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Abstract

Hydropower producers with reservoir capacity have a special challenge when it comes to weighing
the short-term profit from selling power in the day-ahead spot market against waiting for better
electricity prices. In this paper, we propose a medium-term scheduling model for a price-taking
hydropower producer, using a horizon of two years. The paper contains several contributions
to the field of reservoir management. First, we use the price of forward contracts to forecast
future spot prices, and use multiple factors to describe movements in price. Second, we include
a short-term correlation between movements in electricity price and local inflow. Third, we
compare the performance of our scheduling model to a model in which price and local inflow
are assumed to be independent and a model in which price movements are described using only
one factor. We quantify the loss in expected revenues of using the latter two models compared
to ours when price movements are in fact driven by multiple factors and correlated with local
inflow. In both cases, we find the loss to be approximately 2-3 %. Lastly, we propose a new
method for hedging hydropower producers against the risk associated with price uncertainty,
introducing the delta of a hydropower plant.
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1 Introduction

The decision problem of hydropower producers, which seek to dispatch the water in their
reservoir optimally, has existed for many years. Massé (1946) argues that deterministic models
are not good enough to solve such problems, as they do not incorporate the flexibility a
production planner has when it comes to the timing of production. While deterministic models
can provide the production planner with an optimal decision for each time step (considering
discrete time decisions), a flexible model can obtain optimal decision policies based on the
current state of the world and its uncertain future. Even though the text is old, the models and
discussions presented by Massé (1946) are relevant for how reservoir management is done today.

Historically, power markets have been highly regulated with strong central planning. This is
to ensure the reliability of the power distribution system, as a failure to match production and
demand can result in a (partial) system break down. Therefore, as explained in Wallace and
Fleten (2003), multiple publications on optimization models for reservoir management focus on
central planning in hydrothermal systems and are mainly based on uncertainty in demand and
area inflow. Such models aim to minimize total costs related to production, distribution and
potential breakdowns. An example of this can be found in Rebennack (2015), which seeks to
optimize production in the entire Panama power system. In recent time, some power markets,
e.g., the Nordic, have experienced deregulation on the production and retailing side, allowing
anyone with a power production plant to participate in the market. As Fosso et al. (1999)
discuss, the decision problem in such markets becomes altered, as the focus is changed from
minimizing system costs to a situation where all power producers seek to maximize their profits.

In this paper, we aim to create a scheduling model for a price-taking hydropower production
planner that participates in such a deregulated market. The planner operates a plant that is
assumed to be sufficiently small so that the decisions of the production planner do not affect
the market as a whole. We also assume that the production planner only participates in the
spot market. Further, the model contains two stochastic variables (spot price and inflow) and
is meant for medium-term planning using a time horizon of two years and weekly granularity.
This is in compliance with multiple current models for medium-term reservoir management, as
described in Iladis et al. (2008), Wolfgang et al. (2009) and Abgottspon and Andersson (2014).
As opposed to existing models for reservoir management, which often use single-factor processes
to describe movements in price, we use multiple factors to capture the dynamics of the prices
better. Also, we include a correlation coefficient between changes in price and local inflow,
thereby treating them as dependent variables. In Section 5.5, we quantify the loss in expected
revenues a single hydropower producer will experience if their scheduling model treats price
and local inflow as independent when they are in reality correlated, or if the model describes
price movements with one factor when they are in reality described by multiple factors. We
also suggest a new method for risk hedging in hydropower production, treating the value of the
production as an exotic option and calculating its delta.

To obtain optimal decision policies in each discrete state for the production planner, one can
use stochastic dynamic programming. The term was first introduced by Bellman (1957), and
it combines the problems of stochastic and dynamic programming. As the words suggest,
stochastic programming revolves around problems with uncertainty in future state variables,
while dynamic programming is a method of solving a large, complex problem by splitting it
into smaller subproblems. In the case of hydropower, this is done by breaking down the overall
problem of maximizing long-term profits into maximizing the profits earned in each state based
on the decisions in that particular state and the expected future state space. Mathematically,
Bellman (1957) summarizes this in the Bellman equation. Further, Pereira and Pinto (1991)
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introduce an algorithm for stochastic dynamic programming based on a stochastic extension of
Benders decomposition, a solution approach known as stochastic dual dynamic programming
(SDDP). Rebennack (2015) extends the method of SDDP so that it can also be used on scenario
trees, and Löhndorf and Wozabal (2017) introduce a framework that integrates SDDP with
scenario lattices, referred to as approximate dual dynamic programming (ADDP). Scenario
lattices are recombining scenario trees, and are useful for representing all states of the world and
their transition probabilities when working with Markov decision processes (MDP). Multiple
authors, e.g., Lamond and Boukhtouta (1996), show that it is reasonable to treat hydropower
reservoir management problems as MDPs, an approach we adopt in this paper.

In order to model the problem as an MDP, all state variables must follow Markov processes. We
show that it is reasonable to model movements in both price and inflow this way, and therefore
use a scenario lattice to discretize all future states and transition probabilities. To construct
the lattice, we use the method presented by Löhndorf and Wozabal (2017). We also use their
method for solving stochastic dynamic programs, ADDP, to obtain all optimal decision policies.
Since we use weekly granularity, we must construct a lattice with weekly time steps.

As previously mentioned, our model incorporates two stochastic state variables; spot price and
inflow. EOPS (SINTEF (2017a)), which is one of the most common commercial software for
medium-term reservoir management for local systems or single plants in the Nordic countries,
uses spot price scenarios generated using EMPS (SINTEF (2017b)). EMPS is a fundamental
model which, among others, can forecast spot prices by using historical scenarios of stochastic
variables like inflow and demand in large, international power systems (Wolfgang et al. (2009)).
Mo et al. (2001) show that there is a high correlation between the price of one week and the
price of the previous week forecasted using EMPS. Therefore, until 2000, EOPS used an AR(1)
process (a single-factor model) to describe the price movements found by EMPS, illustrated in
Flatabø et al. (1998). As shown in Mo et al. (2000), EOPS also uses EMPS to generate price
scenarios today, but the prices are now organized in a Markov chain using the scenarios directly
instead of expressing them with an autoregressive model.

To distinguish ourselves from EOPS, we choose to model current and future spot prices with
a multi-factor model based on the price of forward contracts traded in the market. Clewlow
and Strickland (2000), Koekebakker and Ollmar (2005) and Bjerksund et al. (2008) argue that
one-factor models such as AR(1) are unrealistic for accurately modeling forward and spot price
movements. Instead, they propose using multi-factor models, which according to them give
a much more realistic representation of the dynamics behind price movements. There exist
several ways one can obtain the coefficients of such models. Koekebakker and Ollmar (2005)
propose that they can be found empirically by first constructing smooth forward curves for many
consecutive trading days and then by calculating the daily deviations between the curves. In this
paper, we adopt a modified version of this approach and construct forward curves using three
different methods, obtaining three sets of model coefficients. The methods used are presented
in Benth et al. (2007), Fleten and Lemming (2003) and Alexander (2008a). A comparison of
the first two methods can be found in Kiesel et al. (2017).

The other stochastic variable considered in our model is inflow. When determining the characteristics
of the inflow, there are several questions that must be answered - whether the system is a local
or a regional system consisting of a number of power plants, if there is a seasonal pattern to the
inflow, if there are rain periods or snow melting periods, and the choice of temporal resolution
of the inflow measurements. For inflow, there is often, depending on the time resolution,
a significant degree of autocorrelation from one period to the next. E.g., after a period of
precipitation or snow melting, one is likely to experience consecutive days and weeks of increased
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inflow. A significant degree of autocorrelation favors autoregressive models. An example of an
autoregressive model for inflow is the AR(1) model proposed by Rebennack (2015). In EOPS,
the inflow for a local system is modeled using an ARIMA(1,1) process. At last, we have the
geometric periodic autoregressive (GPAR) model presented by Shapiro et al. (2013), in which
the deviations of the log inflows from their periodic mean are represented as an AR(1) process.
In this paper, we adopt the GPAR model and use it to describe local inflow.

For hydropower dominated systems, multiple papers show that there exists a general a negative
correlation between inflow and the electricity price, e.g., Mo et al. (2001). Naturally, when
reservoir levels are low, prices increase as a result of lower supply. The nature and strength of
this correlation will depend on several factors. Among these is the choice of time resolution, and
whether we look at local or system-level inflow. All else equal, one will expect the strength of
the relationship to be stronger for a coarse granularity of time (e.g., quarterly or yearly data),
as the impact on the supply will be more substantial for inflow aggregated over a longer time.

The inflow-price relationship is in varying degree taken into account in the literature and
commercial software. Kolsrud and Prokosch (2010) found a relationship between the spot price,
the overall aggregated reservoir level in a given geographical area and the local reservoir level of a
single plant. Further, EMPS, which is used to find spot price scenarios to be used in EOPS, finds
spot price as a function of aggregated, regional inflow. On the contrary, Fosso et al. (1999) show
that EOPS treats movements in local inflow and price as independent variables. Intuitively, we
would expect the correlation between price and inflow to be stronger on an aggregated national
level, than between the local inflow of a particular power plant and the system price. However,
we do not expect local inflow and price to be independent. This is because the local inflow can
be heavily correlated with the aggregated national inflow, as Boger and Vestbøstad (2016) and
Seim and Thorsnes (2007) found. Therefore, we include a correlation between movements in
local inflow and the price of forward contracts in our final model.

Lastly, inspired by Wallace and Fleten (2003) and Berger et al. (2016), we have looked at
a method for how a hydropower production planner can hedge their position by trading in
the forwards and options market. Using principles from financial theory, we introduce a way
to calculate the delta of a hydropower plant with the forward curve as the underlying. We
further discuss how this delta can be interpreted, and possible strategies for how a company
operating multiple plants can delta-hedge their position, or at least reduce their vulnerability
to fluctuations in the underlying forward curve.

In Section 2, we provide the reader with a short introduction of the most relevant aspects of the
Nordic electricity market and present a general optimization model for reservoir management.
In Section 3, we present the relevant theoretical background, including the stochastic models
for price and inflow and how their coefficients are estimated. We also present the algorithm
for discretizing all states into a scenario lattice and give a short overview of the optimization
algorithm used to obtain all optimal decision policies. Further, in Section 4, we introduce a
two-reservoir hydropower plant in Norway on which we have tested our model. Additionally, we
also revise the general optimization model to fit this specific case. In Section 5, we present some
empirical results, both regarding the obtained model coefficients and from running the reservoir
management model itself. We test the impact of using a multi-factor model for price movements
and a short-term correlation between price and inflow. In addition, we also backtest the model
against historical realizations of price and inflow, discuss some hedging strategies and propose
some further work that should be conducted with the model or in the field. Conclusions are
made in Section 6.
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2 The environment of a hydropower production planner

In this section, we give a short introduction of the main features of the Nordic electricity market.
We especially emphasize the different products traded on the different physical and financial
markets, and what role a hydropower producer takes in these markets. We also present a general
optimization model for hydropower reservoir management, incorporating the most important
constraints for a general case with multiple interconnected reservoirs and turbines.

2.1 Nordic electricity market

The material presented in this section is based mainly on NordPool (2017) and NASDAQ
(2017). The companies that make up the Nordic electrical utility industry fall into one out
of three categories - producers, grid companies, and retailers. Roughly speaking, the task of the
producers is to produce electrical energy. The task of the retailers is to buy energy from the
producers and sell it to the end users, which can both be households and business consumers.
The grid companies connect the producers and the end users by transmitting and distributing
the energy in the power grid. Since the focus of this paper is hydropower production, the
emphasis will be put on the former category. While the grid companies are highly regulated
monopolists, the markets for producers and retailers have been deregulated since 1991.

The primary trading place for a hydropower producer is the Nord Pool day-ahead market. The
day-ahead market is an auction where power is traded for delivery each hour the next day.
Despite the fact that it is not technically a spot market, as this would imply immediate delivery
of power, it is referred to as the elspot or the electricity spot market. As shown in Figure 1,
the day-ahead market is divided into several bidding areas with separate spot prices known as
area prices. The area price is decided by the demand-supply equilibrium established in that
particular area. Nord Pool also calculates the system price, which is an unconstrained market
clearing reference price for the entire Nord Pool exchange. All orders from Nordic and Baltic
regions are included in the system price calculation. Nord Pool also operates other markets in
which the electricity producer can participate - the intraday market and the regulating power
market.

Figure 1: Electricity price areas in the Nordic and Baltic countries. Source: NordPool (2017)
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A hydropower producer can also participate in the trading of forward and futures contracts.
The electricity spot price is subject to fluctuations, and hedging of the spot price risk is an
important motivation for participating in the forward market. Additionally, some participants
want to engage in speculative trading or market-making. The forward market also serves another
purpose - it gives information about how the market participants are valuing the delivery of
power in the future. Thus, the forward market can be used to determine the market expectation
for the spot price, which is useful information for a profit-maximizing electricity producer.

Nordic power futures are traded on NASDAQ OMX Commodities Europe (hereby NASDAQ
Commodities), the financial energy market for the Nordic countries. The market is purely
financial in the sense that no physical energy is exchanged - only cash. This is in contrast to
the elspot, which is a physical market. Unlike forward and futures contracts traded in equity
markets, whose underlying is typically a single unit of an asset, the power futures traded at
NASDAQ Commodities are for specified delivery periods (e.g. for a given day, week or month).
Thus, an actor that goes short in a power futures contract is obliged to deliver a specified
amount of power over the entire delivery period, earning the price specified by the contract.
There are also options traded on NASDAQ Commodities, including both Asian-style options
with the system price as the underlying instrument and options whose underlying is the price of
Nordic power futures contracts with, e.g., quarterly and yearly delivery periods. The underlying
price (reference price) for the Nordic power futures is the Nordic system price, discussed above.
Further, the payoff of a long position of one MWh in a Nordic power futures contract is the
average system price in the delivery period less the agreed-upon forward price. Generally, no
trading occurs after the delivery period has begun. Both regular futures and deferred settlement
(DS) futures are traded on NASDAQ Commodities. They have identical characteristics, apart
from the settlement structure. DS futures have daily cash settlement during the delivery period,
but not before. For regular futures, daily cash settlement also takes place throughout the trading
period leading up to the delivery period. In general, the same product types are offered in both
futures and DS futures format. The different product types are shown in Table 1.

Table 1: Nordic power futures traded at NASDAQ Commodities. The codes apply for DS futures. Regular
Nordic power futures have the product code FUTBL in addition to the DS futures code.

Code Length of delivery period Trading begins

ENOWww-yy Week 6 weeks ahead
ENOMmmm-yy Month 7 months ahead
ENOQq-yy Quarter 8 quarters ahead
ENOYR-yy Year 10 years ahead

An explanation on the difference between a forward contract and a futures contract is due.
McDonald (2014) defines a forward contract as an agreement that sets today the terms -
including price and quantity - at which you buy or sell an asset or commodity at a specific
time in the future. Further, he defines a futures contract as an agreement that is similar
to a forward contract except that the buyer and the seller post margin, and the contract
is marked-to-market periodically. Typically, futures contracts are exchange-traded while the
forward contracts are traded over-the-counter. However, DS futures have historically been
called forward contracts despite that they are exchange-traded (Koekebakker and Ollmar, 2005).
Notice that the contracts traded on NASDAQ Commodities are different from a standard forward
in the sense that they have a delivery period instead of a specific maturity time. Thus, one could
argue that a more precise term would be to call them electricity swaps and that neither forwards
or futures are the correct term. In this paper, we choose to treat forward, futures, DS futures
and swap contracts as equal irrespective of their difference in settlement structure. This is in
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line with existing literature such as Clewlow and Strickland (2000), Benth et al. (2008) and
Boger and Vestbøstad (2016). In this thesis, we, therefore, use the term forward to refer to all
contracts representing an agreement to sell an asset or commodity at a specific time or time
interval in the future.

2.2 Hydropower optimization model

We now consider the problem faced by a price-taking hydropower production planner with
multiple, interconnected reservoirs that participates in a deregulated market similar to the
Nordic one. Based on a broad set of endogenous and exogenous variables such as reservoir
level, inflow and spot price, they must decide how much water they should use for power
production in a given period and how much they should store for future production. The
production planner is limited by multiple constraints, e.g., on reservoir volume and turbine
capacity, and his primary concern is how they can utilize their water to maximize the expected
present value of all discounted future cash flows. Assuming that the planner only participates
in the day-ahead market, the price they earn for produced power at time t will always be given
by the corresponding time spot price.

The problem faced by the production planner is a stochastic decision problem, meaning that
decisions must be made in light of uncertainty about future states of their environment. For each
time step, there are two stochastic, exogenous variables that affect the decisions of the production
planner; spot price Pt and inflow Ib,t into all reservoirs b = [1, ..., B]. For convenience, we denote

Ît = {Ib,t : b = [1, ..., B]} as a set of all inflows to all reservoirs at time t. In a complete market,
all random future spot prices (and inflows) would be defined on a measure space (Ω,z) and there
would exist a risk-neutral, martingale measure Q that represents the risk-neutral probabilities of
all future states for spot price and inflow. Harrison and Pliska (1981) define a complete market
as a market where the price of all securities is attainable, and there exists only one single price
for each security. Thus, a complete market is also arbitrage free. If the market is incomplete,
multiple such measures Q could exist, but only if the market is also arbitrage-free and we can
span all underlying assets. If this is not the case, one must use the measure P, representing
the real-world probability of all future states. In their paper, Löhndorf and Wozabal (2017)
assume an incomplete market, and they do, among others, allow for non-zero expected gains
from trading in the forward market. On the contrary, Bjerksund et al. (2008) assume a complete
market with no riskless arbitrage opportunities. We adopt the latter approach in this model
and consistently assume that the electricity market is complete throughout this paper. Using
this and denoting πt as a decision policy at time t providing a cash flow of CFt = CFt(Pt, Ît, πt)
and r as an appropriate continuously compounded discount rate, the expected discounted cash
flows over a time horizon T̂ are given by.

max
πt

EQ(

T̂∑
t=1

CFt(Pt, Ît, πt) exp (−rt)) (1)

Like Lamond and Boukhtouta (1996), we model the reservoir management problem as a Markov
decision process (MDP). Multiple formal definitions of such decision processes exist, but one of
its most important traits is that the exogenous variables of the model must follow a Markov
process. Given a current state of the world, the next state value of a variable following a Markov
process is only dependent on its current state value, and not its entire history. Similarly, in an
MDP, all decisions are made based on the current state of the world and its future expected
states, irrelevant of all past states. Although Bellman (1954) does not use the term MDP
explicitly, he introduces multiple concepts for dynamic programming (DP) that are also applied
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in MDPs. As in DP, the objective of MDPs is to obtain optimal decision policies (πt) for all
current and future states of the world. These policies are based on the current state and all
potential future states whose probabilities are incorporated in the measure Q. When choosing
their current state decisions, the production planner should do so to maximize the value of all
future cash flows, denoted by Vt. We formulate this using the Bellman equation, first introduced
by Bellman (1957). For the reservoir management problem, the objective function at time t will
be given by

Vt(Pt, Ît, πt) = max
πt

CFt(Pt, πt) + exp (−r)E[Vt+1(Pt+1, Ît+1, πt+1|Pt, Ît, πt)] (2)

(2) is a recursive formula, meaning that the time t value of all future cash flows Vt is a function
of the immediate cash flows CFt and the expected next step value Vt+1. The possible values
of Vt+1 are, however, dependent on the current time decisions, indicating the importance of
choosing πt such that it does maximize not only the current cash flow, but also all expected
future cash flows.

In hydropower production, the cash flows earned by the production planner equal the product
of price and the amount of produced energy. When ignoring turbine and generator start-up
costs, which is quite common in other papers discussing hydropower reservoir management
(e.g., Wallace and Fleten (2003)), expected cash flows can be set equal to expected revenues.
For a hydropwer system consisting of B interconnected reservoirs, we denote by wbi,t the amount
of water in [m3] nominated for production in a turbine connecting reservoir b and reservoir i. In
case the nominated water flows into an outlet (e.g., a river, lake or fjord), we set i = O. Further,
ς and $ are the number of seconds and hours, respectively, the plant’s turbines are running per
week. Given that the plant produces at constant rate, we can define qbi,t = wbi,t/ς as the water
discharge in [m3/s] from reservoir b flowing into reservoir i at time t. Further, we let Hb,t denote
the head elevation in reservoir b, and ηbi,t the efficiency rate of a turbine connecting reservoir
b and i. In reality, these are typically functions of multiple decision variables, e.g., reservoir
volume and water discharge. While we do not define these functions now, we discuss their form
further in Section 4.2. Lastly, given a water density % and gravitational acceleration G, the cash
flow CFt at time t can be written as

CFt = Pt · % ·G ·$ ·
∑
b∈B

[
Hb,t ·

∑
i∈B,i 6=b

qbi,t · ηbi,t
]

for t = [1, ..., T̂ ] (3)

We denote by lb,t the water level in [m3] in reservoir b at time t. Further, ubi,t is the amount of
water flowing from reservoir b to reservoir i outside a turbine, that is, either through a regulated
channel or as spillage. Like above, we set i = O if the water flows into an outlet. The general
volume balance of all reservoirs will then be given by

lb,t = lb,t−1 −
∑

i∈B,i 6=b
[wbi,t + ubi,t] + Ib,t +

∑
i∈B,i 6=b

uib,t for t = [0, ..., T̂ ], b = [1, ..., B] (4)

Further, the problem faces multiple restrictions. All reservoirs are subject to a maximum and
minimum level of water, denoted by lb,t and lb,t. These limits can be based on physical constraints
such as reservoir geometry and dam robustness, but also on government regulations, some of
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which may be seasonal. There are also restrictions in the turbines, stating the maximum allowed
water discharge qbi that they can handle. In case there exists no turbine at reservoir b whose
water flows into reservoir i, qbi will logically be 0. Lastly, due to infrastructural reasons (e.g., too
small channels or insufficiently robust spillways), there might be a maximum constraint on the
allowed amount of water flowing from reservoir b to i, ubi,t. If no water can flow from reservoir
b to i, either due to the lack of physical connections or the effects of gravity (the head elevation
of reservoir i is higher than that of reservoir b), ubi,t will logically be 0. All these constraints
can be summarized in (5)-(8).

lb,t ≤ lb,t for t = [1, ..., T̂ ], b = [1, ..., B] (5)

lb,t ≥ lb,t for t = [1, ..., T̂ ], b = [1, ..., B] (6)

qbi,t ≤ qbi for t = [1, ..., T̂ ], b = [1, ..., B], i ∈ B, i 6= b (7)

ubi,t ≤ ubi,t for t = [1, ..., T̂ ], b = [1, ..., B], i ∈ B, i 6= b (8)

By combining all expressions and restrictions, our dynamic program can be summarized as
solving the following problem at time t

max Vt(Pt, Ît, πt)

subject to (4), (5), (6), (7), (8)
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3 Price and inflow dynamics

A production planner that only participates in the spot market faces two uncertain state
variables; spot price and inflow. In the following sections, we will demonstrate how these
variables can be modeled as stochastic processes. As mentioned in the previous section, we
want to model our optimization problem is a Markov decision process (MDP). To do this, both
price and inflow must be modeled as Markov processes. In literature, most processes used to
describe price movements are Markov processes, but we show that it is reasonable to model inflow
movements as a Markov process as well. We begin this section by presenting processes used to
model spot price and inflow movements and how their parameters can be found. For the chosen
spot price model, which is in fact a forward price model, we present three different methods to
construct smooth forward curves, which are then used to obtain the model coefficients. Further,
we present how all future states of price and inflow are discretized using a scenario lattice, and
we also present the optimization algorithm used to obtain optimal decision policies for each
state.

3.1 Overview of models for electricity spot price movements

In literature, multiple stochastic processes for spot price movements have been proposed, all of
which have associated advantages and drawbacks. Here, we introduce some of these processes,
discuss their applications and decide which of them to use in our final model. For more extensive
details on all processes and their applications in commodity markets, the reader should consult
Clewlow and Strickland (2000). For a process to appropriately describe the changes in electricity
spot price, it should incorporate the most important features and dynamics driving movements
in the price. Johnson and Barz (1999) present multiple properties of electricity spot prices, and
a selection of these include:

• Mean reversion: Although the electricity spot price has a stochastic nature, it tends to
revert towards a mean value if the spot price deviates significantly from it.

• Seasonality effects: Spot prices tend to show periodic fluctuations over the course of
a day, week and year. Seasonality effects are also common in other parameters such as
volatility.

• Price-dependent volatility: Although volatility shows seasonal variation, it also tends
to be dependent on the spot price itself. For periods of higher spot prices, the volatility
of spot price returns tends to be larger than for time periods with lower prices.

• Price spikes and jumps: Electricity spot prices sometimes experience sudden price
spikes or jumps, both in positive and negative directions.

A simple one-factor model used to model price movements both in equity and commodity markets
is the Geometric Brownian motion (GBM). The model can, however, not incorporate any of the
points mentioned above except for the one regarding price-dependent volatility, meaning it will
perform poorly when the objective is to make accurate predictions of future spot prices. We
can resolve the issue of mean reversion by adjusting the GBM into a mean-reverting model,
represented by (9). This process is often referred to as an Ornstein–Uhlenbeck process.

dPt = αt(lnPt − lnPt)Ptdt+ σtPtdZt (9)
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Here, dt is an infinitesimally short time interval, and dPt denotes a change in spot price during
dt. The spot price Pt reverts towards a long-term level Pt with the (possibly) time-dependent
mean reversion rate αt. For higher values of αt, the spot price reverts faster, and vice versa. σt
is the spot price volatility, and dZt is an increment in a Wiener process (also known as Brownian
motion) during dt. In discrete time, dZt is drawn from a normal distribution with zero mean
and a volatility of

√
dt, that is, dZt ∼ N(0, dt). dZt is often referred to as a source of risk or a

source of uncertainty. In order to incorporate jumps, one can extend the mean-reverting model
into a two-factor model given by

dPt = αt(lnPt − lnPt)Ptdt+ σtPtdZt + κtPtdqt (10)

In this model, dqt is the increment of a Poisson process, also known as a jump process, during
dt. It can take one of two values: dqt = 0 with probability 1− θtdt and dqt = 1 with probability
θtdt. Here, θt is the jump frequency, and κt is the proportional jump size. κt is random, and is
drawn from the distribution

ln(1 + κt) ∼ N(ln(1 + κt)−
1

2
γ2
t , γ

2
t ) (11)

where κt is the mean jump size and γt the jump volatility. In order to adjust the process so
that it also incorporates spikes, the value of the mean reversion rate αt can be modified such
that it takes higher values right after a jump making the price revert faster towards its mean,
as proposed by Mayer et al. (2015). Alternatively, one could modify the Poisson process such
that it makes a jump of equal magnitude in the opposite direction in the timestep dt after it has
made a jump, making the price return to its pre-jump value.

Although the process described by (10) can capture many of the typical spot price characteristics,
it does not capture seasonal spot price fluctuations. Lucia and Schwartz (2002) solve this by
adding a deterministic, underlying seasonality function, whose values are based on empirical
prices. Thereby, they obtain a model that incorporates all of the four most important findings
in Johnson and Barz (1999). A natural question that arises is how one should find all the model
coefficients. In order to set the long-term mean spot price Pt, we need an expectation about
which value the spot price is reverting towards. Finding the value of the mean reversion rate
αt for periods with less or more jumps might also prove to be a difficult task, in addition to
setting correct, possibly time-dependent values for the coefficients of the jump process. One
can also question whether it is correct to use a deterministic underlying seasonal function. Is
it reasonable to expect that the average empirical seasonal spot price is a precise forecast for
future spot prices? If no, then how should the function be chosen?

It may be difficult to find the coefficients of the process described by (10). However, the main
disadvantage of (10) is that it is a two-factor model. Bjerksund et al. (2008) claim that these
models are unrealistic, as they cannot capture the entire dynamics behind spot price movements.
They find that six factors are needed to explain the variation in price movements in the UK
gas market, while Koekebakker and Ollmar (2005) find that ten factors were needed to explain
the variation in the Nord Pool electricity market (1995-2000). Consequently, we reject the
processes mentioned above and try to obtain a similar, multi-factor model for describing spot
price movements.

Next, we look at the possibility of using movements in the price of forward contracts to predict
future spot prices, as suggested by Clewlow and Strickland (2000). At time t, Ft,T is the price of
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a forward contract with maturity (or delivery) at time T . For a forward contract with immediate
delivery (T = t), the price of that contract is simply the current time spot price, that is Pt = Ft,t.
Thus, a stochastic model for the price development of forward contracts with different times to
maturity can be used to model future spot prices. In a liquid power market, the available future
and forward contracts traded at time t should represent the current time risk-adjusted market
expectations for future spot prices, meaning that the spot prices projected by the model will
incorporate these expectations. A further advantage is that the price of all forward contracts
traded in the market include the seasonality of electricity prices, implying that the model does
not need any deterministic function to account for seasonality.

We start with a simple single-factor model for forward price movements presented by Heath
et al. (1992). It is given by

dFt,T
Ft,T

= σt,TdZt (12)

Here, σt,T denotes the time t volatility of a forward contract with maturity at time T , and dZt
is a source of uncertainty. The observant reader has probably noticed that (12) contains no
drift term, but only a stochastic part. Because future and forward contracts have zero initial
investment, their expected return in the risk-neutral world is zero. No drift term complies with
our assumption that the market is complete, as a non-zero drift term would mean that the price
process would not be martingale (risk-neutral). In that case, there would not exist a measure Q
representing the risk-neutral probabilities. Instead, we would have to use the real-life measure,
P. In their paper, Löhndorf and Wozabal (2017) use a non-zero drift to describe the movement
of forward prices, which is one of the reasons why they cannot use a measure Q.

As mentioned above, a single-factor model cannot capture the entire dynamics driving forward
price movements. Clewlow and Strickland (2000) show that the process described in (12) can
be extended into a multi-factor model with N sources of uncertainty dZi,t, given by

dFt,T
Ft,T

=

N∑
i=1

σi,t,TdZi,t (13)

Here, σi,t,T is the ith volatility function, and together, σi,t,T for i = [1, ..., N ] explain the
dynamics driving the time t movement of a forward contract with maturity at time T . The ith
volatility function is associated with the ith source of uncertainty, dZi,t. There exist multiple
papers on how σi,t,T should be found. Bjerksund et al. (2000) propose a three-factor model where
σi,t,T for i = [1, 2, 3] are given by three theoretical expressions. Koekebakker and Ollmar (2005)
try to use this model for the Nord Pool electricity market, but find that it is inconsistent with
empirical findings. Like Clewlow and Strickland (2000), they therefore propose constructing
volatility functions on the form σi,t,T = Ψi(T − t) based on empirical returns data. That is,
they let the volatility coefficients be a function of time to maturity T − t. They use principal
component analysis (PCA) to obtain multiple volatility functions, and choose the number of
factors N such that the amount of cumulative explained variance by all the functions exceeds
some threshold.

In our final model, we choose to adopt the multi-factor process described by (13) and estimate
the volatility functions the same way as Clewlow and Strickland (2000) and Koekebakker and
Ollmar (2005). There are multiple reasons for choosing this model above the spot price process
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in (10). Firstly, by using the forward contracts traded in the market, all predicted spot prices
are a function of their expected price. Further, the forward contracts incorporate yearly price
seasonality, making the process satisfy the second finding of Johnson and Barz (1999). Including
multiple factors also allows the model to better explain the real dynamics driving forward price
movements, and thereby make better price predictions. Our model could also have been extended
to incorporate spikes and jumps using a Poisson process, but for our model granularity we do
not expect average spot prices to exhibit movements larger than those driven by the volatility
functions and the Wiener processes Zi,t, and therefore do not add a Poisson process.

3.2 Constructing forward curves and volatility functions

As mentioned in Section 3.1, we want to model future spot prices using a forward price model.
Since the volatility functions σi,t,T = Ψi(T−t) are to be estimated empirically, we must construct
a sufficiently large dataset of daily returns for multiple types of forward contracts m = [1, ...,M ]
with time to maturity τm = T − t. Using τ as time to maturity, the volatility functions are now
denoted σi,τ . In order to calculate these returns series, Koekebakker and Ollmar (2005) propose
constructing multiple forward curves for a large set of historical trading days and then calculate
daily returns as the deviations between two consecutive curves.

As explained earlier, forward contracts traded in the market have delivery periods stretching
over longer time periods. A forward curve is a curve that aims to explain the expected forward
price for delivery in each hour/day/week in a time interval (tb,te) based on all contracts available
in the market whose delivery periods span the interval. A forward curve constructed on the date
ts is denoted f(ts). f(ts, t) where t > ts denotes the value of that curve for time t, and intends
to represent the price of a fictional forward contract with delivery exactly at time t. There exist
multiple methods for constructing forward curves, all of which are more or less appropriate for
different purposes of usage. In the following sections we explain three different methods for
constructing forward curves, presented by Benth et al. (2007), Fleten and Lemming (2003) and
Alexander (2008a). We then show how a set of forward curves f(ts, t) constructed on multiple
dates ts can be used to obtain a set of daily returns series and to find the desired volatility
functions σi,τ .

3.2.1 Constructing smooth forward curves using method of Benth, Koekebakker
and Ollmar

In their paper, Benth et al. (2007) propose using multiple splines to construct a continuous
forward curve. Since the forward price can then be expressed as a continuous function of time,
the time t value of a forward curve f(ts, t) constructed using this method represents a forward
contract with delivery at exactly that time. We denote

S = {(tb,1, te,1), ..., (tb,M , te,M )} (14)

as a set of delivery periods for M observable forward contracts. Using these contracts, we can
construct a forward curve starting at tb = tb,1 and ending at te = te,M . Note that tb ≥ ts must
not necessarily equal ts. An example of this is when the first contract used to construct a curve
is a weekly contract, indicating that tb will denote the starting date of the upcoming week.
Mathematically, the method defines the value of the forward curve f(ts, t) as a function of time
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t as

f(ts, t) = U(t) + ε(t) (15)

where U(t) is an optional underlying seasonal function and ε(t) is the adjustment function whose
coefficients are what the method seeks to find. The function ε(t) is constructed using multiple
splines for different intervals of time. In order to construct these splines, the time intervals
defined by (14) must be split such that we get a set of D non-overlapping intervals divided by
the dates {t0, t1, ..., tD}. Figure 2 illustrates the logic of obtaining all dates ti. The dates can be
found by taking all start and end dates from S, sort them in ascending order and then remove
all duplicated dates.

Figure 2: Splitting overlapping contracts

Having found the intervals, the adjustment function ε(u) is defined by (16). Benth et al. (2007)
argue that the polynomial function of each spline should be of order four, as it is the most
appropriate class for their purposes. The intuition in their method can, however, be extended
to any class of polynomial functions or other function types.

ε(u) =


a1u

4 + b1u
3 + c1u

2 + d1u+ e1, u ∈ [t0, t1],
a2u

4 + b2u
3 + c2u

2 + d2u+ e2, u ∈ [t1, t2],
...

aDu
4 + bDu

3 + cDu
2 + dDu+ eD, u ∈ [tD−1, tD].

 (16)

Further, all parameters are collected in the vector x = [a1b1c1d1e1 . . . aDbDcDdDeD]′. In order
to obtain the parameter values that give a smoothest possible forward curve, the objective is to
minimize the expression

∫ te

tb

[ε′′(u; x)]2du (17)

subject to a set of constraints regarding the shape of the curve. Firstly, we want the forward
curve to be smooth and continuous in all points. We must, therefore, ensure that not only the
forward curve itself but also its first and second derivative with respect to time are continuous at
all time. The constraints (18)-(20) ensure that this is the case for all time points tj = [t1, ..., tD−1]
where two spline functions meet. Also, constraint (21) sets the first derivative of the forward
curve at t = tD equal to zero.

(aj+1 − aj)u4
j + (bj+1 − bj)u3

j + (cj+1 − cj)u2
j + (dj+1 − d)uj + ej+1 − ej = 0 (18)
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4(aj+1 − aj)u3
j + 3(bj+1 − bj)u2

j + 2(cj+1 − cj)uj + dj+1 − dj = 0 (19)

12(aj+1 − aj)u2
j + 6(bj+1 − bj)uj + 2(cj+1 − cj) = 0 (20)

4aDu
3
D + 3bDu

2
D + 2cDuD + dD = 0 (21)

Lastly, constraint (22) ensures that the value of the forward curve in an interval (tb,i,te,i) is
consistent with the price of a forward contract Ft,tb,i,te,i with delivery period over the same
interval.

Ft,tb,i,te,i =

∫ te,i

tb,i

ζ(u, tb,i.te,i)(ε(u) + Λ(u))du (22)

For reasonable levels of interest rate, Lucia and Schwartz (2002) show that ζ(u, tx, ty) = 1/(ty−
tx) is a good approximation. (22) can therefore be interpreted such that the average price of
the forward curve over an interval (tb,i,te,i) must equal the price of a forward contract Ft,tb,i,te,i .

Using Lagrange multipliers, the problem can be simplified to solving the matrix equation given
by (23). This must be done numerically, e.g., by using QR factorization.

[
2H A′

A 0

]
·
[

x
δ

]
=

[
0
b

]
(23)

Here, we first organize all constraints (18)-(22) in matrix form as Ax = b where x is the
parameter vector defined earlier. Totally, there are 3D +M − 2 constraints and 5D coefficients
to be obtained, making A a (3D + M − 1) × 5M matrix and b a (3D + M − 1) × 1 matrix.
Further, δ = [δ1, ..., δ3D+M−2]′ is the Lagrange multiplier coefficient, and H is a 5D×5D matrix
defined by (24) and (25)

H =

h1 0
. . .

0 hn

 , hj =


144
5 ∆5

j 18∆4
j 8∆3

j 0 0

18∆4
j 12∆3

j 6∆2
j 0 0

8∆3
j 6∆2

j 4∆1
j 0 0

0 0 0 0 0
0 0 0 0 0

 (24)

∆k
j = tkj − tkj−1 (25)

where tj with j = [0, ..., D] are the time points separating the D non-overlapping time intervals.
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3.2.2 Constructing forward curves using method of Fleten and Lemming

Fleten and Lemming (2003) propose a method to construct forward curves with different levels of
smoothness. Unlike Benth et al. (2007), they model their curve discretely by finding one unique
price for a set of constant time steps. We still let f(ts) be a forward curve constructed on an
arbitrary date ts, and assume that the curve is constructed using M contracts with delivery
intervals given as in (14). Since the model aims to find the value of the forward curve in discrete
time steps, f(ts) can be represented as a vector f(ts) = [f(ts, tb), f(ts, tb+1), ..., f(ts, te)]

′ where
f(ts, t) is the value of the forward curve at time t ∈ [tb, te]. The dimensions of the vector f(ts)
is C × 1, where C denotes the number of discrete prices contained by the curve. Further, we
let F askt,tb,j ,tb,j

and F bidt,tb,j ,tb,j denote the ask and bid price of forward contract j = [1, ...,M ], where

(tb,j , tb,j) denotes its delivery period. U(t) = [U(tb), U(tb + 1), ..., U(te)]
′ denotes an underlying

deterministic price function in vector form, and r is the model discount rate. Lastly, we denote
λ ∈ 〈0,∞〉 as the smoothness parameter. For high values of λ, the method will construct forward
curves with maximum smoothness, whereas lower values create curves with smaller smoothness
and larger price jumps. Given all these parameters, the forward curve f(ts, t) is constructed by
solving the minimization problem

minimize
f(ts,t)

te∑
t=tb

(f(ts, t)− U(t))2 + λ

te−1∑
t=tb+1

(f(ts, t− 1)− 2f(ts, t) + f(ts, t+ 1))2

subject to F bidts,tb,j ,tb,j ≤
1∑tb,j

t=tb,j
exp (−rt)

tb,j∑
t=tb,j

exp (−rt)f(ts, t) ≤ F askts,tb,j ,tb,j
for j ∈ [1, ...,M ]

Since we assume a complete market and no drift, we set r = 0. We also set U(t) = 0 to avoid
deterministic elements in our model. Further, if we only consider market closing prices, we can
set F bidts,tb,j ,tb,j = F askts,tb,j ,tb,j

= Fts,tb,j ,tb,j . This simplifies the problem to

minimize
f(ts,t)

te∑
t=tb

f(ts, t)
2 + λ

te−1∑
t=tb+1

(f(ts, t− 1)− 2f(ts, t) + f(ts, t+ 1))2

subject to Fts,tb,j ,tb,j =
1

tb,j − tb,j

tb,j∑
t=tb,j

f(ts, t) for j ∈ [1, ...,M ]

Using the method of Lagrange multipliers, the problem can be reformulated to solving the matrix
equation given by (26), where δ = [δ1, ..., δM ]′ is the vector of Lagrange multipliers and f(ts) is
the forward curve on vector form.

[
2H A′

A 0

]
·
[
f(ts)
δ

]
=

[
0

Fts

]
(26)

In 26, A is an M × C matrix whose elements Aj,t can take the values Aj,t = 1 if time t
is part of the delivery period of the jth forward contract and Aj,t = 0 otherwise. Fts =
[Fts,tb,1,te,1 , ..., Fts,tb,M ,te,M ]′ is a vector containing the price of all M forward contracts traded on
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the market. The matrix H is C × C and given by (27).

H =



1 + λ −2λ λ 0 0 0 0 . . . 0
−2λ 1 + 5λ −4λ λ 0 0 0 . . . 0
λ −4λ 1 + 6λ −4λ λ 0 0 . . . 0
0 λ −4λ 1 + 6λ −4λ λ 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 λ −4λ 1 + 6λ −4λ λ 0
0 . . . 0 0 λ −4λ 1 + 6λ −4λ λ
0 . . . 0 0 0 λ −4λ 1 + 5λ −2λ
0 . . . 0 0 0 0 λ −2λ 1 + λ


(27)

3.2.3 Constructing forward curves by linear interpolation

Alexander (2008a) presents a different approach for constructing forward curves. It involves
creating what she calls constant maturity futures by interpolating between the prices of adjacent
forward contracts traded in the market. We modify this method so that it can be used to create
forward curves. Similar to the method of Fleten and Lemming (2003) the forward curve is made
up of values at discrete, predefined time steps. Note that since the forward curve is found using
linear interpolation, it will generally not be smooth at all points.

There is a special challenge in applying the approach described by Alexander (2008a) to electricity
forwards, as it has no obvious way of handling forwards with a delivery period instead of delivery
in a specific point in time. In this method, the value of the forward curve f(ts, t) constructed on
ts for delivery time t is defined as the value of a forward contract whose delivery period starts at
t. The length of the delivery period is, however, given by the delivery period of the two contracts
used to find this value of the curve. This is slightly different from the previous two methods, in
which we used all available contracts to construct a smooth forward curve where the value of
the curve for a given delivery time denoted the price of a forward contract with delivery on that
particular point.

In this method, each element of the forward curve is calculated by linear interpolation. Say
that we want to calculate the price of a forward contract Ft,T at time t with delivery at time
T . Intuitively, it can be found by weighting the market prices of two tradable forward contracts
such that their weighted average delivery time is equal to T . We extend this logic and use it to
find every entry of a forward curve f(ts) whose underlying contracts have delivery periods as
described in (14).

As before, we let ts be the date for which a forward curve is constructed and let t be the delivery
time of the forward curve element we want to find. Further, let Fts,tb,i,te,i be the market price of
a forward contract with delivery period (tb,i, te,i) where tb,i ≤ t. Among the contracts with the
beginning of the delivery period earlier than t, Fts,tb,i,te,i is the contract having the beginning
of the delivery period tb,i closest in time to t. Let Fts,tb,j ,te,j be the market price of a future
contract with delivery period (tb,j , te,j) where tb,j ≥ t. Among the contracts with the beginning
of the delivery period later than t, Fts,tb,j ,te,j is the contract having the beginning of the delivery
period tb,j closest in time to t. In summary, we have that

tb,i ≤ t ≤ tb,j (28)

By linear interpolation, the forward curve element (f(ts, t)) located in the interval (tb,i, tb,j) is
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given by (29).

f(ts, t) = Fts,tb,i,te,i +
t− tb,i
tb,j − tb,i

· (Fts,tb,j ,te,j − Fts,tb,i,te,i) (29)

Further, we want to interpolate between forward contracts of the same delivery period length,
meaning that the part of the curve spanning the interval (tb,1, tb,j) must be constructed using
contracts where

te,i − tb,i = te,j − tb,j (30)

Denote R the number of different contract types (e.g., contracts with weekly, monthly, quarterly
and yearly delivery periods). Since we use all contract types available we will have R different
forward curves for each trading day. To create a complete forward curve with one unique value
f(ts, t) for each value of t, portions of these forward curves are used for different intervals of
time. In the near end of the curve, one should use contracts with shorter delivery periods (e.g.,
weekly) to construct the values of the curve. When t is increased, f(ts, t) will eventually have to
be constructed using contracts with a longer delivery period (e.g., monthly). This is due to the
nature of electricity forward markets, where the delivery period of the contracts traded in the
market generally increases for larger times to maturity. Therefore, one must use two forward
contracts with larger delivery periods to comply with restriction (28). For even larger values
of t, the curve is constructed using a contract type with an even longer delivery period, and so
on. Apart from using contracts with the shortest possible delivery period, a heuristic to decide
which contract type is to be used in the complete forward curve is to choose the contract with
the most historical price observations for a given time to delivery.

3.2.4 Constructing returns series from forward curves

Having constructed smooth forward curves for multiple consecutive days, we can now create a
returns dataset that can be used to find the volatility function. We apply a modified version
of the method used by Koekebakker and Ollmar (2005), as we choose to calculate continuously
compounded logarithmic returns rather than discrete compounded returns. We do this because
it allows us to calculate returns over longer time periods by addition, thereby simplifying many
calculations. This approach is also used by Bjerksund et al. (2008). Since we want volatility
functions on the form σi,t,T = σi,τ = Ψi(T−t), we must create returns series for a set of contracts
with equal time to maturity τ = T − t. f(tj) still denotes a forward curve constructed at date
tj , and f(tj , tj + τa) denotes the value of this curve for a delivery date Ta = tj + τa. We then
use (31) to calculate daily returns at time tj for contracts with time to maturity τa.

xj,a = ln(f(tj , tj + τa))− ln(f(tj−1, tj + τa)) (31)

Here, j = [2, ..., J ] and a = [1, ..., A], where J is the number of forward curves and A is the
number of maturity dates for which we want to construct a dataset. Next, we try to illustrate
the use of the formula. For a forward curve generated on a Wednesday and a time to maturity
τa = 5 days, tj will represent that Wednesday and tj + τa the upcoming Monday. The price of
a forward contract with these properties is given by the forward curve, f(tj , tj + τa). When we
calculate the daily price change of this particular contract, we also need to obtain f(tj−1, tj+τa),
which is the value of the contract given by the forward curve constructed on the previous date
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(Tuesday) with maturity on the same upcoming Monday. If we call the forward curve constructed
on the Wednesday for Wednesdaycurve and on Tuesday for Tuesdaycurve, the described return
is given by ln(Wednesdaycurve(5)) − ln(Tuesdaycurve(6)). If tj is on a Monday, tj−1 will be
the prior week Friday. Though some may argue that the return between Friday and Monday
should not be treated as a daily return, it is, in fact, a return between two trading days, and we
consider the number of days per year equal to the number of trading days. Further, Bjerksund
et al. (2008) show that they do not see any major differences in their returns series when they
treat such returns as daily returns, and neither do we.

The returns series matrix calculated using J+1 forward curves (meaning we can find J returns)
and A different time to maturities is then given by

XJ×A =


x1,1 x1,2 . . . x1,A

x2,1 x2,2 . . . x2,A
...

...
. . .

...
xJ,1 xJ,2 . . . xJ,A

 (32)

3.2.5 Finding volatility functions using PCA

The description in this section is based on material from Alexander (2008b) and Koekebakker and
Ollmar (2005). After constructing the returns dataset XJ×A, we must use principal component
analysis (PCA) to find the desired N volatility functions. PCA is an orthogonalization technique
used to reduce a dataset consisting of highly correlated variables into a set of non-correlated
factors (principal components) that explain the total variation in the data. Since XJ×A has
the dimension J ×A, its covariance matrix V should have the dimension A×A. The principal
components of V are the columns of P given by

P = XJ×AW (33)

Here, W is a matrix whose columns are the eigenvectors wi of V sorted in descending order based
on their corresponding eigenvalue Λi. By definition, the following relationship exists between
the covariance matrix V and its eigenvalues and eigenvectors:

V = WΛW′ (34)

Here, Λ is an A × A matrix whose non-diagonal elements are zero and diagonal elements are
the eigenvalues Λi in descending order. By using this, the covariance matrix of the principal
components is given by (35).

V ar(P) = W′VW = W′WΛW′W = Λ (35)

(35) illustrates that the variance of the ith principal component is the eigenvalue Λi and that the
principal components are uncorrelated. As explained above the principal components explain
the entire variation in XJ×A. The proportion of total variance explained by the ath component
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is given by Λa/
∑A

i=1 Λi, letting us calculate the cumulative proportion of variance explained by
the first N components as

∑N
i=1 Λi∑A
i=1 Λi

(36)

Typically, one would choose the number of principal components N to describe XJ×A such that
the proportion of explained variance is around 90%-95%. Clewlow and Strickland (2000) show
that only two components are needed to explain 96.8% of total variation of NYMEX crude oil
futures contracts, whereas Koekebakker and Ollmar (2005) needed more than ten components
to explain the same proportion for Nordic electricity forwards in the period 1995-2000. Further,
in order to find the empirical volatility functions σi,τa , we use

σi,τa =
√
λiwai (37)

where wai is the ath element of the ith eigenvector of V, or equivalently, the ath element of the
ith column of W.

Lastly, we give in an interpretation of the first three principal components. In a highly correlated
system, the first principal component (p1) is said to capture a common trend in the returns series.
Therefore, it is sometimes called the trend or shift factor. That is, if the first principal component
changes in one direction while the other components are fixed, the entire forward curve shifts in
the same direction. Thus, the volatility function associated with the first principle component
will often have a similar shape as the overall volatility function, but of smaller magnitude. If the
system has no natural ordering, then the second and higher order principal components have no
intuitive interpretation. However, if the system is ordered, such as a set of returns on forwards
of different maturities, a change in the second principal component (p2) will cause the long and
short maturity end of the forward curve to move in opposite directions. Thus, it is called the tilt
factor. On the contrary, the third component (p3) is often referred to as the bending factor, as
a change in this component will make the middle part of the forward curve move in the opposite
direction of the long and short ends. A more extensive explaination of these concepts can be
found in Clewlow and Strickland (2000).

3.3 Inflow model

The inflow model is based on the geometric periodic autoregressive (GPAR) model presented
by Shapiro et al. (2013). The authors found that a first-order periodic autoregressive model of
the log-inflows provides a good description of the dataset, which contained inflow observations
from the Brazilian hydropower system. They found that the distribution of inflow observations
It was highly right-skewed. Therefore, they worked with Yt = ln(It) to obtain a distribution
with less skew.

Let µ̂t, t = 1, ..., 52 be the weekly averages of Yt and Zt = Yt−µ̂t be the corresponding deviations.
Shapiro et al. (2013) found that Zt could be described by an AR(1) process. (38) shows how
the deviations of the log inflows from their mean can be described as an 1-lag autoregressive
process.

Zt = φ0 + φ1Zt−1 + εt (38)
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Here, φ0 and φ1 are parameters of the model, and εt is the error term representing the difference
between the observed and predicted value. To be able to model the inflow as a stochastic process,
we assume that the error terms are distributed εt ∼ N(0, σ2

INF), where σINF is the standard
deviation of the error terms. The parameters φ0 and φ1 are estimated by ordinary least squares
regression. Because Zt observations are themselves deviations, φ0 is highly insignificant. We set
φ0 = 0 and use φ1 = φ from this point on. Furthermore, we find the log inflow Yt by substituting
for Zt and Zt−1.

Yt = Zt + µ̂t = φZt−1 + εt + µ̂t = φ(Yt−1 − µ̂t−1) + εt + µ̂t (39)

The inflow It can be expressed as a function of Yt. We insert the obtained expression of Yt into
It = exp (Yt), and get

It = exp(Yt) = exp (φYt−1) exp (−φµ̂t−1 + εt + µ̂t) (40)

By rewriting, we obtain the inflow process described by (42).

It = exp (φ ln It−1) exp (µ̂t − φµ̂t−1 + εt) (41)

It = exp (εt) exp (µ̂t − φµ̂t−1)Iφt−1 (42)

We further allow the error term standard deviation σINF and the coefficient φ to be time-dependent.
The final inflow model can then be expressed as

It = exp (εt) exp (µ̂t − φtµ̂t−1)Iφtt−1 (43)

where t is the week number and εt now follows the distribution εt ∼ N(0, σ2
INF,t). Since inflow

It is a function of its first lag only, future values of inflow are only dependent on their current
value and not the entire history. Thus, inflow follows a Markov process. This means that both
inflow and price follow Markov processes, which was one of the prerequisites for representing
our decision problem as a Markov decision process.

3.4 Price and inflow lattice

Having established a stochastic optimization model and separate models for spot price and inflow
development, we must now find a method for solving the given MDP. As mentioned previously,
the objective in an MDP is to obtain an optimal decision policy for all states of the world. We
choose a discrete representation of the decision problem, meaning that we need to discretize all
future states of the world for given intervals of time. Afterwards, we organize the discrete states
using a scenario lattice. In the following sections, we describe the nature of scenario lattices and
a method for discretizing states and transition probabilities into a lattice.
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3.4.1 Lattice description

A lattice is a recombining three with a finite number of states (represented by nodes) for each
time step, where all nodes for a time step t are possible successor nodes of a node at t− 1. Each
node represents a possible state of one or multiple stochastic variables. In our case, this implies
that a lattice node represents a state of both inflow and spot price. Possible state transitions are
illustrated by connecting arcs, and each arc has a probability weight denoting the probability of
a transition between the connected states. If our problem had not been an MDP, meaning that
we could not find one single decision policy for each state independent of its path, we could not
have used a scenario lattice. Instead, we would be forced to use a scenario tree. In a scenario
tree, each node can only have one predecessor node, meaning that each node represents a single
state AND the history of previous states. This implies that more nodes are needed to represent
all possible states, as multiple nodes for a given time step will most likely represent very similar
or equal states. Unlike a scenario tree, a scenario lattice allows each state to have multiple
predecessor states. This means that fewer nodes can be used to represent all possible states,
and more importantly, that fewer nodes can be used to represent multiple scenarios. We denote
Nt as the number of nodes at time t. Further, Stn = {Ptn, Itn} denotes the nth state (or node)
at time step t, where Ptn is the state spot price and Itn = {Ib,tn : b = [1, ..., B]} is a set of inflows
into all B reservoirs for the same state. We also let n ∈ [Nt], where Nt is the total number of
states at time t. If St = {Stn : n ∈ [Nt]}, that is, St is a set of all states at time t, the set
of possible scenarios for a lattice with time horizon T̂ where all arcs have positive probability
weights is given by

S1 × S2 × · · · × ST̂−1 × ST̂ (44)

Figure 3 illustrates the difference between a scenario tree (left) and scenario lattice (right). If
we wanted to expand the scenario tree with more time steps, the number of extra nodes needed
would grow exponentially for each step. For the lattice, we can ourselves choose the number of
nodes we add, and it is often common to operate with a fixed number of nodes per stage, as
in Löhndorf and Wozabal (2017). Therefore, a lattice is less computationally expensive for the
representation of all possible future states than a scenario tree.

Figure 3: Scenario tree (left) and scenario lattice (right) with five time steps. The scenario tree contains 31 nodes
representing 16 scenarios, whereas the lattice contains 15 nodes representing 120 scenarios. Source: Löhndorf and
Wozabal (2017)

3.4.2 Lattice quantization

In order to construct our lattice, we use the two-step method proposed by Löhndorf and Wozabal
(2017). The first step involves optimally locating all nodes and the second step is to find the
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correct transition probabilities. For a time stage t withNt nodes, the location of all nodes is found
by minimizing the Wasserstein distance between the nodes and a set of simulated observations
of price and inflow. Consider K Monte-Carlo simulations (Ŝk) where Ŝkt is the time t state
of simulation k where k ∈ [K]. Then, the Wasserstein distance between a simulated state Skt
and its closest node Stn is given by the vector distance ||Ŝkt − Stn||. It is, however, difficult
to find the optimal nodes Stn analytically. We, therefore, use a method based on stochastic
gradient descent first proposed by Bally and Pages (2003) and later redeveloped by Löhndorf

and Wozabal (2017). We define a set of stepsizes β = {βk : k ∈ [K]}. Further, we define Sktn as

Sktn =

S
k−1
tn + βk(Ŝ

k
t − Sk−1

tn ) if n = arg min
m

{||Ŝkt − Sk−1
tm ||,m ∈ [Nt]}

Sk−1
tn otherwise

 (45)

where S0
tn ≡ 0, n ∈ [Nt], t = 2, 3, ..., T̂ and k ∈ [K]. Then, the value of all nodes Stn can be found

by setting Stn ≡ SKtn. In order to ensure that the resulting nodes are actually local minimizers
of the Wasserstein distance, βk must be defined such that

∑∞
k=1 βk =∞ and

∑∞
k=1 β

2
k <∞.

Having found all lattice nodes, we must now find all transition probabilities between them. We
denote ptnm as the conditional probability of a node transition from Ftn to Ft+1,m. Bally and
Pages (2003) propose estimating the transition probabilities by (46), a method which we choose
to adopt.

ptnm =

∑K
k=1 IΓtn(Ŝkt )IΓtm(Ŝkt+1)∑K

k=1 IΓtn(Ŝkt )
.n ∈ [Nt],m ∈ [Nt+1], t ∈ [T − 1] (46)

Here, IA(x) is an indicator function taking the value 1 if x is a part of the set A and 0 otherwise.
Γtn is the Voronoi decomposition of the nodes Stn. In other words, Γtn is the set of simulated
states Ŝkt whose nearest node defined by the Wasserstein distance is Stn. Mathematically, Γtn
can be written as

Γtn =
{
Ŝkt : n = arg min

m
{||Ŝkt − Stm||,m ∈ [Nt]}

}
(47)

Intuitively, (46) implicates that the transition probability ptnm is given by the number of
simulated paths whose time t and t+1 states lie closest to the nodes Stn and St+1,m, respectively,
divided by the total number of paths going from node Stn to any time t+ 1 node.

3.4.3 Monte Carlo simulations

We have now established a method for constructing a lattice. As mentioned, a set of simulated
state paths are needed to do this. In this section, we describe how Monte Carlo simulations are
used to construct correlated time series for our two state variables; spot price and inflow. Recall
that movements of a forward contract Ft,T are given by

dFt,T
Ft,T

=

N∑
i=1

σi,τdZi,t (48)
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where dZi,t for i = [1, ..., N ] are uncorrelated increments of a Wiener process and σi,τ is
a volatility function found empirically using PCA. Since the principal components used to
construct the volatility functions are orthogonal, the movements described by each volatility
function must be independent. Therefore, dZi,t and dZj,t for i 6= j are independent for all values
of t. Using Ito’s lemma, (48) can be represented in logarithmic form as

d lnFt,T = −1

2

N∑
i=1

σ2
i,τdt+

N∑
i=1

σi,τdZi,t (49)

For small time changes ∆t, (49) can be discretized into

lnFt+∆t,T − lnFt,T = −1

2

N∑
i=1

σ2
i,τ∆t+

N∑
i=1

σi,τ∆Zi,t (50)

Here, ∆Zi,t can be rewritten as ∆Zi,t =
√

∆tεi,t, where εi,t is a random draw from a distribution
εi,t ∼ N(0, 1). Using this, the price of a forward contract Ft,T with time to delivery T − t is
given by

Ft,T = Ft−∆t,T · exp
(
− 1

2

N∑
i=1

σ2
i,τ+∆t∆t+

N∑
i=1

σi,T−t+∆t

√
∆tεi,t

)
(51)

We try to get an intuitive interpretation of (51). If we set ∆t = 1week, Ft,t+n∆t for n = [1, ..., T ]
is the time t price of a forward contract with n weeks to maturity and delivery period ∆t. Next
week, the price of the forward contract will evolve to Ft+∆t,t+n∆t following the process above,
and become the price of a forward contract with n − 1 weeks to maturity. If we set n = 1,
the price of a forward contract Ft,t+∆t will evolve into Ft+∆t,t+∆t, that is, the next week spot
price Pt+∆t. (51) can therefore be rewritten into an expression of the time t spot price Pt as a
function of Ft−∆t,t, given by

Pt = Ft,t = Ft−∆t,t · exp
(
− 1

2

N∑
i=1

σ2
i,∆t∆t+

N∑
i=1

σi,∆t
√

∆tεi,t

)
(52)

Further, we recall that the time t inflow It is given by (43). We modify it by rewriting εt ∼
N(0, σ2

INF,t) into εINF,t · σINF,t where εINF,t ∼ N(0, 1) to get

It = exp(εINF,t · σINF,t + µ̂t − φtµ̂t−1)Iφt−1 (53)

Thus, the Monte Carlo simulated times series used to construct the lattice will consist of parallel
paths of (53) for t ∈ [1, ..., T̂ ] and (51) for t ∈ [1, ..., T̂ ] and T ∈ [t, ..., T̂ ]. If the number of discrete
time steps used in the model is T̂ , the first time step of the simulation must include the starting
period spot price and T̂ − 1 forward contracts. For each consecutive time step, the contract
from the previous step with the shortest time to maturity becomes the new spot price, thereby
reducing the number of contracts in the set. Consequently, the simulation will only contain one
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price for the last time step, the spot price PT̂ . Though we must perform Monte Carlo simulations

for many forward prices with maturity dates up to T̂ , only the spot price Pt = Ft,t is included
in the lattice nodes Stn.

Further, we want our model to include a correlation between movements in price and reservoir
inflow. We implement this by adding a correlation between the normalized increment of the
Wiener process associated with the first volatility function (ε1,t) and the inflow function residual
(εINF,t). In order to do this, we use Cholesky decomposition. For two random draws εa,t and εb,t
with distributions εa,t, εb,t ∼ N(0, 1), the two residuals ε1,t and εINF,t with correlation ρ can be
found by the following expressions

ε1,t = εa,t, εINF,t = ρεa,t + εb,t
√

1− ρ2 (54)

In McDonald (2014), it is shown that ε1,t and εINF,t will in fact have a correlation ρ if they are
defined as in (54).

3.5 Optimization algorithm used on lattice

To conclude this section, we give an overview of how the optimization algorithm used on the
price and inflow lattice works. In principle, obtaining optimal decision policies for a Markov
decision process should be possible using traditional dynamic programming (DP) as introduced
by Bellman (1957). In DP, the optimal decision policy for each state can be found using the
Bellman equation, which we first introduced in Section 2.2. We rewrite it so that its notation is
coherent with the one we use to represent all lattice states, giving us

Vt(Stn, πtn) = max
πtn

CFt(Stn, πtn) + exp (−r)E[Vt+1(St+1, πt+1|Stn, πtn)] (55)

Here, πtn is the optimal decision policy of the nth state at time t. The objective of the production
planner is to maximize the value of their future cash flows (also known as the value function),
Vt, subject to their current state and decision policy. All future cash flows are represented by
the current time cash flow CFt plus the expected discounted next state value function. To find
the optimal decision policy of each state, we must start in the end nodes. There, one assumes
that the world has no future states, and the value function is given by the present time cash
flows. Thus, the optimal decision policies in the ultimate states is the one maximizing these
cash flows. Having found these policies and the corresponding value functions, we can move one
step back in the lattice. There, one can use (55) to find the optimal decision policies and value
functions for all states, using the next state value functions found in the ultimate states. By
repeating this process for all time steps, one can obtain the optimal decision policy of all values
of the lattice.

A common problem with dynamic programming is the ”curse of dimensionality”. It has been
addressed by multiple authors, more recently by Mes and Rivera (2017). In their paper, they list
three ”curses”. The most critical in our case is that the decision space can become too large to
find the optimal decision for all states within a reasonable amount of time. We must, therefore,
use a method that resolves this issue by obtaining decision policies that are approximately
optimal. Multiple such methods are proposed in the literature, and they are often referred
to as approximate dynamic programming. A method that has been widely used to manage
hydropower reservoirs is stochastic dual dynamic programming (SDDP), first introduced by
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Pereira and Pinto (1991). Löhndorf and Wozabal (2017) extend the method of SDDP so that it
can also be used for scenario lattices, calling it ADDP. When using SDDP and ADDP, one of
the main simplifications is that the value function Vt is approximated to be a piece-wise linear,
concave function of all resource variables (e.g., reservoir levels). The shape of the value function
is illustrated in Figure 4. We adopt the method of ADDP and give an overview of how ADDP
can be applied to find the optimal decision policies πtn for each state in a lattice. In order to
do so, one must use the following algorithm for ξ ∈ [Ξ] iterations:

1. Perform a forward pass by drawing a sequence of states ( ˆ̄Sξtn)T̂t=1 through the lattice based

on the state transition probabilities. For each state, find an optimal decision policy πξtn
such that it maximizes the approximate post-decision value function denoted ˆ̄V ξ

t , which is
defined as in the Bellman equation, for each drawn state.

2. Perform a backward pass where the approximated value function is updated relative to the
sampled sequence of states and all state decision policies. In practice, this is done by adding
new hyperplanes (linear constraints) to the sets of supporting hyperplanes that define the
approximate post-decision value function. These linear constraints are illustrated in Figure
4.

3. If ξ ≤ Ξ, return to step 1. If not, terminate and set Vt = ˆ̄V Ξ
t and πtn = πΞ

tn for all states.

Here, we use that ˆ̄V 0
t = 0. For a more detailed description of the algorithm, the reader should

consult Löhndorf and Wozabal (2017). Compared to traditional DP, ADDP can significantly
reduce the computational time needed to find all the decision policies by choosing them so that
they are close to optimal. To further speed up the process, we also use the ε-approximation
introduced by Löhndorf et al. (2013). It says that the hyperplanes made during the backward
pass should be rejected if they do not improve the approximate post-decision value function by
more than ε > 0. This will result in a looser approximation, but it decreases the problem size
and thereby the computational efforts needed to obtain the approximate optimal policies.

Figure 4: Illustration of how the linear constraints C1, C2 and C3 construct the approximate value function as
a function of the water level in reservoir b.

One of the outputs from the model is the optimal current state decision policy π1. This policy
tells us what decision the production planner should make right now to maximize their expected,
long-term revenues. However, the model can also be used to calculate the expected revenues or
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the mean of the optimal decisions in all future time steps. In order to obtain these values, one
must simulate multiple state paths through the lattice. In all simulations, the transition from one
state to another is drawn based on the transition probabilities of going from that particular state
to any other states. Since some of the decision variables (e.g., water level lb,t) are dependent on
their previous state value, no single solution can be found for all decision variables in all states.
Instead, we find their possible value in each time step based on the decisions made in this time
step for all simulated paths, and then set their expected value equal to the mean of the values
found in the different simulations.
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4 Case: Søa hydropower plant

In this section, we present the hydropower plant for which we have developed the initial version
of our model. Also, we present a revised version of the optimization model given the current
case and some necessary simplifications.

4.1 Søa hydropower plant

To be able to test our model, we have received empirical data from the Søa hydropower plant,
a plant owned and operated by the integrated electric utility company TrønderEnergi. Apart
from sharing the relevant characteristics of the plant, TrønderEnergi has also provided us with
historical time series for inflow and production. The plant is mid-sized both in terms of regulating
capacity and power capacity, and it is located in the NO3 area in Central Norway. It consists of
two reservoirs - Vasslivatn and Søvatn, and one Francis turbine. The discharge from the Søvatn
reservoir to the Vasslivatn reservoir is controllable. In Table 3, we have listed the physical
boundaries of both reservoirs. There is also a special summertime restriction that applies for
Søvatn, which is set by local authorities. This restriction and its duration are also listed in
Table 3. The outlet of the hydropower plant is in Hemnefjorden, which has an average head of
-1 MASL (meters above sea level).

Figure 5: The Søa hydropower plant and the reservoir capacities. The elevation of 273.1m is the
production-weighted average head difference between Vasslivatn and Hemnefjorden.

Table 2: Characteristics of the Søa hydropower plant

Value Unit

Maximum power capacity 36 MW
Mean yearly production 191.3 GWh
Avg. yearly inflow, total 311 mill m3

Average inflow to Søvatn 60.5 % of total
Average inflow directly to Vasslivatn 39.5 % of total
Energy coefficient 0.6748 kWh/m3

Turbine capacity 17 m3/s
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The energy coefficient takes into account all sources of energy loss in the system, including
head loss, turbine losses, generator losses and transformer losses. It is calculated using the
production-weighted average head elevation (273.1 m) and production-weighted average discharge
to the turbine.

Table 3: Water level constraints for Søa. All water levels are denoted in meters above sea level

Reservoir Restriction type Min [MASL] Max [MASL]

Vasslivatn Physical 260.00 279.83
Søvatn Physical 275.00 279.83
Søvatn Regulatory (May 25 - Oct. 15) 278.33 279.83

4.2 Revised optimization model

In order to construct the lattice mentioned earlier and perform ADDP on Søa hydropower plant,
we have used the Java library QUASAR. QUASAR is a general-purpose solver for stochastic
optimization developed by Dr. Nils Löhndorf and provided by Quantego (Quantego (2017)).
Though the software is highly sophisticated and can be used to solve large-scale problems, it is
currently only applicable for linear problems. This forces us to make some adjustments to our
optimization model with regards to formulating a linear objective function and linear constraints.

We start with the general model formulation from chapter 2.2 and specify the parameters
of our case. The number of reservoirs is B = 2, and we let l1,t and l2,t denote the water
levels in Vasslivatn and Søvatn respectively. Also, I1,t and I2,t denote the inflows into each
reservoir. Since the system only contains one turbine which connects Vasslivatn to the outlet of
Hemnefjorden, we denote the amount of water nominated for production as wt and its discharge
as qt. The amount of water flowing from Søvatn to Vasslivatn (denoted u12,t using logic in
Section 2.2) is now denoted by ut , and the amount of spilled water flowing from Vasslivatn
to Hemnefjorden is (previously denoted u1O,t) is denoted by st. With these new notations, the
general volume balance constraint from (4) can be written as (56) and (57) for Vasslivatn and
Søvatn, respectively.

l1,t = l1,t−1 − wt − st + I1,t + ut for t = [1, ..., T̂ ] (56)

l2,t = l2,t−1 + I2,t − ut for t = [1, ..., T̂ ] (57)

Neither ut nor st are restricted by an upper bound uij,t, so this constraint is omitted from the
model. Further, the head elevation of Vasslivatn is denoted by Ht and the combined turbine
and generator efficiency rate by ηt. Due to the linearity constraint of the optimization software,
the cash flow expression CFt defined by (3) can only be a function of one decision variable.
Typically, head elevation Ht is a function of volume level l1,t and turbine efficiency a function
of water flow qt. Generator efficiency is typically a function of both. Multiplying these three
parameters with the water flow qt, as is the case in the cash flow expression, would give a
non-linear expression. Thus, we must simplify the model by using constant head elevation and
efficiency rate, a simplification made in multiple similar models for reservoir management, e.g.,
EOPS (SINTEF (2017a)). Madani and Lund (2009) also use a fixed head in their model and
argue that this is a reasonable assumption for high-elevation hydropower systems. There is no
formal definition of high-elevation plants, but they typically have a head elevation above 250-300
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meters. As the head elevation of Søa is within this interval, it is not highly unreasonable to
argue for using a constant head. Also, if the head is chosen as the centre of gravity for the
reservoir (i.e., about 270 MASL, indicating an elevation of 271 meters between the reservoir and
the outlet), the deviations between realized power and approximated power will be in the range
[−3.7%, 3.7%]. We believe this is acceptable, considering the granularity of our model.

Since we must use constant values for head elevation and efficiency rate, the objective function
of the optimization problem suddenly consists of many constants whose product is the energy
coefficient. By definition, the energy coefficient is the average amount of energy a hydropower
plant can produce by using one cubic meter of water. In the objective function, we, therefore,
make the simplification %GHη$/ς = EC, where EC denotes the energy coefficient. As mentioned
above, the mean energy coefficient has been provided to us by TrønderEnergi. It is the same
as the mean energy coefficient used in EOPS, the software TrønderEnergi is currently using for
medium-term reservoir management.

Further, we only have available data on the aggregated inflow into both reservoirs, forcing us
to model inflow as a single stochastic variable It = I1,t + I2,t. In order to obtain I1,t and I2,t,
we have used the historical inflow split given in Table 2. We let ι = 0.395 denote the historical
amount of inflow flowing into Vasslivatn, and thereby set I1,t = ιIt and I2,t = (1 − ι)It. Also,
since the water level in Søvatn is subject to a minimum restriction during the summer l2,t > 0,
we must include a dummy variable lDUM2,t in our model to account for cases where this constraint
cannot be held. Since we do not know the exact cost of violating the constraint, we add a
sufficiently large cost Υ associated with the dummy variable to the value function such that its
value is kept at a minimum. By combining all the mentioned simplifications and adjustments,
our optimization problem at time t is reduced to

max Vt = Pt · EC · wt −Υ · lDUM2,t + exp (−r)E[Vt+1|Pt, It, πt]
subject to l1,t = l1,t−1 − wt − st + ιIt + ut

l2,t = l2,t−1 + (1− ι)It − ut
l1,t ≤ l1,t
l2,t ≤ l2,t
l1,t ≥ l1,t
l2,t ≥ l2,t
qt ≤ q

where πt = {wt, l1,t, l2,t, ut, st, lDUM2,t }. All coefficients and constant parameter values are given
in Table 4. We recall that water discharge is defined as qt = wt/ς where ς is the number of
seconds of production per week. The larger we choose ς, the larger becomes the maximum limit
for wt, water nominated for production at time t. In cases of large inflows, low values for ς will
only result in larger amounts of spilled water, indicating that ς should be set as large as possible.
Also, since efficiency rate is not modeled as a function of water discharge qt, the choice of ς will
be irrelevant for the value function in all stages where spillage is of no concern. We, therefore,
set ς = 604800s, which is the total number of seconds in one week. We also let the risk-free
rate r be equal to the Norwegian Interbank Offered Rate (NIBOR). To get comparable results
between runs for different days, we chose to use a constant value of r (NIBOR for 6-month
maturity debt on January 7, 2013) in our model. Optimally, we would have used an estimate of
the two-year maturity risk-free rate, but six months was the longest maturity available.
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Table 4: Model coefficients and constants

Coefficient/Parameter Value Unit Dates

l1,t 44.5 Mm3 t = [1, ..., T̂ ]

l2,t 22.5 Mm3 t = [1, ..., T̂ ]

l1,t 0 Mm3 t = [1, ..., T̂ ]

l2,t 0 Mm3 t =[October 16,...,May 24]

l2,t 15.05 Mm3 t =[May 25,...,October 15]

EC 0.6747 kWh/m3 t = [1, ..., T̂ ]

ς 604800 s t = [1, ..., T̂ ]

q 17 m3/s t = [1, ..., T̂ ]

r 0.0198 − t = [1, ..., T̂ ]
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5 Results

In this section of our thesis, we show the results obtained by running the model. In the first
part, we show and discuss the forward curves and corresponding volatility functions found using
the methods of Benth et al. (2007), Fleten and Lemming (2003) and Alexander (2008b). Then,
we present the parameters of the inflow model and show how we construct the scenario lattice
using correlated Monte Carlo simulations. Furthermore, we present the most important results
and decisions obtained when running the model on five different dates. Next, we plot the
expected marginal water values as a function of reservoir level and time. Then, we perform a
set of sensitivity analyzes with regards to different values of the correlation coefficient ρ and
the number of factors N used in the forward price model. We also perform a backtest of our
model compared to historical operations and discuss some simple hedging strategies. Except for
the algorithms used to construct a lattice from a set of Monte Carlo simulations and to obtain
optimal decision policies in a lattice using ADDP, all lines of code have been written by us using
MATLAB and R.

5.1 Realized forward curves and corresponding volatility curves

By first constructing forward curves according to the three methods described in Section 3, we
have obtained three different sets of volatility functions that describe forward price movements.
Remember that each volatility function is associated with an independent uncertainty factor.
The volatility function determines by how much, and in which direction the random shock
associated with the uncertainty factor moves each point of the forward curve. The number
of factors, and thus volatility functions, needed to explain the entire forward curve dynamics
will depend on the return series that is used when finding the volatility functions by principal
component analysis. As we use weekly granularity and a time horizon of 105 weeks, the volatility
functions σi,τ = Ψi(τ) must be constructed for the same granularity and length. That is,
we must find the volatility functions σi,τ for all i = [1, ..., N ] and time to maturity given by
τ = [1, 2, ..., 104] weeks.

In all three methods, the forward curves were constructed using closing prices of DS futures
contracts traded NASDAQ Commodities. These contracts are listed in Table 5. The dataset
includes closing prices for all trading days between April 28, 2011 and June 30, 2017. As
discussed in Section 2.1, futures contracts and DS futures contracts are treated as equal despite
their difference in settlement structure. Hence, our results are not to be understood as specific
for DS futures contracts.

Table 5: Electricity forward contracts traded on NASDAQ Commodities

Code Length of delivery period Contracts used

ENOW Week 1, 2, 3, 4, 5, 6 weeks ahead
ENOM Month 1, 2, 3, 4, 5 and 6 months ahead
ENOQ Quarter 1, 2, 3, 4, 5, 6, 7 and 8 quarters ahead
ENOYR Year 1, 2 and 3 years ahead

5.1.1 Forward and volatility curves found using the method of Benth, Koekebakker
and Ollmar

Based on data for all trading days between June 29, 2015, and June 30, 2017, we have constructed
507 forward curves using the method of Benth et al. (2007). In Figure 6, the forward curve
obtained for June 29, 2015, is illustrated together with its underlying contracts. Further, Figure
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7 illustrates multiple forward contracts constructed for all trading days between June 29 and
September 18, 2015. While both figures show that the constructed forward curves tend to be
smooth and move up and down together, they reveal three weaknesses with the method:

1. Discontinuity: Though it is included as a requirement, many forward curves are not
strictly continuous. This can be seen for t = 1.25 years in Figure 6, where the curve makes
a jump in the downward direction.

2. Obviously wrong prices: One of the requirements stated in the model says that if there
exists a forward contract with delivery period (tb, te) whose price is Ft,tb,te , the average
value of the forward curve for that interval must equal Ft,tb,te . In some cases, the forward
curve obviously does not comply with this requirement as it lies either entirely above or
below Ft,tb,te for all values in the interval. This is also visible in Figure 6, where the curve
lies below the price of the fifth quarterly contract (illustrated by the green line ending at
t = 0.5) for the entire duration of the contract.

3. Large oscillations: Some forward curves oscillate unreasonably much, giving unrealistic
forward prices. These oscillations tend to occur during the first six-seven weeks of the
forward curves, which is where weekly and monthly contracts overlap. For this interval of
time, complying with the requirement mentioned in point 2 is more challenging, and the
algorithm solves this by creating an oscillating curve. The possible magnitude of these
oscillations is visible in Figure 7, though there were also cases where the curves oscillated
to prices below 0 EUR/MWh or above 1000 EUR/MWh.

0 0.5 1 1.5 2 2.5

Years

15

20

25

30

Forward curve - June 29, 2015

Figure 6: Forward curve constructed on June 29, 2015. The horizontal lines illustrate the price and duration of
the forward contracts used to construct the curve

Even if the first two weaknesses are not negligible, the third one is the most critical for our
purpose. Our objective by constructing forward curves was to use them to obtain a dataset of
returns series. Applying the methods of Section 3.2.4 would give us a set consisting of many
daily returns taking unrealistically high or low values. We try to resolve this issue by removing
all forward curves that oscillate to values beyond certain limits. The lowest and highest observed
forward contract prices in our dataset are respectively 8.73 EUR/MWh and 46.91 EUR/MWh,
Thus, we set the filtering limits 2 EUR/MWh below and above these values, respectively. That
is, we remove all forward curves with values below 6.73 EUR/MWh or above 48.91 EUR/MWh.
This requires us to remove 42 curves, 8.3% of the original 507. Doing this, we obtain the
volatility functions illustrated in Figure 8.
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Figure 7: Forward curve constructed for 60 trading days between June 29, 2015 and September 18, 2015.
The X-axis denotes time t in daily granularity and the Y-axis denotes the date for which the forward curve is
constructed. For both axes, t = 1 for June 29, 2015
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Figure 8: Volatility curves for N = 6 using method of Benth et al. (2007). ’Overall’ denotes the overall volatility
function, and fn i denote the volatility functions given by principal component i, that is, σi,τ

In Figure 8, the overall volatility function can be understood as the volatility of price returns
of forward contracts with time to maturity τ . It is equivalent to σt,τ , which was introduced in
the single-factor model in (12). Since it represents the actual volatility of forward price returns,
it will always be positive. Also, the overall volatility function can be found by adding up the
volatility functions associated with all 104 principle components. These functions must, however,
not be interpreted the same way as the overall volatility function, as they do not represent the
volatility in price movements of a single asset. Therefore, they can also take negative values, as
opposed to the overall volatility function.

One would expect the overall volatility function to be strictly decreasing for ascending values of
τ , as forward prices tend to change more the closer they come to maturity. This is called the
Samuelsen effect, discussed by Jaeck and Lautier (2016) and originally proposed by Samuelson

33



(1965). The reasoning behind this phenomenon is that an information shock that affects the
short-term price has an effect on the succeeding prices that decreases as the time to maturity
increases. Weather forecasts are an example of information that one would expect to have
short-term effects only on the electricity price.

By visual inspection, the volatility functions seem quite unreasonable. Firstly, one would expect
the overall volatility function to be strictly decreasing, due to the Samuelsen effect. In our case,
the maximum volatility is recorded for contracts with seven weeks to maturity, that is, in the
region where the forward curves oscillate the most. Secondly, Koekebakker and Ollmar (2005),
who also investigated the Nordic electricity forward market, record no annualized volatility
above 80%. In our case, we get values going above 200%. Further, Table 6 shows the cumulative
proportion of explained variance when using different numbers of principal components and
corresponding volatility functions. In order to reach a level of 95% explained variation, which
Koekebakker and Ollmar (2005) use as a target in their paper, 19 components (or factors) are
needed. Koekebakker and Ollmar (2005) only needed 11 factors to obtain the same explanation.

Table 6: Proportion of explained variance for different numbers of explanatory factors

Number of factors N 1 2 3 4 5 . . . 18 19
Explained variance 0.2561 0.4004 0.4974 0.5850 0.6474 . . . 0.9447 0.9520
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Figure 9: Correlation matrix obtained using method of Benth et al. (2007). The column and row names are
both the number of weeks to delivery

If we look at the correlation matrix (Figure 9) of our dataset, which serves as the basis for
constructing the volatility functions, we see why the functions are of poor quality. Despite
that one would expect all correlations to be positive (in the market, the prices of all forward
contracts tend to move in the same direction between two consecutive trading days), some
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forward contracts are negatively correlated in our case. Further, Alexander (2008a) presents
two different models for correlation of the term structure of interest rates, both of which display
an almost monotonic decrease in correlation for increasing contract maturity spreads. We would
expect this to be true for a term structure of forwards as well, but as one can see, forward
contracts with larger maturity spreads are sometimes significantly more correlated than contracts
with lower spreads. Consequently, we reject the volatility functions obtained by this method
and move on to the other two methods.

5.1.2 Forward and volatility curves found using the method of Fleten and Lemming

Using the same dataset of forward prices as in the previous method, we have also constructed 507
forward curves with the method of Fleten and Lemming (2003). We have used daily time steps,
meaning that the forward curves are constructed with one value for each day in the interval
(tb.te). In Figure 10, we have displayed four different forward curves found for the trading
day of January 7, 2013, using different values of λ, the smoothing parameter. Here, we have
removed the two contracts ENOQ-1 (one quarter ahead) and ENOYR-1 (one year ahead), as
their delivery periods are entirely spanned by other contracts with shorter delivery periods. We
see that for larger values of λ, the curves become smoother. Also, high λ values are needed to
simulate seasonality in the long end of the curve, as the less smooth curves become straight lines
when their only underlying contracts are yearly ones (ENOYR).
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Figure 10: Forward curves obtained for January 7, 2013, using method of Fleten and Lemming (2003) with
different values of λ.

By visual inspection, we can see that the first two weaknesses found in the method of Benth
et al. (2007) are not an issue when using the method of Fleten and Lemming (2003). Since their
method only calculates the value of the forward curve for each day and not as a function of time,
the curve will logically appear to be strictly continuous. Additionally, the resulting curves also
seem to comply with the requirement that the average value of the curve in a region must equal

35



the price of a contract covering the same region. We still experience problems with oscillating
curves, but the fact that we can use different values of λ resolves this problem to some extent.
For all values of λ, we can create a set of forward curves and a corresponding set of volatility
functions. Furthermore, we can choose λ such that we minimize oscillations and thereby obtain
more plausible volatility curves. In Figure 11, we have displayed four sets of volatility functions
constructed using the same values of λ as in Figure 10. As in the previous method, we remove all
forward curves that oscillate out of the price region [6.73, 48.91] EUR/MWh from the dataset.
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(b) λ = 105
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(c) λ = 107
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(d) λ = 109

Figure 11: Volatility functions obtained using method of Fleten and Lemming (2003) with different values of
λ. ’Overall’ denotes the overall volatility function, and fn i denote the volatility functions given by principal
component i

Once again, we observe that the volatility functions take very high values for contracts with 7-8
weeks to maturity. In order to lower these oscillations, we try to remove the contract ENOM-1
(one month ahead) when constructing the underlying forward curves as well. The method of
Benth et al. (2007) did not allow this, as it would imply that some intervals of the curve were
not covered by any forward contracts, but this is possible when using the method of Fleten and
Lemming (2003). Doing this, we obtain the volatility functions displayed in Figure 12. Their
proportion of explained variance is displayed in Table 7.
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(b) λ = 105
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(c) λ = 107
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(d) λ = 109

Figure 12: Volatility functions obtained using method of Fleten and Lemming (2003) with different values of λ
and without the month ahead ENOM contract. ’Overall’ denotes the overall volatility function, and fn i denote
the volatility functions given by principal component i

Table 7: Proportion of explained variance for different numbers of explanatory factors using method of Fleten
and Lemming (2003). The bottom line indicates the number of factors needed to reach a level of 95% explained
variance.

Number of factors λ = 103 λ = 105 λ = 107 λ = 109

1 0.4918 0.4463 0.5368 0.5179
2 0.8229 0.7167 0.6564 0.6620
3 0.8794 0.8357 0.7483 0.7555
4 0.9116 0.8755 0.7883 0.8049
5 0.9256 0.8918 0.8210 0.8357
6 0.9355 0.9069 0.8490 0.8633
7 0.9445 0.9206 0.8761 0.8876

# of needed factors 8 10 12 11

By visual observation and using the same arguments as for the method of Benth et al. (2007), we
see that the volatility functions calculated for λ = 103 and λ = 105 seem implausible. The curves
obtained for λ = 107 and λ = 109 seem more plausible, as the overall curve shows a more general
decreasing trend for contracts with longer time to maturity. In fact, the obtained overall curves
have quite similar shapes as the one Bjerksund et al. (2008) find in their paper. The number
of factors needed to explain 95% of the forward price variance is also quite reasonable, as it is
similar to the one obtained by Benth et al. (2007). However, they both show large volatilities
for contracts with 6-7 weeks to maturity, indicating that we have not fully managed to damp all
unreasonable oscillations. We try to analyze how much sense the volatility functions make by
looking at their correlation matrices. Unlike the case with the method of Benth et al. (2007),
we experience no negative correlations. We do, however, see that multiple contracts with larger
maturity spreads are more correlated than contracts with significantly shorter spreads, which
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by the logic of Alexander (2008a) should not be the case. Hence, we conclude that the method
of Fleten and Lemming (2003) provides us with more reasonable volatility curves than that of
Benth et al. (2007), but still not as good results as one would expect.
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Figure 13: Correlation matrix obtained using method of Fleten and Lemming (2003) with λ = 107. The column
and row names are both the number of weeks to delivery

5.1.3 Forward and volatility curves found using linear interpolation

Historical forward curves were found by interpolating between forward prices as described
by Alexander (2008a). Out of the three methods investigated, this was arguably the least
computationally complicated method. We will see that although the forward curves calculated
using this method are not the most realistic, the resulting return series reflect the nature of the
forward market better than the return series obtained using the methods of Benth et al. (2007)
and Fleten and Lemming (2003).

For this method, a larger dataset was used than in the two previous methods. The dataset
included forward prices for all trading days between April 28, 2011, to December 30, 2016,
resulting in 1450 forward curves. Figure 14 shows the forward curve found for January 7, 2013.

Remember that initially, for every trading day, one forward curve was created for each contract
type associated with a particular delivery period length. That resulted in four forward curves
(week, month, quarter and year) for each trading day. These forward curves cover different
time intervals. In order to obtain a forward curve spanning the entire planning horizon (1 to
104 weeks ahead), it was necessary to use parts of all four forward curves. The forward curves
overlap for some time intervals. To decide which contract types to use in the complete forward
curve for these overlapping regions, a heuristic was applied: Use whichever contract that has
the most price observations in the time series. As can be seen in Table 8, this resulted in weekly
contracts being used in the short end of the curve, monthly contracts in the mid-short part of
the curve, quarterly contracts in the mid-long part of the curve, and yearly contracts in the
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Figure 14: Forward curve created using linear interpolation

long end of the curve. After the complete forward curves were created, a time series of daily log
returns was calculated for each relevant time to delivery, resulting in a 1449× 104 matrix.

Table 8: Forward contract type used to create forward curves in given intervals of time

Weeks ahead 1 - 4 5 - 21 22 - 91 92 - 104
Contract type used Week Month Quarter Year

It is clear that the forward curve found using this method will be discontinuous in the points
where we switch from one contract type to another, as illustrated in Figure 14. This will,
however, not result in volatility spikes or discontinuous volatility functions, as all daily returns
are calculated using the parts of the curves associated with the same contract type.

Using the time series of returns, we could estimate an overall volatility curve for the term
structure of forward prices, as well as the volatility functions associated with the principal
components. As can be seen from the dark blue curve in Figure 15, the overall volatility is
monotonically decreasing, as we would expect in a term structure of forward prices. While
this is not a requirement for the validity of an empirically estimated volatility curve, we would
certainly expect the volatility of a forward contract to increase as its maturity approaches, as
discussed in Section 5.1.1. The overall volatility curve also does not feature the volatility spike
at 7-8 weeks to delivery, which was prominent in the overall volatility curves obtained by the
method of Benth et al. (2007) and Fleten and Lemming (2003). That favors this method of
creating forward curves.
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Figure 15: Volatility functions found by using method of linear interpolation. ’Overall’ denotes the overall
volatility curve, and fn i denote the volatility functions given by principal component i

The return series resulting from this method show a higher degree of inter-correlation than the
return series obtained using the two previous methods. This can be seen from the correlation
matrix that is shown in Figure 16. A high degree if inter-correlation is in accordance with
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our experience, which is that forward electricity prices more often than not move in the same
direction. Further, the correlation matrix shows that there is a clear decreasing trend in the
correlation between contracts with larger maturity spreads. This is in contrast to the correlation
matrix attained by the method of Fleten and Lemming (2003).

The high degree of inter-correlation is also demonstrated by the explanatory power of the first
principal component, which explains 73.3% of the variance in the dataset. This complies with
what was described in Section 3.2.5, where we explained that the first principal component
represents vertical movements in the entire forward curve. As opposed to in the previous
methods, only six principal components are needed to explain 95% of the cumulative variance,
as shown in Table 9.
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Figure 16: Correlation matrix associated with returns found by the method of linear interpolation. The column
and row names are both the number of weeks until the beginning of the delivery period

Table 9: Proportion of explained variance for different numbers of explanatory factors

Number of factors n 1 2 3 4 5 6
Explained variance 0.7338 0.8755 0.9153 0.9348 0.9482 0.9604

5.1.4 Evaluating the methods

When evaluating the methods, it is interesting to discuss why both methods involving creating
smooth forward curves to find the volatility functions perform so poorly. Koekebakker and
Ollmar (2005) used this method to analyze the Nordic electricity market as well, obtaining
forward curves with less or no oscillations. The same is the case for Bjerksund et al. (2008),
which analyzed the UK gas market. We do, however, note an important difference in the
underlying contracts used in both papers and our thesis. In Koekebakker and Ollmar (2005),
price data from 1995 to 2000 is used, a period when the types of forward contracts traded
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in the Nordic market where different from now. While we constructed forward curves using
weekly, monthly, quarterly and yearly contracts, they used daily, weekly, block and seasonal
contracts. The block and seasonal contracts, which are no longer traded in the Nordic market,
had delivery periods of four weeks and four months, respectively. This means that Koekebakker
and Ollmar (2005) used no overlapping contracts for the near end of the curve, as there are
no overlapping weekly and monthly contracts in their dataset. Thereby, they most likely avoid
the large oscillations that we experience in this region. There will, of course, be some overlap
between block contracts and seasonal contracts, but these contracts have such long delivery
periods that an overlap should not result in an oscillating curve. Bjerksund et al. (2008) also
use non-overlapping contracts, but they construct their forward curves using the software Elviz
Front Manager. Unfortunately, we did not have access to such software, forcing us to implement
the algorithms for forward curve construction ourselves. We might have obtained better forward
curves using such software. However, we find it reasonable to conclude that the algorithms of
Benth et al. (2007) and Fleten and Lemming (2003) perform poorly when the objective is to
construct empirical volatility functions in the Nordic electricity market. For commodity markets
with overlapping curves in the near end, it is most likely necessary to use more sophisticated
algorithms for forward curve construction.

By using the method of Alexander (2008a), the price will be a linear combination of two adjacent
contracts which are traded in the market. In comparison, there are much more complicated
relationships between the forward curve and the real market prices in the methods of Fleten and
Lemming (2003) and Benth et al. (2007). This can, in turn, cause unexpected changes in the
forward curves from one day to another that do not necessarily represent the price changes in
the market realistically. A criticism that could be directed at all forward curve models is that
their values f(ts, t) represent the prices of synthetic products that are not actually traded in the
market. This will, in turn, cause the historical returns series to be based on synthetic prices,
and not directly on the actual prices observed in the market. However, it is clear that creating
forward curves is necessary for several reasons. In our case, we need volatility functions σi,τ
that can describe price movements of forward contracts with time to maturity τ = [1, ..., 104]
weeks. Thus, we need a dataset containing the price of these 104 contracts. Since many of these
contracts do not exist in the market, they must be constructed synthetically, which is where we
can make use of forward curves.

Due to all findings, we conclude that we should use the volatility functions obtained using the
method of linear interpolation, presented by Alexander (2008a). Its overall volatility function is
strictly decreasing, and the correlation matrix shows that there is a clear decreasing trend in the
correlation between contracts with larger maturity spreads. It also needs fewer factors to explain
a larger proportion of the variance in forward price movements, making it more computationally
efficient. In our final model, we, therefore, use the volatility functions associated with the first
6 principal components of the returns series. We do, however, test what lattices and decision
policies we would get if we had used the volatility functions obtained using the methods of Benth
et al. (2007) and Fleten and Lemming (2003) to see how these compare with the one obtained
using the volatility functions from the chosen method. This analysis is performed in Section 5.7.

5.2 Inflow model parameters

We needed to fit the geometric periodic autoregressive (GPAR) model suggested by Shapiro et
al. (2013) to the inflow data for the Søa hydropower plant. The dataset consists of daily inflow
observations for each day between January 1, 1958, and December 31, 2016. According to
TrønderEnergi, the data set has been constructed by combining observations from two different
sources. The observations from the most accurate source are found by measuring the change in
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water level at the reservoirs and finding the inflow by adjusting for water used in production and
spilled water. For days without available production data, the inflow is calculated by measuring
the water level in the rivers in the catchment area of the hydropower plant.

Remember that the inflow is given by

It = exp (εt) exp (µ̂t − φtµ̂t−1)Iφtt−1 (43)

Here,

• It is the inflow in week t

• µ̂t is the mean log inflow in week t = 1, ..., 52

• φt is the coefficient in the autoregressive process in week t = 1, ..., 52

• εt ∼ N(0, σ2
INF,t) is the error term representing the difference between the observed and

predicted value in the autoregressive process

• σINF,t is the standard deviation of the error terms in week t = 1, ..., 52

The inflow model is geometric in the sense that logarithmic inflows are used. This is due to
the skewness of the inflow distribution, which can be seen in Figure 17. Similar to the inflow
data used by Shapiro et al. (2013), the distribution of weekly inflow observations for the Søa
hydropower plant is highly right-skewed. To obtain a distribution with less skew, the inflow
data is log-transformed.
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Figure 17: Distribution of inflow and log inflow observations

The inflow model is autoregressive because Zt, the deviation of the log inflows from their mean,
is represented as an AR(1) process. Recall that the AR(1) process is given by

Zt = φtZt−1 + εt (58)

The suitability of a 1-lag model can be determined by investigating the partial autocorrelation
of the historical data for Zt. Partial autocorrelation is the correlation for a time series with
its own lagged variables, but removing the correlation effects of the values of the time series at
all shorter lags. Figure 18 shows the partial autocorrelation of the Zt time series. Similar to
the findings of Shapiro et al. (2013), our dataset showed a high value at lag 1 and insignificant
values for larger lags, indicating that it is sufficient to include one lag only in the autoregressive
model.
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Figure 18: Partial autocorrelation of the Zt time series

The inflow model is periodic in the sense that it accounts for seasonality - both in terms the
expected weekly log inflow µ̂t, the strength of the autoregressive coefficient (φt) and the standard
deviations of the error terms (σINF,t). Figure 19 shows the seasonal pattern in the inflows.
Specifically, there is an inflow peak during the spring due to snow melting, and there are higher
inflow levels in the fall due to high precipitation levels in September, October, and November.
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Figure 19: Average inflow for a certain week of the year

As mentioned above, the autoregressive coefficient φt and the standard deviation of the error
terms σINF,t are both time-varying. For each week W = [1, ..., 52], empirical estimates of σINF,t

and φt were found. These are shown Figure 20 and Figure 21. In an attempt to reduce the
statistical noise in the parameter estimates, the values of σINF,t and φt were set to the 5 weeks
centered moving average of the empirical estimates. By looking at Figure 20 and Figure 21, it
is clear that both σINF,t and φt are considerably smaller during the snow melting period in the
spring.
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Figure 20: Time-varying standard deviation of the error terms σINF,t. The blue line is the empirical estimates of
σINF,t, and the orange line is the centered moving average of the empirical estimates, using a span of 5 observations.
The moving average is used in the inflow model.
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Figure 21: Time-varying autoregressive coefficient φt. The blue line is the empirical estimates of φt, and the
orange line is the centered moving average of the empirical estimates, using a span of 5 observations. The moving
average is used in the inflow model.

5.3 Monte Carlo simulations and lattice construction

In order to create a lattice, we had to run multiple parallel Monte Carlo simulations of water
and inflow. As we propose a correlated model, we start by explaining how we calculated the
correlation between the residuals of the inflow model and the increment of the Wiener process
associated with the first volatility function. Mathematically, this was done by estimating the
historical correlation coefficient between the normalized error term of the inflow model and the
normalized first principal component (p1).

The error term in the inflow model is the difference between the predicted and realized log-inflow.
To be able to find a correlation with the weekly inflow data, p1 had to be transformed into a
weekly resolution as well. Similar to how one would transform daily log returns to weekly log
returns, the historical p1 observations were aggregated from daily to weekly observations by
simple addition.

The resulting Pearson correlation coefficient was found to be -0.1765, based on a time series
of 248 weekly observations from April 28, 2011, to December 30, 2016. The 95% confidence
interval was [-0.28, -0.06]. This suggests that there has been a weak offsetting effect between
weekly inflow deviations and vertical movements in the entire forward curve, historically. A
larger dataset would most likely decrease the confidence interval, but this was not possible to
obtain in this case.
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We move on to the Monte Carlo simulations. In Section 3.4.3, we stated that the starting
values of the price simulations included one current time spot price and the price of T̂ − 1
forward contracts. Since our model uses weekly granularity and a horizon of T̂ = 105 weeks,
this requires 104 weekly forward contracts with time to delivery τ = [1, ..., 104]. However, only
six weekly contracts are traded at NASDAQ Commodities, meaning that we must construct
99 synthetic weekly contracts. This is done by constructing a forward curve using the method
of Fleten and Lemming (2003) and then discretizing it into 104 weekly prices. We recall that
using the method of Fleten and Lemming (2003) did not provide us with plausible volatility
functions. It does, however, produce forward curves of sufficient quality when we manage to
damp the oscillations in the near end of the curve, both by removing the first monthly contract
and by adjusting the value of the smoothing parameter λ. We still use the volatility functions
obtained when we constructed forward curves by the method of Alexander (2008a), but since
these forward curves were neither smooth nor continuous, they cannot be used to make synthetic
weekly contracts.

Mathematically, the forward price of a contract with delivery in a given week W = [2, ..., 105] is
calculated using the average value of the forward curve within the time interval of that particular
week. For the weeks W = [2, ..., 7], the weekly average value of the forward curve will be the
price of the six weekly forward contracts sold in the market. This is due to the single restriction
in the method of Fleten and Lemming (2003) for construct forward curves, which stated that
the average value of the curve within an interval (tb,j , te,j) had to equal the price of a forward
contract with delivery in the same interval. Also, if the model is run on a Monday, the starting
week spot price is set equal to the price of the one week ahead weekly contract from the last
trading day. Typically, this will be the previous week Friday.

It is important to note that while the spot prices in the Nordic electricity market are area
specific, the price of forward contracts is the same for the entire Nordic and Baltic region. Thus,
the spot price forecasted by our model is actually the system spot price and not the NO3 area
spot price, the price Søa hydropower plant receives for their production. In this paper, have not
tried to model the relationship between the system price and the NO3 price. We do, however,
see that the two prices are quite similar to each other, and believe that using the system price
instead of the area price is an acceptable approximation considering the granularity of our model
and the scope of this project.

Further, we have used 380.000 Monte Carlo simulations to construct the lattice. Ideally, we
should have used more (Löhndorf and Wozabal (2017) use 106 simulations), but this was not
possible due to computational limits. Each lattice consists of 100 nodes for all time steps except
the starting one, giving a total count of 10401 nodes. When obtaining the value of each node
Stn using (45), we defined the stepsize βk as

βk =
100

k + 1000
, k ∈ [K] (59)

where K is the number of Monte Carlo simulations. Figure 22(a) displays the spot price lattice
with starting date January 7, 2013, while Figure 22(b) displays the inflow lattice. Since the
lattice nodes are found by minimizing the Wasserstein distance, we have scaled the inflow values
down with a factor of 105 such that their magnitudes are closer to those of the spot prices. In
the same figure, we also plot the first ten stages of both lattices to illustrate their shape better.
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(a) 105-nodes spot price lattice (b) 105-nodes inflow lattice

(c) 10-nodes spot price lattice (d) 10-nodes inflow lattice

Figure 22: Spot price and inflow lattices constructed on with data for January 7, 2013. The Y-axis for all plots
denotes the time steps (weeks), while the X-axis of the price lattice is denotes the spot price in EUR/MWh. For
the inflow lattice, the Y-axis is denoted in 105m3. The red lines in the figures represent the mean values.

5.4 Different starting dates and expected incremental water values

Now, we run the model for five different starting dates with different underlying forward curves
and historical starting values for the reservoir level. One of the key figures we are interested
in is the expected discounted revenues for the planning horizon. This is the value of production
during the next two years, assuming negligible variable costs. The revenues are discounted
using the risk-free rate, as we are using risk-free probabilities. Furthermore, a key figure is
the expected discounted revenues per produced unit of electricity, which we will call expected
discounted revenues per production. This figure is denominated in EUR/MWh, and it allows us
to compare the performance of policies without differences in total inflow affecting the results.
For intuition, this figure can be thought of as the average price at which the hydropower producer
sells their power. However, this will be inaccurate in this case, since the average price should
be calculated using undiscounted revenues.

Table 10 shows the expected discounted revenues for the upcoming 105 weeks, in addition to
the expected discounted revenues per production. These results are based on the revenues
obtained by 50.000 simulated paths through the lattice. The number (50.000) is chosen because
it enables the first three digits of all mean values to converge, while simultaneously keeping
the computation time at an acceptable level. In general, the summer restriction at Søvatnet is
violated in 2% of the simulations. Since we have included a substantial cost for such violations
in our model, the total revenues earned in these simulations are significantly lower than the
other ones, often negative. Hence, we remove these simulations from the set used to calculate
the expected discounted revenues and the expected discounted revenues per production.

In Table 10, we also include one of the most important immediate result for the production
planner; the value of w1. We recall that wt is the amount of water nominated for production at
time step t. Based on all possible future states and their corresponding probabilities, w1 tells
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the production planner how much water they should nominate for production in the current
week in order to maximize their expected discounted revenues over the next 105 weeks. We also
include the average water dispatch q1 = w1/ς, where ς = 604800s is the number of seconds per
week.

Table 10: Expected discounted revenues (EDR), expected discounted revenues per production (EDR/Prod.),
the amount of water nominated for production w1, and average water discharge q1 in week one for five different
starting dates. The starting values for reservoir levels are set according to their historical values.

Parameter Unit Jan 7-13 Apr 8-13 Jul 8-13 Oct 7-13 Jan 6-14

EDR [M EUR] 15.93 15.95 14.36 15.26 13.83
EDR/Prod. [EUR/MWh]40.12 41.24 35.35 38.36 33.21
w1 [M m3] 0 5.21 10.28 0 0
q1 [m3/s] 0 8.62 17.00 0 0

It is somewhat surprising that the model suggests no production on multiple starting weeks,
especially those of January 7, 2013, and January 6, 2014. However, this is because the input
forward curve suggests that the spot prices will be higher in the upcoming weeks, making it
optimal to wait. It is also interesting to see that the model expects almost identical revenues in
the upcoming two year period both on January 7, 2013, and April 8, 2013, despite the difference
in expected discounted revenues per production. This is because less inflow is expected in a two
year period from April 8 than January 7, meaning that higher expected prices are necessary to
get the same expected discounted revenues.

An important question that arises is how one should handle the end level of the reservoir. Our
model does not have any end level restrictions. Thus, the optimal policy in the last time step
is to empty the reservoirs, or at least empty them as much as possible. In some of the above
simulations, e.g., the ones starting and ending in January, this would probably be a poor decision
since one would normally expect high prices in the upcoming periods. Emptying the reservoirs in
the last time step will result in expected discounted revenues that are slightly larger than what
one would achieve in reality. Therefore, if the model had considered a longer time perspective,
the expected two-year revenues at January 7, 2013, should be lower than the ones obtained in
our model. The issue with introducing an end level restriction is that the problem might become
unfeasible if we try to restrict the end levels for reservoir volume. In order to avoid this, we have
therefore chosen not to restrict the decision policies of the ultimate time step. Nevertheless,
this should not affect the optimal immediate decision policy π1, which is the most interesting
one for the production planner, in addition to most decision policies πtn when t is substantially
smaller than 2 years. Note that for models in which the time horizon ends during the spring
when inflows are typically at their maximum, it is reasonable to allow the model to empty as
much of the reservoir as possible.

Further, using the simulation of January 7, 2013, we have calculated the plant’s expected
incremental water value. The incremental water value is the expected marginal value of the
energy stored in the reservoir, i.e., the value of one more unit of water, measured in MWh. In
Figure 23, we have plotted the incremental water value as a function of aggregated reservoir
level and time. In order to construct the surface, we have used a modified version of the method
presented by Tipping et al. (2005). After drawing 50.000 simulated paths, we identified the prices
for which it was decided to produce in each week. Then, for each week, based the spot price and
the cumulative water volume in both reservoirs for the identified simulations, we grouped the
observations in bins for different reservoir levels. The expected marginal water value for a given
reservoir level was then calculated as the smallest price of that bin. That price can interpreted
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as a critical price for which it is barely optimal to produce rather than wait.
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Figure 23: Incremental water values for next 52 week based on simulation starting on January 7, 2013

Looking at the plot, we see that it incorporates most traits one would expect for a water value
surface as described in, e.g., Boger and Vestbøstad (2016). For higher reservoir levels, the
incremental water value is decreased and vice versa. This makes sense as the incremental water
value for a full reservoir should be 0, since this water cannot be utilized and must be spilled.
Also, the plot shows a seasonal pattern, indicating that the incremental value of water is larger
during winter, when prices are higher, than during summer. We do, however, see a general
decrease in water value between week 40 and 41. This is due to the reservoir restriction in
Søvatnet being lifted, increasing the amount of available water for the production planner and
thereby reducing the value of one extra water unit. Overall, the water value plot complies with
our expectations, thereby strengthening the validity of our model.

5.5 Sensitivity analysis using different correlation values and number of volatility
functions

In order to further test the performance and validity of our model, we have perform a set of
sensitivity analyses. Our model incorporates two features that are new to reservoir management
models, namely a correlation between movements in price and local inflow and a multi-factor
model to describe price movements. It is interesting to test the effect of introducing these
features, as it can tell us how models that assume no correlation or that only use one factor to
describe price movements perform compared to ours. For both the correlation coefficient and
number of factors, we have calculated the expected revenues using different values of ρ and N .
More importantly, we have also tested how decision policies obtained using ρ = 0 and N = 1
perform when inflow and price movements are in fact correlated or driven by multiple factors.

As mentioned earlier, our model incorporates a correlation coefficient between the error term
of the inflow model and the increment of the Wiener process associated with the first principal
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component. In order to test the effect of introducing such a correlation, we have first made
three lattices with different correlation values ρ = [0,−0.1765,−0.353]. We then compare the
simulated expected discounted revenues and average reservoir level curves for all three lattices
and corresponding decision policies to see how much they deviate. Once again, we have used
50.000 simulated paths, and for all three runs, the starting date is January 7, 2013. The expected
return of all three runs is displayed in Table 11 and mean optimal reservoir curves for Vasslivatn
are displayed in Figure 24.

Table 11: Expected discounted revenues (EDR) obtained using three different correlation coefficients ρ.

Correlation coefficient [-] ρ = 0 ρ = −0.1765 ρ = −0.353
EDR [M EUR] 16.10 15.93 15.83
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Figure 24: Average reservoir curves for Vasslivatnet found using three different values of the correlation
coefficient ρ. The red curve denotes ρ = 0, the blue curve ρ = −0.1765 and the green curve ρ = −0.353.

By looking at the expected discounted revenues, we see that the correlation coefficient ρ does
affect the result. The higher we choose the correlation coefficient, the larger are the expected
discounted revenues. The reservoir elevation curves have similar shapes, but their differences
still imply that the optimal policies are different in all three cases. We made multiple retests
to verify the results, obtaining expected discounted revenues quite close to those in Table 11.
There are some potential sources of error in the calculations. For example, it could be that
380.000 Monte Carlo simulations are not sufficient to represent all future states. The differences
in expected discounted revenues are, however, large enough to indicate that the correlation
coefficient undoubtedly affects the decision policy, implying that it must be estimated correctly.

It is also interesting to test how a decision policy created using the correlation ρ = 0 performs
when we use it in a stochastic process where ρ 6= 0. We test this by first creating a lattice
and obtaining the optimal decision policies for each node using ρ = 0. Instead of drawing
simulated lattice paths based on the risk-neutral probabilities provided when ρ = 0, we draw
paths corresponding to a stochastic price and inflow process where ρ 6= 0. Then, to compare
the policies, we look at the difference between the expected discounted revenues obtained using
policies with ρ = 0 and policies with ρ 6= 0. In Table 12, we present the expected discounted
revenues obtained when the stochastic processes in reality have a correlation ρ = −0.1765 and
ρ = −0.353. As the results indicate, if the real correlation is ρ = −0.1765, the policies will
provide expected discounted revenues that are 2.5% lower than if the policies incorporated this
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correlation. For ρ = −0.353, the expected discounted revenues become 3.1% lower. Although
these differences might seem small, they show that the producer at Søa can miss out on
discounted revenues of multiple 100.000 EUR yearly if they misspecify the correlation coefficient.
Therefore, we find it reasonable to conclude that the choice of the correlation coefficient does
have an effect on the model performance, and should be considered by the production planner
in their model.

Table 12: Expected discounted revenues (EDR) calculated when using a policy in which ρ = 0, but where the
real stochastic process has ρ = [−0.1765,−0.353]. The bottom row indicates the difference between the expected
discounted revenues obtained using these policies versus the expected discounted revenues obtained using a policy
with the same ρ as in the stochastic process, as shown in Table 11.

Correlation coefficient [-] ρ = −0.1765 ρ = −0.353
EDR [M EUR] 15.54 15.40
Performance difference [-] −2.5% −3.1%

Further, up until now, we have used a model with six factors to describe the movements of
a forward contract. The number was chosen such that the proportion of explained variance
would be larger than 95%, a threshold value used by Koekebakker and Ollmar (2005). However,
Bjerksund et al. (2008) claim that a proportion of 90% is sufficient, while Clewlow and Strickland
(2000) choose the number of factors such that the proportion becomes 98.4%. Therefore, we
perform a sensitivity analysis of our model using a different number of factors. We investigate
four different numbers of factors: 1 (that is, we use the overall volatility function), 3 (91.53%
explanation), 6 (96.04% explanation) and 10 (98.44% explanation). The obtained expected
discounted revenues are shown in Table 13, and the mean optimal reservoir levels in Figure 25.

Table 13: Expected discounted revenues (EDR) obtained using different number of factors N to describe the
underlying price process.

Number of factors [-] N = 1 N = 3 N = 6 N = 10
EDR [M EUR] 15.80 15.86 15.93 16.00
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Figure 25: Average reservoir curves for Vasslivatnet obtained using different number of factors in the forward
price model. The red curve is from a run with N = 1 factors, the dark blue one for a run with N = 3, the red
curve for N = 6 and the light blue curve for N = 10.

The results in Table 13 show that there is an increasing trend in expected discounted revenues

50



when we use more factors to describe the price process. This should make sense, as more factors
can result in larger price fluctuations, thereby resulting in a lattice with a larger difference
between the highest and lowest possible price at a time step. The optimal policies utilize the
higher prices in the lattices with more factors, and the model thereby forecasts larger expected
discounted revenues.

As for the case with different values of ρ, it might be more interesting to test how the policies
obtained using one-factor price model perform when the price process can, in reality, be described
using N = [3, 6, 10] factors. We, therefore, redo the steps explained above for the case of different
numbers of factors N instead of correlation coefficient ρ. The expected discounted revenues are
displayed in Table 14. By looking at the numbers, we see that a policy created using a one-factor
price model will underperform by approximately 2% when the price process is in fact driven by
multiple factors. Similar to the case for different values of ρ, this can result in a decrease in
revenues of multiple 100.000 EUR yearly for a hydropower plant, underlining the importance of
using a price process that is as correct as possible when modeling reservoir management.

Table 14: Expected discounted revenues (EDR) calculated when using a policy where the number of factors is
N = 1, but where the real stochastic price process is described by N = [3, 6, 10]. The bottom row indicates the
difference between the expected discounted revenues using these policies versus the expected discounted revenues
obtained using a policy with the same number of factors N as in the stochastic process, as shown in Table 13.

Number of factors N [-] N = 3 N = 6 N = 10
EDR [M EUR] 15.52 15.61 15.63
Performance difference [-] −2.1% −2.0% −2.3%

5.6 Backtesting the model policy with realized price and inflow data

Another interesting analysis to perform is a backtest. When backtesting, we have collected the
realized weekly inflows and average area spot prices over the entire simulation horizon. Then, we
apply the model policy to the realized history of price and inflow and get all decisions that our
model would have made for the given history of inflow and price. Using this, we can compare how
our model performs compared to the existing strategies of the hydropower production planner.
Using January 7, 2013, as our starting date, we have found the realized weekly inflows and spot
prices over the next 105 weeks. Next, we have found the total revenues earned using the model
policy, and compare this with the actual income earned by the power plant in the same time
interval. In reality, the Søa power plant generated discounted revenues of 10.89 million EUR
between January 7, 2013, and January 11, 2015, by trading in the spot market. By applying
the policy obtained by our model, the plant would have had discounted revenues of 11.69
million EUR, meaning that using our model could have provided the production planner with
approximately 400.000 EUR in extra yearly revenues. To explain this difference, we look at
the modeled and realized head elevation curves for both reservoirs in the corresponding period.
These are interesting to compare, as they show whether the model policy agrees or disagrees
with the realized strategy. In Figure 26 we have plotted the modeled and realized head curves
for both reservoirs over the simulation period.

By visual inspection, we see that our model empties both reservoirs in the last time step,
providing it with some additional revenues compared to the historical operations. Thus, it
might be more accurate to compare the revenues obtained during the first 52 weeks - that
is, between January 7, 2013, and January 5, 2014, instead. In this period, the plant earned
discounted revenues of 6.22 million EUR. On the contrary, using the policies from our model,
the discounted revenues provided to the plant would be 6.34 million EUR, meaning that our
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Figure 26: Modelled (red curve) and realized (blue curve) reservoir curves for Vasslivatnet and Søvatnet between
January 7, 2013 and January 11, 2015.

model performs well compared to reality also without emptying the reservoir in the last time
step. Our model did, however, use more water in these 52 weeks, so we should also compare
the expected discounted revenues per production as well. In reality, the plant had discounted
revenues per production of 39.00 EUR/MWh between January 7, 2013, and January 5, 2014,
while our model had discounted revenues per production of 38.92 EUR/MWh. This indicates
that our model performed almost as good as the realized production in this period.

Further inspection of the head curves shows that our model is less risk-averse than the real-life
production planner. One example of this can be seen by looking at the figure for Vasslivatnet
around week 36, that is, in the middle of September 2013. Here, spot prices were quite high,
so both our model and the real-life operation planner chose to nominate quite much water for
production. However, since spot prices tend to be higher during winter, it is risky to empty
the reservoirs in September. Therefore, the real-life production planner chooses to nominate
only half of the amount that the model nominates. The model is, however, expecting high
inflows in the upcoming weeks, and therefore nominates quite much water before it fills up the
reservoir around week 46. Another good example is around week 71, that is, one week before
the summertime restriction on the reservoir level in Søvatnet starts to apply. While the real-life
production planner fills up Søvatnet a few weeks ahead, the model expects sufficient inflows
during the next week and decides to reduce the water level in the reservoir to approximately 1
meter below the summertime restriction. It does, however, still manage to fill up the reservoir
and meet the constraint in time.

The aforementioned points should help our model perform better than the real-life production
planner. Another factor helping our model is that it does not have to perform maintenance,
which is an event that forces all operation to be temporarily suspended. However, the real-life
production planner has an advantage that our model does not have. Since our model uses weekly
granularity, it can only make production decisions on a weekly basis. We assume that our model
sells the electricity at a price equal to the average price of that week. In real life, the production
planner makes hourly decisions and can utilize the fluctuations of the electricity spot price both
within a single day and within a week. They do also have access to the intraday market, allowing
them to optimize their production further. The opportunity to optimize production on an hourly
level should give the real-life production planner an advantage compared to our model. At last,
the real-life production planner has access to short-term weather forecasts the our model does
not. Despite the circumstances discussed above, our model still manages to achieve similar
results.
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5.7 Comparison of results using different volatility functions

In this subsection, we test what results we would get if we had used the volatility functions
obtained using the methods of Benth et al. (2007) or Fleten and Lemming (2003) instead. For
both cases, we chose the number of factors such that the proportion of explained variance is
above 95%, choosing N = 19 when we used the method of Benth et al. (2007) and N = 12 for
the method of Fleten and Lemming (2003). We have constructed a separate lattice using the
volatility functions from both methods, and calculated the expected discounted revenues and
the expected discounted revenues per production. The results are displayed in Table 15, where
we have also included the results obtained using the method of Alexander (2008a).

Table 15: Expected discounted revenues (EDR) and expected discounted revenues per production (EDR/Prod.)
using volatility functions based on forward curves constructed by the methods of Alexander (2008a), Fleten and
Lemming (2003) and Benth et al. (2007).

Method Unit Alexander Fleten and Lemming Benth et al.

EDR [M EUR] 15.93 16.03 19.67
EDR/Prod. [EUR/MWh] 40.12 40.47 50.87

From Table 15, it is clear that the expected discounted revenues are largest when we use the
volatility functions from the method of Benth et al. (2007). This is mainly because the volatility
functions found using this method were of larger magnitudes, resulting in a lattice with a larger
spread between the different state values of spot price. At one point, the lattice contains spot
price scenarios of 400 EUR/MWh, which is highly unrealistic for weekly prices. Looking at
Figure 27, which illustrates the first 20 weekly steps of the lattice constructed using the volatility
functions from the method of Benth et al. (2007), we also notice another weakness. Recall the
volatility functions plotted in Figure 8. These suggested that the volatility of forward price
movements were at their largest for contracts with time to maturity of around seven weeks. A
result of this can be seen in the lattice at the eighth week, where the price spread increases
significantly from the last step. This odd behaviour indicates that the volatility functions
obtained using this method are of poor quality.

Figure 27: Price lattice constructed with volatility functions from method of Benth et al.

On the contrary, the expected discounted revenues calculated using the method of Fleten and
Lemming (2003) are quite similar to the ones used in our model. The difference in expected
discounted revenues is similar to the one we obtained when we included four extra factors in
Section 5.5. Also, the lattice in Figure 28 does not incorporate any unreasonable traits and is
similar to the one obtained using the volatility functions from the method of Alexander (2008a).
Based on these findings, it is, therefore, difficult to say anything about the validity of the
volatility functions obtained using the method of Fleten and Lemming (2003). Nevertheless, we
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pointed out in Section 5.1.2 that the correlation matrix featured some unexpected characteristics,
favoring the usage of the volatility functions found using linear interpolation.

Figure 28: Price lattice constructed with volatility functions from method of Fleten and Lemming

5.8 Delta hedging

Lastly, we make some considerations about how our model can be used in the context of risk
management. As described in Flatabø et al. (1998), hydropower producers face multiple types
of risk, including but not limited to uncertainty in price, inflow, and demand. Since our model
creates all future spot price scenarios using the price of forward contracts traded in the market
and not from a fundamental model, it allows us to look at new ways hydropower producers
can hedge themselves against price fluctuations. Inspired by financial theory, we introduce a
new concept: the delta of a hydropower plant. For a financial option, the delta (∆) denotes
the change in the value of the option if the price of the underlying (typically a stock) increases
by 1 EUR (or any other currency). The reason why investors are interested in calculating
deltas is that they want their portfolio to be hedged against price fluctuations, meaning that
they want to minimize the change in the value of their portfolio given a change in the price of
the underlying asset. To achieve this, the investor should construct their portfolio such that
∆port =

∑
i∈port ∆i = 0, where ∆i is the delta of the ith asset of the portfolio, thereby becoming

delta hedged.

There is an element of optionality to hydropower production scheduling because the production
planner must decide how much to produce in the current and all subsequent time steps. Thereby,
the expected value of all future cash flows given optimal production scheduling can be considered
as the value of an exotic option held by the production planner. We choose the underlying asset
of these cash flows to be the forward curve. Using the analogy of financial options, we define
the delta of this option as the change in expected future cash flows given a positive parallel
shift of 1 EUR/MWh in the forward curve. Since a hydropower plant can potentially produce
in all eternity, the value of this option can become quite large. In this case, we limit the value
of the option to be the expected discounted cash flows during the next 105 weeks. In Figure 29,
we have plotted a delta curve illustrating the delta of the hydropower plant as a function of its
underlying forward curve. The deltas have been calculated by finding the expected discounted
revenues for a set of parallel forward curves and then calculating the difference in expected
discounted revenues between two forward curves with a constant spread of 1 EUR/MWh.

For financial options on a single unit of the underlying, ∆ is always in the region −1 ≤ ∆ ≤ 1
since an option cannot be worth more than its underlying. In our case and the way we have
defined our option, it can, take significantly higher values. By observing the delta curve, we see
that it is strictly positive, which is reasonable since higher prices should give higher expected
discounted revenues. It is, however, interesting to see that the curve has no smooth shape, but
it oscillates. This might be because we had to reduce the number of Monte Carlo simulations
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Figure 29: Delta curve for the option to produce in the period January 7, 2013 and January 11, 2015. F denotes
the realized forward curve, and F + i denotes a forward curve with a positive parallel shift of 1 EUR/MWh.

for each run to 35.000 and nodes per time step to 50 due to computational limits, giving us
less accurate results. However, assuming that the shape of the curve is correct, it can be used
by the company operating the plant to figure out how they can hedge their entire portfolio of
operating plants and financial products. To become delta hedged, or at least reduce the portfolio
delta subject to changes in the forward curve, they must take positions with a negative delta.
For example, they can go short in forward contracts, go short in call options or go long in put
options. As mentioned in Section 2.1, options with quarterly and yearly forward contracts as
their underlying are traded at NASDAQ Commodities. A parallel shift in the forward curve
should be equivalent to a shift in all of its underlying contracts, meaning that these options
can be considered to have the same underlying as the power plant. The larger the ∆ of the
company’s operating plants, the more extensive becomes the amount of forward and options
trades required to become hedged.

In our case, if the current forward curve had been given by F − 3, less trade in the forward and
options market would be needed to become delta hedged. However, if the forward curve had
been given by F − 4, the delta of the plant would be larger, implying that more trade would
have to be undertaken for the plant owner to become delta hedged. While it would maybe not
be common for a hydropower plant to become completely delta hedged, as it would imply that
almost all of its power would be hedged, the plant owner could set a maximum cap for their
total delta ∆max. Using ∆max and the delta of the plant, the plant owner could then calculate
the amount of trades needed to keep ∆port ≤ ∆max.

5.9 Further work

Although our model provides us with multiple, interesting results, many aspects of it should
either be improved or modified. In this subsection, we discuss some of these aspects and
propose some work that can be conducted to develop the model further. We also propose some
possible extensions of the model, and how it can be combined with other models to improve its
applicability further.

Obtain more sophisticated forward curves and volatility functions
It this paper, we tested three different approaches for constructing forward curves and corresponding
volatility functions. None of the two methods that involved constructing smooth curves provided
us with particularly reasonable volatility functions, which we found a bit surprising. Although
the method of Alexander (2008a) provided us with satisfactory volatility functions, the forward
curves themselves were inadequate. Hence, we recommend that one should redo our calculations
of volatility functions using more sophisticated methods for forward curve construction, e.g., with
software like Elvis Front Manager. We also propose reducing the granularity in the method of
Fleten and Lemming (2003) so that it, for example, calculates the spot price for every quarter of
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a day instead of once a day, as this may contribute to damp oscillations in overlapping regions.

Use more sophisticated starting values of price and inflow
Currently, the starting period spot price corresponds the previous week price of an ENOW-1
(one week ahead) contract, while the starting period inflow is set equal to the empirical mean
inflow of that current week. Considering present-day research on short-term price and weather
forecasting, it should be possible to determine the starting values of price and inflow in a more
sophisticated way, especially for inflow. If the current time value of inflow is chosen to be quite
different from its actual value, it will affect all future inflow states in the lattice, resulting in
biased expectations of future inflows.

Quality check the value of the correlation coefficient
In our paper, we calculate the short-term correlation between local inflow and price movements
to be ρ = −0.1765 using Pearson product-moment correlation coefficient. We do, however,
have a limited dataset, resulting in a 95% confidence interval of [−0.28,−0.06]. Considering
the potential loss of revenues from constructing decision policies based on the assumption that
ρ = 0, it is crucial to determine the correlation coefficient correctly to avoid the losses associated
with setting it either too high or too low. Furthermore, note that there are other ways to
measure correlation, for instance by using weighted correlation or rolling window correlation.
Such analyses could be undertaken to test the stability of the correlation coefficient.

Obtain better relationship between system spot price and area price
As mentioned in the paper, the spot prices obtained in the model are in fact representations
of the system price and not area prices. Thus, we suggest that the price process should be
extended to incorporate the difference between system and area spot price, thereby providing
more realistic forecasts of the relevant area price for a given hydropower plant.

Extend the model such that it can also handle non-linear expressions
A short-coming of our model is that we had to treat both head elevation and efficiency rate as
constants. In a more realistic model, it should be possible to model them as non-linear functions
of the decision variables. This would, however, not be possible using classical ADDP.

Extend the model to allow for trade in the forward market
By allowing the production planner to also participate in the forward market, they would
receive more flexibility when it comes to making decisions. It is reasonable to assume that this
flexibility has value for the production planner. However, since there is no drift in the price of
forward contracts, their prices should all equal the expected future spot prices given risk neutral
transition probabilities. Thus, a model incorporating trading in the forward market should not
result in changes in expected revenues. Irrespective of the potential change in expected revenues,
a model that allows for forward trading could provide the production planner with valuable
decision support when it comes to optimally hedging their positions against price fluctuations.
It should be relatively straightforward to extend our model to also allow for trading in the forward
market. Since the model uses weekly forward contracts to obtain all spot prices, a contract type
which is traded for the six nearest weeks at NASDAQ Commodities, we could extend all states
in the lattice to also contain the price of the six nearest weekly forward contracts. The model
constraints would also have to be altered to account for the possibility to trade in the forward
market.

Combine the model with a short-term production scheduling model
Many medium-term models for reservoir management, e.g., EOPS, are used in combination
with short-term production scheduling models. It would be interesting to test how our model
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performs in combination with such a model, e.g., with SHOP (Short-term Hydro Operation
Planning), a model developed by SINTEF (SINTEF (2017c)). In such a combined model, our
model could be used to calculate water values and/or decide how much water that should be
used for production in a particular week with the goal of maximizing revenues over the next two
years. The short-term model would then use these quantities decide at what time within that
week the production should be scheduled.

Include maintenance scheduling
Occasionally, hydropower plants must undergo maintenance that forces all operation to be
temporarily suspended. To incorporate maintenance in the model, one could add a restriction
to the model that sets the maximum level of water discharge to 0 during the weeks scheduled
for maintenance. It should also be possible to extend the model such that it finds which
particular weeks it is optimal to undergo maintenance. For example, this could be done by
calculating the expected discounted revenues over a two-year horizon for multiple situations
where maintenance is scheduled in different weeks, and then select the week for which the total
revenues are maximized.
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6 Conclusion

In this paper, we have developed a medium-term model for reservoir management. We have
modeled the problem as a Markov decision process, forcing both inflow and price movements
to follow Markov processes. Besides, we have used a multi-factor model to describe changes
in forward and spot prices, and have constructed forward curves using three different methods
to obtain the coefficients of the price model. We have incorporated a short-term correlation
between the local inflow model and price model and used a scenario lattice to discretize all
future states of price and inflow and their corresponding transition probabilities. Lastly, we
have used approximate dual dynamic programming to obtain the optimal decision policies of all
states.

When we constructed smooth forward curves and used them to find the volatility functions
driving price movements, the three methods provided us with rather different results. The
forward curves formed using the procedure of Benth et al. (2007) showed three weaknesses, and
resulted in volatility functions that failed to represent the dynamics of the forward curve in a
good way. The procedure of Fleten and Lemming (2003) resulted in more reasonable forward
curves, but the volatility functions still showed some unexpected traits. The method of linear
interpolation provided less sophisticated forward curves than the methods mentioned above,
but the volatility functions incorporated all the features one would expect them to do according
to previous research. However, since our final model needed volatility functions that could be
used to explain movements of weekly forward contracts, one could also argue that the volatility
functions found using the method of Alexander (2008a) are not entirely correct. That is because
they were constructed based on movements in not only weekly, but also monthly, quarterly and
yearly contracts. It is difficult to make any absolute conclusions about the results obtained
using the method of Fleten and Lemming (2003) as we believe that one could have damped
the oscillations of the curves by reducing the granularity of the model, thereby getting more
plausible volatility functions. We do, however, find it reasonable to conclude that the method of
Benth et al. (2007) performs poorly when the objective is to find volatility functions describing
the price movements of forward contracts in the Nordic electricity market. We also conclude
that the method of Benth et al. (2007) should be avoided when constructing smooth forward
curves using the contracts available at NASDAQ Commodities. That is because it shows two
weaknesses that are not present when, e.g., using the method of Fleten and Lemming (2003),
namely discontinuity and obviously wrong values.

We further conclude that there exists a short-term correlation between the weekly residuals of
the inflow model and the increment associated with the first volatility function of the forward
curve movements. The 95% confidence interval of this correlation coefficient is [−0.28,−0.06]
for this particular plant. Our analyzes further show that disregarding such a correlation in a
model for reservoir management can result in a reduction of expected revenues by 2.5% (that is,
multiple 100.000 EUR yearly) if the correlation coefficient is in fact ρ = −0.1765. We thereby
conclude that it is necessary to include the short-term correlation between price and inflow
movements when constructing a lattice and the optimal decision policies, as it will provide the
production planner with more realistic expectations about price and inflow and better decision
policies.

Our analyzes also show that it is important to use multiple factors when describing price
movements. Constructing a lattice and optimal decision policies using a one-factor model can
result in a loss of expected revenues by approximately 2% when the price is in fact driven by
three, six or ten factors. We thereby conclude that it is important to model price movements
using multiple factors, as it can result in increased revenues for the production planner. When
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it comes to the correct number of factors one should use, we find it hard to make an absolute
conclusion. While we have mostly used a six-factor model explaining 96.04% of all variation, the
ten-factor model tested in Section 5.5 explaining 98.44% provided us with 0.4% higher expected
revenues. It could have been correct to use more factors and thereby obtain a higher proportion
of explained variance, but at the same time, one should not seek to overfit the model. Also,
using more factors results in longer computational time, as one must make more random draws
of the residuals εi,t ∼ N(0, 1) for i = [1, ..., N ] when we increase the number of factors N .

Lastly, we conclude that the performance of our model is quite good, as using it would have
provided revenues similar to those realized by the plant in the period between January 7, 2013,
and January 5, 2015. These results are especially interesting since our model receives the
average weekly price, while the real-life production planner can make decisions on an hourly
basis, allowing them to produce during periods with higher prices within a particular week that
are not available for our model.
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Nomenclature

Symbol Parameter Unit

(Ω,z) Measure space [-]
Q Measure representing risk neutral probabilities of all future

states
[-]

P Measure representing real life probabilities of all future
states

[-]

Pt Spot price at time t [EUR/MWh]
Ptn Spot price in the nth discrete state at time t [EUR/MWh]
It Total inflow at time t [m3]
Ib,t Inflow into reservoir b at time t [m3]

Ît Set of inflows into multiple reservoirs
Ib,tn Inflow into reservoir b in the nth discrete state at time t [m3]
Itn Set of inflows into all reservoirs in the nth discrete state at

time t
B Total number of reservoirs in a connected hydropower

system
[-]

T̂ Time horizon [-]
πt Optimal decision policy at time t [-]
πtn Optimal decision policy in the nth discrete state at time t [-]
CFt Cash flows at time t [EUR]
r Appropriate discount rate [-]
wbi,t Water nominated for production in a turbine connecting

reservoir b and i
[m3]

ς Number of seconds all turbines are running per week [s]
$ Number of hours all turbines are running per week [h]
% Density of water [kg/m3]
G Gravitational acceleration [m/s2]
qbi,t Water discharge through a turbine connecting reservoir b

and i
[m3/s]

Hb,t Head elevation of reservoir b [MASL]
ηbi,t Combined turbine and generator efficiency rate [-]
lb,t Water level in reservoir b [m3]
ubi,t Water flowing from reservoir b to reservoir i outside of

turbines
[m3]

O An outlet of a hydropower system [-]
dPt Small change in spot price at time t [EUR/MWh]
αt Mean reversion rate [-]

Pt long-term spot price level [EUR/MWh]
σt Volatility of spot price movements [-]
dt Small increment of time [-]
dZt Increment of a Wiener process during dt [-]
dqt Increment of a Poisson process during dt [-]
θt Jump frequency [-]
κt Proportional jump size [-]
γt Jump volatility [-]
κt Mean jump size [-]
T Maturity time of a forward contract [-]
Ft,T Price of a forward contract at time t with maturity at time

T
[EUR/MWh]
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dFt,T Small change in price of forward contract [EUR/MWh]
σt,T Volatility of price movements in a forward contract at time

t with maturity at time T
[-]

σi,t,T Volatility function/factor i of price movements in a forward
contract at time t with maturity at time T

[-]

σi,τ Volatility function/factor i of price movements in a forward
contract at time t with time to maturity τ

[-]

Ψi(x) Denotes an arbitrary function of x [-]
τ Time to maturity/delivery of a forward contract [-]
N Number of factors in multi-factor model used to describe

price movements of forward contracts
[-]

M Number of forward contracts traded in the market/used to
construct forward curves

[-]

f(ts) Forward curve constructed using all available contracts at
time ts

[-]

f(ts, t) Value of a forward curve constructed at time ts for time
t > ts

[-]

(tb, te) Time interval spanned by forward contracts used to
construct a forward curve

[-]

(tb,j , te,j) Time interval of delivery of jth forward contract [-]
S Set of delivery intervals [-]
U(t) Underlying seasonal function of price [EUR/MWh]
ε(t) Adjustment function [EUR/MWh]
D Number of non-overlapping time intervals used to construct

forward curves
[-]

ai, bi, ci, di, ei Parameters of the adjustment function for time interval i =
[1, ..., D]

[-]

x Vector of parameters [-]
Ft,tb,j ,te,j Closing price of a forward contract with delivery period

(tb,j , te,j)
[EUR/MWh]

F
BID/ASK
t,tb,j ,te,j

Bid/ask price of a forward contract with delivery period
(tb,j , te,j)

[EUR/MWh]

ζ(t, ti, tj) Function used to find adjustment function parameters [-]
A and b Matrices used to get all constraints on the form Ax = b [-]
δ Vector of Lagrange multipliers [-]
H Matrix used to solve optimization problem using method of

Lagrangian Multipliers
[-]

λ Smoothness parameter [-]
C Number of discrete prices contained in a forward curve

constructed using the method of Fleten and Lemming (2003)
[-]

Fts Vector of forward prices [EUR/MWh]
J Number of forward curves used to construct returns data

series
[-]

R Number of different delivery periods [-]
A Number of discrete times to maturity τa for which we obtain

the value of the volatility functions σi,τ

[-]

xj,a Daily logarithmic deviation/return between forward curve
f(tj) and f(tj−1) for time to maturity τa

[-]

XJ×A Returns dataset for J observations of A different times to
maturity

[-]

V Variance-covariance matrix [-]
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P Matrix of principal components [-]
pi Principal component i, ith column of P [-]
W Matrix of eigenvectors [-]
wi Eigenvector i, ith column of W [-]
wmi Element m of ith eigenvector. Not to be confused with wbi,t,

the amount of water nominated for production in a turbine
connecting reservoir b and i at time t.

[-]

Λ Diagonal matrix of eigenvalues Λi [-]
Yt Logarithm of inflow It [ln(m3)]
µ̂t Weekly average logarithmic inflow [ln(m3)]
Zt Deviation between log inflow and log average [ln(m3)]
εt Residual/error term [-]
φt Inflow model coefficient [-]
σINF,t Standard deviation of residual term in inflow model [-]

Stn nth state of a lattice at time t [-]
Nt Number of nodes in a lattice at time t [-]

St Set of states at time t [-]
K Number of Monte Carlo simulations used to construct a

lattice
[-]

(Ŝk)T̂t=1 kth Monte Carlo simulation [-]

Ŝkt Time t state of kth Monte Carlo simulation [-]

Γtn Voronoi decomposition of all nodes Stn for n ∈ [Nt] [-]
βk Stepsize used to construct lattice nodes [-]

Sktn Variable used to construct lattice states Stn [-]
ptnm Conditional probability for a transition between node n and

m at time t
[-]

IA(x) Indicator function indicating whether x is part of the set A [-]
Vt Value of all future discounted cash flows, also referred to as

the value function
[EUR]

E[Vt+1] Expected value of all future cash flows from next state and
onwards

[EUR]

Ξ Number of iterations used in ADDP algorithm [-]
st Spilled water [m3]
EC Energy coefficient [kWh/m3]
ι Split factor for inflow [-]
W Given week [-]
∆ Delta of an option [-]
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