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Abstract 
This paper opens with a theoretical description of important features necessary for 
understanding whether to expand the capacity of a hydropower plant or not, and ends 
with an example of a possible capacity expansion at Svartisen Power Plant. 
 
Introductorily a brief description of the characteristics of the Nordic Power Market is 
given, and of the properties of hydropower systems in general. Then follows a 
description of some theoretical frameworks of great importance in understanding 
capacity expansion problems.  
 
These frameworks are: 

• A mathematical description of the generation planning problem, which leads 
to a description of algorithms for solving such problems. Thus dynamic 
programming (DP) algorithms are explained. 

• Price models that describe the forward power prices are presented. Different 
one-factor stochastic price models are listed and it is argued for the use of such 
forward curves instead of the use of expected spot prices. 

• A real option approach used for investment problems is described in order to 
value the option of an investment versus the investment itself. It is argued that 
such an approach is useful in capacity expansion decisions due to the 
uncertainty of future prices. 

 
In the end of the paper the theoretical framework is used for a practical purpose.  A 
capacity investment decision at Svartisen Hydropower Plant is valued.  The Lucia and 
Schwartz (2002) one factor model with log prices is chosen as a description of the 
forward price. This price model is used to modify 70 price scenarios of expected spot 
price for the area. To be able to do this the price model is adjusted to the behavior of 
the spot price as a function of the seasonal change. Then these 70 price scenarios are 
used as an input to the EOPS model from Sintef Energy (EFI’s One-Area Power-
market Simulator). Input to the model is 70 price scenarios and inflow scenarios.  The 
model uses a stochastic dynamic programming algorithm, and gives NPV of the 
investment project as output. Finally these numbers are used to value the option of a 
capacity expansion of 30MW, 150MW and 300MW given different seasonal behavior 
of the forward price. 
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1 Introduction 
The background for this paper is the fact that power prices in the Nordic Power 
Market fluctuates in seasonal, weekly and daily patterns in addition to fluctuations 
due to stochastic factors as inflow and weather. 
 
This gives a hydropower plant the opportunity to expand their capacity in order to 
produce more when price is high, and less when price is low. 
 
Some power plants has the option to expand the capacity because they were 
constructed with penstocks dimensioned for possible future capacity expansion, other 
plants does not have this opportunity and a capacity expansion will include more 
expensive construction operations. (Faanes, 2002). 
 
The valuation of such investments has very long time horizon. This emphasizes the 
necessity of knowledge of prices in the future, as well as an understanding of political, 
economic, technologic and stochastic factors having influence of this price. 
 
Due to this, it has been chosen to describe the Nordic Power Market as well as the 
properties of hydropower including algorithms for solving generation planning 
problems. In addition models for describing forward power prices are presented. 
 
The theories of forward prices, generation planning and option pricing are 
consecutively used to valuate a capacity expansion at Svartisen Power Plant. Some 
practical adjustments are done with the theoretical model to accomplish this valuation, 
and some of the properties of the Plant are simplified. Most of the adjustments to the 
price model are caused by the decision to use a log price model instead of a price 
model. The choice of a price model would probably cause fewer adjustments. 
 
Though a practical example of an expansion decision is given in the last chapter, the 
model is not completely developed. There is still a lot to be done in expressing the 
forward price better as well as defining the input variables to the option valuation 
model. However this paper should be a substantial contribution to a complete model. 
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2 Generation Planning 
This chapter presents general theory about the Nordic power market and the 
properties of hydropower scheduling. A mathematical description of the generation 
planning problem is presented. In this description, the price of electricity is an input 
parameter. Different price models that describe the forward prices in the power 
market will be presented in chapter 3 and different algorithms for solving this 
planning problem will be presented in chapter 4. 
 

2.1 Introduction 
Generation planning at a hydropower plant is a difficult and extensive job. The 
amount of production at each time step depends on the price in the market and the 
value of the water in the reservoir. The price depends on the demand and supply in the 
market. There are uncertainty associated to both future prices and future water values. 
The producers want to maximize their income in regard to the constraints of the 
reservoir, watercourses and plants. They have to look at and evaluate tradeoffs among 
immediate and future uses of water. 
 

2.2 The Market 
One special feature in this market is that electricity is not a storable commodity; it has 
to be used immediately. Because of this, there is low elasticity in the prices, and hence 
major differences in prices in different time steps. When demand is high, the price is 
high and when demand is low, the price can be as low as the marginal cost. In a hydro 
energy system, the capacity is relatively high, but the total amount of energy available 
is limited. Under normal circumstances the capacity is higher than demand. This 
causes relatively low peak prices compared to thermal energy systems.  
 

2.2.1 The Deregulation of the Power Market 
The deregulation was introduced in Norway with the Energy Act of June 1990. (Fosso 
et al, 1999) From January 1, 1991, all purchasers were free to choose from whom to 
buy electricity. Hence, generation and sales activities became exposed to competition, 
and this affected the generation planning. In the new deregulated market, the producer 
has in principle no obligation to serve any particular consumer. The main objective is 
to generate and sell electricity with maximum profit. This is a change from the 
traditional formulation of the generation planning problem where the main objective 
was to minimize the costs. This new problem formulation implies that the producer is 
regarded as a price taker. This means that the producers do not take into account any 
influence their own production might have on the market price. (Wangensteen 
[Kraftmarkeder 6], 2001) 
 

2.2.2 The Organisation of the New Market 
The Norwegian electricity system has a very decentralised organisational structure. 
There are about 70 electricity-producing companies, 230 distributors and about two 
million end users. Large end users trade in the wholesale market on a bilateral or spot 
basis, while most of the small customers have access to the market either though their 



Capacity Expansion in the Electricity Market 

 3

local distributor or though an external supplier. (Wangensteen [Kraftmarkeder 4], 
2001)  
 
Here is an overview on the main activities and roles of the different entities in the 
system: 

• Market participants 
These are the buyers and sellers in the market place, which can be generating 
companies, utilities with distribution and more or less generating capacity, or 
end users. 

• Market operator  
The market operator or the exchange, Nord Pool, is responsible for the market 
clearing process in the spot market and in the futures market. Accounting and 
invoicing is also a responsibility of the market operator.  

• The system operator 
The system operator, which in Norway is the national transmission grid-
company Statnett SF, is responsible for system coordination. 

(Fosso et al, 1999, Wangensteen [kraftmarkeder 6], 2001) 
 
The Norwegian system does not include a central scheduling or dispatching entity, as 
the system in England. The generation companies are responsible for production 
planning, while the power exchange is responsible for market clearing and the system 
operator is responsible for system coordination. (Fosso et al, 1999)  
 
There are three different organised markets: 

• The spot market 
In the spot market the participants submit their bids for buying and selling on 
an hourly basis. The market is settled every day at noon for delivery for 24 
hours following the first midnight. The market operator use the individual bids 
to aggregate total supply and demand curves. The intersection between those 
two curves determine the clearing price and the quantity. The spot market is 
not a spot market in the common meaning of the word; it is actually a 12-36 
hours future market. 

• The regulating market 
This market is used to adapt generation to the variation in the load. Producers 
submit their bids to the system operator on how much they are willing to 
regulate up or down, for different prices and periods of time. In real-time 
operation, system operator picks the cheapest available regulator from the 
merit list. Hence, the price in the regulating market is settled ex post, when the 
price of marginal regulator in each hour is known. All the regulators receive 
the price of the marginal regulator. 

• The future market 
This is purely a financial market. The turnover in the future market is about 9 
times bigger than the turnover in the spot market. It is because of the future 
market that the power market can be viewed as a liquid market. 
(http://www.nordpool.no) 

(Wangensteen [kraftmarkeder 6], 2001) 
 
The market participants, the system operator and the market operator perform the 
operation planning together in a dynamic interaction. 
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2.3 Hydropower 
More than 99% of the electricity generation in Norway is based on hydro. A 
hydropower system is characterised by some special features. It has high investment 
cost and very low variable cost. Consequently, the producers have low cost 
variability. The variations in prices are not necessarily low because of this. 
(Wangensteen [Kraftmarkeder 3], 2001) The prices depend on the limitation on 
reservoir capacities. The storage of water varies between seasons. In the summer, 
snow melting and rainfall cause high water inflow, while inflow is much less 
throughout the winter. An important characteristic of a hydropower system is that the 
market prices varies greatly even in periods of a few months, or weeks, depending on 
variations in inflow in addition to variations in consumption. (Haugstad et al, 
[kraftmarkeder 10], 2001). 
 
In Table 2-1 the yearly implied volatility at NordPool from Jan 1. to Des 31. 2001 are 
calculated with different time resolution. An explanation of the change in volatility as 
a function of the resolution is that daily resolution hides the predictable daily pattern 
due to change in demand during the day. Weekly resolution hides the predictable 
weekly pattern due to different demand in weekends and so on. 
 
 Hour Day Week Month Year 
Volatility (%) 245 120 106 95 55 
Table 2-1 Empirical data for the volatility 
 
Hence, there is a considerable difference between generation planning for a thermal 
power plant and a hydropower plant. The price of fuel is known for a thermal power 
plant. So the generation planning process is just supposed to determine the number 
aggregates in operating modus in the next period, the distribution between the 
aggregates and the amount they want to buy and sell in the market. This generation 
planning does not need a long analysis period, maximum a week.  
 
A hydropower plant does not have a fuel price, but in the planning process the 
producer has to consider the value of the water in the reservoir in order to evaluate 
tradeoffs among immediate and future uses of water. The production planning has to 
be divided into different horizons of time, short time and long time. In the long 
horizon, the producer has to determine the disposal of the reservoir. In the short 
horizon, the producer determines the number of aggregates in operating modus, the 
distribution between the aggregates and the amount they want to buy in the market. 
The objective of hydropower scheduling is to determine the sequence of hydro 
releases that will maximize the operational income. (Wangensteen [kraftmarkeder 4], 
2001) 
 

2.3.1 The Value of the Water 
The water flows into the reservoir without any cost. That does not mean that the water 
does not have any value. The producer cannot regulate the inflow of water, and the 
inflow is not constant. The generation planning problem is then to evaluate tradeoffs 
among immediate and future use of the water. They can use the water now, produce 
power and sell it for a known price at the spot market or they can store the water and 
sell power later for an unknown price. The problem is to evaluate which of the two 
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alternatives that makes the best economic result. (Wangensteen [kraftmarkeder 4], 
2001). 
 
The future demand and the future inflow are unknown, but the storage capacity of the 
reservoir is known. To determine how much water that should be stored, historical 
demand and inflow or prognosis for demand and inflow can be looked upon. If the 
inflow becomes large, the risk an overflow of increases. Then the value of the water 
would be low. If the inflow becomes small, then the value of the water would get 
high. The production capacity, the storage capacity, the inflow and the power market 
therefore determine the value of the water.  
 
When the value of the water is determined, the hydropower plant face the same 
generation planning problem as a thermal power plant. Using the marginal cost 
principal, the disposal of the production resources can be determined. 
 

2.4 Expansion of the Capacity 
Hydropower generators are easy to regulate and have quite low start/stop costs 
compared to other types of power production. Hydropower producers will offer their 
surplus power when the price is high and reserve themselves when the price is low. 
By installing more power, the producer might produce more when the price is high. 
 
The regulation level of the reservoir is also important in a hydro power plant. When 
the regulation level is high, the plant can choose to produce when the price is high. 
With lower regulation level or constricted minimal flow the plant has to produce in a 
more regular schedule. When the regulation level is low a capacity expansion will 
reduce the risk of an overflow.  
 

2.5 A Mathematical Description 
In a deregulated market, a power producer has in principle no other objective than to 
produce electricity and sell with maximum profit. The generation-planning problem 
can be formulated like this: 
 

Given a forecast of future market price: Establish a generation schedule that 
maximizes expected profit over the planning period, all relevant constraints 
taken into account. (Fosso et al, 1999, Wangensteen [kraftmarkeder 6], 2001) 

 
This formulation does not consider any penalty for possible curtailment of contractual 
obligations. It is assumed that if a generating company does not produce enough 
power to cover its contractual obligations, this can be bought on the spot market. 
Because the objective is to maximize expected profits, it can be assumed that all 
produced power is sold on the spot market. This planning model is as previously 
mentioned based on a price taking assumption. The market price is not influenced by 
short-term variations in the owner’s generation. The assumption that all firms are 
price takers is a necessary condition for a free market to be economically efficient. 
The cost for starting and shutting down an aggregate is relatively low for a 
hydropower plant, so these cost are not taken into the problem formulation. 
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In order to find an optimum operational strategy, a forecast of the future market price 
and the future inflow are needed. Different price models will be described in chapter 
3. 
 

2.5.1 The One-reservoir Model 
 

 
Figure 2-1  The one-reservoir model 
 
The objective function for the one-reservoir model can be written like this: 
 

Maximize Evp{∑
=

N

i
ipiq

1
)()( + S(x(N),p(N))}      (2.1) 

 
Constraints are the reservoir equation and variable bounds: 
 
 x(i+1) = x(i) + v(i) – s(i) – q(i)      (2.2) 
 

xL(i) ≤ x(i) ≤ xU(i)        (2.3) 
 

qL(i) ≤ q(i) ≤ qU(i)        (2.4) 
 
Definition of variables: 
Evp   - The expected value of the production and the value of the water  
q(i)    - Generation in time step i 
p(i)    - The price of electricity in time step i 
S(*,*)   - The value of storage at the of planning period 
i            -Time index 
N         - Time index for the end of the planning period 
x(i)       - The reservoir level at the end if time step i 
xL(i)     - The minimum allowed reservoir level in time step i 
xU(i)     - The maximum allowed reservoir level in time step i 
s(i)       - The spillage in time step i 
qL(i)     -The minimum constraint on generation in time step i 
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qU(i)     - The maximum constraint on generation in time step i 
 
Constraint (2.2) represents the coupling between successive stages. The reservoir 
storage at the end of stage i, which is the beginning of stage i + 1, is equal to the 
initial storage plus the inflow minus the outflow. 
 
Constraint (2.3) limits the reservoir storage. The reservoir level at the end of time step 
i must be above a certain minimum allowed level and under a certain max level. This 
minimum level is set by the government to assure that natural environment is not 
damaged. The maximum allowed level is the max storage level. 
 
Constraint (2.4) limits the generation in time step i. The minimum constraint on 
generation is dependent on the minimum stream flow in the waterfall, which is set by 
the environmental department. The maximum constraint on generation is the max 
capacity of the aggregates on the power plant.  It is this upper level that will be 
relaxed in an expansion of capacity of a hydropower plant. 
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3  Price Models 
This chapter presents some price models that can be used in describing the Nordic 
power market. The price is an important variable in the generation planning problem 
described in chapter 2. Initially, an empirical description of the Nordic power prices 
and a macro economic view are presented. Then some mathematical tools for 
modeling forward prices are presented and consecutively different price models are 
described. 
 

3.1 Empirical Description of Nordic Power Prices 
Nordic electricity prices follow a periodic seasonal behaviour. The prices are at the 
highest level in cold winter days due to extensive use of electricity for heating 
purposes, especially in Norway. During the summer months there are lower demand 
due to lower heating demand and lower demand for indoor lighting. In addition the 
prices have a characteristic weekly structure with a peak in the morning and in the 
afternoon, and low prices during the night. Weekends and holidays have lower prices 
due to less demand in commercial and public utilities. 
 
In addition, several factors can influence the price for longer or shorter time periods. 
Examples are maintenance of nuclear power plants in Sweden, periods of extreme 
cold weather or more predictable cases as when everybody turn on the stove at 
Christmas evening. Prices follow demand in general, but available production will be 
somewhat lower in low demand periods due to planned revisions. 
 

3.2 A Macro Economic View 
There will be no analysis of macro economic factors in this paper, but a brief 
description some important factors will be given. The uncertainty of these factors 
contributes to the uncertainty of forward prices.  
 
An important aspect is the exchange capacity through new undersea cables to 
Mainland Europe. There is a lot of political and economic uncertainty in these 
projects. Increased exchange capacity will probably lead to higher daily fluctuations 
within day and night, but will probably also decrease the extreme high peaks in cold 
winter days.  
 
Another important factor is political decisions about Swedish nuclear plants. A further 
decrease in this capacity will probably cause higher prices in general. 
 
Trading of green certificates will probably also rise the price level in the Nordic area. 
How such certificates in great scale will affect European power prices is not known, 
but the idea is based on the assumption that consumers are willing to pay a price 
premium for green energy.  
 
Other factors such as technological development, public attitudes to hydropower and 
economic progress in general will also make contributions to the forward prices. 
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3.2.1 Forward Prices vs. Spot Prices 
Forward prices are often used when a certainty equivalent is needed for the future 
cash flow. There is uncertainty attached to the future income from trading in the spot 
market. By trading in the forward market this uncertainty is eliminated and the cash 
flow can be looked upon as certain. Hence to maintain consistence with the market, 
the decision maker should set the spot price for a given period equal to the forward 
price of delivery in that period. (Fleten et al, 2002) 
 

3.3 Mathematical Tools 
In this chapter some mathematical tools are listed. These are often used in price 
models. 

3.3.1 Brownian Motions 
A Brownian motion is a process of the form 
 
δx=aδt +σδz         (3.1) 
 
where δz is a standard Wiener process of the form 
 
δz= ε*δ√(t)         (3.2) 
  
where ε is a norm inverted random number. 
 
The Brownian motion with a random walk and an expected drift can be used to model 
for example the spot price or the temperature where the future value is uncertain. 
 

3.3.2 Mean Reverting Processes 
A mean reverting process can be used to model for example the spot price. The 
process has the form: 
 
dS=κ(µ(t)-S)dt        (3.3)  
 
Definition of the variables: 
dS - The change in the spot price 
κ - This is the mean reverting factor that describes the speed of mean reversion 
µ(t) - The mean reverting value which the spot price reverts to 
dt - The increment of time 
 
This function can be used to describe non-permanent changes such as high prices due 
to extreme cold weather. This function will wipe out the high prices in a speed chosen 
by changing κ 
 

3.3.3 Jump-processes 
A jump process can be of the form: 
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SdqdS κ=          (3.4) 
 
Definition of variables: 
dS  -The change in the spot price  
dq  -A binary variable that is 1 at a given probability and 0 else 
κ  -A stochastic variable that describes the jump size 
 
Jump-processes are processes that describe sudden changes in prices, such as peak 
prices due to extreme cold weather. When dq is 1, the price make a jump. Jumps can 
be stationary or temporary. Jump processes will not be used or described further in 
this paper, but should not be ignored in describing special events as political decisions 
or extreme weather. (Clewlow and Strickland, 2000) 
 

3.4 One-factor Models 
In this chapter the Schwartz (1997) one factor model and the Lucia and Schwartz 
(2002) one factor model will be presented with prices and log prices. The different 
models are compared. Finally two stochastic factors are briefly mentioned. 

3.4.1 One factor models in general 
One-factor models describe pricing models with one stochastic factor. This stochastic 
factor can be the price or the log price. 
 
An important property of the one-factor model mentioned here is the following 
equation: 
 

( )( ) dzdtXtdX σµκ +−=        (3.5) 
 
Definition of variables: 
X    - The price/log price 
dX    - The increment of price/ log price 

( )( )dtXt −µκ   - The mean reverting process 
( )tµ    - The long run mean of the price/log price 

σ    - The price/log price volatility 
dz    - An increment to a standard Brownian motion  
 
This is also known as an Ohrnstein Uhlenbeck mean reverting process (Schwartz, 
1997). 

3.4.2 The Schwartz (1997) Model 
In the article of Schwartz (1997) a one factor model of the forward prices is presented. 
This model is on the form: 
 

( ) ( ) ( )







−+−+= −−− TTT eeSeTSF κκκ

κ
σα 2

2
* 1

4
1lnexp,    (3.6)  
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Or in log form: 
 

( ) ( ) ( )TTT eeSeTSF κκκ

κ
σα 2

2
* 1

4
1ln,ln −−− −+−+=     (3.7) 

 
 
The expression for the forward price is the solution of the following differential 
equation: 
 

( ) 0ln
2
1 22 =−−−+ TSSS FSFSFS λµκσ      (3.8) 

 
With terminal boundary condition: 
 

( ) SSF =0,          (3.9) 
 
The differential equation (3.8) is derived in Appendix A-1 using Ito’s Lemma and a 
portfolio approach. 
 
Definition of variables: 

2σ  -The volatility of the spot price 
µ    -The mean reverting level 
λ    -The market price of risk (assumed constant) 
κ    -The speed of adjustment 
S     -The spot price 

SSF  - 
S
F

∂
∂ 2

 

SF   -
S
F

∂
∂  

TF  -
t
F

∂
∂  

T     -The time at maturity 
α   -The mean reverting level of log prices 
 

κ
σµα
2

2

−=          (3.10) 

 
λαα −=*          (3.11) 

 
 
The Schwartz (1997) model can be used to model forward prices in the power market. 
In this model the spot price is modelled as a log price to avoid negative prices. The 
model is developed for commodities in general, but is not specially fitted for electric 
energy. 
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3.4.3 The Lucia and Schwartz (2002) Model 
In the article of Lucia and Schwartz (2002) it is shown how an Ohrnstein Uhlenbeck 
process leads to forward prices based on spot prices on the following forms: 
 

( ) ( ) ( ) ( )( ) ( )TT
T eefPTfPETPF κκ α −− −+−+== 10, *

0
*
000     (3.12) 

 
Definition of variables: 

( )TPF ,00  -Forward price as a function of time and starting price 
( )Tf   -A deterministic function 
( )0f   -The deterministic function at Time 0 

0P   -The starting spot price 

TP   -Spot price at time T 
T   -Time 
κ   -Speed of adjustment 

*α   
κ

λσ
−  

 
Based on log prices: 
 

( ) ( ) ( ) ( )( ) ( ) ( )







−+−+−+== −−− TTT

T eeefPTfPETPF κκκ

κ
σα 2

2
*

0
*
000 1

4
10lnexp,  (3.13) 

 
The Lucia and Schwartz (2002) model is in contradiction to the Schwartz (97) model 
specially suited for electric energy. The deterministic element given by f(t) makes a 
description of the seasonal behaviour of power prices possible. 
  
This seasonal behaviour is described by the following equation in Lucia and Schwartz 
(2002). 
 

( ) ( ) )
360
2cos( πτγβα +++= tDtf t       (3.14) 

 
Definition of variables: 
α -The basic level of the sinusoidal oscillation 
β -A constant that describe the consumption on Holidays 
Dt -A binary variable that equals 1 on Holidays 
γ -The level of the amplitude 
τ -The time delay from January 1. to the date of the highest price  
 
This is a sinusoidal curve around a basic level, α, which oscillates at a level given by 
γ. The maximum of the function during a year can be regulated by τ. The binary 
variable Dt makes it possible to adjust the prices to special days, such as public 
holidays. 
 

3.4.4 Comparing the two Models 
In Schwartz (1997) the long time equilibrium based on log prizes will be 
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In the Lucia and Schwarz 2002 Model with log prices the long-term equilibrium will 
be  

( ) 
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exp
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tf .        (3.16) 

 
Both equation (3.15) and equation (3.16) leads to the conclusion that higher market 
price of risk, given by λ, will cause lower forward prices.  
 
The Lucia and Schwarz (2002) model can describe seasonal behaviour; the Schwartz 
(1997) model cannot do that. The Lucia and Schwartz (2002) model will therefore be 
a better chose in cases where seasonal behaviour is important, such as in expansion 
decisions. 
 
From equation (3.15) and equation (3.16) it can be seen that f(t) and µ are not at the 
same level since both (3.15) and (3.16) describes the same forward price and the 
equations are different. The two models are different because Lucia and Schwartz 
(2002) use a slightly different presentation of the mean reverting level than Schwartz 
(1997). A proper regression of both models with constant f(t) in the Lucia and 
Schwartz (2002) model will show the same forward curve, but the mean reverting 
levels will be different. 
 

3.5 Two and three factor models 
In the article of Schwartz (1997) it is described models with up to three stochastic 
variables. In addition to prices, convenience yield and risk free rate are stochastic in 
these models. In the article of Lucia and Schwartz (2002) it is argued that a two-factor 
model describes forward prices in Nordpool better than one-factor models. Two-factor 
models are however more complex and will not be discussed further in this paper. 
 
It is claimed (Schwartz, 1998) that a two factor stochastic forward model can be 
described almost as a one factor stochastic model in the long run. This is because 
much of the difference in one and two stochastic factors will appear in the first three 
years. If the time to enter the market is long or the horizon of the investment is long 
enough, two factor models can be treated as one-factor models. 
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4 Algorithms for Solving the Generation Planning 
Problem 

This chapter describes different algorithms for solving the generation planning 
problem presented in chapter 2. The planning problem for a hydropower producer is 
very difficult to solve because of the great amount of calculations. Dynamic 
programming methods are common methods for solving these kinds of problems. 
 

4.1 Dynamic Programming Algorithms 
Dynamic programming (DP) is a useful technique for analysing a sequential decision 
process. It breaks the sequence of decisions into just two components, the immediate 
decision and a valuation function that captures the consequences of all subsequent 
decisions, starting with the position that results from the immediate decision. (Dixit 
and Pindyck, 1994) When DP is used for optimising reservoir operations, the 
modelling horizon is generally divided into different decision-making stages. For each 
stage, typically a week or month, a set of system states indexed by m = 1,…,M are 
defined. The state of the system describes different levels of storage in the reservoir, 
for example 100%, 90% etc. Figure 4-1 illustrates the system state definition for a 
single reservoir. (Faber and Stedinger, 2001, Pereira et al, 1999) 
 

 
Figure 4-1 Description of system states 
 
A release of water is chosen for each stage in order to maximize the sum of the 
current benefits of that release and the future benefits. The future benefits are 
dependent on the resultant storage in the following period. The model is solved with a 
backward recursive procedure. (Faber and Stedinger, 2001) 
 
The reservoir-storage mass balance can be written: 
 

( ) ( )
















⋅+= ++ 11,,max tttttt

R
tt SfRQSBSf

t

α     (4.1) 

 
{ }TtSt ,....,1∈∨∀          

 
( )11 , ++ −−+= tttttt SSeRQSS       (4.2) 
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Definition of variables: 
t  - The time period (stage) 
T  - The final period in the model 

tS   - The reservoir storage vector for period t 

1+tS   - The reservoir storage vector for period t+1 

tQ   - The inflow vector for period t 

tR   - The water release in period t 
( )*,*,*tB  - The benefit function for period t 

α  - The discount factor 
( )1, +ttt SSe  - The evaporation loss in period t 
( )tt Sf   - The benefits of the reservoir at stage t 

( )11 ++ tt Sf  - The future benefits 
 
The calculations starts in the final stage, T, calculating ft(St) for every state m. This 
requires that the current benefits BT(*) and the ending value for the storage to be 
known. The set of fT(ST) values is then used to calculate fT-1(StT-1) and so on, until 
f1(S1) is found for each state m in stage 1. The final stage, T, is often chosen to be at 
spring when the likelihood for overflow is greatest. Then the storage is set to be 
100%.  
 

4.1.1 Stochastic Dynamic Programming (SDP) 
The inflow to a reservoir in a time period is uncertain. The reservoir inflows can 
therefore be characterised as random variables described with probability 
distributions. With a stochastic description of the inflow, SDP can be used to compute 
the expected benefits from each release decision. If the current periods inflow are 
considered to be unknown, the reservoir mass balance equation can be written: 
 

( ) ( ) ( ){ }11,,max ++⋅+= tttttt
QR

tt SfRQSBSf E
tt

α      (4.3) 

 
{ }TtSt ,....,1∈∨∀           

 
{ } ( )( ){ }1max

* ,,,minmax +−−++= ttttttttt SSeSQSQSRR     (4.4) 
 
 
Definition of variables: 

*
tR     -The optimal target release vector for period t 

tR  -The optimal release vector modified to honour available 
storage, space and inflow 

tt QS +    -The total amount of water available 
( )1max , +−−+ rtttt SSeSQS  -The water  that cannot be stored 

 
The maximization in equation (4.3) occurs outside the expected value operator. 
Because of this a single release target *

tR  is chosen for the entire distribution of 
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unknown inflows. The inflow varies between different seasons of the year. It is 
therefore possible that the release is not feasible, so tR  must be adjusted to reflect the 
flow and storage space available. This is done in (4.4). This equation avoid overflow 
by choosing the highest value of wanted release and the amount of water not storable. 
Simultaneously, it is not possible to release more water than is available. 
 
To solve the SDP problem, the calculations are computed first in the final stage 
similar to the DP algorithm. For every state m, there are different inflow scenarios 
with different probabilities as described in figure 4-2. The expected value of the 
benefit is calculated for every state m at the last stage T, and these calculations are 
used to find fT-1(StT-1). This algorithm is follow until f1(S1) is found for each state in 
stage 1. (Pereira et al, 1999) 
 

 
Figure 4-2  Description of stochastic inflow at each state 
 
The SDP formulations do not capture stream flow persistence from one period to the 
next. By using the SDP formulation, the value of the stream flow at stage t + 1 is 
independent of the value at stage t. In reality, there is often a strong serial correlation 
between stream flows in consecutive periods. (Faber and Stedinger, 2001) 
 
SDP models usually describes stream flow with several carefully chosen discrete 
points, yielding a Markov Chain stream flow model. (Faber and Stedinger, 2001) 
 

4.1.2 Sampling Stochastic Dynamic Programming (SSDP) 
Stochastic Sampling Dynamic Programming models (SSDP) use a sample of stream 
flow scenarios to describe future flows instead of the Markov Chain description in the 
SDP models. The background for such an extension of the SDP framework is that 
SDP models often overestimate the benefits with particular release decisions (Faber 
and Sterdinger)   
 
 
 
 
The model can be written: 
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⋅+ ++ 11,,max ttjIitttt
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SfERiQSB
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α    (4.5) 

   
 
∀ St, i and t∈{1,….,T}         
 

( ) ( )( ) ( )11, ,, ++⋅+= ttttttitt SfRiQSBSf α      (4.6) 
     
∀ St, i and t∈{1,….,T}        
    
 
Description of variables: 
i - The stream flow scenario 

( )iQt  - The stream flow in period t, scenario I 
 
The main difference from SDP given by equation (4.3) is that f t+1(St+1) now is given 
by a probability of scenario j followed by scenario i. This implies the construction of 
transition probabilities. This will not be discussed further in this paper. 
 

4.1.3 Stochastic Dual Dynamic Programming (SDDP) 
This approach is based on an analytical representation of the future benefits of 
resources. It does not require discrete states. In SDDP, the benefits at each stage are 
represented as a piecewise linear function which correspond to the value of benefit in 
each state as shown in figure 4-3. (Pereira et al, 1999) 
 

 
Figure 4-3 Calculation of piecewise future benefits for stage T-1 
 
The model can be written as a LP problem: 
 

( )( ) ( ){ }11,,max)( ++⋅+= tttttttt SfRiQSBSf α     (4.7) 
 
 
 
 
subject to      simplex multiplier: 
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( ) ( )1,1 , ++ −−+= tttttmtt SSeRiQSS     ith ,,π   (4.8) 
 

max1 SSt ≤+          (4.9) 
 

maxRRt ≤          (4.10) 
 

nttntt Sf ,11,11 ++++ +≥ δϕ        (4.11) 
 

∑
=

⋅=
I

i
ithimt p

1
,,, πϕ         (4.12) 

 

( ) mt

I

i
mtmtitimt SSfp ,

1
,,,, ⋅−⋅= ∑

=

ϕδ       (4.13) 

 
Definition of variables: 

ith ,,π   - The marginal value of the water 

mt ,ϕ   - The coefficient for the mth linear segment of the future benefit 
function 

nt ,1+δ   - The constant term for the mth linear segment of the future benefit 
function 

ip   - The probability of inflow scenario i 
i  - The number of inflow scenarios. i = 1…I 
m  - The number of states. m = 1…M 
n  - The number of linear segments. n = 1…N 
 
It is known from linear programming that there is a set of simplex multipliers 
associated to the constraints of a problem at the optimal solution. These multipliers 
represent the value of one additional unit on the constraint right-hand side.  

 
Figure 4-4 Piecewise linear future benefit function  
 
It is shown in figure 4-4 that the benefits of the resources are highest when the storage 
level is high. At a high storage level the value of the water is low, which can be 
compared to low cost of the water. 
 
The number of linear segments is equal to the number of initial storage values M. The 
current benefits and some ending value for storage are known at the last stage. 
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First the computations are done in the final stage T. Starting in one of the states, 

)( tt Sf is calculated for all the inflow scenarios and the maximum benefit of those 
scenarios are found. Then, the coefficient and the constant term of the mth linear 
segment of the future benefit function are calculated. When all the storage levels are 
calculated for the last stage, the future benefits function for stage T-1 is found. This 
function will be used in the calculations of the previous stages. This algorithm is 
followed until )( 11 Sf  is calculated for all the inflow scenarios at all the states. 
 
By using the stochastic dual dynamic programming method, the output reservoir level 
can be regarded as a continuous variable at each stage. It is not necessary to calculate 
as many states for each stage as in common SDP, because the output of the method 
does not need to be one of the calculated states, but a point on the piecewise linear 
future benefit function. 
 

4.2 Comparing the different algorithms 
In the following chapter the different algorithms described above, will be compared, 
by looking at advantages and disadvantages of the different methods. 

4.2.1 Advantages and Disadvantages 
The use of regular dynamic programming is limited to control problems with a small 
number of state variables, because of the great amount of calculations. Thus, new 
dynamic programming methods have been developed to solve problems with greater 
complexity. 
 
In regular DP there is no uncertainty attached to the different states. In real life, the 
forecast of the future are often uncertain. To solve control problems where the future 
is uncertain, the state variables have to be stochastic variables. Hence, SDP is a more 
realistic method for solving real life problems. In common SDP, there are 
probabilities attaches to different expected future inflows. Thus, in this approach the 
expected future inflow are used as input variable in every state. The problem with this 
approach is that there is not modelled any serial correlation between the stream flow 
in consecutive periods of time, which is often the case in real life. 
 
The SSDP algorithm uses samples of inflow as input variable in every state. Thus, this 
method takes full advantage of the description of stream flow variability, and 
temporal and spatial correlations captured within the traces. One disadvantage of the 
SSDP approach is that the optimal solution is based on one inflow scenario, and it is 
not possible to move between different scenarios. The SSDP algorithm compared to 
SDP algorithm will anyway contribute only with marginal improvements.  
 
All the dynamic programming methods described so far is limited to a small number 
of state variables to keep the number of calculations within a reasonable limit. By 
using the SDDP method, there is no need to calculate a great number of states to get a 
detailed result. In this approach the output reservoir storage level can be treated as a 
continuous variable.  
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5 A Real Options Evaluation Approach 
In this chapter a real option framework will be described. This framework will be 
used in chapter 6 where a capacity expansion of Svartisen is evaluated. Initially the 
real option approach will be compared to the traditional approach. Then the 
contingent claims analyses will be presented. This method is used in finding the value 
of the option to invest in extra capacity. 
 

5.1 The Traditional Approach vs. the Real Option Approach 
The traditional way of determining the investment decision is the net present value 
approach. This common rule says that an investment should be undertaken when the 
present value of the projects expected cash flows is at least as large as its cost. This 
approach ignores managerial flexibility like the option to postpone an investment. 
(Dixit and Pindyck, 1994, Hull, 2002) 
 
The application of option concepts to value real assets has become an important area 
in the theory and practice of finance. (Schwartz, 1998) Real options are an important 
tool in the financial valuation of generation, especially hydroelectric generation. 
(Frayer and Uludere, 2001) The real option approach has major advantages compared 
to the traditional NPV approach. The real option approach avoids the need to make 
assumptions about trajectory of spot prices in the future since this method uses the 
information contained in futures prices. Another advantage with the real option 
approach is that it does not require the estimation of risk-adjusted discount rate, since 
it uses the risk free rate of interest. (Schwartz, 1998) 
 

5.2 Contingent Claims Analysis 
Contingent claims analysis is derived from financial economics. An investment 
project can be defined by a stream of costs and benefits that vary through time and 
depend on the unfolding of uncertainty of the future. Owning an investment 
opportunity can be compared to owning an asset that has a value. In the modern 
economy, there are markets for all kinds of assets. To find the market price of an 
investment project is thus easy if the asset is traded in the market. If it is not directly 
traded in the market, it is possible to compute an implicit value for it by relating it to 
other assets that are traded. (Dixit and Pindyck, 1994)  
 
To find the value of an investment project, it is necessary to look at some combination 
or portfolio of traded assets that replicate the patterns of returns from the investment 
project, at every future date and in every future uncertain eventuality. Once the value 
of the investment is known, it is possible to find the best form, size, and timing of 
investment that achieves this value, and thus an optimal investment policy can be 
determined. (Dixit and Pindyck, 1994) 
 

5.3 Option to Invest Model 
McDonald and Siegel developed a model to decide when to invest in a single project. 
In this model, the cost of the investment, I, is known and fixed, while the value of the 
project, V, follows a geometric Brownian motion: 
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VdzVdtdV σα +=         (5.1) 

 
Definition of variables: 
V - The value of the project 
α - The expected percentage rate of change of V 
σ - The proportional variance parameter  
dz - The increment of a Wiener process 
 
The future value of the project is always uncertain, which means that there is an 
opportunity cost of investing today. Hence the optimal investment rule in this model 
is to invest when V is at least as large as a critical value V* that exceeds I. (Dixit and 
Pindyck, 1994) 
 
The firm’s investment opportunity can be looked upon as a call option. The decision 
to invest is therefore equivalent to deciding when to exercise such an option. The 
investment decision problem can now be viewed as a problem of option valuation. 
(Dixit and Pindyck, 1994) 
  
It is desired to maximize the value of the investment opportunity, F(V).  
 

( ) ( )[ ]T
T eIVEVF ρ−−= max        (5.2) 

 
Definition of variables: 
F(V)  - The value of the investment opportunity 
E[*]  - The expected value 
T  - The unknown future time that the investment is made 

TV   - The value of the project at the time the investment is made 
I  - The investment cost 
ρ  - The discount rate 
 
It is assumed that α<ρ, because otherwise waiting would always be the best 
alternative, and no optimum would exist. From now on, δ, will denote the difference 
α-ρ. 
 
To solve the investment problem, is equal to determine the point when it is optimal to 
invest I in return for an asset worth V. V evolves stochastically when σ > 0. Then it 
will not be able to determine the time T for the investment. Instead a critical value V* 
will be found such that it is optimal to invest once V>=V*. 
 
Dixit and Pindyck derive the optimal investment rule by using two different methods; 
dynamic programming and contingent claims method. In this paper the contingent 
claims analyses will be used. 

5.3.1 The Contingent Claims Method 
When using the contingent claims method, it has to assumed that existing assets in the 
economy span the stochastic changes in V. This means in principle that existing assets 
can replicate the uncertainty over future values of V. With this assumption, it is 
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possible to solve the investment problem without making any assumptions about risk 
preferences or discount rate.  
 
Let x be the price of an asset or a dynamic portfolio of assets that are perfectly 
correlated with V. xmρ denotes the correlation of x with the market portfolio. Because 
x and V are perfectly correlated, Vmxm ρρ = . The assumption is made that x pays no 
dividends, so it’s entire return is from capital gains. Then x evolves according to 
 

dzxdtxdx ⋅⋅+⋅⋅= σµ        (5.3) 
 
Definition of variables: 
µ - The drift rate or the expected rate of return 
σ - The volatility of the asset 
 
According to the Capital Asset Pricing Model (CAPM), µ should reflect the asset’s 
systematic risk. 
 

σρµ ⋅⋅Φ+= xmr         (5.4) 
 
Definition of variables: 
r - The risk-free interest rate 
Φ - The market price of risk 
 
µ is according to this, the risk-adjusted expected rate of return that investors would 
require if they are to own the project. The firm would never invest if α, the expected 
percentage rate of change of V, was less than µ. Thus, δ denotes the difference 
between µ and α, and it is assumed that δ > 0. Then the expected rate of capital gain 
on the project is less than µ. Hence δ is an opportunity cost of delaying construction 
of the project, and instead keeping the option to invest alive. (Dixit and Pindyck, 
1994) It is assumed that δ is constant, this means that future cash flows will be a 
constant proportion of the project’s market value.  
 
The market price of risk measures the tradeoffs between risk and return that are made 
for securities dependent on a specific variable. At any given time, the market price of 
risk must be the same for all derivatives that are dependent only on this variable and 
time t. The expression for the market price of risk is described in Hull (2002) chapter 
21. 
 

5.3.2 Obtaining a Solution  
To find a solution a portfolio consisting of holding an option to invest, which is worth 
F(V), and going short an amount n= F´(V) units of the project is considered. This 
gives the following value of the portfolio:  
 

( ) VVFVF ⋅−=Φ )´(         (5.5) 
 
A short position in such a portfolio will require a payment of δV F´(V) dollars per 
period. This is the amount a rational investor that has a long position on F`(V) units of 
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the project would require to take that position. δ is as previously mentioned the 
difference between the growth rate of the project, α, and the risk-adjusted rate µ. Thus 
δ can be compared with the dividend rate. An investor holding a long position in the 
investment project would require a payment equal the risk-adjusted return. 
 
The return from holding the portfolio over a short time interval, dt, can then be 
written: 
 

( ) dtVFVdVVFVdF )´()´( ⋅−− δ       (5.6) 
 
Ito's lemma is used to find an expression for dF. This is explained in Appendix A-2 
 

( ) 2))(´´(
2
1)´( dVVFdVVFVdF +=       (5.7) 

 
By inserting equation (5.7) into equation (5.6), the following expression for the total 
return on the portfolio occurs: 
 

dtVFVdVVF )´())(´´(
2
1 2 ⋅− δ       (5.8) 

 
From equation (5.1) it is known that ( )2dV can be written as dtV 22σ . This is because 
the standard Wiener process dtdz ε= , where ε is a random drawing from a 
standardized normal distribution, N(0,1). By replacing ( )2dV  in equation (5.8) the 
return on the portfolio becomes: 
 

dtVFVdtVFV )´()´´(
2
1 22 ⋅− δσ       (5.9) 

 
This evaluation approach is an extension of the risk-neutral valuation framework. 
(Hull,2002, chapter 28 and 21) This return is therefore risk-free. Thus to avoid 
arbitrage possibilities, equation (5.9) must be equal [ ]dtVVFFrdtr )´(−=⋅Φ⋅ . Then 
this expression is derived: 
 

[ ]dtVVFFrdtVVFdtVFV )´()´()´´(
2
1 22 −=− δσ     (5.10) 

 
Rearranging equation (5.10) gives the following differential equation that F(V) must 
satisfy: 
 

( ) 0)´()()´´(
2
1 22 =−−+ VrFVVFrVFV δσ       (5.11) 

 
In addition, F(V) must satisfy the following boundary conditions: 
 

( ) 00 =F          (5.12) 
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( ) IVVF −= **         (5.13) 
 

1*)´( =VF          (5.14) 
 
The first condition (5.12) arises from the observation that if V goes to zero, it will stay 
at zero. Then the option to invest will have no value. V* is the critical value of the 
project at which it is optimal to invest. The second condition (5.13) is a value-
matching condition. It just says that the value of the option to invest when the value of 
the project is equal to the critical value, is equal to the payoff the firm will receive 
upon investing. The final condition (5.14) is a “Smooth-pasting” condition. F(V) has 
to be continuous and smooth at the critical exercise point V*, or else it could have 
been done  better by exercising at a different point. 
 
The solution for F(V) has the form: 
 

1)( βAVVF =          (5.15) 
 

2
2

22
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 −−+−−=    (5.16) 
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1
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−
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β
β          (5.18) 

 
Since 1β >1, 1β /( 1β -1)>1 which makes V*>I. Thus the simple NPV rule is incorrect; 
uncertainty and irreversibility drive a wedge between the critical value V* and I. 
(Dixit and Pindyck, 1994) 
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6 Capacity Expansion in Svartisen 
In this chapter, the theoretical framework presented earlier in this paper will be used 
in a test case. The EOPS model (“EFI’s One-area Power-market Simulator”) from 
Sintef Energy is used to calculate the NPV of an expansion project at the Svartisen 
plant. As input to the EOPS model a modified version of the Lucia and Schwartz 
(2002) model, which was presented in chapter 3, is used. Further his chapter describes 
the assumptions and modifications that have been made in order to use the model in a 
practical case. The outputs from the EOPS model were used to value the option to 
expand using the real option framework presented in chapter 5. 
 
The test case is an illustration of how an analysis can be done, and the inputs are not 
realistic enough for a decision to be taken. 
 

6.1 Methodology  
The methodology is as follows: 

1. The EOPS model from Sintef Energy was chosen as solution method. 
2. The Lucia and Schwartz (2002) model with log prices was chosen. With this 

price model an analysis of changes in seasonal and weekly fluctuations and 
mean reverting level was done. These analyses were done with the EOPS 
model and with analyses of data from Nordpool using Excel. 

3. A modified version of the Lucia and Schwartz model was constructed by using 
the results from 1. This model was fitted to use as input to the EOPS model, 
requiring 70 price scenarios. 

4. NPV were calculated for three different capacity expansion projects using 
serial simulations in the EOPS model. 

5. The value of the option to invest was calculated for the different expansion 
scenarios using the framework presented in chapter 5.   

 

6.2 The Solution Method 
This chapter describes the algorithms used in the EOPS model and the simplifications 
that were used in the capacity expansion of the Svartisen case. 
 

6.2.1 Algorithms and Methods used in the EOPS Model 
In the EOPS model, the inflow is a stochastic variable. There are probabilities 
associated to different options of inflows for the next period, and the expected value 
of these inflows is used to calculate the value of the water. Thus, there is not modeled 
any serial correlation between the inflow in consecutive periods. This has been tried 
in a previous version of the EOPS model, but it did not make any trivial influence on 
the calculations. Accumulated probabilities have been used in given time periods.  
Then the probabilities become accumulated in consecutive periods. However the 
calculations has not been significantly changed by this method. (Mo, 2002). 
 
The price is modeled as a Markov chain. Hence, the prices in one week influence the 
prices in the following week. Theoretically, it is possible to have a high price and a 
high inflow in one period of the analysis, but in practice this is not a problem.  
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The EOPS model models the hydro system as an equivalent one-reservoir model. The 
value of the water is calculated with expected inflow and price forecasts as input. 
Then the value of the water is used in the simulations where relevant constraints are 
taken into the model. In the simulations, historical inflows are used as input. 
 
Start and stop costs are not modeled in the EOPS model. At a hydropower plant, the 
cost associated with starts and stops are not considerable high. Thus, these costs do 
not make a huge influence on the production planning. 
 

6.2.2 Simplifications used in the EOPS Model 
In the EOPS model, it is possible to model weekly fluctuations in the prices. Then the 
highest prices are placed after each other and not in a sequential order. It is not 
possible to model weekly fluctuations in sequential order. It is neither possible to 
model daily changes. This can be modelled in the ORP method (Optimal regional 
planning), another simulation tool made by Sintef Energy. 
 
In addition the ORP method can model inflow at hourly resolution. Our pricing model 
will not support this function because the prices will not correspond to the inflow-
hour. This is of great importance in river power plants with low regulation level, but 
will be of minor importance in the Svartisen case because the system is regulated 
well.(Mo,2002)  
 

6.2.3  Settings in the Simulations of the Test Case 
An expansion of the capacity can be regarded as an investment. In investment 
analysis, the inflows are simulated in series instead of in parallel. In a serial 
simulation, all the historical inflows are places after each other, the inflow for one 
year starts at the point where the previous year stops. In a parallel simulation, the 
different inflow scenarios start on the same storage level. Hence, the simulations were 
run with serial inflow. 
 
In the EOPS model, there is an option to choose calibration or not in the simulations. 
In the Svartisen case the simulations were run without calibration. If the description of 
the hydro system does not differ considerable from the equivalent one-reservoir model 
and the producer is risk neutral, calibration has negligible influence on the 
calculations. If the hydropower system cannot be described realistic by an equivalent 
one-reservoir model, or the producer is risk averse, the model can be adjusted with 
calibrations that take this into account. Calibration can also be used to connect the 
power production to a local market. Hence, the production is adjusted to serve this 
market. 
 

6.3 Description of the Power Plant, Svartisen 
Some facts about the Svartisen hydropower plant: 

• Built in mountain 
• 1 generator, 350 MW (Norway’s biggest) 
• The mean annual production: 2,17 TWh 
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• The capacity of the reservoir: 3,5 billion m3 
• Tunnels: ca. 100 km 

 

(http://www.statkraft.no/wbch3.exe?p=1890) 
 
The plant is modified to have a linear power curve from origin to the point where the 
power output is 350 MW and the stream flow is 69,81m3/s. 
 
Other simplifying assumptions made: 

• All energy were sold on the spot market 
• No limitations on the grid capacity 
• No fixed contracts 
• Price taking assumptions 
• No constraints on water courses and reservoir level 
 

6.4 The Choice of Price Model 
The Lucia and Schwartz (2002) one factor model is chosen as basic price model. This 
model is initially adjusted to describe weekly fluctuations and further modified in 
order to explain what happens to prices when the amplitude of the seasonal behavior 
changes. This is of great importance since the expected spot prices from Statkraft 
were modified to the forward price model. Limitations of the Lucia and Schwartz 
(2002) log price model and the modified Lucia and Schwartz (2002) log price model 
are discussed. 
 

6.4.1 The Chosen Price Model 
Due to the complexity of two factor-price models, a one-factor model was applied. 
The Lucia and Schwartz (2002) one-factor model was chosen because it is possible to 
implement a seasonal behavior in that model. Further the log price model was chosen 
because that model always has positive prices. Because of the importance of changes 
in seasonal behavior of the power prices it was necessary to model the amplitude of 
the deterministic part as a Brownian motion. To model the weekly price changes a 
technique similar to what SEFAS applies in their EMPS (“EFI’s Multi-area Power-
market Simulator”) and EOPS models was used. The 168 hourly prices in a week 
were divided in four different categories, each with 42 hourly prices. The lowest 
prices were in the first category and the highest prices were placed in category 4.By 
this representation it was possible to construct a price model with the weekly and 
seasonal changes in prices, which are of utmost importance in planning of power 
expansion.  
 
 
The Lucia and Schwartz (2002) model with 4 price categories: 
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Definition of the variables: 
 
C(T)   - price category factor : c1 for T=1:42 +n*168,  

      c2 for T=43:84 +n*168,  
      c3 for T=85:126 +n*168,    

    c4 for T=127:168 +n*168 
 

Because )(Tf  is a deterministic part, it is referred to as the mean reverting level and is  
given by: 

  ( ) 





 ++

8760
2cos πτγα T  

 
α - The mean reverting level 
β - A constant 
γ - The level of the amplitude  
τ - The time delay in hours from January 1. to the date of the highest prices  
λ - The market price of risk 
σ - The volatility of the Spot price 
κ - The mean reverting factor 
P0  - The spot price at t=0 
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Figure 6-1 The Lucia and Schwartz (2002) model with 4 price categories. P0 is 

lower than the long time equilibrium. After a while the forward price 
approaches long time equilibrium above the mean reverting level 

 

6.4.2 Limitations of the Price Model 
The model cannot be used to make production plans in power plants where the 
aggregates have large start up costs. It is because all the highest prices during a week 
will be placed after each other in time. With the chosen model the aggregate are just 
started one time during the week if it is desired to produce at the 42 hours with highest 
prices. In the real world the aggregates would be turned on several times inflicting 
start up costs. To solve this “start up cost- problem” a Mixed Integer Programming 
tool is needed. However there are no long time scheduling programs available today 
with Mixed Integer Programming algorithms for modeling start up costs. Such 
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algorithms are available in short time scheduling programs such as SHOP from 
SEFAS, but the calculations will be to heavy for long or medium time scheduling. In 
other words our pricing model should be appropriate for most of the available long- 
and medium time- scheduling programs.  
 
Another weakness in the modified price model is that an arithmetic mean price is 
calculated in each price category and further used as price for the whole bulk. In the 
real world greater volumes of higher prices and lower volumes of lower prices would 
have been sold. Due to this a lower economic results will be received by using the 
chosen price model than by using a price model with real hour values. To avoid this 
the numbers of categories can be increased.   

6.4.3 The Influence of the Mean Reverting Level 
An interesting question is what happens if the mean reverting level changes. An 
increase in the mean reverting level will make a great difference on the total profit, 
and will have a smaller influence on the expansion decision. In the Lucia and 
Schwartz (2002) model the mean reverting level is constant and the amplitude, γ, is 
given by a Brownian motion independent of the mean reverting level. Since the price 
model has an exponential expression the difference between summer and winter 
prices will be larger with larger values of γ. In figure 6-2 there are two different 
forward curves with different mean reverting levels, but with equal γ=0,3. 
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Figure 6-2 Different mean reverting levels with equal γ 
 
It was tested how different levels in the mean reverting level would affect a decision 
to expand the Svartisen plant using the Lucia and Schwartz (2002) pricing model with 
4 price categories. For weekly fluctuations the simple formula below was used: 
  
Price category 1= base price *0,90,  
Price category 2 =base price *0,95,  
Price category 3 =base price *1,05   
Price category 4 =base price *1,10      (6.2) 
 
 These last numbers are reasonable assumptions and were not tested empirically. 



Capacity Expansion in the Electricity Market 

 30

Mean reverting level 
(NOK/MWh) 

104 114 124 134 144 154 164 

NPV of 35MW expansion 
(mill NOK) 

1,94 1,86 1,95 2,19 2,41 2,57 2,82 

Table 6-1 The mean reverting level’s influence on the NPV 
 

From table 6-1 it can be seen that the mean reverting level will have influence on the 
expansion decision. 
 
Another aspect is that when the prices are higher the economic losses due to overflow 
will increase. This will of course favor expansion to minimize the overflow. This 
phenomenon will probably not influence the decisions made and will not be discussed 
further.  
 

6.4.4 Modifications of the Price Model 
This chapter discusses how the value of the amplitude, γ, a given year will have an 
influence on the weekly price fluctuations. The Lucia and Schwartz (2002) model is 
modified, to make a better fit of necessary needs, to a model with precise weekly 
fluctuations. 
 
An important question for us is if the amplitude, γ, changes with the level of the mean 
reverting level, and if the weekly price changes as a function of γ. To test this, spot 
prices from Nordpool in the period 1993 to 2001 were used. As a rough estimator of γ 
the third lowest and the third highest spot price that year were used in the following 
formula: 
 

( )
2

lowhigh −
=γ         (6.3) 

 
Figure 6-3 shows that the estimate is not far from the empirical values. 
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Figure 6-3  The value of γ for 2001 was estimated to 0,23 using equation (6.3). This 

figure shows that the estimate is acceptable. 
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Further a regression of γ versus ln(spot price) was run, and this resulted in the 
following formula: 
 

( )spotln480,085,2 ⋅−=γ           (6.4)  
 
To test the hypothesis γ = 0 versus γ ≠  0 we used a statistical analyses used on 
normal distributed variables with unknown variance; the T-test. A T-test versus a 
hypothesis of γ = 0 of gives the P-values, of 0 and 1.3 for the parameters in equation 
(6.4) (Appendix A-3). This implies that the hypothesis that the value of γ is 
independent of the spot price can be rejected. Appendix A-3 also shows a residual plot 
for the regression. There are no systematic patterns in the plot. However, this 
regression line cannot be adequate for all values of the spot. Equation (6.4) implies 
that for spot prices over 379NOK/MWh, the value of γ will be below zero and prices 
will be highest in the summer.  
 
Empirical it can be seen that in periods of high spot prices the difference in NOK 
between summer and winter are highest, but the ratio between winter prices and 
summer prices are highest in low price years. This can also be deduced from what is 
known about the prices. The price elasticity is low, and this will result in extreme low 
prices in wet summers, which give us great values of γ. From equation (6,3) it can be 
seen that γ will go to 2,85 as prices approaches zero. The log price model prevents the 
price from crossing zero, but the high γ value will cause great fluctuations using this 
model.  
 
Further the weekly fluctuations were regressed versus the gamma values and  the 
following results were obtained: 
 
  0,982-0,034 γ  for T=1:42 +n*168,  

  0,9973-0,016 γ  for T=43:84 +n*168,  
 1,0021+0,0106 γ  for T=85:126 +n*168,     
 1,0175+0,0235 γ  for T=127:168 +n*168   (6.5) 
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Figure 6-5 The price categories versus basic price 
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The P-values are between 3 and 15 percent, and a residual plot (Appendix A-3) show 
that these numbers cannot be looked upon as reliable. High P-values makes it 
impossible to say with certainty that prices fluctuate during the week as a function of 
γ. However the values are consistent with each other and are therefore used anyway. 
If the numbers in figure 6-5 are correct, then lower prices (with their high γ values) 
should have the greatest fluctuations compared to the log price. Figure 6-6 confirms 
that this is the truth. However figure 6-6 also shows that there are a lot of uncertainty 
and that the linear estimate in equations (6.5) probably not is good enough. 
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Figure 6-6 Weekly price fluctuations versus log prices 
 
By using a revised model with variable γ it was possible to describe more realistic 
price fluctuations through a week. When the model was available equation (6.4) were 
also used to describe the mean reverting level. In this way, it was managed to get a 
function with lower valleys and lower peaks than an ordinary sinusoidal function. In 
addition a more realistic weekly fluctuation is achieved. 
 
The revised Lucia and Schwartz (2002) model with 4 price categories 
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Definition of the variables: 
 
C(T) = price category factor : 0,982-0,034 γ for T=1:42 +n*168,  

      0,9973-0,016 γ for T=43:84 +n*168,  
      1,0021+0,0106 γ for T=85:126 +n*168,  

    1,0175+0,0235 γ for T=127:168 +n*168 
 

Because )(Tf  is a deterministic part, it is referred to as the mean reverting level and is 
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given by:  

 ( ) 
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 α - The mean reverting level 

β - A constant 
γ - 2,48-0,48 ( )1−tf  
τ - The time delay in hours from January 1. to the date of the highest 

prices 
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Figure 6-7 Comparison between different versions of Lucia and Schwartz (2002) 

log price models. The modified version has deeper valleys and rounder 
peaks. The weekly fluctuations are fitted to empirical data in the 
modified model. 

 

6.4.5 Limitations of the Modified Price Model 
An interesting question is if the modified Lucia and Schwartz (2002) model is better 
in describing changes in the mean reverting level. This was tested on the Svartisen 
case with γ described by equation (6.6) 
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Mean reverting level 
(NOK/MWh) 

94 104 124 134 144 154 

NPV of 35MW expansion 
(mill NOK) 

1,92 1,65 0,85 0,84 0,71 0,98 

Table 6-2 The mean reverting level’s influence on the NPV 
 
From table 6-2 it can be seen that the revised model gives an opposite picture of the 
influence of a change in the mean reverting level. It is not possible to say how a 
change in this level will have any influence on the expansion decision. Neither of the 
models can be used to describe changes in the mean reverting level, but the revised 
model will better explain the prices given a certain mean reverting level. 
 

6.5 The Simulations 
This is a description of how the Lucia and Schwartz (2002) model with 4 price 
categories was used simulate the NPV of an expansion of 30MW, 150MW and 
300MW. 
 

6.5.1 Adjustment to the input price model 
A price model with 70 price scenarios was received from Statkraft. It is not known if 
this model represent an up to date and correct spot forecast, but it was treated as it 
should have been. To adjust the model to represent forward prices instead of expected 
spot prices the following algorithm was used 
 

1. Calculate the mean expected spot price for a given week 
2. Calculate forward-mean expected spot price for that week 
3. Calculate the difference between the numbers in 2 and 1 
4. Add the result in 3 to each of the price scenarios for the given week. 

 
In addition 4 different price categories was calculated as explained in the modified 
Lucia and Schwartz (2002) model. No particular inputs to the forward model were 
used, instead adjusted the parameters were used. Resonable imputs were used and 
adjusted so that the forward price was slightly above the mean expected spot price. 
The price model received from Statkraft had less seasonal fluctuations for the mean 
expected spot price, than the price series observed at Nord Pool. The value of  γ was 
adjusted with –0,43 compared to equation (6.4) to fit the seasonal behavior of the 
mean expected spot price. 
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Expected spot price versus Forward curve
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Figure 6-8 Expected spot price versus Forward curve 
 

6.5.2 The simulations 
The original plan was to calculate the net present value of building several modules of 
30MW with different values of γ. However the EOPS model gave unrealistic values 
for some input data. Instead a simulation for one module of 30MW was run with 
different values between 0 and 30 MW and the NPV was calculated as a regression. In 
addition an expansion of 150MW and 300MW was simulated. 
 
Using 11 simulations for 7 different gamma values made the results that are shown in 
figure 6-9. 
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Figure 6-9 The NPV of an expansion versus capacity 
 
As can be seen in figure 6-9 some of the numbers are not optimal solutions. 362MW 
and 366MW are the most extreme cases. After the regression, the numbers of “gamma 
basic +0,05” and “gamma basic + 0,10” looks strange, but the other numbers are 
according to what is expected: Higher γ gives higher NPV.  
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NPV of expansion regressed values
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Figure 6-10 The NPV of an expansion with regressed values 
 
 

gamma NPV of 30MW 
expansion(mill NOK) 

NPV of 150MW 
expansion(mill NOK) 

NPV of 300MW 
expansion(mill NOK) 

Basic 1,98 5,79 11,31 
Basic + 0,05 2,35 7,22 13,41 
Basic + 0,10 2,22 8,18 14,98 
Basic + 0,15 2,73 9,54 17,24 
Basic + 0,20 3,09 11,32 19,40 
Basic + 0,25 3,54 12,98 21,61 
Basic + 0,30 4,02 14,71 23,69 

Table 6-3 The NPV of an expansion of 30MW, 150MW and 300MW after 
regression 

 

6.6 An Evaluation off the Option to Expand 
This chapter describes how to calculate the option to expand given NPVs of an 
expansion. Further the inputs to the option model and the limitations of the model are 
described. 
 

6.6.1 The Value of the Option to Expand 
To calculate the option to expand the framework of Dixit and Pindyck (1994) 
described in Chapter 5 was used. The only stochastic factor of importance in the 
model is σγ , which describes the Brownian motion of the amplitude. The spot price 
itself is also stochastic, but the mean reverting level forces this stochastic process to 
become unimportant. This is because prices approach long time equilibrium during 
the first year. After that the forward price will be given from this long time 
equilibrium.  This is also according to the theories published by Schwartz in 1998, as 
is mentioned in chapter 3. In that article it is claimed that a two factor stochastic 
forward model can be described almost as a one factor stochastic model in the long 
run. 
The following inputs were used: 
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R= 7%    Based on the interest rate today. (Forward rates for very long 

time should be used) 
I = 30 mill NOK Based on the assumption that expansion are possible without 

further construction in watercourses and penstocks (Faanes, 
2002) 

V= I/r Assumption: Constant cash flow  
δ=r Based on the assumption that the value of the generator is the 

same as the investment costs for all time periods. This means a 
continuous depreciation at a level of r. 

σγ  =5 % This is a input to the model, and is not calculated exactly. 
However by using this number after 10 years a 30MW 
expansion is trigged in 14.1% of the cases (Appendix A-5). No 
150MW or 300MW expansion is trigged in this period even if 
these projects were looked upon as isolated investment projects. 

 
The results achieved in the tests were regressed linearly to get a smooth line for the 
net present value of the project. These curves are given in Appendix A-6. By applying 
equation (5.15-5.18), which is presented in chapter 5, the results given in figure (6-
11)-(6-13) were given. In this example 150MW and 300MW will never be built 
because an option to expand 30MW always is more worth up to delta γ = 0,09 where 
the option is realized.  
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Figure 6-11  The Option to expand 30MW versus NPV 
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Option versus NPV 150 MW
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Figure (6-12)  The Option to expand 150MW versus NPV 
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Figure (6-13) The Option to expand 300MW versus NPV 
 
Changes in the value of γ have a great influence on the expansion decision. For a 
model with a time horizon of 10-20 years it can be dangerous to base the decision on 
the level of a single factor. A change in the volatility of σγ  will completely change the 
decision. There is therefore a lot of uncertainty to the model, and it is important for a 
potential user to constantly supervise the power market. The empirical data behind 
figure (6-11)-(6-13) are presented in Appendix A7. 
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7 Summary 
This paper consists of two parts:  

• A theoretical part, which describes different theories of importance in 
understanding generation planning and valuing options to invest. 

• A practical part that uses the theoretical framework to value an option to 
expand Svartisen power plant with 30MW, 150MW and 300MW.  

 
The theoretical part describes The Nordic Power Market and the properties of Hydro 
Power Scheduling. Further the theoretical fundament of solving the generation 
planning problem is described, and some algorithms for solving this problem based on 
Dynamic programming. Different forward pricing models with one stochastic factor 
are discussed. In addition the framework by Dixit and Pindyck (1994) for valuating an 
investment option with one stochastic factor is presented. 
 
In the practical part the Lucia and Schwartz (2002) forward pricing model with log 
prices was chosen as pricing model. Further this model was adjusted to describe the 
weekly fluctuations of power prices. In next step the EOPS model from Sintef Energy 
was chosen as dynamic programming tool. Simulations with this price model showed 
that an increase in the mean reverting level of the spot price increases the NPV of an 
capacity expansion. 
 
A study of spot prices at Nordpool from 1993 to 2001 showed a correlation between 
weekly and seasonal fluctuation and between seasonal fluctuations and mean price. In 
order to be able to use the price model as input to the EOPS model the Lucia and 
Schwartz model were modified to incorporate this connection between weekly and 
seasonal fluctuations and mean price.  
 
 By this modification of the Lucia and Schwartz (2002) model it was possible to 
construct 70 forward price scenarios from 70 expected spot price scenarios. By 
simulating with these 70 price scenarios at the Svartisen Power Plant it was possible 
to obtain the NPV of investments of 30MW, 150MW and 300MW with different as a 
function of values of the amplitude of the seasonal price fluctuation.  
 
The value of the option to invest 30MW, 150MW and 300MW was found by using 
the framework of Dixit and Pindyck (1994). As input to this model some reasonable 
numbers were used and thereby limiting this paper from deducing correct inputs to the 
option valuation model. With these inputs, an investment of 30MW was initiated 
within 10 years in 14% of the cases. An increase in gamma of 0,09 initiated the 
30MW expansion. The other options will always be eliminated by an investment in 
the 30MW project  
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8 Recommended future work 
This chapter describes future recommended work that is necessary before the model 
can be used in real life projects.   
 
The price model for input in the EOPS model needs to be improved. In this model the 
Lucia and Schwartz (2002) model with log prices is used. Log prices was chosen 
because that model always has positive prices. After a while it was recognized that, 
the log price model was not good enough in describing seasonal and weekly 
variations, so the model had to be improved. It was rather complicated to modify a log 
price model, so it was not managed to construct a price model with appropriate 
properties for modelling power prices.  
 
Our recommendations for future development of this model are to study more 
thoroughly the relations between high and low prices versus high and low seasonal 
and weekly prices. It is recommended to use a price model instead of a log price 
model, since the amplitude anyway has to be adjusted. 
 
Next step in developing the model is to use more appropriate inputs in the price model 
used in the EOPS model. This implies a study on the general behaviour of forward 
prices compared to expected spot prices. A result of such a study will be more 
accurate values of input parameters in equation (6.1) such as market price of risk. 
 
Last step in developing this model will be to estimate the correct values of the 
parameters in equation (5.15)-(5.18) in order to compute the correct option value. In 
this paper this issue is not discussed. Some of these parameters is connected to a given 
investment project, such as the Investment cost. The most important parameter for the 
result is the volatility of the amplitude, σγ. This variable should be found by studying 
the properties of the Nordic Power Market. The value of the option is extremely 
volatile to this parameter. The option value will therefore not be accurate before such 
a study is done. 
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Appendix 1 Schwartz (1997) Differential Equation 
In this appendix, equation (3.6) will be derived by using Ito’s lemma and by using a 
portfolio approach.  

Ito’s lemma 
An Ito process is a generalized Wiener process where the parameters a and b are 
functions of the value of the underlying variable x and time t. Equation (A1.1) is an 
Ito process, where the variable x has a drift rate of a and a variance rate of b2. Ito’s 
lemma shows that a function G of x and t follows the process in equation (A1.2) 
 
Ito’s lemma: 
 

( ) ( )dztxbdttxadx ,, +=        (A1.1) 
 

bdz
x
Fdtb

x
G

t
Ga

x
GdG

∂
∂

+







∂
∂

+
∂
∂

+
∂
∂

= 2
2

2

2
1      (A1.2) 

 
 

Deriving the differential equation 
In chapter 3, the expression for the differential equation of the one-factor model of 
Schwartz (1997) is presented. S is the spot price and X is a log price as expressed in 
equation (A1.3). 
 

xeS =           (A1.3) 
 
In the article of Schwartz (1997) dX is presentet to avolve according to equation 
(A1.4). 
 

dzdtXdX σλ
κ

σµκ +







−−−=

2

2

      (A1.4) 

 
To find an expression for dS, equation (A1.5) from Sydsæter et al (2000) is used. 
 

( ) ( ) ( )dztxbedttxbetxaede xxxx ,,
2
1, 2 +






 +=     (A1.5) 

 
( ) dzedtexdS xx σλµκ +−−=       (A1.6) 

 
By inserting equation (A1.7) in equation (A1.6), it is shown that S evolves according 
to equation (A1.8). S is an underlying variable for the forward curve F(S,T). Hence, 
Ito’s lemma can be used to derive an expression of dF, as shown in equation (A1.9). 
 

SX ln=          (A1.7) 
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( ) SdzSdtSdS σλµκ +−−= ln       (A1.8) 
 

( )( ) Sdz
S
FdtS

S
F

t
FSS

S
FdF σσλµκ

∂
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+
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+
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2
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The discrete version of equations (A1.8) and (A1.9): 

( ) zStSSS ∆+∆−−=∆ σλµκ ln       (A1.10) 
 

( )( ) zS
S
FtS

S
F

t
FSS

S
FF ∆

∂
∂
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∂
∂

+
∂
∂

+−−
∂
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=∆ σσλµκ 22
2

2

2
1ln   (A1.11) 

 
∆S and ∆F are the changes in F and S in a small interval ∆ t. The Wiener process 
underlying F and S are the same. By choosing a portfolio consisting of holding a 

forward contract and going short an amount 
S
Fn
∂
∂

=  units of the underlying 

commodity, the Wiener process can be eliminated. The value of the portfolio is 
expressed in equation (A1.12). 
 

S
S
FF
∂
∂

−⋅= 0π         (A1.12) 

 
Holding a forward contract where the price is equal to the forward price today has no 
value to the portfolio. 
 

A short position in such a portfolio will require a payment of δS 
S
F
∂
∂  dollars per 

period. This is the amount a rational investor that has a long position on 
S
F
∂
∂  units of 

the derivative would require to take that position. δ is the difference between the 
growth rate, α, and the risk-adjusted rate µ. δ can be compared with the dividend rate.  
 
The return from holding the portfolio over a short time interval, dt, can then be 
written: 
 

dt
S
FSdS

S
FdFd

∂
∂

−
∂
∂

−= δπ        (A1.13) 

 
The discrete version of equation (A1.13): 
 

t
S
FSS

S
FF ∆

∂
∂

−∆
∂
∂

−∆=∆ δπ       (A1.14) 

 
By inserting equation (A1.10) and (A1.11) to equation (A1.14) the following 
expression for the value of the portfolio is derived: 
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This return is risk-free. Thus to avoid arbitrage possibilities, equation (A1.15) must be 

equal tS
S
FFrtr ∆





∂
∂

−⋅=∆⋅⋅ 0π . Then the following expression is valid: 
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By rearranging equation (A1.16), equation (A1.17) is obtained: 
 

( ) 0
2
1 22

2

2

=
∂
∂

+
∂
∂

−+
∂
∂

t
F

S
FSrS

S
F δσ       (A1.17) 

 
It is known know that the return on this portfolio is equal to the price change and the 
dividend, δ. The price change is equal to ( )Sln−µκ . In a risk neutral evaluation, the 
return is equal to the risk free interest rate and the price change is equal to 
( )Sln−− λµκ . An expression for (r-δ) can now be obtained. 

 
( ) ( )Sr ln−−=− λµκδ        (A1.18) 
 
By inserting equation (A1.18) in equation (A1.17), the same differential equation as 

in Schwartz (1997) is obtained, except from the sign in front of 
t
F
∂
∂ . 

 

According to Schwartz (2002) the negative sign in front of 
t
F
∂
∂  is because the time 

scale is Time to Maturity, which is the opposite of calendar time. The expression then 
becomes: 
 

( ) 0ln
2
1 22

2

2

=
∂
∂

−
∂
∂

−−+
∂
∂

t
F

S
FSSS

S
F λµκσ     (A1.19) 

 
 
Hence expression (3.6) is proven. 
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Appendix 2 Ito’s Lemma 
In this appendix, Ito’s lemma will be used to find an expression for dF in equation 
(5.7). 
 

Deriving dF 
Ito’s lemma has previously been described in Appendix 1. Here follows the 
expression for an Ito process. 
 
 Ito’s lemma: 
 

( ) ( )dztxbdttxadx ,, +=        (A2.1) 
 

bdz
x
Fdtb

x
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t
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x
GdG
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In Chapter 5 a solution of the option to invest is obtained by using the contingent 
claims method. The value of the project, V, evolves according to equation (A2.3).  V 
is known to be an underlying variable of the function of the value of the option to 
invest F(V). Ito’s lemma can therefore be used to derive an expression of dF, as 
shown in equation 4. 
 

VdtVdtdV σα +=         (A2.3) 
 

Vdz
V
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V
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1     (A2.4) 

 
By rearranging equation (4), the following expression is derived: 
 

( ) ( ) dt
t
FdtV

V
FVdzVdt

V
FdF

∂
∂

+
∂
∂

++
∂
∂

= 22
2

2

2
1 σσα     (A2.5) 

 
From equation (A2.3)  dV2 can be written as dtV 22σ . This is because the standard 
Wiener process dtdz ε= , where ε is a random drawing from a standardized normal 
distribution, N(0,1). 
 
Since V evolves stochastically, it is not possible to determine a time, T, when it is 
optimal to invest. The investment rule take the form of a critical value V* such that it 
is optimal to invest once V>= V*. dF is therefore not dependent of t, thus the last part 

of equation (A2.5), dt
t
F
∂
∂ , is equal to zero. 

 
Equation (A2.5) can now be rewritten: 
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( )2
2

2

2
1 dV

V
FdV

V
FdF

∂
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+
∂
∂

=        (A2.6) 

 
This is the same expression as equation (5.7) in chapter 5, and hereby it is proved how 
the equation is derived. 
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Appendix 3 Gamma Regression 
This appendix is a printout from Minitab of the gamma-regression described in 
Chapter 6.4.4 
 
 
—————   22.10.2002 15:45:42   ———————————————————— 
 
Regression Analysis: low versus gamma 
 
The regression equation is 
low = 0,982 - 0,0335 gamma 
 
Predictor        Coef     SE Coef          T        P 
Constant     0,981979    0,009166     107,13    0,000 
gamma        -0,03353     0,01711      -1,96    0,091 
 
S = 0,01059     R-Sq = 35,4%     R-Sq(adj) = 26,2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1   0,0004306   0,0004306      3,84    0,091 
Residual Error     7   0,0007849   0,0001121 
Total              8   0,0012155 
 
Plot resmlow * predmlow 
 
MTB > Plot 'resmhigh'*'predmhigh'; 
SUBC>   Symbol; 
SUBC>   ScFrame; 
SUBC>   ScAnnotation. 
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Figure A-3.1Residual plot of low versus gamma 
 
Figure A(3.1) show as residual plot of the regression of the average 42 lowest weekly 
log prices during a year versus gamma that given year. The plot has a diagonal pattern 
and shows that the regression is not accurate. Corresponding Residual Plot shows a 
similar pattern.  
 
 
 
MTB > regress c2 1 c5 c9 c10 
 
 
Regression Analysis: mlow versus gamma 
 
The regression equation is 
mlow = 0,997 - 0,0163 gamma 
 
Predictor        Coef     SE Coef          T        P 
Constant     0,997279    0,003337     298,89    0,000 
gamma       -0,016347    0,006228      -2,62    0,034 
 
S = 0,003854    R-Sq = 49,6%     R-Sq(adj) = 42,4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1  0,00010234  0,00010234      6,89    0,034 
Residual Error     7  0,00010399  0,00001486 
Total              8  0,00020633 
 
 
MTB > regress c3 1 c5 c11 c12 
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Regression Analysis: mhigh versus gamma 
 
The regression equation is 
mhigh = 1,00 + 0,0106 gamma 
 
Predictor        Coef     SE Coef          T        P 
Constant      1,00205     0,00164     612,86    0,000 
gamma        0,010588    0,003052       3,47    0,010 
 
S = 0,001889    R-Sq = 63,2%     R-Sq(adj) = 58,0% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1 0,000042935 0,000042935     12,04    0,010 
Residual Error     7 0,000024972 0,000003567 
Total              8 0,000067907 
 
 
MTB > regress c4 1 c5 c13 c14 
 
 
Regression Analysis: high versus gamma 
 
The regression equation is 
high = 1,02 + 0,0235 gamma 
 
Predictor        Coef     SE Coef          T        P 
Constant      1,01754     0,00805     126,33    0,000 
gamma         0,02353     0,01503       1,56    0,162 
 
S = 0,009304    R-Sq = 25,9%     R-Sq(adj) = 15,3% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1  0,00021197  0,00021197      2,45    0,162 
Residual Error     7  0,00060601  0,00008657 
Total              8  0,00081797 
 
 
MTB > regress c6 1 c5 c15 c16 
 
 
Regression Analysis: spotyear versus gamma 
 
The regression equation is 
spotyear = 231 - 177 gamma 
 
Predictor        Coef     SE Coef          T        P 
Constant       230,71       35,16       6,56    0,000 
gamma         -177,27       65,63      -2,70    0,031 
 
S = 40,62       R-Sq = 51,0%     R-Sq(adj) = 44,0% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1       12035       12035      7,29    0,031 
Residual Error     7       11548        1650 
Total              8       23583 
 
Unusual Observations 
Obs      gamma     årspot         Fit      SE Fit    Residual    St Resid 
  2      0,284      253,6       180,3        19,3        73,3        2,05R  
 
R denotes an observation with a large standardized residual 
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MTB > Plot 'resmlav'*'mlav'; 
SUBC>   Symbol; 
SUBC>   ScFrame; 
SUBC>   ScAnnotation. 
 
 
Regression Analysis: gamma versus ln(spotyear) 
 
The regression equation is 
gamma = 2,85 - 0,480 ln(spotyear) 
 
Predictor        Coef     SE Coef          T        P 
Constant       2,8500      0,7156       3,98    0,005 
lnspotyear      -0,4802      0,1456      -3,30    0,013 
 
S = 0,1463      R-Sq = 60,9%     R-Sq(adj) = 55,3% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1     0,23310     0,23310     10,89    0,013 
Residual Error     7     0,14989     0,02141 
Total              8     0,38299 
 
 
MTB > Plot 'resgamma'*'predgamma'; 
SUBC>   Symbol; 
SUBC>   ScFrame; 
SUBC>   ScAnnotation. 
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Figure A-3.2 Residual plot of log price versus gamma 
 
In Figure A-3.2 The spot price is ln-transformed and regressed versus gamma. The 
figure does not have a pattern, but do not have enough to plots to make any 
conclusion 
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Appendix 4 Regression of NPV 
 
This appendix is a printout of the NPV regression described in Chapter 6.5.2 
 
 
—————   06.11.2002 17:28:36   ———————————————————— 
 
Regression Analysis: NPVgamma0,0 versus Capacity 
 
The regression equation is 
NPVgamma0,0 = 163 + 0,0659 Capacity 
 
Predictor        Coef     SE Coef          T        P 
Constant      163,224       7,590      21,50    0,000 
Capacity      0,06588     0,02073       3,18    0,016 
 
S = 0,6423      R-Sq = 59,1%     R-Sq(adj) = 53,2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      4,1665      4,1665     10,10    0,016 
Residual Error     7      2,8880      0,4126 
Total              8      7,0545 
 
MTB > regress c3 1 c1 c11 c12 
 
 
Regression Analysis: NPVgamma0,05 versus Capacity 
 
The regression equation is 
NPVgamma0,05 = 160 + 0,0782 Capacity 
 
Predictor        Coef     SE Coef          T        P 
Constant      160,347       6,824      23,50    0,000 
Capacity      0,07817     0,01864       4,19    0,004 
 
S = 0,5775      R-Sq = 71,5%     R-Sq(adj) = 67,5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      5,8663      5,8663     17,59    0,004 
Residual Error     7      2,3344      0,3335 
Total              8      8,2006 
 
 
MTB > regress c4 1 c1 c13 c14 
 
 
Regression Analysis: NPVgamma0,1 versus Capacity 
 
The regression equation is 
NPVgamma0,1 = 165 + 0,0740 Capacity 
 
Predictor        Coef     SE Coef          T        P 
Constant      164,548       5,657      29,09    0,000 
Capacity      0,07403     0,01545       4,79    0,002 
 
S = 0,4787      R-Sq = 76,6%     R-Sq(adj) = 73,3% 
 
Analysis of Variance 
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Source            DF          SS          MS         F        P 
Regression         1      5,2605      5,2605     22,96    0,002 
Residual Error     7      1,6041      0,2292 
Total              8      6,8646 
 
 
MTB > regress c5 1 c1 c15 c16 
 
 
Regression Analysis: NPVgamma0,15 versus Capacity 
 
The regression equation is 
0,15 = 161 + 0,0910 Capacity 
 
Predictor        Coef     SE Coef          T        P 
Constant      161,454       4,529      35,65    0,000 
Capacity      0,09105     0,01237       7,36    0,000 
 
S = 0,3833      R-Sq = 88,6%     R-Sq(adj) = 86,9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      7,9578      7,9578     54,18    0,000 
Residual Error     7      1,0282      0,1469 
Total              8      8,9860 
 
 
MTB > regress c6 1 c1 c17 c18 
 
 
Regression Analysis: NPVgamma0,2 versus Capacity 
 
The regression equation is 
0,2 = 160 + 0,103 Capacity 
 
Predictor        Coef     SE Coef          T        P 
Constant      160,481       3,526      45,52    0,000 
Power        0,102850    0,009629      10,68    0,000 
 
S = 0,2983      R-Sq = 94,2%     R-Sq(adj) = 93,4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      10,155      10,155    114,09    0,000 
Residual Error     7       0,623       0,089 
Total              8      10,778 
 
 
MTB > regress c7 1 c1 c19 c20 
 
 
Regression Analysis: NPVgamma0,25 versus Capacity 
 
The regression equation is 
NPVgamma0,25 = 158 + 0,118 Capacity 
 
Predictor        Coef     SE Coef          T        P 
Constant      158,372       3,724      42,53    0,000 
Capacity         0,11842     0,01017      11,64    0,000 
 
S = 0,3151      R-Sq = 95,1%     R-Sq(adj) = 94,4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
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Regression         1      13,462      13,462    135,58    0,000 
Residual Error     7       0,695       0,099 
Total              8      14,157 
 
 
MTB > regress c8 1 c1 c21 c22 
 
 
Regression Analysis: NPVgamma0,3 versus Capacity 
 
The regression equation is 
0,3 = 156 + 0,134 Capacity 
 
Predictor        Coef     SE Coef          T        P 
Constant      156,284       4,233      36,92    0,000 
Capacity         0,13447     0,01156      11,63    0,000 
 
S = 0,3582      R-Sq = 95,1%     R-Sq(adj) = 94,4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      17,360      17,360    135,28    0,000 
Residual Error     7       0,898       0,128 
Total              8      18,258 
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Appendix 5 Probability of an Expansion 
Given the inputs in Chapter 6 the development in gamma for 10 years is 
simulated1000 times. The maximum value in each simulation is noted. In 14.1 % of 
the simulations the maximum change was over 0,09, hence initiating a 30MW 
expansion. This is the sum of all columns left of 0,09 in figure (A5-1).  
 

Probability of Max Change in gamma in 10 years
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Figure A5-1 The probability for max change in Gamma 
  

To illustrate how the change in gamma have influence on the forward price a 
simulation of the forward price is given in figureA5-2. 
 
This is an expected forward curve for different forward contracts with infinite long 
maturity which means that the price today makes no influence. 
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Figure A5-2 Simulation of forward prices 
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Appendix 6 NPV regression 
In this appendix the net present value of investments of 30MW, 150MW and 300MW 
is regressed versus gamma 
 

Regression vs raw data 30MW

y = 4,7806x + 21,551
R2 = 0,9442

0
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Regression vs raw data 150 MW

y = 21,133x + 57,796
R2 = 0,9919
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Regression vs raw data 300MW

y = 29,571x + 129,96
R2 = 0,9984
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Appendix 7 Values for Figures 6.11-6.13 
This appendix lists the different values for the expansion options for different gamma 
values. All numbers are in Mill NOK 
 

  30MW   150MW   300MW   
Change in Gamma NPV-investment Option NPV-investment Option NPV-investment Option

0,00 -3,67 0,52 -71,07 0,04 -140,47 0,09 
0,01 -2,77 0,68 -66,84 0,07 -134,56 0,13 
0,02 -1,87 0,88 -62,62 0,10 -128,64 0,17 
0,03 -0,97 1,13 -58,39 0,14 -122,73 0,22 
0,04 -0,07 1,44 -54,17 0,20 -116,81 0,28 
0,05 0,83 1,83 -49,94 0,29 -110,90 0,37 
0,06 1,73 2,30 -45,71 0,40 -104,99 0,47 
0,07 2,62 2,88 -41,49 0,55 -99,07 0,60 
0,08 3,52 3,58 -37,26 0,75 -93,16 0,75 
0,09 4,42 4,42 -33,03 1,01 -87,24 0,94 
0,10 5,32 5,32 -28,81 1,34 -81,33 1,17 
0,11 6,22 6,22 -24,58 1,76 -75,41 1,45 
0,12 7,12 7,12 -20,35 2,29 -69,50 1,79 
0,13 8,02 8,02 -16,13 2,96 -63,59 2,19 
0,14 8,92 8,92 -11,90 3,80 -57,67 2,67 
0,15 9,82 9,82 -7,67 4,84 -51,76 3,24 
0,16 10,72 10,72 -3,45 6,11 -45,84 3,91 
0,17 11,61 11,61 0,78 7,68 -39,93 4,70 
0,18 12,51 12,51 5,01 9,57 -34,01 5,62 
0,19 13,41 13,41 9,23 11,87 -28,10 6,70 
0,20 14,31 14,31 13,46 14,64 -22,19 7,96 
0,21 15,21 15,21 17,69 17,96 -16,27 9,43 
0,22 16,11 16,11 21,91 21,91 -10,36 11,12 
0,23 17,01 17,01 26,14 26,14 -4,44 13,07 
0,24 17,91 17,91 30,37 30,37 1,47 15,31 
0,25 18,81 18,81 34,59 34,59 7,39 17,89 
0,26 19,71 19,71 38,82 38,82 13,30 20,84 
0,27 20,60 20,60 43,05 43,05 19,21 24,20 
0,28 21,50 21,50 47,27 47,27 25,13 28,03 
0,29 22,40 22,40 51,50 51,50 31,04 32,37 
0,30 23,30 23,30 55,73 55,73 36,96 37,30 

Table A7-1 Values for different expansion options for different changes in gamma 
 
 
 


