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Abstract

This paper adopts a real options approach to analyze marginal investments in power mar-
kets with heterogeneous technologies and time-varying demand. We present a model for
a monopolistic firm controlling the entire power market, and then extend the model to a
Cournot duopoly. The main purpose of the paper is to examine the investment behavior
of a monopolist, a central planner and two duopolistic firms when two types of power
plants are available; base and peak load power plants. We find that in a Cournot duopoly
one will install more peak load capacity than base load capacity. A central planner and a
monopolist will on the other hand install more base load capacity than peak load capac-
ity. Furthermore, we examine the effect of analyzing power markets without time-varying
demand and find that this will lead to shortage of peak load capacity.
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Chapter 1
Introduction

Expansion of capacity in power systems is on the agenda both in developing countries,
where demand is growing, and in industrialized countries, where concerns about climate
change is a driving force. A non-renewable energy demand is expected to remain despite
the government’s policies supporting sustainable technologies. Renewable energy sources
are non-controllable because they depend heavily on the weather. We thus need a propor-
tion of the total dispatch to be non-renewable. Peak load power plants are well suited to
manage energy shortage when the electricity demand exceeds the renewable generation.

Traditional real options capacity expansion theory assumes a constant demand through-
out the year. However, this is not the case in the power sector. Thus, power is a differen-
tiated product. Assuming the demand to be fixed over the year may lead to errors when
deciding optimal capacity expansions in base and peak load power plants. This can result
in excessive investments in base load plants on behalf of peak load plants compared to the
requirements in actual power markets, which is undesirable. Hence, we adopt a real op-
tions approach for electricity capacity expansion that considers the time-varying demand
by dividing the year into load segments, where the power demand is different in each seg-
ment. The effects of considering the electricity demand time-varying instead of fixed are
discussed in an example with a peak and a base load power plant.

Following the deregulation of European electricity markets in the last decades, the au-
thorities’ focus on maximizing social welfare has been replaced by the companies aim to
maximize their profits. This change of objective requires decision support that takes the
new market structure into account. European electricity markets are considered oligopolies
after their deregulation. Several mergers and acquisitions have resulted in markets with
few suppliers with significant market shares. Investment decisions in an oligopolistic mar-
ket depend on actions of the competitors as well as economic variables like demand and
marginal cost. Hence, we create a framework that includes market power. We start out
by examining a basic monopoly model to discover how market power influences capacity
investments. Then we extend the model to a Cournot duopoly setting to better illustrate
the dynamics of electricity markets. Hobbs (2007), Jing-Yuan and Smeers (1999), Wogrin
et al. (2011) and Gabriel et al. (2012) also view power markets as Cournot equilibriums.
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When using a real options approach, the investment is considered irreversible and the
investment cost is thus a sunk cost. Although the production assets can be sold from one
firm to another, its scrap value is small due to its lack of alternative use. If the electricity
demand falls, the value of the electricity producing assets fall as well. The assumptions
above suit electricity expansion problems well. Investments in power equipment are cap-
ital intensive, and the equipment is difficult to sell once it is installed, particularly when
considering the whole industry at the same time.

Capacity expansions are not now-or-never decisions. The investment can be delayed
until the company has more information about the uncertainties mentioned above. Treat-
ing capacity expansions with a real options approach provides flexibility to the investor
because it takes the value of waiting into account. Flexibility with respect to the size of the
capacity is also considered. Investments are done marginally so that the companies decide
their exact capacity expansion at each time.

Gahungu and Smeers (2012) introduce a real options capacity expansion model for
power generation under perfect competition. Their model includes heterogeneous tech-
nologies with different investment and variable costs. Power is treated as a differentiated
product due to its lack of storability. Thus, the power demand varies between different
load segments. The electricity price follows a geometric Brownian motion and an inverse
demand function. Instantaneous social welfare is found by an optimization problem that
maximizes the social welfare where the annual dispatch is constrained by the installed
capacity. To find the value of all capacity expansions, the expected total social welfare
from power production and the capacity investment cost are discounted. This represents a
stochastic control problem. Then the assumption of myopia is used to convert the stochas-
tic control problem to an optimal stopping problem solved by dynamic programming. To
solve the optimal stopping problem analytically proves difficult. Hence, the Lagrange mul-
tipliers from the capacity constraints, representing additional instantaneous social welfare
from a marginal capacity expansion, is used to compute the marginal value of a capac-
ity expansion though Monte Carlo simulations. Then the discounted marginal values are
regressed with the stochastic demand shock as an explanatory variable. The resulting re-
gression coefficients determine the particular solution of the optimal stopping problem.

By taking Gahungu and Smeers (2012) as a starting point, we develop a real options
capacity expansion problem under monopoly and duopoly. This makes us able to com-
pute social welfare losses in settings with market power relative to a market governed by
a central planner. Combining real options and a social welfare perspective is also done by
Huisman and Kort (2016) and Pawlina and Kort (2006) among others. We study capac-
ity expansions for a portfolio of electricity expansion technologies that may differ in both
operational and investment costs. In duopolies, both the generation assets and the com-
panies are additively non-separable. Dixit and Pindyck (1994), Madlener et al. (2005),
Pindyck (1988), Aguerrevere (2003), Pe (2000) and He and Pindyck (1992) do also model
capacity expansions with real options, but they consider one technology or heterogeneous
technologies.

We model the electricity price as dependent of a geometric Brownian motion. This
is previously proven by Lucia and Schwartz (2002), Schwartz and Smith (2000), Pindyck
(2001) and Fleten et al. (2007) to be an appropriate assumption. Basic real options models
presented by Dixit and Pindyck (1994) assumes an exogenous price process. However,
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this is incorrect for electricity markets. An exogenous price process excludes strategic
behavior and the feedback effect on the price when new capacity is installed. Thus, we
find profits from power production by an optimization problem, like modeled by Madlener
et al. (2005) and. Hobbs (2007). Unlike them, we find the operating profits in a continuous
time.

The capacity expansion problem is formulated as a stochastic control problem, the aim
of which is to optimally expand the capacity of each technology in the presence of demand
uncertainty such as to maximize the expected net present value of the portfolio over an
infinite time horizon. Hence, capacity is the control variable that must be adapted to the
stochastic demand. Stochastic control problems can be converted to optimal stopping
problems if the properties of myopia hold, as described by Karatzas and Shreve (1984),
Baldursson and Karatzas (1996), Back and Paulsen (2009) and Boetius and Kohlmann
(1998) among others. Myopia implies that each investment in incremental capacity is the
last one over the time horizon, and it holds for electricity capacity expansions with one
technology or several technologies with identical investment cost as stated by Pindyck
(1998). As it does not necessarily hold for our capacity expansion problem, myopia is an
assumption made to facilitate its solution.

With myopia, we use canonical real options. Such options consider a series of capacity
expansions and allow for an endogenous electricity price when the capacity is held con-
stant. Furthermore, the value of the capacity expansion and the optimal expansion path are
determined simultaneously. By assuming myopia, also non-additively separable produc-
tion assets and firms are managed. Canonical real options theory is mainly used in markets
within monopoly and perfect competition due to assumptions about homogeneous compa-
nies and symmetric technologies. With the assumption of myopia, however, we apply it to
a diverse portfolio of technologies.

In a numerical example, we illustrate how investment triggers, social welfare losses
and optimal investment paths varies between market structures. Not surprisingly, the wel-
fare losses are largest in a monopoly. The monopolist has no competitors. Thus, the
monopolist has the largest incentive to wait. In a duopoly, on the other hand, the com-
panies investment decisions accelerate due to the competition. Hence, the total installed
capacity is higher in a duopoly than in a monopoly, and the social welfare exceeds that
of the monopoly. We also quantify the effects of considering the electricity demand time-
varying instead of constant during the year. With a constant demand, it is optimal to invest
only in base load capacity. However, when we model time-varying demand by using six
load segments we also invest in peak load capacity. This indicates that capacity expansion
models with a fixed demand over the year provide inadequate decision support for power
companies having the opportunity to invest in peak load capacity.

The paper is structured as follows. Chapter 2 examines our real options approach.
First, we argue why we model the demand shock process as a geometric Brownian mo-
tion. Then the capacity expansion approach of a monopolist is presented as a stochastic
control problem and an optimal stopping problem with the corresponding investment trig-
ger equation. Furthermore, the duopoly extension of the model is presented. Finally, the
concept of social welfare is introduced. In chapter 3 we propose a procedure for solving
the models in chapter 2 numerically. We use the shadow costs of the capacity constraints
to find the marginal value of investing and hence, the investment triggers. Then we present

3



how to calculate the optimal investment path and the expected discounted value of the
social welfare. Chapter 4 presents a numerical example that illustrates our capacity expan-
sion approach and compares decision-making under different market structures. Chapter
5 concludes.
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Chapter 2
Capacity expansion under market
power

Consider an overall framework based on Dixit and Pindyck (1994) that covers real op-
tions theory. We start by arguing why a stochastic shock process and an inverse demand
function determine the electricity price. We then derive a real options model for investing
marginally under monopoly. The instantaneous profit is found by an optimization problem
in section 2.2. To find the value of all capacity expansions, we discount all future cash
flows in section 2.3. According to real options theory presented by Dixit and Pindyck
(1994), we convert the stochastic control problem of the monopolist to an optimal stop-
ping problem in section 2.4. In section 2.5 our approach is extended to a duopoly to better
describe the real world of electricity markets. Section 2.6 describes how our investment
approach can be converted to markets with perfect competition. Here, a central planner
seeks to maximize the social welfare by taking both the consumer and the producer surplus
into account.

2.1 Electricity price and demand shock processes
When a firm decides whether to invest in a capacity expansion, the electricity price is
the most uncertain variable. Hence, it is important to consider the fluctuations in the
electricity price in the investment analysis. Fleten et al. (2007) argue that electricity prices
tend to revert to the long-term generation cost of electricity. The probability of prices
reverting to the long-term generation cost is therefore higher than the probability of prices
moving away from it. This indicates mean reverting electricity prices. Fleten et al. (2007)
concludes that the mean reversion may come as a consequence of reverting fuel prices or
varying generation.

Lucia and Schwartz (2002) have studied electricity prices with one and two-factor
models. The one-factor models indicate that the electricity price follows a mean reverting
process. However, the two factor models explain both short and long-term variations in
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the electricity prices: Short-term electricity prices follow a mean-reverting process, and
the long-term electricity prices follow an arithmetic or geometric Brownian motion. The
two-factor models have the best fit with empirical data on the electricity price. However,
Pindyck (2001) claims that modelling the long-term electricity price as a geometric Brow-
nian motion results in small errors.

Power producing assets have a long time horizon. Short-term changes in the electricity
price have an insignificant influence on the profitability of the capacity investment. Hence,
we consider modeling electricity prices by a geometric Brownian motion. A geometric
Brownian motion consist of a deterministic growth and a random term determined by the
volatility

dPt = µPPtdt+ σPPtdzt. (2.1)

In (2.1) µP is the drift rate, dzt is the incremental Wiener process and σP > 0 is the
standard deviation. Furthermore, we assume the discount rate ρ to be larger than the drift
µ. If this inequality does not hold, the opportunity cost of investing in a unit of capacity
always exceeds the benefit of investing. Hence, the firm will never invest in new capacity
(Dixit and Pindyck, 1994).

Electricity cannot be stored, and is thus a differentiated product. As a result, the elec-
tricity price is time-varying. This is treated by dividing each year into d(L) load segments
with different electricity demand. Power generation depends on the load, which is the en-
ergy demand per unit of time denominated in MW. The load duration curve in Figure 2.1
illustrates the load during the year, where L is a set of load segments and τl is the duration
of load segment l ∈ L so that

∑d(L)
l=1 τl = 8760 h.

Figure 2.1: Load duration curve for 6 load segments, d(L) = 6.

To find the optimal capacity expansions under different market structures, we also use
the inverse demand function D(Ql) to predict the electricity prices. Ql is the dispatch in
each load segment l ∈ L. Hence, we let the electricity price depend on both the inverse
demand function D(Ql) and the exogenous shock process Yt, following the geometric
Brownian motion

dYt = µYtdt+ σYtdzt, (2.2)
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in which µ is the drift rate of the demand and σ is the standard deviation of the demand.
The electricity price is then given by

Pl = YtD(Ql), ∀l ∈ L. (2.3)

2.2 Instantaneous profit

As advocated in the introduction, capacity systems have heterogeneous generating tech-
nologies. Each technology is denoted k and is a part of the set of technologies K. The
generators have a capacity Kk for each technology k ∈ K. qk,l is the produced electricity
by technology k in load segment l. Hence, Kk is the maximal value of qk,l. The lower
limit on the production qk,l of technology k ∈ K is 0.

Operational and maintenance costs of each technology k ∈ K are given in terms of the
installed capacity Kk. Hence, OMCk is the operational and maintenance cost per unit of
installed capacity of technology k and the total capacity related costs are

∑
k OMCkKk.

The unit production cost for each technology k is denoted ck. This results in the variable
costs of

∑
k,l ckqk,l. The cost of investing in one additional capacity unit of technology k

is denoted Ik.We assume that the cost occurs instantaneously after an investment decision
and that the additional capacity is available immediately after the investment. The revenues
in load segment l are given as the product of the price function in equation (2.3) and the
total quantum sold electricity Ql =

∑
k∈K qk,l in each load segment l ∈ L.

As the only player in the market, the monopolist controls electricity production and
price. The monopolist seeks to maximize its instantaneous profit, the producer surplus.
This is the difference between the instantaneous revenues and costs given a constrained
capacity. Pindyck and Rubinfeld (2013) show that the producer surplus is maximized
when the marginal production cost equals the marginal revenues of producing. Problem 1
finds the monopolists instantaneous profit by an optimization problem.

Problem 1 Instantaneous profit of the monopolist

π(Yt,K1, . . . ,Kd(K)) = max
q

d(L)∑
l=1

τl

{
Pl(Yt, Ql)Ql −

d(K)∑
k=1

ckqk,l

}

−
d(K)∑
k=1

OMCkKk (2.4)

s.t.

qk,l ≥ 0, ∀l ∈ L,∀k ∈ K (2.5)
qk,l ≤ Kk, ∀l ∈ L,∀k ∈ K (2.6)

d(K)∑
k=1

qk,l = Ql ∀l ∈ L (2.7)
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Equation (2.4) and (2.5) constrain the electricity produced qk,l to not exceed its upper
limit Kk or fall below its lower limit 0. Equation (2.6) aggregates the the dispatches from
each technology k ∈ K to simplify the objective function (2.3).

Due to a downward sloping inverse demand curve, the objective in Problem 1 is con-
cave. This combined with linear constraints makes Problem 1 convex. Thus, the problem
can easily be solved numerically and has an unique solution. The inverse demand function
D(Ql) proves the profits from each technology k to be additively non-separable. When the
dispatch qk,l increases, the inverse demand function D(Ql) decreases. When holding Yt
fixed, a larger dispatch results in reduced electricity prices. Changes in Yt have an impact
on the optimal dispatch from each technology in each load segment qk,l and the instan-
taneous profit π(Yt,K1, . . . ,Kd(K)). Holding the inverse demand function D(Q)l fixed,
an increase in Y results in a larger instantaneous profit π(Yt,K1, . . . ,Kd(K)). Changes in
Kk also affect the profit flow π(Yt,K1, . . . ,Kd(K)) through setting an upper limit on the
electricity generation.

2.3 Value of capacity expansion
Investments are assumed irreversible, and incremental over an infinite time horizon. Fu-
ture cash flows are discounted with the exogenous annual rate ρ. In year zero, the demand
shock is Y0 and the installed capacity is Kk,0, k ∈ K. For every demand shock in each
time interval Yt, the monopolist expands its capacity to Kk,t, k ∈ K at the per unit invest-
ment cost Ik, k ∈ K that maximizes the profit. Because of the irreversible investments,
Gahungu and Smeers (2012) claims the capacity in each time interval Kk,t, k ∈ K, should
be measurable with respect to the filtration generated by Yt. F (Y0,K1,0, . . . ,Kd(K),0) rep-
resents the value of the expansion path. When the monopolist has no other assets except
its generation capacity, F (Y0,K1,0, . . . ,Kd(K),0) is equivalent to the value of the monop-
olistic firm. Yt is the stochastic shock process and Kk,t is the stochastic capacity level in
technology k at time t so that Kk,t ≤ Kk,t+dt ∀k ∈ K. In Problem 2, the value of the
capacity expansion is found.

Problem 2 Value function of a monopolistic firm

F (Y0,K1,0, . . . ,Kd(K),0) = max
Kk,t

E
[ ∫ ∞

0

π(Yt,K1,t, . . . ,Kd(K),t)e
−ρtdt−

d(K)∑
k=1

∫ ∞
0

Ike
−ρtdKk,t

]
. (2.8)

The monopolist invests in new capacity to maximize its expected value over an infinite
time horizon. The first term on the right-hand side of the equality represents all future
expected discounted profits of the monopolist. The second term on the right-hand side
is the total expected discounted investment costs related to capacity investments. Hence,
Problem 2 integrates over every point in time t to find the value of installed capacities
F (Y0,K1,0, . . . ,Kd(K),0). The problem needs to be transformed to an optimal stopping
problem to be solved analytically.
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2.4 Optimal stopping problem
Problem 2 is considered a stochastic control problem by Dixit and Pindyck (1994). The
complexity of Problem 2 implies that in can not be solved analytical. If the properties of
myopia hold, Problem 2 can be converted to an optimal stopping problem. When myopia
holds, one assumes the investment to be the last capacity expansion over the time horizon.
Then there will not be any further capacity expansions. Hence, we find the optimal timing
for investing marginally while holding the capacity fixed.

There are several properties that must hold for myopia to exist, all presented by Gahungu
and Smeers (2012). First, the economy is convex. This implies non-increasing returns to
scale. Next, investments must be incremental. Market players and the technologies used
must also be homogeneous for myopia to hold, such that the profit is additively separable.

The assumption of homogeneous technologies is the only assumption mentioned above
that does not hold. Different technologies in an electricity system do not operate indepen-
dently. Using one technology may be beneficial to other technologies used. Additionally,
investing in one technology depreciates the value of investing in other technologies in the
power system. This makes the profits and capacities from the different technologies found
by the inverse demand curve non-separable.

Because all the other properties of myopia hold, we use myopia as an approximation to
solve the optimal stopping problem despite the heterogeneous technologies. One can also
argue that myopia is an acceptable approximation because of the monopolists behavior.
When the monopolist considers the next investment attractive, this is assumed to be the
last one. When time passes and the electricity demand is increased, a new investment
might be undertaken as well, despite the earlier belief of the previous investment to be the
last one.

Assuming myopia when it is not guaranteed may result in investment triggers which
deviate from their optimal values. However, results from the numerical example in section
4, indicate that our capacity expansion approach returns reasonable results. To compensate
for non-additively separable profits from different technologies, we propose a regression
π̄ in (2.9) to express the instantaneous profit from Problem 1 analytically as a function of
Y and Kk. Then the real options problem can be solved analytically.

π̄(Y,K1, . . . ,Kd(K)) =

d(K)∑
k=1

d(γ),d(α)∑
i,j=1

bk,ijY
γiK

αj

k +

d(K)∑
k,u=1,
u 6=k

d(γ),d(λ),d(λ)∑
i,j,l=1

cuk,ijlY
γiKλj

u Kλl

k −
d(K)∑
k=1

OMCkKk. (2.9)

The first term of the regression shows the profit flow from each technology k. bk,ij
are the regression coefficients that describe how changes in the capacity of technology
k affect the instantaneous profit flow for a given shock process Y . The second term of
the regression corrects for synergies between technologies. For a given Y , the regression
coefficients cuk,ijl describe how the different technologies affect each other’s profit flows
when they are installed.
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γ, α and λ are positive base vectors of dimensions d(γ), d(α) and d(λ) used to describe
changes in π̄(Y,K1, . . . ,Kd(K)) with respect to Y , Kk and Ku. To find a unique root
of the trigger equation for each technology (2.21), we constrain the base vectors in the
regression like Gahungu and Smeers (2012). We set γi by 0 < γi < β1 ∀i, where β1

represents the positive solution of the fundamental quadratic equation presented in (2.16).
To ensure one unique investment trigger, concavity and non-increasing return to scale, we
establish 0 < αj < 1, ∀j, 0 < λj < 1 ∀j and λi+λj ≤ 1 when i 6= j. Since new installed
capacity has a positive effect on the profits, bk,ij ≥ 0. Using different technologies causes
positive synergies, and thus cuk,ijl ≥ 0.

We convert the stochastic control problem in Problem 2 to an optimal stopping prob-
lem. Myopia implies that the option to invest marginally can be written

∂F (Y,K1, . . . ,Kd(K))

∂Kk
= Vk(Y, Ik,K1, . . . ,Kd(K)) =

max
τ

E
[ ∫ ∞

τ

∂π̄((Y,K1, . . . ,Kd(K)))

∂Kk
e−ρtdt− Ike−ρτ

]
∀k ∈ K, (2.10)

where Vk(Y, Ik,K1, . . . ,Kd(K)) is the option to invest marginally in technology k and τ
is the investment timing. Equation (2.10) implies that the option to invest marginally in
additional capacity in technology k equals the extra profit gained by a marginal capacity
expansion in k less marginal investment cost of expanding when the expansion is timed
optimally.

First, we derive the Bellman equation of the optimal stopping problem using dynamic
programing. This states that the return from Vk over a time step dt equals the profit of
a marginally increased capacity over dt, ∂π̄

∂Kk
, and the expected change in Vk over dt,

E[dVk]. Thus, the Bellman equation of the optimal capacity expansion problem is

ρVkdt =
∂π̄

∂Kk
dt+ E[dVk], ∀k ∈ K. (2.11)

We expand the right-hand side of equation (2.11) by Ito’s lemma in Appendix A. This
gives partial differential equation of the optimal stopping problem stated in Problem 3.
We introduce the convenience yield δ = ρ− µ to simplify the problem. For sortable com-
modities, the convenience yield represents the benefit of holding the commodity instead
of holding a futures contract on it, according to Bøckman et al. (2008). The convenience
yield of electricity is interpreted as the relative benefit of delivering the commodity earlier
rather than later.

Problem 3 Optimal stopping problem for the monopolist

1

2
σ2Y 2 ∂

3F (Y,K1, . . . ,Kd(K))

∂Kk∂Y 2
+ (ρ− δ)Y

∂2F (Y,K1, . . . ,Kd(K))

∂Kk∂Y
−

ρ
∂F (Y,K1, . . . ,Kd(K))

∂Kk
+
∂π̄(Y,K1, . . . ,Kd(K))

∂Kk
= 0, ∀k ∈ K, (2.12)

with boundary conditions

∂F (0,K1, . . . ,Kd(K))

∂Kk
= 0, ∀k ∈ K, (2.13)
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∂F (Y ∗k ,K1, . . . ,Kd(K))

∂Kk
= Ik, ∀k ∈ K (2.14)

∂2F (Y ∗k ,K1, . . . ,Kd(K))

∂Kk∂Y
= 0, ∀k ∈ K. (2.15)

Equation 2.13 ensures that the option to invest in new capacity is zero when the value of
the capacity expansion is zero. 2.14 and 2.15 are respectively the value matching and the
smooth pasting conditions for an incremental investment in new capacity.

The investment problem has the homogeneous solutionFh(Y,K1, . . . ,Kd(K)) = A(K1,

. . . ,Kd(K))Y
β1 , with β1 is given by the positive root of the quadratic equation

β1 = (
1

2
− µ

σ2
) +

√
(
1

2
− µ

σ2
)2 +

2ρ

σ2
. (2.16)

The particular solution of the Bellman equation 2.12 is the underlying value of the ca-
pacity expansion; the monopolists profit flow from investing. This is derived in Appendix
B by finding the particular integral of each term in the profit interpolation in equation (2.9).

Fp(Y,K1, . . . ,Kd(K)) =

d(K)∑
k=1

d(γ),d(α)∑
i,j=1

b̄k,ij(γ)Y γiK
αj

k +

d(K)∑
k,u=1,
u 6=k

d(γ),d(λ),d(λ)∑
i,j,l=1

c̄uk,ijl(γ)Y γiKλj
u Kλl

k −
d(K)∑
k=1

OMCkKk

ρ
(2.17)

where b̄k,ij and c̄uk,ijl are given by

b̄k,ij(γ) =
bk,ij

ρ− µγi − 1
2σ

2 + γi(γi − 1)
, (2.18)

c̄uk,ijl(γ) =
cuk,ijl

ρ− µγi − 1
2σ

2 + γi(γi − 1)
. (2.19)

The solution of the Bellman equation is the sum of the homogeneous and the particular
solution F (Y,K1, . . . ,Kd(K)) = Fh(Y,K1, . . . ,Kd(K)) + Fp(Y,K1, . . . ,Kd(K)). This
gives the monopolist the following value of investments in technology k.

Fk(Y,K1, . . . ,Kd(K)) = Ak1(K1, . . . ,Kd(K))Y
β1 +

d(γ),d(α)∑
i,j

b̄k,ij(γi)Y
γiKαj

k +

d(K)∑
u=1,u6=k

d(γ),d(λ),d(λ)∑
i,j,l=1

c̄kl,ij(γi)Y
γiKλj

u Kλl−1
k − OMCkKk

ρ
. (2.20)
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By using the value matching and smooth pasting conditions as described in Appendix C,
we obtain the equation that when solved returns the investment trigger Y ∗k .

d(γ)∑
i=1

(Y ∗k )γi
(
β1 − γi
β1

){ d(α)∑
j=1

αj b̄k,ij(γi)K
αj−1
k +

d(K)∑
u=1,u 6=k

d(λ),d(λ)∑
j,l=1

c̄kl,ij(γi)K
λj
u Kλl−1

k

}
= Ik +

OMCk
ρ

. (2.21)

Y ∗k is the optimal investment trigger of the firm. The investment procedure in each
time step is as following. If Yt > Y ∗k , the firm should invest marginally in new capacity
Kk with production technology k. Then we repeat the procedure in section 2.2 and 2.4
to find the new investment trigger Y ∗new. If Yt > Y ∗k,new still holds, we invest marginally
again. This procedure should be repeated until Y ∗k reaches Yt. Then we move a on to the
next time step and repeat the investment procedure. Finally, we calculate the value of all
investments, as stated in Problem 2.

2.5 Duopoly expansion of the model

After the restructuring of the electricity market in Europe and the US in the 1990s, the mar-
ket now consists of several players, each seeking to maximize their own profit under while
considering the other producers’ dispatch. Thus, Jing-Yuan and Smeers (1999) claims that
the electricity markets can be modeled as oligopolies. For illustrative and computational
purposes, our model is reduced to a duopoly. However, if desired, one can extend our
model to a general oligopoly.

When capacity expansion in a duopoly is considered, one needs to take strategic be-
havior into account. Consequently, the optimization approach of the monopolist is no
longer valid. Jing-Yuan and Smeers (1999) argues that one instead should model a market
equilibrium. Huisman and Kort (2016) studies capacity expansion problems in a duopoly
without any prior installed capacity using a leader-follower-model. However, in our mod-
eling of the electricity market both players possess an initial capacity. Thus, we do not use
the leader-follower-approach.

Jing-Yuan and Smeers (1999) and Wogrin et al. (2011) have previously used Cournot
assumptions when modeling electricity capacity expansion. The electricity market consists
of firms using heterogeneous technologies to produce a homogeneous product. Although
we treat electricity as a differentiated product, it is homogeneous within each load segment.
At each point in time, both firms make their production and marginal investment decision
simultaneously and independently. This fits well with the Cournot assumptions and we,
therefore, choose the Cournot model as a starting point for our approach.

In the rest of this chapter, we assume two players, firm 1 and firm 2. Due to the Cournot
model, all equations are symmetric for both firms. Hence, all models and equations are
stated only for firm 1. Before applying them on firm 2, the indexes must be switched. The
instantaneous profit of a duopolist is stated in Problem 4.
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Problem 4 Instantaneous profit of the duopolistic firm

π1(Y1t,K1,K2) = max
q1,l

d(L)∑
l=1

τl[Pl(Yt, q1,l + q2,l)q1,l − c1q1,l]−OMC1K1 (2.22)

s.t.

q1,l ≥ 0, ∀l ∈ L (2.23)
q1,l ≤ K1, ∀l ∈ L (2.24)

Appendix E derives the Counot equilibrium.
By using the same assumptions as in the monopoly approach, we obtain the value

function of the duopolistic firm, which aims to maximize its own profits over an infinite
time horizon. The duopolist’s stochastic control problem is stated in Problem 5.

Problem 5 Value function of the duopolistic firm

F1(Y1,K1,K2) = max
K1,t

E

[ ∫ ∞
0

π1(Yt,K1,t,K2,t)e
−ρtdt−

∫ ∞
0

I1e
−ρtdK1,t

]
. (2.25)

As in a monopoly, firms invest in new capacity to maximize the expected difference be-
tween the discounted profits and investment costs over an infinite time horizon. However,
the future profits now also depend on the other firm’s installed capacity. As well as for
the monopolist, the optimal control problem must be transformed to an optimal stopping
problem.

In a duopoly, myopia is less realistic than in a monopoly due to heterogeneous players.
However, there are two arguments for using myopia as an approximation. First, the players
use myopia as a proxy for behavior under uncertainty because it is easy to solve. Second,
Gahungu and Smeers (2012) argues that myopia is close to being optimal in symmetric
oligopolies. Therefore, we also assume myopia as a simplification in th duopoly.

When assuming myopia, the Bellman equations of the oligopolistic firms are linked
through their capacities K1 and K2. The partial differential equation for firm 1 is stated in
Problem 6.

Problem 6 Optimal stopping problem for firm 1 in a duopoly

1

2
σ2Y 2 ∂

3F1(Y,K1,K2)

∂K1∂Y 2
+ (ρ− δ)Y1

∂2F1(Y,K1,K2)

∂K1∂Y1
−

ρ
∂F1(Y,K1,K2)

∂K1
+
∂π̄1(Y,K1,K2)

∂K1
= 0, (2.26)

with boundary conditions

∂F1(0,K1,K2)

∂K1
= 0, (2.27)
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∂F1(Y ∗1 ,K1,K2)

∂K1
= I1, (2.28)

∂2F1(Y ∗1 ,K1,K2)

∂K1∂Y1
= 0. (2.29)

Firm 2 has a corresponding optimal stopping problem. The homogeneous solution of the
partial differential equation in Problem 6 is Fh1(Y,K1,K2) = A1(K1,K2)Y β1 .

The instantaneous profit regressions in a duopoly are equal to the monopoly regres-
sion. In addition to taking the value added from the technologies synergies into account,
the impact of the capacity of the other player is considered. Both of these measures are
captured in the regression coefficients c12,ijl. The coefficients are positive if the technol-
ogy synergies outweigh the lower price caused by the other players installed capacity, and
negative otherwise.

π̄1(Y,K1,K2) =

d(γ),d(α)∑
i,j=1

b1,ijY
γiK

αj

1 +

d(γ),d(λ),d(λ)∑
i,j,l=1

c12,ijl(γi)Y
γiK

λj

1 Kλl
2 −OMC1K1 (2.30)

By using the procedure described in Appendix A, B and C we derive the solution of
Problem 6.

F1(Y,K1,K2) = A1Y
β1 +

d(γ),d(α)∑
i,j=1

b̄1,ijY
γiK

αj

1 +

d(K)∑
u=1,u6=k

d(γ),d(λ),d(λ)∑
i,j,l=1

c̄12,ijl(γi)Y
γiK

λj

1 Kλl
2 −

OMC1K1

ρ
. (2.31)

The corresponding myopic investment trigger is given by

d(γ)∑
i=1

Y ∗1
γi(
β1 − γi
β1

)

{
d(α)∑
j=1

αj b̄1,ij(γi)K
αj−1
1 +

d(K)∑
u=1,u6=k

d(λ),d(λ)∑
j,k=1

c̄12,ijl(γi)K
λj

2 Kλl−1
1

}
= I1 +

OMC1

ρ
(2.32)

.
When equation 2.32 is solved with respect to Y ∗1 , we find the optimal investment trig-

ger for firm 1. It is optimal to invest when Yt > Y ∗1 . Then the firm should invest until Y
reaches Y ∗1 . The identical procedure is completed for firm 2 simultaneously. Firm 2 finds
its trigger Y ∗2 and invests until Y ∗2 reaches Yt at each point in time.

c̄12,ijl(γi) is no longer constrained to be non-negative. Thus, we are not guaranteed
one unique solution of equation 2.32. This is taken care of as explained in Appendix D.
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2.6 Central planner analogy
It is beneficial to compare capacity investment characteristics, like investment triggers and
social welfare, under different market structures. This way, we gain information about the
changes that have occurred after the deregulation of European electricity markets. This
also provides authorities information about how non-renewable electricity markets can be
regulated in order to obtain a sufficient social welfare.

As stated in Problem 1 and Problem 4, firms in possession of market power maximize
their profits. However, in markets with perfect competition, the producers do not set the
price. When each firm seeks to maximize their profits under perfect competition, the result
equals the outcome of a central planner maximizing the social welfare. To find welfare
losses in monopolies and duopolies, we compare the social welfare under monopoly and
duopoly with the social welfare under perfect competition.

Social welfare is the sum of the producer and the consumer surplus: ψl(Yt,K) =
πl(Yt,K) + csl(Yt, Ql). The producer surplus equals the producers profit, and the con-
sumer surplus cs is given by

cs(Yt, Ql) =

d(L)∑
l=1

τl

{∫ Ql

0

P (Yt, xl)dxl − P (Yt, Ql)Ql

}
. (2.33)

The social welfare is then found by the equation (2.34).

ψ(Yt,K1, . . . ,Kd(K)) = max
q

∑
l∈L

τl

{∫ Ql

0

Pl(Yt, xl)dxl −
∑
k∈K

ckqk

}
−
∑
k∈K

OMCkKk. (2.34)

We can derive the discounted social welfare adjusted for investment costs for a central
planner under perfect competition as discussed by Gahungu and Smeers (2012). Then the
objective of maximizing profits is changed to maximizing the social welfare. Pindyck and
Rubinfeld (2013) shows that the market equilibrium is when the marginal cost equals the
demand in each load segment.

We use the approach developed in section 2.4 to find the optimal capacity expansion
under perfect competition. When substituting the profit π(Yt,K1, . . . ,Kd(K)) with the so-
cial welfare ψ(Yt,K1, . . . ,Kd(K)), all steps in the calculations are also valid under perfect
competition. In section 4 we compare investment characteristics under monopoly, duopoly
and perfect competition.
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Chapter 3
Numerical procedure

Solving stochastic control problems like (2.8) and (2.25) analytically proves difficult, as
pointed out by Pindyck (1988). Consequently, we propose a numerical procedure for solv-
ing the models described in the previous section. This implies going from continuous to
discrete time. In section 3.1, we propose a procedure for solving the optimal stopping
problem and finding the initial investment triggers. In section 3.2, we propose a procedure
for solving the corresponding stochastic control problem. This gives us the optimal invest-
ment path and the discounted social welfare, producer surplus and consumer surplus. In
chapter 4 we solve a numerical example using the procedure described in this section.

3.1 Investment trigger
When assuming a given initial capacity and a set of load segments, the procedure described
below allows us to find the optimal investment triggers for each technology. The procedure
assumes that there are only two available technologies.

1. Assume that the initial capacities are K1,0 and K2,0, and the initial shock level is
Y0. Furthermore, assume a set for load segments L. Define a time grid T grid =
(0, t1, t2, . . . , T ) and a sett of scenarios N = (1, 2, . . . , N). Let N and T be suf-
ficiently large. For each scenario in N, let Yt sample from a geometric Brownian
motion starting at Y0. This means that one creates N samples of the stochastic pro-
cess Yt over T grid. These paths can be described as (Y0,n, Yt1,n, . . . , YT,n), n =
1, . . . , N .

2. For each point on the T grid in every simulation, solve

(a) Problem 1 for a monopolist.

(b) Problem 1 using equation (2.34) as objective function for a social planner.

(c) Problem 4 for a duopoly.
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When solving the problem, compute the shadow costs of the capacity constraint for
each technology in each load segment, λk,l(Yt,n,K1,0,K2,0). The shadow cost rep-
resents the the marginal increase in profit due to a marginal investment in technology
k in load segment l.

3. For each scenario in N, the marginal value Mk,n(Y0,K1,0,K2,0) of additional pro-
duction capacity in technology k. The marginal value represents the discounted
marginal increase in profit due to a marginal capacity investment.

Mk,n(Y0,K1,0,K2,0) =

T∑
t=0

d(L)∑
l=1

λk,l(Yt,n,K1,0,K2,0)e−ρt

− OMCk
ρ

, k = 1, 2. (3.1)

By averaging the N scenarios, one determines the expected marginal value of ad-
ditional capacity when starting at Y0. This marginal value represents the partial
derivative of the particular solution of equation 2.12 with respect to Kk for technol-
ogy k.

∂Fk,p(Y0,K1,0,K2,0)

∂Kk
≈ E [Mk,n(Y0,K1,0,K2,0)] =

Ŵk(Y0,K1,0,K2,0)− OMCk
ρ

, k = 1, 2 (3.2)

where

Ŵk(Y0,K0,1,K0,2) = E
[ T∑
t=0

d(L)∑
l=1

λk,l(Yt,n,K1,0,K2,0)e−ρt
]

=

1

N

[ N∑
n=1

T∑
t=0

d(L)∑
l=1

λk,l(Yt,n,K1,0,K2,0)e−ρt
]
, k = 1, 2. (3.3)

4. The preceding procedure is repeated for every point of a grid of initial values of Y0

so that Y grid0 = (Y 1
0 , Y

2
0 , . . . , Y

G
0 ). Consequently, we find Ŵk(Y g0 ,K1,0,K2,0) for

g = 1, . . . , G, where G is a sufficiently large number.

5. For technology 1 and 2, one performs the constrained regressions R̄1 and R̄2 as
estimates of Ŵ1 and Ŵ2 using a power function of Y0 as the explanatory variable,
where γi < β1. When holding the installed capacity constant, Appendix D proves
the regression in equation (3.4) to be equivalent to the regression in equation (2.9)
and equation (2.30).

R̄k(Y ) =

d(γ)∑
i=1

ak,iY
γi , k = 1, 2, (3.4)

where

ak,i ≥ 0, k = 1, 2, i = 1, . . . , d(γ). (3.5)
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6. When assuming myopia and using the regression coefficients from (3.4), one solves
the optimal stopping problem initially described by equation (2.21). The investment
triggers of the two technologies Y ∗1 and Y ∗2 are given as the unique solution of
equation (3.6) with respect to Y ∗k .

d(γ)∑
i=1

ak,iY
∗
k
γi(
β1 − γi
β1

) = Ik +
OMCk
ρ

, k = 1, 2. (3.6)

3.2 Optimal investment path and social welfare
After solving the optimal stopping problem, we solve the stochastic control problem. This
procedure finds the optimal investment path, the discounted social welfare, producer sur-
plus and consumer surplus, the value of the optimal stochastic control problem and the
discounted social welfare adjusted for investment costs.

1. Make a marginal investment based on the following investment rules:

(a) Monopolist and central planner: Control both technologies and aim to maxi-
mize profit/social welfare.

i. If Y ∗1 < Yt and Y ∗2 > Yt, the monopolist/central planner makes an
marginal investment ∆κ in technology 1.

ii. If Y ∗2 < Yt and Y ∗1 > Yt, the monopolist/central planner makes an
marginal investment ∆κ in technology 2.

iii. If Y ∗1 < Yt and Y ∗2 < Yt, the monopolist/central planner makes an
marginal investment ∆κ in the technology with the investment trigger
with the lowest value.

iv. If Y ∗1 > Yt and Y ∗2 > Yt, the monopolist/central planner do not make any
investment at the given time.

(b) Duopolistic firm: Each firm controls one technology and aims to maximize its
profit. If Y ∗k < Yt, the player controlling technology k makes an marginal
investment ∆κ in technology k. This is done independently of the other firm’s
simultaneous investment decision.

2. After investing marginally, the firm has not necessary found the optimal capacity
expansion of the time interval. Consequently, it repeats the procedure in section 3.1
until it is optimal not to invest in any technology.

3. After finding the optimally installed capacity, compute the instantaneous social wel-
fare ψ, the instantaneous consumer surplus cs, the instantaneous profit generated by
each technology π1 and π2 and the instantaneous producer surplus π corresponding
to the optimal solution to the optimization problem

4. Create a second time grid Sgrid = (ti, ti+1, . . . , T + ti) = (s0, s1, . . . , sT ) so that
Sgrid is dependent on the position on the T grid. For ti = 0, 1, . . . , T repeat the
procedure described in section 3.1 using Sgrid as T grid. Invest marginally with the
investment rules in step 1 and compute the surpluses as described step 3.
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5. Create a second set of scenarios Ω = (1, 2, . . . , d(Ω)) in order to compute the ex-
pected discounted surpluses. Let d(Ω) be sufficiently large. Repeat the entire prob-
lem for every scenario Ω.

6. Compute the expected discounted social welfare Ψ, the expected discounted pro-
ducer surplus Π, the expected discounted consumer surplus, Cs and the expected
discounted social welfare adjusted for investment costs Fψ . Fψ corresponds to the
stochastic control problem of the central planner.

Ψ = E
[ T∑
t=0

ψt,ωe
−ρt
]

=
1

d(Ω)

[ d(Ω)∑
ω=1

T∑
t=0

ψt,ωe
−ρt
]

(3.7)

Π = E
[ T∑
t=0

πt,ωe
−ρt
]

=
1

d(Ω)

[ d(Ω)∑
ω=1

T∑
t=0

πt,ωe
−ρt
]

(3.8)

Cs = E
[ T∑
t=0

cst,ωe
−ρt
]

=
1

d(Ω)

[ d(Ω)∑
ω=1

T∑
t=0

cst,ωe
−ρt
]

(3.9)

Fψ = E
[ T∑
t=0

(
ψt,ωe

−ρt−
d(K)∑
k

∆Kk,t,ωIke
−ρt
)]

=

1

d(Ω)

[ T∑
t=0

(
ψt,ωe

−ρt−
d(K)∑
k

∆Kk,t,ωIke
−ρt
)]
. (3.10)

∆Kk,t,ω is the total investment in technology k at time t in scenario ω.

(a) For a monopolist, compute the value of the monopolistic firm corresponding
to the stochastic control problem of the monopolist in Problem 2.

Fπ = E
[ T∑
t=0

(
πt,ωe

−ρt−
d(K)∑
k

∆Kk,t,ωIke
−ρt
)]

=

1

d(Ω)

[ d(Ω)∑
ω=1

T∑
t=0

(
πt,ωe

−ρt−
d(K)∑
k

∆Kk,t,ωIke
−ρt
)]
. (3.11)

(b) For the duopolistic firms, compute the value of the firms corresponding to the
stochastic control problem in Problem 5.

Fπk
= E

[ T∑
t=0

(πk,t,ω −∆Kk,t,ωIk)e−ρt
]

=

1

d(Ω)

[ d(Ω)∑
ω=1

T∑
t=0

(πk,t,ω −∆Kk,t,ωIk)e−ρt
]
, k = 1, 2. (3.12)
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Chapter 4
Results

In order to illustrate how capacity optimally is installed under different market structures,
we find it beneficial to provide a numerical example. The example includes a market with
two types of power plants, base and peak load power plants. The numbers in the example
are not taken from a real power market, and are chosen to illustrate our capacity expansion
model.

In section 4.1, we present a base case in which we solve the optimal stopping problem
and the corresponding stochastic control problem under different market structures. We
find the initial investment triggers, the optimal capacity expansion, and the corresponding
welfare effects. For the monopoly we also perform a sensitivity analysis in which we ex-
amine how the initial investment triggers and the optimal capacity expansion are sensitive
to changes in σ and µ. In section 4.2, we illustrate how optimal capacity expansion is af-
fected by fluctuations in the electricity demand. This is done by comparing the monopoly
in the base case with a monopoly with one load segment, such that d(L) = 1.

4.1 Capacity expansion under different market structures

There are two different types of power plants available to an investor, a base and a peak
load power plant. The demand is spilt into six load segments with different electricity
demand, such that d(L) = 6. The inverse demand function described in equation (2.3) is
specified to

Pl(Yt, Ql) = Yt(Al − blQl), l = 1, 2, . . . , 6. (4.1)

The parameters are defined in the tables below. Table 4.1 describes the different types
of power plants, Table 4.2 describes the different load segments and Table 4.3 describes
the demand shock process, the discount rate the simulations and the time horizon.
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Technology index, k Base Peak

Marginal cost, c [e/MWh] 5 65
O. & M. cost, OMC [e/MWy] 100 000 20 000
Investment cost, I [e/MW] 3 000 000 80 000
Initial capacities Kt=0 [MW] 15 000 5 000

Table 4.1: Costs and initial capacities of the base and peak load power plants.

Load Segment l 1 2 3 4 5 6

Duration, τ [h] 10 40 310 4400 3000 1000
Maximum demand, Al 900 180 165 120 90 60
Slope, bl 0.0070 0.0014 0.0014 0.0014 0.0015 0.0020

Table 4.2: Duration and inverse demand function of the load segments.

Y0 µ σ ρ β1 N d(Ω) T ∆t ∆κ

1 0.02 0.03 0.1 4.62 50 50 50 1y 500

Table 4.3: Modeling parameters.

The problem is solved for a monopolist, a central planner and two firms in a duopoly.
In the duopoly, we assume that one firm has access to base load capacity and that the other
has access to peak load capacity. We solve the problems using the Y grid

Y grid = (Yt − 0.60, Yt − 0.55, . . . , Yt + 0.60). (4.2)

The regression described in section 3.1, step 4 is conducted using γ = (0.25, 0.50, . . . , 4.50).
γd(γ) = 4.5 is chosen so that γi < β1, i = 1, . . . , d(γ). This gives us the optimal initial
investment triggers in table 4.4.

Perfect competition Monopoly Duopoly
Y ∗Base 0.6276 0.8439 0.8853
Y ∗Peak 0.4865 0.9722 0.5688

Table 4.4: The initial investment triggers of base and peak load power plants in perfect competition,
monopoly and duopoly.

We observe that the initial demand shock Y0 exceeds the initial investment triggers
Y ∗Base and Y ∗Peak, and we invest marginally ∆κ according to the investment rules pre-
sented in section 3.2, step 1. We repeat the procedure and continue to make marginal
investments until it is no longer optimal to invest. We then move one time step ∆t ahead
and repeat the entire procedure until we reach time T for all scenarios d(Ω).

The initial investment triggers depend on the already installed capacity. They decrease
as the initial installed capacity increases. Since this is an illustrative example, it does
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not make sense to study the magnitudes of the investment triggers. However, the relation-
ship between the triggers provides information about investments dynamics under different
market structures.

In table 4.4, we observe that the central planner has the lowest investment triggers,
both for additional base and peak load capacity. Consequently, the central planner has the
highest incentive to invest in both base and peak load capacity. This is intuitive, as the
central planner aims to maximize the social welfare. With increased installed capacity, the
electricity prices drop. Although decreased electricity prices reduce the producer surplus,
they also increase the consumer surplus. The monopolist has significantly higher invest-
ment triggers for both peak and base load capacity. This is because the central planner
aims to avoid very high electricity prices, while this is desirable for a monopolist. Avoid-
ing high electricity prices is particularly important for the central planner in load segment
1 where the electricity demand is at its maximum.

In the duopoly, the market power of the firms also leads to higher investment triggers
than under perfect competition. However, the investment trigger of peak load capacity is
significantly lower than the investment trigger of peak load capacity in a monopoly. We
explain this using the marginal values of additional capacity. The monopolist maximizes
the producer surplus by increasing production until its marginal cost equals its marginal
revenue. The base load plant has lower marginal costs than the peak load plant and thus,
the monopolist employ all base load capacity before utilizing the peak load capacity. In
a duopoly on the other hand, each firm maximizes its own profit at the expense of its
rival. Each firm will increase its dispatch for as long as a marginal increase in in the
dispatch leads to a marginal increase in the firms own profit. The peak load firm is only in
possession of peak load capacity. Consequently, it will utilize all of its peak load capacity
in load segments where this is not optimal from a monopolist’s point of view. Hence, the
peak load plant has a higher utilization rate in the duopoly than in the monopoly.

Utilizing all installed capacity implies having a positive marginal value of additional
capacity. This contributes to raising the peak load firm’s marginal value of additional peak
load capacity compared to that of the monopolist. Lower power prices in the duopoly com-
pared to a monopoly implies lower marginal value of additional capacity. In our example,
we observe that the effect of a higher utilization rate for peak load capacity outweighs
the effect of lower power prices. Thus, the peak load firms marginal value of additional
capacity exceeds the marginal value of additional peak load capacity for the monopolist.
The investment trigger represents the trade-off between the marginal value of additional
capacity, on the one hand, and the sum of the per unit investment cost and the value of
postponing the investment, on the other hand. As a result, the peak load firms investment
trigger is smaller than the monopolists peak load investment trigger.

The same type of argument is valid for the base load triggers. For the initial capacity in
our example, the base load utilization rate is equal in the monopoly and the duopoly. The
electricity prices are lower in the duopoly than in the monopoly. Hence the base load firm’s
marginal value of additional capacity is smaller than the marginal value of additional base
load capacity for the monopolist. This leads to higher investment triggers for the base load
firm than for a monopolist considering an investment in peak load capacity.

In a duopoly, the initial investment trigger of the peak load capacity exceeds the initial
trigger of the base load capacity. This implies that a marginal investment in additional
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peak load capacity rises the value of the peak load firm more than a marginal investment
in additional base load capacity increases the value of the base load firm.

Table 4.5 presents the discounted total surplus, the discounted producer surplus and the
discounted consumer surplus. We also examine the value of the firms and how total dis-
counted social welfare adjusted for investment costs is reduced in other market structures
than perfect competition.

Perfect
competition

Monopoly Duopoly

Discounted social welfare [Me] 282 450 186 330 193 410
Discounted producer surplus [Me] 121 940 144 990 128 130
Discounted consumer surplus [Me] 160 500 41 339 65 587
Value of the firm, F [Me] - 129 090 Fbase = 99 860

Fpeak = 21 958
Discounted social welfare adjusted
for investment costs [Me]

209 220 170 430 184 930

Percentage loss inn discounted social
welfare adjusted for investment costs

- 18.64 % 11.61 %

Table 4.5: Surpluses and welfare losses in perfect competition, monopoly and duopoly.

As expected, the discounted social welfare and consumer surplus of the central planner
exceeds the monopolist’s and the duopolists’. This is due to central planner’s excessive
capacity investments compared to the firms’ and is a result of his aim to maximize the
social welfare. Firms in monopolies and duopolies only consider the producer surplus
when deciding to invest and have consequently significantly larger producer surpluses than
the central planner. The monopolist controls the entire market, and do thus decide the total
dispatch. In the oligopoly, on the other hand, each firm maximizes their own profits when
also considering the other firm’s dispatch. This leads to a larger dispatch and thus a lower
electricity price and producer surplus than in the monopoly.

The value of the firms is found by the stochastic control problems of monopolistic and
duopolistic firms in Problem 2 and Problem 5. We observe that the value of the monopo-
listic firm exceeds the total value of the oligopolistic firms combined. This is a result of
differences in both the optimal capacity investments and the optimal dispatch for the mo-
nopolist and the duopolistic firms. The monopolist has a flexibility in form of being able
to invest in both base and peak load capacity as well as to choose the amount of electricity
generated by each technology. The duopolistic firms, on the other hand, have to invest in
and generate electricity by the one technology that is available to them. Additionally, both
of the duopolistic firms aim to maximize their own profit. This differs from the objective
of a monopolist, who maximized its expected discounted producer surplus and thus gains
a higher firm value.

As illustrated in Figure 4.3, the duopolistic firm possessing peak load capacity invest
in more additional capacity than the firm possessing base load capacity. The value of the
firm in the position of base load capacity exceeds the value of the firm in the position of
peak load capacity. This is a result of the lower operational costs provided by the base
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load capacity which leads to a contribution margin that outweighs the lower investment
cost provided by the peak load capacity.

When correcting the discounted social surplus for investment costs, the difference be-
tween the discounted social welfare in perfect competition and the other market structures
is reduced. This indicates high investment costs to be a major investment barrier of the
firms operating under market power. The last line in table 4.5 presents the percentage
losses in total discounted surplus adjusted for investment costs. The welfare losses are
18.64% in the monopoly and 11.61% in the duopoly. Although the consumer surplus in a
monopoly and a duopoly is small compared to the central planners, the total social losses
due to market power are modest. This is a result of the investment cost of each unit of ca-
pacity installed. The social planner invests in more additional capacity than monopolistic
and oligopolistic firms do. This reduces the producer surplus under perfect competition.
Huisman and Kort (2016) also examine welfare losses and conclude that the social welfare
is reduced by 25% in a monopoly compared to perfect competition. However, they provide
a general real options model that is not customized power markets. Their model allows one
investment, provides no production flexibility and assumes no installed capacity earlier on.

Figure 4.1, 4.2 and 4.3 illustrates the optimal capacity expansion path of the central
planner, the monopolist and the two firms in the duopoly. The charts illustrate total in-
stalled base and peak load capacity over a time horizon of 50 years. The dark grey lines
represent total base load capacity and the light grey lines represent total peak load capacity
installed.

Figure 4.1: The central planner’s optimal capacity expansion path.
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Figure 4.2: The monopolist’s optimal capacity expansion path.

Figure 4.3: The optimal capacity expansion path of the duopolistic firms.

Figure 4.4: Total installed capacity at time t in perfect competition, monopoly and duopoly.
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In Figure 4.1 and 4.2, we observe the similarities between the investment patterns of a
central planner and a monopolist. At the beginning of the period, they invest clearly most
in base load capacity. After approximately 20 years, a higher share of their investments
is additional peak load capacity. This is because power prices in the load segment 1, 2,
and 3, where the peak load plants run at their maximum capacity, are increasing until year
20. The marginal costs of the different power plants are kept constant. Consequently, the
contribution margin of both plants increases. Around year 20, the contribution margins
of the two types of plants reaches a trigger in which it becomes optimal to install both
additional base and peak load capacity. The marginal values of additional capacity explain
the similarities of the investment paths. For both base and peak load capacity, the marginal
values of new capacity of the central planner are roughly double of the marginal value of
additional capacity of the monopolist. Hence, the central planner installs roughly twice as
much capacity as the monopolist.

As illustrated in Figure 4.3, the expansion path of the peak load firm in a duopoly
differs significantly from the peak load investment path of the monopolist and the central
planner. Here, the installed peak load capacity exceeds the installed base load capacity.
The expansion path of the base load firm on the other hand, is similar to the monopolists
optimal base load expansion plan. The relationship between the marginal value of addi-
tional capacity and the marginal investment cost for base load and peak load power plants
explains this as well as the investment strategy in a Cournot duopoly. In the duopoly, the
firms invests marginally and simultaneously. This means that each firm invest marginally
as long as the demand shock at each time step exceeds the optimal investment trigger. This
leads to significantly larger peak load installations than in the monopoly and under perfect
competition, where the monopolist and the central planner invest relatively more in base
load capacity.

Figure 4.4 shows the total capacity expansion under different market structures. We
observe that the central planner installs in excessive additional capacity compared to the
monopolist and the duopolistic firms. This is a result of the central planners focus on
maximizing the social welfare when the aim of the monopolist and the duopolistic firms
is to maximize their own producer surplus. The competition in the duopoly results in a
larger total installed capacity compared to the monopoly.

Figure 4.5 illustrates the market price of electricity in load segment l at time t under
different market structures. The dark gray, gray and light gray lines represent the elec-
tricity price in respectively perfect competition, duopoly and monopoly. Not surprisingly,
the electricity price is lowest under perfect competition in all load segments due to the
central planners aim to maximize the social welfare. As discussed above, the duopolistic
firms generate a larger amount of electricity than the monopolist does. Thus, the electric-
ity price in a monopoly exceeds the electricity price in a duopoly in each load segment.
Furthermore, the prices in a monopoly and a duopoly are strictly increasing in all load
segments. The demand is expected to rise over time. In order to maximize their profits,
the monopolist and the two duopolistic firms install new capacity, but not enough from
keeping the electricity price from rising over time.
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(a) Load segment 1 (b) Load segment 2 (c) Load segment 3

(d) Load segment 4 (e) Load segment 5 (f) Load segment 6

Figure 4.5: The market price of electricity in different load segments in perfect competition,
monopoly and duopoly.

In load segment 1, 2 and 3, the prices are strictly increasing for all market structures
until year 20. From this point in time, the prices increase less or stop increasing for a
market with perfect competition. This corresponds to when the central planner starts to
invest in additional peak load capacity. At the same time, the monopolist also invests in
additional peak load capacity. However, in the monopoly, the prices continues to increase.
This is a consequence of the monopolist making moderate investments compared to the
central planner.

In a market with perfect competition, the prices in load segment 4 equal the marginal
cost of peak load generation. This is because of the central planner utilizes all the installed
base load capacity and some of the installed peak load capacity. In load segment 5, the
central planner uses all the installed base load capacity. As the price level is lower than
the marginal cost of producing with peak load technology, the central planner does not use
the installed peak load capacity. The prices in load segment 6 under perfect competition
equal the marginal cost of base load generation. This implies that the central planner has
installed enough base load capacity to cover the demand optimally without using any peak
load capacity.

Next, we study how the solution of the monopolist in the previous section responds to
changes in the the drift rate µ and the volatility σ. Figure 4.6 illustrates how the initial
investment triggers vary with the drift rate and the volatility. Figure 4.7 shows how the
optimal installed capacity varies with the volatility, and Figure 4.8 illustrates how the
optimally installed capacity varies with the drift rate.

According to equation (2.16), changing µ or σ implies changing β1. As the base vector
γ is restricted by β1, we need to use different γs in the regression in equation (3.4) for each
combination of µ and σ in order to find one unique investment trigger. In order to provide
comparable results, we continue to use d(γ) = 18.
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(a) The initial investment trigger for different
values of the volatility σ when µ = 0.02.

(b) The initial investment trigger for different
values of the drift rate µ when σ = 0.03.

Figure 4.6: The initial investment triggers for different values of the volatility σ and the drift rate µ.

The initial investment triggers are strictly increasing in σ for both the base load plant
and the peak load plant. This corresponds to standard real options theory, in which the
value of waiting increase with the uncertainty as advocated by Dixit and Pindyck (1994).
The firm invests marginally. For small investments, the value of waiting has a minor impact
on the investment decision. Although changes in the volatility affect the value of waiting,
changes in the value of waiting have limited impact of the investment decision compared
to larger investments. Hence, the investment trigger has a modest response to changes in
the volatility.

Increasing the drift rate µ has two contradictory effects, both discussed by Dixit and
Pindyck (1994). Both the discounted future profit

∫∞
0
π(Yt,K1t, . . . ,Kd(K)t)e

−ρtdt and
the uncertainty multiplier β1

β1−γi increases in µ. From figure 4.6 we observe that for µ <
0.03, the effect of the discounted future profit is dominating, while for µ > 0.03 the effect
of the uncertainty multiplier dominates.

(a) Optimal installed base load capacity. (b) Optimal installed peak load capacity.

Figure 4.7: Optimal installed capacities for different values of the volatility σ when the drift rate is
µ = 0.02.

Figure 4.7 shows that changes in σ has a minor effect on the optimal expansion path.
This is also a result of the fact that the value of waiting has limited impact on the investment
decision.
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(a) Optimal installed base load capacity. (b) Optimal installed peak load capacity.

Figure 4.8: Optimal installed capacities for different values of the drift rate µ when the volatility is
σ = 0.03.

As time moves towards t = 50, the optimally installed capacity is increasing in µ.
An increase in µ implies a higher demand over time. When the monopolist maximizes
his expected profits, its dispatch rises with the stochastic demand, Yt. An increase in the
dispatch requires the monopolist to invest in additional capacity. In Figure 4.8 we observe
that increases in µ has the same effect on both base and peak load capacity.

4.2 Capacity expansion and time-varying demand

In this section, we compare the investment triggers and the investment paths of the monop-
olist when the electricity demand is time-varying and fixed throughout the year. We model
the fixed demand by reducing the number of load segments to d(L) = 1. The inverse
demand curve is thus given by

P (Yt, Q) = Yt(A− bQ), (4.3)

where A and b are calculated as weighted averages of the parameters presented in table
4.2. This corresponds to A = 105.6, b = 0.00153, τ = 8760 h. Consequently, the fixed
demand is the weighted average of the time-varying demand. We solve the capacity expan-
sion problem with fixed electricity demand for a monopolist while using the technologies
in table 4.1 and the simulation parameters from table 4.3. The investment triggers are
given in table 4.6, and the optimal capacity expansion plan is illustrated in Figure 4.9.

Fixed demand Time-varying demand
Y ∗Base 0.8669 0.8439
Y ∗Peak 2.2871 0.9722

Table 4.6: The initial investment triggers for a monopolist with fixed and time-varying demand.

30



Figure 4.9: The optimal capacity expansion for a monopolist with fixed and time-varying demand.

When modeling the electricity demand as constant throughout each year, no additional
peak load capacity is installed. Over time the firm installs additional base load capacity
without using all the already installed peak load capacity. This means that the marginal
value of additional peak capacity goes towards zeros as t goes towards 50. When the
marginal value of additional peak capacity goes towards zero, the investment trigger for
peak load, Y ∗Peak moves towards infinity. An economical interpretation of the firm not
installing additional peak load capacity is as follows. The firm utilizes all base load capac-
ity before using available peak load capacity due to the relatively high operational costs
of peak load capacity. Since the electricity demand is constant throughout the year, the
firm utilizes installed base load capacity during the whole year. The tradeoff between the
investment and the operational costs favors base load capacity. Hence when demand is
fixed throughout the year, the monopolist will only invest in base load capacity.

The effect of using several load segments is small for the investments in base load
capacity. In Table 4.6, we observe the initial base load capacity triggers to be similar when
the number of load segments each year are 1 and 6. Figure 4.9 illustrates that the optimal
investment paths of the fixed and the time-varying demand throughout the year are almost
identical. The fixed demand over the year equals the weighted average demand when the
demand is time-varying during the year. This results in approximately equivalent marginal
values of additional base load capacity for the firm, both when demand is time-varying and
fixed throughout the year. In both cases, the firm wishes to maximize its producer surplus.
Since the marginal values of additional base load capacity are almost equal for a time-
varying and a fixed demand, the different base load investment patterns resemble each
other. When demand is time-varying throughout the year, the firm invests in additional
peak load capacity at approximately t = 20 years. Hence, the installed base load capacity
is smaller when demand is time-varying than when it is fixed from year 20 and further on.

4.3 Discussion of results

In this chapter, we have studied how different market structures and fluctuations in the elec-
tricity demand affect installation of additional base and peak load capacity. As expected,
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we witness that increased competition leads to more installed capacity and a higher so-
cial welfare. Both modelling electricity markets as duopolies and including time-varying
demand provides additional incentive to invest in peak load capacity. Power markets are
considered oligopolies, and the electricity demand is time-varying. This indicates that
installing peak load capacity is more beneficial for power companies when the capacity
expansion model reflects properties of real power markets.

Although the results appear reasonable, we address possible limitations of our capacity
expansion model. Alexander (2008) argues that when performing Monte Carlo simulations
one should use a large number of simulations, e.g. 100 000. To limit the computation
time, we use 50 simulations. This might lead to inaccuracies in the results. Our example
is not based on empirical data and its motivation is to illustrate our capacity expansion
framework. Therefore, minor inaccuracies in the results are of less importance.

Our capacity expansion model includes both a stochastic control problem and an op-
timal stopping problem, which are equivalent as long as the assumption of myopia holds.
Because of non-additively separable technologies and duopolistic companies, we cannot
be certain that the properties of myopia hold. This may lead to inaccuracies in the numeri-
cal results. However, we argue that myopia is an acceptable approximation because power
companies consider the next investment optimal and hence the last investment until the
electricity demand has increased sufficiently. Hence, we consider the errors of assuming
myopia small.

We assume the electricity demand to have a positive drift. The electricity price is
thus expected to rise over time while the marginal cost of generation remains constant.
As a result, the marginal contribution margin of the peak load capacity increases over
time. Hence, peak load capacity gets more profitable. This results in larger investments in
peak load capacity as time passes. One can discuss whether a constant marginal cost of
generation is in line with the dynamics of actual power plants. Non-renewable peak and
base load power plants consists of mature technologies where the actual costs of running
are expected to remain constant. However, power companies might pay a carbon taxes on
their emissions that is exposed to policy uncertainty. Changes in the carbon tax impact the
marginal cost of generation, and one can thus argue that the marginal cost of generation is
stochastic.

Another aspect that effects the capacity investments is the fact that one of the duopolis-
tic firms only has the opportunity to install additional peak load capacity. The base and the
peak load capacity are both available to the monopolist and the social planner, who both
invest in a highest share of base load capacity. Hence, one can argue that the peak load
firm also invests in base load capacity to some extent if this is a possibility. However, we
argue that a firm in possession of only initial peak load capacity will face entry barriers
when investing in base load capacity. Thus, the peak load firm will not invest in base load
capacity. The same argument is valid for a firm only in possession of initial base load
capacity. Examples of such entry barriers are political, economic and lack of expertise.
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Chapter 5
Concluding remarks

We have adopted a real options approach to analyze marginal investments in peak and
base load generation capacity. We study capacity expansion within monopolies, duopolies
and markets with perfect competition and compare investment triggers and the optimal
capacity installations for peak load and base load power plants. Our approach considers
several features of the real world power markets, including heterogeneous technologies,
endogenous electricity prices, time-varying electricity demand, and markets with imper-
fect competition. We find that fluctuations in the electricity demand over the year as well
as imperfect competition boost peak load investments. Furthermore, the installed capacity
increases with the number of firms in the market.

The renewable energy generation changes the fluctuations in the non-renewable elec-
tricity demand. Our capacity expansion framework may provide decision support to both
policymakers and private investors. It is important for policymakers to ensure a certain
non-renewable dispatch to cover the electricity demand and a certain amount of firms in
order to avoid market power. In our example, we find that increased competition leads
to a higher installed capacity and lower electricity prices, which result in smaller welfare
losses. When observing capacity shortage, policymakers should incentivize new capacity
investments. For investors in the power sector, it is important to gain information about
how to capitalize on investments in non-renewable peak and base load capacity. By using
our investment approach, investors may increase their understanding of the power market
they operate in as well as finding their optimal investment strategy.

Extensions of the framework are possible in several directions. One can investigate
the mathematical impacts of assuming myopia. Although we argue that the implications
of this assumption are limited, it is beneficial to know their magnitudes. Another possi-
ble extension is to investigate the synergies introduced by using heterogeneous technolo-
gies further. Additionally, our capacity expansion model can be extended to include new
features like policy uncertainty, stochastic marginal costs, mothballing of existing power
plants and replacement of old power plants to be even more realistic. Finally, one could
perform a case study on a power market dominated by non-renewable power generation.
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Appendix

A The option value of the investment
In section 2.4 we convert the stochastic control problem in Problem 2 to the optimal
stopping problem in Problem 3. Due to the assumption of myopia, ∂F (Y,K1,...,Kd(K))

∂Kk
=

Vk, k ∈ K. We derive the optimal stopping problem by using dynamic programming and
Ito’s Lemma. We start out by the Bellman equation

ρVkdt =
∂π̄

∂Kk
dt+ E[dVk], ∀k ∈ K. (A.1)

Ito’s Lemma implies

dVk =
∂Vk
∂t

dt+
∂Vk
∂Y

dY +
∂2Vk
∂Y 2

(dY )2, ∀k ∈ K. (A.2)

As Vk is independent of t, we know that ∂V∂t = 0. Furthermore we know that Y follows
a geometric Brownian motion. This implies that we can re-wright equation (A.2).

dVk =
∂Vk
∂Y

(µY dt+ σTdz) +
∂2Vk
∂Y 2

(
1

2
σY 2dt), ∀k ∈ K (A.3)

E[dVk] =

(
µY

∂Vk
∂Y

+
1

2
σY 2 ∂

2Vk
∂Y 2

)
dt, ∀k ∈ K. (A.4)

When substituting (A.4) into the Bellman equation in equation (A.1), we get

ρVkdt =
∂π̄

∂Kk
dt+

(
µY

∂Vk
∂Y

+
1

2
σY 2 ∂

2Vk
∂Y 2

)
dt, ∀k ∈ K. (A.5)

1

2
σY 2 ∂

2Vk
∂Y 2

+ µY
∂Vk
∂Y
− ρVk +

∂π

∂Kk
= 0, ∀k ∈ K. (A.6)

We then use the conveniece yield to substitute µ = ρ − δ into (A.6). We also substitute
Vk =

∂F (Y,K1,...,Kd(K))

∂Kk
into (A.6). This leaves us with the Bellman equation from the

optimal stopping problem in Problem 3.

1

2
σ2Y 2 ∂

3F (Y,K1, . . . ,Kd(K))

∂Kk∂Y 2
+ (ρ− δ)Y

∂2F (Y,K1, . . . ,Kd(K))

∂Kk∂Y
−

ρ
∂F (Y,K1, . . . ,Kd(K))

∂Kk
+
∂π̄(Y,K1, . . . ,Kd(K))

∂Kk
= 0, ∀k ∈ K, (A.7)
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Solving equation (A.7) with respect to ∂F (Y,K1,...,Kd(K))

∂Kk
results in

∂F (Y,K1, . . . ,Kd(K))

∂Kk
= Bk1(K1, . . . ,Kd(K))Y

β1 +B2k(K1, . . . ,Kd(K))Y
β2

+
Fp(Y,K1, . . . ,Kd(K))

∂Kk
, ∀k ∈ K. (A.8)

From the boundary condition in equation (2.13) we know that Bk2(K1, . . . ,Kd(K)) = 0.
When integrating with respect to Kk, we get

F (Y,K1, . . . ,Kd(K)) = Y β1

∫
Bk1(K1, . . . ,Kd(K))dKk

+ Fp(Y,K1, . . . ,Kd(K)), ∀k ∈ K. (A.9)

Using ∂A1(K1,...,Kd(K))

∂Kk
= Bk1(K1, . . . ,Kd(K)), we re-write equation (A.9).

F (Y,K1, . . . ,Kd(K)) = A1(K1, . . . ,Kd(K))Y
β1 + Fp(Y,K1, . . . ,Kd(K)), (A.10)

where Fp(Y,K1, . . . ,Kd(K)) is found in appendix B.
When solving for a duopolistic firm we follow the same procedure. However, as we

aim to find the value of each duopolistic firm separately, the Bellman equation for firm k
is given by

1

2
σ2Y 2 ∂

3Fk(Y,K1,K2)

∂Kk∂Y 2
+ (ρ− δ)Y ∂

2Fk(Y,K1,K2)

∂Kk∂Y
−

ρ
∂Fk(Y,K1,K2)

∂Kk
+
∂π̄k(Y,K1,K2)

∂Kk
= 0, k = 1, 2. (A.11)

Solving equation (A.11) with respect to Fk gives

Fk(Y,K1,K2) = Ak1(K1,K2)Y β1 + Fkp(Y,K1,K2) k = 1, 2. (A.12)

B The particular solution
Equation (2.9) describes a regressed estimate of the instantaneous profit π(Y,K1, . . . ,Kd(K))
for a monopolist. We re-wright (2.9):

π̄(Y,K1, . . . ,Kd(K)) =

d(γ)∑
i=1

Y γi
[ d(K)∑
k=1

d(α)∑
j=1

bk,ijK
αj

k +

d(K)∑
k,u=1,
u 6=k

d(λ),d(λ)∑
j,l=1

cuk,ijlK
λj
u Kλl

k

]
−
d(K)∑
k=1

OMCkKk. (B.1)
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Y follows a geometric Brownian motion, and the expected profit over an infinite time
horizon equals the particular solution Fp(Y,K1, . . . ,Kd(K)) of equation 2.12. Thus, we
express Fp(Y,K1, . . . ,Kd(K)) as

Fp(Y,K1, . . . ,Kd(K)) =

d(γ)∑
i=1

∫ ∞
0

E[Y γi ]e−ρtdt [

d(K)∑
k=1

d(α)∑
j=1

bk,ijK
αj

k +

d(K)∑
k,u=1,
u6=k

d(λ),d(λ)∑
j,l=1

cuk,ijlK
λj
u Kλl

k ]−
d(K)∑
k=1

∫ ∞
0

OMCkKke
−ρtdt (B.2)

Fp(Y,K1, . . . ,Kd(K)) =

d(γ)∑
i=1

∫ ∞
0

Y γie[γiµ+ 1
2σ

2γi(γi−1)]−ρtdt

[ d(K)∑
k=1

d(α)∑
j=1

bk,ijK
αj

k +

d(K)∑
k,u=1,
u6=k

d(λ),d(λ)∑
j,l=1

cuk,ijlK
λj
u Kλl

k

]
−
d(K)∑
k=1

OMCkKk

ρ
(B.3)

Fp(Y,K1, . . . ,Kd(K)) =

d(γ)∑
i=1

Y γi

ρ− µγi − 1
2σ

2γi(γi − 1)

[ d(K)∑
k=1

d(α)∑
j=1

bk,ijK
αj

k +

d(K)∑
k,u=1,
u 6=k

d(λ),d(λ)∑
j,l=1

cuk,ijlK
λj
u Kλl

k

]
−
d(K)∑
k=1

OMCkKk

ρ
. (B.4)

This corresponds to

Fp(Y,K1, . . . ,Kd(K)) =

d(K)∑
k=1

d(γ),d(α)∑
i,j=1

b̄k,ij(γi)Y
γiK

αj

k +

d(K)∑
k,u=1,
u6=k

d(γ),d(λ),d(λ)∑
i,j,l=1

c̄uk,ijl(γi)Y
γiKλj

u Kλl

k −
d(K)∑
k=1

OMCkKk

ρ
(B.5)

where b̄k,ij(γi) and c̄uk,ijl(γi) are given by

b̄k,ij(γi) =
bk,ij

ρ− µγi − 1
2σ

2 + γi(γi − 1)
, i = 1, . . . , d(γ) (B.6)

c̄uk,ijl(γi) =
cuk,ijl

ρ− µγi − 1
2σ

2 + γi(γi − 1)
, i = 1, . . . , d(γ). (B.7)

The same solution is valid in the duopoly. We then find one particular solution for the
value of each firm k = 1, 2. Furthermore, in section 2.5, cuk,ijt is no longer constrained
to be non-negative.
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C Investment triggers
We have shown that the the value function F (Y,K1, . . . ,Kd(K)) can be written as

F (Y,K1, . . . ,Kd(K)) = A1(K1, . . . ,Kd(K))Y
β1 +

d(K)∑
k=1

d(γ),d(α)∑
i,j=1

b̄k,ij(γi)Y
γiK

αj

k +

d(K)∑
k,u=1,
u 6=k

d(γ),d(λ),d(λ)∑
i,j,l=1

c̄uk,ijl(γi)Y
γiKλj

u Kλl

k −
d(K)∑
k=1

OMCkKk

ρ
. (C.1)

In order to find a unique investment trigger for each technology k, we separate
F (Y,K1, . . . ,Kd(K)) so thatF (Y,K1, . . . ,Kd(K)) =

∑d(K)
k=1 Fk(Y,K1, . . . ,Kd(K)). When

finding the investment triggers, we assume each capacity k ∈ K to be constant. Conse-
quently, Fk(Y,K1, . . . ,Kd(K)) is expressed as

Fk(Y,K1, . . . ,Kd(K)) = Ak1(K1, . . . ,Kd(K))Y
β1 +

d(γ),d(α)∑
i,j

b̄k,ij(γi)Y
γiKαj

k +

d(K)∑
u=1,u6=k

d(λ),d(λ),d(λ)∑
i,j,l=1

c̄kl,ij(γi)Y
γiKλj

u Kλl

k −
OMCkKk

ρ
∀k ∈ K. (C.2)

The analytical expressions for value matching and smooth pasting are given by respec-
tively

∂Fk(Y ∗k ,K1, . . . ,Kd(K))

∂Kk
=
∂Ak1(K1, . . . ,Kd(K))

∂Kk
Y β1+

d(γ),d(α)∑
i,j

αj b̄k,ij(γi)Y
γiKαj−1

k +

d(K)∑
u=1,u6=k

d(α),d(λ),d(λ)∑
i,j,l=1

λlc̄kl,ij(γi)Y
γiKλj

u Kλl−1
k − OMCk

ρ
= Ik, ∀k ∈ K, (C.3)

and

∂2Fk(Y ∗k ,K1, . . . ,Kd(K))

∂Kk∂Y
= β1

∂Ak1(K1, . . . ,Kd(K))

∂Kk
Y β1−1+

d(γ),d(α)∑
i,j

αjγib̄k,ij(γi)Y
γi−1Kαj−1

k +

d(K)∑
u=1,u6=k

d(λ),d(λ),d(λ)∑
i,j,l=1

γiλlc̄kl,ij(γi)Y
γiKλj

u Kλl−1
k = 0 ∀k ∈ K. (C.4)
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The smooth pasting equation is rephrased

∂A1k(K1, . . . ,Kd(K))

∂Kk
= −

∑d(γ),d(α)
i,j αjγib̄k,ij(γi)Y

γi−1K
αj−1
k

β1Y β1−1

−
∑d(K)
u=1,u6=k

∑d(λ),d(λ),d(λ)
i,j,l=1 γiλlc̄kl,ij(γi)Y

γiK
λj
u Kλl−1

k

β1Y β1−1
, ∀k ∈ K, (C.5)

and substituted it into the value matching equation to find the investment trigger

d(γ)∑
i=1

Y γi(
β1 − γi
β1

)

{
d(α)∑
j=1

αj b̄k,ij(γi)K
αj−1
k +

d(K)∑
u=1,u6=k

d(λ),d(λ)∑
j,l=1

c̄kl,ij(γi)K
λj
u Kλl−1

k

}
= Ik +

OMCk
ρ

∀k ∈ K. (C.6)

D The numerical regression

In section 2.4, equation (2.9) and section 2.5, equation (2.30) we proposed a regressions
for handling the fact that the profit is additively none-separable. These regressions specify
that the profit is a function of the shock level Y and the installed capacity Kk, k ∈ K.
In appendix B we showed the relationship between the the regressions and the particular
solution to the optimal stopping problem. In the numerical procedure in section 3.1 we
keep the installed capacity constant when solving the optimal stopping problem. Dixit and
Pindyck (1994) claims that in order to convert a stochastic control problem to an optimal
stopping problem, we need to assume that everything except from the shock process(es)
are kept constant. Consequently, we can wright

F1,p(Y,K1,K2) =

d(γ),d(α)∑
i,j=1

b̄1,ij(γi)Y
γiK

αj

1 +

d(K)∑
u=1,u 6=k

d(γ),d(λ),d(λ)∑
i,j,l=1

c̄12,ij(γi)Y
γiK

λj

1 Kλl
2 −OMC1K1 (D.1)

∂F1,p(Y,K1,K2)

∂K1
=

d(γ),d(α)∑
i,j

αj b̄1,ij(γi)Y
γiK

αj−1
1 +

d(λ),d(λ),d(λ)∑
i,j,l=1

λlc̄12,ij(γi)Y
γiK

λj

2 Kλl−1
1 − OMC1

ρ
(D.2)
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∂F1,p(Y,K1,K2)

∂K1
=

d(γ)∑
i=1

Y γi
( d(α)∑
j=1

αj b̄1,ij(γi)K
αj−1
1 +

d(λ),d(λ)∑
j,l=1

λlc̄12,ij(γi)K
λj

2 Kλl−1
1

)
− OMC1

ρ
. (D.3)

Since K1 and K2 are constant, we can rephrase

∂F1,p(Y,K1,K2)

∂K1
=

d(γ)∑
i=1

a1,iY
γi − OMC1

ρ
(D.4)

where

a1,i =

d(α)∑
j=1

αj b̄1,ij(γi)K
αj−1
1 +

d(λ),d(λ)∑
j,l=1

λlc̄12,ij(γi)K
λj

2 Kλl−1
1 , i = 1, . . . , d(γ). (D.5)

Due to the symmetry of the problem, substitute the 1-indexes by the 2-indexes and vice
versa. In doing so, we do obtain the result for ∂F2,p(Y,K1,K2)

∂K2
.

When solving for a duopoly c̄12,ij(γi) is not constrained to be greater than zero. Con-
sequently, one might find a case in which

d(α)∑
j=1

αj b̄1,ij(γi)K
αj−1
1 +

d(λ),d(λ)∑
j,l=1

λlc̄12,ij(γi)K
λj

2 Kλl−1
1 < 0, i = 1, . . . , d(γ). (D.6)

This corresponds to ak,i < 0. However, in our model we make the simplifying assumption
that ak,i ≥ 0, k = 1, 2, i = 1, . . . , d(γ). In doing so, we make sure that there are only
one optimal investment trigger for each technology. This is a reasonable assumption as the
positive effect of firm 1 being able to generate using technology 1 is likely to outweighed
the negative effect of the competition from firm 2.

When using the value matching and smooth pasting conditions as in appendix C, one
can show that the investment trigger Y ∗k is given as the unique root of

d(γ)∑
i=1

ak,iY
∗
k
γi(
β1 − γi
β1

) = Ik +
OMCk
ρ

, k = 1, 2. (D.7)

E Cournot Equilibrium
By using standard Cournot assumptions, we create a Cournot equilibrium. This can easily
be illustrated assuming d(L) = 1 and

P (Yt, Q) = YtD(Q) = Yt(A− bQ) (E.1)
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where Q = q1 + q2. The profit functions can then be written as

π1(Yt,K1,K2) = τ [P (Yt, Q)q1 − c1q1]−OMC1K1 =

τ [Yt(Aq1 − bq2
1 − bq1q2)− c1q1]−OMC1K1

(E.2)

and

π2(Yt,K2,K1) = τ [P (Yt, Q)q2 − c1q2]−OMC2K2 =

τ [Yt(Aq2 − bq2
2 − bq2q1)− c2q2]−OMC2K2.

(E.3)

We can then use standard Lagrange optimization to solve the problem.

Li = πi − λi(qi −Ki)− µi(qi − 0), i = 1, 2 (E.4)

By solving equation (E.4) with respect to q1 and q2 we obtain

q1 =



0, q1 ≤ 0
1
2b (A−

c1
Yt

), 0 < q1 < K1 and q2 = 0
1

3bYt
(AYt + c2 − 2c1), 0 < q1 < K1 and 0 < q2 < K2

1
2b (A− bK2 − c1

Yt
), 0 < q1 < K1 and q2 = K2

K1, otherwise

(E.5)

q2 =



0, q2 ≤ 0
1
2b (A−

c2
Yt

), 0 < q2 < K2 and q1 = 0
1

3bYt
(AYt + c1 − 2c2), 0 < q2 < K2 and 0 < q1 < K1

1
2b (A− bK1 − c2

Yt
), 0 < q2 < K2 and q1 = K1

K2, otherwise

(E.6)

with the corresponding shadow costs of the capacity constraints

λ1 =

{
0, q1 < K1

τ [Yt(A− 2bq1 − bq2)− c1], otherwise
(E.7)

λ2 =

{
0, q2 < K2

τ [Yt(A− 2bq2 − bq1)− c2], otherwise.
(E.8)
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