%

Table 5.5: Spot price volatility
The two estimates above are almost identical, as they should be, as model 1 is an
approximation of model 2. We will nevertheless mostly use model 1, as this is most

convenient.

Observe that this volatility reflects the average volatility throughout six years of data.
If a more exact volatility pattern is needed, GARCH models or other autoregressive
volatility estimators might prove to be useful. We will, however, not attempt to fit the
volatility to the seasonal patterns.

5.7 Market price of risk

The model parameters presented in the previous section comprise an expected spot
price model. It does not reflect a risk-neutral spot price, however, as the regression is
done on spot prices. To find the market price of risk, we need to estimate the
systematic difference between the model built and the actual forward contracts given
in the data set. Sadly, the seasonal function, as presented in equation (5.2) does not
appropriately capture the seasonal variations in the spot prices. The deviations caused
by the seasona function are hence greater than the risk. In effect, it has been

impossible to develop afair estimate for the market price of risk using these data.
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We do, however, offer a solution to the problem. We have obtained a data set of
expected spot prices. The difference between these data sets gives an estimate of the
market price of risk.

5.7.1 The data set of expected spot prices

The data set includes expected spot prices at 48 selected dates over the same period as
our original data set. A specific date includes an uneven number of spot price
predictions, ranging from 105 to 254 weeks into the future. Subtracting the forward
prices at these dates from this data set produces a new data set, explainable only
through risk. By performing this subtraction, we obtain a new data set of 48 trading
days, and atotal of 4680 differences.

5.7.2 Estimation of the market price of mean-reversion risk

Using a one-factor price model of the type given in section 4.4.1 or 4.4.2, the
difference between forward and expected spot priceis given as

d= /1—0(1— e ") &7
K

The A of equation (5.7) represents the market price of mean-reversion risk, and is
present in both the log model and the pure price model of Luciaand Schwartz (2001).
The volatility is given as g, and measured from the spot prices. Findly, « isthe mean
reversion parameter, and T represents the weeks to maturity. We can now estimate the

risk as the difference between the two observed values.

5.7.2.1 Results

An estimate for o was obtained in section 5.6, using spot prices. The estimate of «
was estimated in section 5.5, and found to be 0.029 on a weekly basis for the one-
factor mean reversion model. Using a non-linear solver, we regressed equation (5.7)
against the systematic differences. The estimate for A was hence found to be 9.82
NOK/KWh for the price model. Given this, along-term measure of risk can be taken

as the value of equation (5.7) with T=co. This yields an overall mean-reversion risk

Real Option Analysis of a Hydropower plant 61



Technology Management Norwegian University of
Narve Bjgrdal and Anders Skogen Science and Technology

level for long-term contracts approaching 33.86 NOK, or 19.26% for the log model*®
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described in section 5.5.
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Figure 5.2: Systematic differences between expected spot prices and forward prices

As can be seen in figure 5.2, the function does not fit short maturity contracts. The
shape of the observed data in the short end of the curve should be taken with a bit of
caution, however. Since energy traders hedge their exposure in the short run, the
market price of risk for short maturity contracts should in fact be expected to be
negative. Hence, the expected forward prices seem to be over-estimated for short-run
prices. Since short-term structures are not relevant for pricing long-term contracts,
however, the long end of the curve is considered more important. This is also where
the function from equation (5.7) fits the best.

5.7.2.2 Discussion

Lucia and Schwartz (2001) investigated the market price of risk for daily contracts.
They found that the RMSE™ of prices was approximately NOK 11.90 on a daily
basis, and that A was amost always positive. For longer contracts, a considerably
higher risk premium could be expected if the relationship in equation (5.7) holds.

Hence, a risk premium of 19.26% might prove to be a fair vaue for the long-run

> Thelog change is dependent on the initial value of P,. The log-change is then found as the log of the
actual price change due to the risk-neutralization, or asrisk/price.
!¢ Root Mean Squared Error
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mean-reversion risk. We note, however, that this is a high level of risk, and that
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uncertainties in the long-term mean might explain a considerable amount of risk.

5.8 Forward price models

This section is devoted to pure forward price modeling. The analysis above caused
several problems when the market price of risk was to be determined. Instead of going
through spot prices to obtain risk-neutral prices, we can model the forward prices
directly, as forward prices are, per definition, risk free. This simplifies the estimation
procedure considerably. The downside is that this approach |eaves the market price of
risk undetermined. The analysis in this section is very similar to the spot price

analysis. The section will therefore be briefer in nature.

5.8.1 Data set

The data set contained 319 weeks of data, each week comprising 104 forward prices
with maturity from 1 to 104 weeks. The set is the same as used in the spot price
models above, only the whole data set is used to determine the shape of the forward

curve instantaneously.

5.8.2 Seasonal function and models

The seasonal function is the same as of the expected spot price models discussed in
section 5.3, and the forward price models are essentially equal to the expected spot

price models from section 5.4.

5.8.3 Regression results

The following section lists the parameters estimated from the forward data. The
forward curves used for the regressions are given in the tables. Observe that for the
two-factor model, the market price of risk is not part of the regression, because the

forward prices are already risk neutral.
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1-factor forward price model
Forward model: F,(P,,T) = f(t) + (P, — f(0))e™"
Parameter Estimate Std. Error Lower 95% CI  Upper 95% CI

CONSTANT 169.374 0.180 169.022 169.726
GAMMA 28.110 0.108 27.898 28.322
TAU 0.934 0.001 0.933 0.936
KAPPA 0.014 0.000 0.013 0.014
The long-term riskless drift 4/ is taken as 3.15% annually.

R? 0.869

Table 5.6: Parameters of the 1-factor approximation of the forward price model

1-factor forward log-price model
Forward model: (P, T) =exp(f (T +1) + (R, - f (1) o)
Parameter Estimate Std. Error Lower 95% CI  Upper 95% CI

& 5.131 0.001 5.129 5.134
GAMMA 0.189 0.001 0.187 0.190
TAU 0.937 0.001 0.936 0.938
KAPPA 0.017 0.000 0.016 0.017

The long-term riskless drift 4”is estimated to be 0.61% annually, based on
the results of section 5.2.
R? .833

Table 5.7: Parameters of the 1-factor forward log-price model

The parameters presented above comprise a risk-neutral estimate of the forward
curve, and do not, as spot prices, require risk-neutralization.

5.8.4 Forward volatility

How do we obtain an estimate for the forward volatility? Koekebakker and Ollmar
(2001) suggested two different approaches for this purpose. Either the difference
between two consecutive prices could be used, or the return between these. In section
5.6, we presented two ways of estimating spot price returns. In this section, we will
use model 1 to find an estimate for the return, and then use two forward volatility
modelsto fit the existing data.

In section 4.4.3, we introduced two different forward volatility models, and called
them model A and B:

oA (t,T) = oeT) (5.8)
cB(tT)=— 2 +c (5.9)
T -t +b)
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Mode A is consistent with a normal mean-reversion model, whereas model B is an
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empirical model fitted to observed forward prices. These models can be fitted to the
observed volatility of the available price data. Koekebakker and Ollmar (2001)
investigated the volatility of energy prices, and suggested using the forward contracts
of length 1, 2, 3, 4, 5, 6, 7, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 70, 88 and 104
weeks. This captures the level of the long tem contracts, without over-fitting the long
run smoothed prices. We will try to fit both the models to both the selection suggested
above, and the whole data set, because the long-term perspective enforces our interest

in long-term volatility behavior.

5.8.4.1 Method used

The data set used was the normal smoothed set of forward prices. For every (weekly)
forward maturity T=1 to 104 the return was calculated using the formula given in
equation (5.10). Thisisidentical to model 1 of section 5.6.

return =In Fi (510
FI

At each maturity T, the standard deviation of the return is a measure of the volatility.
This standard deviation of return was then plotted against maturity. This was done
both for the selection suggested by Koekebakker and Ollmar (2001), and for the
whole data set. The resulting graph was fitted to model A and B using a non-linear

regression optimizer in SPSS.

5.8.4.2 Estimation results

The regression parameters are reported in table 5.8 and table 5.9, and a plot of the

functionsisgivenin figure 5.3.

Parameter estimation for model A
Model A using the selection
Parameter Estimate  Std. Error Lower 95% CI  Upper 95% CI

o .650 .000 .650 .650
K .064 .017 .027 101
R’ .95768

Model A using all data
Parameter  Estimate  Std. Error Lower 95% CI Upper 95% CI

o .465 .000 465 465
K .012 .010 .009 .032
R’ .82998

Table 5.8 Model A parameter estimates
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Parameter estimation for model B

Model B using selection (annualized estimate)

Paramet Estimate Std. Error Lower 95% Upper 95%
er CI CI

A 2.511 .965 476 4.550
B 5.030 .015 5.000 5.060
C 211 .458 -.755 1.177
R? .96298

Model B rerun with all the data (annualized estimate)

Paramet Estimate Std. Error Lower 95% Upper 95%
er CI CI

A 5.980 571 4.843 7.109
B 12.324 1.275 9.795 14.852
C .145 .008 .130 .1604
R? .93863

Table 5.9: Model B parameter estimates

As can be seen from table 5.9, the results from the regression using the selection

produces an insignificant long-term trend, whereas the regression using all the data

produces a highly significant, but lower estimate.

Forward volatility for all data Forward volatility using selection
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Figure 5.3: Volatility and volatility functions
5.8.4.3 Implied volatility

The implied volatility is calculated as the volatility of

options contracts. It is found by

observing the option price, forward price at maturity, strike and time to maturity.

Using an option formula, such as a modification of

Black and Scholes (1973), the

volatility is fitted to the observed data. Using an excel spreadsheet obtained from

APX, we found that an option maturing four years into the future has implied

volatility of approximately 15%. This should be the
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term volatility. Investigating table 5.9 we find that model B fitted to all the data
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converges to along-term volatility of 14.5%, very close to the implied volatility.

5.8.4.4 Discussion on forward volatility

Comparing our two models to the implied volatility, we find that model B produced
the best results. As can be seen in figure 5.3, model A greatly underestimates the
long-term volatility for the selection, and worsens for long maturity contracts.
Although regressing over the whole data set improves the estimate, it still approaches
zero for long contracts. Model B is considerably better, but the constant level c is not
significant using only parts of the data set. This could be expected, however, as the
analysis after 52 weeks contains a total of 3 data points. Consequently, the models
fitted to all the data performed considerably better in the long run than the model
fitted to the selection only. Although over-fitting might occur, it is important to have
the volatility as good as possible in the correct interval. When pricing long-term
contracts, the volatility structure should be made consistent with observed prices, as
long as the model permits these changes. Besides, the results match the implied
volatility observed in the market. In conclusion, model B is the better choice for a

long-term price volatility model.

5.8.5 Discussion of the models estimated

Looking at the results of the spot parameter estimations, we see that the seasonal
variations are large and significant, but not equal. Investigating forward contracts, we
find the presence of the same kind of trend. We are therefore fairly confident about

the future presence of a defined seasonal shape in prices,

For the long-term trend, our estimate of 3.15% annual price growth seems to be fair.
The number is fairly uncertain, however, as the value ranges from 1.42% to 5.45%.
Our estimate of 3.15% annual growth gives a price growth of approximately 5 NOK
from a power price of 160 NOK. According to an anonymous'’ source, this
assumption was fair, and close to the company’s own measures. The determination of
price trends in the main data set obtained from Nord Pool, proved to be impossible.

Thisis due to a variety of reasons. Firstly, the data set is too short, and too dependent

" The comment was considered privileged information, and he therefore listed anonymously.
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on short-time deviations. Complex seasonal patterns and dry years complicate the
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picture considerably, and make the use of ten-year contracts necessary.

It should also be mentioned that the data set is relatively speaking far too short to
estimate the parameters needed. Modeling the unobservable mean by the deterministic
function might prove to give bad results. The mean itself becomes a function lying in
the middle of dry and wet years, not necessarily reflecting the real mean.

Another approach would be to model energy prices using the wet years'® only and
then use a jump probability for dry years. In appendix B, the parameters for the
process are measured on the basis of the wet years. The estimates of the mean-
reversion and seasonal effects are far greater for this set. This suggests that it might be

fruitful to estimate short-term variations on only parts of the data set.

In order to properly value energy prices, a higher order model, such as a two-factor
model, might be considered. The addition of jump-diffusion and time-varying
volatility will probably improve the forecasting abilities. For a discussion of these
models, Knittel and Roberts (2000) investigated jump-diffusion processes, whereas
Kellerhals (2001) discusses pricing electricity forwards using stochastic volatility.
These additions might come at the expense of analytically tractability and simplicity,

however.

The market price of risk has been very difficult to determine based on the available
data. The problem has to a large degree been avoided by fitting models to the aready
risk-neutral forward curves instead. A positive long-run risk premium as reported by
Pirrong (2000) for the PIM markets, should, however, be present. Due to the large

amount of noise in the data set, however, it is extremely difficult to quantify.

1811 the price data set from 1996 to 2001, 1997-2000 are considered wet.
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6 Weather derivatives frameworks

Since the bulk of the weather derivatives market is made up of temperature-based
contracts, such contracts have also been the main point of attention from the academic
community. However, it is still quite a novel field of research, and only few articles
have been published on the subject. Approaches for calculating a far price of a
derivative (typically an option) vary but can be broadly put in four categories:
Stochastic models, Equilibrium approaches, pricing methodologies using only the
statistical properties of the underlying and burn analysis. This section gives a brief
summary of models devel oped.

6.1.1 Stochastic models

The most common types of models are stochastic models. A one-factor model is
convenient for analytical tractability, and this approach has been taken by amongst
others Dischel (1999), Geman (1999), Torro, Meneu and Vaor (2001) and Alaton,
Boualem and Stillberger (2001). Dischel (1999) also developed a two-factor model
including stochastic volatility, while Brody, Syroka and Zervos (2001) extended the
notion of Brownian motion to fractorial Brownian motion™ to better capture long-

term interdependencies in temperature time series.

6.1.2 Equilibrium Models

A second type of models is equilibrium approaches incorporating the agent’s utility
function. Frameworks for valuing general weather instruments in such a setting was
developed by Cao and Wel (2000) and Davis (2001). Such models have little appeal
outside the academic community, as they generally introduce hard-to-measure factors

such as aggregated dividend on the market portfolio and risk preferences of agents.

6.1.3 Models using the distribution of the underlying

Mclntyre (1999) introduced a model for valuing temperature-based options by
calculating the expected loss of a contract by integrating over the probability
distribution of the underlying. His methodology has several resembles to the Black-

!9 Fractorial Brownian Motion is a generalization of Brownian motion calculus and is considered as
one of the simplest stochastic processes that exhibits long-rang dependence (Brody, Saroka and Zervos,
2001)
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Scholes framework. Martin, Barnett and Coble (2001) used a similar methodol ogy for

MSc Thesis, Department of Industrial Economics and @ NTNU

precipitation derivatives, but recommended using the gamma distribution as it cold be
fitted more accurately to distributions of precipitation observations than the normal or

lognormal distribution.

6.1.4 Burn analysis

A second commonly employed pricing approach is burn analysis. The idea is to
calculate the payoff from a given contract over a set of historical outcomes for the
underlying and take the average payoff as the fair price of the contract. This method is
popular due to its ssimplicity, and can be applied to virtually any contingent claim.
Care has to be taken with data sets that exhibit some long-term trend (Dischel, 2001).
Burn analysis applied on precipitation derivativesis discussed in the next chapter.

6.1.5 Applicability to precipitation derivatives

A survey of the available stochastic models applied to temperature-based weather
derivatives did not find any frameworks that directly fit precipitation derivatives. The
main reasons are that precipitation follows a different process than temperature — a
negative value of precipitation isimpossible, indicating that a model for the logarithm
of the precipitation level might be appropriate. Furthermore, whereas temperature is
continuos, precipitation is discrete in its nature, and this will affect the development
of a stochastic model. The simpler approaches such as expected loss and burn analysis
are easily adapted to alternative underlyings, and we return to burn analysis for

pricing precipitation derivatives in chapter 8.
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7 Precipitation models

This section discusses common properties of stochastic precipitation models and the
data set we use as source for our anaysis. Since our ultimate aim is to develop
derivatives written on a precipitation index, we argue why standard hydrological
models employed are inappropriate if the aim is to derive closed-form solutions.
Finally, we develop a one-factor stochastic model for the Enron precipitation index

and test how well thismodel performs.

7.1 Data used

As a basis for the analysis, we use a subset of the Scandinavian Precipitation Index
developed by Enron Nordic. The index consists of 19 Norwegian and 8 Swedish
measurement stations, and the index is constructed such that 1 index point equals 1
GWh of generation potential. The index we use was aggregated from precipitation
time series for the Norwegian stations in the index. A detailed overview of the index

can be found in Appendix C.

7.2 Modelling precipitation

7.2.1 Hydrological background

Following Shaw (1988), the basic idea behind stochastic hydrological models for
precipitation is normally based on a two-step process where the first step consists of
determining whether agiven day at agiven siteisa” wet day” (aday with measurable
precipitation) or a "dry day’ (a day with no or not measurable amount of
precipitation). In simple models, the distribution of wet and dry days is driven by a
Bernoulli process where the probability of awet day is higher if the previous day was
a wet day than if the previous day was a dry day. If a day is a wet day, then the
intensity of the rainfall is modelled by sampling from a common distribution with a
minimum of zero and no upper bound such as the lognormal or the gamma
distribution. (See i.e. Shaw, 1988 or Moreno, 2001) The gamma distribution is most
commonly employed, since it can be fitted with greater accuracy to a precipitation
model with varying time resolution (Marin, Barnett and Coble, 2001). The intensity of
precipitation on a wet day can be dependent on the intensity on a number of previous
days (Moreno 2000).
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There are numerous refinements to this basic approach available (see i.e. Cameron et
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al, 2000) for a good discussion on stochastic precipitation models), and the most
commonly employed in Norway is a variant of the Bartlett-Lewis model (Skaugen,
2002) developed by Onof and Weather (1994). It has seven stochastic parameters and

Istoo complex for deriving analytical expressions for derivatives prices.

It is known that precipitation levels on different sites are inter-dependent, since
weather systems tend to move over time, hence it would require a complex estimation
of correlation parameters between the stations in the index if we choose to model
stations individually (Killingtveit, personal communication). On this basis, we choose
to model the index directly as opposed to modelling the individual stations in the
index. This makes the standard hydrological approach outlined above less relevant,
since it is unlikely that it will not rain on one out of the 19 stations in the index on a
given day, hence the wet-dry distinction become meaningless. In fact, only 1% of the
days are indeed dry days. This could be mended by choosing a cut-off value and
define the days where the index is lower than this as dry days, but this would be

arbitrary and unnecessarily complicate the model development.

From the preceding section, it is obvious that if the underlying stochastic model for
precipitation aims to take research on stochastic hydrology into account, simulation is
the only possible result. Our main goal, however, is to make our development
analyticaly tractable and we therefore chose a simplified approach. The one-factor
model suggested by Schwartz (1998) incorporates some of the key features of
precipitation time series, namely seasonally dependent mean and mean-reversion. The
mathematical properties of this model were discussed in section 4.4.2. Thismoddl isa
gross oversimplification of reality, but as we shall see later, the model performs
adequately compared to historically observed data.

7.3 A one-factor model for precipitation

7.3.1 Aggregating data

The purpose for hydropower generators is to hedge against continous precipitation
shortfall over weeks if not months (Gustavsen, personal communication).

Furthermore, AEP Energy, the company maintaining the index uses weekly-
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accumulated precipitation as their reference, so we want to keep the same resolution
to compare our modelled prices to market quotes. On this basis, we choose to model

weekly-accumulated precipitation. .

Aggregating to weekly totals further helps clarifying the seasonal trend and reducing
the volatility of the data set. A plot of the weekly-accumulated index values and

weekly standard deviation measured in percent is presented below
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Figure 7.1 Average weekly accumulated index values and weekly standard deviation
Since precipitation has a logical lower bound of zero, a log-transformed model of the

time seriesis convenient. For the rest of thisanalysis, we will take
I, =In(Index,) (7.2)

7.3.2 The deterministic part

The deterministic part of the stochastic model serves two purposes, firstly it expresses
the expected outcome at a given point in the future and it determines the long-term
mean to which the stochastic values revert. By inspection, the seasonal pattern in the
precipitation time series looks simple, although a higher-order transformation might
be required to capture the shape. Consequently we seek amodel of the form
I" =a+ ft+ysin(ot+7)+y,sin(2(at +7,)) (7.2)

Thisfunction is determined by fitting the equation

Y(t)=a, +a,t +a, sin(wt) + a, cos(wt) + a; sin(2at) + a, cos(2amt) (7.3)
to the weekly accumulated precipitation index values yielding
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Coefficient Value Std Error P-value

a; 7.47 0.0217 0.000
a, -0.0003 0.000 0.355
as -0.274 0.02835 0.000
a4 0.205 0.02873 0.000
as 0.127 0.02837 0.000
as -0.001 0.02867 0.978
R? 9.5%

Table 7.1 Regression coefficients on the deterministic precipitation function

No significant linear trend is observable in precipitation as opposed to temperature
time series — that is, there is no significant evidence of increasing or decreasing
overall precipitation level in the data set.?°

The expression for mean precipitation can be rewritten to

|™ = 7.47 + 0.34sin(wt + 0.648) + 0.13sin(2wt) (7.4)

7.3.3 Fitto observed data

As shown in the plot of the deterministic function versus historical data below

confirms the low fit obtained through the regression
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Figure 7.2 Deterministic component of precipitation model versus observed values

% However, Schieldrop (2002) noted that whilst the overall precipitation level is unchanged, there
seems to be evidence that the discrete outcomes have changed. He found that extreme val ues occur

more often the latest ten years than during the preceding decade.
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The low R?value does not mean that the fit is a bad one, an alternative interpretation
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Is that precipitation levels are highly volatile and the noise process is an important
component of the model. Indeed, when run against weekly averages, the R* — value is

69,4% indicating a good fit to the seasonal fluctuations.

7.3.4 The noise process

We know from the model formulation in section 4.4 that the mean-reversion
parameter K determines how quickly the model reverts to its deterministic value. K is
found by analyzing the autocrorrelation function. The MINITAB printout is presented
below
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Figure 7.3 Autocorrelation pattern for precipitation time series residuals

The autocorrel ation coefficients are

Lag Autocorrelation (¢) t-value?

1 0.25 7.85
2 0.11 3.30
3 0.07 2.07
4 0.09 2.70
5 0.03 0.90

Table 7.2 Autocorrelation coefficients for precipitation model residuals

We see that only the first two lags are significant, and the plot reveds that the
coefficients die down in an exponential manner. This is the case in the one-factor
model we use. An estimator for @ is the first-order coefficient yielding an estimate of
kK =1— @=0.75 for the mean-reversion parameter in the model.

Thisis a surprisingly high value of the mean-reversion parameter, indicating that the

time series are amost memory-less. Thisis contrary to our assumptions, but a reason

21 |f the absolute value of the t-statistic is greater than 2, the lag is normally assumed significant
(Fueller 1996)
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might be that we model weekly precipitation levels, and precipitation on a given day
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Is conditional on the past (or past few) days, and a weekly resolution in the data
removes important information about the autocorrelation pattern. The autocorrel ation
factor when using daily resolution is found to be 0.42 with four highly significant
lags. On this basis, our estimate of 0.25 for the weekly autocorrelation seems more
reasonabl e.

7.3.5 Estimating o

Hull (2000) suggested estimating volatility as the continuously compounded return
volatility asgivenin equation (7.5)

| (7.5)
u, = In%—'%

Taking the standard deviation of the returns yields an estimate s of 0 as s = 0.90 or
90% on aweekly basis.

A plot of the continuously compounded weekly returns confirms the extremely large
volatility present in the series.
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Figure 7.4 Weekly precipitation index returns
Note however that the high mean-reversion parameter estimated above will quickly
draw the series back to the expected value, and precipitation will not reach extreme
levels According to Shaw (1988), it is customary to use monthly or seasonal

resolution for variance in precipitation time series. The Schwartz one-factor model
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assumes constant return volatility, and to check if the error introduced is large, we test

the following hypothesis:
Ho : Return volatility in week t isequal toweek t' forall t #t’
Hi : Return volatility for someweek t # t’ isnot equal to week t’

Performing a Fisher-test for equal variances checks the null-hypothesis. The F-test
matrix can be found in Appendix D?%. As the results show, the evidence for constant

return volatility is conclusive, and we keep the null hypothesis of constant volatility.

7.3.5.1 Are the residuals normally distributed?

A crucial assumption in the Schwartz one-factor model is that the noise parameter, dz,
follows a Wiener process. To investigate this property, we check whether the
residuals are normally distributed. A histogram of the residuals is presented below

200

100

Frequency

Fesiduals

Figure 7.5 Histogram of precipitation model residuals and fitted normal curve

This plot reveals that the assumption of normally distributed residuals is not entirely
supported by data. The descriptive statistics confirm this.

%2 Since the approach involves testing for equal variance over 51 weekly data sets, it comprises over

1200 significance tests. The result table istoo large to list here, but can be found in Appendix D
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Parameter Value Standard error
Mean 0.000
Weekly Standard 0.747
deviation
Skewness®? -0.896 0.149
Excess kurtosis®* 1.102 0.157

Table 7.3 Descriptive statistics of precipitation model residuals
We observe that both skewness and kurtosis are significantly different from 0 and 3
respectively, and consequently, the residuals are formally not normally distributed.
For analytical tractability, we nevertheless stick to the assumption that the noise term

in the model follows a Wiener process.

7.3.6 How good is the model?

Lacking a predefined way of testing the precipitation model, we turn to two approches
based on simulating precipitation index trajectories and compare to the data set.

7.3.6.1 Comparing to historical observations

As afirst test of the goodness of the simple precipitation model developed above, we
generate 1000 simulations using the stochastic differential equation in equation (4.9)
and see how many of the index values generated fall within the boundaries of weather

scenarios observed during the last 19 years. The results are presented below
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Figure 7.6 Simulations of precipitation index compared to historical observations

%3 Negative skewness indicates clustering to the right
24 positive excess kurtosis indicates that the distriution is “taller” than the standard normal distribution
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Since the last 19 years contain unusually dry (i.e. year 1996) and wet (i.e. year 1990),
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we would expect the majority of scenarios generated to fall within historical bounds,
while still being able to generate weather events not yet occurred. As the plot reveals,
this is the case for the model for most weeks. There is no forma way of defining
“adequate” in this context, but it is clearly a weakness that for some of the weeks, not
a single of the 1000 scenarios fall outside the bounds. This is consistent with the
histogram residuals in Figure 7.5, since the noise distribution used in the model

1. Does not generate enough low extreme values

2. Generates too many high extreme values

Consequently, too many simulation results will fall outside the observed upper bound

and correspondingly too few ouside the observed lower bound.

7.3.7 Formal statistical test

An dternative way to test the performance of the model is to compute a confidence
interval for the weekly outcomes based on historical observations. Assuming that the
outcomes are independent and normally distributed, the ssimulation results can be
standardized by computing (Walpole, Walpole and Myers, 1998)
TP <Xij—_)_(j<al/z (79
O

where a denotes the confidence level, ¢ the standard deviation for week j. and x;; the
I-th simulation for week j. From the properties of the normal distribution, we would
expect 95% of the standardized simulated values to fall in the interval [-1.96,1.96]. As

summarized in the plot below, this seems to be the case for most weeks
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Figure 7.7 Statistical test of precipitation simulation results
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The spikes in weeks 20 and 47 are attributable to unusually low values, which in turn
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makes the confidence interval lower than for the adjacent weeks.

7.3.8 Evaluation of the model

In sum, the model, albeit far from a correct replication of the precipitation index,
seems to have the desired properties, and in the next chapter, we proceed to pricing
derivatives written on the index using this model. Care should however be taken to
use this model slavishly, but applied with care, it should give an indication of where
the price of aderivative instrument should lie.

7.3.8.1 Volatility problems

Estimating the weekly standard deviation for the model is not straightforward.
Experiments with varying estimates for o suggest that the volatility structure in the
time series is too complicated to be adequately captured by our simple model. An
aternative is to use the Mean Sgared Error from the residuals (s=0.75), but firstly the
one-factor model based on the logarithm of the underlying assumes geometric
standard deviation, and secondly, this lower estimate is obviously less volatile than
the actual observations — a crucia factor when valuing derivatives. Some of the

simulation results are two or three times as large as the largest historical observations.

An explanation to this can be that the standard deviation of theindex returnsis as high
as measured, but some physical constraint is involved that prevents the precipitation
levels from reaching the high extreme values indicated by the noise distribution. A
compromise can be to use the residual standard deviation for simulation purposes
when the aim is to generate weather scenarios for a specific week, while the intra-
week return volatility should be used for valuing derivatives. When pricing
precipitation options in section 8.3.2, we use standard deviation of returns as model

input.

7.4 Possible extensions to the model

Our model of weekly precipitation is simple to ensure analytical tractability. More

realistic models can be created, some improvements are suggested below
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* A stochastic process including jumps on the form (Clewlow and Strickland, 2000)
din(l) = x (g, —®K,, =Inl,)l.dt +oldz+ Kldg (7.7)

might better capture the high volatility in the series.
dq is a Poisson process
Kmisthe mean jump size (possibly also a function of time)
K isjump size with lognormal distribution In (1+K)~N[In(1+ K- 1#/2), ]
@isthe average number of jumps per year (possibly also afunction of time)
visthe standard deviation of the proportional jump (jump volatility)
The rest of the variables as defined in the chosen model. As spointed out by
Clewlow and Strickland (2000), incorporating jumps into the stochastic model
does not allow for closed-form formulas for derivatives pricing. For this reason,
and time constraints, we choose not to pursue this approach further.

» Volatility is assumed constant across the year. Thisis not consistent with existing
meteorological knowledge; variance is higher during the summer months. For
simulation purposes, time dependent volatility would be a good extension. The
problems are to Experience from previous modelling effort showed that it is
difficult to obtain adaily model which.

1) generates daily or weekly precipitation levels where the peak values are
consistent with historical data while at the sametime

2) ensures the monthly and yearly accumulated precipitation levels adequately
bounded by historically observed minimum and maximum.

e Standard stochastic precipitation models could be fitted to data from the
individual stations in the index, and the index could be aggregated from these
models. However, since the stations are distributed all over Norway, this would
cal for a complex estimation of inter-station correlation factors and would

certainly require computationally intensive simulations.
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8 Pricing precipitation derivatives

As shown in Chapter 6, several approaches have been attempted to value weather
(read: temperature) instruments. In this section, we derive closed-form formulas for
valuing precipitation derivatives. We will discuss two appraches: Burn analysis and
arbitrage-free pricing using two derivatives.”® We will aso obtain an estimate for the
market price of precipitation risk and finally compare how sample contracts obtain

different values accoring to the pricing methodology employed.

8.1 A note on forecasting impact

In al cases, we assume the contract to be entered into long enough in advance so that
no forecasts are available that will change the market's perception of expected
precipitation during the contract period. Following Dischel (2000), it is not clear-cut
whether i.e. seasonal forecasts are reliable, but it is obvious that the expected outcome
for a wether phenomenon is less uncertain the closer into the future we look. Day-to-
day forecasting beyond 8-14 days is considered impossible, but Dischel pointed out
that it might be possible to predict a certain trend from the given state of the weather,
comparaing with historical data to detect patterns. For our pricing, we assume the
contracts to be long enough into the future for the outcome to be unaffected by any
forecast.

8.2 Contract types

Since weather derivatives are meant to hedge against non-catastrophic weather events,
contracts are normally structured to have a limited up- and downside. An example of
thisisaspead (or reverse spread) whose payoff prifile has an upper and lower bound.

% The arbitrage-free approach uses a forward contract and an option. However, there is no observable
forward curve for precipitation, but given an estimate of the market price of precipitation rrisk, the

teoretical curve can be derived.
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Figure 8.1 Enginering a spread or areverse spread and their payoff profile
Asshownin Figure 8.1 areverse spread (known as abear spread in the stockmarket)
is easily constructed by selling a call with strike Ky and buying a call with strike K.
The corresponding position can also be engineered using put options. Since the
premium of a call always decreases with increasing strike, this strategy will always
incur a cost to set up when using call options. (Hull, 2000)

8.3 Pricing methodologies

This section discusses burn analysis in datail since this is a method employed by
weather traders, then we move on to derive analytical pricing formulas based on the

precipitation model from the previous chapter.

8.3.1 Burn analysis

The first providers of weather protection were insurance companies, and a common
prcing method for insurance policies is to calculate the expected loss for a given
policy. In a weather derivatives context, this is equal to answering the question:
“Given a contract and a set of historical data, what would the average payout of the
contract be when run over observed outcomes of the underlying weather
phenomenon?’ This is a nonparametric approach, since nothing is assumed about the
distribution or the behaviour of the underlying.

8.3.1.1 Pricing example

To illustrate how burn analysis is done, we price a reverse spread with payoff profile
as shown in Figure 8.1. In the example, we price the contract for week 42. The
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expected value of the accumulated index values for this week is 3000, and the
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contract is structured to pay one unit of currency for each point the index is below the
expected value, limited to a payoff of 1000, and for each point the index is above the
expected value, the contract buyer pays the contract seller one unit of curency, limited

to amaximum of 500. The result of the burn analysisis shown in Figure 8.2
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Figure 8.2 Burn analysis example
For this sample contract, the expected payout to the contract buyer is 372 units of
currency, which has to be discounted at an appropriate discount rate. A problem is
that this rate is unknown — it depends on the risk exposure and preferences of the
contract buyer and seller and is not explicitly defined. The ambiguity of the discount
rate is amajor weakness of burn analysis.

8.3.1.2 Sensitivity to record length

A second problem is the sensitivity to the length of record available. To clearify this,
we compute the fair value of a precipitatin derivative written on a single measurement
station (Vardg) to have a longer record (52 years) to work on. The contract is is
structured to pay the buyer one unit of currency for each point the accumulated
precipitation is below the average of 13.5 and the buyer pays the seller the same
ammount if precipitation is above the mean. Both payments are capped at five units of
currency.
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Figure 8.3 Burn analysis payoff and sensitivity to record length
As seen from the plot in Figure 8.3, at least 30 years of data is needed for the analysis
to yield stable values.

8.3.1.3 Evaluation of method

The main virtue of burn analysis isits simplicity. It is emplyed by practioneers to get

afirst indication of the fair contrat price (Schieldrop, personal communication). Some

of the serious shortcomings are

= |t implicitly assumes the market price of precipitation risk to be zero. As we shall
see later, this price differs from zero, at least in the short run.

* No hedge parameters can be cal culated

= |t falls to distinguish between weather patterns that might exhibit substantial
differences when the observed values hovers around the strike level®

=  With limided data available, burn analysis can price contracts that should be
identical (i.e. precipitation levels in two adjacent weeks) significantly different.

This shortcoming can be mended by using more than one week in the analysis.

8.3.2 Arbitrage-free pricing using the forward curve

From equation (4.20), we know that the forward price under the risk-natural
probability measure for the one-factor model developed in section 4.4.2 is given by

% An extreme example: Constant precipitation level at asite can be priced equal to asite with

extremely volatilite precipitation, provided the two sites have the same mean.
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2 8.1
(1, T)=E(,) :expEtm +(nl, - 1Me™ +a" (1-e™) +Z—(1—e'2“)E ®1
K

where a* = Adlk. We assume A, the market price of precipitation risk, constant.
Given a forward curve, we know that the price of a European call option written on
the same underlying is given by
ct, T,s,K) =e " TY[E(t,s)N(h) - KN(h - v/w)] (8.2)

where w and h are defined in equations (3.32) and (3.33) respectivly. If the maturity
of the option and the forward contract has the same maturities, the option becomes an
option on the spot of the underlying. (Clewlow and Strickland, 2000) The price of a
put option is easily found through the well-known put-call parity and is given by

p(t,T,s,K) = e TIY[KN(=h++/w) - F(t,S)N(-h)] (8.3)
All parameters are observable from historical series, except A.
Although we use constant volatility in our model, the option formulas are still valid if
time-dependent volatility is used. As we showed in section 7.3.5, this is most likely
not necceassay. The integral for accumulated forward return volatility, w, will also

generally require numerical integration. (Clewlow and Strickland, 2000)

8.3.2.1 Estimating the market price of precipitation risk from traded contracts

As pointed out in section 2.2.4, there is no liquid market for precipitation derivatives
from which to obtain prices. However, AEP Energy agreed to quoute prices on the
Norwegian part of the Enron precipitation index (similiar to the data set used in
chapter 7), and the quotes are presented in the table below. The contracts are for
uncapped call options on accumulated precipitation during a given week with strike
set 10% above the expected value and a payoff of 1000 NOK per index point
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Contract Strike Actual call option Implied ) Burn analysis
week (GWh) premium from model*’ premium
5 2900 NOK 650-700,000 5% - 7% 686,000 *
15 1400 NOK 190-210,000 15% - 18% 197,000
40 3300 NOK 500-540,000 5% - 7% 500,000

Table 8.1 Estimating market price of precipitation rinsk and model results

It has to be stressed that the prices obtained are not true market prices, but according
to weather trader Lars EImlund at AEP Energy, the price ranges quoted are prices “at
which a deal would be likely to take place”

8.3.21.1 Discussion of results

We see from Table 8.1 that the market price of discharge risk is postive for the three
contracts investigated, and A is consistent for the winter and fall contacts desipte a
difference in strike price. The high value of A for the spring contract is most likely
due to the fact that the determenistic part given in equation (7.4) of the forward curve
does not adequately capture the drop in average precipitation level for weeks 15 to 20.

With only three data points available, there is a natural limit to the conclutions that
can be drawn, but the findings do at least indicate that the market price of
precipitation risk is positive and dependent on time of the year. A model involving
time-dependent volatility might give more consistent results, and more contracts at

true market prices would be desirable for athrough analysis.

Lacking more information, and due to the ssimplicity of our model, we take the market
price of discharge risk to be constant at 7%. This gives little weight to the spring

contract for the reason pointed out above.

% Obtained by finding the value of A that would equal the price given by the model and the price quote.
Excel’s Goal Seek function was used for the analysis, since the option expression cannot be solved
analyticaly for A

%8 \Week 5 isaweek that strongly deviates from the adjacent weeks due to two unusually low values. To

smooth the results, we have taken the average of weeks 4,5, and 6 to calculate the price
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8.3.2.2 Evaluation of method
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Arbitrage-free pricing has the advantage of obtaining the same price for contracts that
should theoretically be close to identical (i.e. precipitation spreads for two adjacent
weeks). All hedging parameters can be calculated by straightforward differentiation of
the pricing formulas. The major drawback is the simplicity of the underlying
precipitation model. The contract prices are highly dependent on the forward curve
provided by the model and the volatility estimate. As seen in Section 7.3.8.1, finding
the correct estimator for volatility is less than straightforward. Given a proper
estimate of the market price of risk, arbitrage-free pricing is indifferent to an agent’s

risk preferences and has a clearly defined discount rate — namely the riskless rate.

8.3.3 Which is the better pricing formula ?

As an example of which prices the three pricing methods yield for similar contracts,
we have priced a European uncapped call for each week of the year. The strike is set
at the weekly historical three-week moving average for each week.

1:: ha b
600 RURTAN /
Ny WY

W/

Call option premium

200 Burn analysis

Arbitrage-free

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

contract week

Figure 8.4 Precipitation call option premiums according to pricing method used
Burn analysis yields highly volatile prices — and as seen in section 8.3.1.2, 19 years of
historical data is not sufficient to make prices converge due to the large volatility of
weekly observations. If using the data from week t-1 and t+1 to price a contract for

week t, the prices will be more stable.
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Two parts of the price curves deserve further attention. Weeks 28 to 39 and weeks 45-
46. We see that for weeks 28 to 39, the differences between the analytical contract
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price and the burn analysis price are over 100% for some of the weeks. Again, this
can be explained by the shape of the deterministic function from eugation X — the fit
to the historical observations used in the burn analysis is poor, hence the pricing
disparices. Burn analysis for weeks 45 and 46 yield extremely low option premiums —
this is attributable to some extreme values in the lower end of the distriution drawing

the average down.

Regardless of the method used, some contracts look overpriced and some look
underpriced depending on the contract. This makes it difficult to clearly prefer one
model over the other, and part of the explanation can be found in the ambiguity of
how to estimate the crucia parametersin a precipitation model. Burn analysis has the
virtue of being ssimple, but fails to take weather dynamics into consideration. To

formally test the pricing methods, more reference prices are needed.

8.4 Summary

In this section, two different methods for pricing precipitation derivatives were
evaluated. Our anaysis showed that the theoretical price for contracts differ
significantly depending on which method is used, but we do not have enough data to
formally test the differnet methods. We also obtained an estimate of the market price
of precipitation risk from quotes on contracts, and this value seems to be positive
(5%-15% depending on the contract), but with only three contracts available, the data

does not allow for through analysis or drawing clear conclutins.
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9 Hedging volumic risk using precipitation derivatives

This section will explore two points. Firstly, we investigate how the precipitation
index used in chapters 6 and 7 is correlated with forward prices to better understand
how precipitation levels diverting from the expected value influence power prices.
Secondly, we will explore whether it is possible to use derivatives written on the

precipitation index as a volumic hedge for a run-of-river power plant on asingle site.

9.1 Price correlation

We would expect long-term contracts to be negatively correlated with the
precipitation index, since expected spot during the winter will be strongly dependent
on the fill level of the reservoirs. To investigate this, we compute the correlation
between the precipitation index and forward contracts maturing between 1 and 104
weeks from a trading date, yielding 104 data points — one for each maturity. The

results are presented below
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Figure 9.1 Correlation between forward contracts of different maturities and the precipitation index
This plot reveals a strongly time-dependent correlation. Given an efficient market,
intuition would suggest a more constant correlation. An explanation can be found in
the way the curve in Figure 9.1 is calculated — it is an average over six years, and the
following relationship might be true
» For short-term contracts, buyers are active, delivery takes place and low

precipitation forces the prices up
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» For long-term contracts, the true correlation is dependent on the trading date, since
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there might be a period between the trading date and contract maturity during
which the reservoirs are expected to be full. If such a date is present, correlation
should be negliable.

Consequently, the correlation between precipitation and forward contracts with longer
maturities is expected to be a function of trading date, and the plot in Figure 9.1 is
influenced by seasonal variations. We therefore attempt a different methodology for

investigating the correlation between precipitation and forward prices

9.1.1 Can precipitation explain short-time fluctuations?

An interesting question is to which extent changes in precipitation level explain short-
time changes in forward prices. To investigate this, we detrend the precipitation data
and forward curves for selected maturities through equations (9.1) and (9.2).

I detrend (t) =1 observed (t) -1 expected (t) (91)
I:dgrend (t) = Forl:served (t) - Fer;pected (t) (92)

where I(t) and F™(t) denotes the precipitation index value at time t and forward

contract price for maturity mat timet

We use only data from 1997 to 2000, since as briefly commented on in chapter 5, the
high prices in 1996 and 2001 make it impossible to get a good estimate for seasonal

fluctuations. Results from the analysis are presented in Table 9.1

Contract Weekly correlation P-value Weekly correlation P-value

maturity raw data detrended data
1% week 0.127 0.071 -0.225 0.001
51 week 0.148 0.035 -0.27 0.000
10" week 0.055 0.433 -0.167 0.017
12" week -0.019 0.785 -0.202 0.004
20" week -0.296 0.000 -0.273 0.000
26" week -0.371 0.000 -0.164 0.020
28" week -0.407 0.000 -0.169 0.016
36" week -0.396 0.000 -0.216 0.002
48" week 0.178 0.011 -0.261 0.000
52" week 0.265 0.000 -0.238 0.001
70" week -0.198 0.005 -0.212 0.002
88" week -0.343 0.000 -0.256 0.000
104" week 0.255 0.000 -0.200 0.004

Table 9.1 Correlation between detrended forward prices and detrended precipitation index
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We see that when we remove the seasonal trend inherit in power prices and to alesser
extent in precipitation series, the correlation between precipitation during a given
week and the forward contracts traded that week is significant at the 2% level and
negative for all maturities investigated.

An interpretation of these findings is that an unexpected increase in overal
precipitation level decreases forward prices. As expected, deviations from the
expected precipitation level constitute a significant part of the information flow
determining power prices. From the selected contracts, a clear trend cannot be
extracted, but the correlation hovers around 0.2 and are significant for all maturities.

To further inspect this relationship, we plot the correlation between changes in
forward contracts and the precipitation index as a function of trading data to see if
seasonal patterns are still present. The plot is shown below
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Figure 9.2 Correlation between precipitation index and forward contracts for different trading dates
We see that the correlation coefficient is constant throughout the year. The volatility
towards the end of the curve is purely a result of the fact that fewer and fewer data
points are used for calculating the correlation. Johnsen (2001) found that unexpected
inflow had a greater effect on prices during the late winter weeks (week 10-16) than
during the early winter (weeks 34-46). We have attempted a similar analysis on
precipitation, but failed to find any significant pattern when calcul ating the correlation
between unexpected precipitation and forward prices for each week of the year.

Possible reasons for this are:
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» Johnsen studied the impact of unexpected inflow while we study unexpected
precipitation. These are not necessarily related to each other if precipitation comes
as snow

» After detrending, thereis still much noise left in the data, and only six data points
for each week® of the year may be too little to extract a clear correlation.

9.2 Can precipitation derivatives hedge volumic risk ?

The correlation between power prices and precipitation was found to be significantly
negative as expected. We now turn to the question of hedging volumic risk using
precipitation derivatives — this will have implications for the last part of this thesis
where we value a run-of-river power plant. For such a hedge to be effective, the
underlying precipitation measure will have to be well correlated with the water

discharge in the specific river in which the plant isto be built.

9.2.1 Assessing volumic risk

The volumic risk of a run-of-river plant is mainly dependent on two factors. The
discharge capacity of the plant and the hydrograph of the river. Hydrographs for two
typical Norwegian rivers (Orkla and Gaula) are presented in Figure 9.3. From this
figure, several conclutions can be drawn
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Figure 9.3 Average daily discharge and standard deviation for regulated and unregulated rivers

% We used weekly resolution, and while precipitation data are available from 1983 to 2001, we only

have price data from 1996 to 2001
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* Regulating a river (by exploiting it for power production) levels out the yearly
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flow and decreases flow volatility
* Water discharge in an unregulated river is very low during the winter

» Optimal discharge capacity is likely to be higher in aregulated river

The implications for run-of-river plants are that more even production can be
expected in a regulated river, while the volumic risk depends on the discharge
capacity of the plant. We return to the problem of determining the optimal size in
chapter 10.

9.2.2 The problems of hedging

9.2.2.1 Hydrological reasons

The main problem in constructing a hedge using precipitation derivatives is that the

relationship between precipitation and water discharge is less than straightforward.

Thereasons are

* During the winter, precipitation generally arrives as snow, which does not
tranglate into water discharge until weeks or months later.

» Water discharge during the spring flood is mainly a function of accumulated snow

in the mountains, not precipitation during the flood period (Killingtveit, 2000)

9.2.2.2 Basis risk

A further problem is the correlation between the underlying (the Enron precipitation
index in our case) and water discharge in the selected river. The index consists of
measurement stations scattered all over Norway, and Moreno (2001) pointed out that
basis risk is present if the hedger's buisiness is not located very close to the

measurement station(s) used.

9.2.3 Estimating correlation for three rivers

To investigate the correlation between the precipitation index and water discharge, we
use three sample rivers — Orkla, Gaula and Glomma. On the background of the
abovementioned factors, we analyze the correlation for weeks 29-46, since thisis the
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period when the spring flood is over and precipitation generally arrives as rain.*
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Consequently, this is the period during which the correlation can be assumed to the
highest. Significant correlation isindeed found, as shown in Table 9.2

River Station Average weekly P-value
Correlation
Orkla Syrstad 0.221 0.001
Gaula Gulfoss 0.207 0.003
Glomma Solbergfoss 0.133 0.057

Table 9.2 Correlation between precipitation index and water discharge for fall weeks
The correlation coeffecients in Table 9.2 are calculated over al 19 years in the data
set simultaniously. For a more detailed breakdown of the weekly correlation
coeffecients as well as the cross correlation between precipitation in week t and water
discharge in weeks t-1 and t-2, we refer to a collection of figuresin Appendix E. A
detailed analysis reveal that as for the correlation between power prices and the
precipitation index, large irregularities are hidden behind the average correlations

found.

From a hydrological viewpoint, low correlation between an index such as the Enron
precipitation index and water discharge in a specific river is as could be expected

(Killingtveit, personal communication).

9.3 Concluding remarks

Based on the analysis conducted in this section, we conclude that derivatives written
on the Enron Precipitation Index do not constitute an adequate hedge for the volumic
risk inherent in a single run-of-river power plant. This appears to be the case in both
regulated and unregulated rivers and irrespective of the geographical location of the

river.

Another question is if a precipitation index can serve as an adequate volumic hedge

for an operator with run-of-river plants located across Norway. We do not have the

%0 |f the same analysis is run on al weeks of the year, the correlation is significantly negative(!). The
explanation for thisis probably that discharge is large during the spring despite (potentially) low
precipitation, and that large precipitation during the winter does not mean large discharge in the river
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data source required to pursue this question further, but preliminary tests do show that
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correl ation increases when more than oneriver is used.

When correlating discharge for the Gaula weeks 29-45 with a weather station in the
same area astheriver, the correlation is found to be as high as 0.6. This indicates that
for a precipitation hedge to be an efficient hedge for a run-of-river plant, the
derivative has to be written on one or more geographically clustered weather stations
in proximety to the river in which the plant is to be constructed. Any such derivative

isunlikly to materialize because of no potential liquidity.

Due to the factors discussed in this chapter, we have to reject the idea of valuing a
run-of-river plant as a portfolio of precipitation derivatives and power contracts. We
therefore need to consider alternative real option approaches for valuing the plant, and
this will be the topic of the coming chapters. We first turn to the problem of deciding

how large the discharge capacity of the plant should be.
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10 Power plant characteristics

For the analysis of a run-of-river power plant, we choose to use the time series for the
Gaulariver. Thisis due to the fact that the river is unregulated, making the revenues
more volatile and the exposure to volumetric risk clearer, thus making the valuation
problem more interesting. To get discharge levels in the range our cost data is valid
for, we transform the series by taking

101
Qtransformed (t) :% Qorigina] (t) ( )

where Q denotes the water discharge measured in m*/second. For the rest of this
thesis, the transformed series are used. The transformation preserves the seasonal

fluctations and the volatility.

10.1 Description of a run-of-river power plant

A run-of-river power plant channels a portion of ariver through a cana or penstock. It
may or may not require the use of adam. Even if adam is present, it does not have the
multi-period storage facilities present in reservoir systems. Thus, the al-important
factor for determining production is instantaneous water discharge. Water not
immediately used for power generation is considered lost. A typical hydrograph for an
unregulated river (Gaula) and the production is shown in Figure 10.1
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Figure 10.1 Production in a run-of-river power plant versus time-varying water discharge
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As seen from Figure 10.1, the discharge capacity of a plant greatly influences

MSc Thesis, Department of Industrial Economics and @ NTNU

1. Fraction of the year it can be expected to run at full capacity
2. Fraction of the year the plant can be expected to be idle

3. How much water is expected “lost” during the flood period

A plant will have a minimum discharge needed — the reason for this can be an
environmental constraint requiring a certain minimum discharge in the river or a
technical constraint requiring a set amount of water for the turbines to operate at all.
Regardless of the reason, no production will take place if the discharge is below this

limit.

10.2 Determining the effect rate

The maximum effect in KW of arun-of-river power plant is calculated as:

\ = 9peQH (10.2)
1000

where
N = Effect in kW,
g = gravaitional acceleration = 9.81 m/s,
p = density of water = 1000 kg/ m®,
&= energy conversion rate (normally assumed equal to 0.9),
Q = discharge capacity in m*/s
H = net height (head) in meters.
Production in kWh isthen equal to
E = Ndt (10.3)
where N is as defined above and dt = time increment measured in hours
Assuming a head of 20 meters, an effect rate of 0.9 and weekly resolution, equation
(10.3) yields E = 9.81*0.9* 20/1000* 24* 7 = 29.66 MWh per week per unit discharge.
This value will be used through the analysis.

10.3 Determining the value

If spot prices for and discharge at time t are taken as deterministic and marginal costs

are assumed zero, the value of a plant can be expressed as
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(10.4)
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Vg = }e‘é‘ N(t)P(t)dt — 1 (®)

where N(t) is the effect at timet given a water discharge, P(t) is the spot price at time
t, T isthe lifetime of the plant, dis arisk-adjusted continuously compounded discount
rate (7% is normally used) and (8 is the investment required expressed as a function
of a vector @ of parameters determining the cost. We turn to valuation under

uncertainty in chapter 11.

10.4 Determining the cost

To determine the optimal size for aplant in ariver, it is essential to know the cost of
construction. The cost for turbines, generators, transformers etc. will be a function of
the generating capacity of the plant, while the construction work will be dependent,

amongst other factors, on the rated discharge of the plant, the head etc.

10.4.1 Data used

As a basis for our cost analysis, we use a detailed cost analysis made by NVE
(Norwegian Water Resources and Energy Directorate). The cost functions provided
by NVE are valid for mini- and micro-sized plants with a discharge capacity up to 10
m*second and an effect of up to 5000kW.3* The equations used are shown in
Appendix F.*

10.4.2 Cost drivers

We choose to focus on the parts of the project whose costs are 1) independent of the
actua site conditions and 2) constitute a significant part of the total cost. The main
cost drivers fulfilling these requirements are: Turbine, power station generator,
interface to power grid, dam and controlling equipment. The dam cost is a function of
discharge capacity, while the remaining costs are directly dependent on the power

capacity. We aso add an overhead of 20% for labour and other costs.

3L While we analyze the project for a discharge capacity greater than 10m*/sec, this only affects the
cost of the dam. We assume the dam cost function to be valid also for larger discharges. The dam only
constitutes about 10% of the total cost, so the error is negliable

%2 We use a continous cost function for the coupling equipment. In the NVE data, thisis a stepwise
funxtion. See Appendix F for a detailed disussion of how and why thisis done
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10.5 Determining the optimal size.

The tradeoffs of plant dimensioning can be seen from Figure 10.1. The central
guestion is if it will pay off to capture the parts of the year when there are large
amounts of water in the river, but then risking the plant to run at low capacity for the
bulk of the year. As the size of the plant is taken as an input parameter to the
valuation approaches in the following chapter, we need some indication on the
optima size of the plant. Using a simple NPV anaysis, we take weekly water
discharge determinsitic as the observed average and we use forward prices. Since no
stochastic factors are present, we discount at the risk-free rate. It must be stressed that
this is not meant to yield a correct value of the plant, it is purely an approach for
obtatining plant sizes for later use and study the robustness of the value to changesin

price models and their parameters. Formally, we solve

4052 (10.5)
I\élm?xx Z w (Qt 1Qmax ) I:0 (t))_ l (Qmax)
) 0 Q, <2k
S-t:VVt(Qt’Qmax)D 2k 2k<Qt <(gmax
kaax Qt < Qmax

Here, k isthe conversion factor from discharge to MWh, Q; represents the discharge
a timet, and Qmax the maximum production possible. | is an investment cost as a

function of the plant characteristics.

Finally, we discount these revenues back to time zero using a discount rate of 5.88%,
and subtract the initial investment. Due to the form of the investment function and the
upper and lower production boundaries, this is a non-linear problem solved using a
numerical search technique. The project value as a function of the plant’s maximum

discharge capacity is shown in the plot below.
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Figure 10.2: Optimal size of run-of-river power plant for different price models

10.5.1 Sensitivity to price model

From Figure 10.2, we see that the project value is highly sensitive to the price model
used, while the actual sizing is fairly robust — the only exception being the Log model
with seasonal variations yeilding a smaller plant.. To explain this, we have to take the
characteristics of the different price models as well as the hydrograph into
consideration. The model properties are summarized in table Table 10.1

Seasonality No Seasonality

Price  Trend: Exponential Trend: Exponential
Amplitude: Constant Amplitude: Zero

Ln Price Trend: Exponential Trend: Exponential

Amplitude: Increasing  Amplitude: Zero

Table 10.1 Properties of price models used in plant sizing optimization
As seen from Table 10.1, all models have exponentially increasing trend. This is the
main factor for sizing — an increasing trend justifies a larger investment outlay today
to have production to sell at higher prices in the future. Therefore, the plant size is

fairly robust to the price model used.
The project value, however, is not. To understand this, we investigate the relationship
between production in week t and the expected price during the same week. We know

that initially, the model for Price and the model for Ln Price will have the same

Real Option Analysis of a Hydropower plant 101



Technology Management Norwegian University of
Narve Bjgrdal and Anders Skogen Science and Technology

amplitude, while the seasonal amplitude in the Ln-model will increase as a function of
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time. The relationship is shown in Figure 10.3 for prices after 20 years of operation.
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Figure 10.3 Weekly production and weekly price according to model used
We see that almost al production is sold at below-average prices. Hence, introducing
seasonal variations significantly impacts the project value. As the difference between
high and low prices increase in the Ln-model, the Ln-model yields a lower project
value. The optimal capacity according to the price model employed is summarized
below

Price model Optimal discharge
capacity?
Price, seasonal variations 15.0 m3/second
Price, no seasonal variations 15.0 m3/second
Ln Price, seasonal variations 9.0 m3/second
Ln Price, no seasonal 15.0 m3/second
variations

Table 10.2 Optimum discharge capacity according to price model used
We dso observe from Figure 10.2 that the marginal benefit of a larger initial
investment to get a discharge capacity above 9m*/second is small.

3 We here assume a constraint requiring a discharge of 2m*sec in the river. Hence, a discharge
capacity of 15.0 m*/sec requires an actual discharge of 17.0 m*/sec in the river for the plant to run at

full capacity.
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10.5.2 Sensitivity to trend
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An interesting question is how robust the sizing decision is to small changes in the
price parameters, notably the upward sloping price trend of 3.15%. To investigate this
relationship, we cal culate the modeled project value and optimal rated discharge using
price trends ranging from 1.42% to 5.45% spanning the trend estimates found in
section 5.2.2. We repeat the optimization in equation (10.5), but adding trend as a
second variable. The optimal discharge capacities for various price trends using the

Ln Price model with seasonal variations are shown below

Price trend Project Optimal discharge
value capacity
1.42% -1,700,000 7.4
2.00% -600,000 7.8
2.50% 500,000 7.8
3.00% 1,800,000 8.4
3.50% 3,200,000 9.0
4.00% 4,900,000 14.6
4.50% 7,300,000 15.0
5.00% 10,000,000 22.2
5.45% 13,100,000 22.2

Table 10.3 Optimal maximum capacity with varying forward price trends

From this analysis, we see that an increasing price trend is highly important for both
the sizing of the plant and the value of it. The explanation for this is that if prices
increase in the future, it will pay off to make alarger initia investment today in order
to have higher peak capacity in the future. We also see that a price trend of at least
2,5% per year is required for the project to become profitable (the exact break-even
trend is 2.28%). A further question is if it is profitable to delay the investment, we
return to the optimal investment timing in chapter 12.
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10.5.3 Optimal size and the hydrograph
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Figure 10.4 Optimal maximum capacity and hydrograph
From Figure 10.4, we see that if the seasonal variations do not increase, it pays off to
increase the capacity to capture parts of the spring flood. However, if we include
increasing seasonal variations in the price model, the optimal capacity becomes equal
to the discharge level after the spring flood, allowing the plant to run at full capacity
for more than half of the year. Due to the minimum discharge of 2m®/sec required, the

plant will be idle during the bulk of the winter.

Sensitivity analysis finds the optima size insensitive to the minimum discharge
required, allthough the minimum water needed to run the plant has huge impacts on
profits — which is reasonable, since this can be seen as production that is (almost)
guaranteed to take place.

10.6 Summary

Using forward models from section 4.4 and a deterministic weekly water discharge
defined as the average over historical observations, we find that the optimal size of
the plant is a discharge capacity of 9 m*/second when using a price model with atrend
of 3.15% and increasing seasonal variations. If the seasonal variations do not increase,
the optional discharge capacity becomes 15 m*second. This difference can be
explained by the fact that production mostly takes place when prices are below

average. We further showed that this dimension is highly sensitive to the trend in
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power prices, and that a trend of at least 2.5% is necessary for the project to become
profitable.
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11 Power plant pricing

In this section, we consider two alternative risk-neutral approaches for power plant
valuation. The first approach determines the parameters for a stochastic process for
revenues. The resulting revenue process is then used to evaluate the value of a power
plant with possibility of production halts. The second approach considers the
discharge level to be constant with Brownian motion, whereas prices follow GBM.
The chapter is concluded by a discussion on the model tractability and market price of
risk.

11.1 Modeling a power plant with production constraints using revenues

Revenue is defined as the product of price and volume. This valuation approach uses
real data for discharge and prices to generate a time series for revenues, using a
weekly resolution on the data. We start by investigating underlying assumptions and
properties of the data set, and find a suitable stochastic process that describes it. Based
on this, we estimate the parameters for the process, and suggest how to make the
model risk-neutral. Then, revenue derivatives are introduced, and finally, the power

plant is priced using these derivatives.

11.1.1 Assumptions

Since our river is not regulated, there is a real possibility of production halts,
especially during the winter. A few assumptions about the running of the power plant
are therefore necessary before we develop the model. These assumptions are listed
below:

« The lower limit for production is assumed to be 2 m*/sec. Discharge below this
level means that the production is suspended until the level increases.

«  Whatever the reason, the discharge below 2 m*sec can never be utilized in
production. Hence, discharge of 3 m%sec will only produce 1 m*/sec equivalent of
power. (=29.66 MWh/week).

* The plant can be instantaneously started and stopped at no extraordinary cost.

« The plant has a predetermined maximum capacity equa to 9 or 15 m%/sec. This
part of the thesiswill only consider these sizes.

* All production is sold spot, because the process multiplies spot prices together

with production, and no storage is possible.
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11.1.2 Data set
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The data set comprises the level of water for the Gaula River and the spot®* power
pricesin the period from 1996 to 2001. These sets are then multiplied together to form
anew data set, of revenues. This can beillustrated as follows:
R =Q,RPk (11.2)

Here, R, Q: and P; represent the revenues, discharge flow and prices at time t,
whereas k is a conversion factor, converting river flow into MWh. This conversion
rate k was found to be 29.66 MWh/m® on aweekly basis, and was discussed in section
10.2.

11.1.2.1 Resulting data sets

The resulting data sets comprise a data series representing the revenues for the power
plant over the discussed period. The set comprises approximately six years of weekly
observations, and atotal of 319 values. Figure 11.1 shows the revenue function for the

river, together with itslog value.

% Theideal situation would be to multiply the production to arisk-neutral forward contract. Thisis not
possible using this approach, as the river production is not storable. The product of spot prices and

current volume is thus the only correct representation of the current production.

Real Option Analysis of a Hydropower plant 107



Technology Management Norwegian University of

MSc Thesis, Department of Industrial Economics and @ NTNU
Narve Bjgrdal and Anders Skogen Science and Technology

120000.00 14
——Revenues

—— Ln(Revenues)

100000.00 WUV\A h I,H /‘\W 1
110
80000.00 FM A M /N\L) /V\\ A

R A ol

) + 8 8
0] >
=] c
S 60000.00 g
3 &
1 l ﬂ 16 =

-

40000.00 | L

NHIAY

R il anu (i Wl )
NRARAL RN AYATH .

0.00 0

92
105
118
131
144
157
170
183
196
20
22
23
24
26
27
287
300
313

Figure 11.1: The revenue process and its log value

11.1.3 Seasonal function and revenue models

It is not easy suggesting an appropriate seasonal pattern from figure 11.1. Although
the presence of some kind of seasonal factor might be a fair assumption, a clear
seasonal effect is not present. Nevertheless, we choose to use a cosine function as
suggested in section 4.4.9, represented as
f(t)=c+ycos(2z(t +7)) (11.2)

Looking at figure 11.1, we detect a floor-reversion tendency. Our revenue function is
therefore assumed to be following a mean-reversion process. Since the revenues are
based on price, the data is expected to have a long-term risk-neutral drift equal to the
forward price drift. We therefore add the forward price drift to the revenues, equal to
the price drift determined in section 5.2. This drift will be considered deterministic,
and included in f(t). The discharge, on the other hand, is assumed to have zero drift, as
there would be no reason to expect the water level in the river to increase in

magnitude®

% Performing a simple regression analysis confirmed that there was no significant trend in the data set.
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In section 4.4.2, we investigated a mean-reverting one-factor log-model for prices,
described in Lucia and Schwartz’ (2001). The process, originally from Schwartz
(1997), is simple, and has the following solution for the risk-neutral expected spot
price:
2 11.3
F(R,T) =exp(f(T) +(nR, - f(0))e™ +a* (1-e™) +Z—(1—e‘2“)) 9
K
By replacing prices P by revenues R, this model was then fitted to the revenue data

set, and the results will be presented in the next section.

11.1.3.1 Regression results
The two data sets were first multiplied together in Excel. Then, the parameter fitting
was performed in SPSS, using the non-linear regression solver The parameters of the
process were fitted to the model in equation (11.3). Finaly, the resulting process
represents an analytic expression for expected spot prices, not adjusted for risk. Since
the model is fitted to spot revenues only, the last term in equation (11.3) is removed,
and included in the two first factors, whereas @ is removed because this is an
expression for forward price risk, not determinable from spot prices. We then estimate
the parameters of the following equation:

E(R) =exd () +(nR - f(0)e™| (11.4)
This parameter estimation yielded the following results:

Parameter Estimate Std. Error Lower 95% CI Upper 95% CI

CONSTANT  10.002 0.127 9.751 10.253
GAMMA -1.015 0.164 -1.337 -0.693
T -0.040 0.026 -0.081 .012
K 0.238 0.037 0.166 0.310
R? 0.762

Table 11-1: Parameters of the 1-factor log-revenue model
As can be seen from the above tables, al parameters except 7, the phase angle of the

cosine function, were significant at the 5% level. The fact that that 7is not significant
does not disrupt the problem, asthisis just the phase angle, and must be seen together
with gamma, the amplitude. This relationship basically tells us that the revenues are at

the bottom in January, when 7=0.
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Observe that the revenues have a very high mean-reversion tendency. The degree of
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mean-reversion reveals a lower degree of “memory” in the process, compared to
energy prices. Therefore, temporary deviations should have less impact on long-term

contracts.

11.1.4 Revenue volatility

The revenue volatility can be found by using the same approach as used for prices.

The revenue return isfirst found by the use of equation (11.5):

return = InER‘—ﬂE (11.9)
R

Here, R;isthe revenue at time t, and will have to be calculated for the whole data set.
Taking the standard deviation of the returns then yields the weekly volatility. Since no
revenue forwards are available, we only have the spot volatility to determine. The
result of the volatility estimation for data set is presented below. The discharge and
price volatility are included for comparison purposes

Variable Weekly Annualized
volatility

OR 57.91% 417.59%

Ow 59.62% 429.95%

Op 10.23% 73.73%

Table 11-2: Spot revenue volatility
The reason for the extremely high revenue volatility is due to the great variations in
discharge flow. This volatility is far from constant throughout the year, though. The
discharge has its highest volatility around the spring flood, and its lowest during the

winter. We will, however, assume that the volatility is constant throughout the year.

11.1.5 Market price of risk and forward prices

After building the expected spot revenue models, we can develop revenue forward
contracts by risk-neutralization of the revenue process. This process requires the
market price of risk, however, and since no forward or option contracts on revenue are
traded, this estimate is difficult to obtain.

Reinvestigating the forward expression of equation (11.3), this can be risk neutralized

by subtracting the amount given in equation (11.6) from the expected log-values of

the revenue function. Here, o’ is replaced by Aavk.
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(11.6)
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As aways, the short-term volatility o and mean-reversion x are measured in the
process whereas the maturity T is known. Hence, the market price of mean-reversion
risk A is the only unknown variable. This gives us several options for risk-
neutralization of the revenues:

* The market price of risk can be determined by investigating the value of other
traded power plants. After obtaining A from this separate power plant, we can then
risk-neutralize the revenue forwards.

* We can assume that, due to no uncertainty in drift, and the long run nature of the
investment, the market price of risk for water is zero. Alternatively, the market
does not price discharge risk. This would make price risk the sole driver of risk in
the power plant. Any short-term uncertainties in production are hence reflected in

prices.

11.1.5.1 A first approach to risk-neutralization of the revenue process

Our initial approach for pricing the mean-reversion risk in revenues used a certainty
equivalent approach. The integral under the risk-adjusted discounted®® revenues of
another traded power plant should be equa to the trade price of the power plant.
Hence, for a power plant whose terminal value is zero, its revenues could be
expressed as

Ee‘"F(R[)dt (11.7)

This is a contingent value, assuming zero variable costs, of all future revenues from
time T, to T, the termination of the project. Mark that F(R;) represent risk-neutral
revenue forwards, given in equation (11.3) .Consequently, it can be discounted at the

risk freerater.

The power plant’s traded value is a certain amount, called a certainty equivalent (CE).
This should reflect the risk-less income of the future income. Since forward contracts
are considered to be risk-neutral expected spot prices, the expression in equation
(11.3) can be substituted into equation (11.7). Hence, once the parameters for the spot

% Discounting at the risk free rate.
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revenues of the traded power plant have been determined, A is the only undetermined
parameter of equation (11.8), and should explain the difference between the certainty
equivalent and the plant value.

T (11.8)
Je‘“ F(R)dt =CE

1

Due to the nature of our seasona function, this integra would have to be
approximated by a sum of all future revenues. Most likely, numerical methods would

be needed to find an appropriate value of A.

This approach had to be discarded, however, as no discharge power plants have been
traded in the Nordic energy market the last couple of years. We therefore note that
although the approach should be working, we will have to try a different approach.

11.1.5.2 A second approach to risk neutralization

Let us now assume that discharge risk is zero. This would reduce the risk left in the
equation, to price risk only. In economic terms, this would mean that he market does
not put a price on the uncertainty in future river flow. This can be explained by the
fact that as long as the plant is run for a sufficiently long time, temporary variationsin

discharge should even out and hence be less important in the long run.

Lars-Ove Skorpen at Pareto Securities agreed that this assumption seemed fair but
added that the regulation of a river would increase the price of the plant. Thus, at
some point, steady production seems to have added value. We will nevertheless try

this approach.

Investigating equation (11.6), we assume that the mean reversion risk approaches a set
value as T increases. For long-term decision problems like investments in power
plants, it is therefore fair to assume a constant risk level. In section 5.7, we found the
systematic long-run difference between expected spot and forward contracts to be
approximately NOK 33.86 of the price, or 19.3% of the value. Since we have
multiplied real datatogether, the correlation structure is preserved in the resulting data
set. We can therefore risk-neutralize the revenues by lowering our initial revenue by
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the same percentage. We do ths by subtracting .193 from the constant in the
exponential function. We now have a risk-neutral revenue process.

Note that risk neutralization is model specific. We use the one-factor model in
Schwartz (1997) as our model, hence the risk neutralization should follow equation
(11.6).

11.1.6 Revenue forwards

Once a sensible market price of risk can be estimated, it isrelatively easy to obtain the
measure for the revenue forward contracts. We aready presented the analytical
solution for forward pricesin the equation (11.3).

The adjustment approach assumes that the following conditions hold:

* Revenues are priced sufficiently far into the future to adjust mean-reversion risk
by subtracting a lump sum. This can be done because equation (11.6) approaches
alimit for long maturities.

» The expected revenues have along-run forward risk profile similar to prices. They
can therefore be risk-neutralized by removing 19.26% of the value of the
revenues.

Thisway of risk neutralizing the revenues will most probably mean that the short-run

risk premium would be too large. Assuming that the power plant will take two years

to construct, we will have a fair risk-neutralization by the time the plant starts

producing.

11.1.7 Revenue options and applications to revenue prices

The option pricing in this section is based on Clewlow and Strickland (2000). They
showed that the mean-reverting log-process in Schwartz (1997) could be priced using
through the use of a variation of Black and Scholes' (1973) option pricing formula,
givenin section 3.3.3.

The purpose of the revenue option approach is to build a spread®” of two options, to
price the revenues above the minimum production level constraint of the discharge
power plant, but below the maximum level of discharge. The capacity of the plant was

%" The payoff structure of a spread is shown in Figure 8.1.
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in section 10.5 set to 9 and 15 m%/sec, requiring a total of 11 and 17 m3/sec of
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discharge water. Since the minimum level is 2 m3/sec, and profits grow for revenues
above this level, we have a cal option payoff structure. The revenues earned can be

seen in as the dark shaded areain figure 11.2.
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Figure 11.2: Power plant revenues for arandom year

11.1.7.1 Strike

This model has two important levels. Firstly, since no production is assumed possible
under a minimum level of 2 m¥sec, a natural strike would be the value of the
revenues lost due to this constraint. This strike X; can be expressed as
X, = 2kF,, (11.9)

Here, k is the conversion factor of the power plant, found to be 29.665 MWHh/m? per
week in section 10.2, and Fp; is the expected forward price at time t. The forward
price model is used to preserve risk-neutraity in the final option price. The
parameters for the forward price were estimated in section 5.8, and will not be
repeated here. Finaly, the model has a strike on the maximum capacity of the
turbines. This strike is equal in form to the lower strike, with the lower limit of 2

m?>/sec replaced by the upper limit of 11 or 17 m*/sec.

11.1.7.2 Volatility

When pricing options, we need the cumulative variance. Variance is defined as the
square of the volatility, and an expression for the accumulated variance at the maturity

of the revenue option, is given as
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o7 (11.10)
W—zﬁ. e”)

This expression is a natural consequence of the mean-reversion model, and is
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discussed in section 3.3.3. In section 11.1.4, the volatility of the revenues was found
to be 57.91% on a weekly basis. Finally, kK was determined to be 0.238 in section
11.1.3.1.

11.1.7.3 Option valuation

We now have everything necessary to price revenue options. These options are used
to repliate payoff structure of the power plant. As discussed above, Clewlow and
Strickland (2000) showed that a variation of the model introduced by Black (1976)
could be used for option pricing. This model is an extension of Black and Scholes
(1973) using forward contracts. The only difference between the mean-reversion
formula and Black (1976), is the expression for the w(t), the cumulative variance. The

expression for the option model is given in section 3.3.3.3.

Revenue options can now be priced at any maturity beyond the immediate future. A
call option on production revenues would hence give the value of the production

above the exercise level in the given time period.

Exercis Revenue Strike w(t) Call Discounted
e date Forward

11/04/05 23487.67 10655.62 .33 16361.70 13094.36
01/11/19 37523.26  19221.47 34 26621.48 9786.34
05/24/24 82166.35 17222.77 .35 69751.95 18682.72
09/28/40 101896.21 34588.64 .36 82926.15 8466.00

Table 11-3: Call options on revenues for the lower bound. All values except w(t) in NOK
Notice that because we are using an increasing trend of 3.15% for both strike and
revenue forward, the future call value seems to grow steadily. On the other hand, the
price trend is lower than the risk-free rate of 5.88%, and the resulting present value is

therefore low.

11.1.8 Power plant value

Now, we have a set of options on the future weekly revenues of the power plant. We
now set up a portfolio of the two types of options to price the power plant. For any

given maturity, this portfolio contains one long call option on revenues above the
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minimum level, and one short call option for the value above the maximum capacity.
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The expected present value of production at timet can then be expressed as

Vy(R) =™ [max(R - X/**,0)- max(R - X" 0] (11.11)
Now, we have an expression for the value of the revenues at a given time t. This can
be used for the valuation of the power plant. Assuming that there are no variable cost
of running the power plant, the value can be expressed as

V(R) = Tzz(e‘” [ci -cr])- R
t=T;

Here, C/™ and C"" represent the revenue option values at timet, and | is the initial
investment, assumed to be constant. Assuming that the power plant can be built in two
years and run for the next 40, the present value of the investment is found in the table

below, using the two capacity choices.

Capacity Revenues Investment Present
Value

9 m®/sec 16,591,382 15,065,000 1,526,382

15 m?/sec 18,011,279 20,067,000 -2,055,721

Table 11-4: Value of the power plant, Revenues are risk adjusted by 19.26%. All valuesin NOK

As can be seen in table 11-4, the present value of the small plant is positive, whereas
the present value of the large plant is not. This would mean that the peaks in the
summer would not be large enough or persistent enough to generate the needed

revenues to pay for the additional investment in equipment.

11.1.9 Discussion on the model and sensitivity analysis

The model presented in this section tried to utilize the option structure of the expected
payoff of production. We built atheoretical spread of revenues, by developing options
on the revenues in the future. In order to use the option approach, we needed the risk-
neutralized forward prices. This was done by assuming that discharge risk has no
market risk premium. This approach resulted in a reduction of 19.26% of the initia
revenues. Thisis substantial, compared to normal risk adjustments, but nevertheless a
consequence of the data analyzed. Consequently, we get very low estimates for the
plant value.

The mean-reversion process used for pricing aso has a mean-reverting volatility
function. Because the mean-reversion parameter « is high, the forward volatility soon

approaches zero, making the cumulative variance estimate too low, compared to
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observed price volatility. Since revenue is a product of price and quantity, price
volatility would be expected in long-run revenue prices. This could be included by

changing the volatility model or implementing a two-factor model for revenues.

The major source of uncertainty in a power plant value would lie in the long-term
price equilibrium. If the price trend of the power plant is changed to 1.42%, our
lowest value in the trend analysis, the effect on revenue is enormous. This can be seen
in table 11-5. The table shows the power plant value for different price trends within

the interval obtained in section 5.2:

Price Small plant Big plant
trend (value in (value in
NOK) NOK)

1.42% -3000000 -7000000
2% -1700000 -5600000
2.5% -400000 -4200000
3% 1100000 -2600000
3.5% 2700000 -800000
4% 4600000 1300000
4.5% 6700000 3600000
5% 9100000 6300000
5.45% 11800000 9400000

Table 11-5: Sensitivity of power plant value to the trend in prices
Knowing this, it seems like the risk adjustments done to adjust for mean-reversion

risk are quite minor compared to the long-term effects of price changes. Hence, as a
mean-reversion approach with seasonal patterns might be fruitful in the short run, the

long-run focus must be on the price trend effects.

11.2 A joint stochastic process for revenues

Section 4.4.8 discussed a model for generating revenues using two dependent
stochastic processes. The model considers the production Q and prices P as stochastic
variables following GBM. This relationship can be utilized in pricing power plants by
assuming that the power price follows GBM with positive drift, whereas the river
discharge follows GBM with zero drift. To find the value of the plant, we first need to

determine its parameters, adjust for risk, and integrate over the plant’s lifetime.

11.2.1.1 Data set

The data sets used for this valuation, comprises 88 consecutive years of discharge data
from the Gaula river from 1908 to 1995, together with the ten-year contracts and the

Real Option Analysis of a Hydropower plant 117



Technology Management Norwegian University of

MSc Thesis, Department of Industrial Economics and @ NTNU
Narve Bjgrdal and Anders Skogen Science and Technology

1-year forward contracts from 2000 to 2001. Most of the parameters have been
determined in other sections of thisthesis, and will only be restated in this section.

11.2.1.2 Model

Starting with the river flow, assume that the discharge flow in ariver for agiven year
is assumed to be constant. We multiply this water by the conversion factor, to obtain a
value Q, rpresenting the annual production. This production level will be assumed to
have zero drift, but following Brownian motion, This can be described through the
dynamicsin equation (11.13):

dQ _

== =0dt + 0,0z (11.13)
Q

We will assume an annual resolution in the model. The average production level Qave
can be estimated as the average production throughout the year, capped at the plant’s
capacity, subtracting the minimum level of 2 m*sec required to run the plant. An
estimate of the water flow volatility can then be obtained by calculating the annual
percentage change based on the 88 years of data.

For prices, Schwartz (1998) one-factor GBM approximation for long-term
commodity prices seems to be a natural choice for a process. This is a risk-neutral
process, using the risk-neutral forward trend as the drift, and the forward volatility as
the model volatility. The process was introduced in section 4.4.7, and can be stated as

dz = L 74t + o, 7z (11.14)
F dT

Assuming long-run prices are more important than short-run prices, long maturity
forward contracts found the basis of the long-term risk-neutral trend. A natural choice
of trend will then be to continue using the sample of ten-year forward contracts as an
estimate for the risk-adjusted drift.

The annual revenues will now be the product of the two processes, given as

Vo(Fo(R)) = €7TF,(2,Q; )= & (2,6 JQue ™ Jprmeozeel” (11.15)
Here, Z is the shadow energy price, Q the average production, and r-c the risk-free
forward price drift. The parameters pzq, 0z and g are the correlation between prices

and production, and the volatility of price and production, respectively.
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11.2.1.3 Parameter estimation

The price trend was determined in section 5.2, and is taken to be 3.15%. We then need
to estimate a starting price, the shadow price Z,. Thisis the risk-neutral starting point
of the forward price trend. Assuming we start our investment on the last day of our
long-term price data, we use the longest contract on that given day as a proxy for the
shadow price. Looking at the price forward data, the forward contract for 2004 is the
longest contract at Nord Pool, and its value is 170.63 NOK/MWh at the last day of
trading, the 27" of December 2001. This vaue is discounted back to the present,
using the trend of 3.15%.

For the average annual production, we use discharge data for the last 88 years to
estimate a sensible production rate. The production average is calculated from water
flow series, capped at the top and bottom to account for over-flow and production

suspension. The parameters of the model are then given as follows:

Parameter: Explanation Estimate: Unit

Qave 9 Average water for 8944 MWh/year
production®®, small plant.

Qave 15 Average water for 7083 MWh/year
production, large plant.

Zt Original shadow price 170.63 NOK

Zo Discounted shadow price® 160.36 NOK

r-c Price drift 3.15 %

Ao Market price of discharge ? %
risk

Table 11-6: Model parameters for the revenue model

11.2.1.4 Volatility

The combined process introduced above can take any time dependent volatility as
input. For prices, the long-term forward price volatility of 14.5% annually is used.
This value is both estimated and implied from options, and should give a fair
reflection about the plant’s value. For the discharge level, we used the same 88 years

as we used to calculate the average discharge, to find an estimate of the annual

% Thisis the average production capacity for the last 88 years.

¥ Thisis the discounted value of the longest one-year contract from Nord Pool. In our case, we start
the investment problem 1/1/2002. For this purpose, Zg is estimated as the forward contract for 2004
discounted at 3.15% annually. The approach is taken from Schwartz (1998).
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volatility. As usual, volatility was found as the standard deviation of returns, this time
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using annual averages. The volatility estimates for the two plants are included in table
11-7:

The instantaneous correlation, ppw Was estimated by comparing returns of prices and
discharge over the same time interval. This was estimated from prices and discharge
data from 1996 to 2001. This can be estimated by defining up and uy as the price and
discharge returns, respectively:

(11.16)
Up =1In Fi U, =InE—2
R W
Then, the correation is found as
COV(P,W) 1 N T T (1117)
= = U, — U0, AU, —U
Pprw . Nopoy, IZ( P PX W w)

Performing the analysis, SPSS returned the correlation coefficients listed in table
11-7. They were both significant on the 5% level.

Parameter Annual

estimate
Op9g 14.5%
Ow-g 19.11%
Ow-15 20.45%
Prw-9 -.203
P pw-15 -.226

Table 11-7: Volatility parameters

11.2.1.5 Market price of discharge risk and long-term behavior

The forward price will have a long-term drift of (r-c), and is therefore already risk-
neutral. The river flow, however, will follow the risk-neutralized drift —Aqoq because
the unadjusted drift is given as zero. A long-term drift in water level would ssimply not
be realistic*. Following this, the long-term volatility should also approach zero, as the
uncertainty in this lack of trend is considered low, and the long-term market price of
risk should be expected to be very small. Looking at the volatility of the annual
production, this is fairly high at 20%, indicating that, the variance between years is

considerable. Since we have not been able to find any power plants to estimate the

“0 Thisis actually an argument for modeling the discharge as a mean-reversion process with zero drift.
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market price of risk from, we will base our analysis of the power plant value on
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various levels of the market price of discharge risk.

11.2.1.6 Resulting process and value of power plant

The resulting process used for revenues was described in section 4.4.8, and found to
be

Vo(Fo(R)) =Ry (RrQ; )= e™ (R JQuee ™ pome™  (1118)
for any given maturity T. Here, prq is assumed to be constant over time. Finaly, by
integrating the revenues over the plant’s lifetime, the value of the power plant can be
shown to be:
Op, Qe eaveeraoa) I (11.19)

Vo(R) =0 g -l
’ F~4q0q * Peq0r0q B

As discussed above, we assume zero drift in the production. The plant building timeis
assumed to be two years and production is assumed to terminate after 40 consecutive
years Variable cost are assumed negligible. The final value of the power plant,
assuming the long-term discharge risk to be zero, is found in table 11-8, and a

discussion of the plant value for various values of A is given in table 11-9 in the next

section.
Max. Value of Investment Value of
production revenues cost plant
9 m*/sec 23,132,000 15,065,000 8,067,000
15 m>/sec 28,695,000 20,067,000 8,628,000

Table 11-8: Value of power plant using ajoint stochastic process

11.2.2 A discussion on the market price of risk

In section 11.1.5, we outlined several possibilities for how to risk-neutralize the
forward revenue contracts. This discussion is to a large extent valid for the joint
stochastic process. The joint process uses prices fitted to the long-run forward price
term structure, and is therefore assumed to be risk-neutral. The same can not be said
about the market price of discharge risk, Aq. We therefore assumed the discharge risk

to be zero.

Our origina idea was to value a traded power plant using one of the models above,

since the anaysis is easy to transfer to a different river. As mentioned in section
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11.1.5.1, the traded value of a power plant can be taken as the current certainty
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equivalent of the power plant. Solving the value of the plant model with respect to Ag
we could hence obtain the value of Aq by comparison to the certainty equivalent,
because the two measures should be equal in the absence of risk. The value of Aq
would then be the solution of equation (11.20).

min, (CE-V,(R))’ (11.20)
This method is particularly easy to apply to the analysis above, since an analytical
solution for Ag can be determined. Once Aq has been determined, the value of our
power plant is easy to determine. Since we did not manage to obtain the value of a
traded power plant, the value of the plant for various measures of Aq is listed in the
table below:

Ao Model A Model B
(Value in NOK) (Value in NOK)
0% 8600000 8100000
2% 6700000 6600000
4% 5000000 5300000
6% 3400000 4100000
8% 2000000 3000000
10% 600000 1900000
12% -600000 1000000
14% -1700000 100000
16% -2700000 -700000

Table 11-9: Plant value for different choices of A

11.2.2.1 Traded Norwegian Power Plants

After asking severa actors in the market, we did not succeed locating any traded
discharge power plants during the past couple of years. Orkla Borregaard is at the
moment considering selling eight discharge power plants, but none of the deals are
finalized yet. Other power plant transfers have been parts of larger complex deals,
involving more than one power plant, and a parent company. An example of thisis
the transfer of Pasvik Kraft to Varanger Kraft in 2000. The method is still considered
relevant methodically.

11.2.3 Sensitivity to changes in the price trend

The model has assumed that the term structure of forward prices increases by an
annual 3.15%. The revenue model was very sensitive to changes in this trend. Of

course, the actual trend is unobservable, and 3.15% will never be more than our best
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scientific guess based on the analysis in section 5.2. The table below assumes that the
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market price of discharge risk is set to zero, while varying the price trend between

1.42% and 5.45%, as we did for the revenue options approach.

Price trend Model A Model B
1.42% 2400000 1600000
2.00% 4100000 3700000
2.50% 5700000 5700000
3.00% 7500000 7900000
3.50% 9500000 10400000
4.00% 11800000 13200000
4.50% 14400000 16400000
5.00% 17300000 20000000
5.45% 20300000 23700000

Table 11-10: Sensitivity to pricetrend. All valuesin NOK

As for the revenue options, the value of the plant is very sensitive to changes in the
long-term trend. The value is positive for all values, however, which might not be
realistic.

11.3 Comparison of the two models

The previous sections have discussed two models for power plant valuation. The first
approach looked at a data set of “real” revenues, and the other looked at discharge
water and price processes separately, generating a correlated GBM process. Looking
at table 11-5 and table 11-10, we see that the value of the power plant is aways
positive for the GBM model, whereas the present value for the revenue model is
considerably less. The main reason for this should be the major risk adjustment done
for the first model. Removing the 19.26% risk adjustment in the first model creates

values of similar magnitude to the GBM model.

Secondly, we have used dightly different data sets to measure the parameters. The
average water in the joint stochastic process model was based on an average over 88
years, whereas the prices were based on long-maturity forward contract data from
2000 and 2001. The average production level during 1996 to 2001, which comprises
the volume and price data set of the first model, was about 5% lower than the average

over the 88 years. Thisis not enough to explain all the differences, however.

The seasonal factor of the mean-reversion model does not adequately capture the real

seasonal variation in the revenues. It is obvious from the graph presented in figure
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11.1 that a simple cosine function could not capture the whole truth. In the long run,
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the mean-reversion process will converge to this inexact seasonal function. The peaks
of the revenue function might then be too low to capture the adequate structure of the
revenues. The seasonal function would also partly explain why the two models
produce different advice with respect to plant size. Hence, the averaged annual
production might be a better estimate than the method of modeling the whole revenue
process on a weekly basis. The average production model is aso considerably easier

to communicate.

None of the models adjust adequately for the market price of discharge risk. Thisis
because we could not obtain a power plant traded in the market. It is not sure,
however, that this is priced in the market at all. On the other hand, as seen in section
8.3.2.1, we found an implied market price of risk equivalent to 7% for precipitation
derivatives. Although not equal, they represent a similar entity, and might to a certain

extent be comparable.

Finally, both models were very sensitive to changes in the long-term risk-free trend.
The net change in plant value compared to a trend change has the same magnitude for

both models, indicating consistency between the models.

11.3.1 Summary

This chapter has introduced two different valuation approaches for a power plant, one
using weekly revenues and option prices, and one using an annual average. The
results of the two approaches were different, for a variety of reasons. In the long run,
the second approach might turn out to be the best, due to both ssmplicity and ease of
communication, and due to the fact that temporal differences even out over time. We
have not seen, however, whether an actual investment can be delayed, to increase the

present value of the project. Thiswill be discussed in the following chapter.
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12 Timing the investment

This section explains the implementation of the trinomial tree for finding the optimal
investment timing for the (American) option to build a run-of-river plant. We
investigate this using a mean-reverting and a GBM price process. Firstly, the
valuation approach is described, secondly the tree building procedures are explained,
then the methodology for valuing the option to invest and finding the early exercise
boundary is commented on. We finaly find the early exercise boundary and comment

on the findings.

12.1 Necessary preconditions

Since our aimisto find the limit for spot price above which investment becomes more
profitable than holding the option to invest, we have to use a price model without
seasonal variations, otherwise the boundary will be dependent on the time of the year
the option holder decides whether to invest or not. Consequently, we use a constant
deterministic drift in the prices, from section 5.2, we know that the interval for this
drift is [1.42%,5.45%)] with 3.15% as the mean value. To keep the model internally
consistent, we value the power plant using the same price model. The deterministic
trend present in the spot prices is assumed to sustain trough the lifetime of the plant
and there are no seasonal variations in prices after the investment is made. With this
in mind, the value of the plant isgiven as
40 (12.1)

Z e (P(HQ) - |

where P(t) denotes the average spot price in year t, Q is a constant, deterministic
production rate taken as the histroical average yearly production of a run-of-river
plant with a discharge capacity of 15m*second. in section 11.2.1.3, this quantity was
found to be 8944 MWh anually. t is measured in years.

12.2 Construction the trinomial tree for the mean-reverting process

For the tree construction, we follow Clewlow and Strickland (1998) for implementing
an efficient procedure for the Hull-White model outlined in section 3.3.4.3. Firstly,

we construct asimplified tree for the noise process as given in equation (3.43).
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12.2.1 Determining the up and down moves.

At each time increment, the price can move either up or down a space step given by

Observe that the standard deviation is a function of the time increment. The volatility
function is choosen to fit the observed volatility structure in spot prices, and is given
from the Price model in equation (3.32). In the tree setting, it takes the form

o2 (i) = _2(1 - (12.3)

12.2.2 Constructing the noise tree

With the volatility function and the up and down increments at each time step defined,
the trinomial tree for the noise process is constructed according to the branching
scheme described and with the risk-neutral transition probabilities defined in section
33434

12.3 Fitting the tree to the observed term structure

12.3.1 Determining the displacement function

Following Clewlow and Strickland (1998), we first calculate the state prices at each
node in the tree. The state price Q;; is defined as the value today of a security that
pays one unit of cash if node (i,)) is reached and zero otherwise. The state prices are

obtained through forward induction by computing

Qi+1,j = zQi,j’ pj',je_mt
7

where p; ; is the probability of moving from node (i,j’) to node (i+1,j). That is, the

(12.4)

summation is taken over al nodesj, at time step i which branch to node (i+1,j). Each
internal node at time i can be reached from three nodes at time t-1, while the nodes at
jmax -2 and 5 mex +2 can be reached from four nodes provided the tree has stopped

branching. After all state prices have been calculated, we find the displacement

a(i) = ana (12.5)

7o

where F(0,iAt) is the observed price today for aforward contract maturing at time iAt.

function a(i) by taking
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Given the dipsplacement function a(i), the fina price tree is constructed by
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calculating

R, =a()+F] (126)

J
yielding a trinomial price tree consistent with the observed forward price structure.
For the term structure, we use the trend estimated in section 5.2. The model handles
any term structure, but we avoid seasonal variations due to the risk of obtaining a

seasonally dependent exercise boundary.

12.4 Constructing the tree for the GBM process

The trinomial tree used in this approach is ssmpler than the corresponding tree for a
mean-reverting model. In this case, the transition probabilities are the same for each
node regardless of its location, and each node at time step i always branches to three
nodes at time step i+1, and each node at time step i can be reached from three nodes at
time step i-1. The heigth of the tree is aways equal to the number of time steps. The
implementation of the tree does not support a volatility function, and using the
estimated yearly spot volatility will most likely result in a very high exercise
boundary. To evaluate this, we will conduct two runs, one where we use the estimated
spot volatility, and one where we use the estimated long-term forward volatility.

12.5 Timing the investment

The value of the American option at each node is found by backwards induction. We
know that at maturity, its value is given by its European value (Hull,2000)
C; =Max(V(R;)-1,0 (12.7)

where V(P) denotes the value of the power plant given a power price P at the time of

the investment. | denotes the investment.

12.5.1 The expected value of waiting one period

For anodei < imax We calculate the expected value of the investment if it is delayed

one period. The expected value in the next period is given as
E(Ci) =€™ Y P Vi (12.8)
J

where the summation takes place over all nodes|’ that can be reached from node (i,j)
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12.5.2 Checking for early exercise

At each node (i), the option value given as the expected value of postponing the
investment one period is known. Furthermore, the price in the same node (i,j) alow us
to obtain the value of exercising the option and build the plant. If the value of making

the investment is greater than the value of the option, the option will be exercised.

12.5.3 Determining the early exercise boundary

After the steps outlined above, we will for each time step i have one or more nodes
(i,)) where the it is optimal to exercise the option. Since the volatility function we use
Is a decreasing function of time, the early exercise boundary will be an increasing

function of time.

12.6 The early excersise boundary using a mean-reverting model

The input parameters to the model are

Parameter Value
Start Price 160 NOK/MWh
Volatility Given in equation (12.3)
Mean-reversion factor (k) 0.13 (annually)
Time steps 120 (monthly resolution)

Lifetime of option to invest 10 years

Table 12.1 Input parameters to mean-reverting trinominal tree

The choice of mean-reversion factor (k) deserves a comment. In section 5.5, we
estimated k to 0.035. If we insert this value into equation (3.45) for finding the
optima branching size of the tree, we get a tree that never stabilizes (jmax > imax)
Consequently, we an estimate k, from the price data from years 1997-2000*, yielding
a maximum branching of 18 with 120 time steps. The results are shown in the plot
below.

“! These years are choosen since years 1996 and 2001 display extremely high prices. A curve fitted to
the whole data set will yield a mean to which the prices never revert, thus the value for the mean-

reversion parameter becomes too low. See Appendix B
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Figure 12.1Early excersise boundary for the option to invest using a mean-reverting price model

12.6.1 The early excersise boundary using Geometric Brownian Motion

Parameter Value
Start Price 160 NOK/MWh
Volatility 73,5% (annually)
Convenience vyield Variable
Time steps 120 (monthly resolution)

Lifetime of option to invest 10 years

Table 12.2 Input parametersto GBM trinomial tree
The early excersise boundaries for differnet price trends are shown in the plot below.
Note that for atrend of 5.45%, it is never optimal to excersise the option early.
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Figure 12.2 Early exercise boundary using a GBM process with annual spot volatility
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Using these input parameters, we see that a high price is necessary for early exercise
to become optimal. With the drift values used, the spot price will not reach the
excersise boundaries of 336 and 970 NOK/MWh for a trend of 1.42% and 3.15%
respectivly. This is due to the high volatility estimate. The implementation for the
GBM tree only supports constant volatility. We conduct a second run where the
volatility is changed to the long-run estimate of 14.5% annually. The early exercise
boundaries obtained are presented below. Note that at a trend of 5.45%, it is still not

optimal to exercise early.
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Figure 12.3 Early exercise boundary using a GBM process and forward volatility

12.7 Discussion of results

We see that when we use a mean-reverting model, the exercise boundary is an upward
sloping function of time. This is due to the volatility function used. As we move
closer to maturity, accumulated volatility approaches a fixed value, hence it becomes
less and less profitable to postpone the investment. Furthermore, we observe the
higher the trend, the higher the price must be for the investment to be worth more than
the option. This is consistent with intuition — an increase in trend trandates into an
higher expected price in the future, and the probability of a favourable price
development increases. It is not optimal to invest immediately, using a trend of
3.15%, the price must move close to 180 NOK during the first two years. This is
about 6% above than the drift indicated by the observed term structure.

For the GBM model, the results look somewhat different. Firstly, the exercise

boundary is a straight line once excercising becomes optimal. This is due to the
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design of the tree —in the GBM model, the drift is reflected in the (constant) transition
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probabilities, and we use a constant long-term volatility. If the trend is 5.45%, the
expected profit of waiting one period is so high that early exercise never becomes
optimal. The prices at which exercise takes place are a'so considerably higher than for
the mean-reverting model. Thisis dueto the fact that there is no parameter pulling the
prices back to the long-term mean in the GBM tree, and hence the probability of an

upwards move is equally high regardless of the position in the price tree.
Despite the fact that delaying the investment is optimal both for the mean-reverting

model and the GBM model, the upwards price moves necessary are not large. This

means that investment might well take place before the option to invest expires.
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13 Suggestions for further work

We have approached the vauation problem from some angles, while others still

remain unexplored. Some suggestions for further work on the topics discussed in this

thesis are presented below

» Power prices display large peaks. It would be interesting to see how well a model
incorporating a jump-diffusion process performs compared to the models we
studied

» Although we have devoted space to discuss price volatility, there are still models
available that can shed new light on the volatility structure. Notably two-factor
models treating volatility as a stochastic process would be awelcome extension

» For precipitation derivatives, we developed a simple model. A better
understanding of the underlying weather variable could help us develop a more
sophisticated model

* While we found that the precipitation index is a poor volumetric hedge for a run-
of-river power plant, it is reasonable to assume that it would work better for a
production system with storage capacity. We know that inflow is largely
dependent on accumulated snow, and preliminary analysis do show that
accumulated precipitation and the fill rate of Norwegian power reservoirs are well
correlated

* Some interesting correlation patterns between precipitation and prices and
precipitation and water discharge has been commented on. To further study these
relationships, longer time series would be needed. It is also likely that a more
systematic statistical analysis or other techniques for detrending the data could
provide more insight. Specifically, we did not discover how the trading date
affects correlation for long-term forward contracts

* We have discovered that the price trend is important for the optimal size of arun-
of-river power plant. An extension to our model could be to value the option of
adding a second turbine if prices should indeed increase more than expected.
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14 Conclusion

The aim of this thesis was to study models for power prices and power derivatives as
well as models for precipitation with the aim of developing precipitation derivatives.
Armed with these models, we planned to value a run-of-river power plant as a
portfolio of power- and weather derivatives through areal options framework

A review of the spot and forward models for energy prices revealed a solid base of
models of various complexities. Energy price behavior is driven by a number of
factors, and the inclusion of al these in an anaytical tractable model, seems very
difficult. Seasonal variations, jumps, mean reversion and time-varying volatility
characterize prices. Furthermore, the data set of power prices is too short to detect
basic characteristics such as a price drift from the data set. We chose to explore the
mean-reversion and seasonal dynamics, and soon found it very difficult to determine
parameters such as market price of risk. In that respect, modeling forward prices

proved to be easier, as these are aready risk neutral.

A survey of the literature on weather derivatives did not yield any frameworks
suitable for developing preference-free price models for precipitation derivatives.
Furthermore, existing stochastic models for precipitation are not developed with
financial applications in mind, and are consequently too complex to develop
analytical solutions for derivatives pricing. On this background, we suggested using a
one-factor mean-reverting process to model a precipitation index covering Norway.
Our simple model seemed to perform adequately with respect to historica
observations and allowed closed-form solutions to derivatives pricing. Due to the
illiquidity of the weather market in Norway, it is difficult to test the models against
market prices, but quotes obtained allowed us to estimate the market price of short-
time precipitation risk to approximately 7%, thus making the model theoretical
complete. Our model was compared to a nonparametric approach for derivatives
valuation, but due to the lack of reference data, we cannot draw any clear conclusions
on how well the different models perform. The extreme weekly volatility, estimated to
90% in precipitation and the relatively short data series further complicated the

anaysis.
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Armed with precipitation derivatives, we wanted to use these as a hedge to remove
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the volumic risk inherent in a run-of-river power plant that islarger than the minimum
water discharge of the river in which the proposed plant is built. Correlation analysis
of discharge time series and precipitation data found the correlation low at around

—0.2 depending on the river investigated during the period it would be expected to be
a its highest. This was explainable, firstly by the fact that the index consists of
measurement stations scattered all over Norway, and secondly by the relationship
between precipitation and water discharge being complicated due to snowfall and the

spring flood.

This forced us to consider alternative approaches for valuing the run-of-river plant,
and we proceeded by finding the economically optimal size of a plant. Our findings
indicated that the solution to the sizing problem and the plant value is highly sensitive
to the estimates for trend in power prices as well as the underlying price model used.

Since the findings indicated the valuation to be dependent on the methodology
employed, we explored two very different approaches to the plant valuation problem.
First, we considered the seasonal structure of the power plant revenues, and included
operational characteristics to model revenues as a portfolio of spread options. The
second approach considered an annual resolution on the input, and no seasonal
variation. Revenues were assumed to be composed of two correlated Brownian
motions of price and quantity. Due to the lack of power plants traded in the market,
this volume risk was assumed to be zero to keep the model consistent. Using the
forward term structure and forward shadow price instead of spot price, the revenues
were made risk neutral. The comparison of the two yielded different, but explainable
differences.

Finally, we investigated the optimal investment-timing problem, and found that
regardless of the price trend assumed and the underlying stochastic process for power
prices, it was never optimal to invest immediately. The early exercise boundary at
which investment becomes optimal varies considerably depending on assumptions

about the volatility function and the method used in the analysis.
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Appendix A Derivations of mean-reverting processes

Normal mean-reverting process

Let Pt follow the equation
P =f()+X, (A.D)
dX, = —«X,dt + odz (A.2)
In equation (A.1), P;isthe price at timet, given as the deterministic function f(t) and a
stochastic factor X; following the dynamics given in equation (A.2). Equation (A.2)
tells us that a random shock X; will be smoothed away over time at the rate of K. New

random shocks may occur, but they will all be smoothed over time.

Now, rearranging equation (A.1), we obtain

X, =R - f(t) (A-3)
This can be put into equation (A.2) to obtain
d(P - f(®)=-«(P, - f(t))dt +odz (A.4)
Using Ito’s lemma and rearranging, we obtain
dP =K[E%(t)+ f(t)—R[Hnmdz (A-3)
Thisisaprocess reverting to along-term mean of f(t).
Log mean-reverting process
Let In(Py) follow the equation
InR, = f(t)+ X, (A.6)
dyY, = —«Y,dt + odz (A7)

As for the process in P, equation (A.6) can be rearranged and inserted into equation
(A.7) to obtain the expression in equation (A.8).

d(n(R) - f (1) = - (In(R) - f (t) )dt + odlz (A.8)
Now, by using Ito’slemma on P;, we get the following expressions

din(R - f(t)) _df din(R-f(t)_1 d*In(R-f()_

(A.9)
=-1/P*
dt dt dr P, dP? t

Following this, we put the results into equation (A.10)
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2 A.10
oF =9+ Fop+ 297 o2y F=inp + 1) (A-10)
" R 2

t

This result can then be written as equation (A.11):

d(np, + f(t))——dt det _%szt (A.11)
t

This expression is replaced into the left-hand side of equation, and rearranged to the
result presented in equation (A.12) and (A.13).
dP =« (b(t) - P )dt + oRdz (A.12)

% (t)% (0 (A.13)

This can easily be extended into a proof for arisk neutral processin P; or In(Py).
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Appendix B Regression over wet years

The below table includes the parameters determined using the mean-reversion process
in prices. The process was described in chapter 5, and was introduced by Lucia and
Schwartz (2001).

Parameters for the mean-reversion price process estimated over the wet
years, 1997-2000

Parameter Estimate Std. Error Lower 95% CI Upper 95% CI
Constant 118.580 6.089 106.577 130.582
Gamma 36.087 6.657 22.965 49.210
Tau 0.978 0.029 0.921 1.036
Kappa 0.135 0.033 0.071 0.200
R? 0.896

Table B.1: Parameters of the mean-reversion price process estimated over the wet years 1997 to 2001
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Appendix C The Enron Scandinavian Precipitation Index

The Norwegian Stations

ID LOCATION IN SHUT COUNTY BACKUP WEIGTH
OPERATION | DOWN
SINCE
7010 RENA - Jan-58 HEDMARK VENABU 6.9
HAUGEDALEN
13420 | VENABU Aug-80 OPPLAND BERKAK-LYNGHOLT 8.0
23420 | FAGERNES Jul-82 OPPLAND VENABU 15.0
25590 | GEILO - Sep-66 BUSKERUD FAGERNES 3.2
GEILOST@LEN
25610 | GEILO - STRAND Jan-51 Jul-66 BUSKERUD
31610 | M@SSTRAND Dec-63 Apr-76 TELEMARK GEILO-GEILOST@LEN | 11.5
31620 | M@SSTRAND II Nov-80 TELEMARK
36560 | NELAUG Jul-66 AUST-AGDER | M@SSSTRAND II 2.0
36580 | NELAUG - @YNES | Aug-60 Jun-66 AUST-AGDER | M@SSTRAND II
42920 | SIRDAL - Sep-74 VEST-AGDER | SAUDA 8.4
TIZRHOM
46610 | SAUDA Mar-28 ROGALAND EIDFJORD - BU 5.6
49580 | EIDFIJORD - BU Jul-78 HORDALAND 3.9
49630 | EIDFJORD Jan-20 HORDALAND
52290 | MODALEN II Jun-80 HORDALAND | EIDFJORD — BU 3.3
52300 | MODALEN Jul-85 May-80 HORDALAND
54120 | LARDAL - MOLDO | May-96 SOGN 0OG FAGERNES 19.3
FJORDANE
54130 | LARDAL - Jun-48 Apr-96 SOGN OG
TONJUM FJORDANE
82290 | BOD@ VI Jan-53 NORDLAND LEKA 10.8
89350 | BARDUFOSS Jan-41 TROMS BOD@ VI 3.0
93140 | ALTA LUFTHAVN Dec-63 FINNMARK BOD@ VI 3.7
93150 | ALTA Sep-40 Nov-63 FINNMARK BARDUFOSS
ELVEBAKKEN
98550 | VARD@ Jan-1867 FINNMARK ALTA LUFTHAVN 1.7
60500 | TAFJORD Jan-30 MO@RE OG LARDAL — MOLDO 2.5
ROMSDAL
66700 | BERKAK Dec-29 Aug-67 S@R- SELBU — STUBBE
TRONDELAG
66710 | BERKAK II Sep-67 Nov-80 S@R- SELBU — STUBBE
TRONDELAG
66730 | BERKAK - Jul-82 S@R- SELBU — STUBBE 7.0
LYNGHOLT TR@NDELAG
68300 | SELBU Jan-21 Jun-76 S@R- STORLIEN 4.8
TRONDELAG
68310 | SELBU - Nov-76 May-79 S@R- STORLIEN
BOGSTAD TR@NDELAG
68340 | SELBU - STUBBE Sep-79 S@R- STORLIEN
TRONDELAG
75600 | LEKA May-40 NORD- SELBU 3.7
TR@NDELAG

Table C.1 Norwegian measurement stations in the Enron Scandinavian Precipitation Index

Source: Eliassen (2002), Schieldorp (2002) and DNMI

The weights are listed for the exact stations in the index. Stations without weights are
older stations located close to a measurement station included in the index, and as
seen from the “in operation since” column, these older stations will have to be used to

construct longer series.
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The Swedish stations

ID LOCATION IN SHUT COUNTY BACKUP WEIGTH
OPERATION | DOWN
SINCE
N/A GUNNARAN N/A N/A N/A HEMAVAN 4.3
N/A GADDEDE N/A N/A N/A GUNNARN 16.4
N/A HEMAVAN N/A N/A N/A RITSEM A 11.9
N/A KATTERJIAKK N/A N/A N/A BARDUFOSS 6.0
N/A MALUNG N/A N/A N/A RENA — HAUGEDALEN | 15.4
N/A RITSEM A N/A N/A N/A KATTERIAKK 23.9
N/A STORLIEN N/A N/A N/A GADDEDE 13.6
N/A SUNDSVALL N/A N/A N/A MALUNG 1.8
FLYGPLATS

Table C.2 Swedish measurement stations in the Enron Scandinavian Precipitation Index
Source: Eliassen (2002) and Schieldorp (2002)

Underlying data source

The underlying data source is the time series for the listed stations operated by the
state-run meteorological agencies in Norway and Sweden. However, only the
Norwegian data series are available for our analysis, since the cost of obtaining the
Swedish data is too high as opposed to the Norwegian which are provided free of

charge for educational purposes.

Quality of the data
According to G. A. Ddsbg a the Market Department of the Norwegian
Meteorological Agency, quality control is conducted on all data series, so we have no

reason to doubt the accuracy of the data or have any ambition to improve the series.

Missing data points

For various reasons (maintenance, vandalism, displacement etc) a measurement
station can be unavailable for short periods of time (Dalsbg, 2002). The Enron Index
defines back-up stations to use in such cases. The only problem is the 33 consecutive
missing observations from the Selbu station (backed up by Storlinen, a Swedish
station) We have used Berkak instead, which is the closest Norwegian station for
which we have data. Asthisis only 33 out of 6935 data points, the error introduced is
negligible.

Length of record available

There are considerable variations in the length of the time series. The youngest station

in the index has been in operation only since July 1982, while daily values are
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recorded back to 1867 for the longest-lived station used in the index. The data sets we
obtained started January 1951 if the station had been in operation since before 1951,
otherwise we received the complete time series for each statio, thus the index is

complete from July 1982 until December 2001 if we back-up the few missing values.

Real option analysis of a hydropower plant A 6



© 0o N O~ WN

NNNNMNNNNRRRRRIRRRPR
~NoO OO WNE OO WO~NOO OO MNWDNEREO

MSc Thesis, Department of Industrial Economics and
Technology Management
Anders Skogen and Narve Bjgrdal

NTNU
Norwegian University of
Science and Technology

Appendix D Precipitation return volatility

The plot below shows the standard deviation of the precipitation index returns. By

Insepection, the assumption of constant return volatility seems supported.
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The results from the test of the hypothesis in chapter 7 are presented in the table
below. If cdl (i,)) is shaded, it means that we can be 95% confident that the return
variance of week i is different from week j. The lefmost and upper columns denote
week of year, while table values show the Fisher-test p-value in per cent.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
92 70 9 11 75 93 76 41 57 96 23 35 67 37 33 82 13 85 49 97 91| 2| 49

57 94 73 57 89 16 67 91 32 86 28 24 83 65 95 18 15 95 31 88 56 50 36
52 83 100 48 5 33 65 67 70 10 8 73 31 61 42 38 54 12 68 98 90 14
67 52 95 19 73 85 29 80 31 27 77 71 89 15 13 98 35 82 51 45 41

83 62 8 44 81 52 86 15 13 89 42 77 31 27 68 18 84 81 74 21

48 5 32 65 67 69 10 8 72 31 61 43 38 53 12 68 99 91 14

21 78 80 26 75 34 30 72 75 84 14 12 93 38 7 47 41 44

33 13 2 12 75 83 11 34 15 1 1 18 70 12 5 4, 62

59 16 55 50 44 53 97 63 8 7 72 55 57 32 27 62

38 95 23 19 92 57 95 21 19 86 26 97 64 57 31

41 4 3 44 15 35 71 65 30 5 40 69 76 6

21 18 97 53 91 24 20 82 24 98 68 61 28

92 20 52 25 2 1 30 94 22 10 8 86

16 46 21 1 1 26 86 18 8 6 78

51 88 25 22 79 22 95 71 64 26

61 7 6 69 57 55 30 26 65

19 17 91 29 93 60 53 33

93 16 2 23 44 50 3

14 2 20 39 45 2

34 84 52 46 39

25 11 9 92

66 59 29

92 14

11

Real option analysis of a hydropower plant A 7

27
83
57
99
52
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48

32
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67
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10

72
31
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12
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33
67
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32
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29 30 36 37
2 61 64 6 81
3 58 46 95 97
4 27 20 54 60
5 64 51 98 90
6 37 28 68 76
7 27 19 53 60
8 68 55 93 85
9 39 51 18 15
10 90 75 72 64
11 51 39 86 94
12 13 9 30 35
13 47 36 82 90
14 59 72 30 26
15 52 65 26 22
16 45 34 79 87
17 92 78 69 62
18 55 43 91 99
19 6 16 19
20 14 16
21 62 50 82 92
22 64 78 34 29
23 49 38 84 92
24 26 19 52 59
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31 54 6 68 11 72 65
32 21 31 31 33 28
33 81
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35 Il
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46
47
48
49
50

Table D.1 Results for Fisher test for equal variance in precipitation return volatility
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Appendix E Correlation between the precipitation index and

water discharge

The two following figures show the correlation coeffecients between the precipitation
index and Gaula (Figure E.1) and Glomma (Figure E.2). While the plots indicate
strong correlation compared to the values found in chapter 9, however, the correlation
coeffecients shown below are not statistically significant. This is due to few data
points (12 for each week) and clear noise in the data. The large values for the winter
weeks are probably explainable by the fact that discharge isinitially very low, and if a
large increase in precipitation trandates into a slight increase in water discharge, the

correlation will come out as high.

Correlation index/discharge

'02 1 I — u
-0.4 O zero lag
-0.6

-0.8

0.8

0.6

—
=}

|

0.2 I =i

LA
fan)

10 14 14 26 30 4 33

m one week lag

O two weeks lag

Week

Figure E.1 Correlation between the precipitation index and Gaula water discharge on a weekly basis
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Figure E.2 Correlation between the precipitation index and Glomma water discharge on aweekly basis

In chapter 7, we also discuss correlation between discharge and the precipitation

index during the late summer and fall weeks. While the correlation is found to be

significant and negative, the correlation pattern shows strong deviations from the

average values. The values are significant at the 5% level.

0.8
0.6
0.4 | |_
c 0.2 —|
=
8 0 :
[0
g 0.2 1983 1984| |1p85 1886 1987 1988 1§89 O 1991) 1992 1993 1994
c L
-0.4
O zero lag |_
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0O two weeks lag
-0.8
Year

Figure E.3 Average weekly correlation between the precipitation index and Gaula discharge for weeks

29-45 broken down by year
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Figure E.4 Average weekly correlation between the precipitation index and Glomma discharge for
weeks 29-45 broken down by year

0.8

0.6

0.4 -

0.2 -

0

0.2 1989 |1P90| 1991f 1992 1993 1994

Correlation

-0.4

O zero lag |_
-0.6 m one week lag

0O two weeks lag

-0.8

Year

Figure E.5 Average weekly correlation between the precipitation index and Orkla discharge for weeks
29-45 broken down by year
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Appendix F Cost of a run-of-river plant

The following cost equations are based on “Kostandsgrunnlag for mindre
vannkraftanlegg” (Costs for small hydropower plants) publised by The Norwegian
Water and Energy Resources Directorate. We got access to the data through the study
“Mijgtilpasset Energiprodukson ved sma vannkraftverk i distrikts-Norge”
(Environmental energy production through small hydropower plants in rural Norway)
published by Gauldal municipaly. This publication gives detailed costs for most
aspects of plant construction, but since our am is mainly to determine the optimal
size of aplant in agiven river, we choose to include only the costs that 1) Constitute a
significant part of the total and 2) are directly dependent on either discharge capacity
or plant effect. All costs are in NOK unless otherwise stated. In the following, Q
denotes discharge capacity and P effect.

Cost of dam

The cost of adam for water is given by the following equations

Cp =-0.1111Q% + 0.32222 Q — 0.0111 (MNOK) Q O [0.1-1 m*/sec]
Cp =-0.00001 Q° —0.0012 Q? + 0.0772 Q +0.2409 (MNOK) Q O [1-10 m*/sec]

Cost of power station

The cost of a power station, will vary a lot from project to project, but the mean
estimated cost is given by the equation

Crs=0.44 Q 0.74

Cost of pipeline

This cost is dependent on what types of pipes are used and how the pipeline is
constructed (dug down or supported above ground), the terrain in which it is build and
so forth, so we ignore this cost, since it does not constitute a significant part of the
total cost.
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Cost of turbine

For the head we have chosen and the relevant discharge capacities, a turbine of the
Kaplan type is appropriate. and the cost equations for a Kaplan turbine in the effect

range 500-5000 kW are given by

Ciurbine = 27426 Q ~0-630NOK/kwW (Head 5 meters)

Cturbine = 16106 Q ~0-648 NOK/kW (Head 10 meters)

Cuurbine = 9744 Q ~0034NOKIKW (Head 20 meters and above)

Cost of dam hatch / valve

A hatch is needed to alow for drenation of the dam. This cost constitutes a small

ammount of the total cost, and is therefore neglected.

Cost of generator

The cost equation is for air-cooled generators with an effect range of 500-5000 kW.
The cost is given by
Cgeneralor = 2134 P 0.8434

Cost of transformer

Curansformer = 67.1 P+ 29258 P [1[0.05-1.6 kW]
Curansiormer = 79.4 P+ 52206 P [1.6 -5 kW]

Cost of controlling equpiment

Ceontrol = 1,500,000 PO[3.0-5.0kw]
Ceontro = 950,000 PO [2.0-3.0kW]
Ceontrol = 550,000 PO[1.0-2.0kwW]
Ceontro = 200,000 PO[0.5-1.0kW]

Since this yields a stepwise continous cost function, we have used a continous
function fitted to the above data. It is given as
Ceontral = 1.573+0.0562* Q% MNOK

Cost of coupling equipment

It is assumed that delivery ends at the power station, that is, the plant owner will not

be responsible for high voltage power distribution. This cost is negliable
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Appendix G Estimating the water discharge mean-reversion

rate

An estimation for the mean-reversion parameter for the discharge data we use when

valuing arun-of-river power plant is conducted below.

The deterministic part

Due to the shape of the average weekly discharge, it is evident that a higher-order
transformation is necessary to obtain a good seasonal fit. We try 1%, 2 34 4™ and 5™

order transformations to see how the goodness-of-fit increases.

We fit this model by fitting the function
f(t) =k + ft+a sin(wt) +a, cos(wt) +...+ a,,, Sin(nat) + a,, cos(nat) (G.1)
Where n isthe order of the transformation to the watershed data.

Theresults are

Order (n) R-squared P(sin nwt) P(cos nwt)
1 45.9 0.000 0.000
2 58.2 0.000 0.000
3 63.5 0.000 0.000
4 64.1 0.000 0.000
5 64.3 0.000 0.000

Table G.1 Regression of order n fit to water discharge time series

We see that the increase in explainatory power of the models increases most steeply
from the first to the second, and from the second to the third, while including terms of
order higher than three gives little improvement to the model, despite all coefficients
being significant at any significance level. We therefore choose the third-order
transformation to capture the shape of the model. The most relevant residua plots
from the MINITAB analysis are presented below:

Real option analysis of a hydropower plant A 14




MSc Thesis, Department of Industrial Economics and

Technology Management NTNU

Norwegian University of

Anders Skogen and Narve Bjgrdal

Frequency

L=
b

Resiclual

Figure G.1 Histogram of residuals

Residual

-«.-."

T T
1.5 20 25 an as

Science and Technology

Hormal Score

Residual

Figure G.2 Normal probability plot of residuals

Residual

5dD IDIJD ISI:IEI ZDI:ID 25|5I] SDbD 35IJD 4DIJEI

Fitted Walue

Figure G.3 Residuals versus fitted values
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Figure G.4 Residuals versus order of data

From inspection, our assumption about normally distributed error terms seems to be

justified. Regression yields the following parameters for the deterministic function

Predictor Coeffecient Standard Error | T-value P-value
Constant 1.551 0.0115 134.66 0.000
trend () 0.000 0.0000 4.93 0.000
sin(ot) -0.457 0.01630 -28.05 0.000
cos(ot) -1.089 0.01629 -66.85 0.000
sin(20t) -0.621 0.01629 -38.17 0.000
cos(2nt) 0.344 0.01629 21.09 0.000
sin(3ot) 0.364 0.01629 22.34 0.000
cos(3ot) -0.117 0.01630 -7.21 0.000
Table G.2 Regression results from deterministic water discharge function
The deterministic part of the watershed function can therefore be written as
w(t) =1.55+1.18sin(wt —1.91) — 0.68sin(2(wt —3.33) + 0.41sin(3(wt —0.05) (G.2)

As shown in the plot below, this is a very good fit to the average. The R2-value is
98.9%
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Figure G.5 Deterministic discharge curve versus historical average

Analysis of residuals

With a deterministic function and the residuals from the regression anaysis, we are
now ready to find an estimate of the mean-reversion parameter K. Thisis taken as 1-@
where @ denotes the first-order autocorrelation coeffecient. The autocorrelation

function is presented below:
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Figure G.6 Autocorrelation function for water discharge residuals

The first-order autocorrelation coeffecient is 0.71, hence our estimate for the mean-

reversion parameter K becomes Ket = 1-0.71 = 0.29

Real option analysis of a hydropower plant A 16



