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Abstract

Structural estimation is an important technique in analyzing economic data.
Unfortunately, it is often computationally expensive to implement the most
powerful and efficient statistical methods. One such method is the Nested
Fixed Point (NFXP) algorithm. In this thesis, we develop methodology
and techniques that allow us to apply NFXP to real options models of hy-
dropower production. In particular, we develop a way to regard hydropower
planning and scheduling as a stationary problem. Further, we create a nu-
merical method for solving specific types of equation systems with sparse
matrices of a specific structure, an approach that significantly increases the
speed with which we can compute Fréchet and partial derivatives of con-
traction mappings for large state spaces.
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Chapter 1

Introduction

In this thesis, we examine the potential of applying structural estimation
techniques to real options models of hydropower production. The focus
of the thesis is methodology, in particular how one can model hydropower
production to apply these techniques, along with algorithmic modifications
that makes solving such problems tractable. To illustrate, we use the widely
acclaimed Nested Fixed Point (NFXP) algorithm developed by Rust (1988).

With estimation in mind, Rust (1988) developed NFXP by observing the
following: if one assumes that an observed set of states and decisions is gov-
erned by a stochastic decision process generated by the Bellman equation,
then one should be able to solve the underlying stochastic control problem
inversely using maximum likelihood estimation techniques. Plainly; if one
observes the actions of an agent, and assumes that the agent is maximizing
utility, then one should be able to induce values for utility function param-
eters, thereby discovering the mathematical objective function of the agent.
In Rust (1987), he proceeds to show how this can be done in practice.

Since the development of NFXP, several applications have shown the method
to yield good results, e.g. Rust (1987), Muehlenbachs (2009) and Kellogg
(2010). At the same time, some problems remain difficult to solve. Among
these are problems with large state spaces - problems that inherently lead
to the curse of dimensionality. To deal with such issues, several other ap-
proaches have been suggested1. Among these are parametric methods that
approximate the value function in the Bellman equation using Chebyshev

1For an excellent exposition, see Benítez-Silva et al. (2000).
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1 Introduction

and B-Spline polynomials (see Gamba and Tesser, 2009) or neural networks,
and algorithms that break the curse of dimensionality using random versions
of successive approximations (see Rust, 1997).

Hydropower scheduling has traditionally been considered to be a finite hori-
zon problem (see e.g. Nandalal and Bogárdi, 2007). However, treating a
problem as infinite-horizon has several advantages, in particular with re-
spect to asymptotic properties of statistical estimators. Infinite-horizon
formulations require stationarity in the problem structure - a trait which is
not obvious in the case of hydropower production. However, we show that
it is possible to leverage the structure of the problem and the assumptions
of Rust (1988) to induce stationarity, and that it is particularly useful in
the case of inverse stochastic control. Expanding upon the assumptions of
Rust (1988), we argue that deviations from stationarity are temporary and
captured by an extreme value distribution.

The largest obstacle associated with structural estimation of hydropower
production is that of tractability. To our knowledge, the state and decision
space we consider is significantly larger than what has been examined in
the literature till now. To break the inherent curse of dimensionality, we
have thus been forced to devise means of speeding up computation. In
particular, we create several numerical techniques that allows us to compute
fixed points of contraction mappings and solve large equation systems in a
fraction of the time.

Being the most computationally demanding part of NFXP, our efforts have
been focused on finding ways to speed up the solution of the fixed point
(dynamic programming) part of the algorithm. We identify two beneficial
properties in the structure of the problem - properties that let us use meth-
ods from linear algebra, and concurrent execution techniques, in a way that
significantly speeds up computation:

1. The sparsity structure of the matrix representing the Fréchet deriva-
tive of a contraction mapping suggests an iterative method of solv-
ing a large system of linear equations quickly, making the associated
Newton-Kantorovich method tractable.

2. The structure of the stationary problem makes it a good candidate for
parallel computing. By separating the most computationally intensive
parts of the algorithm, time consumption is reduced by a factor of
close to 52 (where the number 52 is due to a discretization of time
into weeks).
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Determination of optimal operating strategies for hydropower generation as-
sets has long been the focus of research interest, and there is a rich literature
on the subject2. Investigation of the actual decisions made by hydropower
producers seems to be non-existent. Taking the positive perspective, we
examine the applicability of structural estimation as a technique for under-
standing the key drivers behind hydropower producer decisions. Using the
NFXP algorithm as our vehicle of exposition, we hope that the ideas and
methodology we develop within can be built upon to develop faster, more
efficient and more precise estimation techniques for uncovering hydropower
producer preferences.

In chapter 2, we discuss structural estimation and the NFXP algorithm in
general. In chapter 3, we construct a real-options model of hydropower pro-
duction, and derive the equations needed by NFXP. Chapter 4 discusses im-
plementation, algorithmic details and simulation, and chapter 5 concludes.
Code may be found at http://folk.ntnu.no/host/structural/.3

2See e.g. Thompson et al. (2004); Fleten and Kristoffersen (2008); Philpott et al.
(2000).

3Start program with the file simulation.m. Use settings.m to adjust parameters.
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Chapter 2

Structural Estimation of
Markov Decision Processes

This chapter focuses on structural estimation of Markov decision processes
(MDPs) using the Nested Fixed Point (NFXP) algorithm developed by Rust
(1988). Much of what we discuss here can be found in Rust (1994), but we
have adapted and shortened it somewhat to fit our specific context. Also,
we have tried to simplify the mathematical notation a bit, in an attempt to
make it more accessible to the reader. Still, the NFXP algorithm is a com-
plex numerical method that uses advanced concepts from both functional
analysis and statistics; concepts that we cannot shy away from without
severely inhibiting our ability to explain how and why we arrive at certain
results.

First we give a short review of MDPs and finite- and infinite-horizon dy-
namic programming (DP). Readers familiar with these topics can skip ahead.

2.1 Markov Decision Processes

MDPs have been used extensively as a framework for modelling sequential
decision making under uncertainty (Rust, 1994). In addition to provid-
ing a normative theory on how rational agents should behave, they also
provide a good empirical framework of how real-world decision-makers ac-
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2.1 Markov Decision Processes

tually behave1. MDPs have two types of variables: state variables sα
t and

decision variables dα
t , where t denotes time and α denotes agent or decision-

maker2. An agent can be represented by a set of primitives (u, p, β) where
u(st, dt) is a utility function representing the agent’s preference at time
t, p(st+1|st, dt) is a Markov transition probability representing the agent’s
beliefs about uncertain future states, and β ∈ (0, 1) is the rate at which
the agent discounts future utility. Agents are assumed to be rational:
they behave according to an optimal decision rule dt = δ(st) that solves
V T

0 (s) = maxδ Eδ

{∑T
t=0 β

tu(st, dt)|s0 = s
}

where Eδ denotes expectation
with respect to the controlled stochastic process u(st, dt) induced by the
decision rule δ.

Consider a finite horizon, discrete-time MDP with the following properties:

• A time index t ∈ {0, 1, 2, . . . , T}

• A state space S

• A decision space D

• A family of transition probabilities {pt+1 (·|st, dt) : B(S) → [0, 1])},
where B(S) is the Borel σ-algebra of measurable subsets of S

• A family of discount functions {βt(st, dt) ≥ 0} and single-period utility
functions {ut(st, dt)} such that the sum of all future utility discounted
at the appropriate discount function may be given by

U(s,d) =
T∑

t=0

t−1∏
j=0

βj(sj , dj)

ut(st, dt),

where we for t = 0 define
−1∏
j=0

βj(sj , dj) = 1.

The agent’s maximization problem is thus to choose some optimal decision
rule δ∗ = (δ0, . . . , δT ) to solve

max
δ=(δ0,...,δT )

Eδ {U(s,d)} . (2.1)

1Rust (1994).
2For notational simplicity and ease of exposition, we drop the agent index; properties

and results generalize naturally to the multi-agent case.
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2 Structural Estimation of Markov Decision Processes

The expected value of discounted utility over the remaining horizon is called
the value function, and assumes that an optimal policy δ is followed in the
future. The method of dynamic programming exploits the additive sepa-
rability of the utility functions and the Markovian structure of the model,
and calculates the value function and the optimal policy as follows. In the
terminal period, the value function VT and decision δT are defined by

VT (sT ) = max
dT ∈DT (sT )

uT (sT , dT )

δT (sT ) = arg max
dT ∈DT (sT )

uT (sT , dT ).

In periods t = 0, 1, . . . , T − 1, Vt and δt are recursively defined by

Vt(st) = max
dt∈Dt(st)

{
ut(st, dt) + βt−1(st−1, dt−1)

∫
Vt+1 (st+1) pt+1(dst+1|st, dt)

}
(2.2)

δt(st) = arg max
dt∈Dt(st)

{
ut(st, dt) + βt−1(st−1, dt−1)

∫
Vt+1 (st+1) pt+1(dst+1|st, dt)

}
.

(2.3)

Solving these recursions in reverse, i.e. finding δT , then δT −1 and so on, the
optimal decision rule δ∗ = (δ0, . . . , δT ) is generated. It then follows that

V0(s) = max
δ

Eδ {U(s,d)|s0 = s} ,

which is what we wanted to solve in equation (2.1). For a more formalized
version of these results, see e.g. Gihman and Skorohod (1979) and Rust
(1994).

2.1.1 Infinite horizon dynamic programming and Bellman’s
equation

If we are willing to assume that the MDP is stationary, then transition
probabilities are the same for all t and the discount functions are set equal
to some constant β ∈ [0, 1). This assumption fails to yield any useful sim-
plifications for the finite-horizon case, but for the infinite-horizon case, sta-
tionarity implies that the future looks exactly the same in state st at time
t and st+k at time t + k provided that st = st+k. This suggests that the
optimal decision rule and corresponding value function are time invariant.
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2.2 Structural estimation

Then, equations (2.2) and (2.3) may be recursively defined by3

V (s) = max
d∈D(s)

{
u(s, d) + β

∫
V
(
s′) p(ds′|s, d)

}
(2.4)

δ(s) = arg max
d∈D(s)

{
u(s, d) + β

∫
V
(
s′) p(ds′|s, d)

}
(2.5)

Equation (2.4) is known as Bellman’s equation.

2.2 Structural estimation

In contrast to so-called reduced-form methods, which generally provide ev-
idence about partial equilibria in regression frameworks, structural estima-
tion is a technique for estimating deep structural parameters of theoretical
models.

Consider the set of primitives (u, p, β) introduced at the start of section
2.1. We will focus on structural estimation of MDPs under the hypothesis
that a series of observations of states and decisions, denoted by {st, dt}, is
a realization of a controlled stochastic process. In addition to uncovering
the form of this stochastic process, structural estimation methods attempt
to uncover (i.e. estimate) the primitives (u, p, β) that generated it, that is,
the mathematical objective function of the agent. Rust (1988) calls this the
problem of inverse stochastic control.

Our ability to determine agents’ preferences and beliefs are contingent upon
our willingness to impose prior restrictions on (u, p, β). If we, for instance,
are not willing to assume anything beyond basic measurability and regu-
larity conditions on u and p, then Rust (1994) argues that it is impossi-
ble to consistently estimate (u, p, β), i.e. the class of all MDPs is non-
parametrically unidentified. On the other hand, if we are willing to restrict
u and p to a finite-dimensional parametric family, say{

u = uθ, p = pθ|θ ∈ Θ ⊆ RK
}
,

for some positive K, then the primitives (u, p, β) are identified. If we are
willing to impose even stronger prior restrictions, stationarity and rational

3The usage of ds′ in p(ds′|s, d) may seem ambiguous. It should be read as the prob-
ability that the state changes to s′ given that the current state and action is s and d,
respectively.
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2 Structural Estimation of Markov Decision Processes

expectations (RE), then we only need parametric restrictions on u in order
to identify (u, p, β). So, say that we now bring to bear prior knowledge
in the form of a parametric representation for (u, p, β). Then, the prob-
lem of structural estimation reduces to the technical issue of estimating a
parameter vector θ ∈ Θ where Θ is a compact subset of RK .

The appropriate econometric method for estimating θ depends critically on
whether the control variable dt is continuous or discrete. In the case of
continuous dt, the MDP is known as a continuous decision process (CDP),
whereas if dt is discrete and countable, the term discrete decision process
(DDP) is used. For the former type of process, the predominant estimation
method is the generalized method of moments (GMM) (see Hansen and
Singleton, 1982). For the latter, on the other hand, the optimal decision
rule is obtained by solving a dynamic programming problem rather than as
a zero to a first order condition. Thus, most structural estimation methods
for DDPs has to combine dynamic programming with a method for fitting
the data.

2.3 Econometric specification

Conceptually, we may regard our econometric method as a form of nonlinear
regression, where we search for an estimate θ̂ whose implied decision rule
dt = δ(st, θ̂) best fits the data {st, dt}. Unfortunately, there are several is-
sues that make direct application of nonlinear regression methods infeasible.
Using the language of statistical regression,

1. the dependent variable dt is discrete rather than continuous

2. the functional form of δ is generally not known a priori, but must
rather be derived as a solution to the stochastic control problem

3. the error term ϵt in the regression function δ is typically multidi-
mensional and enters in a non-additive, non-separable fashion, dt =
δ (st, ϵt, θ).

Since nonlinear regression methods are infeasible, a different approach must
be used. Consider uncovering the agent’s preferences and expectations by

8



2.3 Econometric specification

letting θ̂ be the parameter vector that maximizes the likelihood function

L(s1, . . . , sT , d1, . . . , dT |θ) =
T∏

t=2
P (dt|st,θ)p(st|st−1, dt−1,θ). (2.6)

Let’s dwell at this expression for a moment. p(st|st−1, dt−1,θ) is the familiar
Markov transition probability. It expresses the probability of moving from
one state to another, given that one undertakes action d. P (dt|st,θ) is called
the conditional choice probability, and expresses the probability of selecting
decision dt given state st. Maximizing a likelihood function is essentially
a fitting process, where one adjusts parameter vector θ so that the joint
probability distribution under consideration, best fits the data.

The basic motivation for including an error term ϵt in the model should
be quite obvious. As shown in section 2.1, the optimal decision rule δ is
a deterministic function of the state s. Thus, trying to fit actual data to
any such model would lead to degeneracy without an error term. There are
several possible interpretations of the error term, but Rust (1994) argues
that the most natural interpretation of ϵ is that it is an unobserved state
variable. Indeed, it is unlikely that any survey could record all information
that is relevant for the agent’s decision-making process. ϵ thus provides a
natural way to “rationalize” discrepancies between observed behavior and
the predictions of the DDP. At this point, the reader may question why the
probabilities P (dt|st,θ) do not depend on unobserved states ϵt - the reason
for this will become apparent shortly.

The conditional choice probabilities, or simply the choice probabilities, are
more subtle than they may seem. The decisions made now will obviously
affect future states, but what is perhaps not so obvious, is that since what
is optimal to do now is affected by what is optimal to do in the future,
the choice probabilities must in some way depend on the value function.
This intuition can be formalized mathematically, but requires some results
from the theory of static discrete choice. We find it to be easiest to show
this in a bottom-up manner. The remainder of this section will thus be
concerned with developing these concepts, which will ultimately lead us to
an expression for the choice probabilities.

Let’s begin by expressing the choice probabilities in an intuitive way. Recall
that we denote the optimal decision by δ. Imagine now that δ is known.

9



2 Structural Estimation of Markov Decision Processes

Then, obviously,

P (d|s, ϵ,θ) =
{

1 if d = δ(s, ϵ,θ)
0 otherwise,

but, since δ is a function of ϵ, the best we can do is to write

P (d|s,θ) =
∫
I {d = δ (s, ϵ,θ)} q(dϵ|s),

where I(·) is the Kronecker delta4 and q(dϵ|s) is the conditional distribution
of ϵ given s. This expression tells us that we need to do at least two things:

1. find an expression for the optimal decision in a state, and

2. find a conditional probability distribution for ϵ.

Rust (1994) argues that it is important that the choice probability has
unbounded support, that is,

d ∈ D(s) ⇐⇒ P (d|s, ϵ,θ) > 0. (2.7)

We say that a specification is saturated if statement (2.7) holds for all possi-
ble values of θ. The problem with an unsaturated specification is that it is
conceivable that the DDP may be contradicted in a sufficiently large data
set, i.e. one may encounter observations (st, dt) that cannot be rationalized
by any value of ϵ or θ. This would lead to practical difficulties, in that it
would cause the log-likelihood function to diverge to negative infinity when
it encounters a “zero probability” observation.

Borrowing from McFadden (1981), we now present two central assumptions,
which are sufficient to generate a saturated specification for P (d|s, ϵ,θ).

Assumption AS - Additive separability The utility function has the
additively separable decomposition

u(s, d) = u(s, d,θ) + ϵ(d)

where ϵ(d) is the d’th component of the vector ϵ.
4The Kronecker delta is a function of two variables, and is 1 if they are equal, and 0

otherwise.
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2.3 Econometric specification

Assumption CI - Conditional independence The transition density for
the controlled Markov process {s, ϵ} factors as

π(dst+1, dϵt+1|st, ϵt, dt,θ) = q(dϵt+1|st+1)p(dst+1|st, dt,θ).

Assumption CI implies the following:

1. st+1 is a sufficient statistic for ϵt+1, i.e. any and all serial dependence
between ϵt and ϵt+1 is transmitted entirely through st+1.

2. The probability density of st+1 depends entirely on st and not ϵt.

Now, under assumptions AS and CI, Bellman’s equation becomes

Vθ(s, ϵ) = max
d∈D(s)

{vθ(s, d) + ϵ(d)} (2.8)

where

vθ(s, d) = u(s, d,θ) + β

∫
Vθ(s′, ϵ′)q(dϵ′|s′)p(ds′|s, d,θ). (2.9)

Assuming ϵ is continuously distributed with unbounded support, it follows
that regardless of the values of vθ(s, d), Vθ(s, ϵ) is positive for each d ∈ D(s).
We later show that P (d|s, ϵ,θ) depends on Vθ(s, ϵ) in such a way that
P (d|s, ϵ,θ) is always guaranteed to be positive. The specification for the
choice probabilities is thus saturated.

Let’s focus now on finding an expression for the choice probabilities. To do
this, we introduce what McFadden (1981) calls the social surplus function:

G [{u (s, d) , d ∈ D(s)} |s,θ] =
∫

max
d∈D(s)

{u(s, d,θ) + ϵ(d)} q(dϵ|s). (2.10)

This function can be thought of as a function that maximizes one-period
utility5. Now, if q(dϵ|s) has finite first moments we can show that

∂G [{u (s, d,θ) , d ∈ D(s)} |s,θ]
∂u (s, d,θ)

= P (d|s,θ).

We prove the above in appendix C.1. Going from the static case to the
dynamic case, that is, finding a social surplus function that works not only

5Notice how the AS assumption allows ϵ to be integrated out. This explains why the
choice probabilities do not depend on ϵ in the likelihood function (2.6).
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2 Structural Estimation of Markov Decision Processes

for one-period utility but for multi-period utility, requires three regularity
conditions. Following Rust (1994), we call these conditions BU, WC and
BE, respectively, and give them in appendix B. We are now ready to present
two central results. Proofs can be found in Rust (1988).

Theorem 1. If {st, ϵt, dt} is a DDP satisfying AS, CI and regularity con-
ditions BU, WC and BE, then the optimal decision rule δ is given by

δ(s, ϵ) = arg max
d∈D(s)

[vθ(s, d) + ϵ(d)] ,

where v is the unique fixed point to the contraction mapping T : B → B
defined by

T (vθ)(s, d) = u(s, d,θ) + β

∫
G
[{
u
(
s′, d′,θ

)
, d′ ∈ D(s′)

}
|s′]π(ds′|s, d)

(2.11)

Theorem 2. If {st, ϵt, dt} is a DDP satisfying AS, CI and regularity con-
ditions BU, WC and BE, then the controlled process is Markovian with
transition probability

P (dst+1, dt+1|st, dt,θ) = P (dt+1|st+1,θ)p(dst+1|st, dt,θ),

where the conditional choice probability P (d|s,θ) is given by

P (d|s,θ) = ∂G [{vθ (s, d) , d ∈ D(s)} |s,θ]
∂vθ (s, d)

.

G is the social surplus function and v is the unique fixed point to the con-
traction mapping defined in equation (2.11).

Theorems 1 and 2 state that the dynamic programming problem can be
solved by computing the fixed point vθ to the contraction mapping in equa-
tion (2.11), and that this fixed point can be used to find the choice probabil-
ities. We will now, for convenience, define the function EVθ, which describes
the expected value of the value function.

EVθ(s, d) =
∫
Vθ(s′, ϵ′)q(dϵ′|s′)p(ds′|s, d,θ) (2.12)

This in turn allows us to simplify equation (2.8) and (2.9) to

Vθ(s, ϵ) = max
d∈D(s)

{u(s, d,θ) + ϵ(d) + βEVθ(s, d)} .

12



2.3 Econometric specification

By selecting various distributions for ϵ we can now obtain expressions for the
choice probabilities. In particular, if q(dϵ|s) is assumed to be a (Gumbel)
multivariate extreme value distribution, we show (in appendix C.2) that the
choice probabilities are given by the multinomial logit formula

P (dt|st,θ) =
exp

{
u(st, dt,θ) + βEVθ(st, dt)

σ

}
∑

d′∈D(st) exp
{
u(st, d

′,θ) + βEVθ(st, d
′)

σ

} (2.13)

where σ is the scale parameter of the extreme value distribution. As can be
seen, choosing this particular probability distribution allows us to obtain an
explicit expression for the choice probabilities, instead of one that requires
(potentially very expensive) numerical integration, as in equation (2.10).
The advantages of not having to use numerical integration to obtain the
choice probabilities cannot be overstated. In the algorithm we present later,
this would have had to be performed so many times that the problem would
essentially have become intractable.

Theorem 1 stated that the dynamic programming problem could be solved
by computing the fixed point vθ to the contraction mapping in equation
(2.11). In fact, we can show that when we assume q(dϵ|s) to be extreme
value distributed, the expected value function EVθ itself can be given as
a unique fixed point to a contraction mapping EVθ = Tθ(EVθ), which we
prove in appendix C.3. The fixed point of the contraction mapping is defined
by
EVθ(s, d) = Tθ(EVθ)(s, d)

≡
∫
σ log

 ∑
d′∈D(s′)

exp
{
u(s′, d′,θ) + βEVθ(s′, d′)

σ

}p(ds′|s, d,θ).

(2.14)

For convenience, we now define the following function:

ψ(s, d,θ) def= exp
{
u(s, d,θ) + βEVθ(s, d)

σ

}
.

This expression will be used frequently. Equation (2.13) and (2.14) can then
be simplified to

P (d|s,θ) = ψ(s, d,θ)∑
d′∈D(s)

ψ(s, d′,θ)

13



2 Structural Estimation of Markov Decision Processes

and

Tθ(EVθ)(s, d) =
∫
σ log

 ∑
d′∈D(s′)

ψ(s′, d′,θ)

p(ds′|s, d,θ). (2.15)

Following Rust (1994) we normalize σ to 1, eliminating it from all equations
from hereon out.

2.4 The Nested Fixed Point algorithm - NFXP

In the previous section, we showed that the difficulty in maximizing the
likelihood function

L(s1, . . . , sT , d1, . . . , dT |θ) =
T∏

t=2
P (dt|st,θ)p(st|st−1, dt−1,θ). (2.16)

is that L does not have an a priori known functional form: the conditional
choice probability P (dt|st,θ) depends on the expected value function EVθ,
which can only be found as the fixed point of the contraction mapping
Tθ(EVθ). Rust (1988) observed that this suggests a nested fixed point al-
gorithm: an “inner” contraction fixed-point algorithm that computes EVθ,
and an “outer” hill-climbing algorithm that searches for the values of θ
that maximizes L. Rust then proceeded to develop such an algorithm, and
illustrated it in his now-famous paper; Rust (1987).

The main idea behind NFXP is to repeatedly switch between the inner and
outer parts of the algorithm until it converges. Figure 4.1 in Chapter 4
displays a detailed flowchart of the components of the algorithm.

2.4.1 Description of the algorithm

Consider the flowchart in figure 2.1. Initially, we guess values for the pa-
rameter vector θ. We then solve the dynamic programming problem to find
the fixed point of EVθ by using a contraction procedure. Having obtained
the expected value of being in any state, we can calculate the choice proba-
bilities and derivatives of the likelihood function. This allows us to perform
one iteration of a hillclimbing routine on the likelihood-function, after which
we return to the inner loop and resolve the DP problem. Switching between

14



2.4 The Nested Fixed Point algorithm - NFXP

Inner Fixed Point Polyalgorithm Outer Maximum Likelihood Algorithm

Contraction

iterations

Compute

Fréchet derivative

Until EV
k
 is su"ciently

close to EV
θ

Until EV
k
 is su"ciently

close to some user

de$ned tolerance

Calculate

partial derivatives

Update

Compute new

Search Direction

Perform line search

Calculate the Log-likelihood function

and its partial derivatives

DataNewton-Kantorovich

iterations

Initial

guess

YesNo

YesNo

Figure 2.1: The main components of our implementation of NFXP.

the inner and outer loops, we eventually reach a maximum of the likelihood
function.

It is surprisingly easy to misunderstand how the maximum of the likeli-
hood function is found. Therefore, we draw analogies to more well-known
hillclimbing methods. We urge the reader to read the following carefully.
Standard hillclimbing algorithms typically proceed by finding a good search
direction in a point, then perform a line search to find a good distance to
move, and then move that distance in the search direction to a new point.
At this new point, a new search direction is found, and the process is re-
peated. NFXP does things a bit differently. Because of the structure of the
problem, NFXP combines the line search and the overall maximization into
one process. Instead of line-searching to a maximum in the search direc-
tion, NFXP actually moves to each point evaluated by the line search, thus
finding new values for θ. Doing otherwise would be useless, because the
values of EVθ are invalid at any new point in the likelihood function (and
so are the derivatives). Thus, NFXP has to perform an iteration of its inner
loop every time a new point is evaluated. In other words, NFXP not only
maximizes the value of a function; it changes the function it is maximizing
while the maximization is being performed.

15



2 Structural Estimation of Markov Decision Processes

NFXP also allows us to estimate the contraction parameter6 β. We have
decided to include it in θ, so whenever we write θ we are actually referring
to the vector {β, θ1, . . . , θn}. It is also worth mentioning that the transition
probability may be dependent on θ as well as the current state s and decision
d; this should be clear from equation (2.16). The reason we here say may
is because it is not always necessary or desirable to estimate the transition
probabilities as a part of the NFXP algorithm. We will address this issue
in Chapter 3.

2.4.2 Discretization

For continuous state spaces, the fixed point solution of Tθ(EVθ) is an infinite-
dimensional object lying in the Banach space7 of all bounded, measurable
functions of s under the supremum norm. In order to compute EVθ numer-
ically, it becomes necessary to discretize the state space so that s only can
take on a finite set of values.8 Once the state space has been discretized, the
function EVθ becomes a finite-dimensional vector with dimension n equal to
the number of unique states s in the total set of states S. The discretization
procedure’s sole purpose is to approximate the contraction mapping Tθ on
an infinite-dimensional Banach space B by a finite contraction mapping Tn

θ

on a high-dimensional euclidean space Rn. That is, we find a fixed point
solution to a finite, discrete-state contraction mapping, which approximates
the solution to the continuous state contraction mapping Tθ.

The discrete version of equation (2.15) is9

Tn
θ (EVθ)(s, d) =

∑
∀∆s′

p(∆s′|s, d,θ) × log

 ∑
d′∈D(s′)

ψ(s′, d′,θ)

 . (2.17)

Both Tn
θ (EVθ)(s, d) and log

[∑
d′∈D(s′) ψ(s′, d′,θ)

]
are vectors. It should be

clear to the reader that multiplying the latter expression with a transition
6Sometimes called the Lipschitz constant.
7A Banach space is a complete, normed vector space. A norm, often denoted by ||•||,

is a function which defines the length of a vector in the space. To be complete, the
limit of every Cauchy sequence in the space must also lie in the space. For instance,
the familiar Euclidian spaces Kn are Banach spaces, since all convergent sequences (i.e.
Cauchy sequences) have their limit in the same space.

8An alternative approach, suggested by Rust (1997), does not require discretization of
the state space, but uses a random multigrid algorithm.

9The usage of p(∆s′|s, d,θ) is completely analogous to what we discussed in footnote
3 on page 7.
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2.4 The Nested Fixed Point algorithm - NFXP

probability and then summing over all possible transitions, is equivalent to
premultiplying the vector log

[∑
d′∈D(s) ψ(s, d′,θ)

]
with a Markov transi-

tion matrix P. We may thus express equation (2.17) as

Tn
θ (EVθ)(s, d) = P × log

 ∑
d′∈D(s)

ψ(s, d′,θ)

 (2.18)

We omit the n in Tn
θ from here on.

2.4.3 The inner fixed point polyalgorithm

The main goal of this inner loop of NFXP is to approximate the solution to
equation (2.12), which we restate here for convenience:

EVθ(s, ϵ, d) =
∫
Vθ(s′, ϵ′)π(ds′, dϵ′|s, ϵ, d,θ)

=
∫∫

Vθ(s′, ϵ′)q(dϵ′|s′,θ)p(ds′|s, d,θ).

The inner loop consists of two algorithms (c.f. figure 2.1): contraction
iteration and Newton-Kantorovich iteration. The polyalgorithm guarantees
convergence to a fixed point solution of an infinite horizon discrete-state
Bellman equation.

Contraction iteration

The inner loop starts off with contraction iteration on the contraction map-
ping displayed in equation (2.18). The transition probabilities p(∆s′|s, d,θ)
are the elements in the n × n Markov transition matrix P, where element
(i, j) equals the probability of moving from state si to state sj . Contraction
iteration is thus simply a matter of matrix multiplication of the transition
matrix with the vector log

[∑
d′∈D(s) ψ(s, d′,θ)

]
. The contraction iteration

formula becomes

EVk+1(s, d) = P × log

 ∑
d′∈D(s)

exp
{
u(s, d′,θ) + βEVk(s, d′)

},

17



2 Structural Estimation of Markov Decision Processes

or in compact notation

EVk+1(s, d) = P × log

 ∑
d′∈D(s)

ψk(s, d′,θ)

. (2.19)

There is a major benefit to being able to use matrix multiplication. We
avoid time-consuming summations, which greatly simplifies how we deal
with state changes. By the use of Markov transition matrices, we achieve
the same as in equation (2.17), while avoiding for-loops in implementation.
Changes that are a direct result of a decision, in our case, reduction in
reservoir level due to production, need to be handled separatly.

Contraction iterations are well behaved in the sense that they always guar-
antee convergence to the fixed point solution. Contraction iteration is there-
fore a natural choice of algorithm to begin searching for the fixed point with.
However, as the contractions close in on the solution, they tend to slow down
and can only guarantee convergence at a linear rate. This is why the inner
fixed point polyalgorithm consists of two parts, the second being the faster
Newton-Kantorovich method.

Newton-Kantorovich

The Newton-Kantorovich (NK) method may be regarded as a functional
extension of Newton’s method. When we perform contraction iterations,
we search for the fixed point EVθ = Tθ(EVθ). With Newton-Kantorovich
however, we aim at finding the solution to [I − Tθ] (EVθ) = 0 by using
a first-order Taylor expansion. Expressed in operator jargon, we find the
zero solution to the nonlinear operator [I − Tθ]10. The logic behind this
approach is analogous to that of Newton’s method, since the contraction
mapping EVθ = Tθ(EVθ) holds if and only if [I − Tθ](EVθ) = 0.

Rust (1988) showed that the operator [I − Tθ] has a Fréchet derivative11

[I −T ′
θ] on B with a bounded inverse [I −T ′

θ]−1. This invertibility comes in
10I is the identity operator on a Banach space B and 0 is the zero function.
11The Fréchet derivative is a generalization of the idea of linear approximation from

functions of one variable, to functions on Banach spaces. Assume V and W are Banach
spaces, and U ⊂ V . A function f : U 7→ W is called Fréchet differentiable at x ∈ U if
there exists a bounded linear operator Tx : V 7→ W such that

lim
h→0

||f(x + h) − f(x) − Tx(h)||w
||h||v

= 0
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2.4 The Nested Fixed Point algorithm - NFXP

handy when solving the Taylor series expansion of [I − Tθ](EVθ) = 0. We
get

[I − Tθ](EVθ) ≈ [I − Tθ](EVk) + [I − T ′
θ](EVk+1 − EVk) = 0 (2.20)

Solving equation (2.20) for EVk+1 yields the Newton-Kantorovich iteration
formula

EVk+1 = EVk − [I − T ′
θ]−1[I − Tθ](EVk)

Derivation of the separate parts of this formula related to our specific prob-
lem will be discussed in detail in Chapter 4.

The switch between the two methods is adapted dynamically as the algo-
rithm runs, but as Newton-Kantorovich only guarantees convergence when
its initial value is in the neighbourhood of the fixed point, we need to make
sure that the contraction iterations run a sufficient number of iterations
before we make the switch.

2.4.4 The outer maximum likelihood algorithm

To uncover the agent’s preference u, we wish to find a parameter vector θ̂
that maximizes the full likelihood function Lf defined by

Lf (s1, . . . , sT , d1, . . . , dT |θ) =
T∏

t=2
P (dt|st,θ)p(st, |st−1,θ) (2.21)

where p(st, |st−1,θ) are state transition probabilities that satisfy the Markov
property, and P (dt|st,θ) are the conditional choice probabilities. We also
define another function which we name the partial likelihood function

Lp(s1, . . . , sT , d1, . . . , dT |θ) =
T∏

t=1
P (dt|st,θ). (2.22)

The difference between the two is the inclusion of the transition probabili-
ties. We may choose to estimate the transition probabilities as a part of the
algorithm using equation (2.21), or precalculate them. Using precalcula-
tion, p(st, |st−1,θ) would no longer be a function of θ, and we could simply
maximize the partial likelihood instead.
where ||•||w and ||•||v denotes the norms in W and V respectively. If this limit exists,
then Tx is said to be the Fréchet derivative of the function f evaluated at point x. For
more details on this, we recommend Griffel (2002).
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2 Structural Estimation of Markov Decision Processes

Maximizing the likelihood function

Since no analytical solution to the likelihood function exists, its maximiza-
tion requires the use of search algorithms. We employ the search directions
provided by the BHHH and BFGS methods. Both BHHH and BFGS are
quasi-Newton gradient searches, and we give short expositions of the two
below. As our line-search algorithm, we use secant iteration. The follow-
ing section may be skipped by readers that are familiar with this class of
optimization algorithms.

Newton- and Quasi-Newton methods

The well-known gradient search algorithm exploits the fact that a non-zero
gradient ∇L(θk) yields the locally steepest rate of objective function im-
provement. Thus, the gradient move direction becomes ∆θk+1 = ±∇L(θk)
(+ for maximize, − for minimize) and solutions are iterated by

θk+1 = θk + λk+1∆θk+1

where λk+1 is a good step size obtained by a line search. We find λk+1 by
solving (at least approximately)

max or min L(θk + λk+1∆θk+1)

Newton’s method can be viewed as pursuing the move direction suggested
by the second-order Taylor approximation

L′(θk + λk+1∆θk+1) .= L(θk) + λk+1∇L(θk) · ∆θk+1 +
λ2

k+1
2

∆θk+1H(θk)∆θk+1

(2.23)

where H(·) is the Hessian matrix. Equation (2.23) is a quadratic function of
λk+1∆θk+1, and will thus have a local optimum. This optimum is easily ob-
tained by fixing λk+1 = 1, differentiating L′ with respect to the components
∆θk+1 and setting equal to zero. We find

∇L′(∆θk+1) = ∇L(θk) + H(θk)∆θk+1 = 0
H(θk)∆θk+1 = −∇L(θk) (2.24)

By solving the linear equation system (2.24) we produce what is known as
the Newton step, ∆θk+1. Using this as the direction in an improving search
is known as Newton’s method.
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2.4 The Nested Fixed Point algorithm - NFXP

Now we enter the realm of the quasi-Newton methods. Assume that the
Hessian H(·) is non-singular. We may then premultiply (2.24) by the inverse
Hessian to obtain

∆θk+1 = −H−1(θk)∇L(θk). (2.25)

Now, consider some deflection matrix Dk that produces modified search
directions

∆θk+1 = −Dk∇L(θk). (2.26)

For the Newton method, obviously, Dk = H−1(θk). Also, notice that
setting Dk = ±I (the identity matrix) produces the simple gradient search
direction.

Quasi-Newton methods work with a deflection matrix that approximates the
inverse Hessian, H−1(θk), of Newton’s method. Unlike the full Newton’s
method, however, Dk is built up from prior search results using only first
derivatives.

BHHH

Since the likelihood function L(θ) = L(θ, EVθ), maximization using the
Newton method would have required calculation of the Hessian of the ex-
pected value function H(EVθ), which is computationally difficult. The
BHHH method (Berndt et al., 1974) employs a different strategy, and re-
quires only the first derivatives of the log-likelihood function.

The method is based on the information equality identity, which states that
the expectation of the tensor product12 of the log-likelihood function’s gra-
dient equals the negative of the expectation of the log-likelihood function’s
Hessian, when both are evaluated at the “true” parameter vector θ∗, that
is,

E [∇Ll(θ∗, EVθ∗) ⊗ ∇Ll(θ∗, EVθ∗)] = −E [H(Ll(θ∗, EVθ∗))] ,
12The tensor product of vectors is also known as an outer product, and produces a

matrix such that if u = (u1, u2, . . . , um)T and v = (v1, v2, . . . , vn)T the outer product is

u ⊗ v =


u1v1 u1v2 . . . u1vn

u2v1 u2v2 . . . u2vn

...
...

. . .
...

umv1 umv2 . . . umvn
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where Ll denotes the log-likelihood.

The BHHH algorithm uses the standard iteration:

θk+1 = θk + λk+1∆θk+1,

which we’ve seen yields the Newton method iteration when using equation
(2.25) and λk+1 = 1, and quasi-Newton methods when using (2.26). Now,
let

Ak = ∇Ll(θk, EVθ) ⊗ ∇Ll(θk, EVθ)

i.e. Ak is the tensor product of the gradient of the log-likelihood function.
Then with the deflection matrix Dk = −A−1

t , we arrive at the BHHH
iteration

θk+1 = θk − λk+1Dk∇L(θk).

Notice now that the search direction is ∆θk+1 = A−1
k ∇L(θk).

Some further comments are in order. Firstly, since BHHH only requires first
derivatives of the log-likelihood function, one only needs to calculate first
derivatives of the expected value function. These derivatives can be cal-
culated analytically using the Fréchet derivative we obtain during Newton-
Kantorovich:

∇EVθ =
[
I − T ′

θ

]−1 ∇Tθ(EVθ) (2.27)

We calculate these derivatives during the final Newton-Kantorovich itera-
tion of the inner fixed point polyalgorithm.

BFGS

BFGS13 is a quasi-Newton search that has proven to be quite efficient. In
particular, its rate of convergence is well-known to be higher than that of
BHHH, in that it generally provides more accurate estimates of the Hessian
of the likelihood function. However, BFGS may fail to converge when the
initial estimate of θ̂ is far away from the “true” parameter vector θ∗. Thus,
we suggest starting the maximization with BHHH, and then switching to

13Named after its four major contributors; C. Broyden, R. Fletcher, D. Goldfarb, and
D. Shanno.
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2.4 The Nested Fixed Point algorithm - NFXP

BFGS when the former algorithm starts to exhibit linear rates of conver-
gence, indicating that the maximization process has entered a domain of
attraction.

The BFGS updating formula is given by

Dk+1 = Dk +
(
1 + gDkg

d · g

)
ddT

d · g − Dkgd
T + dgTDk

d · g

where d = θk+1 − θk and g = ∇L(θk+1) − ∇L(θk). The initial iteration
uses D0 = −I, which results in a first search direction

∆θ1 = −D0∇L(θ0) = I∇L(θ0) = ∇L(θ0),

This is simply the gradient search direction. Obviously, θ0 is the parameter
estimate produced in the last iteration of BHHH.

Line search

All that remains now is to specify a line search algorithm to give us succes-
sive estimates of the step-size parameter λ. Specifically, we are looking for
step-sizes λ∗ that maximizes the univariate function f(λ) = Lf (θ + λ∆θ).
One way of doing this is to find λ∗ iteratively by solving the equation
∂f(λ)/∂λ = 0 using Newton’s method, which yields iterations on the form

λk+1 = λk − ∂f(λk)/∂λ
∂2f(λk)/∂λ2 .

Unfortunately, using Newton’s method directly would require the second
derivative of f(λ), which in turn would require the second derivative of
EVθ, thereby defeating the purpose of employing BHHH. We suggest the
use of secant iteration instead. Secant iterations is simply Newton’s method
with a finite difference approximation of ∂2f(λk)/∂λ2. This approximation
is

∂2f(λk)/∂λ2 ≈ ∂f(λk)/∂λ− ∂f(λk−1)/∂λ
λk − λk−1

.

Thus, the line search iteration becomes

λk+1 = λk − (λk − λk−1)∂f(λk)/∂λ
∂f(λk)/∂λ− ∂f(λk−1)/∂λ

.
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2 Structural Estimation of Markov Decision Processes

Finally, to terminate the line search, one must employ some stopping crite-
ria. We have experienced good results by simply continuing the line search
while the percentage increase in the likelihood function exceeds some user-
specified tolerance, subject to constraints on minimum and/or maximum
number of iterations.
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Chapter 3

NFXP applied to
Hydropower

The previous chapter dealt with the NFXP algorithm in a very general
manner. However, what should be gleaned for an initial first reading is that
NFXP requires that one solves an infinite-horizon dynamic programming
problem by finding a fixed point to a contraction mapping of the value
function, and that doing so requires problem stationarity.

Hydropower production scheduling has traditionally not been treated as a
stationary problem. Indeed, most scheduling tools take on a finite-horizon
view and solve the scheduling problem either using deterministic or stochas-
tic dynamic programming (for a good summary of such methods, see Nan-
dalal and Bogárdi (2007)). Given that the price and inflow expectations of
a hydropower producer are likely to be highly non-stationary, this seems to
be a very sensible approach. At the same time, it represents a potential
difficulty to applying structural estimation methods such as NFXP. Fortu-
nately, we have been able to develop an approach that allows us to view
the scheduling problem as stationary, while still allowing the expectations
of the hydropower producer to change with time.

Before proceeding, we would like to clarify that the choice of solution method
for the inner loop is a result of two things: 1) we need a model for which
we can derive partial derivatives with respect to the model parameters, and
2) additionally, the model must be able to handle the error term associated
with the application of NFXP. These two features are not something that
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regular hydropower production planning models usually take into consider-
ation, and suggests therefore the use of the contraction mapping formula
proposed by Rust (1994). Further, we recommend that readers unfamil-
iar with basics of hydropower production and scheduling read the cursory
introduction given in appendix A.

3.1 Achieving stationarity

Hydropower production scheduling can be considered as a problem of stochas-
tic control. Our problem, on the other hand, is a problem of inverse stochas-
tic control. With respect to stationarity, this difference creates an advantage
in our favor: the existence of an error term ϵt. Recalling the discussion in
section 2.3, Rust (1988) argued that the error terms may be viewed as un-
observed state variables. Now, expanding upon that idea, we assume that
decisions made by the hydropower producer that deviate from the solution
of the underlying stochastic control problem, may under stationarity as-
sumptions be explained by ϵ. What then remains is a way to naturalize the
idea of stationarity to the problem of hydropower production.

Consider the plots of weekly inflow over nine years reported by two hy-
dropower producers in Norway in figures E.1 and E.3 in appendix E. Clearly,
for the former, seasonality plays an important role. For the latter, however,
seasonality is much less pronounced. What is also quite clear, is that time
of year seems to be an important factor in explaining inflow. Indeed, run-
ning time-series regression with time-varying volatility, we find that week
number is a good variable in explaining the first, whereas the latter is ap-
proximately a white noise process. For the data available to us, we generally
observe that, given week number, we may subtract the mean of the inflow
and fit normal or log-normal distributions to the remainder. As we will
show in the following subsection, these observations suggest approaching
stationarity in a different manner.

26



3.1 Achieving stationarity

3.1.1 The cyclical MDP

Recall the Bellman equation for infinite-horizon stochastic dynamic pro-
gramming problems:

V (s) = max
d∈D(s)

{
u(s, d) + β

∫
V
(
s′) p(ds′|s, d)

}
δ(s) = arg max

d∈D(s)

{
u(s, d) + β

∫
V
(
s′) p(ds′|s, d)

}
.

As discussed in section 2.1.1, these equations arise when one is willing to
assume stationarity. Specifically, one assumes that the future looks exactly
the same in state st at time t and st+k at time t+k provided that st = st+k.

Consider now the case of an MDP where this stationarity condition does
not hold, that is, one may not assume that, for all t, the future looks the
same as long as st = st+k for any k. This is clearly the case for hydropower
production scheduling. However, we have found that, conditional upon
week of the year, we are able to sufficiently describe the amount of inflow
to reservoirs using simple probability measures. It then seems natural to
consider a somewhat weaker form of stationarity. For instance, say we
assume that for all t, the future looks the same as long as st = st+k for
some k, specifically, for all k = ϕi, i = 0, 1, 2, . . . where we call ϕ the
modulus. Then, by letting time (week) be a state variable, we can reduce a
non-stationary problem to an approximately stationary one - one in which
large deviations from the stationary expectations is explained by an extreme
value distribution.

To illustrate, consider the case where time is discretized into weeks and
st = st+52×i. Then, ϕ = 52 and the MDP is stationary given the week of
the year. We will do exactly this in our problem formulation, and we find
it convenient to define a particular set of states here. Let

ζ = {s, w} ,

where w denotes the current week of the year and s is a vector of all other
states.

With this new state formulation, we now proceed to develop a model for
the NFXP algorithm. Since it seems to be the most interesting and natural
one, we have chosen to illustrate the algorithm using a utility function for
the profit-maximizing agent.
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3 NFXP applied to Hydropower

3.2 Model

Consider the following (simplified) utility function:

u(x, y, w, d,θ) = q(x)
∑

d∈D(x)

(y − θ1)

We will expand upon this function later, but for now, we keep things simple.
This function represents the total profit earned in a single week w. Assume
now, that we are at the beginning of that week, our current reservoir level
is x, and the expected average market price is y. At reservoir level x, the
turbine power is q(x) and the decision space is given by D(x). d represents
the number of hours we decide to produce the following week. θ1 is a
cost parameter we want to estimate, and which represents a combination of
actual costs (in general quite small for hydropower producers), and loss in
option value due to production.

To summarize; price less cost is summed over d hours and multiplied with
plant power, q, which result in net profit for week w.

We now proceed to refine and formalize what was just introduced. Following
this we are going to derive all the formulas1 required to run the NFXP
algorithm on the given utility function.

3.2.1 States

Let ζ = {x, y, w} be the total set of states, where x denotes reservoir level,
y denotes average price, and w denotes week. Further, let ζ(d) denote the
state at the beginning of week w + 1 after decision d has been made in
week w. Implicitly, this means that w is increased by one2 and x is reduced
by an amount corresponding to decision d. Finally, let ζi denote a certain
realization of {x, y, w} to distinguish it from some other realization ζj .

Sets, variables & indexes
X set of all discretized reservoir levels
Y set of all discretized price levels
W set of all weeks {1, . . . , 52}

1Except for a few which are quite elaborate and therefore regarded as appendix mate-
rial.

2Moving to the next week is modulus 52, i.e. the week after week 52 is week 1.
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Z set of all states (Z = X ∪ Y ∪W )
X̄ maximum reservoir level
xt reservoir level at time t
yt average price at time t
wt week number at time t
ζt state at beginning at time t
ζi state realization i
ζ(d) state at beginning of week w + 1 after making decision d

The choice of time interval has already been discussed, but as we saw in
Chapter 2, we also need to discretize reservoir level and price. Due to
the curse of dimensionality, choosing a too fine resolution (i.e. too many
states) will make the problem computationally difficult, whereas choosing a
too coarse resolution may result in loss of vital information or inability to
capture essential parts of the decision process. Specifically, the discretiza-
tion of the reservoir has to be fine enough to allow at least the most common
production decisions to result in a drop to a lower discretized state.3 With
price we have more freedom to choose level of discretization, as there are no
limitations other than less realistic price scenarios.

3.2.2 Inflow

In addition to being changed by the amount of production, reservoir levels
are affected by precipitation and inflow. The spring flood, for instance,
can in some cases fill an entire reservoir in a matter of days. Thus, it is
natural to expect that the decisions made by hydropower producers are
very much affected by their expectations of amount and timing of inflow.
These expectations are captured by transition matrices that we will discuss
later in this chapter. For now, we introduce some notation.

Variables
dx′

w change in reservoir level due to inflow in week w (continuous)
∆x′

w change in reservoir level due to inflow in week w (discrete)

3We may still end up at the same level due to inflow, but that’s a matter we will
discuss later.
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3 NFXP applied to Hydropower

3.2.3 Decisions

One possible way to characterize decisions is by the number of hours pro-
duced per week. Each week has 24 × 7 = 168 hours, and so a possible
decision variable could simply be d = {0, . . . , 168}. This, though, is not
necessarily realistic nor practical. We can find little or no evidence that hy-
dropower producers make their production decisions at that level of detail.
Furthermore, having that many decisions to compare would be a compu-
tational nightmare. A more logical approach is to group hours together in
blocks, and then letting the decision be whether or not to produce certain
blocks. From here on out, we call these blocks production blocks.

We define a production block as a set of hours with constant price, for which
the producer can choose to produce or not. If he chooses to produce he must
produce the whole block, or desist from it completely. We assume that the
producer will start with the block he expects to be most profitable, i.e. the
one with the highest combined block price, and works his way down. If there
are D blocks in total in a week, the producer may decide to produce the d
most profitable blocks, where d ∈ (0, 1, . . . , D). Notice that the producer
may choose to produce no blocks, i.e. d = 0.

The block sizes are created dynamically as the algorithm proceeds, according
to the following:

• The total number of production blocks is D. For each week, the
producer has |D + 1| decisions to choose from (unless the reservoir
level is low, in which case the producer can only select a subset of the
production blocks).

• All spot prices for a given week are sorted from high to low, and the
total price span is divided into D equally sized intervals.

• Each hour is linked to its corresponding price interval and the number
of hours in each interval determines the size of the production block.

The use of production blocks reduces the decision space, while capturing the
fact that electricity prices can vary significantly through a single day. When
running the algorithm, we typically get several small (narrow) blocks first,
representing the few hours with abnormally high prices, while the remaining
blocks are wider, representing less demand-intensive periods of the week.
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d
1

d
D(x,w)dbd

2
... ...

Figure 3.1: Illustration of production blocks

Due to the fact that the block structure varies from week to week and that
the number of decisions are limited by the reservoir level, we introduce
D(x,w) as a measure of the decision space associated with a reservoir level
x in week w. The reasoning behind D(x,w)’s dependency on x should be
obvious - if the reservoir level is very low, you simply can’t produce as much
as you may want to. w, on the other hand, is directly related to the dynamic
nature of block sizes. As the price distribution within a week varies with
the seasons, this must also be true for the production blocks, which explains
why D(x,w) is a function of week.

We use b as an index for a specific production block. The coefficient cbw,
which we call block price coefficients, represent what we must multiply the
average week price y with in order to get the correct price for block b. Lastly,
hbw is the length in hours of the corresponding block.

Sets, variables & indexes
D total number of production blocks
D(x,w) number of production blocks that are possible to produce in

week w given reservoir level x
d number of blocks to produce (decision)
b block number
cbw block price coefficient for block b in week w
hbw length of block b in week w

In summary; the producer can choose d production blocks on the interval
[0, D(x,w)] in week w. The blocks are of length hbw and yield a price of
cbwy, respectively.
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3.2.4 Utility function

We are now ready to define a complete utility function for the profit-maximizing
hydropower producer:

u(ζ, d,θ) = q(x, d, w)
d∑

b=1
(cbwy − θ1)hbw (3.1)

Recall, ζ = {x, y, w}. Comparing this to the preliminary utility-function
described at the beginning of this chapter, one can see that there are several
differences. Instead of simply a price y, we now use cbwy, which is the
relevant block price coefficient multiplied with an average week price, thus
giving the correct price in block b given week price y. The cost parameter θ1
is then subtracted from this price and the net is multiplied with the block
length hbw, resulting in a value in €/MW . Multiplying this with plant
power q gives us the total profit in week w in €.

Power function

In equation (3.1) one can see that the power function q is not only dependent
on x, but also on decision d and week w. To see why this is so, recall that
power q is dependent on turbine head4. Since we are making decisions on
a weekly basis, we suggest using the average head throughout the week as
input to the power function q(x̄). To make matters easier, we use the level
x instead of head h as input to q. This is completely safe, as there is a
perfect deterministic relationship between head and reservoir level, given
by the geometry of the reservoir. Average reservoir level in one week is
approximated by

x̄ = x+ dx′
w − ρ(x, d, w)

2
(3.2)

where dx′
w is the expected inflow given by the state transition probability

p(xt|xt−1,θ). The other new variable, ρ(x, d, w), is the total production of
week w given reservoir level x and decision d. The dependency on w is due
to the nature of the decision discretization, where d blocks in one week isn’t
necessarily the same number of hours as d blocks in another week.

4Turbine head is the vertical distance from the turbine up to the surface of the reservoir,
and is an absolute measure of turbine pressure. Higher pressure equals higher efficiency
per m3 of water.
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There is a recursive relationship between q and ρ, in the sense that q is a
function of x̄, which in turn is dependent on ρ, given by

ρ = q(x, d, w)
d∑

b=1
hbw. (3.3)

By combining equations (3.2) and (3.3) we get

x̄ = x+
dx′

w − q(x, d, w)
∑d

b=1 hbw

2
, (3.4)

thus q depends on x, d and w, as well as itself. Substituting (3.4) into a func-
tion q(x̄) and solving for q, we can find the appropriate power value. If one
assumes a simple power function, it is trivial to find an explicit solution to
this problem.5 The power function varies from power plant to power plant,
but as long as we know at least the approximate geometry of the reservoir,
we can estimate a good model using regression analysis. Throughout the
remainder of this paper, we will use the notation q

(
x+ dx

2 , d, w
)

to sym-
bolize the power of the power plant given an initial reservoir level x, inflow
dx and a production level given by equation (3.3).

3.2.5 Expected value function

In section 2.4 we introduced the contraction mapping version of the expected
value function

EVθ(ζ, d) = Tθ(EVθ)(ζ, d) =
∫

log

 ∑
d′∈D(ζ′)

ψ(ζ′, d′,θ)

p(dζ′|ζ, d,θ)

(3.5)

where

ψ(ζ′, d′,θ) = exp
{
u(ζ′, d′,θ) + βEVθ(ζ′, d′)

}
(3.6)

We will now work our way to a complete formulation of the expected value
function for the proposed utility function. In this case, the state vector ζ′

is defined as

ζ′ def=
{

min[X̄, x+ dx′], y + dy′, w
}
.

5A linear or quadratic power function is a good approximation in most cases. Appendix
C.4 demonstrates the transition from a quadratic power function q(x̄) to an explicit ex-
pression for q(x, d, w).
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3 NFXP applied to Hydropower

This state vector expresses the changes in states that may arise while in
week w. The reasoning behind the min-expression is simple; if the inflow,
dx′, is sufficiently large, there may be spillover, and the new reservoir level
will be X̄. If not, the new level will be the current level x plus inflow dx′.
Average week price will increase by dy′ (which may be negative).

The transition probability p(dζ′|ζ, d,θ) in equation (3.5) reflects the prob-
ability of a state change from {x, y} to {x′, y′}, that is, the probability of
inflow dx′ and a price change dy′ during week w. Both are independent of
decision d, as we have assumed that the producers are price-takers, thus

p(dζ′|ζ, d,θ) = p(dζ′|ζ,θ) =⇒ EVθ(ζ, d) = EVθ(ζ). (3.7)

Since the transition probabilities are independent of the decision d, this will
also be true for the expected value function (3.5). In addition, the transition
probability is a joint probability consisting of two independent elements:
inflow probability p(dx′|ζ,θ) and price change probability p(dy′|ζ,θ). The
first is independent of all states except w, and the second is independent of
x. This gives us the relationship

p(dζ′|ζ,θ) = p(dx′|w,θ)p(dy′|y, w,θ). (3.8)

The fact that the expected value function is independent of the decision d
may seem strange. One might argue that a decision d reduces the reser-
voir level and thus affects future value. This is naturally correct, but it is
captured in a different way. Recall the notation ζ(d), introduced in section
3.2.1, which expresses the effect decision d will have on the state of week
w + 1:

ζ(d) def=
{

min
[
X̄, x+ dx′ − ρ(x, d, w)

]
, y + dy′, w + 1

}
.

The new reservoir level will be the lesser of X̄ and {x + dx′ − ρ(x, d, w)},
where ρ(x, d, w) is the total production throughout the week. As before,
average week price will increase by dy′ (which still may be negative) and w
is incremented by one to reflect the move to the next week.

We are now ready to substitute the utility function into equations (3.5) and
(3.6). This yields

EVθ(ζ) =
∫∫

log

D(x+dx′,w)∑
d=0

ψ(ζ′, d,θ)

p(dx′|w,θ)p(dy′|y, w,θ) (3.9)
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with

ψ(ζ′, d,θ) = exp

{
q(x+ dx′

2
, d, w)

d∑
b=1

[cbw(y + dy′) − θ1]hbw + βEVθ(ζ′(d))

}
.

(3.10)

Converted to a discretized state space we get

EVθ(ζ) = P × log

D(x,w)∑
d=0

exp

{
q(x, d, w)

d∑
b=1

[cbwy − θ1]hbw + βEVθ(ζ(d))

},
(3.11)

where the elements of the Markov transition matrix P are the joint transi-
tion probabilities p(dx′|w,θ)p(dy′|y, w,θ). EVθ(ζ) becomes vector in R|Z|,
where |Z| is defined as |Z|= |X|×|Y |×|W |.

Before we discuss the implementation of the NFXP algorithm, there is one
more element in equation (3.11) that requires our attention.

3.2.6 The Markov transition matrix

One possible way to determine P is to include the transition probabilities,
i.e. the elements of P, in the parameter vector θ and estimate them as part
of the maximum likelihood routine6. Doing this would allow us to calculate
the actual expectations of the hydropower producers, both with respect to
price and inflow. This approach is quite common in the literature, and while
it may seem like an excellent idea, there are a few issues associated with it.
The applications of NFXP that can be found in the literature are typically
to “easier” problems - problems where the stochastic nature of transitions is
significantly simpler. Typically, the number of parameters estimated range
from about three to ten. In our case, however, that number is much larger.

First of all, we have two random state variables (reservoir level and price)
whereas Rust (1987), in his bus engine replacement problem, had only one.
This instantly doubles the number of transition probability parameters.
More important however, is the discretization of time into weeks. As price
and inflow clearly fluctuates throughout the year, we need one separate tran-
sition matrix for each week, increasing the number of parameters by a factor
of 52. To make matters even worse; in order to describe the process in a

6 See e.g. Rust (1987).
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satisfying way, we would require a higher number of transition probabilities
per variable per week than Rust (1987) had for his single variable. All this
combined leads to a parameter vector θ with a dimension somewhere be-
tween 600 and 2000, depending on the resolution of the state space. Solving
this problem for a large state space would clearly be intractable. Thus, we
choose to estimate these probabilities in advance based on historical data.

One might argue that making our own assumptions about the distribution
of prices and inflow, and then (essentially) imposing these assumptions upon
the hydropower producer, will give us biased estimates for the parameters in
the utility function. We freely admit that this might be the case, but keep
in mind that our goal is to evaluate structural estimation as an approach to
the hydropower decision problem, not precisely estimate the utility function
parameters. Thus, we consider our transition matrices to be sufficient for
the purpose of this thesis. For details on calculation of these matrices, see
appendix E.

36



Chapter 4

Implementation

We have used MATLAB to implement NFXP. MATLAB has highly efficient
routines for matrix and vector manipulation, making it an ideal program-
ming language for our purposes. This chapter discusses the actual imple-
mentation and the adaptations that are necessary to translate the mathe-
matics of chapter 3 into code. We also provide an algorithm that leverages
the structure of the Fréchet derivative, thereby letting us quickly solve large
equation systems that are needed during Newton-Kantorovich iterations.
In particular, we show that the asymptotic running time of this algorithm
is O(XY 2Tκ)1, a significant improvement over, say, naïve Gauss-Jordan
or Gauss-Seidel, which have asymptotic running times of O(X3Y 3T 3) and
O(X2Y 2T 2κ) respectively. Finally, we give a simulation-based analysis of
the correctness of the algorithm.

4.1 The inner loop

Contraction iterations

The inner loop’s main objective is to find the fixed point of the contraction
mapping

Tθ(EVθ)(ζ, d) = P × log

 ∑
d′∈D(s)

ψ(ζ, d′,θ)

,
1κ is a function that has an inverse relationship to the rate of convergence
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and compute its partial derivatives w.r.t. the elements of θ. These deriva-
tives are needed to calculate the partial derivatives of the log-likelihood
function, which are used in the maximization process of the outer loop.

The key to finding the fixed point is to compute the discretized expected
value vector EVθ(ζ) by first solving

EVk+1(ζ) = Tθ(EVk)(ζ)

= P × log

D(x,w)∑
d=0

exp

{
q(x, d, w)

d∑
b=1

[cbwy − θ1]hbw + βEVk(ζ(d))

}
iteratively until we get sufficiently close to the fixed point of Tθ, and then
switching to Newton-Kantorovich iterations. For each iteration of EVk+1 =
Tθ(EVk) we must evaluate the value function

q(x, d, w)
d∑

b=1
[cbwy − θ1]hbw + βEVk(ζ(d)) (4.1)

for all states in Z, which is a computationally expensive. To avoid two for-
loops, we contain these expressions within vectors, and utilize MATLAB’s
considerable efficiency at vector addition and multiplication. Testing shows

Inner Fixed Point Polyalgorithm Outer Maximum Likelihood Algorithm

Contraction

iterations

Compute

Fréchet derivative

Until EV
k
 is su"ciently

close to EV
θ

Until EV
k
 is su"ciently

close to some user

de$ned tolerance

Calculate

partial derivatives

Update

Compute new

Search Direction

Perform line search

Calculate the Log-likelihood function

and its partial derivatives

DataNewton-Kantorovich

iterations

Initial

guess

YesNo

YesNo

Figure 4.1: The main components of our implementation of NFXP.
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that this reduces time spent on each contraction iteration significantly - the
larger the state space, the larger the relative improvement

Newton-Kantorovich iterations

The Fréchet derivative T ′
θ is required to perform the Newton-Kantorovich

iterations:

EVk+1 = EVk −
[
I − T ′

θ

]−1 [I − Tθ](EVk).

For a |Z|-dimensional vector EVk, the Fréchet derivative becomes a |Z|×|Z|
matrix where element (i, j) is given by2

∂Tθ(EVθ)
(
ζi
)

∂EVθ(ζj)
= P × β

∑
d∈F

ψ(ζi, d,θ)

D(x,w)∑
d′=0

ψ(ζi,d′,θ)

,

where F is the set of all decisions d such that ζi(d) = ζj . Translating
this expression into computer code and constructing the matrix [I − T ′

θ] is
straighforward. The difficulties of Newton-Kantorovich first arise when one
tries to invert [I − T ′

θ], which, depending on the size of the state space, can
be quite costly3. To deal with this, we exploit the structure of [I − T ′

θ] and
develop an iterative method for solving large systems of linear equations.
First, though, we explore the structure of EVθ(ζ), since this affects the
structure of [I − T ′

θ].

EVθ(ζ) is a vector representing the expected value for all different states. We
now introduce the notation EVθ(y, x, w), which is the expected present value
of observing price y and reservoir level x in week w. Further, we describe y
and x using indexes y = {1, 2, ..., Y } and x = {1, 2, ..., X} instead of actual
prices and reservoir levels. This is just to simplify the exposition of EVθ.

2We derive this in appendix C.5.
3When we use (relatively) realistic discretizations, [I −T ′

θ] is approximately a 30′000×
30′000 matrix.
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EVθ(ζ) then looks like this:

EVθ(1, 1, 1)
EVθ(2, 1, 1)

...
EVθ(Y, 1, 1)

price block

EVθ(1, 2, 1)
...

EVθ(Y, 2, 1)
...

EVθ(Y,X, 1)



level block

EVθ(1, 1, 2)
...

EVθ(Y,X, 2)
...

EVθ(Y,X, T )



EVθ(ζ) (4.2)

The full set of price states is nested within each reservoir level. The full set
of reservoir levels is in turn nested within each week, thus, for all weeks, cre-
ating a vector that covers all possible states. The result is a block structure,
with price blocks and larger level blocks within the full vector EVθ(ζ).

4.1.1 Sparse matrix solver

The Newton-Kantorovich iteration

EVk+1 = EVk −
[
I − T ′

θ

]−1 [I − Tθ](EVk)

requires inversion of [I − T ′
θ]. Now, imagine we instead try to solve the

equivalent problem [
I − T ′

θ

]
u = b (4.3)

for u, where u = EVk+1 − EVk and b = [I − Tθ](EVk). We would never
actually invert [I − T ′

θ], but rather use some of MATLAB’s excellent built
in solvers to solve the system of equations. However, due to the size of

40



4.1 The inner loop

[I − T ′
θ], we find that even these procedures spend an unreasonable amount

of time to find the solution.

Consider now the matrix [I − T ′
θ]. I is the identity matrix, and T ′

θ is the
Fréchet derivative of Tθ(EVθ) with respect to EVθ. With EVθ as described
above, [I − T ′

θ] looks like this:

I

 −T 1
θ

 0 . . . 0

0 I

 −T 2
θ

 . . . ...

... 0 . . . . . . 0

0
... . . . I

 −T 51
θ


 −T 52

θ

 0 . . . 0 I


where the submatrix  −Tw

θ


is the Fréchet derivative for all realizations of x and y while holding w
constant. To fully understand this structure, recall that each element {i, j}
of T ′

θ represents

∂Tθ(EVθ)
(
ζi
)

∂EVθ(ζj)
,

which is zero for (at least) all {i, j} that do not satisfy wi + 1 = wj . This
contributes to a shift of the submatrices of one level block to the right.
A more thorough explanation of this property can be found within the
derivation of the Fréchet derivative in appendix C.5.

As can be seen above, [I − T ′
θ] has a highly sparse structure which we can

exploit in order to speed up computation. We define uw and bw as the
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elements of u and b which corresponds to week w. Using this structure, we
obtain

uk+1
1 = T 1

θ u
k
2 + b1,

uk+1
2 = T 2

θ u
k
3 + b2,

...

uk+1
52 = T 52

θ uk
1 + b52.

These equations are solved iteratively while measuring the change in u
from one iteration to the next. The procedure continues until the change
is smaller than some user defined tolerance, and an approximation to the
solution of equation (4.3) is found.

Additionally, the submatrix Tw
θ has a rather distinct structure itself. It is a

sparse, banded diagonal matrix with all zeros in the upper triangle. Thus,
rather than using matrix multiplication when computing Tw

θ uk
w+1, we make

use of this property and solve the equations using two nested for-loops that
run through the full set Y (which is small), but only a minor subset of
X. The matrix multiplication of Tw

θ uk
w+1 can therefore be performed in

XY 2 time. Addition with bw is an XY time operation, which is dominated
(asymptotically) by the former operation. Since each recursion is performed
T times, the asymptotic running time becomes O(XY 2T ) for each iteration.
This is a significant improvement upon using Gauss-Seidel directly, which
is O(X2Y 2T 2) per iteration.

We prove the convergence of this algorithm in appendix C.7.

4.1.2 Partial derivatives

The partial derivatives of EVθ with respect to the elements of θ are given
by

∇EVθ =
[
I − T ′

θ

]−1 ∇Tθ(EVθ). (4.4)

This set of equations is solved by the use of the sparse matrix solution
algorithm presented in the previous section, and the reason to why this is
done within the inner loop should now be obvious. Solving equation (4.4)
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requires the Fréchet derivative, and it is therefore natural to do this in the
last Newton-Kantorovich iteration of the inner loop.

The gradient ∇ is in our case

∇ =
[
∂/∂β
∂/∂θ1

]
,

which leaves us with the task of calculating ∇Tθ(EVθ). These are given by4

∂Tθ(EVθ) (ζ)
∂β

= P ×
∑D(x,w)

d=0 ψ(ζ, d,θ)EVθ(ζ(d))∑D(x,w)
d=0 ψ(ζ, d,θ)

∂Tθ(EVθ) (ζ)
∂θ1

= −P ×
∑D(x,w)

d=0 ψ(ζ, d,θ)q(x, d, w)
∑d

b=0 hbw∑D(x,w)
d=0 ψ(ζ, d,θ)

(4.5)

4.2 The outer loop

Recall the full and partial likelihood functions (2.21) and (2.22), which we
restate here for convenience:

Lf (ζ1, . . . , ζT , d1, . . . , dT ) =
T∏

t=2
P (dt|ζt,θ)p(ζt, |ζt−1), (4.6)

Lp(ζ1, . . . , ζT , d1, . . . , dT ) =
T∏

t=1
P (dt|ζt,θ).

Dropping function arguments for simplicity, consider now the following log-
likelihood functions, given by

Lf
l = log Lf =

T∑
t=2

logP (dt|ζt,θ) + log p(ζt, |ζt−1), (4.7)

Lp
l = log Lp =

T∑
t=1

logP (dt|ζt,θ). (4.8)

4The derivations are quite easy and may be done in pretty much the same fashion as
the Fréchet derivative.
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Maximization of the log-likelihood function (4.7) and maximization of the
likelihood function (4.6) itself yields the same optimal solution θ̂, that is,

argmax
θ∈R2

Lf = argmax
θ∈R2

Lf
l .

The Markov transition probabilities p(ζt, |ζt−1) are independent of θ, and
are therefore superfluous in the estimation procedure:

argmax
θ∈R2

Lf = argmax
θ∈R2

Lf
l = argmax

θ∈R2
Lp

l .

Thus, we need only maximize the partial log-likelihood function (4.8) to
arrive at the optimal θ̂. This objective function is

Lp
l =

T∑
t=1

log


ψ(ζt, dt,θ)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)


Maxmization using the BHHH algorithm requires the gradient of the objec-
tive function (see section 2.4.4). These are5

∂Lp
l

∂β
=

T∑
t=1

ϕβ(dt) −

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)ϕβ(d′)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)



∂Lp
l

∂θ1
=

T∑
t=1

ϕθ1(dt) −

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)ϕθ1(d′)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)


where

ϕβ(d) = β
∂EVθ (ζt(d))

∂β
+ EVθ (ζt(d))

ϕθ1(d) = β
∂EVθ (ζt(d))

∂θ1
− q(xt, d, wt)

d∑
b=0

hbwt

5Derived in appendix C.6.
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4.2 The outer loop

This gives us the gradient

∇Lp
l =


∂Lp

l

∂β
∂Lp

l

∂θ1


and the deflection matrix

D = −
[
∇Lp

l ⊗ ∇Lp
l

]−1 = −


∂Lp

l

∂β
×
∂Lp

l

∂β

∂Lp
l

∂β
×
∂Lp

l

∂θ1

∂Lp
l

∂θ1
×
∂Lp

l

∂β

∂Lp
l

∂θ1
×
∂Lp

l

∂θ1


−1

.

The BHHH iterations become

θk+1 = θk + λk+1∆θk+1 = θk − λk+1Dk∇Lp
l k

.

4.2.1 Line search

Recall from section 2.4.4 that we suggested the secant method as a suitable
line search. In the secant method, λk+1 is given by

λk+1 = λk − (λk − λk−1)df(λk)/dλ
df(λk)/dλ− df(λk−1)/dλ

.

Defining the univariate function

f(λ) = Lp
l (θ + λ∆θ) ,

it is clear that we require ∂f(λ)
∂λ in order to find this optimal λ. Now,

f(λ) = Lp
l (θ + λ∆θ) =

T∑
t=1

logP (dt|ζt,θ + λ∆θ)

=
T∑

t=1
log


ψ(ζt, dt,θ + λ∆θ)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ + λ∆θ)
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4 Implementation

where θ + λ∆θ =
[
β
θ1

]
+ λ

[
∆β
∆θ1

]
and ψ(ζt, d,θ + λ∆θ) is given by

ψ(ζt, d,θ + λ∆θ)

= exp

{
q(xt, d, wt)

d∑
b=0

(cbwtyt − (θ1 + λ∆θ1))hbwt + (β + λ∆β)EVθ (ζt(d))

}

= exp

{
q(xt, d, wt)

d∑
b=0

(cbwtyt − θ1 − λ∆θ1)hbwt + (β + λ∆β)EVθ (ζt(d))

}

The derivative of f(λ) becomes6

df(λ)
dλ

=
T∑

t=1

ϕλ(dt) −

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ + λ∆θ)ϕλ(d′)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ + λ∆θ)


where

ϕλ(d) = ∆βEVθ (ζt(d)) − ∆θ1q(xt, d, wt)
d∑

b=0
hbwt .

4.3 Simulation

We use simulation to analyze the model’s correctness. By applying NFXP
to a data set for which we know the true parameter values that generated
it, we are able to directly evaluate the quality of the results. This helps
to improve confidence in the model. We use the inner loop to generate an
optimal decision policy, thus creating a fictitious data set for a “known” θ,
which we in turn approximate using NFXP.

To generate the data set we use a β of 0.7 and a θ1 equal to 5. A low beta
is chosen to increase convergence of the inner loop7. With initial guesses
of β = 0.8 and θ1 = 0, the algorithm solved the problem in approximately

6The derivation of fd(λ)
dλ

is quite similar to those of the partial derivatives of the Log-
likelihood function.

7See section 5.3 for more on this.
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Figure 4.2: Expected value function versus reservoir level and price for
week 1.

43 hours. The estimated parameter values after this run was β̂ = 0.7021
and θ̂1 = 5.0037. The information matrix provided standard deviations of
0.0013 and 0.000126, respectively.

As a step in the NFXP algorithm we find the solution to the expected value
function in the infinite horizon Bellman equation

EVθ(ζ) =
∫
Vθ(ζ′)p(dζ′|ζ, d,θ).

Figure 4.2 and 4.3 show these values for all reservoir levels and prices in
week 1 and 20, respectively. We have chosen these two weeks because they
clearly demonstrate the effect of the anticipated spring flood. Examining
figure 4.2, we see that if price is high, there is a greater probability of high
prices in the immediate future, thus resulting in a higher expected value.
The reader may question why current price affects expected value to such a
high degree. The reason is directly related to the low β, which makes future
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Figure 4.3: Expected value function versus reservoir level and price for
week 20.

utility much less important, thus making a high price today relatively more
valuable than it would have been with a realistic β. Using a beta of 0.7 on
a weekly basis implies very heavy discounting. With a larger beta (close to
1), these plots become much less dependent on price.

Notice further that a full reservoir in week 1 is very valuable. In figure 4.3,
on the other hand, we see that the expected value is primarily dependent
on price. This is due to the fact that the spring flood, which is expected to
occur within just a matter of weeks, or even days, is likely to fill the entire
reservoir, making the current level of less importance. Figure 4.4 shows the
difference between the fixed point calculated based on the true parameters
and the ones estimated by NFXP.
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Figure 4.4: Difference between expected value for true θ and estimate θ̂
for week 1.
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Chapter 5

Conclusions

In the previous chapters we have extensively discussed an application of one
particular structural estimation method. In this chapter, we zoom out a bit,
and look at our methodology in a larger perspective.

There is considerable disagreement in the literature about the most efficient
algorithms to solve high-dimensional DP problems. The debate is roughly
divided between whether it is better to solve DP problems by discrete ap-
proximation or by parametric approximation. The former approach is the
one which has been applied in this thesis. Evaluating the effectiveness (or
lack thereof) of parametric methods is beyond the scope of this work. What
we can do, however, is suggest paths for future work. Now, we suspect that,
regardless of choice of method, several ad hoc methods would have to be
devised to speed up computation. Despite this, some approaches seem to
be more promising with respect to hydropower production than others. We
will now proceed to discuss these, and suggest how the experiences we have
gained in our work might be leveraged to yield more useful results in the
future.

5.1 The JS approach

Judd and Su (2006) argue that there are several difficulties associated with
NFXP as an estimation method:
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5.1 The JS approach

1. it is often computationally difficult to solve NFXP on large state
spaces

2. one repeatedly solves a DP problem for parameter values far from the
optimal solution

3. NFXP is costly to implement (formulation and programming)

4. the degree of algorithmic and mathematical complexity can be daunt-
ing (e.g. BHHH, functional analysis, Newton-Kantorovich etc.).

Using the assumptions of Rust, Judd and Su argue that NFXP in fact may
be viewed as a constrained optimization problem:

max
θ,EVθ

L(θ) =
T∏

t=2
P (dt|st,θ)p(st|st−1, dt−1,θ)

s.t. EVθ(s, d) = Tθ(EVθ(s, d))

which may be submitted to any state-of-the-art constrained optimization
program. EVθ(s, d) is still a vector describing expected present value for all
states s.

Our general impression is that this approach shows promise. In particular,
the absence of an “inner loop” seems to be an attractive feature, since this is
a particularly burdensome part of our MATLAB implementation. We have
done some initial programming using the MOSEL language for Xpress, and
believe that with some work, this will outperform our implementation. The
formulation as a regular constrained optimization problem has appealing
intuition, but is not without difficulty. In particular, there are several algo-
rithmic details that we are uncertain whether can be directly handled by the
optimizer. Now, Xpress (and other optimization packages) have the ability
to interface with other languages, such as MATLAB. This allows for conven-
tional programming techniques and ad hoc methods to be merged with the
optimization routines of the optimizer. We suspect that large portions of our
code (downloadable from http://folk.ntnu.no/host/structural/) may
be used directly with an optimizer capable of interfacing with it, though it
will likely be necessary to make several adaptations to it.

51

http://folk.ntnu.no/host/structural/


5 Conclusions

5.2 Parametric approximation methods

The intuitive appeal of parametric approximation methods is that a poten-
tially infinite-dimensional problem (e.g finding the solution V to the Bellman
equation) is reduced to a finite-dimensional problem with a relatively small
number K of unknown parameters. To illustrate, suppose we are interested
in approximating the value function V (s), where

V (s) = T (V (s)) ≡ max
d∈D

[
u(s, d) + β

∫
V (s′)p(ds′|s, d)

]
.

Suppose we assume that V can be approximated by a linear combination of
“basis functions” {ρ1(s), . . . , ρk(s)},

Vθ(s) =
K∑

k=1
θkρk(s).

If the basis that is chosen is “good”, i.e. a linear combination of these
basis functions indeed provides a good approximation, then optimization
methods can be used to minimize a residual function, Φ(Vθ) = Vθ − T (Vθ).
Benítez-Silva et al. (2000) argue that minimizing such a function poten-
tially could be much faster than a discrete approximation of V . However,
they also note that, as far as they know, there exists no formal proofs that
parametric approximation methods succeed in breaking the curse of dimen-
sionality. In fact, they argue that “. . . in the absence of some sort of “special
structure”, the number of basis functions required to perform a uniform ap-
proximation to a smooth function of d variables increases exponentially in
d.” Further, they examine the literature on applications using parametric
methods, and find that applications have generally yielded mixed results.
In some cases, the nonlinear optimization problem can be solved quickly
and reliably, but others have been plagued my problems of multiple optima
and have experienced considerable difficulty in getting the minimization of
Φ(Vθ) to converge, especially when the underlying function being approxi-
mated has kinks and discontinuities. The observations of Benítez-Silva et al.
(2000) lead us to consider parametric approximation methods to be the least
attractive candidate (of those we have considered) for future work.
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5.3 Computational performance

5.3 Computational performance

NFXP is quite demanding to implement, both with respect to algorithmic
complexity and sheer amount of code. We estimate that we, in total, spent
about 800 hours in the implementation phase. Our experience with NFXP
is that translating the mathematics into code is far more difficult than one
might expect. Sections of the algorithm that we at an initial glance had
thought to be trivial to implement, very often proved to be quite challenging.
Moreover, the obvious implementations were often much too slow, requiring
specialized numerical tweaks to perform at a satisfying speed. This is not
meant as critique of the algorithm, but rather a mere warning to those who
want to pursue NFXP as a solution-method to their problem. We would also
argue that implementation complexity is highly related to the complexity
of the problem.

However, it is not the difficulties associated with implementation that ul-
timately restricts NFXP’s applicability to the problem of hydropower pro-
duction scheduling. In the end, the running time of the algorithm is the
most restrictive issue. For most problems that we have seen in the liter-
ature, NFXP performs very well. In our case, however, the state space is
simply too large. The outer loop runs quite fast, especially as BFGS takes
over as the provider of the search direction, but the need to calculate a new
fixed point for every iteration step of the outer loop results in slow conver-
gence. Even with the speed-ups discussed in Chapter 4, the time it takes
to perform one contraction iteration, with a realistic discretization of the
state space, is about three seconds. If the change in θ induced by the line
search is large, the number of these iterations can be quite significant.

Table 5.1: Time to evaluate fixed point with a 2.4 GHz dual core processor

β 0.7 0.8 0.9 0.99
Seconds 212 301 514 5433

Discretization of state space: |X|= 50 and |Y |= 10
Discretization of decision space: |D|= 6

Another issue is that of the contraction parameter β. The rate at which the
contraction iterations close in on the fixed point is linearly proportional to
log(β−1). Thus, when β is close to 1 (say, β > 0.99), the convergence rate
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5 Conclusions

of the contraction iterations is very poor. Further, for β to be realistic in
a weekly perspective, it would have to be even larger than 0.99.1 Table 5.1
show running times for different values of β with a realistic resolution of the
state- and decision spaces.

5.3.1 Parallel computing

Clearly, the most arduous part of the algorithm is to achieve the fixed point
for every step of the outer loop. With this in mind, we implemented the
inner loop in a way that allows for the use of parallel computing. Both the
contraction iterations and the computation of the Fréchet derivative can
be separated into 52 subproblems for each level block (see equation (4.2)),
which in turn can be computed independently. Thus, the inner loop may
be sped up significantly by using parallel computing. The improvement
for the contraction iterations would be by approximately a factor of 52,
thereby letting the inner loop converge quicker to the point where Newton-
Kantorovich takes over. Since the calculation of the Fréchet derivative is
performed once for each iteration of NK, this would also be computed a lot
faster.

5.4 Uncovering preference

Despite the rapid growth in computing power and developments in the
literature on numerical dynamic programming, multi-dimensional infinite-
horizon continuous-state dynamic programming problems are still quite
challenging to solve. Since very few of these problems have analytic so-
lutions, discretization of the state space is required, and so the curse of
dimensionality becomes an issue. Recent developments suggest that, under
certain conditions, the curse of dimensionality may be broken (see Rust,
1997; Rust et al., 2002), but for most problems, ad hoc solutions must
be applied. Indeed, this is precisely what has been necessary in our case.
Luckily, it seems that there is an intrinsic structure in the inverse stochastic

1If we, for the sake of the argument, use a discount rate of, say, 20%, then

β = 1
1 + 0.2/52 ≈ 0.996

.
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5.4 Uncovering preference

control problem of hydropower production that may be exploited in several
ways.

Undeniably, the problem of optimal hydropower scheduling and planning
is a difficult one. That the inverse problem, that is, quantitatively assess-
ing the decisions of hydropower producers, is paralleled in its complexity
comes as no surprise. Still, we hope that the ideas and methodology we
have developed within, can be built upon to develop faster, more efficient
and more precise estimation techniques for uncovering hydropower producer
preference.
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Appendix A Hydropower production

Hydropower plants usually have one or more reservoirs where water is
stored. These reservoirs are subject to continuous, but highly variable in-
flows of water from their surroundings. In general, but especially in the
colder regions of the globe, the magnitude and timing of these inflows are
highly dependent on weather and seasons. The availability of water for
power production may thus vary greatly throughout the year. When hy-
dropower is a part of the base load supply of electricity, good production
planning becomes important not only in the financial sense, but also in the
economic sense (Nandalal and Bogárdi, 2007).

The production flexibility of the producer depends on the size of the reser-
voir, the amount of inflow to the reservoir, and the production capacity
(Kolsrud and Prokosch, 2010). If the size of the reservoir is small relative
to annual inflow, the producer will be less flexible, as it has to produce
more often to avoid spillover. Furthermore, flexibility of production is of-
ten limited by maximum water flow rates and permissible upper and lower
reservoir levels set by governing authorities. Reservoir inflow is dependent
on the amount and timing of precipitation, the amount of snow stored in
the reservoirs water system, and the timing of the spring flood. Typically,
reservoir levels are quite low just before the spring flood, as inflow is scarce
during winter and producers seem to produce in such a manner that their
reservoirs can accommodate as much of the spring flood inflow as possible.

The amount of electricity generated is determined by the energy coefficient
of the particular plant, which depends non-linearly on the head (the dif-
ference in height between reservoir level and turbine), and the flow-rate
through the turbine. The higher the energy coefficient, the more power per
volume of water is generated. Consider two reservoirs with same volume of
water but significantly different geometry, say one that is deep but narrow
and one that is shallow and wide. The former reservoir may then yield
large changes in efficiency as the reservoir level changes, whereas the latter
reservoir may yield approximately the same efficiency for all levels.

The decision process of power producers may be divided into two stages.
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Every day, power producers submit price-dependent bids to the spot mar-
ket on Nord Pool for hourly production the following day. These decisions
are thus made under limited information on the day-ahead market prices.
After the bidding process is finished, demand and supply bids are aggre-
gated to determine an equilibrium price for each hour the following day,
called the system price. The production decision itself, that is, the decision
of whether to produce power or not in a certain period, is deferred until in-
formation has been fully disclosed (Fleten and Kristoffersen, 2008). From a
normative perspective, the obvious issue for the rational profit-maximizing
hydropower producer is then to determine what constitutes an optimal pro-
duction strategy with respect to prevailing prices, current reservoir levels,
and price and inflow expectations.
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Appendix B Assumptions

Assumption BU For each d ∈ D(ζ), u(ζ, d) is an upper semicontinuous
function of x with bounded expectation

R(ζ) ≡
∞∑

t=1
βtRt(ζ) < ∞,

Rt+1(ζ) = max
d∈D(ζ)

∫
Rt(ζ′)π(dζ′|ζ, d),

R1(ζ) = max
d∈D(ζ)

∫∫
max

d′∈D(ζ′)
|u(ζ′, d′) + ϵd′ |q(dϵ|ζ′)π(dζ′|ζ, d).

Assumption WC π(dζ′|ζ, d) is a weakly continuous function of (ζ, d): for
each bounded continuous function h : Z → R,

∫
h(ζ′)π(dζ′|ζ, d) is a contin-

uous function of ζ for each d ∈ D(ζ)

Assumption BE Let B be the Banach space of bounded, Borel measurable
functions h : Z → R under the essential supremum norm. Then u ∈ B and
for each h ∈ B,Eh ∈ B, where Eh is defined by

Eh(ζ, d) ≡
∫
G
[{
h(ζ′, d), d ∈ D(ζ′)

}]
π(dζ′|ζ, d)
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Appendix C Derivations

C.1 Social surplus function

Recall that the social surplus function and conditional choice probabilities
are defined by

G [{u (s, d) , d ∈ D(s)} |s] =
∫

R|D|
max

d∈D(s)
{u(s, d) + ϵ(d)} q(dϵ|s).

and

P (d|s) =
∫
I {d = δ (s, ϵ)} q(dϵ|s)

respectively. Then,

∂G [{u (s, d) , d ∈ D(s)} |s]
∂u (s, d)

=
∫ (

∂
{

maxd∈D(s) [u(s, d) + ϵ(d)]
}

∂u(s, d)

)
q(dϵ|s)

=
∫
I

{
d = arg max

d′∈D(s)

[
u(s, d′) + ϵ(d′)

]}
q(dϵ|s)

= P (d|s)
�

C.2 Conditional choice probability

Under the assumptions AS and CI, Bellman’s equation has the form

V (s, ϵ) = max
d∈D(s)

v(s, d) + ϵ(d) (C.1)

where

v(s, d) = u(s, d) + β

∫
V (s′, ϵ)q(dϵ|s′)π(ds′|s, d)
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C Derivations

and we let s denote all state variables and d denote decisions. Assume ϵ(d)
follows a multivariate extreme-value distribution (Gumbel),

q(ϵ|s) =
∏

d∈D(s)

fϵ(d) =
∏

d∈D(s)

1
σ
e− ϵ(d)−γ

σ e−e− ϵ(d)−γ
σ

where fϵ(d) is the probability density in the univariate case, and σ and γ
are known as the scale and shape parameters, respectively. Setting γ equal
to Euler’s constant (0.577) shifts the extreme value distribution so it has
unconditional mean zero.

The cumulative distribution in the univariate case is given by

Fϵ(α) = P {ϵ < α}

= 1
σ

∫ α

−∞
e− ϵ(d)−γ

σ e−e− ϵ(d)−γ
σ dϵ

Substituting z = e− ϵ(d)−γ
σ one finds dϵ = (−σ/z)dz and so

Fϵ(α) = 1
σ

∫ ∗

−∞
ze−z(−σ

z
)dz =

∫ ∗

−∞
−e−zdz

=
[
e−z
]∗

−∞ =
[
e−e− ϵ(d)−γ

σ

]α

−∞

= e−e− α−γ
σ .

Now, let P (d|s) denote the probability of choosing decision d when in state
s. A utility-maximizing agent will choose d so as to satisfy equation (C.1).
Thus, P (d|s) simply denotes the probability that decision d maximizes util-
ity. This may be stated by

P (di|s) = P {v(s, di) + ϵ(di) > v(s, dj) + ϵ(dj)} ∀j ̸= i

= P {ϵ(dj) < v(s, di) + ϵ(di) − v(s, dj)} ∀j ̸= i

= P {ϵ(dj) < ϕj} ∀j ̸= i
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C.2 Conditional choice probability

with ϕj = ϵ(di)+v(s, di)−v(s, dj). Now assume that ϵ(di) is known. Then,
the conditional probability

P (di|s, ϵ(di)) = P {ϵ(d1) < ϕ1, . . . , ϵ(di−1) < ϕi−1, ϵ(di+1) < ϕi+1, . . . ϵ(dn) < ϕn}

=
∏
j ̸=i

P {ϵ(dj) < ϕj} , by independence

=
∏
j ̸=i

e−e−
ϕj −γ

σ .

We integrate out ϵ(di),

P (di|s) =
∫ ∞

−∞
P (di|s, ϵ(di))fϵ(di)dϵ(di)

=
∫ ∞

−∞

∏
j ̸=i

e−e−
ϕj −γ

σ

 1
σ
e− ϵ(di)−γ

σ e−e− ϵ(di)−γ
σ dϵ(di)

=
∫ ∞

−∞

∏
j

e−e−
ϕj −γ

σ

 1
σ
e− ϵ(di)−γ

σ e−e− ϵ(di)−γ
σ ee− ϵ(di)−γ

σ dϵ(di)

Since ϕj = ϵ(di)+v(s, di)−v(s, dj), we have ϕi = ϵ(di)+v(s, di)−v(s, di) =
ϵ(di), and so

P (di|s) = 1
σ

∫ ∞

−∞

∏
j

e−e−
ϕj −γ

σ

 e− ϵ(di)−γ

σ e−e− ϵ(di)−γ
σ ee− ϵ(di)−γ

σ dϵ(di)

= 1
σ

∫ ∞

−∞

∏
j

e−e−
ϕj −γ

σ

 e− ϵ(di)−γ

σ dϵ(di)

= 1
σ

∫ ∞

−∞

(
e−

∑
j e−

ϕj −γ

σ

)
e− ϵ(di)−γ

σ dϵ(di)
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= 1
σ

∫ ∞

−∞

(
e−

∑
j e−

ϵ(di)+v(s,di)−v(s,dj )−γ

σ

)
e− ϵ(di)−γ

σ dϵ(di)

= 1
σ

∫ ∞

−∞

(
e−e− ϵ(di)−γ

σ
∑

j e−
v(s,di)−v(s,dj )

σ

)
e− ϵ(di)−γ

σ dϵ(di)

We set K =
∑

j e
−

v(s,di)−v(s,dj )
σ so

P (di|s) = 1
σ

∫ ∞

−∞

(
e−Ke− ϵ(di)−γ

σ

)
e− ϵ(di)−γ

σ dϵ(di)

We may now perform the same substitution as above, namely z = e− ϵ(di)−γ

σ .
Then

P (di|s) =
∫ ∞

0
e−zKdz = 1

K

= 1∑
j

e−
v(s,di)−v(s,dj )

σ

= 1

e− v(s,di)
σ

∑
j

e
v(s,dj )

σ

P (di|s) = e
v(s,di)

σ∑
j

e
v(s,dj )

σ

=
exp

{
v(s,di)

σ

}
∑

j

exp
{
v(s, dj)
σ

}
Thus if the choice set is D(s) then

P (d|s) =
exp

{
v(s,d)

σ

}
∑

d′∈D(s)

exp
{
v(s, d′)
σ

}

which is known as the multinomial logit formula.
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C.3 Expected value function

We simplify notation by omitting dependency on θ from these calculations.
This will not affect the results. We want to show that

EV (s, d) =
∫∫

V (s′, ϵ′)q(dϵ′|s′)p(ds′|s, d)

=
∫
σ log

 ∑
d′∈D(s′)

exp
{
u(s′, d′) + βEV (s′, d′)

σ

}p(ds′|s, d)

(C.2)

where

V (s, ϵ) = max
d∈D(s)

{u(s, d) + ϵ(d) + βEV (s, d)} (C.3)

If we insert (C.3) into equation (C.2), we see that what we essentially have
to prove is that

∫
max

d∈D(s)
{v(s, d) + ϵ(d)} q(dϵ|s) = σ log

 ∑
d′∈D(s)

exp
{
v(s, d′)
σ

}
where we for simplicity use

v(s, d) = u(s, d) + βEV (s, d)

as the value function seen by the econometrician. In addition, we need the
definition of the conditional choice probability from appendix C.1

P (d|s) =
∫
I{d = δ(s, ϵ)}q(dϵ|s)

where q(dϵ|s) is the conditional probability distribution of ϵ given s. We
are now ready to show the derivation of the relationship in equation (C.2).∫ [

max
d∈D(s)

[v(s, d) + ϵ(d)]
]
q(dϵ|s)
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C Derivations

=
∫ [∫

∂
{

maxd∈D(s) [v(s, d) + ϵ(d)]
}

∂v(s, d)
dv(s, d)

]
q(dϵ|s)

=
∫ [∫

I

{
d = arg max

d′∈D(s)
[v(s, d) + ϵ(d)]

}
dv(s, d)

]
q(dϵ|s)

Switch the order of integration,

=
∫ [∫

I

{
d = arg max

d′∈D(s)
[v(s, d) + ϵ(d)]

}
q(dϵ|s)

]
dv(s, d)

use the definition of the conditional choice probability,

=
∫
P (d|s)dv(s, d)

=
∫ exp

{
v(s,d)

σ

}
∑

d′∈D(s) exp
{

v(s,d′)
σ

}dv(s, d)

and integrate

= log

 ∑
d′∈D(s)

exp
{
v(s, d′)
σ

}
�
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C.4 Effect function

Lets assume that q is a quadratic function of x̄ where

x̄ = x+ dx

2
−
q
∑d

b=1 hbw

2

q(x̄) = c1x̄
2 + c2x̄+ c3

and the ci’s are coefficients from a regression based on a power plants reser-
voir geometry and head efficiency. If we substitute the expression for x̄ into
this effect function we get

q = c1

(
x+ dx

2
−
q
∑d

b=1 hbw

2

)2

+ c2

(
x+ dx

2
−
q
∑d

b=1 hbw

2

)
+ c3

which is a standard second order equation of q. Solving this for q gives

q

(
x+ dx

2
, d, w

)
= 1
c1h̃2

(
[2c1x+ c1dx+ c2] h̃+ 2

+
√[

c2
2 − 4c1c3

]
h̃2 + 4 [2c1x+ c1dx+ c2] h̃+ 4

)
(C.4)

where

h̃ =
d∑

b=1
hbw

For the case of no inflow equation (C.4) reduces to

q(x, d, w) = 1
c1h̃2

(
[2c1x+c2] h̃+2+

√[
c2

2 − 4c1c3
]
h̃2 + 4 [2c1x+ c2] h̃+ 4

)
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C.5 Fréchet derivative

We need to prove that for each pair {i, j} ∈ Z

∂Tθ(EVθ)
(
ζi
)

∂EVθ(ζj)
= P × β

∑
d∈F

ψ(ζi, d,θ)

D(x,w)∑
d′=0

ψ(ζi, d′,θ)

where F is the set of all decisions d such that ζi(d) = ζj . To do this we
first derive the analogous for the continuous state space. We start with the
contraction mapping formula

EVθ(ζ) = Tθ(EVθ)(ζ) =
∫∫

log

D(x,w)∑
d=0

ψ(ζ′, d,θ)

p(dx′|w,θ)p(dy′|y, w,θ)

where

ψ(ζ′, d,θ) = exp

{
q(x+ dx′

2
, d, w)

d∑
b=1

[
cbw(y + dy′) − θ

]
hbw(x+ dx′)

+ βEVθ(ζ′(d))

}

For a pair {i, j} ∈ Z the Fréchet derivative is defined as the derivative of
Tθ(EVθ)

(
ζi
)

with respect to EVθ(ζj)

∂Tθ(EVθ)
(
ζi
)

∂EVθ(ζj)

= ∂

∂EVθ(ζj)

∫∫
log

D(x,w)∑
d=0

ψ(ζ′i, d,θ)

p(dx′|w,θ)p(dy′|y, w,θ)

=
∫∫

∂

∂EVθ(ζj)
log

D(x,w)∑
d=0

ψ(ζ′i, d,θ)

p(dx′|w,θ)p(dy′|y, w,θ)
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C.5 Fréchet derivative

=
∫∫ [

1∑D(x,w)
d=0 ψ(ζ′i, d,θ)

∂
∑D(x,w)

d=0 ψ(ζ′i, d,θ)
∂EVθ(ζj)

]
p(dx′|w,θ)p(dy′|y, w,θ)

=
∫∫  1∑D(x,w)

d=0 ψ(ζ′i, d,θ)

D(x,w)∑
d=0

∂ψ(ζ′i, d,θ)
∂EVθ(ζj)

 p(dx′|w,θ)p(dy′|y, w,θ)

(C.5)

We will for simplicity solve ∂ψ/∂EV separately

∂ψ(ζ′i, d,θ)
∂EVθ(ζj)

= ψ(ζ′i, d,θ) ∂

∂EVθ(ζj)

(
q(x+ dx′

2
, d, w)

d∑
b=1

[
cbw(y + dy′) − θ

]
hbw(x+ dx′)

+ βEVθ(ζ′i(d))

)

= ψ(ζ′i, d,θ)β∂EVθ(ζ′i(d))
∂EVθ(ζj)

and

∂EVθ(ζ′i(d))
∂EVθ(ζj)

=
{

1 if ζ′i(d) = ζj

0 otherwise

If we use these findings in equation (C.5) we get

∂Tθ(EVθ)
(
ζi
)

∂EVθ(ζj)

=


∫∫ [

ψ(ζ′i, d,θ)∑D(x,w)
d=0 ψ(ζ′i, d,θ)

β

]
p(dx′|w,θ)p(dy′|y, w,θ) if ζ′i(d) = ζj

0 otherwise
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C Derivations

=


∫∫

β
ψ(ζ′i, d,θ)∑D(x,w)

d′=0 ψ(ζ′i, d′,θ)
p(dx′|w,θ)p(dy′|y, w,θ) if ζ′i(d) = ζj

0 otherwise

which is the continuous version of the Fréchet derivative. The complication
when moving to a discrete state space is that there might be several decisions
that will satisfy the restriction ζ′i(d) = ζj , and this is where the set F comes
in. Thus we need to verify for each decision d whether it satisfies ζ′i(d) = ζj ,
and if it does include it in the set d.

As before when changing to the discrete case we interchange the integration
with multiplication with a transition matrix, and change ζ′i to ζi. The
result is

∂Tθ(EVθ)
(
ζi
)

∂EVθ(ζj)
= P × β

∑
d∈F

ψ(ζi, d,θ)

D(x,w)∑
d′=0

ψ(ζi, d′,θ)

where F is the set of all decisions d such that ζi(d) ≡ ζj .

�

C.6 Partial derivatives of Log-likelihood

We will only derive ∂Lp
l /∂β as the approach for ∂Lp

l /∂θ is almost identical.

We begin with

Lp
l =

T∑
t=1

log


ψ(ζt, dt,θ)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)


with

ψ(ζt, d,θ) = exp

{
q(xt, d, wt)

d∑
b=0

(cbwtyt − θ)hbwt + βEVθ (ζt(d))

}
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C.6 Partial derivatives of Log-likelihood

In the process of calculating ∂Lp
l /∂β we are going to need the derivatives

of ψ(ζt, d,θ)/∂β, thus it is natural to begin with

∂ψ(ζt, d,θ)
∂β

= ψ(ζt, d,θ)
(
β
∂EVθ (ζt(d))

∂β
+ EVθ (ζt(d))

)
If we now differentiate Lp

l we get

∂Lp
l

∂β

=
T∑

t=1


D(xt,wt)∑

d′=0
ψ(ζt, d

′,θ)

ψ(ζt, dt,θ)
∂

∂β


ψ(ζt, dt,θ)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)





=
T∑

t=1



D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)

ψ(ζt, dt,θ)


∂ψ(ζt, dt,θ)

∂β

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)D(xt,wt)∑

d′=0
ψ(ζt, d

′,θ)

2

−

ψ(ζt, dt,θ)
D(xt,wt)∑

d′=0

∂ψ(ζt, d
′,θ)

∂βD(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)

2




We now introduce the derivative of ψ with respect to β derived above

∂ψ(ζt, d,θ)
∂β

= ψ(ζt, d,θ)
(
β
∂EVθ (ζt(d))

∂β
+ EVθ (ζt(d))

)
and define

ϕβ(d) = β
∂EVθ (ζt(d))

∂β
+ EVθ (ζt(d))
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Using this new notation, we can simplify to

=
T∑

t=1


1

ψ(ζt, dt,θ)


ψ(ζt, dt,θ)ϕβ(dt)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)

−

ψ(ζt, dt,θ)
D(xt,wt)∑

d′=0
ψ(ζt, d,θ)ϕβ(d′)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)





=
T∑

t=1


1

ψ(ζt, dt,θ)

ψ(ζt, dt,θ)ϕβ(dt)

−

ψ(ζt, dt,θ)
D(xt,wt)∑

d′=0
ψ(ζt, d,θ)ϕβ(d′)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)





=
T∑

t=1

ϕβ(dt) −

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θ)ϕβ(d′)

D(xt,wt)∑
d′=0

ψ(ζt, d
′,θθ)



where

ϕβ(d) = β
∂EVθ (ζt(d))

∂β
+ EVθ (ζt(d))

�
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C.7 Sparse solve convergence

The algorithm converges if and only if

lim
k→∞

||ϵk+1
w ||

||ϵk
w||

< 1,

thus we need an expression for the error of the k-th iteration ϵk
w. Recall

that

uk+1
w = Tw

θ uk
w+1 + bw

If we start with u0
w = 0, then ϵ0

w = u∗
w where u∗

w is the final solution. Let’s
write out the first iterations:

u1
w = bw

u2
w = bw + Tw

θ bw+1

u3
w = bw + Tw

θ (bw+1 + Tw+1
θ bw+2)

= bw + Tw
θ bw+1 + Tw

θ T
w+1
θ bw+2

u4
w = bw + Tw

θ (bw+2 + Tw+1
θ (bw+1 + Tw+2

θ bw+3))
= bw + Tw

θ bw+2 + Tw
θ T

w+1
θ bw+1 + Tw

θ T
w+1
θ Tw+2

θ bw+3
...

uk
w = bw +

k−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w

...

u∗
w = bw + lim

k→∞

k−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w

then

ϵk
w = ϵ0

w − bw −
k−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w

= lim
s→∞

s−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w −
k−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w
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and

||ϵk+1
w ||

||ϵk
w||

=

∣∣∣∣∣∣ lim
s→∞

s−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w −
k∑

i=1

i−1∏
j=0

Tw+j
θ

 bi+w

∣∣∣∣∣∣∣∣∣∣∣∣ lim
s→∞

s−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w −
k−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w

∣∣∣∣∣∣
.

Since ∣∣∣∣∣∣
k−1∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w

∣∣∣∣∣∣ <
∣∣∣∣∣∣

k∑
i=1

i−1∏
j=0

Tw+j
θ

 bi+w

∣∣∣∣∣∣ ,
then

lim
k→∞

||ϵk+1
w ||

||ϵk
w||

< 1.

�

C.8 Reduction of exponentials

In addition to running time issues, we were faced with another problem
when we implemented the model. Reduction of exponentials is a concept
we used extensively throughout the algorithm, and has to do with numerical
limitations when exponentiating large numbers on a computer. We will use
the conditional choice probability

P (d|ζ) = exp {u(ζ, d) + βEV (ζ, d)}∑
d′∈D(ζ)

exp
{
u(ζ, d′) + βEV (ζ, d′)

}
to demonstrate, where have omitted all irrelevant variables and parameters
for simplicity.

In the choice probabilities, we exponentiate the value of u(ζ, d)+βEV (ζ, d)
in both the numerator and the denominator. This value represents the sum
of all utility from today and to infinity, and will in general become very
large. When exponentiating values of this size in MATLAB the result will
be infinity (the limit is e709), and we therefore need a little trick.
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C.8 Reduction of exponentials

Observe that

P (d|ζ) = exp {u(ζ, d) + βEV (ζ, d)}∑
d′∈D(ζ)

exp
{
u(ζ, d′) + βEV (ζ, d′)

}
= exp {u(ζ, d) + βEV (ζ, d)}∑

d′∈D(ζ)

exp
{
u(ζ, d′) + βEV (ζ, d′)

} exp {−K}
exp {−K}

= exp {u(ζ, d) + βEV (ζ, d) −K}∑
d′∈D(ζ)

exp
{
u(ζ, d′) + βEV (ζ, d′) −K

}
for some value K. If we now set

K = max
d′

{
u(ζ, d′) + βEV (ζ, d′)

}
.

Then all values {u(ζ, d′) + βEV (ζ, d′) −K} will be zero or less, and can
safely be exponentiated without affecting the validity of the results. This
method must be used whenever we calculate the exponential of the value
function.
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Appendix D Data

D.1 Partition of weeks

Year
First day

of year
Leap
year Period (52 weeks) Event

2000 Saturday 1 3/1-2000 - 31/12-2000 3/1 = Monday
2001 Monday 0 1/1-2001 - 30/12-2001
2002 Tuesday 0 31/12-2001 - 29/12-2002
2003 Wednesday 0 30/12-2002 - 28/12-2003
2004 Thursday 1 29/12-2003 - 26/12-2004 Delete week 53
2005 Saturday 0 3/1-2005 - 1/1-2006
2006 Sunday 0 2/1-2006 - 31/12-2006
2007 Monday 0 1/1-2007 - 30/12-2007
2008 Tuesday 1 31/12-2007 - 28/12-2008

Table D.1: Partitioning of weeks.

D.2 Power producer data

We originally had data from 14 producers available, from which we selected
two. Selecting only two of the 14 producers might seem strange, but for
reasons of exposition, it has been necessary to restrict ourselves to power
stations with a very simple structure. By “simple structure”, we mean the
following:

• one reservoir

• one turbine

• available data for inflow, reservoir level and production

• no pump-storage
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D.2 Power producer data

One would think that including a power station with, say, two turbines
instead of one, or several reservoirs instead of one, should be a relatively
simple task. The fact of the matter is that this is simply not the case.
We discuss this in section 5.3, but for now, suffice it to say that switching
to, say, two turbines, would require reprogramming huge portions of the
algorithm. We discuss the data and our selection criteria below.

Our data selection criteria are similar to those used by Kolsrud and Prokosch
(2009), albeit for different reasons. The criteria are:

Producer is a price taker: This criteria is necessary to avoid the prob-
lem of simultaneity. A situation of simultaneity arises when the pro-
duction decision of the producer affects price at the same time as price
affects the production decision. Using data from a non-price taker
would necessitate a much more complicated model, since the produc-
tion decision of the producer would affect the probability distribution
of prices in the transition matrices.

Independent power station: The production decision of the power sta-
tion is independent of the decisions made by other power stations. In
other words, power stations that are coupled with other power stations
are excluded.

One reservoir: A complicated topology (combination of reservoirs) has
a confounding effect on the recorded production decision, since the
producer may control the timing of inflow to lower reservoirs.

One turbine: For each turbine one includes, one increases the decision
space of the producer. This has a dramatic impact on the time and
space required by algorithm. The curse of dimensionality entails that
even an algorithm with polynomial time- and space-complexity will
suffer significant increases in time to convergence. Thus, we expect
that, say, doubling the decision space would at least double the space
and time requirements, if not significantly more. True, the produc-
tion decision for separate turbines are quite positively correlated (we
typically see correlations lying in the range 0.4-0.6), but we consider
this to be too low to allow decisions to apply to several turbines.

Both power stations that we have considered fulfill the criteria above.

We have hourly production data from each producer for the period January
1, 2000 to December 31, 2008. Since we needed presicely 52 weeks per
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D Data

year, we had to partition the production data in a very specific way. This
partitioning can be seen in appendix D.1. The production data is used
directly as input to the algorithm.1. Further, we have daily inflow and
reservoir level data. The time interval of state transitions is in weeks, so we
have simply summed the inflow and used the reservoir level at the end of
each week as input. Plots of inflow, production and reservoir levels can be
seen in the plots below.

1Recall, we group decisions together in a very specific manner, as described in section
3.2.3
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Appendix E Plots

When calculating transition matrices, we essentially fit probability distribu-
tions for each variable and for each week to the real historical data of inflow
and spot prices. Using these distributions, we generate a joint probability
distribution that expresses the probability of moving from state ζi to ζj .
By continuing this process for all states in all weeks, we end up with the
elements {i, j} of the full Markov transition matrix P.
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Figure E.1: Inflow, hydropower producer I
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Figure E.2: Mean-corrected inflow, hydropower producer I
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Figure E.3: Inflow, hydropower producer II
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Figure E.4: Mean-corrected inflow, hydropower producer II
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Figure E.5: Average weekly prices, 2000-2008
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