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Abstract
This thesis considers long-term production planning for hydro power plants.
The production planning problem power producers face is when to release
water from reservoirs with the objective of maximizing the pro�t, regarding
uncertainty in future in�ow and prices. This must be done without violat-
ing reservoir restrictions or other constraints. We formulate the production
planning problem as a deterministic equivalent of a stochastic model and
solve it using linear programming. The model is implemented in the com-
puter programs Matlab, Scenred and Mosel Xpress. Based on an event tree
describing future states of price and in�ow, the expected discounted income
is maximized.

Two stochastic models describing the spot price dynamics are applied; a log-
arithmic one- and two-factor price model. The parameters in these models
are found using historical spot and forward prices. Additionally, one-factor
models describing hydrologic in�ow dynamics are used.

The optimization model is tested for six single station systems with one
main reservoir. A price taking producer is assumed, local prices are disre-
garded and the power e�ciency is assumed to be constant. Due to random
events, the starting point and the period the model is tested for are impor-
tant for how well the model behaves.

Running the model forward in time, the value of a two-factor price model
compared to a one-factor price model is found. The results show that the
two-factor price model has most value for power plants with low seasonal de-
pendent in�ow and low utilization time. Further on, the value of a stochastic
price model compared to a deterministic price model is found. Power plants
with high in�ow variation have larger value of a stochastic solution compared
to power plants with lower in�ow variations.

With the purpose of comparing the model recommendations to the actual
production, the model is back-tested. It is recommended by the model to
discharge more water from reservoirs during the fall 2006 than what was
actually done for all six power plants. 2006 had abnormal high spot prices,
so the back-test is also performed for the period spring 2005 - spring 2006,
with more similar results between the modeled and actual outcome.
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Chapter 1

Introduction

Hydro power producers have a complex task when determining their produc-
tion strategy. Water can be stored in reservoirs or discharged, generating
electricity. The optimal decision depends on two stochastic variables, in�ow
and electricity price. In this thesis a stochastic optimization model is de-
veloped and tested for six power plants. The model maximizes the market
value of hydro production. Future in�ow and price are modeled as stochastic
processes using one- and two-factor models describing the expectation and
volatility. Fan scenarios are generated and subsequently made into a scenario
tree. Finally, an optimal production strategy based on the scenario tree is
found.

Factor models explaining price dynamics are well-known and generally ac-
cepted. The same applies to the optimization model presented. It is also
chosen to model in�ow using factor models. Consideration of which models
to use are out of the scope of this thesis. The main purpose in this thesis is
to collect data for real power plants with the object of investigating which
power plant properties are decisive for how usable the model is.

The stochastic programming model is solved as a deterministic equivalent
using linear programming (LP). Advantages of this approach, compared to
a stochastic dynamic programming approach1, is the possibility to employ
a detailed topology description. Hence, individual reservoir plans can be
found. Further more, in this approach price and in�ow models are easily
replaced if better descriptions are developed. A disadvantage is that a more
aggregated time description than in SDP needs to be employed.

The model is tested forward and backward in time. To make comparisons

1Stochastic dynamic programming is in widespread use, for example in the model EOPS
(Fosso et al., 2006)
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easier, the testing is done for power plants with only one reservoir. Further
on, pumping and seasonal dependent restrictions on reservoir level and wa-
ter �ow are disregarded. Main results are the value of a two-factor model
solution compared to a one-factor model solution for each power plant. The
value of a stochastic solution for the di�erent power plants are also investi-
gated. Finally, the model is back-tested, comparing the actual production
for all the power plants to the production strategy proposed by the model.

This report is divided into nine chapters. Chapter two gives the background
for the problem. Information about hydrologic in�ow and the power mar-
ket are presented. The next chapter looks into aspects of stochastic pro-
gramming and introduces scenario trees. One- and two-factor models are
presented. Additionally, the variance in optimal solution, the detection of
a lower bound and the estimation of the value of a stochastic solution are
described.

The fourth chapter describes the spot price and in�ow models employed.
Information about parameter stability and correlation is given. The opti-
mization model applied is introduced in chapter �ve.

Data from six hydropower producers are gathered and presented in chapter
six. Chapter seven gives the results from running the model both forward
and backward in time for the six power plants. The value of a stochastic so-
lution and the value of a two-factor model compared to an one-factor model
are discussed. The two last chapters provides a conclusion and suggestions
for further work.
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Chapter 2

Hydropower Production in the

Nordic Market

2.1 Hydropower Production Planning

The production decision every power station with reservoirs face is when
to release water stored in reservoirs. Fosso, Gjengedal, Haugstad and Mo
(2006) and Flatabø, Haugstad and Mo (2002) describe the production plan-
ning problem. Water is a free resource with no cost, but it is a limited
resource with alternative future use and hence it has value. This is the so-
called water value, which refers to the marginal value of having one more
unit of water.

A hydro power plant with reservoir can be considered a complex deriva-
tive on the spot electricity price, viewed as a real option on future energy
production. The producer has the option to postpone production, waiting
for more favorable price conditions or more information about future in�ow
or other conditions a�ecting the value of future production. The water value
represents the exercise price. Basic real option theory, presented by among
others Trigeorgis (1996), states that a project with �exibility is more valu-
able than a project without �exibility. Optimization theory, presented in for
example Rardin (2000), reach the same conclusion. The objective value can
never increase when imposing tighter constraints on the solution. Hence, a
plant with storage capacity will always be more valuable than a plant with-
out storage possibilities since the water balance constraint is less strict.

Production decisions will depend on reservoir level, future in�ow, future
electricity prices and present electricity price. Future electricity prices and
water in�ow are unknown. This makes production planning a stochastic

3



problem. Local restrictions, license conditions, start and stop costs and non-
linear connection between water usage and power production will also a�ect
production decisions. To be able to solve this complex problem it is of-
ten decomposed into three parts; long term, medium term and short term
scheduling.

In long term planning, an optimal hydro power scheduling strategy is found.
The time horizon is 1-5 years ahead, depending among other factors on the
size of the reservoir. The EMPS model, a market analysis forecasting future
prices, is widely used in Norway and Sweden. This model is only employed
by the largest power producers in the market. Smaller power producers use
the EOPS model for local analysis. The price forecast from the EMPS model
represents the external market in the EOPS model, assuming the company
has no in�uence on the market price. Both market price and local in�ow are
stochastic parameters in this model.

Long term planning imposes boundary conditions on the more detailed medium
and short term scheduling. The three scheduling levels can be coupled in
di�erent ways. Valuing the water at one level and using this as a recourse
price at the next level is a �exible and usable method. Another possibility
is to decide the size of the reservoir at the end of one period at one level,
using this as a restriction at the next level. This is a simple, but not �exible
procedure.

2.1.1 Degree of regulation and utilization time

The degree of regulation a�ects the horizon of hydro power production plan-
ning. It determines how far into the future water value calculations are
needed for a power system. The measurement is given as the reservoir ca-
pacity in fraction of yearly in�ow:

R =
Mmax

I
(2.1)

Mmax is the maximum reservoir level and I is yearly in�ow. The water value
equals zero for the entire reservoir in the spring �ood period, given a system
with low degree of regulation where losses due to spring �ood always occur.
Hence, planning beyond the next spring �ood is not necessary. Given a sys-
tem with higher degree of regulation, the planning horizon increase (Fosso
et al., 2006).

Another parameter describing the power plant is the utilization time. This
factor measures the size of the reservoir compared to the power capacity.

U =
Mmax

Pmax
(2.2)
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Pmax is power capacity. It describes the time spent to empty a full reservoir
when running the generator at full power. High utilization time gives the
power plant little �exibility. A utilization time at for instance 6000 hours
is a considerable long time period, since one year consists of 8736 hours. A
1000 hour long utilization gives large �exibility.

2.2 Hydrological In�ow

In hydro power production, hydrologic in�ow uncertainty is a notable aspect.
The purpose of predicting in�ow from a reservoir is to �nd the optimum
schedule of water discharge to the reservoir. In�ow prediction will often
be of most signi�cance to systems with low degree of regulation, because
their reservoirs more frequently arrive at a critical level. The prediction will
always be uncertain, but not necessarily symmetric. Hence, the optimum
reservoir discharge should not be decided based on the most probable in�ow
outcome, but on the entire set of opportunities. For further details on this
issue, the reader is referred to Killingtveit and Sælthun (2005) and Dingman
(2002).

In Norway, many metering stations with long observation series of water
�ow are distributed all over the country. Based on these series, in�ow from
most drainage basins can be computed. This gives a good starting point for
the description of in�ow as a stochastic process. For lack of better knowl-
edge, the expected value of future in�ow is assumed to approximately equal
the mean of former observed in�ows. Principally, the same assumption is
applicable for the in�ow standard error (Fosso et al., 2006).

2.3 The Nordic Power Market

Power producers operating in the Nordic power market have to obey con-
cession laws, but can otherwise maximize pro�ts based on uncertain future
power prices (Fosso et al., 2006). They are exposed to competition and are
free to trade in an open market.

Nord Pool is a market place for purchase and sale of electricity where Nor-
way, Sweden, Denmark and Finland are participating. Information about
Nord Pool is provided at www.nordpool.no. Trade at the Nord Pool market
includes both physical and �nancially trading. The physical market con-
sists of a balancing market and a spot market. The spot market and the
�nancially market will be brie�y commented in this section.
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2.3.1 The Elspot market

The Elspot market is trading electricity with physical delivery the next day.
Producers report how much they are willing to supply given di�erent prices
for every hour the next day. Purchasers report their demands in the same
way. Aggregating the demand and supply curves, a market equilibrium is
found. This gives the optimum quantum and the system price, which is
expected to re�ect the margin cost of power assuming no grid bottlenecks. It
is also the reference price for the �nancial market. Capacity constraints in the
distribution grid will lead to di�erent local prices between areas divided by
the constraint whenever the maximum amount of power is being transferred.
Normally, there are three such price areas in Norway: The southern, middle
and northern part (Nord Pool, 2007).

2.3.2 The �nancial market

The market of power derivatives consists of Nord Pool`s �nancial market and
the market of bilateral contracts. The �nancial market is trading daily and
weekly futures and monthly, quarterly and yearly forwards. Other �nancial
products are also traded (Nord Pool, 2007).

The future and forward market contains information about expected price de-
velopments, which can be useful in hydro power production planning (Fosso
et al., 2006). Futures have mark-to-market settlement and a time horizon of
8-9 weeks. Forwards are traded up to �ve years in advance, and the settle-
ment is accumulated after the last delivery day. The contracts are standard-
ized (1 MW base load) and they are settled against the system price in the
Elspot market (Nord Pool, 2007).

Haug (2005) explains that the value of a forward contract at Nord Pool
is determined from the risk adjusted expected average system price devel-
opment during a certain period. These properties are actually describing a
swap contract, not a forward contract. Forward contracts are actually val-
ued as the expected risk adjusted price for a certain time point of delivery.
The settlement is calculated di�erently for swaps and forwards. Swaps ac-
cumulate the settlement during a period of time. On the contrary, forwards
do only have settlement at the decided delivery point. Hence, swaps can
be explained as a strip of forwards, so swaps in the power market can then
be turned in to strips of daily forwards on electricity. However, to avoid
confusion, common practice is followed in this thesis by naming the swaps
traded at Nord Pool as futures and forwards.

Fundamental �nance, presented in for example McDonald (2003), states that
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the forward contract price can be determined as

F0,T = S0 × e(rf−δ)T (2.3)

provided a complete market without arbitrage opportunities. S0 is the
present system price, rf is the risk free discounting rate, δ is a lease rate,
also called convenience yield, and T is the time to maturity.

The valuation of forward contracts is partly arbitrage pricing due to the
fact that hydro power producers are able to store water. Haug (2005) points
out that owing to the fact that the possibilities of hydro storing still are lim-
ited, a correct pricing of forwards also involves expectations about physical
relations such as future temperatures, precipitation and snow melting.

2.3.3 Electricity properties

Lucia and Schwartz (2001) study the price properties of energy traded at
Nord Pool. Electricity is a special commodity due to its highly limited
possibilities for storing and transportation. These aspects contribute to al-
most non-existing arbitrage opportunities in the electricity market. The
non-storability of electricity makes electricity delivered at di�erent times
and di�erent dates considered as distinct commodities. The price is depen-
dent on the supply and demand at the speci�ed time, which varies between
seasons, weekends and weekdays. The study �nds evidence of properties such
as mean reversion, positive skewness and excess kurtosis of energy prices at
Nord Pool.

2.3.4 Assumptions about the power market

When modeling power plants in subsequent chapters, some assumptions are
done regarding the power market and risk adjustment.

• Completeness and no-arbitrage: Risk-adjusted price and in�ow
processes are used. The market price of risk (McDonald 2003) is as-
sumed to be zero for in�ow and it is assumed to be fully re�ected in
futures and forward prices regarding price uncertainty. This means
that maximizing expected revenues is equivalent to maximizing the
market value of the hydro power resources. This is in line with Fleten
and Wallace (2003).

• Market power: The Nordic power market is assumed to be well
functioning. Hence, the power producers are price takers, and price is
modeled as exogenous. Hjalmarsson (2000) carries out an econometric
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study of market power at Nord Pool on a system level, where the hy-
pothesis of long-term and short-term market power is rejected. Theory
about market power generally, and in hydropower economics specially,
can be further explored in Schotter (2002) and Førsund (2007).

• Local prices: Local prices are not taken into account. Price models
foreseeing the system price is found. By disregarding local prices, the
same spot price model can be used for each company analysed. Besides,
on a weekly basis the area prices tends to be pretty similar, as displayed
in �gure 2.1.

Figure 2.1: Weekly observed area prices in Norway measured in EUR/MWh
in the period 2002 - 2006.
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Chapter 3

Stochastic Models

3.1 Stochastic Programming

This section deals with the di�erences between deterministic and stochastic
programming. For more literature on these topics, the reader is referred to
Rardin (1998) and Fosso et al. (2006).

In deterministic programming all parameters are assumed to be certain. The
model will �nd an optimal solution given �xed start, end and framework con-
ditions. In reality many factors are unknown and uncertain. Scenario op-
timization will consider risk due to uncertain parameters, though assuming
the parameters to be known and certain in each scenario. Therefore limits
will be exploited, which might have consequences if the future turns out to
be di�erent than expected.

Advantages of a deterministic model are easily interpreted results and short
time needed to �nd a solution compared to a stochastic model. If time hori-
zon is short and the parameter uncertainty is small, a deterministic model
will do well. The character of consequences an unforeseen occurrence can
give should also be considered when deciding what model to use.

In reality the future is unknown and parameters are a�ected by future
events. Stochastic programming takes this into consideration when �nding
an optimal solution. For each uncertain parameter, a probability distribu-
tion describing possible future outcomes is needed. These parameters are
called stochastic variables and the uncertainty distributions are inputs to
the stochastic model.

Finding these probability distributions is a complicated and time consuming
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task. Many stochastic variables will make the optimization model complex.
Hence, the model must be simpli�ed by treating less vital stochastic param-
eters deterministic to achieve an acceptable solution time. Consideration
regarding complexity versus solution time must be done for each stochastic
factor with the purpose of the model as an important aspect.

Several solution algorithms solving stochastic models exist. Reducing the
original problem to an equivalent deterministic problem is a simple and
straightforward method. This is done by expressing the stochastic parame-
ters with discrete probability distributions. Possible outcomes of the stochas-
tic variables, scenarios, must be generated to solve the model in this way.

3.1.1 Scenario tree

In stochastic programming it is often convenient to represent stochastic vari-
ables in a scenario tree. Given the variables' probability distributions and
the correlations, a set of fan scenarios can be found. From these fan scenar-
ios, the scenario tree is made.

Figure 3.1: Scenario tree with eleven nodes describing possible future states
of the stochastic variables.

An example of a scenario tree is shown in �gure 3.1. This is a scenario tree
with four time steps, six scenarios and eleven nodes. At each point in time,
the nodes in the tree represent the possible states the stochastic variables
can have. The number of nodes at each point in time grows as the time
horizon expands due to increasing uncertainty.

Heitsch and Römisch (2005) have developed two methods for generating sce-
nario trees from sets of fan scenarios, one forward and one backward method.
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By deleting and bundling scenarios, a scenario tree is made. The forward
method starts at the �rst and ends at the �nal point in time. The most
representative nodes are selected at each point in time. Figure 3.2 gives an
illustration of forward tree construction.

Figure 3.2: Forward tree generation by bundling and deleting scenarios
(Heitsch and Römisch, 2005).

Scenred, a C++ based program made by Heitsch, constructs scenario trees
from sets of scenarios. It uses the methods described in (Heitsch and Römisch,
2005). The program is used to generate scenario trees describing spot price
and water in�ow in this thesis.

Three parameters have to be set when running Scenred; relative proba-
bilistic tolerance εp, relative �ltration tolerance εf and a tree construction
parameter q. The relative probabilistic tolerance is used to measure the dis-
tances between the original and the approximated probability distributions
whereas the �ltration tolerance measures the �ltration or information dis-
tance. The construction parameter q a�ects the tolerances at each branching
point. More information about the parameters can be found in Heitsch and
Römisch (2005).
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3.2 Stochastic Models for Uncertainty

Good price and in�ow models are crucial in hydro power production plan-
ning(Fosso et al., 2006). Lucia and Schwartz (2001) and Schwartz and Smith
(2000) discuss models for spot system price dynamics and valuation of spot
price derivatives. The models describe spot price behaviour using two com-
ponents: A predictable deterministic function capturing spot price cycles
and trends and a stochastic component following a continuous time di�usion
process. This is a so-called factor model. Factor models have a de�ned num-
ber of stochastic elements, each with a particular distribution.

A factor model represents future expectation and uncertainty. Models with
more factors are better to represent variance structure than models with
fewer.

3.2.1 One-factor model

The one-factor model represents the stochastic prosess Gt by

Gt = f(t) + χt (3.1)

where f(t) is a deterministic time function and χt is a stochastic process
given by

dχt = −κχtdt+ σdZχ (3.2)

κ > 0, χ(0) = χ0 and dχ represents an increment to a standard Brownian
Motion Zχ. χt is the only source of uncertainty in this model. χt follows
a stationary mean-reverting process, an Ornstein-Uhlenbeck process with a
zero long-run mean and a mean reverting factor κ. The expected value is:

E0(GT ) = fT + (G0 − f0)e−κT + α(1− e−κT ) (3.3)

One-factor model based on the logarithmic value
Applying the one-factor model, the stochastic process of the logarithmic
value is

lnGt = f(t) + χt (3.4)

f(t) and χt have the same properties as earlier mentioned. The stochastic
process is log normally distributed, and its expected value is

E0(GT ) = exp(f(T )+(lnG0−f(0))e−κT +α(1−e−κT )+
σ2

4κ
(1−e−2κT )) (3.5)

Finding a risk-adjusted model, a risk-adjusted stochastic process with the
form

dχt = (−κχt − λχ) dt+ σχdZχ (3.6)
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must be applied.

Applying this model for the spot price and given an interest rate indepen-
dent of the spot price, the forward price will be equal to the expected spot
price in a risk adjusted case. The di�erence between the forward price and
the true expected spot price is the risk premium.

F0(G0, T ) = E0(GT ) (3.7)

Both spot prices and water in�ow are given in discrete time. Hence, the
model parameters have to be estimated using discrete parameters.

χt = χt−1 × e−κ∆t − λχ

κ
(1− e−2κ∆t) + ut (3.8)

Here ut is the model error. The parameters in f(t), κ, λχ and χ0 needs to
be estimated (Lucia and Schwartz, 2000).

Variance in a one-factor model
The stochastic process 3.8 has a variance (Dias 2007).

V ar[xt] = V ar[ut] = σ2
χ∆t (3.9)

By estimating the variance of ut from empirical data, σχ is found. The
variance can also be expressed dependent on κ, but since κ is calibrated
towards the forward price, this simpler way of expressing the variance is
applied. A variance independent of κ will not be a�ected by calibration.

3.2.2 Two-factor model

By decomposing the stochastic part into two factors, the logarithmic model
is extended to

lnGt = f(t) + χt + ξt (3.10)

In this model, the χt- term tries to capture short time deviations whereas ξt is
the long term equilibrium level. Short-run deviations (temporary deviations
resulting from unusual weather, supply disruption etc for a price model) are
assumed to follow the risk-adjusted Ornstein-Uhlenbeck process reverting
toward λχ

κ , shown in equation 3.6. The equilibrium level is assumed to
follow a Brownian motion process

dξt = µξdt+ σξdzξ (3.11)

Changes in the equilibrium level represent changes expected to persist. dzχ
and dzξ are correlated increments of standard Brownian motion processes

dzχ × dzξ = ρχξ (3.12)
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ξt and χt are jointly normally distributed with covariance matrix

Cov[χt, ξt] =

 (1− e−2κT )σ2

2κ (1− e−κT )ρχξσχσξ

κ

(1− e−2κT )ρχξσχσξ

κ σ2
ξ t

 (3.13)

The variance of χt is here expressed dependent on κ and not in the sim-
pli�ed way explained in the previous section. This is because the variance
is estimated simultaneously as the risik-adjusted model parameters. Hence,
calibration of κ is not necessary.

The future value in log form is

ln(FT , 0) = ln(GT ) = e−κTχ0 + ξ0 +A(T ) (3.14)

where

A(T ) = f(t)+µξT−(1−e−κT )
λχ

κ
+

1
2
((1−e−2κT )

σ2

2κ
+σ2

ξT+2(1−e−κT )
ρχξσχσξ

κ
)

(3.15)

3.2.3 Deterministic part

To implement the previous general models, the deterministic term f(t) must
be speci�ed. Seasonal time variations could be incorporated using a cosinus
function, and the deterministic component becomes

f(t) = α+ γcos((t+ τ)
2π
52

) (3.16)

α, γ and τ are parameters that must be estimated (Lucia and Schwartz,
2000).

3.2.4 Forward prices between two points in time

Forward prices (swaps) at Nord Pool are de�ned for a period of time, F0(P0, T1, T2),
with T1 being the starting point and T2 the ending point. Given the expected
forward price for one point in time, equation 3.7, the expected price over a
period can be found using the de�nition (Lucia and Schwartz, 2000), (Koeke-
bakker and Ollmar, 2005)

F0(P0, T1, T2) =

T2∫
T1

e−rTF0(G0, T )dT

T2∫
T1

e−rTdT

(3.17)
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where r is the risk adjusted interest rate. In this way the fact that time to
maturity is varying over the time period will be taken into account. The
varying price expectation over the period and the e�ect this has on the
expectation for the total period will then be allowed for.

3.3 Kalman Filter

A Kalman �lter is used to estimate the parameters in the two factor spot
price model. An introduction to the Kalman �lter is given by Bishop and
Welch (2006). Arnold et al (2005) describes the �lter as a recursive algo-
rithm that produces estimates of a time series of unobservable variables, the
state variables, using a related but observable time series of variables. A
set of mathematical equations estimates the state variables in a way that
minimizes the mean of the squared error.

Harvey(1989) considers time series models and the Kalman �lter. The
Kalman �lter gives a way to estimate unknown parameters in a model. When
estimating the state variables, the parameters are assumed to be known. The
likelihood of the observations given a set of parameters can be found (Harvey,
1989). Rerunning the Kalman �lter with better estimates of the parameters
until the likelihood function converges to a level will give a parameter esti-
mate (Lucia and Schwartz, 2000).

The set of equations which estimates the state variables when running the
Kalman �lter are described in Schwartz and Smith (2000). A measurement
equation which states the model de�nition of the forward prices is

yt = dt + F
′
txt + vt t = 1, ..., nt (3.18)

where
yt = [lnFT1 , ..., lnFTn ] (3.19)

dt = [A(T1), ..., A(Tn)] (3.20)

Ft =
[
e−κT11, ..., e−κTn1

]
(3.21)

The model these equations are based on assume forwards given at a single
point in time. In the following section these equations will be modi�ed so
the Kalman �lter can be applied to estimate parameters based on forwards
given with a starting point and an ending point.
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3.4 Value of Stochastic Solution

In this thesis, a stochastic optimization model is developed. It will be ex-
amined to which extent this model is superior compared to a deterministic
two factor model. This is done by applying the principles of the value of
stochastic solution, discussed by Wallace (1999).

The value of stochastic solution (VSS) is found by solving the correspond-
ing deterministic model and comparing the expected objective value of the
stochastic and deterministic model respectively. VSS measures the expected
increase in objective value from solving the stochastic version of the model
rather than the deterministic one. Hence, it is a measurement of how im-
portant it is to explicitly consider uncertainty by solving a stochastic model.
VSS can be found using the following formula:

V SS = ESS − EMV (3.22)

EMV is expected objective value of the mean value solution (deterministic
problem) evaluated over all scenarios and ESS is expected objective value of
stochastic solution.

In a multistage case, like the one in this thesis, the de�nition of VSS re-
quires that the deterministic problem is solved repeatedly in all nodes of the
scenario tree. The objective is to achieve a fair comparison. Deterministic
models are resolved as new information is available so comparing the stochas-
tic solution to its root node solution would underestimate the strengths of
the deterministic model.

Following the mindset of VSS, the value of a two-factor compared to a one-
factor price model can be found. This is done subtracting the expected
objective value when a one-factor price model is applied from the expected
objective value when using a two-factor price model. This is a fair compari-
son, because both of the models are stochastic.

3.5 Variance in Optimal Value

Rerunning the stochastic model will give di�erent results due to the fact that
scenarios are generated by random variables. To be able to say something
about the uncertainty of the optimal solution found, the variance in optimal
value is calculated.

Shapiro and Philpott(2007) explains how lower and upper bounds for the
optimal solution can be found statistically. It is assumed that the optimal
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solution have a student t-distribution. When comparing two expected values
a lower value of the di�erence given 100 (1− α) percent certainty is given by
Walpole et al. (2002).

d0 = v2 − v1 − tα,ν

√
s22
m2

+
s21
m1

(3.23)

v2 and v1 being the average values, s1 and s2 the estimated standard devia-
tion and m1 and m2 number of times the optimal solutions are found. tα,ν is
the value of the t-distribution with ν degrees of freedom giving a 100 (1− α)
percent lower bound. ν de�ned as

ν =
(s21/m1 + s22/m2)2

(s21/m1)2/(m1 − 1) + (s22/m2)2/(m2 − 1)
(3.24)
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Chapter 4

Models in This Paper

In this thesis two models are used to capture spot price dynamics, a two-
factor model and a one-factor model. Both models are based on the log spot
price. Additionally, one-factor models capturing hydro in�ow dynamics are
applied. All these models are estimated based on discrete data. Since the
two-factor price model estimated using a Kalman �lter is continuous, the
one-factor models are also continuously employed. The model parameters
are estimated from discrete data and used to generate discrete scenarios.

4.1 In�ow Model

The in�ow model is based on the one-factor model presented in section 3.2.1.
Parameters are estimated using the least squares method, based on weekly
historical in�ow given from each power plant respectively. Some of the avail-
able in�ow series are long (i.e.100 years) and others are shorter. The entire
length of the in�ow series are used, except from series exceeding thirty years.
This is due to the fact that the last observed in�ow values are more likely
to occur again (Killingtveit and Sælthun, 1995). The in�ow models will be
subject to a more thorough discussion in chapter 6, where they are presented
together with the power plants they belong to.

4.2 Spot Price Models

As explained in section 2.3.1, both a system price, representing the total
market with no restrictions, and local prices due to capacity constraints in
the distribution grid exist. Local prices, not system prices, a�ect electric-
ity company's decisions. The markets view of future prices is re�ected in
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forward prices, but the forward price is connected to the system price, not
local prices. Forward prices may still be useful when �nding a price model
explaining future local prices because they contain information of expected
�uctuations. The easiest method to �nd a local price model by using forward
prices, is to �nd a constant ratio or a constant di�erence between the system
price and the local price. Multiplying each forward by this ratio or adding
the constant and replacing the system spot price by the local spot price, will
lead to a model representing the local price. More information about this is
found in Haldrup and Nielsen (2006).

Local prices are disregarded in this thesis, but it is important to be aware
of this simpli�cation. Two stochastic models describing the spot price are
used, a one-factor and a two-factor model, both logarithmic. The models are
described in chapter 3.2. The parameters of one two-factor and 23 one-factor
models, describing the price dynamics given at di�erent points in time, are
found.

4.2.1 Price data description

Using the ln value of spot prices, the parameters in the one-factor model are
found. The spot prices are observed weekly at Nord Pool during the time
span 2002 - 2006, totally 261 observations. The same spot prices combined
with spot price derivatives are used when �nding the parameters in the two-
factor model. 14 spot price derivatives are used at each time step, including
six monthly, �ve quarterly or seasonal and three yearly forwards. Several
price data are given in NOK/MWh at Nord Pool. Weekly exchange rates
from DNB are used to translate the price data into EUR/MWh.

In this subsection properties of the total spot price data set will be looked
into. The spot price development throughout the sample period is displayed
in �gure 4.1. The mean value of the spot price is 34,12 EUR/MWh and the
standard deviation is 13,56. The lowest and highest observed spot price is
14,543 and 103,65 EUR/MWh, respectively.

The spot price data set has a positive skewness of 1,784. Positive skew-
ness indicates that it is more likely to experience spot prices higher than
the mean value, compared to a normal distribution. The excess kurtosis is
4,770, meaning that very high or very low spot prices are more likely to occur
compared to a normal distribution. All data discussed are shown in table
4.1.

Applying the observed skewness and kurtosis in a Bera-Jarque test, it can
be detected whether the spot price and the ln of the spot price is normally
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Figure 4.1: Weekly observed spot prices measured in EUR/MWh during the
period 2002-2006

Table 4.1: Properties of the price data
Price data

Mean value 34,12 EUR/MWh σ 13,56%
Max value 103,65 EUR/MWh Skewness 1,784
Min value 14,54 EUR/Mwh Excess kurt. 4,770

distributed or not. In this case, normality is rejected for both spot prices
and ln spot prices on a 5 % signi�cance level.

As earlier mentioned, the future and forward market contains information
about expected price development. This information should be incorporated
in the price models in such a way that the expectations are re�ected. In �g-
ure 4.2 the futures and forwards incorporated in the one-factor price models
are displayed. The future and forward price structures are observed every
fourth week in the period spring 2005 until the end of 2006. Each observation
consists of a set of selected futures closing prices listed on that date. The
selection is done in such a way that the future/forward with the smallest
time dissolution always are used at each point in time, i.e. if there exist four
weekly futures and one monthly forward covering the same time period, the
four weekly futures are choosed to represent the term structure. In the �gure
each observation date is indicated by a new curve starting at that point in
time.
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Figure 4.2: The term structure evoulution of selected futures and forward
prices from January 2005 to December 2008 observed every fourth week from
January 2005 to December 2006. For any curve, the turning points indicate
a di�erent price corresponding to a subsequent maturity. The length of the
following �at part represents the length of the delivery period.

4.2.2 One-factor price model

One-factor price models (see equation 3.4), are needed for the analysis later
on for every fourth week from spring 2005 until the end of 2006. The informa-
tion available at every point in time is used to �nd the best model parameters
possible. Parameters are �rst estimated based on historical prices using the
least squares method where the stochastic term in every time step is depen-
dent of the residual in the previous time step.

Figure 4.3 show how the model made for week one 2007 �ts the historical
prices. This is an in-sample graph. With the purpose of showing an out-of
sample graph, the price model found for week 52 2005 is used to describe
the spot dynamics in 2006. This can be viewed in �gure 4.4. Comparing
the price model to the actual price for both the in-sample and out-of sample
graph, it is observed that both the in-sample and out-sample price model
is considerably lower than the actual price in 2006. This could partly be
explained by the fact that this year was very special when it comes to spot
prices.

The price parameters need to be adjusted by the price of risk to arrive at the
risk-adjusted process. Eydeland and Wolyniec (2003) describe how to obtain
the risk-adjusted parameters by recovering them from the prices of liquidly
traded products. In this thesis, the one-factor price model is calibrated by
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Figure 4.3: The actual weekly spot price plotted against the model estimates
(�tted). The model estimation is based on spot price data for the period 2002
- 2006, hence it is in-sample.

Figure 4.4: The actual weekly spot price plotted against the model estimates
(�tted) for the year 2006. The model estimation is based on spot price data
for the period 2002 - 2005, so the model is out-of sample.

changing the parameters κ and λ with the purpose of �tting the prevailing
forward curve. The expected forward price should be similar to the actual
forward curve. This is done using the least squares method. Parameter λ
is not part of the original model, so its value is zero previous to calibration.
Every model is assumed to have the same variance, found at the end of the
time period. This assumption is made to let the variance be determined by
the longest data series employed and to simplify work. Figure 4.5 shows the
calibrated expected forward price compared to the forward curve as it is seen
in week 52 2006. The forward curve in this �gure is in fact one of the curves
presented in �gure 4.2, and it is found in the same manner as described in
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section 4.2.1.

Figure 4.5: The one factor price model with data known in week 52 2006
calibrated to the forward curve as it is seen at that point in time. The
calibration is done using the least squares method.

One-factor price model validation and parameter stability
The parameter stability of the one-factor model found in week 52 2006 will
be evaluated. Studying the graphs in �gure 4.3, the estimated spot price
seems to follow the actual spot price fairly well. However, the estimated
spot price does not capture the peaks in the actual spot price. To check the
validation of the one-factor price models, the parameter stability is checked.
Additionally, some tests of the residuals in the model are performed. A good
model should have normally distributed residuals with a zero mean, none
autocorrelation and time-independent variance. These tests are performed
in PCgive.

The purpose of a parameter stability test is to detect whether the parameters
are constant for the entire sample period or not. This is done by splitting
the data set into two sub-periods and hence comparing the parameter results
for each sub-period to the entire data set-parameters. The absolute value
of the deviation for each sub-period parameter compared to the entire data
set parameter is shown in percentage in table 4.2. It is observed that the
deviations are small for α and τ , meaning that the price level and time of
seasonal variation in price are relatively stable. The deviation is high for γ,
exceeding 100%. γ explains seasonal �uctuations, explaining to which extent
the price is seasonally dependent.

The residuals in the one-factor model have a mean of -0,00086, which ap-
proximates to 0. Normality is rejected on a 5 % signi�cance level. Figure
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Table 4.2: Parameter stability one-factor price model found in week 52 2006.
The parameters estimated using two sub-periods are compared to the pa-
rameters found when using the entire sample. The percentage deviations are
displayed.

Parameter stability one-factor model

Parameter First Sample Second Sample

α 2,84% 2,78%
γ 125,88% 137,11%
τ 5,30% 10,07%
κ 15,84% 8,59%

Figure 4.6: Autocorrelation in the one-factor price model residuals. The
price model is based on historical data for the period 2002-2006.

Figure 4.7: Variance in the one-factor price model residuals. The price model
is based on historical data for the period 2002-2006.
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4.6 indicates a positive autocorrelation in the residuals. This is con�rmed
by carrying out a formal Durbin-Watson test, which reveals a positive au-
tocorrelation on a 5 % signi�cance level. Figure 4.7 displays the residuals
development against time, indicating time independent variance. Summed
up, these �ndings indicate that the price model is not perfect.

4.2.3 Two-factor price model

The parameters of the two-factor price model are estimated using a Kalman
�lter. The parameter estimation is based on historical futures and forwards
traded at Nord Pool. These are given over a period of time. The Kalman �l-
ter equations (3.20) and (3.21) must therefore be modi�ed by using equation
(4.1).

d′t =

T2∫
T1

e−rTdtdT

T2∫
T1

e−rTdT

(4.1)

F ′
t =

T2∫
T1

e−rTFtdT

T2∫
T1

e−rTdT

(4.2)

The computer �les running the Kalman �lter are developed based on �les
Alstad and Foss made in 2004. Running the Kalman �lter using weekly ob-
servations of the spot price and 14 forward prices for �ve years, 2002-2006, on
a 1,60 GHz Intel Celeron CPU with 1024 MB RAM, 1785 seconds are used.
To test the Kalman �lter, scenarios generated with the estimated parameters
are used as input to run the Kalman �lter once more. A large number of
scenarios should be used, to represent the price dynamic well. Unfortunately
the Kalman �lter used does not manage to �nd parameters if the number
of price scenarios applied are larger than 80. The �lter then uses 7,2 hours
running and the parameters estimated are considerably di�erent from the
original values. In order to use this method as a proper test for the model,
the �lter have to handle more scenarios. Even so, the result still indicates
an unstable parameter estimation by this Kalman �lter. This coincides with
tests done by varying the original input �le.

The expectation of the two-factor price model found using parameters from
the Kalman �lter is to low compared to the forward curve. Therefore, the
two-factor model is calibrated to the forward curve to obtain a better and
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more realistic expectation.

Figure 4.8: Two-factor price model adjusted to the forward price curve.

Two-factor price model validation and parameter stability
It is not performed a model parameter stability test for the two-factor price
model, because the Kalman �lter applied does not seem to work optimal.
Normality in the two-factor model residuals are rejected on a 5 % signi�-
cance level. Performing a Durbin-Watson test, it is also detected autocorre-
lation on the same signi�cance level. However, choosing model parameters
carefully, the model is good enough for its purpose in this thesis.

4.3 Correlation

The spot price at Nord Pool is strongly a�ected by water in�ow to hy-
dro power reservoirs in Norway because hydro power contributes to a great
amount of the total power production. Limited in�ow leads to lower reser-
voirs and subsequently higher system prices. Scarce in�ows do often occur
nationally as well as regionally at the same time, so the spot price and in-
�ow in each area will be correlated. The stochastic elements of the price
and in�ow models should re�ect this. It could be argued that the spot price
is correlated to the reservoir level, not the in�ow. However, this is di�cult
to model and therefore not the approach taken in this thesis. Correlation
between spot price and in�ow is used.

From the stochastic variable time series, the correlation between the factors
can be found. For each time series the normal distributed variable N(0,1)
explaining the error is found. Then the correlation between these variables
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are estimated. This is done for each power plant in�ow and for both one-
factor and two-factor price models.

Generating correlated random variables
When the models are used to generate price and in�ow scenarios, a num-
ber of uncorrelated normal distributed random variables are �rst generated.
Correlated random variables are found from the uncorrelated variables and
the pairwise correlations. In this thesis it is at most three random variables.
The correlated normal-distributed variables, Z1, Z2 and Z3 are found from
these equations:

Z1 = ε1 (4.3)

Z2 = ρ1,2ε1 + ε2

√
1− ρ2

1,2 (4.4)

Z3 = ρ3,1ε1 +
(ρ3,2 − ρ2,1ρ3,1)ε2√

1− ρ2
2,1

+

√
1− ρ2

3,1 −
(ρ3,2 − ρ2,1ρ3,1)2

1− ρ2,1
ε3 (4.5)

ε1, ε2 and ε3 are independent and distributed as N(0,1) McDonald (2006).
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Chapter 5

Optimization Model

5.1 Long Term Hydropower Production Planning

In long-term hydropower planning, the goal is to �nd the best scheduling
strategy, considering both future prices and in�ow. The producers want to
maximize their pro�t by utilizing the water at best possible point in time.

The power e�ciency in hydro power stations are not constant. The amount
of water needed to produce one kWh depends on what power the power
station is running at. In this model the power produced is calculated on a
weekly basis. Therefore, the output in each hour is not known, so the ratio
between water current and electricity produced is assumed to be constant. In
the optimization model this will be expressed through a constant e�ciency
coe�cient. This is a common used assumption in long-term hydro power
planning, done by among others Wallace and Fleten (2002).

One of the advantages of the model employed is that it considerates topology
and connection between several power plants. Even so, all the power plants
analysed in this thesis are assumed to be uncomplicated and isolated. Pump-
ing of water as well as seasonal dependent restrictions are disregarded. The
main point here is to compare several hydro power plants, and the simpli�-
cation of the plants will ease the analysis. Notwithstanding, the model can
without much e�ort be extended to include multiple connected power plants.
The models applied are based on Winnem(2006) and Pedersen (2006).

At the ending point of the analysis, water stored in reservoirs will have no
value in this model. To achieve an optimal reservoir level at the end of the
planning horizon, a constraint on the �nal reservoir is set. It is chosen to set
a minimum �nal reservoir level in order to prevent the reservoir to be emp-
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tied at the ending point. The size of this minimum level depends on what
time of the year the end of the planning period is. Power plants with a lot of
spring in�ow compared to the reservoir size will empty their reservoirs prior
to spring. During the fall most power plants should seek to retain a high
reservoir level to prepare for the winter production. An alternative method
to achieve an optimal reservoir level at the end of the planning horizon, is to
give the water a value at the �nal stage. This requires a method of valuing
the water.

5.2 Deterministic Model

In a deterministic model all parameters are assumed to be certain and known.
The deterministic model optimizing water discharge and storage in hydro
power scheduling will treat electricity price and water in�ow as certain in all
periods of the planning horizon.

Set:
A: set of planning periods A=(0,1,...,T)

Index:
t: index for time period

Parameters:
Πt: electricity price in time period t
ψt: water in�ow in time period t
η: e�ciency coe�cient
Mmax: maximum reservoir level
Mmin: minimum reservoir level
M0: initial reservoir level
MT : minimum reservoir level at the end of the planning period
Qmax: maximum �ow of water
r: interest rate

Variables:
V0: present value of total production in the planning period
mt: ending reservoir level at time period t
lt: loss of water due to �ood in time period t
pt: produced energy in time period t
qt: water �ow in time period t
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Objective function:

V0 = max
qt,mt,lt

T∑
t=0

Πt

(1 + r)t
× pt (5.1)

Restrictions:
pt = η × qt , t ∈ A (5.2)

mt −mt−1 + qt + lt = ψt , t ∈ A (5.3)

Mmin ≤ mt ≤Mmax , t ∈ A (5.4)

m0 = M0 (5.5)

mT ≥MT (5.6)

qt ≤ Qmax , t ∈ A (5.7)

qt, lt ≥ 0 , t ∈ A (5.8)

The objective function 5.1 is the sum of the discounted income in each time
period. Equation 5.2 states that the energy production depends linearly on
the water �ow, by the e�ciency. In reality this linearity does not exist, and
the production will depend nonlinearly on both the power and the reservoir
level. Restriction 5.3 gives the reservoir balance; the di�erence between the
reservoir level in two time periods is equal to the net in�ow during this
time. The reservoir level has to be larger than minimum level and less than
maximum level in each time period, given by restriction 5.4. Both initial
and minimum �nal reservoir level is given, respectively equation 5.5 and 5.6.
The water �ow has an upper level stated by restriction 5.7. Equation 5.8
states that neither loss of water due to �ood nor water �ow can be negative.

5.3 Stochastic Model

A stochastic model takes uncertainties into account. This model has stochas-
tic representation of both spot price and water in�ow. The objective function
5.9 is the expected sum of the discounted income.

Objective function:

Vt = max
qt,mt,lt

E

[
T∑

t=0

Πt

(1 + r)t
× pt

]
(5.9)

The constraints for the stochastic model is equal to the restrictions in the
deterministic case, only with stochastic variables.
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5.4 Deterministic Equivalent

Assuming that the stochastic variables can be described by discrete probabil-
ity distributions, the stochastic model can be simpli�ed and approximately
described by a deterministic equivalent. The stochasticity is represented by
a scenario tree. The model can then be solved using standard linear pro-
gramming, no algorithms are necessary.

New index:
n: node index

New parameters:
N: number of nodes
nT : nodes in time period T
tn: point in time node n
α(n, k): index of node prevailing node n in time period t-k
Pn: probability that the state in node n will occur

Objectiv function:

V0 = max
qn,mn,ln

∑
n∈N

Pn ×
Πn

(1 + r)tn
× pn (5.10)

Restrictions:
pn = η × qn , n ∈ N (5.11)

mn −mα(n,1) + qn + ln = ψn , n ∈ N (5.12)

Mmin ≤ mn ≤Mmax , n ∈ N (5.13)

m1 = M0 (5.14)

mn ≥MT , n ∈ nT (5.15)

qn ≤ Qmax , n ∈ N (5.16)

qn, ln ≥ 0 , n ∈ N (5.17)

The objective function 5.10 is the sum of the discounted income in each
possible state multiplied by its probability, i.e. the sum of the expected
discounted income. Restriction 5.12 states that the reservoir level in each
node n depends on the level in the predecessor node α(n, 1).
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5.5 Water Value

Water value is the economic value one extra unit water will give, i.e. the
marginal value of having one more unit of water. Disregarding the reservoir
constraint, it will be pro�table to produce electricity if the price is higher
than the water value and pro�table to save the water in the opposite case.
The value depends on both future prices and in�ow which are stochastic
variables not known. Given a scenario representation, as the deterministic
equivalent in chapter 5.4 employs, each in�ow and price scenario will gener-
ate a water value scenario. Both the expected value and the di�erent possible
scenarios with their probabilities can be worth looking into.

A dual variable re�ects the rate of change in primal optimal value per unit
increase in the right-hand-side value of the corresponding constraint (Rardin,
1998). The dual variable of the reservoir constraint, equation 5.12, will give
the rate of change in the objective value per unit increase in the reservoir
level. That is the marginal value of increasing the reservoir level by one unit,
i.e. the water value.

As mentioned in chapter 2.1 a method to connect long term and medium
term planning is valuing the water. Hence the water value found in long
term planning can be made use of in medium term planning (Fosso et al.,
2006).
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Chapter 6

Presentation of Hydro Power

Plants

The deterministic equivalent of the optimization model presented in chapter
5.4 is applied for six power plants. In this chapter, the power plants modeled
are presented. Special properties for each power plant are highlighted. Single
station systems with one main reservoir are modeled with the objective of
simplifying the comparison between the plants. However, the optimization
model is easily extensible to include multiple reservoirs. In this presentation
and the analysis following in the next chapter proportions, not real values,
are used. This is done to avoid descriptions of sensitive information about
the power plants. The characteristics of the in�ow to each power plant are
also studied and displayed in graphs. To avoid too long time series, these
graphs do only show the in�ow for the last ten years. In some in�ow graphs,
the modeled in�ow has a few negative values. In reality, this could result
from high evaporation or measuring errors. It is not dealt with negative
in�ows in this paper, so the few negative in�ow values are set to zero when
estimating model parameters.

6.1 Power Plant Location and Properties

Figure 6.1 indicates where the power plants are located. They are randomly
distributed in Norway and will therefore experience dissimilar climate which
in�uence the in�ow.

Table 6.1 gives an overview of some of the power plant properties, ranking
di�erent plants from 1 to 6 for di�erent properties. 1 represents the highest
value of the speci�c property among the plants studied, and 6 represents the
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Figure 6.1: Location of the six power plants analysed

lowest value. The mean, µ and the standard deviation, σ, for the in�ow to
all power plants are found in PcGive. µ is equal to the α parameter found
in the one-factor in�ow models.

Table 6.1: Power plant ranking from 1 to 6 where 1 indicates the highest
value observed.

Power plant ranking

Power Plant 1 2 3 4 5 6

Average annual in�ow 5 6 4 2 3 1
In�ow standard deviation 5 6 4 2 3 1
Max reservoir 4 6 5 3 2 1
Max production output 6 5 4 2 3 1
Average annual production 6 5 4 2 3 1
E�ciency coe�cient 6 4 1 5 3 2
Degree of regulation 2 6 5 4 1 3
Utilization time 2 6 5 4 1 3
Seasonal dependence: γ / µ 2 6 4 5 1 3

6.2 Power Plant 1

The in�ow data belonging to power plant 1 consists of weekly observations in
the period 1977-2006. In�ow for the last ten years is displayed in �gure 6.2,
together with the modeled in�ow. Mean in�ow to this plant and in�ow stan-
dard deviation is the second smallest observed among the six plants studied.
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Figure 6.2: The actual weekly in�ow during the period 1997-2006 to power
plant 1 plotted against the model estimates (�tted).

The in�ow is seasonal dependent, but without extreme �uctuations. Reser-
voir size is in the middle, and max production output, annual production
and e�ciency have the smallest values observed among the six plants. The
degree of regulation is 1,22, meaning that the reservoir can store more water
than the annual in�ow. A utilization time at 4250 hours makes this power
plant relatively �exible, especially considering the high degree of regulation.

6.3 Power Plant 2

Figure 6.3: The actual weekly in�ow during the period 1997-2006 to power
plant 2 plotted against the model estimates (�tted)

The in�ow data for power plant 2 is made up of weekly observations in period
1981-2006, where the last ten years in�ow is displayed in �gure 6.3. Annual
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in�ow, standard deviation, in�ow mean and max reservoir level is the lowest
among the cases studied in this paper. It has the least seasonal dependent
in�ow, which can be seen both from the sketch in �gure 6.4 and the ratio
between γ and µ. Average annual production and max production output
is second lowest of all cases. Additionally, the degree of regulation is 0,37,
which makes this power plant the least regulated plant. The utilization time
is 1620 hours, the shortest of these six power plants.

6.4 Power Plant 3

Figure 6.4: The actual weekly in�ow during the period 1997-2006 to power
plant 3 plotted against the model estimates (�tted)

Power plant 3 has weekly in�ow observations for 1983-2006. A in�ow graph
is displayed in �gure 6.4. This power plant ends up in the middle of the
studied power plants when it comes to mean in�ow, mean annual in�ow,
in�ow standard deviation, max production output and annual production.
It is the power plant with most seasonal dependent in�ow. The reservoir
is the second smallest one among the six plants. The degree of regulation
amounts to 0,61 and the utilization time 2190 hours.

6.5 Power Plant 4

In�ow to power plant 4 is observed weekly in the period 1990-2006. In�ow for
the last ten years is displayed in �gure 6.5. This power plant has the second
highest values when it comes to mean in�ow, in�ow standard deviation, max
production output and annual production among the six power plants. It
is the power plant with largest peaks in in�ow. The max reservoir level is
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Figure 6.5: The actual weekly in�ow during the period 1997-2006 to power
plant 4 plotted against the model estimates (�tted)

in the middle of the studied cases. The degree of regulation is 0.65 and the
utilization time 1630 hours.

6.6 Power Plant 5

Figure 6.6: The actual weekly in�ow during the period 1997-2006 to power
plant 5 plotted against the model estimates (�tted)

Power plant 5 has weekly observed in�ow from 1984 until 2006. An in�ow
graph is displayed in �gure 6.6. Mean in�ow, standard deviation, max pro-
duction output and annual production of this power plant is in the middle
of the studied cases. It has the second most seasonal dependent in�ow, very
similar to the in�ow power plant 3 experiences. The reservoir is the sec-
ond highest and the degree of regulation is 1,67, which is the highest of the
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power plants studied. A utilization time equal 5200 hours, the highest of
these power plants, is not surprising considering the size of the reservoir.

6.7 Power Plant 6

Figure 6.7: The actual weekly in�ow during the period 2000-2006 to power
plant 6 plotted against the model estimates (�tted)

In�ow data belonging to power plant 6 is weekly observed in the period
2000-2006, the shortest available time series of in�ow data. It is displayed
in �gure 6.7. This plant has the second least seasonal dependent in�ow. It
varies a lot over the year, but not with the seasonal characteristics seen for
other power plants. This is the power plant with highest in�ow mean, in�ow
standard deviation, max reservoir level, max production and annual in�ow
among the six power plants studied. The e�ciency is the second highest
of the studied plants. A degree of regulation at 0,7 and a utilization time
equal 4137 hours makes this an average power plant with respect to these
parameters.

6.8 In�ow Model Performance

The in�ow model parameters belonging to the di�erent power plants are
estimated based on in�ow data series with varying lengths. This section
attempts to indicate how good the in�ow models are. Inspecting the model
in�ows compared to actual in�ows by pure sight, it is found that the models
in�ow do not capture the peaks in the actual in�ows. To check the valida-
tion of the in�ow models, the same tests as described in section 4.2.2 are
performed.
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First, the parameter stability for each power plant is checked. For each power
plant, the in�ow series are divided into two subparts with equal length. Sub-
sequently, the parameters estimated from the subparts are compared to the
parameters estimated from the total in�ow series. The absolute percentage
deviation is shown in table 6.2. Parameter α, which is a constant describing
the level of the in�ow, deviates between 0,06 and 7,09 %. Power plant 6 has
the highest deviation. γ explains to which extent the in�ow is dependent of
seasonality. The deviation of this parameter varies between 2,19 and 101,72
%. Power plant 6 has the highest γ-deviation as well. Excluding plant 6, the
highest di�erence becomes 12,76 %. τ describes seasonality, and has devia-
tions between 1,1 % and 21,66%. Eight of the τ -deviations are under 2 %,
so this parameter seems to be pretty stable. Power plant 6 has the highest
di�erence in τ . Finally, κ, representing the speed of mean reversion, has
deviations between 1,76 and 31,09 %, where power plant 1 has the highest
deviation.

An explanation to the high deviations for several parameters in the in�ow
model to power plant 6 may be the short length of the in�ow series belonging
to this plant. Parameter γ is the least stable parameter, which is natural
due to the fact that this power plant do not have any clear seasonal depen-
dence in its in�ow. Power plant 2, the other power plant with little seasonal
variation, has also high deviation for parameter γ.

Performing a Bera-Jarque test on the residual Rt, normality is rejected. Ac-
cording to Durbin-Watson tests, it is not found evidence of autocorrelation
in the residuals for �ve of the six power plants. A typical plot of residuals
with no autocorrelation is shown in �gure 6.8. This plot is from the in�ow
model of power plant 3. Power plant 5 has positive autocorrelation. Graphs
of the residuals against time indicate time dependent variation for all the
power plants. This is due to the fact that the model does not capture the
in�ow peaks. A typical plot is shown in �gure 6.9. This plot is also based
on the in�ow model of power plant 3.

Summed up, the in�ow model parameters seem to be fairly stable, excluding
some extreme cases in power plant 6. Except from power plant 5, there is no
sign of positive autocorrelation in the stochastic terms. This is positive indi-
cations when it comes to model validation. On the other hand, the residuals
are not normally distributed and time dependent variation is indicated, so
the in�ow model could be better in this respect.
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Table 6.2: Parameter stability, one-factor in�ow model found in week 52
2006. The parameters estimated using two sub-periods are compared to the
parameters found when using the entire sample. The percentage deviations
are displayed.

In�ow Paramater Stability

α γ τ κ

Power plant 1 First Sample 0,12% 2,37% 1,01% 31,09%
Second Sample 0,10% 2,19% 1,07% 25,16%

Power plant 2 First Sample 0,06% 12,76% 3,55% 6,57%
Second Sample 0,08% 11,01% 4,50% 5,97%

Power plant 3 First Sample 5,46% 2,58% 1,34% 3,29%
Second Sample 5,41% 2,86% 1,26% 2,87%

Power plant 4 First Sample 4,73% 4,95% 0,67% 7,58%
Second Sample 4,35% 4,42% 0,61% 10,38%

Power plant 5 First Sample 3,42% 2,76% 0,31% 4,45%
Second Sample 3,21% 2,65% 0,25% 5,99%

Power plant 6 First Sample 7,09% 101,72% 5,89% 1,76%
Second Sample 4,88% 36,55% 21,66% 6,08%

Figure 6.8: Autocorrelation in in�ow residual, power plant 3. The in�ow
model is based on historical in�ow data.
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Figure 6.9: Variance in in�ow residual, power plant 3. The in�ow model is
based on historical in�ow data.
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Chapter 7

Analysis

The deterministic equivalent model described in chapter 5.4 is implemented
in optimization software Mosel Xpress, see Xpress MP reference manual. The
computer programs Matlab and Scenred are used to generate an input �le to
Xpress. First Matlab generates a number of fan-scenarios for the stochastic
variables in�ow and price. Scenred then reduces these to a scenario tree. An
example of a scenario tree from Scenred is shown i �gure 7.1. The �nal input
�le with all input parameters is made in Matlab.

Figure 7.1: Scenario tree made by Scenred.

Two Matlab �les, Scenred.m and xpress.m and the Scenred �le are run at
a 1,60 GHz Intel Celeron mobile CPU with 1024 MB RAM. Xpress is run
at 2,4 GHz Intel Celeron P4 CPU with 512 MB RAM. In table 7.1 the time
spent when running each of the �les, number of nodes and scenarios in the
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scenario tree and number of simplex iterations are shown for power plant
�ve. The time horizon is 121 weeks and the three Scenred parameters de-
scribed in chapter 3.1.1 are set to εp = 0,80, εf = 0,85 and q = 0,65. Time
spent varies every time the model is run, but the table indicates the level.

Table 7.1: Time spent running the �les, number of scenarios and nodes in
the event tree and number of simplex iterations

File Program 250 sc. 1000 sc. 5000 sc. 8000 sc.

Scenred.m Matlab 3 sec 4 sec 8 sec 11 sec
Scenred Scenred 2 sec 11 sec 743 sec 2618 sec
Xpressdat.m Matlab 4 sec 6 sec 42 sec 69 sec
Vannprod 1.0fhm Xpress 0,2 sec 1,2 sec 13,8 sec 16,4 sec

Number of scenarios in event tree 157 597 2855 3883
Number of nodes in event tree 1108 3136 12266 16519
Simplex iterations when optimizing 3917 11195 42303 56193

All parameters describing the stochastic variables, time horizon, period clas-
si�cation and power plant description are gathered in one excel sheet. The
models described in chapter 4 are implemented and explain future values of
in�ow and price. These are easily interchangeable if better models describing
possible future values of spot price and in�ow are available.

Program codes, examples of input �les and �les where the parameters de-
scribing the stochastic variables are enclosed on a cd.

The model is run both forward and backward in time for the six power
plants introduced in chapter 6. Small time steps close to present time and
longer time steps longer o� makes the analysis more detailed in the most
important time periods. It also reduces the total number of periods, which
lowers the time spent running the model. Time steps with di�erent lengths
are employed by using both weekly, monthly and quarterly periods. A con-
tinuously compounded risk-neutral interest rate of 4 % is set.

Maximum production level is set equal to the power capacity multiplied
by number of hours in each period. Minimal production is set equal to zero.
Normally a power plant will run at a power which gives best possible e�-
ciency. It will also be varied more often than once a week. Generators often
have a lower production level given that they are running, but can also be
switched o� and produce zero. Costs connected to starting and stopping the
generator are also normal. To be able to include these aspects, an hourly
production level is needed. In this model the time steps are weeks and the
goal is to �nd a long-term strategy for the water reservoir. The simpli�ca-
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tions are therefore acceptable.

It will either be pro�table to produce at maximum level or to save the water
for later use in each period, i.e. the spot price is either higher or lower than
the water value. This is why the model will give a "bang bang" production
strategy, maximum or minimum production, as long as it satis�es reservoir
constraints. The e�ciency varies in the area of possible power ratings, of-
ten with a best possible level at the middle and reducing towards maximum
and minimum power ratings. Average e�ciencies are used when testing the
model. For most power plants this will be higher than the e�ciency at max-
imum power. The varying e�ciency in reality can lead to a dissimilar total
production over the analysis period, even though the reservoir level is equal
both at the beginning and the end of the period.

Power plants can have restrictions on reservoir level and water �ow at spe-
ci�c time periods. The same applies to restrictions on how fast the water
�ow can change. From the information gathered from the power producers,
no such restrictions exist for any of the six power plants. This is assumed to
be true.

7.1 Testing the Model Forward in Time

The model is run forward in time, assuming that the present time is January
1st 2007. All information available at this date is assumed known, nothing
more. This is the realistic situation every power producer experiences. The
same time horizon is set for every power plant to make it easier to compare
the results. In the model water stored in reservoirs at the end of the analysis
horizon have no value. To prevent this from a�ecting the outcome too much,
the ending point of the analysis is set in the spring. Due to spring �ood,
the water in reservoirs in the spring normally has approximately zero value
for one-year reservoirs. This is because spilled water do not contribute to
income for the power plant.

The power plants included here are located in di�erent areas with dissimilar
climate. To be able to have the same ending point of the analysis, the �nal
reservoir level is set to be at least the average level for the last seven years,
2000-2006, at this date. Without this constraint, all reservoirs including the
two multi-annual, would have been emptied at the end of the planning hori-
zon. The average value is used because this contains information of what
is normally expected to be the correct reservoir level at this point in time.
The power plant with the largest degree of regulation decides how long the
time horizon should be. April 30th 2009 is set as the ending point of this
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analysis, two years and four months ahead. Thus the time horizon consists
of 121 weeks divided in 25 periods; eight weekly, twelve monthly and �ve
quarterly.

A start level of the reservoir equal to the average reservoir level in week
52 the last seven years is set. It is considered to set the initial reservoir level
equal to the actual reservoir level in week 52 2006. However, since the main
point of this analysis is to compare the power plants, the comparison should
not be a�ected by circumstances a�ecting the initial reservoir levels that are
special for this particular year.

The model is run for both a one-factor and a two-factor price model. A
one-factor in�ow model is used in both cases. Models and parameter esti-
mations are explained in chapter 4.

7.1.1 Variance in optimal value

Rerunning the model will give di�erent results due to the fact that fan-
scenarios are generated by random variables. To be able to say something
about the uncertainty of the optimal solution found, twenty optimal values
for 250 and 1000 generated fan scenarios for both a one-factor and a two-
factor price model for power plant 5. Due to the time consumed, only 10
optimal values are found for 5000 and 8000 generated fan scenarios. Average
values and standard deviations are shown in table 7.2 and 7.3.

Table 7.2: Average value and standard deviation for the optimal objective
value for di�erent number of generated fan scenarios when a one-factor price
model is used.
Number of fan scenarios 250 1000 250 1000

Average optimal value 105863050 103955650 103300700 104719000
Standard deviation 2816423 1467708 1044386 2970083

Table 7.3: Average value and standard deviation for the optimal objective
value for di�erent number of generated fan scenarios, when a two-factor price
model is used.
Number of fan scenarios 250 1000 5000 8000

Average optimal value 112017400 110556150 111008700 112041300
Standard deviation 4035357 2472748 1065490 1500504
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There is a considerable higher standard deviation when 250 fan scenarios
are generated, compared to 1000 scenarios for both of the two price models.
Increasing the number of generated fan-scenarios from 1000 to 5000 also re-
duces the variance. However, it is surprising to see that by generating 8000
fan scenarios, the standard deviation for the objective value increases when
using both a one-factor and a two-factor price model. This is due to random
events and shows that the number of runs should be increased to give a bet-
ter representation of how the uncertainty varies with number of generated
fan scenarios. Since this is a time consuming task it is not done. Figure 7.2
and 7.3 displays the objective values found. It shows both how the variance
decreases by increasing number of generated fan scenarios and how random
events can occur. More generated scenarios gives a better representation
of the probability distribution of the stochastic variables and less variation
in the optimal solution is therefore found when running the model several
times.

Figure 7.2: Optimal objective value by running the model with di�erent
numbers of generated fan scenarios.

Taking variance and the time consumed running the model for di�erent num-
ber of generated fan scenarios into account, it is chosen to generate 1000 sce-
narios when testing the model forward in time. An average of the optimal
value from the twenty runs is used in the analysis. The case closest to the
average value is regarded when describing reservoir level and production.
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Figure 7.3: Optimal objective value by running the model with di�erent
numbers of generated fan scenarios.

7.1.2 Value of stochastic solution

The value of a stochastic compared to a deterministic model is found by
comparing the optimal values generated by the two models. To achieve a
fair comparison between a stochastic and a deterministic solution, the de-
terministic case has to be solved in all nodes of the event tree. Since the
scenario trees generated here have about 500 nodes, this is a time consuming
task. The main goal here is to compare di�erent power plants. To be able
to compare the six power plants, the deterministic and stochastic optimal
values at the root nodes are found. Since the comparison is not fair, as
explained in chapter 3.4, the real values are less. Owing to the facts that
the same simpli�cations are done for all power plants, and only power plant
speci�c di�erences exist, the percentage increase will show for which power
plants a stochastic solution has most value. A two-factor price model is used
when calculating the stochastic solution forward in time. The forward curve
is used as the deterministic price. For the stochastic case, the model is run
20 times. The average increase in value between the stochastic and the de-
terministic case and the in�ow standard deviation divided by the expected
in�ow of each power plant are given in table 7.4.

The values in table 7.4 contains little information besides comparing the
power plants. Looking at the table, it can be seen that the power plants
with largest in�ow variation divided by the mean also have the largest value
of a stochastic solution. This result is not surprising, since the advantage of
the stochastic solution is that it takes variation into account when planning
the production. Power plants with less variation compared to the expected
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Table 7.4: Percentage expected income increase from deterministic to
stochastic model, root node solutions, and in�ow standard deviation divided
by expected in�ow for each power plant.

Value of a stochastic solution In�ow: σ / µ

Power plant 1 27 % 1,09
Power plant 2 20 % 0,84
Power plant 3 29 % 1,36
Power plant 4 37 % 1,52
Power plant 5 28 % 1,33
Power plant 6 22 % 0,92

value will therefore bene�t less of including variation. Degree of regulation,
utilization time and the power plant capacity do not seem to a�ect the value
of a stochastic solution.

Value of stochastic solution is further discussed in chapter 7.2.3, by com-
paring a stochastic and a deterministic model run backward in time.

7.1.3 Value of two-factor model

As explained in chapter 3.4, the value of a two-factor compared to a one-
factor price model can be found by comparing the optimal values generated
using the two models. Table 7.5 shows the outcome of comparing the average
optimal solution of twenty model runs and a lower bound of the value. The
lower bound is found by assuming that both one- and two-factor optimal
values are student t-distributed and using equation (3.23). A level of signif-
icance equal one % is set, meaning that it is only one % likely that the true
value is lower than the lower value set, given that the assumptions made are
correct.

The two-factor price model gives on average from 6,8 to 9,7 % increase in
optimal value. The objective value of power plant 2 and 6 increase most by
using a two-factor price model. These plants have the least in�ow standard
deviation divided by the expected in�ow and have least value of a stochastic
solution. The fact that a two-factor model have most value for these power
plants is surprising, since the advantage of the two-factor model is that it
gives a better representation of the price uncertainty.

Power plant 2 has the smallest degree of regulation. A small degree of
regulation means that the reservoir is small compared to the annual in�ow
so the storing capacity is low. In this case the reservoir has only capacity
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Table 7.5: Percentage increase from one-factor to two-factor price model, the
ratio between the seasonal dependency factor γ, the in�ow average µ and
the utilization time for each power plant.

Value of a two-factor price model In�ow

Power plant Average Lower bound γ / µ Utilization time

Power plant 1 7,1 % 5,5 % 0,89 4250
Power plant 2 9,7 % 8,5 % 0,20 1620
Power plant 3 6,8 % 5,7 % 1,37 2190
Power plant 4 7,8 % 6,4 % 0,86 1630
Power plant 5 6,0 % 4,8 % 1,32 5200
Power plant 6 9,1 % 7,7 % 0,28 4140

to store 37 % of the annual in�ow. Power plant 5 has the largest degree
of regulation, and is also the power plant the two-factor model gives least
increase in value. This is also an unexpected result, since the power plant
with large degree of regulation has more opportunity to exploit variations in
the spot price.

The reason for these unexpected results can be explained by other power
plant properties. A better representation of the price has most value for
power plants with low seasonal dependent in�ow. This can be seen in table
7.5 from the ratio between γ and µ. Power plants with seasonal indepen-
dent in�ow appears to have more opportunity to exploit information of price
variations, since the consumption of water is more �exible when water con-
tinuously in�ows.

The table also shows the utilization time for each power plant, which repre-
sents another kind of �exibility, as explained in section 2.1.1. Power plant 2
has the lowest and number 5 the highest utilization time. Apart from power
plant 6, the power plants with low utilization times have more value of a
two-factor price model than the power plants with high utilization times.
The advantage of a two-factor price model is that it gives information of
long-term changes in the spot price. A low utilization time means that
the reservoir can be emptied within a short period of time. Power plants
with this possibility will depend on information of long-term changes in the
spot price to �nd the optimal production strategy. A high utilization time
means that the power plant do not have as much �exibility in deciding when
to discharge the stored water, since it will take a long time to empty it.
These power plants will therefore have less value of information of long-term
changes in the spot price.

The lower bound gives the value which the value of a two-factor price model
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is higher than with 99 % certainty. It is given as a percentage increase from
the average optimal objective value using a one-factor price model and varies
between 5,5 and 8,5 %, high increases in value.

Figure 7.4: Expected spotprice for the one-factor price model from the sce-
nario tree for all six power plants.

Figure 7.5: Expected spotprice for the two-factor price model from the sce-
nario tree for all six power plants.

To con�rm that these results not are a�ected by dissimilar price expecta-
tions, the expectation and variation of the one-factor and two-factor price
models are compared. The theoretical expectations are shown in chapter
4.2. Figure 7.4 and 7.5 shows the expected price given by the scenario tree
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for all six power plants, using a one-factor and two-factor price model, re-
spectively. The expectations varies between the power plants, but are quite
similar for the one- and two-factor model. They are adjusted towards the
same forward curve. However, the long-term part in the two-factor model
gives a price increase over time. The two-factor price expectation is lower
at the beginning of the planning period and higher at the end compared to
the one-factor price expectation. Therefore, the value of a two-factor model
should not be much a�ected by dissimilar price expectations.

Figure 7.6: Price fan scenarios generated when using a two-factor model.

Figure 7.7: Price fan scenarios generated when using a one-factor model.

A two-factor model will represent uncertainty better since it includes two
stochastic terms expressing long-term and short-term variations. Even so,
the two models describe the same variation. The size of the parameters,
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attached in appendix 2, show that the random variables generated when sce-
narios are found are similar for the two models. In the one-factor model, the
ln spot price depends on a random variable with standard deviation 0,1907,
whereas the two-factor model depends on two random variables with stan-
dard deviation 0,1629 and 0,0419, with correlation -0,6. I.e. the models have
equivalent variations. Scenarios generated are sketched in �gure 7.6 and 7.7.

Figure 7.8: Price fan scenarios generated when using a two-factor model
simpli�ed to a one-factor.

The di�erence between the one-factor and two-factor model is one stochastic
variable. By removing the stochastic term ξ from the two-factor model, a
one-factor model remains. This one-factor model will represent the price
worse than both the original two-factor model and the estimated one-factor
model. To test if the increase in value between the two price models is true,
the optimal objective value given by the simpli�ed two-factor price model
is found. For all six power plants, this gives a lower value than both the
original one- and two factor model. Values are cited in appendix 3. Price
scenarios generated when using this simpli�cation are shown in �gure 7.8.

7.1.4 Scenario example

A scenario tree like the one shown in �gure 7.1 describes possible future
in�ow and price states. Given this, an optimal production strategy is then
found. To show how varying the scenarios can be, two examples for power
plant 3 will be described. The two-factor price model is used. In�ow, price
and recommended reservoir level for both scenarios are shown in �gure 7.9,
7.10 and 7.11.
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When looking at these two scenarios it is important to keep in mind that
the scenarios are not assumed to be deterministic when the optimal produc-
tion plan is generated. Several states are possible in the future from each of
the nodes in the scenario tree. The optimal production strategy given these
possible future outcomes are generated in each node.

In�ow in the two scenarios are not that di�erent, but the prices are very dis-
similar and the optimal production level considerably di�erent. This shows
to which extent the optimal reservoir level is a�ected by possible future out-
comes of price and in�ow.

Figure 7.9: Two in�ow scenarios for power plant 3

Figure 7.10: Two spot price scenarios for power plant 3.
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Figure 7.11: Optimal reservoir level for the two scenarios for power plant 3.

7.2 Backtesting the Model

In reality the long term planning model will be run repeatedly whenever new
information, like weather forecasts and forward prices are known. To be able
to compare the optimal production strategy given by the model to the actual
strategy carried out by the power producers, the model is run for six power
plants every fourth week over a period of time. The information available
at each point in time is taken into consideration. Since the in�ow model
is based on historical data and the fact that information from one single
year have almost no e�ect on the model parameters, the same models which
are used when analysing forward in time are also applied when back-testing
the model. The spot price �uctuates much more than in�ow. Information
about the future is also available through the forward price. A new price
model is therefore found for each time the model is run. Due to problems
calculating the parameters in the two-factor model, one-factor price models
are employed. Chapter 4 explains how model parameters are found and cal-
ibrated.

The reservoir level and production the model recommends are compared to
the actual situation in six di�erent power plants. To �nd the scenario closest
to what happened, the absolute value of the deviation between actual value
and scenario value for both in�ow and price are found. Since the deviation
is a lot higher in value for in�ow compared to the price, the deviations for
each week are divided by the average value for the speci�c week the last six
years for both price and in�ow. The scenario with least total deviation rate
decides what to produce the next four weeks. It is important to keep the
earlier mentioned shortcomings and assumptions in mind when reading this
section.
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7.2.1 Backtesting the model for year 2006

The actual reservoir level in week 52 2005 is used as the initial level for every
power plant. April 30th 2008 is set as the end of the planning horizon. In
this way the planning period always ends in the spring and a constant min-
imum ending reservoir level is used. This level is set according to average
level as in the previous chapter.

250 scenarios are �rst generated and then reduced to a scenario tree. For
the cases tested here this gives from four to eight scenarios the �rst four
weeks. Four possible scenarios are few, especially considering that there
are two stochastic variables expressed. More scenarios would give scenarios
closer to the actual incident and thereby a better strategy. By increasing
the number of scenarios initially generated or decreasing the reduction to
the scenario tree, more scenarios the �rst weeks can be evaluated in the op-
timization model. However, since the uncertainty increases forward in time
and a scenario tree is made, the number of nodes has to increase considerably
to obtain more scenarios the �rst four weeks. It is rather prioritized to run
the model for several power plants, even with few scenarios, to explore for
which type of power plant the model is best functioning.

In 2006 the spot price did not follow the normal �uctuations. The price
had a peak in the fall and an abnormal high level throughout the year. This
can be seen in �gure 7.12.

Figure 7.12: Average weekly spot price for 2006.
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Reservoir level 2006
Reservoir level for all six power plants for the year 2006 is sketched in �gure
7.13 to �gure 7.18. The actual level and the model recommendations are
shown.

Mutually for all power plants, the reservoir is �rst reduced towards the
spring. The model recommendation follows the actual reservoir level fairly
well. After reaching the lowest reservoir level, all reservoirs starts to �ll up,
similar to the actual development. In the fall and early winter the model
recommends to produce more than what was actually done for all six power
plants.

Figure 7.13: Actual reservoir level and the model recommendation for power
plant 1 when the model is run every fourth week in 2006.

When optimizing, a lowest level of the �nal reservoir is set one year and four
months forward in time from the ending reservoir in this analysis. This can
a�ect the outcome for power plants with high degree of regulation, power
plant 1 and 5 in this analysis.

Power plant 1 has a degree of regulation of 1,22, which gives great possibility
to vary the reservoir. In reality the power plant had almost no production
after week 17. The reservoir was �lled. This is surprising since the price was
abnormally high this year.

Power plant 2 is �rst emptied, then re�lled. From week 35 the model rec-
ommends to produce at full capacity, due to high prices. At the end of the
year it is recommended to produce less and start re�lling the reservoir. It is
possible to decrease and increase the reservoir quickly because it has in�ow
throughout the year and low utilization time. In reality a nearly constant
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Figure 7.14: Actual reservoir level and the model recommendation for power
plant 2 when the model is run every fourth week in 2006.

Figure 7.15: Actual reservoir level and the model recommendation for power
plant 3 when the model is run every fourth week in 2006.

reservoir level was maintained from week 35 and throughout the year.

Power plant 3 and 5 do not produce anything the last four weeks, according
to the model, when the price is low. Since the in�ow is almost zero, the
reservoir level keeps stable. There is full production during the fall price
peak for both these power plants.

Due to less in�ow than expected, power plant 4 has nearly no production
during the beginning of the price peak. As for the other power plants, the
reservoir level is reduced from week 35.
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Figure 7.16: Actual reservoir level and the model recommendation for power
plant 4 when the model is run every fourth week in 2006.

Figure 7.17: Actual reservoir level and the model recommendation for power
plant 5 when the model is run every fourth week in 2006.

The power plant with the largest production capacity of these six, power
plant 6, produces during the whole year both in reality and in the model
recommendation. The real production is smoother than the max-min pro-
duction strategy the model recommends. During some weeks in the fall the
model recommends to consume water, but in reality it was stored.

The reason why the model and the actual production plan is so di�erent
for each of the six power plants can be found in forward prices and the price
model expectations. Di�erent production strategies are in particular found
the four last times the model is run, week 36, 40, 44 and 48. The forward
prices seen at each of these points in time are displayed in �gure 7.19.
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Figure 7.18: Actual reservoir level and the model recommendation for power
plant 6 when the model is run every fourth week in 2006.

Forward prices during the price peak period show that high prices are ex-
pected to persist throughout the winter, subsequently normalizing at a higher
level than earlier. This explains why producers save the stored water instead
of consuming it during what proved to be a price peak.

Figure 7.19: Forward prices seen in week 36, 40, 44 and 48 2006. These are
extracted from �gure 4.2.

Since the price model is calibrated towards the forward price at each point
in time, it is surprising to see that the model advises to reduce the reservoir
level at all of the power plants during the fall. To understand this, the price
model has to be evaluated. In �gure 7.20 the forward price in week 40 and
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the price model previous and after calibration are sketched. As the �gure
shows, the price model does not capture long term changes expected by the
forward prices. Based on historical prices, the model expects the price to
be lower than the forward price during the winter. Similar price models
compared to forward prices are generated for week 36 and 44, leading to the
reservoir levels displayed in the �gures above.

Figure 7.20: Forward price and the expected price given by the one-factor
price model seen in week 40 2006.

Figure 7.21: Average weekly spot price the �rst 19 weeks of 2007.

To be able to say if the modeled or the actual production plan is the better,
reservoir level and production plan until spring 2007 should be compared.
Only information until year 2006 is available, so this is not possible. Yet the
actual spot price can be found. It is sketched in �gure 7.21. Even with spot
prices only known for the �rst 19 weeks at present, this still gives a basis for
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valuing the strategic decision made by the producers and the recommenda-
tion of this model. Due to spring �ood it is the available prices that are of
importance.

The actual price in the �rst weeks of 2007 is lower than any of the ob-
served forward prices from 2006 predicted. All weekly prices are also lower
than any of the weekly prices in 2006. As a result of this, the producers
would bene�t from consuming water during fall 2006 instead of saving it for
later that winter when prices were lower. This could not be known at the
time the decision had to be made, but it shows that the one-factor models
applied in this analysis are in fact better predictions of future prices than the
forward prices in this particular case. This is accidental, since the intention
is that the price model should re�ect the forward price.

Income in 2006
Multiplying the production each week by the average weekly price and the
discounting factor, the total discounted income for 2006 is found. This is
done for each of the six power plants for both the actual production and the
production recommended by the model. The model production resulted in
a higher income in all six cases, but also a higher total production. This is
possible due to the fact that this analysis is done based on a calendar year,
not a production year and that the reservoir level at the beginning and the
end of the year are dissimilar. Production and income increase are shown in
table 7.6.

Table 7.6: Production and income increase between the reality and the model
recommendations in 2006.

Production and income increase

Power plant Production increase Income increase

Power plant 1 168,5 % 183,4 %
Power plant 2 14,3 % 24,0 %
Power plant 3 37,0 % 37,3 %
Power plant 4 42,1 % 41,8 %
Power plant 5 67,7 % 79,2 %
Power plant 6 27,8 % 29,1 %

To be able to compare the two production alternatives, the average price
for the production is found. In this way a comparison can be done with-
out considering the reservoir level at the end of the year. As can be seen
in table 7.7, the model gives a higher average price for all power plants ex-
cept number 3 and 4, where the average prices are equal. Power plant 4
did not produce during the beginning of the price peak due to less in�ow
than expected. This can imply that in�ow should have less and the price
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more e�ect on what scenario to choose than the 50/50 weight applied. The
actual production of power plant 3 is well distributed over the period and it
produces much during periods with high prices.

Table 7.7: Average price for the production in 2006, in reality and recom-
mended by the model.

Average price in 2006

Power plant Actual This model Percentage increase

Power plant 1 47,2 49,8 5,7 %
Power plant 2 44,4 48,1 8,3 %
Power plant 3 49,4 49,3 -0,2 %
Power plant 4 45,8 45,8 0,0 %
Power plant 5 47,3 50,6 7,0 %
Power plant 6 46,9 47,4 1,1 %

The average prices imply that the model gives a good production strategy
and an improved allocation of the water over the year than the actual case.
By running more scenarios, both initially and in the scenario tree, the model
should give an even better solution. However it is important to remember
the simpli�cations done when looking at these results and the fact that co-
incident accidental events caused these results.

To make the incomes comparable, they are adjusted for dissimilar ending
reservoirs. The income given by the production based on the model recom-
mendation is adjusted by subtracting the loss in expected future income due
to a lower ending reservoir. This adjusted income is then comparable to the
actual income in 2006. The model is run forward in time from the end of
2006 for both actual and recommended ending reservoir for power plant 1
and 2. These are the power plants with least and most di�erence between
actual and recommended total production during 2006. For power plant 1
and 2 the adjusted incomes are almost equal to the actual income.

The outcome of this analysis is highly dependent on the price during the
comparison period and the expected future price. The fact that the ad-
justed recommended and actual income is approximately equal for power
plant 1 and 2 makes sense, since the forward price at this point in time is
quite equal the price during the period compared.

7.2.2 Backtesting the model from spring 2005 to spring 2006

Due to abnormal in�ow and price developments in 2006, it is chosen to
study how the one-factor model performs in a more normal year. The model
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is run for a production year, rather than a calendar year, because this is
the most realistic situation for power producers. Week 17 2005 is set as the
starting point of the analysis and the model is rerun each fourth week until
week 16 2006. The spot price development for the test period is displayed
in �gure 7.22. For 2005, the spot price varies between about 22 and up
to 35 EUR/MWh. This is more normally than spot prices approaching 80
EUR/MWh, observed in 2006. The curvature of the spot price in 2005 is also
reasonable, with prices decreasing towards summer, subsequently increasing
during the fall and winter. However, in the beginning of 2006 the spot price
rise abruptly, ending at a peak of 56,8 EUR/MWh in week 12.

Figure 7.22: Average weekly spot price in the period week 17 2005 - week 16
2006.

The optimal model production strategy for the six power plants are com-
pared to the actual production in 2005. This is done in the same manner as
explained in section 7.2.1. The in�ow for the test period are foreseen using
the same models as when analysing forward in time. New price model pa-
rameters are found at each time-step the model is rerun, based on available
spot, future and forward price information at that point of time. The actual
reservoir level in week 17 2005 is used as initial reservoir level for each power
plant. The planning horizon ends at April 29, 2007. The number of fan
scenarios generated is increased to 1000, which reduces to about 500 when
the scenario tree is found. This gives four to eight scenarios the �rst four
weeks for the six plants studied.

Reservoir level spring 2005 - spring 2006
Actual and modeled reservoir levels for the six power plants during the
planning period are shown in �gure 7.23 to �gure 7.28. All reservoirs are
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recharged throughout the spring and summer months. So far, the modeled
reservoirs seems to follow the actual reservoirs movements rather well. The
reservoirs are all pretty high and stable from week 33 to 49. Subsequently,
the reservoirs are discharged.

Figure 7.23: Actual reservoir level and the model recommendation for power
plant 1 when the model is run every fourth week in in the period week 17
2005 - week 16 2006

Figure 7.24: Actual reservoir level and the model recommendation for power
plant 2 when the model is run every fourth week in the period week 17 2005
- 16 2006

As explained in section 7.2.1, outcomes for power plants with large degree
of regulation can be a�ected by the minimum �nal reservoir, which is set
at April 29th 2007. This concerns power plant 1 and 5. The model rec-
ommends to discharge these plants much more than what is actually done.
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Figure 7.25: Actual reservoir level and the model recommendation for power
plant 2 when the model is run every fourth week in the period week 17 2005
- 16 2006

Figure 7.26: Actual reservoir level and the model recommendation for power
plant 4 when the model is run every fourth week in the period week 17 2005
- 16 2006

From about week 41, the reservoir level recommendation is ca 25 % lower
than the reservoir level maintained in reality for power plant 5. The dif-
ference is even higher for power plant 1, where the model recommends a
reservoir level about 40 % lower than the actual reservoir level from week
44 and until the spring �ood. These extensive discharges must be evaluated
in context with price expectations. Figure 7.29 shows price expectations ob-
served during the fall 2005 and spring 2006. The price level is expected to
decline, so reservoir discharging makes sense.

Power plant 2, 3, 4 and 6 have model recommendations more similar to the
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Figure 7.27: Actual reservoir level and the model recommendation for power
plant 5 when the model is run every fourth week in the period week 17 2005
- 16 2006

Figure 7.28: Actual reservoir level and the model recommendation for power
plant 6 when the model is run every fourth week in the period week 17 2005
- 16 2006

actual reservoir level. Even so, the recommended reservoir levels tend to be
lower than the actual reservoir levels for these plants as well. However, in
week 16 2006 both the recommended and the actual reservoir levels end up
quite close to each other for these plants, they are almost emptied. This is
because the water value is close to zero throughout the period spring �ood
is expected to occur for power plants with low degree of regulation.

The reservoir level of power plant 6 is 50 % at the starting point, which
is much higher than the reservoir levels of the other plants with regulation
degree less than one. Power plant 6 has the least seasonal dependent in�ow
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Figure 7.29: Forward prices seen in week 36, 40, 44, 48 and 52 2005. These
are extracted from �gure 4.2.

among the plants studied, so the reservoir could to some extent be recharged
throughout the entire year if it is desirable. The modeled reservoir is totally
empty at the ending point of the test period, whereas the actual reservoir
never is below 10 %.

The modeled reservoir in power plant 3 follows the actual reservoir very
closely, and it is the only plant where the model recommends to store more
water than what is actually done. This plant has the most seasonal de-
pendent in�ow which gives less �exibility. This may contribute to the very
similar production strategies experienced here.

Income in spring 2005 - spring 2006
The total discounted incomes for the period spring 2005 - spring 2006 are
found in the same manner as for 2006 for the six power plants. Both actual
production and production recommended by the model are also found. The
percentage changes in production and income are displayed in �gure 7.8. In
most cases, the production increases. The incomes increase as well, but not
quite as much as the productions. For power plant 3, both production and
income are slightly reduced. For power plant 4, a production increase is
recommended by the model. Even so, the income decreases more than the
production increase.

The model suggests to increase the production in power plant 1 and 5 by
more than 35 %. This is possible because these plants have large reservoirs
and high degrees of regulation. Power plant 2 and 6 are recommended to
produce somewhat more than what is actually done. The modeled and ac-
tual reservoirs ends up at the same level at the ending point for these plants,
so the production increase recommended by the model is probably due to
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Table 7.8: Production and income increase between actual and this model
in the period week 17 2005 - 16 2006

Production and income increase week 17 2005 - 16 2006

Power plant Production increase Income increase

Power plant 1 38,6 % 22,7 %
Power plant 2 10,9 % 6,0 %
Power plant 3 -2,4 % -4,1 %
Power plant 4 5,3 % -5,8 %
Power plant 5 36,3 % 21,1 %
Power plant 6 5,6 % 1,8 %

the constant e�ciency simpli�cation.

The average price for the actual and modeled production is shown in �g-
ure 7.9. When comparing the average price for the actual and modeled
production, it is observed that these values are pretty similar. If the mod-
eled production plan was applied, the average price for the production would
decrease for all six power plants. Due to all simpli�cations done in the model,
and the fact that the model only is run every fourth week, it is worth notic-
ing that the recommended strategies end up so closely to the real production
strategies.

Table 7.9: Average price for the production in the period week 17 2005 - 16
2006, actual and given by this model

Average price in week 17.05 - 16.06

Power plant Actual This model Percentage change

Power plant 1 37,5 33,2 -11,5 %
Power plant 2 34,6 33,0 -4,4 %
Power plant 3 34,4 33,8 -1,8 %
Power plant 4 38,5 34,4 -10,6 %
Power plant 5 39,7 35,3 -11,1 %
Power plant 6 34,6 33,4 -3,6 %

7.2.3 Value of stochastic solution

To compare the stochastic and deterministic model in a fair way, both are
run every fourth week from spring 2005 until spring 2006 for power plant 3
and 4. By summing up the optimal expected income for the �rst four weeks
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the 13 times the model is run, the total expected value of the determinis-
tic model is actually better than the total expected value of the stochastic
model for both power plants. This looks like an error, but comparing the
two cases it can be seen that the expected production given by the 13 runs
is very di�erent. The stochastic model has a higher expected production
in the spring and summer and lower in the winter compared to the deter-
ministic model. The risk of over�ow causes this. The deterministic model
has a certain reservoir in�ow and the power producers can therefore produce
less in time periods with low expected price and more in periods with high
expected price.

The deterministic model does of course not re�ect the true situation. In
reality uncertainty is a fact and allowing for this will increase expected in-
come. Every time the two models are run, the stochastic model has a larger
value for the total time period, but not necessarily for the �rst four weeks.
This method of comparing a stochastic towards a deterministic model does
not work. Running the deterministic model in every node in the event tree of
the stochastic modellation is the best method of comparing the two models.
However, as earlier mentioned, this is time consuming for a event tree with
numerous nodes and it is therefore not done.
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Chapter 8

Conclusion

A long-term planning optimization model is run for six di�erent power plants
both forward and backward in time. This is a deterministic equivalent of a
stochastic model, taking the uncertainty of hydrologic in�ow and electricity
price into account.

The results from seeing forward in time are used to compare the six power
plants regarding the value of stochastic solution and the value of a two-factor
compared to a one-factor price model. Power plants with most volatility in
hydrologic in�ow have highest value of a stochastic solution. This makes
sense, since the advantage of the stochastic model is that it regards the un-
certainty of the stochastic variables.

A two-factor price model represents price uncertainty better than a one-
factor model, by including a stochastic term for long-term changes. Surpris-
ingly, the two power plants with most value of a stochastic solution have
least value of a two-factor model. The expected optimal value of the pro-
duction seeing two years and four months ahead, increases between 6,0 and
9,7 % when applying a two-factor model. The optimal value for power plants
with low seasonal dependent in�ow increase more in value than power plants
with high seasonal dependent in�ow. A more continuous in�ow gives more
�exibility to exploit price information, for example during the winter when
in�ow for power plants with highly seasonal dependent in�ow is close to zero.

Other power plant properties a�ecting the value of a two-factor model are
the degree of regulation and the utilization time. Power plants with high de-
gree of regulation are less a�ected by a two-factor model than power plants
with low degree of regulation. Except for power plant 6, the optimal value
increase more for power plants with low utilization time compared to a higher
utilization time when a two-factor model is used. A short utilization time

70



means that the power plant has high power capacity compared to the reser-
voir volume and great possibility to discharge the stored water over a short
period of time. Information of long-term changes in the spot price is there-
fore more important.

From the back-testing it is observed that the price expectation is of great
importance for the production strategy. How well the model follows the for-
ward price and if the forward prices seen at each decision point re�ects the
true spot prices are important aspects when it comes to how well functioning
the model is.

For the year 2006 this model recommends to discharge more of the stored
water compared to what was actually done. This turned out to be a wise
decision because the price was consistently lower during the �rst four months
of 2007 compared to the price in 2006. The forward price predicted that the
price would stay high, something the one-factor model applied here did not
capture.

A back-test for the period spring 2005 to spring 2006 is also performed.
Reservoir levels recommended by the model is much similar to the actual
levels, except for power plant 2 and 5. These plants have high degree of
regulation and can therefore decrease the reservoir level. The model recom-
mendation would give a production plan worse than the actual production
plan for all power plants this period. This is expected since the model is run
only every fourth week, having few scenarios the �rst weeks and no possibil-
ity to change the production if unexpected happenings occurred.

The results show that maximizing total expected future value of the pro-
duction and taking the uncertainty of price and in�ow into account gives
an applicable production strategy if the stochastic parameters are modeled
well. Applying a price model including long-term changes is valuable in this
context.
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Chapter 9

Further Work

There are many aspects that can be further developed.

• Information is available for seven other power plants. The optimization
model can be tested for those and statistical methods can be applied
when analysing the outcomes.

• Available information can be used to test both this optimization model
over a longer period of time, as well as other hydro power planning
models. Other stochastic models describing price and in�ow can also
be applied.

• The value of a two-factor model can be further analysed. A more stable
Kalman �lter should be developed in order to give a better evaluation
of the estimated parameters.

• Water values can be further examined by comparing the values given
by this model to values given by other long-term planning models.

• The model can be further developed by giving a water value at the end
of the planning horizon instead of a minimum reservoir level and by
introducing an e�ciency that is not constant.
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Appendix 1:

Program sketch and overview

The program consists of four parts. First matlab generates scenarios for

the stochastic variables, using de�ned models. Scenred is employed to make

an event tree based on the scenarios. Matlab �les can then prepare the input

�le for Xpress, consisting of both the scenario tree and power plant speci�c

information. Xpress runs the optimization model based on this information

and gives the optimal production plan.

Figure 1 shows the �rst three steps and the di�erent �les applied in each

step. Colors are used to distinguish �les in di�erent programs. All parame-

ters and technical information used are gathered in one excel �le.

All �les and more information about each �le, are enclosed on a CD.

Table 1: Color representing di�erent computer programs and �les in the

program sketch

Program Colour

Excel Red

Matlab Blue

Data �le Black



Figure 1: Program sketch



Appendix 2:

Price model parameters

Several models describing the stochastic variables are found: One in�ow

model for each power plant, one-factor price models for every fourth week

from spring 2005 until the end of 2006 and one two-factor price model with

information given January 1st 2007. Table 2 shows the parameter values of

one in�ow model and the two price models estimated from the information

available at the end of 2006.

Table 2: Parameter values for models made with available data in week 52

2006

Price model In�ow model

Parameters Two-factor One-factor One-factor

α 4,662 3,446 2,797

γ 0,147 0,141 2,502

τ -0,074 -0,909 -0,555

κ 38,094 9,223 44,442

λ 43,695 -1,125 0

σχ 1,174 1,375 22,808

µ 0,094 0 0

σξ 0,302 0 0

ρχ,ξ -0,614 0 0



Appendix 3:

Optimal values forward in time

The optimal objective values given in table 3 are the average values when

running the model 20 times for each power plant. Three di�erent price mod-

els are applied. From the results it can be seen that a two-factor price model

gives better results for all power plants compared to a one-factor model. A

two-factor model can be simpli�ed into a one-factor model by deleting the

stochastic term ξ. The optimal objective value will then be lower than both

original models for all six power plants.

Table 3: Average optimal values given by di�erent price models

Average optimal values, di�erent price models

Power plant Two-factor One-factor Two-factor as one

Power plant 1 26972885 25190645 20555470

Power plant 2 35210195 32108585 26655790

Power plant 3 60324110 56502785 45653640

Power plant 4 127206550 118026700 95873390

Power plant 5 110556150 103955650 83741270

Power plant 6 312633650 286637250 237996700


