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Summary 

In this thesis, we present a survey of available models for spot- and forward prices for 

electricity, then the models are fitted to data obtained from the Scandinavian power 

Exchange, Nord Pool using non-linear regression analysis. A through discussion of 

the models is presented focusing on the relationship between the theoretical and 

empirical price trends, volatility structure and seasonal fluctations inherit in power 

prices.  

 

Furthermore, using one of the frameworks originally suggested for power prices, we 

construct a model for the Enron Scandinavian Precipitation Index and derive 

analytical solutions for derivative instruments written on this thesis. Although a 

market for weather derivatives is not present in Norway at present, we obtain market 

quotes on precipitation options to estimate the market price of precipitation risk 

present due to the non-tradable nature of precipitation.  

 

Based on the precipitation time series, we move on to consider whether precipitation 

derivatives can serve as a volumic hedge for a run-of-river power plant located at a 

specific site in Norway. The conclusion from this analysis is negative, and we 

consequently develop alternative methodologies for valuing such a power plant.  

 

The first approach develops theoretical revenue futures by fitting a one-factor model 

to observed revenues of a hypothetical run-of-river power plant using price data and 

water discharge time series for the Gaula River. Through an arbitrage-free portfolio, 

we develop call options on plant revenues, since the time-varying discharge levels in 

the river and the presence of a minimum and maximum production threshold gives a 

payoff structure similar to a spread position engineered from plain vanilla options. 

The second approach combines two stochastic processes – one for water discharge 

assumed to follow zero-drift geometrical Brownian motion whereas prices follow a 

one-factor process fitted to long-term forward contracts. 

 

Finally, we attack the problem of finding the early exercise boundary for the option to 

build a run-of-river power plant. Both a one-factor mean-reverting model for spot 
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prices as well as the one-factor GBM model fitted to the observed long-term price 

trend are analyzed using trinomial trees.   
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1 Introduction 

The final objective of this thesis is to value a run-of-river plant using a real option 

approach. Real option methodology is a central contribution to modern finance theory 

and incorporates factors such as for example the value of temporary project 

suspension, and the value of managerial flexibility. The framework also has the virtue 

of being independent of agent’s risk preferences; consequently the appropriate 

discount rate is the risk-less rate. This introduces the concept of risk free valuation, 

and the possibility of using and developing financial derivatives directly in the 

analysis. 

 

Much of the developed theory on continuous pricing using risk-neutral valuation is 

based on stochastics and dynamical systems. Whereas advanced models may yield 

more ”correct” results, there is always a trade-off between analytical tractability and 

the number of stochastic factors involved. If the model does not allow for analytical 

solutions or if the analytical solutions are too complex, simulation might be necessary. 

We limit our studies to analytically tractable models.  

 

Central to the value of a run-of-river plant is the risk in power prices and 

instantaneous water discharge, since the plant has little or no storage capacity. 

Furthermore, a run-or-river plant has an asymmetric revenue structure because of 

upper and lower boundaries giving an upper bound of production and a minimum 

discharge required for the plant to operate at all. Between these bounds, discharge risk 

will be present most of the year. Due to this asymmetric revenue structure, we show 

that the plant can be valued as a spread position on the plant revenues.  

 

Two of the main challenges are to gain a sound understanding of the stochastic 

processes assumed followed by power prices in the long and short run as well as the 

hydrological dynamics driving water discharge levels. To apply the real options 

framework, we need a way of removing both the price and the discharge risk, or 

obtain an estimate of the market price of these risks to develop a risk-natural 

framework. Provided that the correlation between a weather variable such as 

precipitation and instantaneous discharge is high, an alternative approach is to hedge 
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the discharge risk using weather instruments, and move on to value the run-of-river 

plant as a portfolio of forward contracts and precipitation derivatives.   

 

The right to exploit a site in a river for power production is normally valid within a 

time frame, and the real option approach allow us to model this as an American option 

on investing in a plant. Given a model for plant value and a model for power prices, 

we can find the early exercise boundary above which the option holder would benefit 

more from investing in a plant compared to holding the option to invest.  

 

In sum, we need a good understanding of power price dynamics both in the short- and 

the long run as well as to investigate the relationship between precipitation and water 

discharge. Furthermore, the special characteristics of run-of-river power plants have 

to be taken into consideration. 
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2 Background 

2.1 The Nordic energy market 

Although the Norwegian energy market was only deregulated in 1991, a power 

exchange (market) has been present since the early seventies. After Norway’s 

liberation of the market, Sweden followed in 1996, and a Nordic Energy market 

emerged. To organize the liberalized market, a common clearinghouse was needed, 

and the Nordic power exchange Nord Pool was created.  

 

Because of its short existence relative to other markets, most energy markets would be 

categorized under emerging markets. Nord Pool is, however, one of the best-

developed power exchanges in the world. Still, economists would argue that the 

volatility of the market is unnecessarily large, a sign of market immaturity. Energy, 

being a commodity, will always be more volatile than ordinary investment assets. 

Still, a closer integration of energy markets and other markets would increase market 

liquidity, as more arbitrageurs would even out temporal variations.  

 

Still, the Nordic energy market is growing in size, as more foreign investors are 

entering the Nordic energy market. The secondary market, comprising energy 

derivatives, is also increasing. The gross turnover of the derivative markets increased 

form about 8 times the physical market in 2000 to about ten times in 2001. This is a 

sign that the energy market is still developing. In addition to Nord Pool, several 

independent brokers are present in the market, increasing the market turnover. 

Comparing the Nordic energy market to other energy markets, it is one of the best 

developed in the world.  

 

Despite this growing market, the energy market can never be truly international, like 

the market for investment assets. Transmission grids limit the degree of energy export 

and import. Because of this, the physical market can never be truly global. The 

financial market, on the other hand, would in theory be open to anybody. 
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2.1.1 Market structure and Energy Products 

Nord Pool offers several products. These can roughly be separated into three main 

categories, namely physical contracts, financial contracts and clearing. These will be 

given a brief explanation under. 

2.1.1.1 The Physical Market 

The only way to buy energy in the Nordic energy market is through a physical 

contract. Hence, the most basic product traded on the energy market, is spot electricity 

(Elspot). The Elspot is an agreement to deliver one kWh during a specific hour the 

following day for a settled amount of Norwegian Kroner (NOK). It could be argued 

that Elspot is actually a one-day forward contract for a one-hour delivery. We will, as 

is conventional, refer to it as the spot price.  

 

Everything not traded spot, is considered being a derivative on the spot. For the 

practical purposes of this thesis, we will later let one-week forward contracts be a 

proxy the spot price. This is mainly due to convenience, as a higher resolution would 

not add anything significant to the analysis. 

2.1.1.2 The Financial Market 

The financial (derivative) market is divided into forwards and options markets. In this 

section, we will go through the most important characteristics of the two markets. 

2.1.1.2.1 Forwards and futures 

As in most developed markets, the energy business also has a secondary market. This 

market comprises forwards and future contracts, based on the underlying spot price. A 

forward is an obligation to buy stock at a predetermined price in the future, whereas a 

future essentially works the same way, but is settled on a daily basis, requiring a 

margin account1.  At Nord Pool, as in most other markets, these contracts do not 

involve physical delivery. Contracts are settled in cash, based on the difference 

between the spot and the pre-settled delivery price.  

 

                                                 
1 Forward and futures are identical for a constant risk free rate. See Cox, Ingersoll and Ross (1981) for 

details. 
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Energy forward contracts are traded in years and blocks. At Nord Pool, annual 

forward contracts start trading three years before delivery, and are traded until the 

start of the season preceding maturity. Then, annual contracts are split into seasonal 

forwards. These forward contracts divide the year into three separate seasons, called 

winter 1, summer and winter 2. Table 1 gives an overview of contracts and their 

duration. 
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Table 2.1 Forward Contract structure at NordPool.  

Source: www.nordpool.no 

Seasonal forwards can be traded three years before actual delivery, until the beginning 

of the season before maturity. The contracts are then split into 3-6 blocks of four 

weeks that are tradable until the previous block matures, when the blocks are spilt into 

four weekly contracts traded until the day before delivery. These, and shorter 

contracts, are settled on a daily basis. Hence, they fall under the futures category.  

 

Fleten and Lemming (2001) argued that the block structure complicated the process of 

finding prices for specific maturity times, or constructing a continuous term-structure 

curve. This is because the block structure only gives a partial picture of the prices. 

Furthermore, although the market for power contracts at Nord Pool is reasonably 

large and growing, long-term contracts are rather illiquid.  

2.1.1.3 Contracts for difference 

Due to capacity constraints on the transmission grids, Statnett has the possibility to 

declare a specific power grid zone as special when demand is high. Under these 

conditions, the system price quoted by Nord Pool would be different from the price 

prevailing in the actual area. In such situations, Nord Pool offers a contract for 

difference (CfD), available for seasons and years, as protection against exposure to 

these bottlenecks. CfD’s are only available for a few big cities, and are fairly illiquid.  

Any hydropower plant will be exposed to risk of differences between system price 
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and area price, if the system price is used for hedging. This exposure will not, 

however, be treated in this thesis. 

2.1.1.4 Options 

Belonging to the set of financial contracts, an option is a right, but not an obligation, 

to buy an underlying asset at a given (usually predetermined) price. This is the third 

“layer” in the electricity market. As for futures and forwards, electricity options are 

pure financial products settled in cash rather than delivery. 

 

The amount of options available in the electricity market is not enormous. Contracts 

are mostly written on the longer-maturity forward contracts, and are mostly European 

in nature. There has been a market for Asian options, but the market demand seems to 

be low for these contracts at the time being. In fact, Nord Pool has stopped listing 

these products, and they are now traded over the counter (OTC). 

 

During the recent years, a new market of various derivatives, modeled to fit other 

variables than price, has developed. Specifically, the market for weather derivatives 

has started growing. This is discussed in section 2.2. 

2.1.1.5 Risk management and hedging in energy markets 

Modigliani and Miller (1958) argued that a company’s shareholders would always be 

able to hedge a risk more efficiently than the company itself. This might not apply to 

energy risk management. Due to the volatile nature of power markets, energy 

companies and industries heavily dependent on energy, could suffer big losses due to 

fluctuations in the market. Bjørkvoll et al. (2001) argued that due to market 

“imperfections”, hedging at a company level might be profitable for shareholders. 

They further contended that due to economies of scale in power derivatives markets, 

firms are able to operate at lower cost than individual investors do. Traditionally, 

companies operating in the energy business do hedge their exposure. 

2.1.1.6 Hedging strategies and separation problems 

The energy market comprises several large actors that might see added value in 

hedging their interests. To be efficient, hedging should be done at a corporate level. 

Such hedging raises practical issues, however. Bjørkvoll et al (2000) claimed that 

production uncertainties make hedging very difficult and not necessarily separable 
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from production planning. In effect, hedging at a corporate level might prove to be 

impossible in practice. 

 

Secondly, it is crucial to distinguish between price hedges and volume hedges. A 

price hedge guarantees a price, but not a steady demand or supply. A volume hedge, 

on the other hand, is an instrument made to ensure market size, either on the supply or 

the demand side. Pure weather derivatives are volume hedges. Temperature mostly 

affects the magnitude of the demand, whereas precipitation affects the magnitude of 

supply. They both, of course, indirectly affect the price, but it is difficult to capture 

this relationship exactly.  

 

In conclusion, the combination of lack of separabilty and the difficulties quantifying 

the exposure complicates energy risk management considerably. Nevertheless, the 

number of participants in the market is large and growing. 

2.1.2 Transmission grids 

In Norway, Statnett has controlled most transmission grids since the market 

liberalization in 1991, because the grids were considered a natural monopoly. 

Although a few minor interests still own some of the grid, this ownership is limited to 

the more local distribution grids, making the monopoly comparison liable for the 

main grids.  

2.2 The weather market 

Weather derivatives were originally developed to facilitate against non-catastrophic 

weather conditions that might negatively impact on a company’s revenue stream. Two 

key features of weather derivatives are that they are written on a non-tradable 

underlying (some weather variable or weather index) and that they are used to hedge 

volumetric risk, while traditional derivatives hedge price or financial exposure.  

2.2.1 Market development 

The US remain the most developed weather market, with almost 2500 contracts 

traded in year 2000 amounting to a total volume of US$ 2.7 billion (Tigler and Butte, 

2001). While numerous studies point out the sheer vastness of businesses whose 

revenues are affected by weather patterns, the market remains clearly dominated by 



MSc Thesis, Department of Industrial Economics and 
Technology Management    
Narve Bjørdal and Anders Skogen 

Real Option Analysis of a Hydropower plant 8

energy companies. Temperature derivatives for ten major US cities are traded on the 

Chicago Mercantile Exchange. The European market is catching on, with the UK, 

Germany and France being the most active markets. Again, energy companies are the 

most active, while investment banks and insurance companies are gaining interest for 

the weather derivatives business. However, the market still remains illiquid and all 

contracts traded in Europe are arranged OTC2.  

2.2.2 Common underlying variables 

The most common underlying variable in the weather market is temperature (98% of 

traded contacts); the rest of the market consists of precipitation (rain or snow), 

sunshine hours and wind speed. The criteria for a weather variable to serve as 

underlying can be listed in three main points: 

• The variable needs measurable impact on enough agents to develop a market. 

• The variable has to be accurately and objectively measurable. 

• High-quality data and sufficiently long historical records are needed for agents to 

price contracts and study the properties of the relevant weather variable. 

Historically, weather protection has been supplied by the insurance industry, but for 

several reasons, a weather derivatives market is a good supplement to traditional 

insurance contracts. The key differences are summarized in the following table. 
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Table 2.2 Insurance policies versus weather derivatives 

Source: Tigler and Butte (2001), Element Re (2001) 

                                                 
2 Over The Counter. This refers to bilateral trading of contracts outside the ordinary exchange. 



MSc Thesis, Department of Industrial Economics and 
Technology Management    
Narve Bjørdal and Anders Skogen 

Real Option Analysis of a Hydropower plant 9

2.2.3 The rationale behind indices 

Weather indices are preferred to individual measurements for several reasons. The 

most obvious is to make the instrument more liquid – in the Scandinavian power 

market, the power reservoirs are located in sparsely populated areas, and it is unlikely 

that there will be more than one actor interested in trading in the instrument for 

hedging purposes. Secondly, for business with geographically diverse activities, the 

outcome of some weather variable over a larger area might be more important than 

the outcome of the same variable in, say, a given city.  

2.2.4 The Nordic weather market 

The market for weather derivatives has yet to boost in Scandinavia. The few contracts 

traded are traded OTC. According to AEP Energy Norway, almost all current 

contracts are in practice building blocks in larger structured deals in which weather is 

one of more underlyings.  

 

Enron Corp. developed a precipitation index to use as underlying for precipitation 

derivatives, but after Enron went bankrupt, contracts were no longer traded on this 

index. AEP Energy maintains the index and uses it as an internal reference for their 

structured deals. We will return to this index in chapters 7and 8 when we model and 

price precipitation derivatives. 

2.2.4.1 Potential of the Nordic weather market  

A commonly cited figure is that over 20% of the US economy is directly exposed to 

weather risk (see i.e. Geman, 2001), and AEP Energy claims that the corresponding 

number is at least as large in the Nordic market. The importance of hydropower could 

pave the way for a market for precipitation-based instruments, but a problem is that 

there is no natural counterpart for the generators. One could possibly expect that large 

buyers of power could act as contractual counterparts, but this seems not to be the 

case.  

2.2.4.2 Reasons why the market has not caught on 

The market lost its most central actor when Enron went bankrupt. Enron Nordic’s 

operations were taken over by AEP Energy, but the market is not as big as it used to 

be, and was never really big in the first place. Moreover, the second biggest player, 
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Aquilla Energy has withdrawn the bulk of its operations from Norway and is no 

longer a player in the Norwegian weather market.  

 

AEP Energy points to the fact that the potential actors have been very slow to catch 

on, and experience shows that if the first weather deal struck ends with a loss, the 

actor tends to conduct no further deals. 

 

As pointed out above, the market is one-sided due to a lack of counterparts for the 

energy businesses. This does not mean that there are no businesses with different 

exposure profile to weather phenomenon, they are simply not actors in the derivatives 

market. Smidt (2001) listed municipals, retailers, tourist operators, and breweries as 

businesses with huge exposure to weather, but they quite simply do not use 

derivatives to hedge or do not weather risk.  

 

Cao and Wei (2001) claimed that large bid-ask-spreads caused problems in the US 

and European weather markets, and Williams (1999) pointed out that triple-digit bid-

ask-spreads were not uncommon in the US market. Consequently, weather derivatives 

might be ineffective as a hedging mechanism.  In Norway, the bid/ask spread is non-

existing. It is either a bid or an ask. 

 

In sum, there is no efficient market in Norway for weather instruments, and at the 

present time, not a market at all for pure weather instruments.  
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3 Theoretical framework 

3.1 Project valuation approaches 

There are various ways of estimating the value of a project. In the following sections, 

we will briefly touch upon the most common pricing methods. 

3.1.1 Net Present Value 

The net present value (NPV) approach was developed as a result of the risk-return 

framework developed by Markovitz (1953) and extended by, amongst others, Sharpe 

(1964). The approach comprises predicting future cash flows, and discounting at a 

risk-adjusted rate of return. The popularity of NPV is enormous due to its simplicity, 

and it is by far the most used pricing method today.  

 

Whereas the NPV method is tractable due to its simplicity, it is inexact because of its 

static nature. Trigeorgis (2000) claimed that NPV analysis was far too static to capture 

the dynamic environment of a company. For example, NPV failed to capture the value 

of project flexibility, such as options to abandon and temporarily suspend projects. 

Trigeorgis (2000) further argued that traditional NPV was developed for passive 

portfolio management and that the value of active management would be better 

captured using other methods. Lastly, a fundamental problem with NPV is valuation 

of investment opportunities involving asymmetric payoff. 

 

Still, NPV analysis could prove to be useful. Different projects have different 

characteristics, and require different valuation methods. Fleten (2000) argued that 

traditional NPV approaches would be adequate for pricing passive investments and 

for decision support for now-or-never projects.  

 

3.1.2 Decision Tree Analysis 

Decision Tree Analysis (DTA) is a project valuation approach similar to the NPV 

analysis. It involves developing several scenarios for the future, and assigning 

probabilities to these. The outcomes of the various scenarios are finally discounted at 

appropriate discount rates.  
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DTA is able to capture more flexibility than NPV analysis, because of the 

introduction of scenarios. It does, however, introduce other problems. Trigeorgis 

(2000) claimed that although the DTA approach was correct in principle, and gave a 

good overview over sequential investments, the approach had two major drawbacks.  

 

Firstly, the appropriate discount rate has to be determined at every node. Say, for 

example, that at node n, there are two possible outcomes, A and B, with probability p 

and 1-p. A is dependent on the energy market, and should be discounted at a rate 

reflecting the energy market risks. Outcome B, however, is risk-free. It should 

therefore be discounted at the risk-free rate. At node n-1, the combination of the two 

outcomes in n will need to be discounted at an appropriate combination of the two 

rates. On every single point in the tree, this problem is repeated, resulting in multiple 

discount rates, and increasing the complexity. 

 

Secondly, the probabilities associated with the various scenarios would have to be set 

explicitly for each scenario. Although tedious, this problem might be solved using 

Monte Carlo methods. Finally, decision trees grow exponentially in size as the time 

horizon increases, making multistage problems difficult to handle. 

3.1.3 Contingent Claims Analysis and Real Options 

Contingent claims analysis is the “new” approach to project valuation. It was 

developed on the basis of the work of Cox, Ross and Rubinstein (1979).  They 

developed a theory of replication of options in an arbitrage free portfolio, extending 

the framework of, amongst others, Black and Scholes (1973). The result of these 

advances, projects could be evaluated independent of individual risk preferences. 

 

CCA uses a certainty equivalent approach, and utilizes the options framework instead 

of the static approaches discussed above. Hence, CCA methods avoid some of the 

problems introduced in the NPV and DTA approaches. The asymmetric payoff 

problem is taken care of in the same way as in DTA, by allowing scenarios, or a 

continuous specter of scenarios.  
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In a risk neutral world, all individuals are indifferent to risk. Hull (2000) argued that if 

the risk preference of the investors does not enter the equation, it could not affect the 

solution. Hence, utility theory is avoided, and individual preferences could be 

ignored. CCA is based on risk neutral valuation, and the value of a real option can 

essentially be found via a proper NPV analysis using risk-neutral valuation. The 

discount rate would be the risk-free rate r, and not the rate given by the CAPM or any 

other risk-adjusted discount-rate framework. This approach solves two problems. 

Firstly, preferences are eliminated. Secondly, only one discount rate is needed, which 

is a significant improvement compared to the DTA analysis above. At any given node 

in a decision tree, the discount rate is given as r. 

3.2 Pricing of contingent claims 

In this section, we are going to investigate how to price contingent claims using a 

risk-neutral framework. The section is largely based on Trigeorgis (2000), Dixit and 

Pindyck (1994) and Hull (2000). We start by investigating the statistical framework 

for modeling investment and commodity prices.  

3.2.1 Stochastic processes 

The modeling framework used is based on stochastic processes. A pure stochastic 

process is a process whose next step is independent of the previous steps. The process 

will still be dependent of the previous state of the process. If it is only dependent on 

the last state, the process possesses the Markov property.  

 

The first building block is noise, based on the idea of Brownian motion, or Wiener 

processes. A pure Wiener process, as described in Hull (2000), is a process with no 

drift, given in equation (3.1).  

dtdz �=  (3.1) 

Here dz is a Wiener process, ε is a normally distributed value with mean zero and 

variance of one unit, and dt is a small time step. The only movement is “noise”, or 

random motion. In addition, a Wiener process’ noise ε follows the normal 

distribution, generally indicating that the likelihood of small movements is greater 

that that of larger magnitudes. 
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3.2.1.1 Geometric Brownian Motion 

A pure Wiener process is not usually considered able to capture the movements of 

security prices, since the Wiener process has zero drift. Due to the time value of 

money, inflation, etc, a security would have an expected return, or a drift µ. 

Therefore, it has been normal to use a geometric Brownian motion to capture the 

movements of stock prices. Geometric Brownian Motion (GBM) is defined in 

equation (3.1). 

bPdzPdtdP += �  (3.2) 

Here, dP is a small change in the security price, µ  is the drift, dt is a small time step, b 

is the magnitude of the volatility3, and dz is given in equation (3.1). 

3.2.1.2 Arithmetic Brownian Motion 

Unlike the more familiar GBM, arithmetic Brownian motion has the generic from 

bdzdtdP += �  (3.3) 

An arithmetic Brownian motion is often referred to a generalized Wiener process. The 

difference between GBM and ABM lies in the noise term. GBM generates noise 

proportional to the stock price P, whereas ABM’s noise is independent of the price P. 

3.2.1.3 Application to asset pricing 

Asset prices are normally assumed to follow GBM. It can be shown that if a stock 

price P follows GBM, then ln(P) follows a generalized Wiener process. Since a small 

increment dz is normally distributed, the Wiener process residuals should be normally 

distributed. In effect, the GBM residuals should be lognormally distributed. This is an 

important condition for the framework to be valid. 

3.2.1.4 Itô processes 

An Ito process is generally speaking the same as a Wiener process, only that the drift 

µ and the standard deviation b are replaced with functions µ(P,t) and b(P,t). Hence, 

we can restate equation (x) as 

dztPbdttPdP ),(),( += �  (3.4) 

                                                 
3 By volatility , we mean a standardized measure of the standard deviation. 
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The difference is that a more general drift and standard deviation can be incorporated. 

For example, the Itô process could allow seasonal variations. This property is 

particularly useful when modeling commodity prices with seasonal trends. 

3.2.1.5 Mean reversion processes 

A mean reversion process is a combination of a deterministic and stochastic process. 

Whereas GBM processes are characterized by the Markov property (all previous 

states are insignificant), the mean reversion process is dependent on the deviation 

from a long-term mean. A mean reversion process can be given as  

dzdtPmdP �� +−= )(  (3.5) 

In equation (3.5), κ is a mean-reversion factor, m is the long-term mean, P is the 

current state (price), σ is the volatility, and dt and dz increments in time and the 

Brownian motion. 

3.2.1.6 The choice of process 

The choice of process depends on the behavior of the price time series. The choice of 

an adequate model is crucial, considering that the process forms the basis for the 

pricing of an asset. Therefore, it is often necessary to try several models before 

deciding which is most suited for the task. Furthermore, simplicity is an important 

issue, as a more advanced model might be notoriously difficult to communicate and 

work with, without adding significant improvements compared to an easier model. 

3.2.2 Creating a simple arbitrage-free portfolio 

Consider the case of a tradable and storable underlying asset. In the discrete case, a 

portfolio consists of N shares of one asset, financed by a loan B at the risk free rate r. 

For simplicity, we assume there are two possible outcomes, C+ and C-, with outcome 

probability p and 1-p respectively. The value of the portfolio P at time 0 and 1 can be 

visualized through a tree:  

 

Figure 3.1: The payoff of an asset S 
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We now design a portfolio whose payoff at time t=1 does not depend on the path 

chosen. In other words, we eliminate uncertainty. Setting the values at the two states, 

C+ and C-, equal, we can find an N that makes the outcomes identical, regardless of 

uncertainty. After rearranging, we get  

    −+

−+

−
−=

SS

CC
N  

(3.6) 

At this ratio, the payoff is certain, and should be discounted at the risk free rate r. 

Following Trigeorgis (2000), we hence define the risk-neutral probability as  
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−
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−+=
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(3.7) 

This is the probability that would prevail in a risk-free world. Furthermore, the 

expected return on an option must equal the risk-free rate in a risk-free world, r: 

r
C

CppC =−−+ −+

1
)1(

 
(3.8) 

This exercise can be repeated for the continuous case, and has one important message. 

If the risk-free return of the option is not equal to the risk-free rate, then arbitrage 

opportunities would exist. In other words, the relationship in equation (3.8) must hold. 

3.2.2.1 The market price of risk 

Following Hull (2000), in absence of arbitrage, two derivatives, f1 and f2, both 

dependent on the underlying asset θ, must be priced internally consistent, so that a 

risk-less portfolio comprising the two would provide the risk-free return. This can be 

illustrated by the two derivative processes below, both dependent only of θ and dt: 

dzdt
f

df
11

1

1 �� +=  
(3.9) 

dzdt
f

df
22

2

2 �� +=  
(3.10) 

All the risk in the above securities lies in dz, which is equal for both securities. Hence, 

eliminating dz would create a risk free portfolio. We construct this portfolio by the 

use of f2σ2 portions of the first derivative, and –f1σ1 of the second. This portfolio will 

have a certain payoff. The value Π of the portfolio is then given in equation (3.11). 

211122 )()( ffff �� −=�  (3.11) 

A small change in Π can be written as 
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211122 )()( dffdffd �� −=�  (3.12) 

Since the portfolio is risk-less, it should earn the risk-free rate of return r. The payoff 

of the portfolio over a small time step dt is stated in equation (3.13): 

dtrd �� =  (3.13) 

Substitution into this equation from (3.11) and (3.12) yields  
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−

 
(3.14) 

This term is commonly referred to as the market price of risk, and labeled λ. 

Dropping the indices, we can restate the market price of risk as 

�
�

� =− )( r
 

(3.15) 

The market price of risk is hence a price of the volatility. The product of the volatility 

and the market price of risk constitute the difference between the value of a security’s 

expected value and its certainty equivalent, the futures/forward contract. This 

difference is seen as a compensation for bearing the risk of trading spot. Pirrong 

(2000) pointed out that there are large differences between these two values in the 

PJM4 market, even for one-day forward contracts. This indicates the presence of a 

market risk premium. Rewriting equation (3.15), a risk-neutral measure of the return 

of a risky asset is given in equation (3.16). 

��� −=r  (3.16) 

3.2.2.2 Ito’s lemma 

Hull (2000) contended that any derivative is a function of its underlying and time. It is 

difficult in practice, however, to derive the explicit relationship between the 

derivative and its underlying. Ito’s lemma provides us with the necessary tools to 

perform the transformation of the stochastic process for the underlying processes to 

the new derivative process.  

 

The method Ito suggested involves simplifying the derivative expression through a 

Taylor expansion. Ito claimed that using the first two Taylor expansions of the 

function with respect to the underlying, and the first Taylor expansion of the function 

                                                 
4 Pennsylvania, New Jersey and Maryland 
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with respect to time would provide the necessary approximation. In other words, a 

change in a function G of an underlying stock u will be approximately equal to 

2
2

2

)(
2

1
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G
dt

dt

G
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u

G
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∂
∂=  

(3.17) 

For a stock following the dynamics given in equation (3.18), the process for a 

derivative G will follow the relationship given in (3.19). 

dztxbdttxadu ),(),( +=  (3.18) 
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(3.19) 

3.2.2.3 Creating a continuous instantaneous arbitrage-free portfolio 

After finding the process followed by G, we construct a risk-free portfolio of the 

underlying and the derivative, by going short in the derivative and long ∂G/ ∂u units 

of in the underlying. This operation is funded5 by a bank loan at the risk free rate. The 

portfolio value Π is then expressed in equation (3.20). 

u
du

dG
G +−=�  

(3.20) 

Correspondingly, a change in the portfolio value, ∆Π, is given in equation (3.21). 
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This portfolio is instantaneously risk-less. Therefore, it should earn the risk-less rate 

of return: 

dtu
u

G
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(3.22) 

Rearranging, we obtain the differential equation satisfied by G: 
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(3.23) 

Similarly, it can be proven that for a stock with convenience yield c, the process in 

equation (3.23) changes to equation (3.24). 

                                                 
5 This is only needed if the underlying requires investment at time 0. If the underlying is a forward 

contract, no initial investment is needed. 
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Finally, in a similar way, it can be shown that if a forward contract is the underlying, 

the differential equation of the derivative G is given as 
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(3.25) 

Here, F represents a forward contract. Because the forward contract has a fixed 

contract price at a future time T, the drift term of (r-c) is not included in the 

differential equation. 

3.2.2.4 Forward risk neutrality and equivalent martingale measures 

When the underlying is not tradable, we cannot use a derivative and its underlying to 

find the risk-neutral probability measure, as given in equation (3.7). Instead, we need 

two derivatives. Using the approach suggested by Hull (2000), we define f1 and f2 to 

be two derivatives dependent on a single source of uncertainty. Let the relative price 

of f1 with respect to f2 be expressed as θ so that the relationship given in (3.26) holds. 

2

1

f

f
=�  

(3.26) 

A martingale is a stochastic process with zero expected drift. The equivalent 

martingale measure result shows that, in the absence of arbitrage opportunities, θ is a 

martingale for some choice of the market price of risk. Furthermore, if the volatility of 

f2 is the market price of risk, then f1/f2 is a martingale for all security prices fi. A 

complete proof of this result can be found in Hull (2000). 

 

This result means that to appropriately value energy derivatives, we could use the 

forward curve as the underlying asset, since this curve represents the risk-neutral 

expected future spot price. Since the income from a predetermined forward contract is 

fixed, there is no uncertainty in the future value. Consequently, valuation is risk-free, 

and should be discounted at the risk-free rate.  

3.2.2.5 Solving the differential equation 

The differential equation given in equation (3.24) has an unlimited set of solutions. 

The appropriate solution is conditioned on the boundary conditions of the derivative. 
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For forward contracts, the boundary condition would be F0=E(S0,T), making the 

portfolio instantaneously risk-less. For options, the boundary condition is given as 

G=max(S-X,0) for call options, and G=min(S-X,0) for put options. 

3.3 Options 

In financial theory, an option is the right, but not the obligation to purchase spot at a 

predetermined point in time. In practice, however, an option is a pure financial tool, 

that will be settled in cash if the option expires in the money. The settlement will be 

the difference between the actual price and a predetermined strike. If the option 

expires out of the money, whatever the amount, the settlement is zero. Hence, an 

option has a non-linear payoff structure. The tractability of options is mainly due to 

the asymmetric payoff, giving it a unique position in risk management. 

3.3.1 Purpose of options in this thesis 

Within the framework presented in this thesis, options are used in several contexts. A 

power plant with a lower capacity limit will have an asymmetric revenue structure 

similar to that of options. Hence, the production could be viewed as an option. 

Weather contingent claims are also, to a large extent, based on options. Finally, 

American options will be used to evaluate the value of delaying the investment 

decision, and find an optimal investment price. 

3.3.2 Framework 

Options come in a variety of forms. To price an option, we need the following 

parameters: 

• Risk-neutral expected forward price F0(T). As discussed in section 3.2.2.4, this is 

equivalent to the forward price. 

• Strike price X. This is the predetermined price above or below which the option 

generates payoff.  

• Risk-free rate r. 

• Volatility σ. This is needed to find the accumulated variance. 

• Time to maturity T. 
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The following table explains the most usual option types: 

Options and payoffs 

4*	�����	���� 5�*�� 86������� (���++�
8���*���� 3���� 0	��6*���� ��6��� 9,�
��	���	���	� 
8���*���� (�	� 0	��6*���� ��6�9 ���,�
��	���	���	��
0�������� 3���� ��	�����6*���� ��6��� 9,�
��	�	�����+��6�������
0�������� (�	� ��	�����6*���� ��6�9 ���,�
��	�	�����+��6�������
0�����8���*���� (�	:3���� 0	��6*���� ������.���)��
0�����0�������� (�	:3���� ��	�����6*���� ������.���)��

Table 3.1: Option styles 

In this thesis, European options are prices using the framework developed by Black 

and Scholes (1973). This framework is based on a stock following GBM, and a 

necessary condition for the framework to work, is that the price shocks are 

lognormally distributed.  

 

For American options, we use Clewlow and Strickland (1998) and Hull(2000). When 

needed, the original framework is altered. This is especially necessary when pricing 

options based on mean-reversion. 

3.3.3 Pricing of European Options 

Options are priced using the risk neutrality framework. The differential equation 

satisfied by all derivatives can be written as 
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1
�  

(3.27) 

Here, c is the call option, P the spot price, r the risk free rate and σ the volatility. The 

solution of this differential equation, using the boundary condition given in equation 

(3.28) yields the option equation for a call option. 

)0,max( XPc T −=  (3.28) 

3.3.3.1 Variations of the differential equation 

Equation (3.27) is a standard differential equation followed by any derivative. The 

equation might change slightly when a deterministic seasonal function and 

convenience yield enters the equation. Of course, the solution of the equation is also 

dependent on the boundary condition. 
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3.3.3.2 European Options based on variables following GBM 

A European option is an option with the only exercise possibility at maturity. Black 

and Scholes (1973) showed that a European call option with strike X, forward price F, 

volatility σ and time to maturity T could be expressed as follows: 

( ))()( 21,0,0 dXNdNFec T
rT

T −= −  (3.29) 
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(3.30) 

Here, the parameters are the same as in equation (3.27), except for the forward price 

at time 0, maturing at time T, given as F0,T. N(di) is the cumulative normal distribution 

function, and di is given in equation (3.30).  

3.3.3.3 Options based on mean-reversion dynamics 

The option price formula in the previous section is subject to slight changes when 

implemented. Looking at equation (3.30), mean reversion models have the same 

payoff structure, but not the same volatility. This is because the volatility in a mean-

reversion is in itself mean-reverting.  

3.3.3.3.1 One-factor volatility 

Using a one-factor model with no long-term price trend (and hence no uncertainty in 

the long run) the volatility is given as: 

T
F e ��� −=  (3.31) 

The Black/Scholes equation requires the cumulative variance. For this model, the 

cumulative variance can be given as 
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Using this volatility, equation (3.30) can be replaced by equation 7. 
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(3.33) 

Here, w is the general cumulative volatility. Note that the volatility given in (3.31) 

approaches zero. Thus, the cumulative volatility w approaches a limit given as σ2/2κ 
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from equation (3.32). This limits the tractability of the problem to short-run problems, 

or long run problems without equilibrium uncertainty. 

3.3.3.3.2 Volatility 

The cumulative volatility function of the simple mean-reversion model is given as 

( )Tew �

�
� 2

2

1
2

−−=  
(3.34) 

This volatility approaches a limit, and is most appropriate when there is no 

uncertainty in the long-run equilibrium. 

 

In order to incorporate long-term realism into the option prices, we could assume that 

a mean-reversion model long-term trend follows GBM, and short term shocks follows 

mean-reversion. Defining a short run volatility function f(σS) and a long-run 

equilibrium volatility σL equal to the long-run implied volatility or forward volatility, 

the cumulative volatility w is given as 

( ) ( )SLSLLS ffw ����� 222 ++=  (3.35) 

Using these results, it can be shown that in the long run, prices using a two-factor 

model approaches prices using a one-factor GBM model with accumulated variance 

equal to σL
2T plus a constant. Schwartz (1998) utilizes this relationship when reducing 

a two-factor model to a one-factor model for long maturity contracts.  

3.3.4 Pricing of American Options 

An American option can be exercised at any point within a predetermined period of 

time. Due to the nature of the American option, there has not yet been developed an 

analytical pricing tool for this type of option. Therefore, these options have to be 

valued through the use of a tree structure, or alternatively, through Monte Carlo 

simulation. This thesis will consider trees for option valuation, and the following 

section explores a tree-fitting approach for a GBM process. Then, a tree is fitted to a 

mean-reversion process. Finally, the option is priced, and a brief discussion follows. 

3.3.4.1 Tree-building using a GBM process 

This section illustrates the procedure of pricing American options through a tree 

structure. The precision of the solution will be dependent on both time steps and 

branching complexity. This section is concerned with modeling the options using a 
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trinomial tree, and will use an approach obtained from Clewlow and Strickland (1998) 

and Hull (2000). The section starts by investigating initial requirements and continues 

by building a tree for a GBM process.  

3.3.4.1.1 Initial requirements 

Tree building procedures are discrete in nature, and American option trees are not 

radically different from other tree structures. Consequently, the building of American 

style options involves the creation of discrete time steps. We furthermore need the 

following information to build the tree: 

• Transition probabilities 

• Risk-free discount rate r. This is obtained in section 4.5. 

• Risk-neutral drift α=r-c for commodities. 

• Up- and down steps defined. 

• Volatility σ. 

• Initial price P0. 

3.3.4.1.2 Transition probabilities 

Transition probabilities are discrete probabilities of price movement in a tree. For a 

trinomial tree, the natural choices of outcomes are moving up, staying in the middle or 

moving down. For an asset following GBM, the transition probabilities are equal for 

all nodes. Hull (2000) claimed that the following transition probabilities for a non-

dividend paying stock yielded good results: 
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(3.38) 

Of course, for these probabilities to be correct, prices must be lognormally distributed 

and follow GBM. For a stock paying continuous dividend yield, or having 

convenience yield c, r is replaced by (r-c). Notice that the price drift is inherent in the 

transition probabilities. 
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3.3.4.2 Upwards and downward moves 

In section 3.2.2, we investigated the up- and down states of an asset with two possible 

outcomes. A trinomial tree is basically a discrete approximation of an asset having 

continuously lognormally distributed payoff. Hull (2000), following Cox, Ross and 

Rubinstein (1979), suggested three suitable outcomes from the lognormal distribution 

as up u, down d together with the expected value: 

teu �3�=  (3.39) 

te
u

d �31
�−==  

(3.40) 

Since the drift is inherent in the probability measures, the total tree can still be 

assumed to have an upward drift. Figure 3.2 illustrates the trinomial tree and its 

corresponding values of p and d: 
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pu
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pm
S0

 

Figure 3.2: Trinomial lattice 

After finalizing this part, the tree needs to be initialized and the option priced. This is 

done in section 3.3.4.4. 

3.3.4.3 Tree-building using mean-reversion 

Although our analysis thus far has assumed a stock following GBM, the procedure 

can be adjusted to fit alternative stochastic processes. This section outlines the 

changes necessary to build a tree for assets following mean reversion dynamics. We 

start by briefly introducing an appropriate mean-reversion model, and continue by 

redefining branching, and defining the steps necessary to build the tree. 
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3.3.4.3.1 A mean-reversion process 

Hull and White (1990) extended an interest rate model introduced by Vasicek (1977), 

of the following form: 
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(3.41) 

In this model, R represents an interest rate, but can easily be adopted as the asset 

price, whereas κ is the mean-reversion parameter as it is in Lucia and Schwartz 

(2001). The model can be shown to be equal to our one-factor mean reversion model 

presented in section 4.4.1, with a constant drift (r-c)Rt replacing θ(t). A function θ(t) 

consistent with this model is then given as 
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(3.42) 

In this equation, F0(t) represents the present value of a forward maturing at time t. For 

a more thorough discussion on mean-reversion models, see section 4.4. 

3.3.4.3.2 Branching patterns 

For mean-reversion processes, it is necessary to alternate the branching pattern 

slightly. Figure 3.3 illustrates the three possible branching structures of a mean-

reversion tree. 

(a) (b) (c)  

Figure 3.3: Alternative branching for a mean-reversion process 

3.3.4.3.3 Generating the mean-reverting noise term 

The tree building requires two steps. The first step comprises building a tree for the 

mean-reverting noise term, and the second step converts this tree to the term structure 

of the mean-reversion process. As seen in section 4.4.1, a mean-reversion process has 

a stochastic parameter following the dynamics given in equation (3.43): 

dzdtRdR �� +−= **  (3.43) 

The discrete version of the process will assume a constant time step ∆t, and the 

spacing between the nodes in the tree are taken as 

tR �� 3�=  (3.44) 
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Hull (2000) then defined6 (i,j) as node coordinates, so that t=i∆t and R*=j∆R. A tree 

branching procedure with κ>0 will then follow branching method (a) from figure 3.3 

until a barrier is reached when j is sufficiently large. Hull (2000) defined this barrier 

to be  





=−=

t
jj MINMAX ��

184.0
 

(3.45) 

Beyond this barrier, the tree does not grow wider, and alternative branching procedure 

(b) or (c) from figure 3.3 are used as lower or upper branch respectively. 

3.3.4.3.4 Risk-neutral probabilities 

Using the branching above, three sets of risk-neutral probabilities are necessary. For 

branching method (a), the following set was suggested by Hull (2000): 
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(3.46) 

Similarly, for branching method (b), the probabilities are given in equation (3.47): 
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(3.47) 

Finally, the probabilities in a top node are given in equation (3.48): 
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(3.48) 

 

                                                 
6 Observe that i is a positive integer indicating the depth of the tree, whereas j indicates the distance 

from the expected return in units of ∆R. At any depth i, 2j+1 is the number of nodes at the same level. 
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3.3.4.3.5 Converting the tree 

Given the process tree for R* of the previous section, the task now becomes 

transforming this into a tree for the price process R.  Define 

)()()( * tRtRt −=�  (3.49) 

Now, knowing the process of R from equation (3.41) and R* from equation (3.43), it 

follows that  

[ ]dtttd )()( ���� −=  (3.50) 

This means that the solution for α(t) is given as  
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For small values of k, this converges to α(t)=F0(t)+Error!σ 2t2. 

3.3.4.4 Finalizing the tree and obtaining a call option value 

The construction of the actual tree is then done by starting at node 0, multiplying S0 

by an appropriate u or d so that this price branches out to create three values at the 

next level of the tree. The procedure is continued for the whole tree. Then, the value 

of the call option of the termination node is found as 

)0,max()( 0, XduSTc jNj
jN −= −  (3.52) 

Here, cN,j(T) indicates the value of the call option at time T, the final termination date. 

N indicates the number of subintervals, measured as T/∆t, and j is the number of up 

movements at the current node. The value of an American option at earlier time t in 

the tree is given as the maximum of early exercise and waiting: 

[ ]{ })(,max)( ,0, ttcEXduStc jNt
jNj

jN �+−= −  (3.53) 

where ∆t is the time step defined in the tree, St is the price in node t, and Et(Θ) is 

defined below: 
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After finding the value of the option in all the nodes by backtracking, the final value 

of the call option at time zero is found in the first node of the tree. 

3.3.4.5 Discussion 

This is a generic presentation of the approximation of an American call option using a 

trinomial tree. T solution is dependent on both the time resolution and branching rules 

considered. The approach presented in this chapter has utilized recommendations 
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from Hull (2000), and is by no means perfect. The method nevertheless gives a very 

exact approximation for the option price if the tree is sufficiently large. 

3.4 Optimal investment timing 

This section is concerned with the theory of optimal investment timing. It is to a large 

extent based on Dixit and Pindyck (1994). Optimal investment timing is concerned 

with finding the maximum value of an investment by postponing it for the purpose of 

increasing the overall value. In practice, the approach returns a price above which 

investment is optimal. 

 

McDonald and Siegel (1986) considered the following problem for an investment: At 

what point is it optimal to pay a sunk cost I in return for a project whose value is V, 

given that V evolves according to GBM: 

VdzVdtdV �� +=  (3.55) 

Here, α represent the drift in the investment value, σ its volatility and dz a standard 

Brownian motion increment. Dixit and Pindyck (1994) commented that this implied 

that the current project value is known, whereas the future value is lognormally 

distributed with linear annual growth. The present value of the project payoff initiated 

at any future time T is given in equation (3.56): 

( )T
T eIVEVF �−−= )(max)(  (3.56) 

Here, E is the expectation operator, VT the value of the revenues at time T, I the 

investment, and ρ the discount rate, in our case replaceable by r, the risk-free rate. VT 

is assumed to follow GBM, and has expected value at time T given as 

T
T eVVE �

0)( =  (3.57) 

3.4.1 The deterministic case 

The maximization of F(V) for a deterministic growth rate α, is trivial. This approach 

returns an optimal investment time T*. Dixit and Pindyck (1994) showed that this can 

be done by setting the derivative of equation (3.56) equal to zero, and solving for T. 

This yields the following first-order condition: 

TT IeVe
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(3.58) 
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Provided7 ρ>α, solving for T yields the optimal waiting time: 
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Looking at equation (3.59), it is evident that if V is close to I, T*>0, and investment is 

suspended until T*. 

3.4.2 The stochastic case and the contingent claims approach 

For the stochastic case, the previous approach is not possible, due to the fact that a 

definite point in time where (VT-I) reaches the value of optimal investment is not 

possible to determine. Instead, the decision rule changes into finding a minimum 

value V*, above which investment is optimal. The investment is then initiated once 

V>V*. The solution for the optimal value V*, can be obtained either by dynamic 

programming, or by contingent claims analysis (CCA). This thesis is concerned with 

the latter approach.  

3.4.2.1 A necessary precondition 

Dixit and Pindyck (1994) described one necessary precondition for the CCA approach 

to function satisfactory. The exiting assets in the economy must span the stochastic 

changes in V. This means that it is essential that existing assets of the economy can 

replicate asset V’s payoff. As a result, there exists an asset x whose payoff is perfectly 

correlated with V. This is to capture the nondiversifiable risk of V. 

3.4.2.2 The value of the project 

Assuming constant investment costs, the isolated decision to invest in a project F at a 

time T in the future, has a present value in the form given in equation (3.56). This 

value is the present value of initiating the project at time T, receiving the benefits 

accrued from future contingent income, at the (sunk) investment cost I. McDonald 

and Siegel (1986) claimed that this could be seen as an exchange of I for the 

contingent asset F(V). The decision to exchange is viewed as an irreversible decision. 

3.4.2.3 The value of waiting 

The value of waiting to invest can be seen as an option. This option is the right, but 

not the obligation, to invest in project F at one point in the future. Let us assume this 

                                                 
7 If α>ρ, it is always optimal to wait, and the value of the project increases indefinitely. 
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right can be exercised at any given point in a predetermined time period 

{TMIN…TMAX}. For the sake of simplicity, we assume TMIN is zero. At any given time 

T, the value of waiting WT is given as  

[ ] T
TTTTT eWFW �

��

�−
++= ,max  (3.60) 

Equation (3.60) might require some explanation. The value of investing in the next 

time period is FT+∆T, and the value of waiting is given as WT+∆T. This value of waiting 

has structure similar to an American option, as discussed in section 3.3.4. The value 

of the option at time T is given as the discounted maximum of the two future values. 

Finally, the strike of the option to build is I.  

3.4.2.4 Optimal exercise value 

Following the above structure, the optimal exercise value V* is found as the project 

value above which the value of investment exceeds the value of waiting. Specifically, 

V* is the value of F, so that 

TT WF >  (3.61) 

Now, why not wait until prices increase even more? This can be explained by the 

dynamic relationship between growth in prices and discount rates. If exercise is 

delayed too long, the project might be worth less. This completes the option analogy. 

3.4.2.5 Interpretation of the model 

Recapping equation (3.59), this process tries to determine an optimal investment time, 

or in the presence of uncertainty, the price above which exercising a right to build a 

power plant yields the maximum payoff. The option structure uses the investment cost 

I as the strike and Vt as the project income. The value of an American option on the 

right to delay is defined as the maximum of exercising the option in the next period, 

or delaying the investment. The boundary value V* above which exercise is optimal, is 

then found by comparing the value of waiting to the value of exercising for each node.  

 

As mentioned, the strike of the project is its investment cost I. If I is increasing, the 

problem changes slightly. This was the original idea, put forward by McDonald and 

Siegel (1986), as they considered drift in both Vt and It. These is easily coped with by 

implementing minor changes to the tree. 
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4 Commodities and Energy models 

4.1 Commodity characteristics 

Energy is a commodity, or a consumption asset, as opposed to an investment asset, 

representing ownership only. Commodities differ from investment assets in several 

aspects. In this section we will highlight the main distinctions between a commodity 

and an investment asset. The differences can be categorized as follows: 

1) Delivery 

2) Convenience yield and storage costs 

3) Volatility and price jumps 

4) Short-run behavior 

Finally, we will discuss the long-term properties for commodities, and some special 

features of energy prices. 

4.1.1 Delivery 

Commodities are based on actual delivery. The transfer of a commodity is hence 

troublesome, as great resources are needed. For example, cotton and wheat requires a 

vehicle, oil requires pipes, and energy requires a power grid. Investment assets are 

essentially paper assets, and delivery costs are virtually zero. Temporary delivery 

problems might hence affect the commodity price. 

4.1.2 Convenience yields and storage costs 

The relationship given in (3.15) indicates a non-negative relationship between the 

market price of risk and a positive return, since a risky asset would have higher 

required return than a risk free. This is true for an investment asset, but not, in 

general, for a consumption asset, due to convenience yield and storage costs.  

4.1.2.1 Convenience yield 

Hull (2000) defined convenience yields as the benefits obtained from owning an asset, 

but not obtained by holding a futures contract. These benefits include the ability to 

profit from local shortages, or the ability to keep production running. This effect has 

been investigated by, amongst others, Telser (1958), who investigated futures prices 

of cotton and wheat.  
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Gjolberg and Johnsen (2002) added that if inventories are full, and shortages are 

extremely unlikely, convenience yield would approach zero. They furthermore 

claimed that convenience yield for energy was highly convex in inventories, hence 

preventing stock-outs and acute power shortages.  

4.1.2.2 Storage costs 

For most commodities, ownership involves storage costs, as commodities involve 

physical delivery. For some commodities, such as steel, these costs might be 

substantial. Everything else equal, storage costs will shift the required return of the 

commodity above the risk-free rate.  

4.1.2.2.1 Energy storability 

For normal traders, energy is not storable. This has one major implication for pricing. 

Setting up an arbitrage portfolio using spot prices can not be created. Following this 

line of reasoning it is tempting to contend that if the arbitrage argument cannot be 

used for pricing, it cannot be used to make risk-less excess returns either. This is only 

partially correct. Gjolberg and Johnsen (2002) reported that arbitrage opportunities 

might occur for energy producers with water reservoirs, because a reservoir might be 

considered a type of storage available to suppliers only. Provided that production can 

be quickly initiated or increased, this could be considered an arbitrage opportunity. 

For ordinary investors, however, energy can not be stored.  

 

The non-storability amplifies the price jumps, and hence the volatility, because 

inventories can not be used to “smooth away” temporary shortages. 

4.1.2.3 Implications for pricing 

In a risk neutral world, the growth of a commodity should include convenience yield c 

and storage cost u. The relationship in equation (3.16) should therefore be changed to 

the following risk-adjusted expected growth: 

��� −=−− )( ucr  (4.1) 

Here, µ is the expected growth, λ the market price of risk, σ the volatility and r the 

risk free rate of return. A positive convenience yield thus lowers the required return 

on the asset, whereas the storage cost increases the required return. Finally, Gjolberg 
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and Johnsen (2002) argued that the nature of hydropower producers implied that 

marginal storage cost u would be zero for electricity producers. 

4.1.3 Volatility and price jumps 

Due to the risk of temporary shortages, commodity prices are far more volatile than 

ordinary asset prices. Extreme situations of price shifts are normally referred to as 

jumps. These are results of either temporary supply shortages or demand shocks. For 

example, a sudden temperature decrease increases the demand for heating. As 

producers engage in arbitrage to benefit from these shortages, the prices are forced 

down again, leading to a mean-reverting behavior. These temporary irregularities 

finally lead to an advantage to holding spot over holding a forward contract, as 

discussed in the section above.  

4.1.3.1 Energy volatility 

In the Nordic energy market, hourly price jumps of 100% are known to happen. Lucia 

and Schwartz (2001) studied the Nordic power market, and found that the annual 

volatility of the daily log-prices was 189%. This is substantial, compared to other 

markets. The effect is mainly due to non-storability and bottlenecks. 

4.1.3.2 Long-run volatility and futures prices 

The volatility of long-run energy contracts is known to be much less than the 

volatility of short time contracts. As contracts are maturing and blocks are split up, 

prices become increasingly volatile. Hence, a good volatility function should decrease 

as a function of maturity. The low volatility of long-run prices has several reasons. 

Firstly, the uncertainty in long-term equilibrium should be reasonably unaffected by 

temporary shortages. Secondly, due to the illiquid nature of long-maturity contracts, 

the resulting volatility decreases. This can be viewed in light of non-trading effects, as 

investigated by for example Lo and MacKinlay (1999).  

4.1.4 Short-run behavior  

Schwartz (1997), amongst others, analyzed price behavior in commodity markets. His 

research indicated, as opposed to security markets, that prices did not seem to follow 

geometric Brownian motion. The effects, mainly attributed to the preceding three 

subsections, manifested themselves in autocorrelation patterns in commodity prices, 

and a tendency of prices reverting to a long-term equilibrium. Schwartz (1997) 
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commented that when prices move out of an equilibrium setting (because of the 

previously discussed jumps), producers would try to profit from these conditions by 

adjusting supply, hence restoring equilibrium8. This pull-to-equilibrium pattern seems 

to be typical for commodities, but not for investment assets.  

 

Knittel and Roberts (2000) investigated US energy prices, and commented that the 

prices in the Californian energy market did not pass unit root9 tests for hourly price 

data. This should not be surprising. Autocorrelation is a basic characteristic of any 

mean-reverting model, due to the existence of a pull towards a long-term equilibrium. 

As already discussed in section 3.2.1.5, consecutive prices in a mean-reversion model 

are not as arbitrary as prices following a pure Markov process such as GBM. 

4.1.4.1 Properties of energy price distributions 

Because of the large volatility, and the likelihood of extreme price jumps, the 

distribution of the random component of energy prices is very fat tailed. Knittel and 

Roberts (2001) argued that the forecasting performance of energy models were 

unacceptable for any practical purposes, such as pricing of energy based financial 

products. They looked at heavy tailed distributions like students t and Levy processes 

as alternatives to the normal distribution.  

 

Knittel and Roberts (2001) also reported an inverse “leverage effect”. This effect 

describes an asymmetric response in volatility to positive and negative price shocks. 

This asymmetry is mainly due to the impossibility of negative prices. Large negative 

price jumps are simply not possible. 

 

Eydeland and Geman (1998) emphasized the need for a stochastic volatility model in 

order to capture the fat tails and spikes displayed by the distribution of realized power 

                                                 
8 Fleten (2000) argued that the downward pressure is due to high-cost manufacturers entering the 

market, and consumers changing to cheaper sources of energy. 
9 A unit root test shows whether the difference between data at points t and t-1 has a trend. A failed test 

typically indicates possible autocorrelation in the data set, and that the time series is not stationary. 

Most autocorrelation tests should, however, be judged with a healthy amount of skepticism, as results 

in many cases are far from reliable.  
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prices. In conclusion, a stochastic volatility model might be crucial for making a good 

energy price model. 

4.1.5 Equilibrium prices 

As has been noted earlier, normal stocks tend to follow Geometric Brownian Motion 

(GBM), whereas commodity and energy prices are largely mean reverting. The 

problem with the mean reversion is that the actual mean is not observable, due to the 

reasons mentioned above. Nevertheless, using time series analysis, it is possible to 

generate a price mean to be used for modeling purposes. Whereas mean reversion 

models and autocorrelation can teach us a lot about short-time price behavior, it will 

not add anything significant to a model in the long run. This is because the long-run 

equilibrium is driven by the unobservable long-term mean.  

 

Several authors have discussed the long-run characteristics of energy prices. For 

example, Pilipovic (1997) modeled long-run energy prices as GBM. Her research 

indicated the presence of a long-run trend in energy prices. 

4.1.5.1 Seasonal prices 

Energy prices are subject to large seasonal variations. As can be seen from figure 4.1, 

the one-week energy forward price is subject to large weekly variations. In the 

summer, the spot price is a lot less than in the winter. The Nordic energy market is 

different than most markets when it comes to this seasonal pattern. Because the 

demand for cooling is low, and heating is high, the peaks are in the winter season, 

instead of in the summer, like in, for example, California.  
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Figure 4.1: Seasonal pattern in energy prices 

4.1.5.2 Short-term patterns 

Johnsen (1999) and Lucia and Schwartz (2001), amongst others, commented that 

there are noticeable intra-week and intra-day patterns in the Nordic energy market. 

Figure 3.1 is an excerpt of daily price patterns from Nord Pool’s spot (one-day 

forward). The graph shows that prices are peaking around 9 a.m. in weekdays, and a 

little later in the weekends. The general demand for electricity is also less in the 

weekends than in weekdays. 

 

Intra-day and intra-week patterns will not have a large effect in our analysis, as this 

thesis will use one-week forward prices as basis for our decisions. If priced correctly, 

the one-week forward contract should reflect the average price during a week’s 

production. For a run-of-river power plant that produces 24 hours a day and seven 

days a week, this should not have large impacts. 
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Figure 4.2: Intra-day prices for a random week. Source: www.nordpool.no 

4.1.5.3 Market efficiency in electricity markets 

Whereas normal capital markets are considered to be informationally efficient, 

Gjolberg and Johnsen (2002) commented that this might not be true for the Nordic 

energy market, and that arbitrage opportunities for producers might exist in 

combining future positions with storage. The market is still immature, at worst 

inefficient, although being one of the best-developed electricity markets in the world.  

 

Market inefficiency is typical for a market not yet fully developed. In stock markets, it 

has been argued that brokers might be entitled to extraordinary returns because the 

brokerage right is very expensive. A similar argument can be used with power plants. 

For example, one might argue that the large investment costs of a power plant entitles 

the owner to extra-ordinary income. In that case, flexibility should be embedded in 

the sales price of traded power plants. 



MSc Thesis, Department of Industrial Economics and 
Technology Management    
Narve Bjørdal and Anders Skogen 

Real Option Analysis of a Hydropower plant 39

 

4.2 Commodity price models 

In this section, we will present some commodity price models. These models are 

modeled for general commodities, or tailored to energy spot prices. They are, 

however, transferable to other variables. In this thesis, we will model precipitation, 

prices, revenues and river flow, so more than one pricing model is needed. 

4.2.1 General commodity price models 

Developed from the interest rate framework presented by amongst others, Vasicek 

(1977), commodity price models are often based on mean reversion. A mean 

reversion model is considered more able to capture the commodity characteristics 

outlined in section 4, than GBM or ABM. This only provides half the picture, 

however, as mean-reversion is a short-term property. Long-run commodity prices 

might have patterns closer to GBM. Nevertheless, most commodity and energy price 

frameworks utilize mean-reversion dynamics. The mean-reversion process has the 

property of reverting to an underlying function with time, and deals at least partially 

with local price jumps, by smoothing the differences down over time. 

4.3 The number of factors 

When working with stochastic models, we usually consider one, two or perhaps three 

factors in our analysis. The number of factors refers to the stochastic components in 

the model, and it is usually fair to assume that the addition of an extra factor increases 

the model complexity. 

 

The tractability of the model depends on its purpose and the resources involved in 

maintaining it. Lucia and Schwartz (2001) commented that one-factor models were 

analytically very tractable. The simplest models might have an added advantage of 

being easy to communicate. Their explanatory powers, however, might be 

significantly lower compared to more advanced systems. The art of modeling is the 

art of selecting the appropriate tradeoff between simplicity and accuracy.  
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Pilipovic (1997) commented that the recent deregulation of the energy markets was 

bound to cause changes in the way the prices act. Hence, the price models working 

today might not work tomorrow.  

 

4.3.1 Analytical modeling or simulation  

The number of price models available is large and increasing. There is a basic tradeoff 

between deriving analytical solutions and obtaining prices through simulation. The 

models in this thesis are limited to those whose solution is developed analytically. We 

are aware of the fact that many good models may be based on simulation. 

Nevertheless, we will, due to time and spatial considerations, base our analysis on 

analytically tractable models. 

 

4.4 Common spot price models 

A number of authors have investigated commodity and energy spot price behavior. 

Gibson and Schwartz (1990) analyzed oil prices using a two-factor model where the 

long-run price followed geometric Brownian motion and the convenience yield 

followed mean-reversion dynamics. Schwartz (1997) tested this model against a one-

factor pure mean-reversion model, and a three-factor model where the long-run price 

followed GBM, and both interest rate and convenience yield were assumed to possess 

mean-reversion characteristics. Although the models are based on various 

commodities, they seem to be more or less transferable to energy pricing, and offer 

analytical solutions of the SDE10. Gibson and Schwartz’ convenience yield model is, 

however, perhaps not intuitive enough to catch the masses.  

 

Lucia and Schwartz (2001) investigated various one-and two-factor models and their 

behavior in a pure electricity perspective. Pilipovic (1997) also developed a model, 

named the long-run/short run model, where the short-run deviations in price mean-

revert to a stochastic long-term mean modeled as GBM.  

 

                                                 
10 Stochastic Differential Equation. 
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Lucia and Schwartz (2001) discussed several models based on mean reversion. The 

following sections are based on their framework for modeling energy prices. Their 

models are largely based on Schwartz (1997). We start with the simple case of a 

single factor model in the price Pt. 

4.4.1 One-factor mean reversion model of Pt 

Let Pt be the spot price at time t, f(t) a deterministic seasonal function of the price, and 

Xt the stochastic part so that prices follow the model given in equation (4.2). 

tt XtfP += )(  (4.2) 

Furthermore, assume Xt follows a stochastic process of the form 

dzdtXdX tt �� +−=  (4.3) 

where κ>0, X0 = x0, and dz represents an increment in standard Brownian motion, 

explained in section 3.2.1. Then, letting Xt = Pt – f(t), and applying Ito’s lemma, we 

can rearrange the equations to produce a mean reversion process in Pt: 

( ) dzdtPtadP tt �� +−= )(  (4.4) 

where a(t) is a deterministic function of t, given as 

)()(
1

)( tft
dt

df
ta +=

�
 

(4.5) 

This process is often referred to as an Ornstein–Uhlenbeck process. Solving the above 

one-factor model for Pt yields the following solution of the PDE: 

∫ −− ++=
t tst

t sdzeeXtfP
0

)(
0 )()( �� �  (4.6) 

This model has several basic shortcomings. Firstly, it assumes the processes are risk-

neutral, a fact that might be far from true. Secondly, Lucia and Schwartz (2001) 

commented that a great Brownian motion increment might result in negative prices, 

and would hence lack realism. Finally, as the model stands here, its forward variance 

approaches zero in the long run, as the long run mean is deterministic. This is a quite 

unrealistic assumption. Finally, Pilipovic (1997) argued that the one-factor spot price 

model performed unsatisfactory with respect to the fat-tailed distribution of returns. 

4.4.2 One-factor mean reversion model of ln(Pt) 

For log-prices, this relationship becomes more difficult. Let ln(Pt) follow the 

dynamics given in equations (4.7) and (4.8). 
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tt YtfP += )()ln(  (4.7) 

dzdtYdY tt �� +−=  (4.8) 

After combining the two, we get the following mean-reverting process 

dZPdtPPtb ttt �� +) − (= ln)(  dP t  (4.9) 

)()(
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1
b(t)

2

tft
dt

df +


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
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�
 

(4.10) 

The derivation of equation (4.7) throughout (4.10) is given in appendix A. From the 

above equations, it is relatively easy to see that a mean-reverting process reverts to a 

long-term mean of f(t). It should also be noted that the noise term in equation (4.9) is 

geometric in nature, and will grow for increasing values of Pt. The process for Pt, 

given in equation (4.4) is, in contrast, following a generalized Wiener process. 

 

The one-factor model in ln(Pt) solves one of the problems presented in the first model. 

The Brownian motion increments in the log model can not result in negative prices. If 

the random shocks of ln(Pt) are normally distributed, the shocks of the true process 

will be log-normally distributed, and always positive. But the long-term volatility 

problem will still prevail.  

 

Secondly, Pilipovic (1997) argued that whereas the log of price mean-reverting model 

seemed to perform satisfactory in capturing distribution width, it did not solve the fat-

tails problem. Despite this, the log-price model still provides useful improvements. 

4.4.3 One-factor volatility 

A volatility model shown to be consistent with both the above one-factor models is 

given in equation (4.11). We will refer to this model as model A. 

)(),( tTA eTt −−= ���  (4.11) 

In this equation, σ is the standard deviation, and κ is the mean-reversion factor.  

 

Clewlow and Strickland (2000) discussed this type of volatility models, based on the 

analysis in Schwartz (1997). The model seemed to have great advantages in being 

simple and easy to interpret. It performed reasonably well in the short run, but as 

maturity increased, volatility approached zero. Consequently volatility in long 

maturity forward contracts would be understated, and for long-term planning 
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purposes, the model would lose its tractability. This is a common problem with one-

factor models. To increase the volatility to fit longer maturity contracts, an empirical 

model like the one presented in the next section could be used. 

4.4.3.1 An empirical volatility model 

Bjerksund, Rasmussen and Stensland (2000) suggested an approach to keep long-term 

volatility at a sensible level. Instead of the volatility given in equation (4.11) they 

introduced an empirical one-factor volatility model of the type given in equation 

(4.12). We will refer to this model as model B: 

c
btT

a
TtB +

+−
=

)(
),(�  

(4.12) 

This model converges to a long-run volatility c. The parameters a, b and c are 

constants given by a nonlinear regression of the volatility of observed forward prices. 

Later, Koekebakker and Ollmar (2001) investigated this model and others by 

decomposing the variance through principal component analysis. This model will 

provide a more reasonable estimate for the long-term volatility. 

4.4.4 Risk neutralization of the mean-reverting processes 

To correctly price expected future spot prices, the spot price process has to be risk-

neutral. By subtracting the risk from the expected return function, we end up with the 

risk-neutral function. From section 3.2.2.1, we know that if an asset follows a Wiener 

process with return µ and a standard deviation of σ, then the risk-neutral return is 

given as 

���� −=neutral  (4.13) 

The mean-reverting processes can be neutralized in a similar way. Let equation (4.8) 

be replaced by the following equation: 

** )( dzdtXdX tt ��� +−=  (4.14) 

where  

�
��

� −=*  
(4.15) 

Investigating this equation, the only difference from equations (4.9) and (4.10), is that 

the drift is reduced by a factor of λσ. In the above equations, dz* represents a standard 

increment in the risk-neutral Brownian motion process under the risk-neutral 

probability measure and λ is the market price of risk, assumed to be constant. After 
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rearranging, following the same steps as before, Lucia and Schwartz (2001) derived 

the following solution for the SDE: 

∫ −−− +−++=
t tstt

t sdzeeeYtfP
0

)(
0 )(*)1(*)( ��� ��  (4.16) 

The above equation is equal to equation (4.10), except for the risk factor α*(1-e-κt) 

and the risk-adjusted Brownian motion dz*(s). Consequently, the price of a forward 

contract maturing at time T should be equal to the risk-neutral expected spot price at 

the same point in time.  

)1(*))0(()()(),( 000
TT

t eefPTfPETPF �� � −− −+−+==  (4.17) 

As mentioned in section 4.4.1, one of the main disadvantages of the model above is 

that a large negative Brownian motion increment might result in negative prices. This 

problem can be overcome by changing to a log-price process, i.e. defining the process 

for ln(Pt) instead of Pt as above. A risk neutral log price process has an analytical 

solution given as 

∫ −−− +−++=
t tstt

t sdzeeeYtfP
0

)(
0 )(*)1(*)(ln ��� ��  (4.18) 

The expected value of the price, E(Pt) is given as 

[ ]




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)(ln(exp)( ttTtTt PVarPEPE  

(4.19) 

The extra term including the variance of ln(Pt) is a consequence of Ito’s lemma. 

Following this, the forward price is given as the expected future spot price under the 

risk-neutral probability measure. 

( ) ))1(
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(4.20) 

 

Clewlow and Strickland (2000) discussed the adequacy of the one-factor model 

presented by Schwartz (1997). They concluded that it behaved reasonably well in the 

short run, but equally bad in the long run, as the volatility function approaches zero 

for long maturity contracts. 

4.4.5 Performance of one-factor models 

How do the models behave in the market? Clewlow and Strickland (2000) discussed 

the adequacy of the one-factor model presented by Schwartz (1997). They concluded 

that it behaved reasonably well in the short run, but lacked realism in the long run, as 
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the volatility function approaches zero for long maturity contracts. The forward 

volatility is given as  

( ) )(, tT
spotF eTt −−= ���  (4.21) 

The problem is that as the maturity T increases, volatility converges to zero. As we 

will see later, Bjerksund, Rasmussen and Stensland (2000) avoided this problem by 

changing the volatility function to one converging to a non-zero value. 

 

Secondly, if a one-factor is used, it is normal to assume zero drift. This implicitly 

means no uncertainty in the long run, making price predictions deterministic of 

looking sufficiently into the future. For variables with non-zero time value, this 

assumption is not adequate. We hence need a more sophisticated model. 

 

Finally, the seasonal function of the one-factor models is very different. The model 

for Pt assumes constant seasonal variations, whereas the log-model has seasonal 

variations growing with Pt. For later models with drifts, this difference is not 

unimportant. 

4.4.6 The Lucia and Schwartz 2-factor model 

Lucia and Schwartz (2001) suggested a model composed of two factors, short run 

deviations χt and long-run equilibrium ξt where χt follows a mean-reverting process 

given in equation (4.23) and ξt follows a Wiener process given by equation (4.22). For 

brevity, the processes presented are assumed already risk-neutralized. 

���� ����	 dzdtd t +−= )(  (4.22) 

��
�
��
 dzdtd tt +−= )(  (4.23) 

In the equations above, κ represents the mean-reversion parameter, µξ the mean risk-

neutral drift, dt the standard time increment, and σχ and σξ are the volatility 

parameters of the processes. The Brownian motion increments dzχ and dzξ are 

correlated as shown in equation (4.24): 

dtdzdz ���� �=  (4.24) 

This model can be applied to several commodities. As we have previously seen, for 

energy applications, the price seems to be best modeled using some seasonal factor 
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f(t). Lucia and Schwartz (2001) incorporated a deterministic seasonal function into the 

Schwartz and Smith (2000) two-factor model. This resulted in the following model: 

ttXtfP �++= )(  (4.25) 

In the above model, f(t) is a deterministic function, Xt follows mean reversion, and 

εt follows a generalized Wiener process. 

4.4.6.1 Analytical solution for forward prices 

Lucia and Schwartz (2001) presented the expected forward price for the two-factor 

model as  

( ) TeefPtfTPF TT **
0000 )1()0()(),( ��� �� +−+−++= −−  (4.26) 

The model parameters P0, f(T) and κ are the same as in the one-factor model. In 

addition, ε0 is the long-term mean, µ* represents the risk-adjusted long-term drift, and 

α* is the risk-adjustment in the mean reversion, given in equation (4.27). Finally, σS is 

the short-run volatility.  

�
��

� S=*  
(4.27) 

4.4.6.2 Short- and Long-run risk premiums 

Schwartz and Smith (2000) argued that using two-factor models of this type, the 

short-term risk premium would be driven by the mean-reversion risk premium. The 

value of the mean reversion risk approaches zero for long maturity contracts, 

however, and will after approximately three years be very close to the long term risk 

premium. Hence, for a long-term model, we might choose to ignore mean reversion 

risk. This approach is similar to that of Schwartz (1998). This model will be discussed 

shortly. 

4.4.7 Schwartz’ one factor approximation 

Schwartz (1998) suggested a different approach. A two-factor model following long-

term GBM, and short-term mean-reversion can be expressed as follows: 

LL PdzPdtrdP �� +−= )(  (4.28) 

SS dzSdtd ����� +−= )ˆ(  (4.29) 

dtdzdz SL �=  (4.30) 
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This model has an analytical solution, but parameters are not easy to estimate. The 

model can, however, be approximated. Schwartz claimed that in the long run, this 

two-factor model could be simplified to follow dynamics of a single factor model 

following GBM: 

( ) ZdzZdtdZ ���� +−=  (4.31) 

Here, Z represents a shadow spot price, found by discounting long-term forward 

contracts at the drift rate. Using this approach, short-term deviations from the mean 

do not affect the shadow price Z. Continuing along these lines, he claimed that the 

risk-neutral drift should be fitted to forward prices. Hence, the drift in equation (4.31) 

can be substituted by 

ZdzZdtcrZdzZdt
T
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F
dZ �� +−=+
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(4.32) 

Schwartz commented that this model seemed to be working satisfactory when time to 

maturity was more than three years. The final issue of this approach, is volatility, 

which is covered in section 4.4.7.2.   

4.4.7.1 Seasonal variations on the Schwartz 1-factor approximation 

The inclusion of a seasonal factor using Schwartz’ 1-factor is trivial. Let 

ZtfP += )(  (4.33) 

ZdzZdtcrdZ �+−= )(  (4.34) 

Combining the two yields 

( ) ( )dzdttfPcrtfdP f(t)-P)()()(’ �+−−+=  (4.35) 

A solution of this differential equation is then given as follows: 

( ) ∫ −−− ++=−+=
t tcrtcrtcr

tt dzeetfetfPtfP
0

)()(
0

)( )()()( ��  (4.36) 

This model assumes deterministic seasonal variations, and is very similar to the mean-

reversion model of section 4.4.1. In the model, ε0 is the shadow spot price explained 

in the model above. This grows geometrically using the risk-free rate r-c. On top of 

this, a seasonal function f(t) gravitates around the long-term mean. 

4.4.7.2 Two-factor volatility and Schwartz’ approximation 

Schwartz (1998) suggested using the forward volatility as an estimate for the 

variations in price. The volatility can be divided into long-run and short-run volatility. 

Long-run volatility can be seen as macroeconomic changes, and uncertainties in the 
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long-term risk-free rate, etc, whereas the short-run volatility is more or less taken as 

temporary shortages, demand deviations, etc. 

 

Now, for the two-factor model, volatility comprises a long-run part σLR and a short-

run part σSR correlated with correlation coefficient ρLS. The forward variance is then 

given in equation (4.37). 
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(4.37) 

This model has several unobservable parameters, and the determination of the 

parameters is beyond the scope of this thesis.  

4.4.8 Joining two dependent stochastic processes 

A combined model for revenues has thus far not been discussed. This section gives a 

brief introduction to haw such a model can be modeled. Let us assume that we have 

two stochastic processes following GBM, whose dynamics are given in the equations 

below: 

PPP PdzPdtdP �� +=  (4.38) 

QQQ QdzQdtdQ �� +=  (4.39) 

Dixit and Pindyck (1993) showed that these two processes, when multiplied together, 

produced a new stochastic process following GBM, given as  

RdzdzRdtdR QQPPQPPQQP )()( ������� ++++=  (4.40) 

In the above equation, R=PQ could be considered the revenues of a project. The 

corresponding log-process follows a generalized Wiener process: 

QQPPQPQP dzdzdtRd ������ ++−−+= )
2

1

2

1
(ln 22  

(4.41) 

Hence, over any time interval t, the changes in lnR are normally distributed with mean 

and variance stated in the equations under: 

TQPQPR )
2

1

2

1
( 22 ����� −−+=  

(4.42) 

( )TQPPQQPR ������ 2222 ++=  (4.43) 

For commodity forward prices, the risk-neutral drift r-c replaces the former drift µ. 

Solving the differential equation with the appropriate boundary condition, the forward 
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price of the product R, is given by the product of the two forward prices, correlated 

with a correlation factor ρPQ: 

( ) ( ))()()( tT
TtTtTTt

yxxyeQFPFQPF −= ���  (4.44) 

This is an expression of the future value of revenues in one time period. The present 

value of the forward contract for delivery at time T is then given as follows: 

( ) ( ) ( )( ) TTTcrrt
TT
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T

QPPQQQ eeQePeQPFeRFV )(
0

)(
0000 )( �����−−−− ==  (4.45) 

Equation (4.45) contains several parameters. The shadow price P0, quantity Q0, 

convenience yield c, correlation ρPQ, volatility σP and σQ of price and quantity 

respectively, and the risk-free rate r can be estimated from historical values. The 

market price of discharge risk λQ is slightly worse to estimate, as forward contracts 

are not traded in the market. The next section suggests how this still can be 

determined. 

4.4.8.1 Market price of risk 

Essentially, equation (4.45) has two unknown parameters, λQ and ( ))(00 TRFV . In 

other words, provided we can obtain an estimate for V0 for another traded discharge 

power plant the market price of risk is given by the parameters. Since single period 

revenues are not traded, this means that the traded value of a power plant is required. 

The next section gives the value of such a power plant.  

 

Once λQ is determined, equation (4.45) becomes risk free, and should therefore be 

discounted at the risk-free rate. Rearranging the equation, we can estimate the present 

value of the revenues in period T as 

Tc
T

QPPQQQeQPRV )(
000 )( ����� +−−=  (4.46) 

4.4.8.2 Value of power plant 

The accumulated value of the plant revenues is then the integral of the forward 

contracts throughout the plant’s life, discounted at the risk-free rate.  
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(4.47) 

Finally, the corresponding plant value is the revenues minus running expenses and 

investment costs. These expenses are discussed in section 10.4. Note that the interest 



MSc Thesis, Department of Industrial Economics and 
Technology Management    
Narve Bjørdal and Anders Skogen 

Real Option Analysis of a Hydropower plant 50

rate r does not enter equation (4.47) explicitly, because the forward prices are 

assumed to follow a risk free trend given as r-c, and the risk free rate thus cancels out. 

We will, however, need the risk-free rate, as the risk-neutral drift of the forward 

prices is given as r-c, in our case 3.15%.  

4.4.9 Modeling the seasonal function 

As explained above, the price process consists of a deterministic and a stochastic part. 

The deterministic part of the equation is often considered being a seasonal factor. 

Modeling the deterministic part of the equation is normally done using ordinary least 

square (OLS) regression techniques. In some cases non-linear least squares (NLS) 

methods are necessary. Other techniques include maximum likelihood methods and 

filters, such as the Kalman filter. We will mostly use OLS and NLS methods to obtain 

the desired estimates. 

4.4.9.1 Selecting the deterministic model 

Various models for modeling prices have been suggested. Lucia and Schwartz (2001) 

suggested and tested four models, two based on ln(Pt) and two based on Pt directly. 

The seasonal variations are modeled either through a sine function, or twelve single 

dummy variables. The four models are given as 
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(4.48) 

 

 

(4.49) 

 

 

(4.50) 

 

(4.51) 

In the above models, Pt is the price, α is a constant, β, βi and γ are coefficients, Dt and 

Mit are binary variables indicating weekend or month, τ is a phase-constant and Xt a 

stochastic factor. As always, t denotes time. 

Models 1 and 3 use twelve independent seasons, where the individual βis are 

measured as a monthly factor. Models 2 and 4, on the other hand, use a cosine factor 

to model the seasonal behavior. Which approach is the best, depends on the 
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conditions. The twelve dummies would be best if the months are clearly independent, 

or if there is more than one demand peak a year. The dummy model will, however, 

perform worse in the transition between two months, because the function would 

jump to a new level. The sine function is smooth between the months, but fails to 

capture a more sophisticated trend than patterns of one crest and one trough. Adding 

higher order sine functions does, however, solve this problem. 

 

Figure 4.3: Spot prices with summer troughs. 

In this thesis, we have based our analysis on one-week forward contracts, making the 

weekend factor obsolete in our analysis. Other data set anomalies are dealt with in the 

following manner: 

• The last week of the year is combined with the first week of the next. Shifts in the 

seasonal function resulting from different week numbers are assumed minor and 

ignored. 

• Easter week might have shorter demand. This is ignored. 

• Summer holidays and public holidays are ignored. 

As the Nordic energy market does not have an air condition peak in the summer, 

prices are assumed to be satisfactory modeled through a sine function. Looking at the 

graph in figure 4.3 we can see that this assumption is reasonable, as no large peaks 
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appear in the summer. Looking at the forward curves, this seasonal pattern seems to 

be expected, at east in the near future. We hence model the seasonal factor as a cosine 

or sine function with a phase shift τ. The model presented under was tried both as a 

model for the spot price Pt, and its log price function ln(Pt). 

)cos()(
52

2 �
� � ++= +ttf  (4.52) 

4.5 Risk-free rate of return 

The risk-free rate of return was estimated as a weighted average of Norwegian long-

term bonds. The data was obtained from Norges Bank (www.norges-bank.no), and 

contained the bond rates over the last six years, divided into maturity of 3, 5 and 10 

years. The risk-free rate was then estimated as the average of the three, using the bond 

length as weights. 

4.5.1 Results 

The procedure presented above resulted in a risk-free fate estimate of 5.88%. This is 

used throughout our analysis.  
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5 Parameter estimation of Spot Price Models 

To find the value of the power plant by the use of risk-neutral valuation, we need to 

find a function for the risk-neutral expected forward prices. These prices will be used 

as strike price for the option valuation approach in section 11.1, and as part of a 

function for the implementation of the optimal exercise price. This section is therefore 

devoted to the determination of energy price and forward price parameters. Although 

we are aware there are more advanced models than the ones introduced in this section, 

we will, due to simplicity, only investigate one-factor models. 

 

The section starts with a description of the data set used and a discussion on the 

possible candidates for a deterministic seasonal function. The expected spot prices are 

then estimated, and a discussion on risk-neutralization based on forward prices 

follows. The analysis is independent of model chosen, although the final regressions 

for the various spot models will be model specific. 

5.1 Description of the price data set 

To predict prices, an appropriate term structure model is necessary. In order to make 

the problem analytically tractable we desire a collection of energy forward contracts 

of equal length, for all desirable maturity dates. This is not readily available at Nord 

Pool, because of the block structure, resulting in forward contracts of unequal length 

and time of maturity. For planning problems with seasonal implications, this is 

unsatisfactory. The problem does not disappear when contracts approach maturity, 

although the number of short maturity contracts is greater. The second problem is that 

energy is a flow commodity. Since a contract might span several days, its price needs 

to reflect an average load during the contract delivery period. Lastly, long-term 

energy contracts such as seasons or years are highly illiquid. This means they might 

not reflect the actual prices at any given time. 

 

To resolve the problems outlined in the above sections, and produce a sensible 

resolution for planning problems, Fleten and Lemming (2001) made a data set 

dividing energy contracts into one-week forward contracts. This is the data set we will 

be using in the pursuing analysis. The data set has been created based on the available 
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contracts in the Nordic energy market, and smoothed over the whole time specter. We 

will briefly explain how Fleten and Lemming has created the data set. 

5.1.1 The Fleten and Lemming data set 

Fleten and Lemming (2001) used a data set of contracts in the Nordic energy market.  

By assuming that contracts were delivered at a constant rate throughout the year, the 

large contracts were split into weekly contracts. Then, these contracts were averaged 

over the delivery period. The method assumed a constant risk-free rate r to get the 

following expression for the averaged forward price: 
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Here, the forward price F(T0,T1,T2) is an average of the series of  weekly forward 

contracts f(T0,s) over the time period T1 to T2, appropriately discounted at the risk-

free rate r. 

 

Finally, Fleten and Lemming (2001) smoothed the prices over the whole interval to 

obtain a smoothed forward curve, utilizing the two contracts immediately preceding 

and following the actual contract.  

 

We have decided to use only the parts of the data set that includes a full two-year 

forward curve of one-week contracts. To avoid overlapping, we use the closing price 

of every Friday for contracts delivering on a Monday-to-Sunday basis. The 1-week 

forward contract is thus three days from maturity, and is taken as our spot price. 

Using this criterion, the procedure resulted in our data set, consisting of 319 two-year 

(104 weeks) forward curves, or a total of 33176 points of data. The 319 data points 

hence represent 319 spot11 contracts, i.e. approximately six years of data, ranging 

from December 1995 to January 2002. 

5.1.2 Ten year contracts 

The second data set used comprises ten-year contracts from 1992 to 2001, given at a 

weekly resolution. A ten-year contract is a contract for constant delivery for ten 

                                                 
11 As mentioned, spot in this context, means a three-day forward contract for steady delivery in one 

week. 
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consecutive years, starting at the beginning of the next calendar year. The price shown 

is hence the expected average price during the next ten years.  

5.1.3 One-year forwards 

One-year forwards are contracts for constant delivery during a given year. Our third 

data set comprises the longest maturity contracts for Nord Pool from the years 2000 

and 2001. The set from 2000 therefore includes one-year forwards for 2001, 2002 and 

2003, whereas the data from 2001 include one-year forwards for 2002, 2003 and 

2004. The data set includes prices with weekly resolution. 

5.2 Estimating the long-term drift 

The long-term risk-neutral price trend should be fitted to match the forward data 

available in the market, because forward prices represent a risk-neutral estimate of the 

expected price. It is common practice to adjust only the drift term to make the process 

risk-neutral. Hence, if the trend is risk neutral, then the prices based on the trend 

should also be risk-neutral. 

  

Since our project has a life span of 40 years, we need to obtain contracts maturing as 

far as possible into the future. It will not be sufficient to estimate the trend over the 

next three years. The following points are considered supportive evidence for this 

conclusion: 

• The unclear shape of the seasonal factor present in short term contracts makes the 

trend blur. 

• Short-term deviations from the long term mean, due to for example reservoir 

levels will produce out-of-equilibrium prices. 

• The general unobservable nature of the long-term mean in short-run prices 

Instead of using the Nord Pool prices, the market’s opinion on a future level of the 

energy prices can be found in prices so far into the future that temporary deviations 

are assumed to be zero. The problem with this approach is that the collection of 

forward data available at Nord Pool does not include long maturity contracts, as the 

longest contracts started trading three years before delivery. For longer maturity 
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contracts, we need to turn to the OTC12 market, to obtain price data for ten-year 

contracts.  

5.2.1 Estimation approach13 

To estimate the trend in the forward prices, we need as much information as possible. 

Assuming that a ten-year contract starts the delivery next year, we will use the next 

three one-year contracts to estimate the immediate prices. After year 3, Nord Pool 

does not provide longer contracts. We then assume that beyond the closest three 

years, forward prices grow at a constant rate, equal to g% annually, based on the 

forward contract in the market with the longest time to maturity. In other words, the 

forward contract for year 3 serves as a “shadow price” for the trend beyond this point. 

This forward growth rate is assumed to be risk free, as forward contracts are priced 

using risk-neutral measures. If our first year of forwards is 2002, the structure 

becomes as follows: 
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Table 5.1: The growth structure of forward prices 

Following this, we now have a series of actual and implied one-year contracts, up to 

ten years into the future. The (risk-free) discounted value of these contracts should be 

equal to the risk-free discounted value of the ten-year contract. Figure 5.1 summarizes 

the approach. 

 

Figure 5.1: The estimation procedure for the long-term trend. 

                                                 
12 Over the counter. 
13 This approach is based on an approach in Dobbe and Sigmo (2002). 
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5.2.2 Results of the long-term trend estimation 

The procedure described above was run on a data set containing prices from the years 

2000 and 2001. It should be noted that the ten-year contracts are quite illiquid, and 

would hence probably produce an erroneous magnitude of the volatility. We therefore 

do not attempt to use these prices to find volatility estimates. 

 

Using the Excel solver, an average drift of the forward prices was estimated by 

minimizing the squared difference between the discounted values of the ten-year 

contracts and the trended data for 47 different trading days in 2000 and 2001. The 

results are summarized in table 5.2. As can be seen, the geometric forward price trend 

was estimated to be 3.15% on average. This corresponds to a drift14 in ln(Pt) was 

0.61%. Looking at the last few years of actual spot prices, these are subject to a 

negative trend. This is, however, mainly due to the dry year of 1996. Looking at the 

two-year forward curves estimated from Nord Pool, an assumption of 3.15% growth 

seems plausible.  
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Table 5.2: Results of the trend estimation 

5.3 Seasonal function 

Section 4.4.9 outlined several candidates for the seasonal function for energy prices. 

The presence of a price crest in the winter and a corresponding trough in the summer 

suggests that a normal cosine function should have the ability to capture the long-term 

trend. This selection is backed by the findings of, amongst others, Lucia and Schwartz 

(2001). The seasonal function for prices is therefore given as 


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52
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t
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(5.2) 

                                                 
14 The drift in ln(Pt) is (r - c - ½σ2). See for example Hull (2000). The trend was implied from the 

results of the geometric trend, and requires a starting point. For Pt=172, the drift is Error!. 
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5.4 Appropriate spot price models 

There are several approaches and models possible to estimate the model parameters 

for the price. In section 4.4, we discussed several candidate models for the spot price. 

Since our planning project spans 40 years, a one-factor model without drift would be 

worthless. We therefore impose a deterministic drift in the model. For the sake of 

comparison, we will use the following two models: 

Model 1: A one-factor mean-reverting price model, from Lucia and Schwartz (2001) 

Model 2: A one-factor log-price model with short-term mean reversion, as given in 

section 4.4.2. 

5.5 Regression results for the spot price models 

The following tables include the results of the parameter estimation of the spot price 

models. The parameters are estimated using a non-linear regression approach. A total 

of 319 spot prices were used in the regression.  
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Table 5.3: Parameters of the 1-factor model for price Pt 

In table 5.3, the constant given reflects the starting value at the beginning of the data 

set. A price series starting at a later time T using this value must therefore be adjusted 

with a drift. This drift will be assumed constant, and was determined in section 5.2. 

For example, the constant one year later, is expected to be  

69.16362.158 0315.0 =e  (5.3) 

The next model, is a one-factor log-price process. Here, the drift is dependent on the 

starting point P0. The log-trend can then be determined as ln(1+0.315)/ln(P0)=0.61. 

This drift is not explicitly modelled here, but used later to take into account the drift 

in energy prices. 
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Table 5.4: Parameters of the 1-factor model for ln(Pt) 

It should be noted that the phase angle τ was not significant for any of the models. 

This is mainly due to the peak in energy prices around January. A cosine function 

starts at a maximum value when (Error!+τ)=0, and τ would hence bee too close to 

zero to be significantly different from zero using only 319 data points. Another 

problem is that κ is quite small in these regressions. This might be explained by the 

fact that the model does not capture the dry/wet season differences in a satisfactory 

way. An alternative regression fitted to dry years, where the seasonla function fits 

better, is included in appendix B. Using this approach, the magnitude of κ increases to 

about 0.135, a more realistic level. 

5.6 Spot price volatility 

Spot price volatility can be estimated in a number of ways. For a simple oberview of 

the most common approaches, see Hull (2000). The methods include finding the 

differences between consecutive prices, or calculating the standard deviation of 

returns. The return can be calculated in different manners. One suggestion, used by 

Koekebakker and Ollmar (2001) is as follows: 
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Assuming that returns are “small”, this is an adequate approximation. A second 

possibility is to calculate the returns as 
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The above approaches only work if seasonal and trend effects are significantly smaller 

than the noise. If this condition is not appropriate, the data has to be de-trended before 

the procedure can be used. Investigating energy prices, an assumption of volatility 
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much greater than the trend seems plausible. Having obtained the returns, an estimate 

for the volatility of spot prices, can be found as the standard deviation of the returns. 
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(5.6) 

This gives the weekly volatility. An annualized measure can be obtained by 

multiplying by √52. 

5.6.1 Results 

The estimation of spot price volatility was done using the 319 one-week forward 

prices as proxies for the spot price. The results are presented below: 

Model Weekly volatility Annual volatility 

Model 1 10.22% 73.73% 

Model 2 10.48% 75.58% 

Table 5.5: Spot price volatility 

The two estimates above are almost identical, as they should be, as model 1 is an 

approximation of model 2. We will nevertheless mostly use model 1, as this is most 

convenient. 

 

Observe that this volatility reflects the average volatility throughout six years of data. 

If a more exact volatility pattern is needed, GARCH models or other autoregressive 

volatility estimators might prove to be useful. We will, however, not attempt to fit the 

volatility to the seasonal patterns. 

5.7 Market price of risk 

The model parameters presented in the previous section comprise an expected spot 

price model. It does not reflect a risk-neutral spot price, however, as the regression is 

done on spot prices. To find the market price of risk, we need to estimate the 

systematic difference between the model built and the actual forward contracts given 

in the data set. Sadly, the seasonal function, as presented in equation (5.2) does not 

appropriately capture the seasonal variations in the spot prices. The deviations caused 

by the seasonal function are hence greater than the risk. In effect, it has been 

impossible to develop a fair estimate for the market price of risk using these data.  
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We do, however, offer a solution to the problem. We have obtained a data set of 

expected spot prices. The difference between these data sets gives an estimate of the 

market price of risk.  

5.7.1 The data set of expected spot prices 

The data set includes expected spot prices at 48 selected dates over the same period as 

our original data set. A specific date includes an uneven number of spot price 

predictions, ranging from 105 to 254 weeks into the future. Subtracting the forward 

prices at these dates from this data set produces a new data set, explainable only 

through risk. By performing this subtraction, we obtain a new data set of 48 trading 

days, and a total of 4680 differences.  

5.7.2 Estimation of the market price of mean-reversion risk 

Using a one-factor price model of the type given in section 4.4.1 or 4.4.2, the 

difference between forward and expected spot price is given as 

)1( Ted �
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The λ of equation (5.7) represents the market price of mean-reversion risk, and is 

present in both the log model and the pure price model of Lucia and Schwartz (2001). 

The volatility is given as σ, and measured from the spot prices. Finally, κ is the mean 

reversion parameter, and T represents the weeks to maturity. We can now estimate the 

risk as the difference between the two observed values. 

5.7.2.1 Results 

An estimate for σ was obtained in section 5.6, using spot prices. The estimate of κ 

was estimated in section 5.5, and found to be 0.029 on a weekly basis for the one-

factor mean reversion model. Using a non-linear solver, we regressed equation (5.7) 

against the systematic differences. The estimate for λ was hence found to be 9.82 

NOK/KWh for the price model. Given this, a long-term measure of risk can be taken 

as the value of equation (5.7) with T=∞. This yields an overall mean-reversion risk 
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level for long-term contracts approaching 33.86 NOK, or 19.26% for the log model15 

described in section 5.5. 
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Figure 5.2: Systematic differences between expected spot prices and forward prices 

As can be seen in figure 5.2, the function does not fit short maturity contracts. The 

shape of the observed data in the short end of the curve should be taken with a bit of 

caution, however. Since energy traders hedge their exposure in the short run, the 

market price of risk for short maturity contracts should in fact be expected to be 

negative. Hence, the expected forward prices seem to be over-estimated for short-run 

prices. Since short-term structures are not relevant for pricing long-term contracts, 

however, the long end of the curve is considered more important. This is also where 

the function from equation (5.7) fits the best. 

5.7.2.2 Discussion 

Lucia and Schwartz (2001) investigated the market price of risk for daily contracts. 

They found that the RMSE16 of prices was approximately NOK 11.90 on a daily 

basis, and that λ was almost always positive. For longer contracts, a considerably 

higher risk premium could be expected if the relationship in equation (5.7) holds. 

Hence, a risk premium of 19.26% might prove to be a fair value for the long-run 

                                                 
15 The log change is dependent on the initial value of Pt. The log-change is then found as the log of the 

actual price change due to the risk-neutralization, or as risk/price. 
16 Root Mean Squared Error 
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mean-reversion risk. We note, however, that this is a high level of risk, and that 

uncertainties in the long-term mean  might explain a considerable amount of risk. 

5.8 Forward price models 

This section is devoted to pure forward price modeling. The analysis above caused 

several problems when the market price of risk was to be determined. Instead of going 

through spot prices to obtain risk-neutral prices, we can model the forward prices 

directly, as forward prices are, per definition, risk free. This simplifies the estimation 

procedure considerably. The downside is that this approach leaves the market price of 

risk undetermined. The analysis in this section is very similar to the spot price 

analysis. The section will therefore be briefer in nature. 

5.8.1 Data set 

The data set contained 319 weeks of data, each week comprising 104 forward prices 

with maturity from 1 to 104 weeks. The set is the same as used in the spot price 

models above, only the whole data set is used to determine the shape of the forward 

curve instantaneously. 

5.8.2 Seasonal function and models  

The seasonal function is the same as of the expected spot price models discussed in 

section 5.3, and the forward price models are essentially equal to the expected spot 

price models from section 5.4. 

5.8.3 Regression results 

The following section lists the parameters estimated from the forward data. The 

forward curves used for the regressions are given in the tables. Observe that for the 

two-factor model, the market price of risk is not part of the regression, because the 

forward prices are already risk neutral.  



MSc Thesis, Department of Industrial Economics and 
Technology Management    
Narve Bjørdal and Anders Skogen 

Real Option Analysis of a Hydropower plant 64

 

$�����������+����
�����������

�������������A� TefPtfTPF �−−+= ))0(()(),( 000 �

(�����	��� 8�	���	�� �	�?�8����� B�����&!@�37� 2**���&!@�37�
34C�50C5� 
"&?'#$� �?
%�� 
"&?���� 
"&?#�"�
>0��0� �%?

�� �?
�%� �#?%&%� �%?'���
502� �?&'$� �?��
� �?&''� �?&'"�
D0((0� �?�
$� �?���� �?�
'� �?�
$�
5������) 	����������������+	�µ�����	��������'?
!@���������?�
;�� �0.869� �

Table 5.6: Parameters of the 1-factor approximation of the forward price model 
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Table 5.7: Parameters of the 1-factor forward log-price model 

The parameters presented above comprise a risk-neutral estimate of the forward 

curve, and do not, as spot prices, require risk-neutralization.  

5.8.4 Forward volatility 

How do we obtain an estimate for the forward volatility? Koekebakker and Ollmar 

(2001) suggested two different approaches for this purpose. Either the difference 

between two consecutive prices could be used, or the return between these. In section 

5.6, we presented two ways of estimating spot price returns. In this section, we will 

use model 1 to find an estimate for the return, and then use two forward volatility 

models to fit the existing data. 

  

In section 4.4.3, we introduced two different forward volatility models, and called 

them model A and B: 
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Model A is consistent with a normal mean-reversion model, whereas model B is an 

empirical model fitted to observed forward prices. These models can be fitted to the 

observed volatility of the available price data. Koekebakker and Ollmar (2001) 

investigated the volatility of energy prices, and suggested using the forward contracts 

of length 1, 2, 3, 4, 5, 6, 7, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 70, 88 and 104 

weeks. This captures the level of the long tem contracts, without over-fitting the long 

run smoothed prices. We will try to fit both the models to both the selection suggested 

above, and the whole data set, because the long-term perspective enforces our interest 

in long-term volatility behavior. 

5.8.4.1 Method used 

The data set used was the normal smoothed set of forward prices. For every (weekly) 

forward maturity T=1 to 104 the return was calculated using the formula given in 

equation (5.10). This is identical to model 1 of section 5.6. 







= +

t

t

F

F
return 1ln  

(5.10) 

At each maturity T, the standard deviation of the return is a measure of the volatility. 

This standard deviation of return was then plotted against maturity. This was done 

both for the selection suggested by Koekebakker and Ollmar (2001), and for the 

whole data set. The resulting graph was fitted to model A and B using a non-linear 

regression optimizer in SPSS. 

5.8.4.2 Estimation results 

The regression parameters are reported in table 5.8 and table 5.9, and a plot of the 

functions is given in figure 5.3. 
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Table 5.8 Model A parameter estimates 
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Table 5.9: Model B parameter estimates 

As can be seen from table 5.9, the results from the regression using the selection 

produces an insignificant long-term trend, whereas the regression using all the data 

produces a highly significant, but lower estimate. 
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Figure 5.3: Volatility and volatility functions 

5.8.4.3 Implied volatility 

The implied volatility is calculated as the volatility of options contracts. It is found by 

observing the option price, forward price at maturity, strike and time to maturity. 

Using an option formula, such as a modification of Black and Scholes (1973), the 

volatility is fitted to the observed data. Using an excel spreadsheet obtained from 

APX, we found that an option maturing four years into the future has implied 

volatility of approximately 15%. This should be the approximate level of the long-
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term volatility. Investigating table 5.9 we find that model B fitted to all the data 

converges to a long-term volatility of 14.5%, very close to the implied volatility. 

5.8.4.4 Discussion on forward volatility 

Comparing our two models to the implied volatility, we find that model B produced 

the best results. As can be seen in figure 5.3, model A greatly underestimates the 

long-term volatility for the selection, and worsens for long maturity contracts. 

Although regressing over the whole data set improves the estimate, it still approaches 

zero for long contracts. Model B is considerably better, but the constant level c is not 

significant using only parts of the data set. This could be expected, however, as the 

analysis after 52 weeks contains a total of 3 data points. Consequently, the models 

fitted to all the data performed considerably better in the long run than the model 

fitted to the selection only. Although over-fitting might occur, it is important to have 

the volatility as good as possible in the correct interval. When pricing long-term 

contracts, the volatility structure should be made consistent with observed prices, as 

long as the model permits these changes. Besides, the results match the implied 

volatility observed in the market. In conclusion, model B is the better choice for a 

long-term price volatility model. 

5.8.5 Discussion of the models estimated 

Looking at the results of the spot parameter estimations, we see that the seasonal 

variations are large and significant, but not equal. Investigating forward contracts, we 

find the presence of the same kind of trend. We are therefore fairly confident about 

the future presence of a defined seasonal shape in prices. 

 

For the long-term trend, our estimate of 3.15% annual price growth seems to be fair. 

The number is fairly uncertain, however, as the value ranges from 1.42% to 5.45%. 

Our estimate of 3.15% annual growth gives a price growth of approximately 5 NOK 

from a power price of 160 NOK. According to an anonymous17 source, this 

assumption was fair, and close to the company’s own measures. The determination of 

price trends in the main data set obtained from Nord Pool, proved to be impossible. 

This is due to a variety of reasons. Firstly, the data set is too short, and too dependent 

                                                 
17 The comment was considered privileged information, and he therefore listed anonymously. 
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on short-time deviations. Complex seasonal patterns and dry years complicate the 

picture considerably, and make the use of ten-year contracts necessary. 

 

It should also be mentioned that the data set is relatively speaking far too short to 

estimate the parameters needed. Modeling the unobservable mean by the deterministic 

function might prove to give bad results. The mean itself becomes a function lying in 

the middle of dry and wet years, not necessarily reflecting the real mean.  

Another approach would be to model energy prices using the wet years18 only and 

then use a jump probability for dry years. In appendix B, the parameters for the 

process are measured on the basis of the wet years. The estimates of the mean-

reversion and seasonal effects are far greater for this set. This suggests that it might be 

fruitful to estimate short-term variations on only parts of the data set. 

 

In order to properly value energy prices, a higher order model, such as a two-factor 

model, might be considered. The addition of jump-diffusion and time-varying 

volatility will probably improve the forecasting abilities. For a discussion of these 

models, Knittel and Roberts (2000) investigated jump-diffusion processes, whereas 

Kellerhals (2001) discusses pricing electricity forwards using stochastic volatility. 

These additions might come at the expense of analytically tractability and simplicity, 

however.  

 

The market price of risk has been very difficult to determine based on the available 

data. The problem has to a large degree been avoided by fitting models to the already 

risk-neutral forward curves instead. A positive long-run risk premium as reported by 

Pirrong (2000) for the PJM markets, should, however, be present. Due to the large 

amount of noise in the data set, however, it is extremely difficult to quantify. 

 

                                                 
18 In the price data set from 1996 to 2001, 1997-2000 are considered wet. 
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6 Weather derivatives frameworks 

Since the bulk of the weather derivatives market is made up of temperature-based 

contracts, such contracts have also been the main point of attention from the academic 

community. However, it is still quite a novel field of research, and only few articles 

have been published on the subject. Approaches for calculating a fair price of a 

derivative (typically an option) vary but can be broadly put in four categories: 

Stochastic models, Equilibrium approaches, pricing methodologies using only the 

statistical properties of the underlying and burn analysis. This section gives a brief 

summary of models developed. 

6.1.1 Stochastic models 

The most common types of models are stochastic models. A one-factor model is 

convenient for analytical tractability, and this approach has been taken by amongst 

others Dischel (1999), Geman (1999), Torro, Meneu and Valor (2001) and Alaton, 

Boualem and Stillberger (2001). Dischel (1999) also developed a two-factor model 

including stochastic volatility, while Brody, Syroka and Zervos (2001) extended the 

notion of Brownian motion to fractorial Brownian motion19 to better capture long-

term interdependencies in temperature time series.  

6.1.2 Equilibrium Models 

A second type of models is equilibrium approaches incorporating the agent’s utility 

function. Frameworks for valuing general weather instruments in such a setting was 

developed by Cao and Wei (2000) and Davis (2001). Such models have little appeal 

outside the academic community, as they generally introduce hard-to-measure factors 

such as aggregated dividend on the market portfolio and risk preferences of agents. 

6.1.3 Models using the distribution of the underlying 

McIntyre (1999) introduced a model for valuing temperature-based options by 

calculating the expected loss of a contract by integrating over the probability 

distribution of the underlying. His methodology has several resembles to the Black-

                                                 
19 Fractorial Brownian Motion is a generalization of Brownian motion calculus and is considered as 

one of the simplest stochastic processes that exhibits long-rang dependence (Brody, Saroka and Zervos, 

2001) 
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Scholes framework. Martin, Barnett and Coble (2001) used a similar methodology for 

precipitation derivatives, but recommended using the gamma distribution as it cold be 

fitted more accurately to distributions of precipitation observations than the normal or 

lognormal distribution.  

6.1.4 Burn analysis 

A second commonly employed pricing approach is burn analysis. The idea is to 

calculate the payoff from a given contract over a set of historical outcomes for the 

underlying and take the average payoff as the fair price of the contract. This method is 

popular due to its simplicity, and can be applied to virtually any contingent claim. 

Care has to be taken with data sets that exhibit some long-term trend (Dischel, 2001). 

Burn analysis applied on precipitation derivatives is discussed in the next chapter. 

6.1.5 Applicability to precipitation derivatives 

A survey of the available stochastic models applied to temperature-based weather 

derivatives did not find any frameworks that directly fit precipitation derivatives. The 

main reasons are that precipitation follows a different process than temperature – a 

negative value of precipitation is impossible, indicating that a model for the logarithm 

of the precipitation level might be appropriate. Furthermore, whereas temperature is 

continuos, precipitation is discrete in its nature, and this will affect the development 

of a stochastic model. The simpler approaches such as expected loss and burn analysis 

are easily adapted to alternative underlyings, and we return to burn analysis for 

pricing precipitation derivatives in chapter 8.  
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7 Precipitation models  

This section discusses common properties of stochastic precipitation models and the 

data set we use as source for our analysis. Since our ultimate aim is to develop 

derivatives written on a precipitation index, we argue why standard hydrological 

models employed are inappropriate if the aim is to derive closed-form solutions. 

Finally, we develop a one-factor stochastic model for the Enron precipitation index 

and test how well this model performs.  

7.1 Data used 

As a basis for the analysis, we use a subset of the Scandinavian Precipitation Index 

developed by Enron Nordic. The index consists of 19 Norwegian and 8 Swedish 

measurement stations, and the index is constructed such that 1 index point equals 1 

GWh of generation potential. The index we use was aggregated from precipitation 

time series for the Norwegian stations in the index. A detailed overview of the index 

can be found in Appendix C. 

7.2 Modelling precipitation 

7.2.1 Hydrological background 

Following Shaw (1988), the basic idea behind stochastic hydrological models for 

precipitation is normally based on a two-step process where the first step consists of 

determining whether a given day at a given site is a ”wet day” (a day with measurable 

precipitation) or a ”dry day” (a day with no or not measurable amount of 

precipitation). In simple models, the distribution of wet and dry days is driven by a 

Bernoulli process where the probability of a wet day is higher if the previous day was 

a wet day than if the previous day was a dry day. If a day is a wet day, then the 

intensity of the rainfall is modelled by sampling from a common distribution with a 

minimum of zero and no upper bound such as the lognormal or the gamma 

distribution. (See i.e. Shaw, 1988 or Moreno, 2001) The gamma distribution is most 

commonly employed, since it can be fitted with greater accuracy to a precipitation 

model with varying time resolution (Marin, Barnett and Coble, 2001). The intensity of 

precipitation on a wet day can be dependent on the intensity on a number of previous 

days (Moreno 2000).  
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There are numerous refinements to this basic approach available (see i.e. Cameron et 

al, 2000) for a good discussion on stochastic precipitation models), and the most 

commonly employed in Norway is a variant of the Bartlett-Lewis model (Skaugen, 

2002) developed by Onof and Weather (1994). It has seven stochastic parameters and 

is too complex for deriving analytical expressions for derivatives prices. 

 

It is known that precipitation levels on different sites are inter-dependent, since 

weather systems tend to move over time, hence it would require a complex estimation 

of correlation parameters between the stations in the index if we choose to model 

stations individually (Killingtveit, personal communication). On this basis, we choose 

to model the index directly as opposed to modelling the individual stations in the 

index. This makes the standard hydrological approach outlined above less relevant, 

since it is unlikely that it will not rain on one out of the 19 stations in the index on a 

given day, hence the wet-dry distinction become meaningless. In fact, only 1% of the 

days are indeed dry days. This could be mended by choosing a cut-off value and 

define the days where the index is lower than this as dry days, but this would be 

arbitrary and unnecessarily complicate the model development. 

 

From the preceding section, it is obvious that if the underlying stochastic model for 

precipitation aims to take research on stochastic hydrology into account, simulation is 

the only possible result. Our main goal, however, is to make our development 

analytically tractable and we therefore chose a simplified approach. The one-factor 

model suggested by Schwartz (1998) incorporates some of the key features of 

precipitation time series, namely seasonally dependent mean and mean-reversion. The 

mathematical properties of this model were discussed in section 4.4.2. This model is a 

gross oversimplification of reality, but as we shall see later, the model performs 

adequately compared to historically observed data. 

7.3 A one-factor model for precipitation 

7.3.1 Aggregating data 

The purpose for hydropower generators is to hedge against continous precipitation 

shortfall over weeks if not months (Gustavsen, personal communication). 

Furthermore, AEP Energy, the company maintaining the index uses weekly- 
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accumulated precipitation as their reference, so we want to keep the same resolution 

to compare our modelled prices to market quotes. On this basis, we choose to model 

weekly-accumulated precipitation. .  

 

Aggregating to weekly totals further helps clarifying the seasonal trend and reducing 

the volatility of the data set. A plot of the weekly-accumulated index values and 

weekly standard deviation measured in percent is presented below 
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Figure 7.1 Average weekly accumulated index values and weekly standard deviation 

Since precipitation has a logical lower bound of zero, a log-transformed model of the 

time series is convenient. For the rest of this analysis, we will take  

)ln( tt IndexI =  (7.1) 

7.3.2 The deterministic part 

The deterministic part of the stochastic model serves two purposes, firstly it expresses 

the expected outcome at a given point in the future and it determines the long-term 

mean to which the stochastic values revert. By inspection, the seasonal pattern in the 

precipitation time series looks simple, although a higher-order transformation might 

be required to capture the shape. Consequently we seek a model of the form  

))(2sin()sin( 22 ��
��
�� +++++= tttI m
t  (7.2) 

This function is determined by fitting the equation 

)2cos()2sin()cos()sin()( 654321 tatatatataatY ���� +++++=  (7.3) 

to the weekly accumulated precipitation index values yielding 
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Table 7.1 Regression coefficients on the deterministic precipitation function 

 

No significant linear trend is observalble in precipitation as opposed to temperature 

time series – that is, there is no significant evidence of increasing or decreasing 

overall precipitation level in the data set.20 

The expression for mean precipitation can be rewritten to 

)2sin(13.0)648.0sin(34.047.7 ttI m
t �� +++=  (7.4) 

7.3.3 Fit to observed data  

As shown in the plot of the deterministic function versus historical data below 

confirms the low fit obtained through the regression  
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Figure 7.2 Deterministic component of precipitation model versus observed values 

 

                                                 
20 However, Schieldrop (2002) noted that whilst the overall precipitation level is unchanged, there 

seems to be evidence that the discrete outcomes have changed. He found that extreme values occur 

more often the latest ten years than during the preceding decade. 
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The low R2-value does not mean that the fit is a bad one, an alternative interpretation 

is that precipitation levels are highly volatile and the noise process is an important 

component of the model. Indeed, when run against weekly averages, the R2 – value is 

69,4% indicating a good fit to the seasonal fluctuations.  

7.3.4 The noise process 

We know from the model formulation in section 4.4 that the mean-reversion 

parameter κ determines how quickly the model reverts to its deterministic value. κ is 

found by analyzing the autocrorrelation function. The MINITAB printout is presented 

below 

 

Figure 7.3 Autocorrelation pattern for precipitation time series residuals 

The autocorrelation coefficients are 
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Table 7.2 Autocorrelation coefficients for precipitation model residuals 

 

We see that only the first two lags are significant, and the plot reveals that the 

coefficients die down in an exponential manner. This is the case in the one-factor 

model we use. An estimator for φ  is  the first-order coefficient yielding an estimate of 

κ = 1 – φ = 0.75 for the mean-reversion parameter in the model. 

This is a surprisingly high value of the mean-reversion parameter, indicating that the 

time series are almost memory-less. This is contrary to our assumptions, but a reason 

                                                 
21 If the absolute value of the t-statistic is greater than 2, the lag is normally assumed significant 

(Fueller 1996)  
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might be that we model weekly precipitation levels, and precipitation on a given day 

is conditional on the past (or past few) days, and a weekly resolution in the data 

removes important information about the autocorrelation pattern. The autocorrelation 

factor when using daily resolution is found to be 0.42 with four highly significant 

lags. On this basis, our estimate of 0.25 for the weekly autocorrelation seems more 

reasonable. 

7.3.5 Estimating σ 

Hull (2000) suggested estimating volatility as the continuously compounded return 

volatility as given in equation  (7.5) 







=

−1

ln
t

i
i I

I
u  

(7.5) 

Taking the standard deviation of the returns yields an estimate s of σ as s = 0.90 or 

90% on a weekly basis. 

 

A plot of the continuously compounded weekly returns confirms the extremely large 

volatility present in the series. 
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Figure 7.4 Weekly precipitation index returns 

Note however that the high mean-reversion parameter estimated above will quickly 

draw the series back to the expected value, and precipitation will not reach extreme 

levels According to Shaw (1988), it is customary to use monthly or seasonal 

resolution for variance in precipitation time series. The Schwartz one-factor model 
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assumes constant return volatility, and to check if the error introduced is large, we test 

the following hypothesis:  

H0 : Return volatility in week t is equal to week t’ for all t ≠ t’ 

H1 : Return volatility for some week t ≠ t’ is not equal to week t’ 

 

Performing a Fisher-test for equal variances checks the null-hypothesis. The F-test 

matrix can be found in Appendix D22. As the results show, the evidence for constant 

return volatility is conclusive, and we keep the null hypothesis of constant volatility. 

7.3.5.1 Are the residuals normally distributed? 

A crucial assumption in the Schwartz one-factor model is that the noise parameter, dz, 

follows a Wiener process. To investigate this property, we check whether the 

residuals are normally distributed. A histogram of the residuals is presented below 

 

Figure 7.5 Histogram of precipitation model residuals and fitted normal curve 

 

This plot reveals that the assumption of normally distributed residuals is not entirely 

supported by data. The descriptive statistics confirm this. 

 

 

                                                 
22 Since the approach involves testing for equal variance over 51 weekly data sets, it comprises over 

1200 significance tests. The result table is too large to list here, but can be found in Appendix D 
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Table 7.3 Descriptive statistics of precipitation model residuals 

We observe that both skewness and kurtosis are significantly different from 0 and 3 

respectively, and consequently, the residuals are formally not normally distributed. 

For analytical tractability, we nevertheless stick to the assumption that the noise term 

in the model follows a Wiener process.  

7.3.6 How good is the model? 

Lacking a predefined way of testing the precipitation model, we turn to two approches 

based on simulating precipitation index trajectories and compare to the data set. 

7.3.6.1 Comparing to historical observations 

As a first test of the goodness of the simple precipitation model developed above, we 

generate 1000 simulations using the stochastic differential equation in equation (4.9) 

and see how many of the index values generated fall within the boundaries of weather 

scenarios observed during the last 19 years. The results are presented below 
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Figure 7.6 Simulations of precipitation index compared to historical observations 

                                                 
23 Negative skewness indicates clustering to the right  
24 Positive excess kurtosis indicates that the distriution is “taller” than the standard normal distribution 
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Since the last 19 years contain unusually dry (i.e. year 1996) and wet (i.e. year 1990), 

we would expect the majority of scenarios generated to fall within historical bounds, 

while still being able to generate weather events not yet occurred. As the plot reveals, 

this is the case for the model for most weeks. There is no formal way of defining 

“adequate” in this context, but it is clearly a weakness that for some of the weeks, not 

a single of the 1000 scenarios fall outside the bounds. This is consistent with the 

histogram residuals in Figure 7.5, since the noise distribution used in the model  

1. Does not generate enough low extreme values 

2. Generates too many high extreme values 

Consequently, too many simulation results will fall outside the observed upper bound 

and correspondingly too few ouside the observed lower bound. 

7.3.7 Formal statistical test 

An alternative way to test the performance of the model is to compute a confidence 

interval for the weekly outcomes based on historical observations. Assuming that the 

outcomes are independent and normally distributed, the simulation results can be 

standardized by computing (Walpole, Walpole and Myers, 1998) 

2/12/1 �
�

� <
−

<−
j

jij xx
 

(7.6) 

where α denotes the confidence level, σj the standard deviation for week j. and xij the 

i-th simulation for week j. From the properties of the normal distribution, we would 

expect 95% of the standardized simulated values to fall in the interval [-1.96,1.96]. As 

summarized in the plot below, this seems to be the case for most weeks 
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Figure 7.7 Statistical test of precipitation simulation results 
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The spikes in weeks 20 and 47 are attributable to unusually low values, which in turn 

makes the confidence interval lower than for the adjacent weeks.  

7.3.8 Evaluation of the model 

In sum, the model, albeit far from a correct replication of the precipitation index, 

seems to have the desired properties, and in the next chapter, we proceed to pricing 

derivatives written on the index using this model. Care should however be taken to 

use this model slavishly, but applied with care, it should give an indication of where 

the price of a derivative instrument should lie.  

7.3.8.1 Volatility problems 

Estimating the weekly standard deviation for the model is not straightforward. 

Experiments with varying estimates for σ suggest that the volatility structure in the 

time series is too complicated to be adequately captured by our simple model. An 

alternative is to use the Mean Sqared Error from the residuals (s=0.75), but firstly the 

one-factor model based on the logarithm of the underlying assumes geometric 

standard deviation, and secondly, this lower estimate is obviously less volatile than 

the actual observations – a crucial factor when valuing derivatives. Some of the 

simulation results are two or three times as large as the largest historical observations. 

 

An explanation to this can be that the standard deviation of the index returns is as high 

as measured, but some physical constraint is involved that prevents the precipitation 

levels from reaching the high extreme values indicated by the noise distribution. A 

compromise can be to use the residual standard deviation for simulation purposes 

when the aim is to generate weather scenarios for a specific week, while the intra-

week return volatility should be used for valuing derivatives. When pricing 

precipitation options in section 8.3.2, we use standard deviation of returns as model 

input. 

7.4 Possible extensions to the model 

Our model of weekly precipitation is simple to ensure analytical tractability. More 

realistic models can be created, some improvements are suggested below  
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• A stochastic process including jumps on the form (Clewlow and Strickland, 2000) 

KIdqIdzdtIIKId ttmt ++−−= ��� )ln()ln( �  (7.7) 

       might better capture the high volatility in the series.  

dq is a Poisson process 

Km is the mean jump size (possibly also a function of time) 

K is jump size with lognormal distribution ln (1+K)~N[ln(1+ Km - ν2/2), ν2] 

φ is the average number of jumps per year (possibly also a function of time) 

ν is the standard deviation of the proportional jump (jump volatility) 

The rest of the variables as defined in the chosen model. As spointed out by 

Clewlow and Strickland (2000), incorporating jumps into the stochastic model 

does not allow for closed-form formulas for derivatives pricing. For this reason, 

and time constraints, we choose not to pursue this approach further. 

• Volatility is assumed constant across the year. This is not consistent with existing 

meteorological knowledge; variance is higher during the summer months. For 

simulation purposes, time dependent volatility would be a good extension. The 

problems are to Experience from previous modelling effort showed that it is 

difficult to obtain a daily model which. 

1) generates daily or weekly precipitation levels where the peak values are 

consistent with historical data while at the same time 

2) ensures the monthly and yearly accumulated precipitation levels adequately 

bounded by historically observed minimum and maximum. 

• Standard stochastic precipitation models could be fitted to data from the 

individual stations in the index, and the index could be aggregated from these 

models. However, since the stations are distributed all over Norway, this would 

call for a complex estimation of inter-station correlation factors and would 

certainly require computationally intensive simulations. 
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8 Pricing precipitation derivatives 

As shown in Chapter 6, several approaches have been attempted to value weather 

(read: temperature) instruments. In this section, we derive closed-form formulas for 

valuing precipitation derivatives. We will discuss two appraches: Burn analysis and 

arbitrage-free pricing using two derivatives.25 We will also obtain an estimate for the 

market price of precipitation risk and finally compare how sample contracts obtain 

different values accoring to the pricing methodology employed. 

8.1 A note on forecasting impact 

In all cases, we assume the contract to be entered into long enough in advance so that 

no forecasts are available that will change the market’s perception of expected 

precipitation during the contract period. Following Dischel (2000), it is not clear-cut 

whether i.e. seasonal forecasts are reliable, but it is obvious that the expected outcome 

for a wether phenomenon is less uncertain the closer into the future we look. Day-to-

day forecasting beyond 8-14 days is considered impossible, but Dischel pointed out 

that it might be possible to predict a certain trend from the given state of the weather, 

comparaing with historical data to detect patterns. For our pricing, we assume the 

contracts to be long enough into the future for the outcome to be unaffected by any 

forecast.  

8.2 Contract types 

Since weather derivatives are meant to hedge against non-catastrophic weather events, 

contracts are normally structured to have a limited up- and downside. An example of 

this is a spead (or reverse spread) whose payoff prifile has an upper and lower bound. 

 

                                                 
25 The arbitrage-free approach uses a forward contract and an option. However, there is no observable 

forward curve for precipitation, but given an estimate of the market price of precipitation rrisk, the 

teoretical curve can be derived.  
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Figure 8.1 Enginering a spread or a reverse spread and their payoff profile 

As shown in Figure 8.1 a reverse spread  (known as a bear spread in the stockmarket) 

is easily constructed by selling a call with strike K1 and buying a call with strike K2. 

The corresponding position can also be engineered using put options. Since the 

premium of a call always decreases with increasing strike, this strategy will always 

incur a cost to set up when using call options. (Hull, 2000)  

8.3 Pricing methodologies 

This section discusses burn analysis in datail since this is a method employed by 

weather traders, then we move on to derive analytical pricing formulas based on the 

precipitation model from the previous chapter. 

8.3.1 Burn analysis 

The first providers of weather protection were insurance companies, and a common 

prcing method for insurance policies is to calculate the expected loss for a given 

policy. In a weather derivatives context, this is equal to answering the question: 

“Given a contract and a set of historical data, what would the average payout of the 

contract be when run over observed outcomes of the underlying weather 

phenomenon?” This is a nonparametric approach, since nothing is assumed about the 

distribution or the behaviour of the underlying. 

8.3.1.1 Pricing example 

To illustrate how burn analysis is done, we price a reverse spread with payoff profile 

as shown in Figure 8.1. In the example, we price the contract for week 42. The 
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expected value of the accumulated index values for this week is 3000, and the 

contract is structured to pay one unit of currency for each point the index is below the 

expected value, limited to a payoff of 1000, and for each point the index is above the 

expected value, the contract buyer pays the contract seller one unit of curency, limited 

to a maximum of 500. The result of the burn analysis is shown in Figure 8.2 
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Figure 8.2 Burn analysis example 

For this sample contract, the expected payout to the contract buyer is 372 units of 

currency, which has to be discounted at an appropriate discount rate. A problem is 

that this rate is unknown – it depends on the risk exposure and preferences of the 

contract buyer and seller and is not explicitly defined. The ambiguity of the discount 

rate is a major weakness of burn analysis.  

8.3.1.2 Sensitivity to record length 

A second problem is the sensitivity to the length of record available. To clearify this, 

we compute the fair value of a precipitatin derivative written on a single measurement 

station (Vardø) to have a longer record (52 years) to work on. The contract is is 

structured to pay the buyer one unit of currency for each point the accumulated 

precipitation is below the average of 13.5 and the buyer pays the seller the same 

ammount if precipitation is above the mean. Both payments are capped at five units of 

currency. 
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Figure 8.3 Burn analysis payoff and sensitivity to record length 

As seen from the plot in Figure 8.3, at least 30 years of data is needed for the analysis 

to yield stable values.  

8.3.1.3 Evaluation of method 

The main virtue of burn analysis is its simplicity. It is emplyed by practioneers to get 

a first indication of the fair contrat price (Schieldrop, personal communication). Some 

of the serious shortcomings are 

��It implicitly assumes the market price of precipitation risk to be zero. As we shall 

see later, this price differs from zero, at least in the short run. 

��No hedge parameters can be calculated 

��It fails to distinguish between weather patterns that might exhibit substantial 

differences when the observed values hovers around the strike level26 

��With limided data available, burn analysis can price contracts that should be 

identical (i.e. precipitation levels in two adjacent weeks) significantly different. 

This shortcoming can be mended by using more than one week in the analysis. 

8.3.2 Arbitrage-free pricing using the forward curve 

From equation (4.20), we know that the forward price under the risk-natural 

probability measure for the one-factor model developed in section 4.4.2 is given by 

                                                 
26 An extreme example: Constant precipitation level at a site can be priced equal to a site with 

extremely volatilite precipitation, provided the two sites have the same mean. 
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where α* = λσ/κ. We assume λ, the market price of precipitation risk, constant.  

Given a forward curve, we know that the price of a European call option written on 

the same underlying is given by  

)]()(),([),,,( )( whKNhNstFeKsTtc tTr −−= −−  (8.2) 

where w and h are defined in equations (3.32) and (3.33)  respectivly. If the maturity 

of the option and the forward contract has the same maturities, the option becomes an 

option on the spot of the underlying. (Clewlow and Strickland, 2000) The price of a 

put option is easily found through the well-known put-call parity and is given by 

)](),()([),,,( )( hNstFwhKNeKsTtp tTr −−+−= −−  (8.3) 

All parameters are observable from historical series, except λ. 

Although we use constant volatility in our model, the option formulas are still valid if 

time-dependent volatility is used. As we showed in section 7.3.5, this is most likely 

not necceassay. The integral for accumulated forward return volatility, w, will also 

generally require numerical integration. (Clewlow and Strickland, 2000) 

8.3.2.1 Estimating the market price of precipitation risk from traded contracts 

As pointed out in section 2.2.4, there is no liquid market for precipitation derivatives 

from which to obtain prices. However, AEP Energy agreed to quoute prices on the 

Norwegian part of the Enron precipitation index (similiar to the data set used in 

chapter 7), and the quotes are presented in the table below. The contracts are for 

uncapped call options on accumulated precipitation during a given week with strike 

set 10% above the expected value and a payoff of 1000 NOK per index point 
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Table 8.1 Estimating market price of precipitation rinsk and model results 

It has to be stressed that the prices obtained are not true market prices, but according 

to weather trader Lars Elmlund at AEP Energy, the price ranges quoted are prices “at 

which a deal would be likely to take place”  

8.3.2.1.1 Discussion of results 

We see from Table 8.1 that the market price of discharge risk is postive for the three 

contracts investigated, and λ is consistent for the winter and fall contacts desipte a 

difference in strike price. The high value of λ for the spring contract is most likely 

due to the fact that the determenistic part given in equation (7.4) of the forward curve 

does not adequately capture the drop in average precipitation level for weeks 15 to 20. 

  

With only three data points available, there is a natural limit to the conclutions that 

can be drawn, but the findings do at least indicate that the market price of 

precipitation risk is positive and dependent on time of the year. A model involving 

time-dependent volatility might give more consistent results, and more contracts at 

true market prices would be desirable for a through analysis. 

 

Lacking more information, and due to the simplicity of our model, we take the market 

price of discharge risk to be constant at 7%. This gives little weight to the spring 

contract for the reason pointed out above.  

                                                 
27 Obtained by finding the value of λ that would equal the price given by the model and the price quote. 

Excel’s Goal Seek function was used for the analysis, since the option expression cannot be solved 

analytically for λ 
28 Week 5 is a week that strongly deviates from the adjacent weeks due to two unusually low values. To 

smooth the results, we have taken the average of weeks 4,5, and 6 to calculate the price 
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8.3.2.2 Evaluation of method 

Arbitrage-free pricing has the advantage of obtaining the same price for contracts that 

should theoretically be close to identical (i.e. precipitation spreads for two adjacent 

weeks). All hedging parameters can be calculated by straightforward differentiation of 

the pricing formulas. The major drawback is the simplicity of the underlying 

precipitation model. The contract prices are highly dependent on the forward curve 

provided by the model and the volatility estimate. As seen in Section 7.3.8.1, finding 

the correct estimator for volatility is less than straightforward. Given a proper 

estimate of the market price of risk, arbitrage-free pricing is indifferent to an agent’s 

risk preferences and has a clearly defined discount rate – namely the riskless rate. 

8.3.3 Which is the better pricing formula ? 

As an example of which prices the three pricing methods yield for similar contracts, 

we have priced a European uncapped call for each week of the year. The strike is set 

at the weekly historical three-week moving average for each week.   
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Figure 8.4 Precipitation call option premiums according to pricing method used 

Burn analysis yields highly volatile prices – and as seen in section 8.3.1.2, 19 years of 

historical data is not sufficient to make prices converge due to the large volatility of 

weekly observations. If using the data from week t-1 and t+1 to price a contract for 

week t, the prices will be more stable. 
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Two parts of the price curves deserve further attention. Weeks 28 to 39 and weeks 45-

46. We see that for weeks 28 to 39, the differences between the analytical contract 

price and the burn analysis price are over 100% for some of the weeks. Again, this 

can be explained by the shape of the deterministic function from euqation X – the fit 

to the historical observations used in the burn analysis is poor, hence the pricing 

disparices. Burn analysis for weeks 45 and 46 yield extremely low option premiums – 

this is attributable to some extreme values in the lower end of the distriution drawing 

the average down.  

 

Regardless of the method used, some contracts look overpriced and some look 

underpriced depending on the contract. This makes it difficult to clearly prefer one 

model over the other, and part of the explanation can be found in the ambiguity of 

how to estimate the crucial parameters in a precipitation model. Burn analysis has the 

virtue of being simple, but fails to take weather dynamics into consideration. To 

formally test the pricing methods, more reference prices are needed.  

8.4 Summary 

In this section, two different methods for pricing precipitation derivatives were 

evaluated. Our analysis showed that the theoretical price for contracts differ 

significantly depending on which method is used, but we do not have enough data to 

formally test the differnet methods. We also obtained an estimate of the market price 

of precipitation risk from quotes on contracts, and this value seems to be positive 

(5%-15% depending on the contract), but with only three contracts available, the data 

does not allow for through analysis or drawing clear conclutins. 
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9 Hedging volumic risk using precipitation derivatives 

This section will explore two points. Firstly, we investigate how the precipitation 

index used in chapters 6 and 7 is correlated with forward prices to better understand 

how precipitation levels diverting from the expected value influence power prices. 

Secondly, we will explore whether it is possible to use derivatives written on the 

precipitation index as a volumic hedge for a run-of-river power plant on a single site.  

9.1 Price correlation 

We would expect long-term contracts to be negatively correlated with the 

precipitation index, since expected spot during the winter will be strongly dependent 

on the fill level of the reservoirs. To investigate this, we compute the correlation 

between the precipitation index and forward contracts maturing between 1 and 104 

weeks from a trading date, yielding 104 data points – one for each maturity. The 

results are presented below 
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Figure 9.1 Correlation between forward contracts of different maturities and the precipitation index 

This plot reveals a strongly time-dependent correlation. Given an efficient market, 

intuition would suggest a more constant correlation. An explanation can be found in 

the way the curve in Figure 9.1 is calculated – it is an average over six years, and the 

following relationship might be true 

• For short-term contracts, buyers are active, delivery takes place and low 

precipitation forces the prices up 
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• For long-term contracts, the true correlation is dependent on the trading date, since 

there might be a period between the trading date and contract maturity during 

which the reservoirs are expected to be full. If such a date is present, correlation 

should be negliable. 

 

Consequently, the correlation between precipitation and forward contracts with longer 

maturities is expected to be a function of trading date, and the plot in Figure 9.1 is 

influenced by seasonal variations. We therefore attempt a different methodology for 

investigating the correlation between precipitation and forward prices 

9.1.1 Can precipitation explain short-time fluctuations? 

An interesting question is to which extent changes in precipitation level explain short-

time changes in forward prices. To investigate this, we detrend the precipitation data 

and forward curves for selected maturities through equations (9.1) and (9.2).  

)()()( tItItI expectedobserveddetrend −=  (9.1) 

)()()( tFtFtF m
expected

m
observed

m
detrend −=  (9.2) 

where I(t) and Fm(t) denotes the precipitation index value at time t and forward 

contract price for maturity m at time t 

 

We use only data from 1997 to 2000, since as briefly commented on in chapter 5, the 

high prices in 1996 and 2001 make it impossible to get a good estimate for seasonal 

fluctuations. Results from the analysis are presented in Table 9.1 
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Table 9.1 Correlation between detrended forward prices and detrended precipitation index 
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We see that when we remove the seasonal trend inherit in power prices and to a lesser 

extent in precipitation series, the correlation between precipitation during a given 

week and the forward contracts traded that week is significant at the 2% level and 

negative for all maturities investigated.  

 

An interpretation of these findings is that an unexpected increase in overall 

precipitation level decreases forward prices. As expected, deviations from the 

expected precipitation level constitute a significant part of the information flow 

determining power prices. From the selected contracts, a clear trend cannot be 

extracted, but the correlation hovers around –0.2 and are significant for all maturities. 

 

To further inspect this relationship, we plot the correlation between changes in 

forward contracts and the precipitation index as a function of trading data to see if 

seasonal patterns are still present. The plot is shown below 
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Figure 9.2 Correlation between precipitation index and forward contracts for different trading dates 

We see that the correlation coefficient is constant throughout the year. The volatility 

towards the end of the curve is purely a result of the fact that fewer and fewer data 

points are used for calculating the correlation. Johnsen (2001) found that unexpected 

inflow had a greater effect on prices during the late winter weeks (week 10-16) than 

during the early winter (weeks 34-46). We have attempted a similar analysis on 

precipitation, but failed to find any significant pattern when calculating the correlation 

between unexpected precipitation and forward prices for each week of the year. 

Possible reasons for this are: 
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• Johnsen studied the impact of unexpected inflow while we study unexpected 

precipitation. These are not necessarily related to each other if precipitation comes 

as snow 

• After detrending, there is still much noise left in the data, and only six data points 

for each week29 of the year may be too little to extract a clear correlation. 

9.2 Can precipitation derivatives hedge volumic risk ? 

The correlation between power prices and precipitation was found to be significantly 

negative as expected. We now turn to the question of hedging volumic risk using 

precipitation derivatives – this will have implications for the last part of this thesis 

where we value a run-of-river power plant. For such a hedge to be effective, the 

underlying precipitation measure will have to be well correlated with the water 

discharge in the specific river in which the plant is to be built.  

9.2.1 Assessing volumic risk 

The volumic risk of a run-of-river plant is mainly dependent on two factors: The 

discharge capacity of the plant and the hydrograph of the river. Hydrographs for two 

typical Norwegian rivers (Orkla and Gaula) are presented in Figure 9.3. From this 

figure, several conclutions can be drawn 
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Figure 9.3 Average daily discharge and standard deviation for regulated and unregulated rivers 

                                                 
29 We used weekly resolution, and while precipitation data are available from 1983 to 2001, we only 

have price data from 1996 to 2001 
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• Regulating a river (by exploiting it for power production) levels out the yearly 

flow and decreases flow volatility 

• Water discharge in an unregulated river is very low during the winter 

• Optimal discharge capacity is likely to be higher in a regulated river 

 

The implications for run-of-river plants are that more even production can be 

expected in a regulated river, while the volumic risk depends on the discharge 

capacity of the plant. We return to the problem of determining the optimal size in 

chapter 10.   

9.2.2 The problems of hedging 

9.2.2.1 Hydrological reasons 

The main problem in constructing a hedge using precipitation derivatives is that the 

relationship between precipitation and water discharge is less than straightforward. 

The reasons are 

• During the winter, precipitation generally arrives as snow, which does not 

translate into water discharge until weeks or months later.  

• Water discharge during the spring flood is mainly a function of accumulated snow 

in the mountains, not precipitation during the flood period (Killingtveit, 2000) 

9.2.2.2 Basis risk 

A further problem is the correlation between the underlying (the Enron precipitation 

index in our case) and water discharge in the selected river. The index consists of 

measurement stations scattered all over Norway, and Moreno (2001) pointed out that 

basis risk is present if the hedger’s buisiness is not located very close to the 

measurement station(s) used.  

9.2.3 Estimating correlation for three rivers 

To investigate the correlation between the precipitation index and water discharge, we 

use three sample rivers – Orkla, Gaula and Glomma. On the background of the 

abovementioned factors, we analyze the correlation for weeks 29-46, since this is the 
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period when the spring flood is over and precipitation generally arrives as rain.30 

Consequently, this is the period during which the correlation can be assumed to the 

highest. Significant correlation is indeed found, as shown in Table 9.2 
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Table 9.2 Correlation between precipitation index and water discharge for fall weeks 

The correlation coeffecients in Table 9.2 are calculated over all 19 years in the data 

set simultaniously. For a more detailed breakdown of the weekly correlation 

coeffecients as well as the cross correlation between precipitation in week t and water 

discharge in weeks t-1 and t-2, we refer to a collection of figures in Appendix E. A 

detailed analysis reveal that as for the correlation between power prices and the 

precipitation index, large irregularities are hidden behind the average correlations 

found.  

 

From a hydrological viewpoint, low correlation between an index such as the Enron 

precipitation index and water discharge in a specific river is as could be expected 

(Killingtveit, personal communication).  

 

9.3 Concluding remarks 

Based on the analysis conducted in this section, we conclude that derivatives written 

on the Enron Precipitation Index do not constitute an adequate hedge for the volumic 

risk inherent in a single run-of-river power plant. This appears to be the case in both 

regulated and unregulated rivers and irrespective of the geographical location of the 

river.  

 

Another question is if a precipitation index can serve as an adequate volumic hedge 

for an operator with run-of-river plants located across Norway. We do not have the 

                                                 
30 If the same analysis is run on all weeks of the year, the correlation is significantly negative(!). The 

explanation for this is probably that discharge is large during the spring despite (potentially) low 

precipitation, and that large precipitation during the winter does not mean large discharge in the river 
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data source required to pursue this question further, but preliminary tests do show that 

correlation increases when more than one river is used. 

 

When correlating discharge for the Gaula weeks 29-45 with a weather station in the 

same area  as the river, the correlation is found to be as high as 0.6. This indicates that 

for a precipitation hedge to be an efficient hedge for a run-of-river plant, the 

derivative has to be written on one or more geographically clustered weather stations 

in proximety to the river in which the plant is to be constructed. Any such derivative 

is unlikly to materialize because of no potential liquidity. 

 

Due to the factors discussed in this chapter, we have to reject the idea of valuing a 

run-of-river plant as a portfolio of precipitation derivatives and power contracts. We 

therefore need to consider alternative real option approaches for valuing the plant, and 

this will be the topic of the coming chapters. We first turn to the problem of deciding 

how large the discharge capacity of the plant should be.   
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10 Power plant characteristics 

For the analysis of a run-of-river power plant, we choose to use the time series for the 

Gaula river. This is due to the fact that the river is unregulated, making the revenues 

more volatile and the exposure to volumetric risk clearer, thus making the valuation 

problem more interesting. To get discharge levels in the range our cost data is valid 

for, we transform the series by taking 

)(
8

1
)( tQtQ originaldtransforme =  

(10.1) 

where Q denotes the water discharge measured in m3/second. For the rest of this 

thesis, the transformed series are used. The transformation preserves the seasonal 

fluctations and the volatility. 

10.1 Description of a run-of-river power plant 

A run-of-river power plant channels a portion of a river through a canal or penstock. It 

may or may not require the use of a dam. Even if a dam is present, it does not have the 

multi-period storage facilities present in reservoir systems. Thus, the all-important 

factor for determining production is instantaneous water discharge. Water not 

immediately used for power generation is considered lost. A typical hydrograph for an 

unregulated river (Gaula) and the production is shown in Figure 10.1 

Figure 10.1 Production in a run-of-river power plant versus time-varying water discharge 

Plant idle 

Water 
available for 
production 

Non-utilizable water 
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As seen from Figure 10.1, the discharge capacity of a plant greatly influences  

1. Fraction of the year it can be expected to run at full capacity 

2. Fraction of the year the plant can be expected to be idle 

3. How much water is expected “lost” during the flood period  

 

A plant will have a minimum discharge needed – the reason for this can be an 

environmental constraint requiring a certain minimum discharge in the river or a 

technical constraint requiring a set amount of water for the turbines to operate at all. 

Regardless of the reason, no production will take place if the discharge is below this 

limit.  

10.2 Determining the effect rate 

The maximum effect in kW of a run-of-river power plant is calculated as: 

1000

QHg
N

��=  
(10.2) 

where 

N = Effect in kW,  

g = gravaitional acceleration = 9.81 m/s2,  

ρ = density of water = 1000 kg/ m3,  

ε = energy conversion rate (normally assumed equal to 0.9),  

Q = discharge capacity in m3/s  

H = net height (head) in meters.  

Production in kWh is then equal to 

NdtE =  (10.3) 

where N is as defined above and dt = time increment measured in hours 

Assuming a head of 20 meters, an effect rate of 0.9 and weekly resolution, equation 

(10.3) yields E = 9.81*0.9*20/1000*24*7 = 29.66 MWh per week per unit discharge. 

This value will be used through the analysis. 

10.3 Determining the value 

If spot prices for and discharge at  time t are taken as deterministic and marginal costs 

are assumed zero, the value of a plant can be expressed as  
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(10.4) 

where N(t) is the effect at time t given a water discharge, P(t) is the spot price at time 

t, T is the lifetime of the plant, δ is a risk-adjusted continuously compounded discount 

rate (7% is normally used) and I(θ) is the investment required expressed as a function 

of a vector θ of parameters determining the cost. We turn to valuation under 

uncertainty in chapter 11. 

10.4 Determining the cost 

To determine the optimal size for a plant in a river, it is essential to know the cost of 

construction. The cost for turbines, generators, transformers etc. will be a function of 

the generating capacity of the plant, while the construction work will be dependent, 

amongst other factors, on the rated discharge of the plant, the head etc. 

10.4.1 Data used 

As a basis for our cost analysis, we use a detailed cost analysis made by NVE 

(Norwegian Water Resources and Energy Directorate). The cost functions provided 

by NVE are valid for mini- and micro-sized plants with a discharge capacity up to 10 

m3/second and an effect of up to 5000kW.31 The equations used are shown in 

Appendix F.32 

10.4.2 Cost drivers 

We choose to focus on the parts of the project whose costs are 1) independent of the 

actual site conditions and 2) constitute a significant part of the total cost. The main 

cost drivers fulfilling these requirements are: Turbine, power station generator, 

interface to power grid, dam and controlling equipment. The dam cost is a function of 

discharge capacity, while the remaining costs are directly dependent on the power 

capacity. We also add an overhead of 20% for labour and other costs.  

                                                 
31 While we analyze the project for a discharge capacity  greater than 10m3/sec, this only affects the 

cost of the dam. We assume the dam cost function to be valid also for larger discharges. The dam only 

constitutes about 10% of the total cost, so the error is negliable 
32 We use a continous cost function for the coupling equipment. In the NVE data, this is a stepwise 

funxtion. See Appendix F for a detailed disussion of how and why this is done 
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10.5 Determining the optimal size. 

The tradeoffs of plant dimensioning can be seen from Figure 10.1. The central 

question is if it will pay off to capture the parts of the year when there are large 

amounts of water in the river, but then risking the plant to run at low capacity for the 

bulk of the year. As the size of the plant is taken as an input parameter to the 

valuation approaches in the following chapter, we need some indication on the 

optimal size of the plant. Using a simple NPV analysis, we take weekly water 

discharge determinsitic as the observed average and we use forward prices. Since no 

stochastic factors are present, we discount at the risk-free rate. It must be stressed that 

this is not meant to yield a correct value of the plant, it is purely an approach for 

obtatining plant sizes for later use and study the robustness of the value to changes in 

price models and their parameters. Formally, we solve 
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(10.5) 

Here, k is the conversion factor from discharge to MWh, Qt represents the discharge 

at time t, and Qmax the maximum production possible. I is an investment cost as a 

function of the plant characteristics. 

 

Finally, we discount these revenues back to time zero using a discount rate of 5.88%, 

and subtract the initial investment. Due to the form of the investment function and the 

upper and lower production boundaries, this is a non-linear problem solved using a 

numerical search technique. The project value as a function of the plant’s maximum 

discharge capacity is shown in the plot below.  
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Figure 10.2: Optimal size of run-of-river power plant for different price models 

10.5.1 Sensitivity to price model 

From Figure 10.2, we see that the project value is highly sensitive to the price model 

used, while the actual sizing is fairly robust – the only exception being the Log model 

with seasonal variations yeilding a smaller plant.. To explain this, we have to take the 

characteristics of the different price models as well as the hydrograph into 

consideration. The model properties are summarized in table Table 10.1 
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Table 10.1 Properties of price models used in plant sizing optimization 

As seen from Table 10.1, all models have exponentially increasing trend. This is the 

main factor for sizing – an increasing trend justifies a larger investment outlay today 

to have production to sell at higher prices in the future. Therefore, the plant size is 

fairly robust to the price model used. 

 

The project value, however, is not. To understand this, we investigate the relationship 

between production in week t and the expected price during the same week. We know 

that initially, the model for Price and the model for Ln Price will have the same 
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amplitude, while the seasonal amplitude in the Ln-model will increase as a function of 

time. The relationship is shown in Figure 10.3 for prices after 20 years of operation. 
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Figure 10.3 Weekly production and weekly price according to model used 

We see that almost all production is sold at below-average prices. Hence, introducing 

seasonal variations significantly impacts the project value. As the difference between 

high and low prices increase in the Ln-model, the Ln-model yields a lower project 

value. The optimal capacity according to the price model employed is summarized 

below 
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Table 10.2 Optimum discharge capacity according to price model used 

We also observe from Figure 10.2 that the marginal benefit of a larger initial 

investment to get a discharge capacity above 9m3/second is small.  

                                                 
33 We here assume a constraint requiring a discharge of 2m3/sec in the river. Hence, a discharge 

capacity of 15.0 m3/sec requires an actual discharge of 17.0 m3/sec in the river for the plant to run at 

full capacity.  
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10.5.2 Sensitivity to trend 

An interesting question is how robust the sizing decision is to small changes in the 

price parameters, notably the upward sloping price trend of 3.15%. To investigate this 

relationship, we calculate the modeled project value and optimal rated discharge using 

price trends ranging from 1.42% to 5.45% spanning the trend estimates found in 

section 5.2.2. We repeat the optimization in equation (10.5), but adding trend as a 

second variable. The optimal discharge capacities for various price trends using the 

Ln Price model with seasonal variations are shown below 
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Table 10.3 Optimal maximum capacity with varying forward price trends 

From this analysis, we see that an increasing price trend is highly important for both 

the sizing of the plant and the value of it. The explanation for this is that if prices 

increase in the future, it will pay off to make a larger initial investment today in order 

to have higher peak capacity in the future. We also see that a price trend of at least 

2,5% per year is required for the project to become profitable (the exact break-even 

trend is 2.28%). A further question is if it is profitable to delay the investment, we 

return to the optimal investment timing in chapter 12. 
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10.5.3 Optimal size and the hydrograph 
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Figure 10.4 Optimal maximum capacity and hydrograph 

From Figure 10.4, we see that if the seasonal variations do not increase, it pays off to 

increase the capacity to capture parts of the spring flood. However, if we include 

increasing seasonal variations in the price model, the optimal capacity becomes equal 

to the discharge level after the spring flood, allowing the plant to run at full capacity 

for more than half of the year. Due to the minimum discharge of 2m3/sec required, the 

plant will be idle during the bulk of the winter. 

 

Sensitivity analysis finds the optimal size insensitive to the minimum discharge 

required, allthough the minimum water needed to run the plant has huge impacts on 

profits – which is reasonable, since this can be seen as production that is (almost) 

guaranteed to take place. 

10.6 Summary 

Using forward models from section 4.4 and a deterministic weekly water discharge 

defined as the average over historical observations, we find that the optimal size of 

the plant is a discharge capacity of 9 m3/second when using a price model with a trend 

of 3.15% and increasing seasonal variations. If the seasonal variations do not increase, 

the optional discharge capacity becomes 15 m3/second.  This difference can be 

explained by the fact that production mostly takes place when prices are below 

average. We further showed that this dimension is highly sensitive to the trend in 
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power prices, and that a trend of at least 2.5% is necessary for the project to become 

profitable.   
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11 Power plant pricing 

In this section, we consider two alternative risk-neutral approaches for power plant 

valuation. The first approach determines the parameters for a stochastic process for 

revenues. The resulting revenue process is then used to evaluate the value of a power 

plant with possibility of production halts. The second approach considers the 

discharge level to be constant with Brownian motion, whereas prices follow GBM. 

The chapter is concluded by a discussion on the model tractability and market price of 

risk.  

11.1 Modeling a power plant with production constraints using revenues 

Revenue is defined as the product of price and volume. This valuation approach uses 

real data for discharge and prices to generate a time series for revenues, using a 

weekly resolution on the data. We start by investigating underlying assumptions and 

properties of the data set, and find a suitable stochastic process that describes it. Based 

on this, we estimate the parameters for the process, and suggest how to make the 

model risk-neutral. Then, revenue derivatives are introduced, and finally, the power 

plant is priced using these derivatives. 

11.1.1 Assumptions 

Since our river is not regulated, there is a real possibility of production halts, 

especially during the winter. A few assumptions about the running of the power plant 

are therefore necessary before we develop the model. These assumptions are listed 

below: 

• The lower limit for production is assumed to be 2 m3/sec. Discharge below this 

level means that the production is suspended until the level increases. 

• Whatever the reason, the discharge below 2 m3/sec can never be utilized in 

production. Hence, discharge of 3 m3/sec will only produce 1 m3/sec equivalent of 

power. (=29.66 MWh/week). 

• The plant can be instantaneously started and stopped at no extraordinary cost. 

• The plant has a predetermined maximum capacity equal to 9 or 15 m3/sec. This 

part of the thesis will only consider these sizes. 

• All production is sold spot, because the process multiplies spot prices together 

with production, and no storage is possible. 
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11.1.2 Data set 

The data set comprises the level of water for the Gaula River and the spot34 power 

prices in the period from 1996 to 2001. These sets are then multiplied together to form 

a new data set, of revenues. This can be illustrated as follows: 

kPQR ttt =  (11.1) 

Here, Rt, Qt and Pt represent the revenues, discharge flow and prices at time t, 

whereas k is a conversion factor, converting river flow into MWh. This conversion 

rate k was found to be 29.66 MWh/m3 on a weekly basis, and was discussed in section 

10.2. 

11.1.2.1 Resulting data sets 

The resulting data sets comprise a data series representing the revenues for the power 

plant over the discussed period. The set comprises approximately six years of weekly 

observations, and a total of 319 values. Figure 11.1 shows the revenue function for the 

river, together with its log value.  

                                                 
34 The ideal situation would be to multiply the production to a risk-neutral forward contract. This is not 

possible using this approach, as the river production is not storable. The product of spot prices and 

current volume is thus the only correct representation of the current production. 
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Figure 11.1: The revenue process and its log value 

11.1.3 Seasonal function and revenue models 

It is not easy suggesting an appropriate seasonal pattern from figure 11.1. Although 

the presence of some kind of seasonal factor might be a fair assumption, a clear 

seasonal effect is not present. Nevertheless, we choose to use a cosine function as 

suggested in section 4.4.9, represented as 

( )( )��
 ++= tctf 2cos)(  (11.2) 

Looking at figure 11.1, we detect a floor-reversion tendency. Our revenue function is 

therefore assumed to be following a mean-reversion process. Since the revenues are 

based on price, the data is expected to have a long-term risk-neutral drift equal to the 

forward price drift. We therefore add the forward price drift to the revenues, equal to 

the price drift determined in section 5.2. This drift will be considered deterministic, 

and included in f(t). The discharge, on the other hand, is assumed to have zero drift, as 

there would be no reason to expect the water level in the river to increase in 

magnitude35.  

                                                 
35 Performing a simple regression analysis confirmed that there was no significant trend in the data set. 
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In section 4.4.2, we investigated a mean-reverting one-factor log-model for prices, 

described in Lucia and Schwartz’ (2001).  The process, originally from Schwartz 

(1997), is simple, and has the following solution for the risk-neutral expected spot 

price: 

( ) ))1(
4

)1(*)0(ln)(exp(),( 2
2

00
tTt eeefPTfTPF ���

�
�

� −−− −+−+−+=  
(11.3) 

By replacing prices P by revenues R, this model was then fitted to the revenue data 

set, and the results will be presented in the next section. 

11.1.3.1 Regression results 

The two data sets were first multiplied together in Excel. Then, the parameter fitting 

was performed in SPSS, using the non-linear regression solver The parameters of the 

process were fitted to the model in equation (11.3). Finally, the resulting process 

represents an analytic expression for expected spot prices, not adjusted for risk. Since 

the model is fitted to spot revenues only, the last term in equation (11.3) is removed, 

and included in the two first factors, whereas α* is removed because this is an 

expression for forward price risk, not determinable from spot prices. We then estimate 

the parameters of the following equation: 

( )[ ]t
T efPTfRE �−−+= )0(ln)(exp)( 0

 (11.4) 

This parameter estimation yielded the following results: 
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Table 11-1: Parameters of the 1-factor log-revenue model 

As can be seen from the above tables, all parameters except τ, the phase angle of the 

cosine function, were significant at the 5% level. The fact that that τ is not significant 

does not disrupt the problem, as this is just the phase angle, and must be seen together 

with gamma, the amplitude. This relationship basically tells us that the revenues are at 

the bottom in January, when τ=0.  
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Observe that the revenues have a very high mean-reversion tendency. The degree of 

mean-reversion reveals a lower degree of “memory” in the process, compared to 

energy prices. Therefore, temporary deviations should have less impact on long-term 

contracts.  

11.1.4 Revenue volatility 

The revenue volatility can be found by using the same approach as used for prices. 

The revenue return is first found by the use of equation (11.5): 







= +

t

t

R

R
return 1ln  

(11.5) 

Here, Rt is the revenue at time t, and will have to be calculated for the whole data set. 

Taking the standard deviation of the returns then yields the weekly volatility. Since no 

revenue forwards are available, we only have the spot volatility to determine. The 

result of the volatility estimation for data set is presented below. The discharge and 

price volatility are included for comparison purposes 

-����8��� ���3�	�
���������	�

*��
���9���

σR� 57.91%� 417.59%�
σW 59.62%� 429.95%�
σP� 10.23%� 73.73%�

Table 11-2: Spot revenue volatility 

The reason for the extremely high revenue volatility is due to the great variations in 

discharge flow. This volatility is far from constant throughout the year, though. The 

discharge has its highest volatility around the spring flood, and its lowest during the 

winter. We will, however, assume that the volatility is constant throughout the year. 

11.1.5 Market price of risk and forward prices 

After building the expected spot revenue models, we can develop revenue forward 

contracts by risk-neutralization of the revenue process. This process requires the 

market price of risk, however, and since no forward or option contracts on revenue are 

traded, this estimate is difficult to obtain.  

 

Reinvestigating the forward expression of equation (11.3), this can be risk neutralized 

by subtracting the amount given in equation (11.6) from the expected log-values of 

the revenue function. Here, α* is replaced by λσ/κ . 
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As always, the short-term volatility σ and mean-reversion κ are measured in the 

process whereas the maturity T is known. Hence, the market price of mean-reversion 

risk λ is the only unknown variable. This gives us several options for risk-

neutralization of the revenues: 

• The market price of risk can be determined by investigating the value of other 

traded power plants. After obtaining λ from this separate power plant, we can then 

risk-neutralize the revenue forwards.  

• We can assume that, due to no uncertainty in drift, and the long run nature of the 

investment, the market price of risk for water is zero. Alternatively, the market 

does not price discharge risk. This would make price risk the sole driver of risk in 

the power plant. Any short-term uncertainties in production are hence reflected in 

prices. 

11.1.5.1 A first approach to risk-neutralization of the revenue process 

Our initial approach for pricing the mean-reversion risk in revenues used a certainty 

equivalent approach. The integral under the risk-adjusted discounted36 revenues of 

another traded power plant should be equal to the trade price of the power plant. 

Hence, for a power plant whose terminal value is zero, its revenues could be 

expressed as 

dtRFe
T

T

t
rt∫ −

2

1

)(  
(11.7) 

This is a contingent value, assuming zero variable costs, of all future revenues from 

time T1 to T2, the termination of the project. Mark that F(Rt) represent risk-neutral 

revenue forwards, given in equation (11.3) .Consequently, it can be discounted at the 

risk free rate r.  

 

The power plant’s traded value is a certain amount, called a certainty equivalent (CE). 

This should reflect the risk-less income of the future income. Since forward contracts 

are considered to be risk-neutral expected spot prices, the expression in equation 

(11.3) can be substituted into equation (11.7). Hence, once the parameters for the spot 

                                                 
36 Discounting at the risk free rate. 
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revenues of the traded power plant have been determined, λ is the only undetermined 

parameter of equation (11.8), and should explain the difference between the certainty 

equivalent and the plant value. 

CEdtRFe
T

T

t
rt =∫ −

2

1

)(  
(11.8) 

Due to the nature of our seasonal function, this integral would have to be 

approximated by a sum of all future revenues. Most likely, numerical methods would 

be needed to find an appropriate value of λ. 

 

This approach had to be discarded, however, as no discharge power plants have been 

traded in the Nordic energy market the last couple of years. We therefore note that 

although the approach should be working, we will have to try a different approach. 

 

11.1.5.2 A second approach to risk neutralization 

Let us now assume that discharge risk is zero. This would reduce the risk left in the 

equation, to price risk only. In economic terms, this would mean that he market does 

not put a price on the uncertainty in future river flow. This can be explained by the 

fact that as long as the plant is run for a sufficiently long time, temporary variations in 

discharge should even out and hence be less important in the long run.  

 

Lars-Ove Skorpen at Pareto Securities agreed that this assumption seemed fair but 

added that the regulation of a river would increase the price of the plant. Thus, at 

some point, steady production seems to have added value. We will nevertheless try 

this approach. 

 

Investigating equation (11.6), we assume that the mean reversion risk approaches a set 

value as T increases. For long-term decision problems like investments in power 

plants, it is therefore fair to assume a constant risk level. In section 5.7, we found the 

systematic long-run difference between expected spot and forward contracts to be 

approximately NOK 33.86 of the price, or 19.3% of the value. Since we have 

multiplied real data together, the correlation structure is preserved in the resulting data 

set. We can therefore risk-neutralize the revenues by lowering our initial revenue by 
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the same percentage. We do ths by subtracting .193 from the constant in the 

exponential function. We now have a risk-neutral revenue process. 

 

Note that risk neutralization is model specific. We use the one-factor model in 

Schwartz (1997) as our model, hence the risk neutralization should follow equation 

(11.6).  

11.1.6 Revenue forwards 

Once a sensible market price of risk can be estimated, it is relatively easy to obtain the 

measure for the revenue forward contracts. We already presented the analytical 

solution for forward prices in the equation (11.3). 

The adjustment approach assumes that the following conditions hold: 

• Revenues are priced sufficiently far into the future to adjust mean-reversion risk 

by subtracting a lump sum. This can be done because equation (11.6) approaches 

a limit for long maturities. 

• The expected revenues have a long-run forward risk profile similar to prices. They 

can therefore be risk-neutralized by removing 19.26% of the value of the 

revenues. 

This way of risk neutralizing the revenues will most probably mean that the short-run 

risk premium would be too large. Assuming that the power plant will take two years 

to construct, we will have a fair risk-neutralization by the time the plant starts 

producing. 

11.1.7 Revenue options and applications to revenue prices 

The option pricing in this section is based on Clewlow and Strickland (2000). They 

showed that the mean-reverting log-process in Schwartz (1997) could be priced using 

through the use of a variation of Black and Scholes’ (1973) option pricing formula, 

given in section 3.3.3.  

 

The purpose of the revenue option approach is to build a spread37 of two options, to 

price the revenues above the minimum production level constraint of the discharge 

power plant, but below the maximum level of discharge. The capacity of the plant was 

                                                 
37 The payoff structure of a spread is shown in Figure 8.1. 
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in section 10.5 set to 9 and 15 m3/sec, requiring a total of 11 and 17 m3/sec of 

discharge water. Since the minimum level is 2 m3/sec, and profits grow for revenues 

above this level, we have a call option payoff structure. The revenues earned can be 

seen in as the dark shaded area in figure 11.2.  

 

Figure 11.2: Power plant revenues for a random year 

11.1.7.1 Strike 

This model has two important levels. Firstly, since no production is assumed possible 

under a minimum level of 2 m3/sec, a natural strike would be the value of the 

revenues lost due to this constraint. This strike Xt can be expressed as 

Ptt kFX 2=  (11.9) 

Here, k is the conversion factor of the power plant, found to be 29.665 MWh/m3 per 

week in section 10.2, and FPt is the expected forward price at time t. The forward 

price model is used to preserve risk-neutrality in the final option price. The 

parameters for the forward price were estimated in section 5.8, and will not be 

repeated here. Finally, the model has a strike on the maximum capacity of the 

turbines. This strike is equal in form to the lower strike, with the lower limit of 2 

m3/sec replaced by the upper limit of 11 or 17 m3/sec. 

11.1.7.2 Volatility 

When pricing options, we need the cumulative variance. Variance is defined as the 

square of the volatility, and an expression for the accumulated variance at the maturity 

of the revenue option, is given as 
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This expression is a natural consequence of the mean-reversion model, and is 

discussed in section 3.3.3. In section 11.1.4, the volatility of the revenues was found 

to be 57.91% on a weekly basis. Finally, κ was determined to be 0.238 in section 

11.1.3.1. 

11.1.7.3 Option valuation 

We now have everything necessary to price revenue options. These options are used 

to repliate payoff structure of the power plant. As discussed above, Clewlow and 

Strickland (2000) showed that a variation of the model introduced by Black (1976) 

could be used for option pricing. This model is an extension of Black and Scholes 

(1973) using forward contracts. The only difference between the mean-reversion 

formula and Black (1976), is the expression for the w(t), the cumulative variance. The 

expression for the option model is given in section 3.3.3.3. 

 

Revenue options can now be priced at any maturity beyond the immediate future. A 

call option on production revenues would hence give the value of the production 

above the exercise level in the given time period. 
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Table 11-3: Call options on revenues for the lower bound. All values except w(t) in NOK 

Notice that because we are using an increasing trend of 3.15% for both strike and 

revenue forward, the future call value seems to grow steadily. On the other hand, the 

price trend is lower than the risk-free rate of 5.88%, and the resulting present value is 

therefore low.  

11.1.8 Power plant value 

Now, we have a set of options on the future weekly revenues of the power plant. We 

now set up a portfolio of the two types of options to price the power plant. For any 

given maturity, this portfolio contains one long call option on revenues above the 
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minimum level, and one short call option for the value above the maximum capacity. 

The expected present value of production at time t can then be expressed as 

( ) ( )[ ]0,max0,max)(0
high
tt

low
tt

rt
t XRXReRV −−−= −  (11.11) 

Now, we have an expression for the value of the revenues at a given time t. This can 

be used for the valuation of the power plant. Assuming that there are no variable cost 

of running the power plant, the value can be expressed as 
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(11.12) 

Here, Ct
low and Ct

high represent the revenue option values at time t, and I is the initial 

investment, assumed to be constant. Assuming that the power plant can be built in two 

years and run for the next 40, the present value of the investment is found in the table 

below, using the two capacity choices.  
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Table 11-4: Value of the power plant, Revenues are risk adjusted by 19.26%. All values in NOK 

As can be seen in table 11-4, the present value of the small plant is positive, whereas 

the present value of the large plant is not. This would mean that the peaks in the 

summer would not be large enough or persistent enough to generate the needed 

revenues to pay for the additional investment in equipment.  

11.1.9 Discussion on the model and sensitivity analysis 

The model presented in this section tried to utilize the option structure of the expected 

payoff of production. We built a theoretical spread of revenues, by developing options 

on the revenues in the future. In order to use the option approach, we needed the risk-

neutralized forward prices. This was done by assuming that discharge risk has no 

market risk premium. This approach resulted in a reduction of 19.26% of the initial 

revenues. This is substantial, compared to normal risk adjustments, but nevertheless a 

consequence of the data analyzed. Consequently, we get very low estimates for the 

plant value. 

The mean-reversion process used for pricing also has a mean-reverting volatility 

function. Because the mean-reversion parameter κ is high, the forward volatility soon 

approaches zero, making the cumulative variance estimate too low, compared to 
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observed price volatility. Since revenue is a product of price and quantity, price 

volatility would be expected in long-run revenue prices. This could be included by 

changing the volatility model or implementing a two-factor model for revenues. 

 

The major source of uncertainty in a power plant value would lie in the long-term 

price equilibrium. If the price trend of the power plant is changed to 1.42%, our 

lowest value in the trend analysis, the effect on revenue is enormous. This can be seen 

in table 11-5. The table shows the power plant value for different price trends within 

the interval obtained in section 5.2: 
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Table 11-5: Sensitivity of power plant value to the trend in prices 

Knowing this, it seems like the risk adjustments done to adjust for mean-reversion 

risk are quite minor compared to the long-term effects of price changes. Hence, as a 

mean-reversion approach with seasonal patterns might be fruitful in the short run, the 

long-run focus must be on the price trend effects. 

11.2 A joint stochastic process for revenues 

Section 4.4.8 discussed a model for generating revenues using two dependent 

stochastic processes. The model considers the production Q and prices P as stochastic 

variables following GBM. This relationship can be utilized in pricing power plants by 

assuming that the power price follows GBM with positive drift, whereas the river 

discharge follows GBM with zero drift. To find the value of the plant, we first need to 

determine its parameters, adjust for risk, and integrate over the plant’s lifetime. 

11.2.1.1 Data set 

The data sets used for this valuation, comprises 88 consecutive years of discharge data 

from the Gaula river from 1908 to 1995, together with the ten-year contracts and the 
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1-year forward contracts from 2000 to 2001. Most of the parameters have been 

determined in other sections of this thesis, and will only be restated in this section. 

11.2.1.2 Model 

Starting with the river flow, assume that the discharge flow in a river for a given year 

is assumed to be constant. We multiply this water by the conversion factor, to obtain a 

value Q, rpresenting the annual production. This production level will be assumed to 

have zero drift, but following Brownian motion, This can be described through the 

dynamics in equation (11.13): 

dzdt
Q

dQ
W�+= 0  

(11.13) 

We will assume an annual resolution in the model. The average production level QAVG 

can be estimated as the average production throughout the year, capped at the plant’s 

capacity, subtracting the minimum level of 2 m3/sec required to run the plant. An 

estimate of the water flow volatility can then be obtained by calculating the annual 

percentage change based on the 88 years of data.  

 

For prices, Schwartz’ (1998) one-factor GBM approximation for long-term 

commodity prices seems to be a natural choice for a process. This is a risk-neutral 

process, using the risk-neutral forward trend as the drift, and the forward volatility as 

the model volatility. The process was introduced in section 4.4.7, and can be stated as 

ZdzZdt
dT

dF

F
dZ F�+= 1

 
(11.14) 

Assuming long-run prices are more important than short-run prices, long maturity 

forward contracts found the basis of the long-term risk-neutral trend. A natural choice 

of trend will then be to continue using the sample of ten-year forward contracts as an 

estimate for the risk-adjusted drift.  

The annual revenues will now be the product of the two processes, given as 

( ) ( ) ( )( ) TTTcrrt
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Here, Z is the shadow energy price, Q the average production, and r-c the risk-free 

forward price drift. The parameters ρZQ, σZ and σQ are the correlation between prices 

and production, and the volatility of price and production, respectively. 
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11.2.1.3 Parameter estimation 

The price trend was determined in section 5.2, and is taken to be 3.15%. We then need 

to estimate a starting price, the shadow price Z0. This is the risk-neutral starting point 

of the forward price trend. Assuming we start our investment on the last day of our 

long-term price data, we use the longest contract on that given day as a proxy for the 

shadow price. Looking at the price forward data, the forward contract for 2004 is the 

longest contract at Nord Pool, and its value is 170.63 NOK/MWh at the last day of 

trading, the 27th of December 2001. This value is discounted back to the present, 

using the trend of 3.15%. 

 

For the average annual production, we use discharge data for the last 88 years to 

estimate a sensible production rate. The production average is calculated from water 

flow series, capped at the top and bottom to account for over-flow and production 

suspension. The parameters of the model are then given as follows: 
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Table 11-6: Model parameters for the revenue model 

11.2.1.4 Volatility  

The combined process introduced above can take any time dependent volatility as 

input. For prices, the long-term forward price volatility of 14.5% annually is used. 

This value is both estimated and implied from options, and should give a fair 

reflection about the plant’s value. For the discharge level, we used the same 88 years 

as we used to calculate the average discharge, to find an estimate of the annual 

                                                 
38 This is the average production capacity for the last 88 years. 
39 This is the discounted value of the longest one-year contract from Nord Pool. In our case, we start 

the investment problem 1/1/2002. For this purpose, Z0 is estimated as the forward contract for 2004 

discounted at 3.15% annually. The approach is taken from Schwartz (1998). 
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volatility. As usual, volatility was found as the standard deviation of returns, this time 

using annual averages. The volatility estimates for the two plants are included in table 

11-7: 

 

The instantaneous correlation, ρPW was estimated by comparing returns of prices and 

discharge over the same time interval. This was estimated from prices and discharge 

data from 1996 to 2001. This can be estimated by defining uP and uW as the price and 

discharge returns, respectively: 
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Then, the correlation is found as 
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Performing the analysis, SPSS returned the correlation coefficients listed in table 

11-7. They were both significant on the 5% level. 
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Table 11-7: Volatility parameters 

11.2.1.5  Market price of discharge risk and long-term behavior 

The forward price will have a long-term drift of (r-c), and is therefore already risk-

neutral. The river flow, however, will follow the risk-neutralized drift –λQσQ because 

the unadjusted drift is given as zero. A long-term drift in water level would simply not 

be realistic40. Following this, the long-term volatility should also approach zero, as the 

uncertainty in this lack of trend is considered low, and the long-term market price of 

risk should be expected to be very small. Looking at the volatility of the annual 

production, this is fairly high at 20%, indicating that, the variance between years is 

considerable. Since we have not been able to find any power plants to estimate the 

                                                 
40 This is actually an argument for modeling the discharge as a mean-reversion process with zero drift. 
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market price of risk from, we will base our analysis of the power plant value on 

various levels of the market price of discharge risk. 

11.2.1.6 Resulting process and value of power plant 

The resulting process used for revenues was described in section 4.4.8, and found to 

be 
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for any given maturity T. Here, ρPQ is assumed to be constant over time. Finally, by 

integrating the revenues over the plant’s lifetime, the value of the power plant can be 

shown to be: 
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(11.19) 

As discussed above, we assume zero drift in the production. The plant building time is 

assumed to be two years and production is assumed to terminate after 40 consecutive 

years Variable cost are assumed negligible. The final value of the power plant, 

assuming the long-term discharge risk to be zero, is found in table 11-8, and a 

discussion of the plant value for various values of λ is given in table 11-9 in the next 

section. 
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Table 11-8: Value of power plant using a joint stochastic process 

11.2.2 A discussion on the market price of risk 

In section 11.1.5, we outlined several possibilities for how to risk-neutralize the 

forward revenue contracts. This discussion is to a large extent valid for the joint 

stochastic process. The joint process uses prices fitted to the long-run forward price 

term structure, and is therefore assumed to be risk-neutral. The same can not be said 

about the market price of discharge risk, λQ. We therefore assumed the discharge risk 

to be zero. 

 

Our original idea was to value a traded power plant using one of the models above, 

since the analysis is easy to transfer to a different river. As mentioned in section 
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11.1.5.1, the traded value of a power plant can be taken as the current certainty 

equivalent of the power plant. Solving the value of the plant model with respect to λQ 

we could hence obtain the value of λQ by comparison to the certainty equivalent, 

because the two measures should be equal in the absence of risk. The value of λQ 

would then be the solution of equation (11.20). 

( )2
0 )(min RVCE

Q
−

�
 (11.20) 

This method is particularly easy to apply to the analysis above, since an analytical 

solution for λQ can be determined. Once λQ has been determined, the value of our 

power plant is easy to determine. Since we did not manage to obtain the value of a 

traded power plant, the value of the plant for various measures of λQ is listed in the 

table below: 
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Table 11-9: Plant value for different choices of λ 

11.2.2.1 Traded Norwegian Power Plants 

After asking several actors in the market, we did not succeed locating any traded 

discharge power plants during the past couple of years. Orkla Borregaard is at the 

moment considering selling eight discharge power plants, but none of the deals are 

finalized yet. Other power plant transfers have been parts of larger complex deals, 

involving more than one power plant, and a parent company. An example of this is 

the transfer of Pasvik Kraft to Varanger Kraft in 2000. The method is still considered 

relevant methodically. 

11.2.3 Sensitivity to changes in the price trend 

The model has assumed that the term structure of forward prices increases by an 

annual 3.15%. The revenue model was very sensitive to changes in this trend. Of 

course, the actual trend is unobservable, and 3.15% will never be more than our best 
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scientific guess based on the analysis in section 5.2. The table below assumes that the 

market price of discharge risk is set to zero, while varying the price trend between 

1.42% and 5.45%, as we did for the revenue options approach. 
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Table 11-10: Sensitivity to price trend. All values in NOK 

As for the revenue options, the value of the plant is very sensitive to changes in the 

long-term trend. The value is positive for all values, however, which might not be 

realistic.  

11.3 Comparison of the two models 

The previous sections have discussed two models for power plant valuation. The first 

approach looked at a data set of “real” revenues, and the other looked at discharge 

water and price processes separately, generating a correlated GBM process. Looking 

at table 11-5 and table 11-10, we see that the value of the power plant is always 

positive for the GBM model, whereas the present value for the revenue model is 

considerably less. The main reason for this should be the major risk adjustment done 

for the first model. Removing the 19.26% risk adjustment in the first model creates 

values of similar magnitude to the GBM model.  

 

Secondly, we have used slightly different data sets to measure the parameters. The 

average water in the joint stochastic process model was based on an average over 88 

years, whereas the prices were based on long-maturity forward contract data from 

2000 and 2001. The average production level during 1996 to 2001, which comprises 

the volume and price data set of the first model, was about 5% lower than the average 

over the 88 years. This is not enough to explain all the differences, however. 

 

The seasonal factor of the mean-reversion model does not adequately capture the real 

seasonal variation in the revenues. It is obvious from the graph presented in figure 
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11.1 that a simple cosine function could not capture the whole truth. In the long run, 

the mean-reversion process will converge to this inexact seasonal function. The peaks 

of the revenue function might then be too low to capture the adequate structure of the 

revenues. The seasonal function would also partly explain why the two models 

produce different advice with respect to plant size. Hence, the averaged annual 

production might be a better estimate than the method of modeling the whole revenue 

process on a weekly basis. The average production model is also considerably easier 

to communicate. 

 

None of the models adjust adequately for the market price of discharge risk. This is 

because we could not obtain a power plant traded in the market. It is not sure, 

however, that this is priced in the market at all. On the other hand, as seen in section 

8.3.2.1, we found an implied market price of risk equivalent to 7% for precipitation 

derivatives. Although not equal, they represent a similar entity, and might to a certain 

extent be comparable.  

 

Finally, both models were very sensitive to changes in the long-term risk-free trend. 

The net change in plant value compared to a trend change has the same magnitude for 

both models, indicating consistency between the models. 

11.3.1 Summary 

This chapter has introduced two different valuation approaches for a power plant, one 

using weekly revenues and option prices, and one using an annual average. The 

results of the two approaches were different, for a variety of reasons. In the long run, 

the second approach might turn out to be the best, due to both simplicity and ease of 

communication, and due to the fact that temporal differences even out over time. We 

have not seen, however, whether an actual investment can be delayed, to increase the 

present value of the project. This will be discussed in the following chapter. 
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12 Timing the investment 

This section explains the implementation of the trinomial tree for finding the optimal 

investment timing for the (American) option to build a run-of-river plant. We 

investigate this using a mean-reverting and a GBM price process. Firstly, the 

valuation approach is described, secondly the tree building procedures are explained, 

then the methodology for valuing the option to invest and finding the early exercise 

boundary is commented on. We finally find the early exercise boundary and comment 

on the findings. 

12.1 Necessary preconditions 

Since our aim is to find the limit for spot price above which investment becomes more 

profitable than holding the option to invest, we have to use a price model without 

seasonal variations, otherwise the boundary will be dependent on the time of the year 

the option holder decides whether to invest or not. Consequently, we use a constant 

deterministic drift in the prices, from section 5.2, we know that the interval for this 

drift is [1.42%,5.45%] with 3.15% as the mean value. To keep the model internally 

consistent, we value the power plant using the same price model. The deterministic 

trend present in the spot prices is assumed to sustain trough the lifetime of the plant 

and there are no seasonal variations in prices after the investment is made. With this 

in mind, the value of the plant is given as  

∑
=

− −
40

1

))((
t

rt IQtPe  
(12.1) 

where P(t) denotes the average spot price in year t, Q is a constant, deterministic 

production rate taken as the histroical average yearly production of a run-of-river 

plant with a discharge capacity of 15m3/second. in section 11.2.1.3, this quantity was 

found to be 8944 MWh anually. t is measured in years. 

12.2 Construction the trinomial tree for the mean-reverting process 

For the tree construction, we follow Clewlow and Strickland (1998) for implementing 

an efficient procedure for the Hull-White model outlined in section 3.3.4.3. Firstly, 

we construct a simplified tree for the noise process as given in equation (3.43). 
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12.2.1 Determining the up and down moves. 

At each time increment, the price can move either up or down a space step given by  

tidP �3)(* �=  (12.2) 

Observe that the standard deviation is a function of the time increment. The volatility 

function is choosen to fit the observed volatility structure in spot prices, and is given 

from the Price model in equation (3.32). In the tree setting, it takes the form 
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12.2.2 Constructing the noise tree 

With the volatility function and the up and down increments at each time step defined, 

the trinomial tree for the noise process is constructed according to the branching 

scheme described and with the risk-neutral transition probabilities defined in section 

3.3.4.3.4  

12.3 Fitting the tree to the observed term structure 

12.3.1 Determining the displacement function 

Following Clewlow and Strickland (1998), we first calculate the state prices at each 

node in the tree. The state price Qi,j is defined as the value today of a security that 

pays one unit of cash if node (i,j) is reached and zero otherwise. The state prices are 

obtained through forward induction by computing 

∑ −
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where pj’,j is the probability of moving from node (i,j’) to node (i+1,j). That is, the 

summation is taken over all nodes j, at time step i which branch to node (i+1,j). Each 

internal node at time i can be reached from three nodes at time t-1, while the nodes at 

jmax -2 and –jmax +2 can be reached from four nodes provided the tree has stopped 

branching. After all state prices have been calculated, we find the displacement 

function a(i) by taking 
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(12.5) 

where F(0,i∆t) is the observed price today for a forward contract maturing at time i∆t. 
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Given the dipsplacement function a(i), the final price tree is constructed by 

calculating 

*
,, )( jiji PiaP +=  (12.6) 

yielding a trinomial price tree consistent with the observed forward price structure. 

For the term structure, we use the trend estimated in section 5.2. The model handles 

any term structure, but we avoid seasonal variations due to the risk of obtaining a 

seasonally dependent exercise boundary. 

12.4 Constructing the tree for the GBM process 

The trinomial tree used in this approach is simpler than the corresponding tree for a 

mean-reverting model. In this case, the transition probabilities are the same for each 

node regardless of its location, and each node at time step i always branches to three 

nodes at time step i+1, and each node at time step i can be reached from three nodes at 

time step i-1. The heigth of the tree is always equal to the number of time steps.  The 

implementation of the tree does not support a volatility function, and using the 

estimated yearly spot volatility will most likely result in a very high exercise 

boundary. To evaluate this, we will conduct two runs, one where we use the estimated 

spot volatility, and one where we use the estimated long-term forward volatility.  

12.5 Timing the investment 

The value of the American option at each node is found by backwards induction. We 

know that at maturity, its value is given by its European value (Hull,2000) 

)0,)(Max( ,, IPVC jiji −=  (12.7) 

where V(P) denotes the value of the power plant given a power price P at the time of 

the investment. I denotes the investment. 

12.5.1 The expected value of waiting one period 

For a node i < imax we calculate the expected value of the investment if it is delayed 

one period. The expected value in the next period is given as 
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where the summation takes place over all nodes j’ that can be reached from node (i,j) 
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12.5.2 Checking for early exercise 

At each node (i,j), the option value given as the expected value of postponing the 

investment one period is known. Furthermore, the price in the same node (i,j) allow us 

to obtain the value of exercising the option and build the plant. If the value of making 

the investment is greater than the value of the option, the option will be exercised.  

12.5.3 Determining the early exercise boundary 

After the steps outlined above, we will for each time step i have one or more nodes 

(i,j) where the it is optimal to exercise the option. Since the volatility function we use 

is a decreasing function of time, the early exercise boundary will be an increasing 

function of time. 

12.6 The early excersise boundary using a mean-reverting model 

The input parameters to the model are  
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Table 12.1 Input parameters to mean-reverting trinominal tree 

The choice of mean-reversion factor (κ) deserves a comment. In section 5.5, we 

estimated κ to 0.035. If we insert this value into equation (3.45) for finding the 

optimal branching size of the tree, we get a tree that never stabilizes (jmax > imax) 

Consequently, we an estimate κ, from the price data from years 1997-200041, yielding 

a maximum branching of 18 with 120 time steps. The results are shown in the plot 

below. 

                                                 
41 These years are choosen since years 1996 and 2001 display extremely high prices. A curve fitted to 

the whole data set will yield a mean to which the prices never revert, thus the value for the mean-

reversion parameter becomes too low. See Appendix B 



MSc Thesis, Department of Industrial Economics and 
Technology Management    
Narve Bjørdal and Anders Skogen 

Real Option Analysis of a Hydropower plant 129

0

50

100

150

200

250

300

350

1 12 23 34 45 56 67 78 89 100 111

Investment postponed (months)

N
O

K
 / 

M
W

h

Trend = 5.45 %

Trend = 3.15 %

Trend = 1.42%

 

Figure 12.1Early excersise boundary for the option to invest using a mean-reverting price model 

 

12.6.1 The early excersise boundary using Geometric Brownian Motion 
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Table 12.2 Input parameters to GBM trinomial tree 

The early excersise boundaries for differnet price trends are shown in the plot below. 

Note that for a trend of 5.45%, it is never optimal to excersise the option early. 
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Figure 12.2 Early exercise boundary using a GBM process with annual spot volatility 
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Using these input parameters, we see that a high price is necessary for early exercise 

to become optimal. With the drift values used, the spot price will not reach the 

excersise boundaries of 336 and 970 NOK/MWh for a trend of 1.42% and 3.15% 

respectivly. This is due to the high volatility estimate. The implementation for the 

GBM tree only supports constant volatility. We conduct a second run where the 

volatility is changed to the long-run estimate of 14.5% annually. The early exercise 

boundaries obtained are presented below. Note that at a trend of 5.45%, it is still not 

optimal to exercise early. 
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Figure 12.3 Early exercise boundary using a GBM process and forward volatility 

12.7 Discussion of results 

We see that when we use a mean-reverting model, the exercise boundary is an upward 

sloping function of time. This is due to the volatility function used. As we move 

closer to maturity, accumulated volatility approaches a fixed value, hence it becomes 

less and less profitable to postpone the investment. Furthermore, we observe the 

higher the trend, the higher the price must be for the investment to be worth more than 

the option. This is consistent with intuition – an increase in trend translates into an 

higher expected price in the future, and the probability of a favourable price 

development increases. It is not optimal to invest immediately, using a trend of 

3.15%, the price must move close to 180 NOK during the first two years. This is 

about 6% above than the drift indicated by the observed term structure. 

 

For the GBM model, the results look somewhat different. Firstly, the exercise 

boundary is a straight line once excercising becomes optimal. This is due to the 
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design of the tree – in the GBM model, the drift is reflected in the (constant) transition 

probabilities, and we use a constant long-term volatility. If the trend is 5.45%, the 

expected profit of waiting one period is so high that early exercise never becomes 

optimal. The prices at which exercise takes place are also considerably higher than for 

the mean-reverting model. This is due to the fact that there is no parameter pulling the 

prices back to the long-term mean in the GBM tree, and hence the probability of an 

upwards move is equally high regardless of the position in the price tree. 

 

Despite the fact that delaying the investment is optimal both for the mean-reverting 

model and the GBM model, the upwards price moves necessary are not large. This 

means that investment might well take place before the option to invest expires. 
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13 Suggestions for further work 

We have approached the valuation problem from some angles, while others still 

remain unexplored. Some suggestions for further work on the topics discussed in this 

thesis are presented below 

• Power prices display large peaks. It would be interesting to see how well a model 

incorporating a jump-diffusion process performs compared to the models we 

studied 

• Although we have devoted space to discuss price volatility, there are still models 

available that can shed new light on the volatility structure. Notably two-factor 

models treating volatility as a stochastic process would be a welcome extension 

• For precipitation derivatives, we developed a simple model. A better 

understanding of the underlying weather variable could help us develop a more 

sophisticated model 

• While we found that the precipitation index is a poor volumetric hedge for a run-

of-river power plant, it is reasonable to assume that it would work better for a 

production system with storage capacity. We know that inflow is largely 

dependent on accumulated snow, and preliminary analysis do show that 

accumulated precipitation and the fill rate of Norwegian power reservoirs are well 

correlated 

• Some interesting correlation patterns between precipitation and prices and 

precipitation and water discharge has been commented on. To further study these 

relationships, longer time series would be needed. It is also likely that a more 

systematic statistical analysis or other techniques for detrending the data could 

provide more insight.  Specifically, we did not discover how the trading date 

affects correlation for long-term forward contracts 

• We have discovered that the price trend is important for the optimal size of a run-

of-river power plant. An extension to our model could be to value the option of 

adding a second turbine if prices should indeed increase more than expected.  
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14 Conclusion 

The aim of this thesis was to study models for power prices and power derivatives as 

well as models for precipitation with the aim of developing precipitation derivatives. 

Armed with these models, we planned to value a run-of-river power plant as a 

portfolio of power- and weather derivatives through a real options framework 

 

A review of the spot and forward models for energy prices revealed a solid base of 

models of various complexities. Energy price behavior is driven by a number of 

factors, and the inclusion of all these in an analytical tractable model, seems very 

difficult. Seasonal variations, jumps, mean reversion and time-varying volatility 

characterize prices. Furthermore, the data set of power prices is too short to detect 

basic characteristics such as a price drift from the data set. We chose to explore the 

mean-reversion and seasonal dynamics, and soon found it very difficult to determine 

parameters such as market price of risk. In that respect, modeling forward prices 

proved to be easier, as these are already risk neutral. 

 

A survey of the literature on weather derivatives did not yield any frameworks 

suitable for developing preference-free price models for precipitation derivatives. 

Furthermore, existing stochastic models for precipitation are not developed with 

financial applications in mind, and are consequently too complex to develop 

analytical solutions for derivatives pricing. On this background, we suggested using a 

one-factor mean-reverting process to model a precipitation index covering Norway. 

Our simple model seemed to perform adequately with respect to historical 

observations and allowed closed-form solutions to derivatives pricing. Due to the 

illiquidity of the weather market in Norway, it is difficult to test the models against 

market prices, but quotes obtained allowed us to estimate the market price of short-

time precipitation risk to approximately 7%, thus making the model theoretical 

complete. Our model was compared to a nonparametric approach for derivatives 

valuation, but due to the lack of reference data, we cannot draw any clear conclusions 

on how well the different models perform. The extreme weekly volatility, estimated to 

90% in precipitation and the relatively short data series further complicated the 

analysis.  
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Armed with precipitation derivatives, we wanted to use these as a hedge to remove 

the volumic risk inherent in a run-of-river power plant that is larger than the minimum 

water discharge of the river in which the proposed plant is built. Correlation analysis 

of discharge time series and precipitation data found the correlation low at around  

–0.2 depending on the river investigated during the period it would be expected to be 

at its highest. This was explainable, firstly by the fact that the index consists of 

measurement stations scattered all over Norway, and secondly by the relationship 

between precipitation and water discharge being complicated due to snowfall and the 

spring flood.  

 

This forced us to consider alternative approaches for valuing the run-of-river plant, 

and we proceeded by finding the economically optimal size of a plant. Our findings 

indicated that the solution to the sizing problem and the plant value is highly sensitive 

to the estimates for trend in power prices as well as the underlying price model used.  

 

Since the findings indicated the valuation to be dependent on the methodology 

employed, we explored two very different approaches to the plant valuation problem. 

First, we considered the seasonal structure of the power plant revenues, and included 

operational characteristics to model revenues as a portfolio of spread options. The 

second approach considered an annual resolution on the input, and no seasonal 

variation. Revenues were assumed to be composed of two correlated Brownian 

motions of price and quantity. Due to the lack of power plants traded in the market, 

this volume risk was assumed to be zero to keep the model consistent. Using the 

forward term structure and forward shadow price instead of spot price, the revenues 

were made risk neutral. The comparison of the two yielded different, but explainable 

differences. 

 

Finally, we investigated the optimal investment-timing problem, and found that 

regardless of the price trend assumed and the underlying stochastic process for power 

prices, it was never optimal to invest immediately. The early exercise boundary at 

which investment becomes optimal varies considerably depending on assumptions 

about the volatility function and the method used in the analysis.  
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Appendix A Derivations of mean-reverting processes 

Normal mean-reverting process 

Let Pt follow the equation 

tt XtfP += )(  (A.1) 

dzdtXdX tt �� +−=  (A.2) 

In equation (A.1), Pt is the price at time t, given as the deterministic function f(t) and a 

stochastic factor Xt following the dynamics given in equation (A.2). Equation (A.2) 

tells us that a random shock Xt will be smoothed away over time at the rate of κ. New 

random shocks may occur, but they will all be smoothed over time. 

Now, rearranging equation (A.1), we obtain 

)(tfPX tt −=  (A.3) 

This can be put into equation (A.2) to obtain 

( ) ( ) dzdttfPtfPd tt �� +−−=− )()(  (A.4) 

Using Ito’s lemma and rearranging, we obtain 

dzdtPtft
dt

df
dP tt �� +





 −+= )()(  

(A.5) 

This is a process reverting to a long-term mean of f(t). 

Log mean-reverting process 

Let ln(Pt) follow the equation 

tt XtfP += )(ln  (A.6) 

dzdtYdY tt �� +−=  (A.7) 

As for the process in Pt, equation (A.6) can be rearranged and inserted into equation 

(A.7) to obtain the expression in equation (A.8). 

( ) ( ) dzdttfPtfPd tt �� +−−=− )()ln()()ln(  (A.8) 

Now, by using Ito’s lemma on Pt, we get the following expressions 

2

2

2

/1
))(ln(

,
1))(ln(

,
))(ln(

t

t

t

tt

tt P
dP

tfPd

PdP

tfPd
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tfPd
−=

−
=

−
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−
 

(A.9) 

Following this, we put the results into equation (A.10) 
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)(ln),(
2
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2
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tfPFdP
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Fd
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dF tt

t

t
t

+=++=  
(A.10) 

This result can then be written as equation (A.11): 

( ) dtdP
P

dt
dt

df
tfPd t

t
t

2

2

11
)(ln �−+=+  

(A.11) 

This expression is replaced into the left-hand side of equation, and rearranged to the 

result presented in equation (A.12) and (A.13). 

( ) dzPdtPtbdP ttt �� +−= )(  (A.12) 

)()(
2

1 2

tft
dt

df +





+�

�
 

(A.13) 

This can easily be extended into a proof for a risk neutral process in Pt or ln(Pt). 
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Appendix B Regression over wet years 

The below table includes the parameters determined using the mean-reversion process 

in prices. The process was described in chapter 5, and was introduced by Lucia and 

Schwartz (2001). 
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Table B.1: Parameters of the mean-reversion price process estimated over the wet years 1997 to 2001 
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Appendix C The Enron Scandinavian Precipitation Index 

The Norwegian Stations 
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Table C.1 Norwegian measurement stations in the Enron Scandinavian Precipitation Index 

Source: Eliassen (2002), Schieldorp (2002) and DNMI 

The weights are listed for the exact stations in the index. Stations without weights are 

older stations located close to a measurement station included in the index, and as 

seen from the “in operation since” column, these older stations will have to be used to 

construct longer series. 
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The Swedish stations 
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Table C.2 Swedish measurement stations in the Enron Scandinavian Precipitation Index 

Source: Eliassen (2002) and Schieldorp (2002) 

Underlying data source 

The underlying data source is the time series for the listed stations operated by the 

state-run meteorological agencies in Norway and Sweden. However, only the 

Norwegian data series are available for our analysis, since the cost of obtaining the 

Swedish data is too high as opposed to the Norwegian which are provided free of 

charge for educational purposes.  

Quality of the data 

According to G. A. Dalsbø at the Market Department of the Norwegian 

Meteorological Agency, quality control is conducted on all data series, so we have no 

reason to doubt the accuracy of the data or have any ambition to improve the series. 

Missing data points 

For various reasons (maintenance, vandalism, displacement etc) a measurement 

station can be unavailable for short periods of time (Dalsbø, 2002). The Enron Index 

defines back-up stations to use in such cases. The only problem is the 33 consecutive 

missing observations from the Selbu station (backed up by Storlinen, a Swedish 

station) We have used Berkåk instead, which is the closest Norwegian station for 

which we have data. As this is only 33 out of 6935 data points, the error introduced is 

negligible. 

Length of record available 

There are considerable variations in the length of the time series. The youngest station 

in the index has been in operation only since July 1982, while daily values are 
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recorded back to 1867 for the longest-lived station used in the index. The data sets we 

obtained started January 1951 if the station had been in operation since before 1951, 

otherwise we received the complete time series for each statio, thus the index is 

complete from July 1982 until December 2001 if we back-up the few missing values.
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Appendix D Precipitation return volatility  

The plot below shows the standard deviation of the precipitation index returns. By 

insepection, the assumption of constant return volatility seems supported.   
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The results from the test of the hypothesis in chapter 7 are presented in the table 

below. If cell (i,j) is shaded, it means that we can be 95% confident that the return 

variance of week i is different from week j. The lefmost and upper columns denote 

week of year, while table values show the Fisher-test p-value in per cent. 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
2 92 70 90 11 75 93 76 41 57 96 23 35 67 37 33 82 13 85 49 97 91 2 49 83 27

3 57 94 73 57 89 16 67 91 32 86 28 24 83 65 95 18 15 95 31 88 56 50 36 57 58

4 52 83 100 48 5 33 65 67 70 10 8 73 31 61 42 38 54 12 68 98 90 14 99 99

5 67 52 95 19 73 85 29 80 31 27 77 71 89 15 13 98 35 82 51 45 41 52 53

6 83 62 8 44 81 52 86 15 13 89 42 77 31 27 68 18 84 81 74 21 83 84

7 48 5 32 65 67 69 10 8 72 31 61 43 38 53 12 68 99 91 14 99 98

8 21 78 80 26 75 34 30 72 75 84 14 12 93 38 77 47 41 44 48 49

9 33 13 2 12 75 83 11 34 15 1 1 18 70 12 5 4 62 5 5

10 59 16 55 50 44 53 97 63 8 7 72 55 57 32 27 62 32 33

11 38 95 23 19 92 57 95 21 19 86 26 97 64 57 31 65 67

12 41 4 3 44 15 35 71 65 30 5 40 69 76 6 67 66

13 21 18 97 53 91 24 20 82 24 98 68 61 28 69 71

14 92 20 52 25 2 1 30 94 22 10 8 86 10 11

15 16 46 21 1 1 26 86 18 8 6 78 8 9

16 51 88 25 22 79 22 95 71 64 26 72 74

17 61 7 6 69 57 55 30 26 65 31 32

18 19 17 91 29 93 60 53 33 61 62

19 93 16 2 23 44 50 3 43 41

20 14 2 20 39 45 2 38 37

21 34 84 52 46 39 53 55

22 25 11 9 92 12 12

23 66 59 29 67 69

24 92 14 99 97

25 11 91 89

26 14 15

27 98
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29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

2 61 64 85 4 86 43 78 6 81 69 10 71 58 40 45 30 4 68 15 85 46 60 31

3 58 46 68 30 3 100 4 95 97 47 40 34 34 60 45 14 65 52 69 38 66 24 62

4 27 20 33 12 1 57 1 54 60 20 77 69 69 28 19 4 31 23 34 15 32 9 30

5 64 51 74 34 3 94 5 98 90 52 36 30 30 66 50 16 71 57 75 43 72 27 68

6 37 28 45 17 1 72 2 68 76 29 62 54 54 38 27 7 42 32 46 22 43 13 40

7 27 19 33 11 1 57 1 53 60 20 78 70 69 28 19 4 31 23 34 15 32 8 29

8 68 55 79 38 4 89 6 93 85 57 32 27 27 70 54 18 76 61 80 46 76 30 73

9 39 51 32 71 38 16 52 18 15 49 3 2 2 38 52 92 34 45 32 60 34 82 36

10 90 75 99 54 7 68 11 72 64 77 21 17 17 92 74 28 98 82 98 65 98 45 95

11 51 39 60 25 2 91 3 86 94 41 46 40 40 52 39 11 57 45 61 32 58 20 55

12 13 9 16 5 0 32 0 30 35 9 89 98 98 13 9 2 15 11 17 7 16 3 14

13 47 36 56 23 2 86 3 82 90 38 50 43 43 49 36 10 53 41 57 30 54 18 51

14 59 72 50 95 23 28 34 30 26 71 6 4 4 57 74 68 52 66 49 83 52 93 55

15 52 65 44 87 27 24 39 26 22 63 5 4 3 51 66 75 46 59 43 75 45 99 48

16 45 34 53 22 1 83 3 79 87 36 52 46 45 46 34 9 51 39 54 28 51 17 48

17 92 78 97 56 7 65 11 69 62 79 20 16 16 94 76 30 100 85 96 67 99 47 97

18 55 43 64 28 2 95 4 91 99 44 43 37 37 56 42 12 61 48 65 35 62 22 58

19 6 4 8 2 0 17 0 16 19 4 61 68 69 6 4 1 7 5 8 3 8 1 7

20 5 3 7 2 0 15 0 14 16 3 55 62 63 5 3 0 6 4 7 2 6 1 6

21 62 50 72 33 3 96 5 82 92 51 37 31 31 64 49 15 69 56 73 41 70 26 67

22 64 78 55 99 21 31 30 34 29 76 7 5 5 62 79 62 57 71 54 89 57 87 60

23 49 38 58 24 2 88 3 84 92 39 48 42 42 50 37 10 55 43 59 31 56 19 52

24 26 19 32 11 1 56 1 52 59 20 79 71 71 27 18 4 30 22 33 15 31 8 29

25 22 16 28 9 0 49 1 46 52 17 87 78 78 23 15 3 26 19 28 12 26 7 24

26 72 86 62 91 17 37 26 39 34 84 8 7 7 70 88 55 65 79 61 97 64 79 67

27 27 19 33 11 1 57 1 53 60 20 78 70 69 28 19 4 31 23 34 15 31 8 29

28 28 20 34 12 1 58 1 55 61 21 76 68 68 29 20 4 32 23 35 16 33 9 30

29 85 89 63 9 59 14 62 55 87 17 14 13 98 84 34 92 92 88 74 91 53 95

30 74 77 13 46 19 50 43 98 12 9 9 83 99 44 77 93 73 89 77 66 80

31 54 6 68 11 72 65 76 21 17 17 91 73 28 97 81 99 64 98 44 94

32 21 31 31 33 28 75 6 5 5 61 78 64 56 70 53 88 56 88 59

33 3 81 3 2 12 0 0 0 8 13 43 7 10 6 16 7 27 8

34 4 96 96 48 39 34 34 60 45 14 65 52 69 38 66 24 63

35 5 4 19 1 0 0 13 20 59 11 16 10 24 11 38 12

36 92 51 37 31 31 64 49 15 69 56 73 41 70 26 67

37 45 42 36 36 57 43 13 62 49 66 36 63 22 59

38 12 10 10 85 97 43 79 95 75 87 78 64 82

39 91 91 17 11 2 20 14 22 9 20 5 18

40 94 14 9 2 16 11 18 7 17 4 15

41 14 9 2 16 11 18 7 16 4 15

42 82 33 94 90 90 73 93 51 97

43 45 76 91 72 90 75 67 79

44 29 39 27 53 29 74 31

45 84 96 67 99 47 97

46 80 82 84 60 87

47 63 97 44 93

48 66 76 70

49 46 96

50 49

Table D.1 Results for Fisher test for equal variance in precipitation return volatility 
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Appendix E Correlation between the precipitation index and 

water discharge 

The two following figures show the correlation coeffecients between the precipitation 

index and Gaula (Figure E.1) and Glomma (Figure E.2). While the plots indicate 

strong correlation compared to the values found in chapter 9, however, the correlation 

coeffecients shown below are not statistically significant. This is due to few data 

points (12 for each week) and clear noise in the data. The large values for the winter 

weeks are probably explainable by the fact that discharge is initially very low, and if a 

large increase in precipitation translates into a slight increase in water discharge, the 

correlation will come out as high.  

Figure E.1 Correlation between the precipitation index and Gaula water discharge on a weekly basis 
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Figure E.2 Correlation between the precipitation index and Glomma water discharge on a weekly basis 

 

In chapter 7, we also discuss correlation between discharge and the precipitation 

index during the late summer and fall weeks. While the correlation is found to be 

significant and negative, the correlation pattern shows strong deviations from the 

average values. The values are significant at the 5% level. 
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Figure E.3 Average weekly correlation between the precipitation index and Gaula discharge for weeks 
29-45 broken down by year 
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Figure E.4 Average weekly correlation between the precipitation index and Glomma discharge for 
weeks 29-45 broken down by year 
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Figure E.5 Average weekly correlation between the precipitation index and Orkla discharge for weeks 
29-45 broken down by year 
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Appendix F Cost of a run-of-river plant 

 

The following cost equations are based on “Kostandsgrunnlag for mindre 

vannkraftanlegg” (Costs for small hydropower plants) publised by The Norwegian 

Water and Energy Resources Directorate. We got access to the data through the study 

“Mijøtilpasset Energiproduksjon ved små vannkraftverk i distrikts-Norge” 

(Environmental energy production through small hydropower plants in rural Norway) 

published by Gauldal municipaly. This publication gives detailed costs for most 

aspects of plant construction, but since our aim is mainly to determine the optimal 

size of a plant in a given river, we choose to include only the costs that 1) Constitute a 

significant part of the total and 2) are directly dependent on either discharge capacity 

or plant effect. All costs are in NOK unless otherwise stated. In the following, Q 

denotes discharge capacity and P effect.  

Cost of dam 

The cost of a dam for water is given by the following equations 

CD  = -0.1111Q2 + 0.32222 Q – 0.0111   (MNOK) Q ∈  [0.1–1 m3/sec]  

CD  = -0.00001 Q3 – 0.0012 Q2 + 0.0772 Q +0.2409 (MNOK) Q ∈  [1–10 m3/sec] 

Cost of power station 

The cost of a power station, will vary a lot from project to project, but the mean 

estimated cost is given by the equation 

CPS = 0.44 Q 0.74 

Cost of pipeline 

This cost is dependent on what types of pipes are used and how the pipeline is 

constructed (dug down or supported above ground), the terrain in which it is build and 

so forth, so we ignore this cost, since it does not constitute a significant part of the 

total cost. 
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Cost of turbine 

For the head we have chosen and the relevant discharge capacities, a turbine of the 

Kaplan type is appropriate. and the cost equations for a Kaplan turbine in the effect 

range 500-5000 kW are given by 

Cturbine = 27426 Q –0.630 NOK/kW  (Head 5 meters) 

Cturbine = 16106 Q –0.648 NOK/kW  (Head 10 meters) 

Cturbine =  9744 Q –0.634 NOK/kW   (Head 20 meters and above) 

Cost of dam hatch / valve 

A hatch is needed to allow for drenation of the dam. This cost constitutes a small 

ammount of the total cost, and is therefore neglected. 

Cost of generator 

The cost equation is for air-cooled generators with an effect range of 500-5000 kW. 

The cost is given by 

Cgenerator = 2134 P 0.8434 

Cost of transformer 

Ctransformer = 67.1 P + 29258 P ∈  [0.05 – 1.6 kW] 

Ctransformer = 75.4 P + 52206  P ∈  [1.6 – 5 kW]  

Cost of controlling equpiment 

Ccontrol = 1,500,000  P ∈  [3.0 – 5.0 kW] 

Ccontrol =    950,000  P ∈  [2.0 – 3.0 kW] 

Ccontrol =    550,000  P ∈  [1.0 – 2.0 kW] 

Ccontrol =    200,000  P ∈  [0.5 – 1.0 kW] 

Since this yields a stepwise continous cost function, we have used a continous 

function fitted to the above data. It is given as  

Ccontrol = 1.573+0.0562*Q0.51  MNOK 

Cost of coupling equipment 

It is assumed that delivery ends at the power station, that is, the plant owner will not 

be responsible for high voltage power distribution. This cost is negliable 
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Appendix G Estimating the water discharge mean-reversion 

rate 

An estimation for the mean-reversion parameter for the discharge data we use when 

valuing a run-of-river power plant is conducted below. 

The deterministic part 

Due to the shape of the average weekly discharge, it is evident that a higher-order 

transformation is necessary to obtain a good seasonal fit. We try 1st, 2nd, 3rd,4th and 5th 

order transformations to see how the goodness-of-fit increases.  

 

We fit this model by fitting the function  

)cos()sin(...)cos()sin()( 21221 tnatnatatatktf nn ����� ++++++= −  (G.1) 

Where n is the order of the transformation to the watershed data.  

The results are 
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Table G.1 Regression of order n fit to water discharge time series 

We see that the increase in explainatory power of the models increases most steeply 

from the first to the second, and from the second to the third, while including terms of 

order higher than three gives little improvement to the model, despite all coefficients 

being significant at any significance level. We therefore choose the third-order 

transformation to capture the shape of the model. The most relevant residual plots 

from the MINITAB analysis are presented below: 
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Figure G.1 Histogram of residuals Figure G.2 Normal probability plot of residuals 

  

  

Figure G.3 Residuals versus fitted values Figure G.4 Residuals versus order of data 

From inspection, our assumption about normally distributed error terms seems to be 

justified.  Regression yields the following parameters for the deterministic function 
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Table G.2 Regression results from deterministic water discharge function 

The deterministic part of the watershed function can therefore be written as 

)05.0(3sin(41.0)33.3(2sin(68.0)91.1sin(18.155.1)( −+−−−+= ttttw ���  (G.2) 

As shown in the plot below, this is a very good fit to the average. The R2-value is 

98.9% 
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Figure G.5 Deterministic discharge curve versus historical average 

Analysis of residuals 

With a deterministic function and the residuals from the regression analysis, we are 

now ready to find an estimate of the mean-reversion parameter κ. This is taken as 1-φ 

where φ denotes the first-order autocorrelation coeffecient. The autocorrelation 

function is presented below: 

 

Figure G.6 Autocorrelation function for water discharge residuals 

The first-order autocorrelation coeffecient is 0.71, hence our estimate for the mean-

reversion parameter κ becomes κest = 1-0.71 = 0.29 

 


