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Problem description  

 

The objective is to establish a midterm model for the Nord Pool system price. Scenarios for 

exogenous variables will be created using statistical models. These scenarios will be combined 

with a mathematical model of the Nordic power system. Resulting price scenarios will yield an 

indication on the expected future system price, and the uncertainty in future spot prices. 
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Abstract  

We develop a bottom-up, midterm model for the Nord Pool system price. Models for 

consumption, generation and exchange are combined using a market equilibrium approach. 

Scenarios for the most influential stochastic factors are created using statistical models. 

Forecasted price scenarios yield an indication on the expected future system price, and the 

uncertainty in future prices. Compared to stochastic dynamic programming based models, we use 

an empirical function to approximate the water value. Consequently, our model represents a less 

computationally intensive method for price forecasting than e.g. the EMPS model.    

In addition to providing a picture of the price distribution, the model can be applied to learn 

about the impact of different variables. In particular, we study the relative influence of the 

stochastic factors and price risk caused by inflow volatility. The performance of the model is 

evaluated in numerical examples over a two-year forecast period. Overall, we conclude the 

model provides realistic forecasts of the system price and its distribution. The performance under 

normal market conditions may deviate from our results, due to the extraordinary drop in fuel 

prices caused by the financial crisis. 
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1. Introduction  
The objective of this thesis is to develop a bottom-up model for the Nord Pool system price. 

Separate models for consumption, generation and exchange are combined using a market 

equilibrium approach. Scenarios for the most influential stochastic factors are inputs to the 

model. The output is a midterm forecast of the price distribution with weekly granularity. In 

numerical examples, we assess the performance of the model over a period of two years. 

Predictions of the future system price distribution are of importance for players in the 

deregulated Nordic power market. More elaborated models for area prices are also needed, but 

our model may provide a complementary picture of the price uncertainty in a midterm 

perspective. The model can improve the decision basis for participants in the power market, such 

as power producers and energy-intensive industry. 

A reasonable price distribution relies on the quality and composition of the underlying models, 

and our major focus is hence development and combination of these models. Models for each 

essential variable are established due to their particular characteristics, and interrelations between 

them are studied.  

Bottom-up models for electricity price forecasting are not common in academic literature, but 

extensively used by the market participants in the Nord Pool area. Most widespread is the EMPS 

model, which is employed for generation planning and power system analysis in addition to price 

predictions. The model applies a stochastic dynamic programming (SDP) approach to calculate 

the marginal water value (SINTEF Energiforskning, 2008). Scenarios for stochastic factors are 

created directly from historical data: Observed levels for a set of historical years are used to 

represent potential future realizations (Doorman et al., 2004). 

Instead of using historical observations directly as future scenarios, we simulate scenarios from 

stochastic processes. Consequently, correlation structures between the history and the scenarios 

are modeled. Inspired by Tipping (2007), we derive an empirical model for the marginal water 

value, which is a less computationally intensive methodology than the stochastic optimization 

approach. Tipping demonstrates that an empirical water value function leads to well-performing 

forecasts of the spot price in New Zealand.  

An empirical water value function is also applied in the bottom-up price model of Vehviläinen 

and Pyykkönen (2005). Vehviläinen and Pyykkönen estimated models for consumption, 

generation and the marginal water value from historical data for the Nord Pool area. Through a 

market balance and scenarios for temperature and precipitation, future spot price paths with 

monthly granularity were created.   

Compared to the model developed by Vehviläinen and Pyykkönen, our model is more complex. 

We introduce additional stochastic factors, model thermal generation as a function of fuel and 

carbon quota prices, seek to improve the water value equation, include intraweek demand 
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variations, and model exchange with connected markets. Still, our model represent a more 

intuitive and less computationally intensive method for system price forecasting than the EMPS 

model. 

A brief overview of the framework is presented in Figure 1. The stochastic factors include 

heating degree days (HDD), inflow, snow reservoirs, fuel prices, carbon quota prices, the spot 

price at the German power exchange (EEX), wind power generation and outages of thermal 

power plants. Electricity generation is modeled for different plant categories: Hydro power, 

condensing power, industrial CHP (combined heat and power), district CHP and nuclear power 

in addition to wind power. For the categories which are most flexible with regard to adjustment 

of the output, generation is assumed to be bid at short run marginal costs. Modeling generation 

using marginal costs depends on the assumption of an (approximately) efficient power market, 

which is not obvious due to the large companies dominating the power sector in the Nord Pool 

area. However, there is no evidence of market power on a system level in the empirical research 

which Fridolfsson and Tangerås (2009) review. The Nord Pool system price is defined by the 

intersection of the aggregate supply and demand curves for the entire price area, without taking 

into account transfer constraints (Nord Pool Spot, 2010). Therefore, internal transmission 

capacities are not included in our model.  

 

Figure 1. Overview of the framework 

The next chapter outlines the framework in detail. Chapter 3 provides an overview of the data 

used to calibrate the models. The estimated models, forecasts and simulations are presented in 

Chapter 4, while we in Chapter 5 discuss the results and draw conclusions.   
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2. Framework 
A component-wise description of the modeling approach is presented in 2.1-2.6. In Chapter 2.7, 

we outline how the market equilibrium approach is used to combine the different models. 

Notations are consecutively introduced. In addition, an overview of the most frequently used 

notations is given below. 

    - Time     - Snow reservoir level 

    - Season      - Relative snow reservoir level 

    - Variable to be modeled I  - Reservoir inflow 

    - Explanatory variable     - Marginal water value 

    - Constant term     - Net import 

    - Residual term    - Consumption 

       - Heating degree days 

      - Day length 

     - Nord Pool system price      - Retail trade index 

      - EEX spot price         - Hydro generation 

       - Coal spot price          - Regulated hydro power generation 

      - Natural gas spot price           - Relative regulated hydro power generation 

      - CO2 quota spot price          - Unregulated hydro power generation 

    - Hydro reservoir level        - CHP district generation 

      - Hydro reservoir capacity        - CHP industry generation 

     - Relative hydro reservoir level        - Wind power generation 

2.1 Stochastic factors 
The fundamental quantities influencing the levels of electricity consumption, generation and 

exchange are modeled as stochastic factors. Temperature affects both consumption and the level 

of CHP district generation, and is modeled using HDD. Reservoir inflow determines the 

resources available for hydro power producers, whereas snow reservoirs give indications on 

future inflow levels. Fuel and carbon quota prices affect the marginal costs which condensing 

power producers bid to the market. Among the power markets connected to Nord Pool, the 

largest capacity is shared with the German market. Therefore, the EEX spot price is included as a 

stochastic factor. The availability of thermal plants varies over time, and we consider how 

outages can be modeled. Wind power generation is also implemented as a stochastic factor, since 

the generation level is difficult to predict. 

In the following, we describe how the characteristics of each stochastic factor can be modeled. 

Models for thermal plant outages are deferred to Chapter 2.3.  
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2.1.1 HDD and snow reservoirs 
HDD and snow reservoirs vary in a seasonal pattern throughout the year. The stochastic 

processes most commonly applied to seasonal time series are deseasonalized ARIMA models, 

periodic AR (PAR) models and seasonal ARIMA (SARIMA) models (Hipel and McLeod, 1994).  

When a deseasonalized ARIMA model is employed, the original time series is deseasonalized by 

for instance (Hipel and McLeod, 1994): 

      
           

     
 (1) 

 

where    is the time series to be modeled,   is the deseasonalized series,   is the time period 

index,   is the season index,       is the estimated mean in season   and       is the estimated 

standard deviation in season  . An ordinary ARIMA model is then fitted to  .  

A periodic AR model differs from an ordinary AR model by seasonally dependent coefficients 

(Hipel and McLeod, 1994): 

      
                             

      (2) 

 

      is an AR polynomial of order  ,   is the backshift operator,           denotes the 

differencing transformation of degree     and   is the intercept.    is the time series of 

residuals, which should not exhibit autocorrelation. Residuals are also assumed to be normally 

distributed. 

SARIMA models take account of seasonality by seasonal lags. The general, multiplicative form 

can be written as (Hipel and McLeod, 1994): 

           
                      (3) 

 

  is the length of one season, i.e. 52 in this case.   
          is the seasonal differencing 

transformation of degree    .       is a seasonal AR (SAR) polynomial of order  ,      is a 

non-seasonal MA polynomial of order   and        is a seasonal MA (SMA) polynomial of 

order  . 

For natural time series as snow reservoirs and HDD, the mean and variance should be (close to) 

stationary each season. As opposed to SARIMA models, deseasonalized ARIMA and PAR 

models state explicit that the mean and variance within each season are constant from year to 

year (Hipel and McLeod, 1994). This is an advantage in favor of deseasonalized ARIMA and 

PAR models, but leads to a drawback when it comes to calibration. With weekly granularity, the 

deseasonalized ARIMA model requires estimation of 52 weekly means and standard deviations, 

while 52 AR models must be estimated when applying the PAR approach. Consequently, a large 
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number of years of historical data are required to obtain stable parameter estimates
1
. Therefore, 

we will follow the more parsimonious SARIMA approach in modeling of snow reservoirs and 

HDD.  

To stabilize the seasonally varying mean, the HDD and snow reservoir series will be seasonally 

differenced (   ). Seasonally differencing may not completely remove the seasonal pattern, 

and the remaining seasonality is modeled by SAR and SMA factors. The lag structure (p, q, P, 

Q) will be optimized using an information criterion. However, we restrict      , as higher 

orders of seasonal lags have no natural interpretation (Nau, 2010). 

2.1.2 Reservoir inflow 
The aggregated reservoir inflow stem from snow melting and precipitation, and the inflow is thus 

negatively correlated with the change in snow reservoirs during the snow melting season. A 

negative correlation is also present when snow reservoirs increase, as the share of the 

precipitation which falls as rain decreases when the accumulation of snow reservoirs increases. 

To incorporate the correlation between inflow and the change in snow reservoirs, we will model 

reservoir inflow by a dynamic regression model. 

A dynamic regression model with one input can be written as (Pankratz, 1991): 

                (4) 

 

   is the output time series,      is a linear transfer function and   is the input time series. In this 

case, the input series is the change in snow reservoirs.    is the disturbance series, which may be 

autocorrelated.  

After (4) is estimated, the disturbances    are examined for non-stationarity, and the necessary 

difference operators are added. To get rid of autocorrelation in the disturbances, a SARIMA 

model (3) will be estimated for  . Substituting the difference operators and the disturbance 

SARIMA model into (4), the general formulation becomes (Pankratz, 1991): 

  
        

           
         

         
   (5) 

 

The formulation of the transfer function      can be selected by examining the impulse response 

function. More details on implementation of the methodology are presented along with the 

estimation results in 4.1.3.  

 

 

                                                 
1
 A Fourier transformation approach can solve the overparameterization problem (Hipel and McLeod, 

1994), but is not further considered here. 
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2.1.3 Wind power generation 
Wind power generation is simulated using an ARIMA(p,d,q) process. The advantage of an 

ARIMA model, for instance compared to a Brownian motion, is that the possible autocorrelation 

in wind speeds from one week to the next will be captured. As the share of wind power in the 

Nord Pool area is small compared to the other generation categories (Nordel, 2009), we will not 

develop independent wind power scenarios. Instead, random scenarios will be drawn during the 

price simulations. 

2.1.4 The EEX spot price 
Several characteristics of electricity prices have to be considered when developing a model for 

the EEX spot price (Deng, 2000): 

- Seasonality: When demand increases, generating units higher on the merit order set the 

market price. Thus, spot prices increase with demand. 

- Spikes: Outages of baseload plants or transmission cables force a shift in the supply 

curve. Depending on the outage size, peak load units with high marginal cost may clear 

the market in more hours than usually during the week. The same result appears when the 

demand curve shifts due to a cold/heat wave.  

- Mean Reversion
2
: Sudden changes in the price are often caused by short duration events, 

like the above mentioned examples. After the event, the price will revert back to the 

normal level. This level is dependent on marginal costs of generation, and will therefore 

vary with for instance fuel prices. 

- Jumps: A sudden price change can also lead to a new long lasting price regime. For 

instance, prices can jump and remain high in a hydro dominated system if reservoir levels 

become lower than normal.  

 

The starting point in development of stochastic processes with mean reversion is the arithmetic 

Ornstein-Uhlenbeck process (Dixit and Pindyck, 1994): 

                           (6) 

 

where   (   ) is the speed of mean reversion,    is the long-run equilibrium,     (  ) is the 

volatility and    is the increment to a Wiener process, which creates random moves in the 

process. 

 

 

                                                 
2
 In addition, long-term price dynamics may be explained by mean reversion. With high price levels over 

time, new suppliers will provide additional generating capacity and push the prices down (and vice versa) 

(Pilipovic, 1998). As we consider a mid-term horizon, this interpretation is of less importance in our case. 
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(6) is the limit of the following AR process, which will be used to create scenarios in discrete 

time (Dixit and Pindyck, 1994): 

                                       

            
       

   
   
 

  
         

(7) 

 

The Ornstein-Uhlenbeck process assumes a constant mean reversion speed for all price levels. 

An alternative is the geometric mean reversion model, where the reversion speed is proportional 

to   (Ewald and Yang, 2007): 

                                   (8) 
 

where   (  ) is the proportional speed of mean reversion,   is the long-run equilibrium 

parameter,      (  ) is the proportional volatility and    is the increment to a Wiener process. 

In discrete time, (8) can be approximated by a forward Euler discretization (Yang and Yang, 

2008): 

                                         

              
 

(9) 

where       and    is the time step. In the following, we assume a time step of one unit.  

To model spikes, a jump diffusion component is added to (6) and (8): 

                                   (10) 

                                   +         (11) 
 

The jump diffusion process is defined according to Cartea and Figueroa (2005), where: 

-    is a Poisson process, such that      with probability      and      with 

probability (1-      , where    is the spike frequency. 

-   is the proportional jump size, which is assumed to be normally distributed: 

          
 ). 

 

Since we assume a constant frequency   , spikes will occur with the same likelihood throughout 

the year. This is a reasonable approximation for supply related events leading to spikes (like 

plant outages), but a simplification for demand related events. Sudden changes in demand are 
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more likely to occur in the winter season, and applying a seasonally dependent frequency is thus 

a possible extension
3
. 

Discrete time approximations can be written as: 

                                              (12) 

                                             (13) 

 

where     with probability    and     with probability       .  

Jumps which lead to new permanent price levels can be modeled by for instance regime-switch 

models (Tipping, 2007). As a simplification, we ignore jumps and model all sudden price 

changes as spikes.  

A simple way to account for seasonality is to subtract the weekly mean of the price history 

before estimation of parameters (Cartea and Figueroa, 2005). The seasonal behavior of the EEX 

spot price will be studied in order to evaluate whether deseasonalizing is favorable.  

The jump diffusion part and the mean reversion part of (12) and (13) are calibrated separately, by 

filtration of spikes before estimation. The two models share the same jump diffusion parameters, 

and model selection is therefore based on comparison of likelihood values for the mean reversion 

parts. Barz and Johnson (1999) compared arithmetic and geometric mean reversion electricity 

spot price models with and without jump diffusion in four markets. The models with jump 

diffusion performed consistently better than those without, while the geometric mean reversion 

jump diffusion model resulted in higher likelihood values than the arithmetic model in 75% of 

the cases
4
.  

2.1.5 CO2 quota prices 
Daskalakis et al. (2009) evaluate different processes for CO2 spot prices in European markets, 

including geometric Brownian motion and various mean reverting processes with and without 

jump diffusion. They found the prices have a non-mean reverting structure with jumps, and 

conclude the price process is best approximated by a geometric Brownian motion (GBM) 

augmented by jumps. An ordinary geometric Brownian motion was found to perform better than 

other processes without jumps.  

The empirical study by Daskalakis et al. was based on price data during EU's first emission 

trading scheme (2005-2007), and their conclusions may not necessarily be applicable to 

succeeding trading schemes. As our base case, we assume the price process follows an ordinary 

geometric Brownian motion. The status of the European quota market will be assessed in 

                                                 
3
 We do not apply seasonally dependent spike frequencies due to the limited number of observations 

available for calibration (the EEX market opened in 2000). With a limited number of spikes, robust 

estimation of spike parameters is difficult. 
4
 The models were fitted to hourly, not weekly, price data over periods of two months. 
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Chapter 3.3, to evaluate whether inclusion of jump diffusion is a necessary extension. The 

geometric Brownian motion process is written as (Vose, 2008): 

                                    (14) 

 

where       is the drift rate,      is the volatility and    is the increment to a Wiener process. 

 

A discrete-time approximation of (14) is developed by applying Itô's lemma with      

      and integrating from   to      (Vose, 2008): 

          
              

                    
    (15) 

                     
         

       

 

The log return over period   ,                     , is normally distributed with parameters 

             
     and     

   . Hence, the mean and variance of historical log returns can be 

used to calibrate the GBM process parameters. A time step of    = 1 will be applied in the 

simulations. 

The CO2 price model may be improved by taking fuel prices into consideration. Prices of CO2 

emission allowances are indirectly linked to fuel prices, as allowance demand increases with fuel 

combustion levels. Hence, inclusion of fuel prices as an explanatory variable is a reasonable 

extension, see e.g.  Mansanet Bataller et al. (2007).  

2.1.6 Fuel prices  
Pindyck (2001) discusses the dynamics of commodity prices in competitive markets. Prices of 

oil, natural gas and many other commodities exhibit high volatility, which vary over time. Short 

run price movements are caused by shifts in demand and supply in the cash and storage markets. 

In the long run, spot prices are likely to revert to long-run marginal costs. Consequently, fuel 

prices may be modeled as mean revering processes.  

Geman (2007) conducted empirical research on oil and natural gas prices from 1994 to 2004. 

Time series are tested for unit root, in order to determine whether the prices are mean reverting 

or follow a random walk. There is evidence of a mean reversion pattern in natural gas prices until 

1999, which changes into a random walk as from 2000. Also, crude oil prices have followed a 

random walk since 2000. As there is mixed results, we will determine whether to apply a mean 

reverting process (6) or a geometric Brownian motion (14) based on characteristics of collected 

fuel prices.  
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2.2 Consumption 

2.2.1 Factors influencing consumption 
Electricity consumption in the Nordics is affected by a variety of variables. In the EMPS model, 

consumption is separated into two categories: Price elastic and firm consumption. Price elastic 

consumption typically includes power intensive industry and dual-fuel boilers, whereas the 

remaining consumption is categorized as firm (Doorman, 2009). Price elastic consumption is 

separated into groups, where the plants within a group are assumed to switch off consumption at 

a certain threshold level. Firm consumption may also be modeled as price dependent, as is done 

by Johnsen and Willumsen (2010). In their model for firm consumption in Norway, they also 

apply HDD, day length, wind speed, price of alternative fuels, economic activity level and 

holiday dummies as explanatory variables. The intuition of including these variables can be 

summarized as follows:  

- HDD: Electricity consumption in the Nordics is closely tied to the temperature, since 

electricity is one of the most important heating sources. The concept of HDD provides an 

intuitive link between temperature and heating demand, by assuming the heating demand 

starts at a certain temperature, the critical temperature. The HDD for a given period is 

here defined as the number of degrees the average temperature of the period is below the 

critical temperature, in line with Murray and Ringwood (1994). 

- Day length: The demand for lightning increases when the day length decreases. 

- Wind speed: An increase in the average wind speed reduces the effective temperature, 

and thus the heating demand should increase. 

- Electricity price: The electricity demand should decrease when the price increases. 

- Price of alternative fuels: If the price of substitutes to electricity increases, the electricity 

consumption should increase. 

- Economic activity level indicator: If the aggregated level of consumer spending 

increases, it is reasonable that also electricity consumption increases. 

- Holiday dummies: Electricity consumption may be reduced in holidays, when factories 

are temporarily shut down and office buildings closed.  

By including the electricity price as a factor influencing firm consumption, the firm consumption 

cannot be simulated independently from the price model. The price elasticity of firm 

consumption has historically been low in both the long and short term
5
 (Doorman, 2009). To 

limit the calculation time required for the market equilibrium simulations, we therefore exclude 

the electricity price as an explanatory variable.  

To establish a realistic model for price elastic consumption, the threshold levels must be derived 

from the operating margins of each plant group. The operating margins depend on output prices, 

                                                 
5
 However, the price elasticity has been slightly growing in the recent years due to the increased coupling 

between consumer and spot prices (Doorman, 2009).  
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and prices of outputs from power intensive industry in the Nordics (aluminum, pulp and paper 

etc.) must be introduced as additional stochastic factors. In order to keep the number of 

stochastic factors at a reasonable level, we will not model price elastic consumption explicitly. 

Instead, all consumption will be modeled as firm consumption

2.2.2 Consumption models 
We will compare two classes of models, both frequently applied to model electricity 

consumption: Error correction models and dynamic regression models, the latter introduced in 

2.1.2.  

Error correction model 

The general error correction model with one explanatory variable can be written as (Brooks, 

2008): 

                                 
 

(16) 

where   is the cointegrating coefficient and      and      are parameters to be estimated.  

The model can be extended with more explanatory variables; in our case all variables listed in 

2.2.1 will be applied. (16) assumes    is integrated of order one and that    and    are 

cointegrated, hence the linear combination        must be stationary. The model states that    

changes from     to   due to changes in  , but also due to eventual disequilibrium from the 

long-term relationship            (Brooks, 2008). Johnsen and Willumsen (2010) used an 

error correction model in their work. Albeit good fit with historical data (R
2
 = 89%), the model 

had two weaknesses: 

- Residuals were autocorrelated. 

- The consumption data used in the model was found to be stationary, hence an error 

correction model should not be the appropriate choice. 

Dynamic regression model 

To model consumption, the dynamic regression model (4) is generalized to take more than one 

input. Given the characteristics of electricity consumption, it is reasonable that the consumption 

immediately responds to changes in the explanatory variables. Therefore, we will not include any 

lags of the inputs in the transfer function.   

2.3 Thermal generation 
Nuclear power, industrial CHP, district CHP and condensing power are the different types of 

thermal generation in the Nord Pool area. CHP and nuclear generation are characterized by high 

capacity utilization. Condensing generation has higher flexibility, and the generation level is to a 

larger extent dependent on the spot price (Doorman, 2009). In the following, the characteristics 

of each technology are used to establish models for the generation level.  
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2.3.1 Nuclear power 
When operating at the installed capacity, nuclear power is the thermal generation technology 

with lowest operating costs. Weight and von Hirschhausen (2008) estimated the average 

operating cost of nuclear units in Germany to be 9 EUR/MWh in 2006, where fuel costs 

accounted for 3 EUR/MWh. Those figures can be compared with an average marginal cost of 

coal generation at about 33 EUR/MWh for the same year. The time required to adjust the output 

level and start/stop costs are higher for nuclear than for other thermal technologies. For nuclear 

units in the Nordics, startup times range from 10 to 36 hours, dependent on the generator size 

(Nord Pool Spot, 2011a). Combining these aspects, the optimal generation plan for a nuclear unit 

is simply to run at the maximum level all the time (Patterson, 1983). 

Planned and forced outages make the realized generation to deviate from the maximum level. 

Planned outages are caused by maintenance needs, and are typically allocated to periods when 

the electricity price is low (Gerger, 2011). Forced outages occur randomly as a consequence of 

technical failures (Doorman, 2009). An outage of a nuclear unit will force a shift of generation to 

units with higher marginal costs. The nuclear generation capacity in the Nordics consists of 14 

reactors (at 5 plants) with an average capacity of 840 MW. Thus, a single outage may have 

impact on the system price.  

Vehviläinen and Pyykkönen forecast nuclear generation by the historical mean for each week. In 

the EMPS model, deterministic maintenance periods can be specified for each plant. Forced 

outages are represented by the expected incremental cost method: The outage possibility for a 

plant or plant group is modeled by an increased expected marginal cost for units higher on the 

merit order (SINTEF Energiforskning, n. d.). While Vehviläinen and Pyykkönen take account of 

the expected failure rate only, the impact of a wider range of outages can be modeled when the 

expected incremental cost method is applied. However, certain aspects of the stochastic behavior 

of plant outages are not captured by the expected incremental cost method, including the 

correlation in outages from week to week and the distribution of outage sizes
6
. To incorporate 

such aspects of nuclear plant outages, we will model stochastic processes for forced outages. 

While improving the accuracy of the model, a stochastic modeling approach will also increase 

the computation time required in the price simulations. 

A model for forced plant outages has three components: A process for the time to the next 

failure, a process for the repair time and a distribution of outage sizes. To reduce the complexity 

of the model, we introduce some assumptions. The time to failure for the different reactors is 

assumed to be independent, so that failure arrival processes can be estimated independently for 

each reactor. Alternatively, a single process covering all plants could be calibrated. By using 

                                                 
6
 The expected incremental cost method implements the different outage possibilities by introducing more 

steps on the merit order. To limit computation time, the availability of a single unit is either 0% or 100% 

of the capacity (SINTEF Energiforskning, n. d.). Empirical data shows that outage sizes are continuously 

distributed (Nord Pool Spot, 2011a). 
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individual failure arrival processes, the variation in failure frequencies caused by differences in 

for instance age and maintenance policies are covered. When a given reactor has an outage (less 

than the reactor capacity), we assume additional outages of that reactor do not occur until the 

reactor is repaired. The size of the outage is assumed to be constant. In reality, available capacity 

will gradually increase at the end of the outage, due to the long startup times. Furthermore, the 

repair time is assumed to have the same distribution for all reactors. For planned outages lasting 

longer than expected, the additional time is considered as a forced outage. 

Two widely used distributions in reliability modeling are the exponential distribution and the 

Weibull distribution, given by the density functions (17) and (18). The exponential distribution 

models the time between events in a Poisson process, where the key property is a constant 

expected event frequency λE. Thus, the expected time to the next event from now is independent 

of when the previous event occurred. The Weibull distribution is a generalization of the 

exponential distribution, where the event rate may increase or decrease with time. A shape 

parameter    less than one indicates that the event rate decreases with time. (Ross, 2007)  

             
         

                   
  (17) 

 

             
  
  

 
 

  
 
    

               

                                                    

 (18) 

 

Anderson and Davison (2005) argue that the exponential process is sufficient to describe the time 

to failure of a power plant. On the other hand, repair times are undoubtedly nonexponential, and 

a Weibull process is more appropriate. Following their approach, we model the individual failure 

processes by the exponential distribution, while repair times are assumed Weibull distributed. 

Nuclear outage sizes are continuously distributed with the reactor capacity as the upper limit, but 

a bulk of the failures cause the reactor to shut down entirely (Nord Pool Spot, 2011a). Fitting a 

distribution for outage sizes would therefore be difficult, and we will instead use bootstrapping 

of historical outage sizes for each plant. 

A deterministic model for planned outages makes sense, since they generally occur at the same 

time each year. Therefore, we will model nuclear generation as the sum of: 

- the historical weekly mean corrected for forced outages, and 

- the process for forced outages. 

2.3.2 CHP industry 
At an industrial CHP plant, heat from the combined heat and power generation is utilized as 

process steam at a connected mill (Nordel, 2009). Industrial CHP is mostly used in relation to 

pulp mills in the Nord Pool area (Nord Pool Spot, 2011b). Electricity is only a byproduct of the 
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mills
7
, and the generation level is typically directly coupled to the production of the mill's core 

product. Adjusting the production level to the electricity price is generally not profitable, and the 

electricity generation is therefore almost constant over time. (Lyngfelt, 2011) 

Due to the relative constant generation level, generation in week   is forecasted as the historical 

average for that week: 

       
           

  (19) 

  

By using the historical average, the forecast takes account of temporary shutdowns during 

holidays and the average rate of forced outages. As the generation capacity at a typical industrial 

CHP plant is considerably lower than the capacity of an average nuclear plant (Nord Pool Spot, 

2011b), an outage of an industrial CHP plant will have less impact on the system price. 

Consequently, we will not implement a stochastic process for outage risk of industrial CHP. 

2.3.3 CHP district 
The level of CHP district generation varies with the temperature, as CHP district plants have an 

obligation to serve a local heat demand (Manczyk and Leach, 2002; Rolfsman, 2004). Like 

industrial CHP plants, the electricity generation is directly tied to the level of heat production. 

For suppliers with ability to cover the heat demand by heating plants in addition to CHP district 

plants, electricity will be generated at least as long as the short-run marginal cost of electricity 

generation is covered by the spot price
8
 (Pedersen, 2011): 

                                                      
 

(20) 

where            is the short run marginal cost of electricity generation,             is the 

total short run marginal cost of the plant and            is the marginal income from heat 

generation. 

Low electricity prices and excess capacity at heating plants, with corresponding switching from 

CHP district plants, are not likely in periods of low temperatures. Thus, it makes sense to model 

CHP district generation as a function of temperature only. Vehviläinen and Pyykkönen (2005) 

propose the following model: 

                                 
           

   (21) 
  

The generation is constant (       ) for temperatures above     , a linear function of 

temperature in the interval            , and continues at the maximum generation capacity for 

                                                 
7
 In fact, several mills with CHP production in the Nord Pool area are net consumers of electricity 

(Lyngfelt, 2011). 
8
 With costless instantaneous switching between the CHP plant and the heating plant, switching to the 

heating plant should take place when the spot prices decrease to the short run marginal cost of electricity 

generation. Else, the spot price threshold will be lower. 
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temperatures lower than     . The constants        and        are estimated from historical 

data. 

We apply HDD instead of temperature, and the generation is assumed to be constant when the 

temperature exceeds the critical temperature. Thus, the model transforms to:  

                                           
 
  (22) 

  

Without including the maximum generation capacity, the model simplifies to a linear equation:  

                           (23) 

 

Whether the generation level is best modeled by (22) or (23) will be determined in 4.3.3. 

2.3.4 Condensing power 
Condensing plants are more flexible than CHP plants, as condensing plants are used for 

electricity generation only. Therefore, condensing plants are assumed to bid generation at their 

short run marginal costs. Vehviläinen and Pyykkönen (2005) approximate the ask price curve by 

a linear function of the generation level. The merit order is in reality not linear, and ask prices 

vary over time with fuel costs. To develop a more realistic model for condensing generation, we 

follow the EMPS approach, where the marginal cost function is modeled for different plant 

groups (Doorman, 2009). We separate condensing generation into five groups according to fuel 

type and plant characteristics: Coal extraction plants
9
, coal condensing plants, gas extraction 

plants, combined cycle gas turbines and peak load units.  

For coal fueled units, different efficiencies will be applied for each country, as the age of the 

plant portfolio varies across the borders (Thema Consulting Group, 2011). In reality, the peak 

load category consists of both gas turbines and oil condensing plants. To avoid introducing the 

oil price as an additional stochastic factor, all peak load units are assumed to be gas turbines. 

Similar to the CHP models, a stochastic process for capacity unavailability is not modeled. 

Instead, capacities are adjusted by an average plant availability factor based on historical data. 

Assuming a constant aggregated availability is reasonable given the number of condensing 

generation units, although the expected incremental cost method may be a more accurate 

alternative. 

The short run marginal cost             of a condensing unit   in period   is calculated as the 

sum of fuel costs, variable operation costs and costs of emissions (Weigt and von Hirschhausen, 

2008). As a simplification, start-up and shutdown costs are neglected
10

. Fuel costs are found by 

dividing the fuel price (       ) by the net plant efficiency       . Costs of emissions are the 

                                                 
9 An extraction plant is a condensing plant with some extraction of steam from the turbine (Pierre, 2002). 
10

 Unit commitment of condensing plants is not modeled, hence start-up and shutdown costs cannot be 

included.  
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product of the CO2 quota price (       ) and the CO2 content in fuel (      ) divided by the plant 

efficiency. Adding variable operation costs (          ), the short run marginal cost is given by:  

                 
 

      
                    

      

      
         

 

(24) 

Empirical evidence shows that costs for staying idle and capital costs are included in the bids of 

peak load units (Schemde, 2011). This practice contradicts with the perfect competition theory of 

ask price equal to short run marginal cost. In modeling of marginal costs, this aspect will be 

incorporated by increasing the variable operation costs of peak load units.  

2.4 Hydro generation and the marginal water value 
Hydro power producers continuously face the problem of maximization of the value of their 

reservoirs. If an amount of water is released now, the value is given by the spot price. However, 

the value may be higher if the water is stored until prices are higher and the availability of water 

more constrained. The expected marginal water value
11

 is the expected opportunity cost of 

producing a marginal unit today instead of storing that water to a later period (Tipping, 2007; 

Wangensteen, 2007). Neglecting other variable costs, the marginal cost and consequently the 

asking price to a hydro producer equals the water value of the reservoirs to that producer.  

Hydro producers typically use stochastic dynamic programming to estimate the water value of 

their reservoirs. As mentioned, the EMPS model is an example of a widely used implementation 

of the SDP approach. The strength of SDP is the ability to model intertemporal consequences of 

the decision of release versus storage (Doorman, 2009). We will use a less computationally 

intensive approach, and instead establish an empirical approximation of the aggregated water 

value curve in the Nord Pool area. In the following, we describe the factors influencing the water 

value and how they can be included in an empirical model.  

Hydro and snow reservoirs 

Tipping (2007) points out that the median historic storage trajectory of a hydro reservoir is a 

reasonable approximation of the optimal reservoir management strategy. The optimal strategy is 

to keep the water value constant over time, as long as this is possible given reservoir constraints: 

If the marginal hydro unit has a higher expected value in the next period than in the present, it is 

optimal to allocate that unit to the next period. Water will then be a more constrained resource in 

the present period and less scarce in the next, and the difference in water values between the two 

periods will be smoothed out. Combining these aspects, the water value can be approximated as 

constant along the median trajectory.  

Due to the stochastic nature of e.g. inflow and demand, it is not possible to keep the reservoir 

equal to the median trajectory in every period. If the reservoir level in a given week is lower than 

                                                 
11

 Expected marginal water value is from now denoted water value. 



17 

 

the historic median for that week, there is an increased risk of running out of water in the next 

weeks. The value of storing water will therefore increase. On the other hand, if the reservoir 

level is higher than the median, the risk for future spills will increase; hence the water value will 

decrease. Water values calculated by SDP based reservoir management models (Figure 2) 

illustrate this relationship: The water value increases exponentially when the reservoir level 

decreases, and decreases exponentially when the reservoir level is increasing (Tipping 2007, 

Batstone 2003). 

 

Figure 2. Conceptual illustration of the relationship between the water value and the hydro storage level, 

from Batstone (2003) 
 

The impact of a deviation from the median trajectory is seasonally dependent. If the reservoir 

level in the winter season is lower than the average, this should increase the water value more 

than the same deviation in the summer season. In the winter, inflow is low and demand is high. 

Thus, the risk of running out of water is much higher than in the summer, when the inflow is 

high relative to the demand. This intuitive relationship is confirmed by an empirical study by 

Johnsen (2001). 

With background in the above aspects and empirical evidence from the market in New Zealand, 

Tipping (2007) proposes the following function to approximate the water value: 

                    
                          

      
 (25) 

  

     is the relative storage level in period  , which is defined by Tipping as the difference 

between the actual storage level and the 45-day moving average of the tenth percentile trajectory. 

      ,       ,        (≤ 0),        and        are constants to be estimated for each season  .  

In the Nord Pool area, snow reservoirs in the mountains account for a high degree of the total 

hydro storage. The relationship between snow reservoirs and the water value depends on season 

and generation flexibility. In the winter season (i.e. the snow accumulation period), snow 
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Deviation from expected storage level

M
a

rg
in

a
l 
w

a
te

r 
v
a

lu
e



18 

 

reservoir levels provide an indication on the inflow levels during the next hydrological cycle
12

. 

For hydro producers with ability to store water from a hydrological cycle to the next, a decrease 

in the relative snow reservoir level leads to an increase in the water value, as the expected 

scarcity of water in the next cycle increases. Producers with less reservoir capacity will not have 

the flexibility to allocate water between hydrological cycles, and remaining water at the end of 

each cycle has no value. Thus, the snow reservoir level will not influence their water values 

during the winter. In the summer season (i.e. the snow melting period), snow reservoir levels 

provide information about the scarcity of water in the current hydrological cycle, and snow 

reservoir levels will also affect the water values to these producers with less flexibility (Johnsen, 

2011). 

A water value approximation suggested by Vehviläinen and Pyykkönen (2005) include the 

impact of snow reservoirs, although the inclusion of snow reservoirs through the linear factor 

      
        

  lacks a clear motivation: 

                     
        

                        
                      (26) 

 

where 

-       
  is the total (snow and hydro) reservoir in period t. 

-       
  is the historical average total reservoir in period t. 

-      
  is the filling degree of the hydro reservoir in period t, calculated as           .  

-                                            are constants to be estimated. 

 

(26) states that the water value is proportional to the deviation from the historical average total 

reservoir, but increases exponentially if the hydro reservoir decreases to an estimated limit, 

        . Thus, the water value is assumed to depend on the deviation from a constant storage 

level and not the relative storage level. We will follow the reasoning of Tipping and instead 

model the water value as a function of the relative storage level. 

Generation level and plant characteristics 

Figure 3 illustrates the conceptual relationship between generation level and water value, 

according to ECON (2004) and Sandsmark and Tennbakk (2010). The curve may be 

representative for both the supply curve to an individual producer and the merit order of all 

hydro plants in the market.  

                                                 
12

 In this thesis, the hydrological cycle is defined as the yearly period which commences when snow 

melting in the mountains starts. 
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Figure 3. Conceptual illustration of the relationship between the water value and hydro generation level, 

from Sandsmark and Tennbakk (2010) 

First, we discuss the shape in context of a single plant. If inflow and reservoir level are high, 

some generation may be supplied at a price close to zero due to the spillage risk. When the 

generation level increases, the marginal hydro unit not released in the present period may with an 

increasing probability be stored and produced in a later period, instead of spilled. Higher 

generation level today means less water available for future generation, and the opportunity cost 

of producing the marginal unit today will increase.  

Considering the aggregated supply curve, the shape of the curve can also be used to explain 

differences between producers. As an example, consider a market consisting of the five hydro 

producers A, B, C, D and E. A is a run-of-the-river plant without storage capacity, and has to 

produce all inflow immediately. Thus, the water value for plant A is zero. B and C have identical 

relative storage levels today, but B has higher storage capacity than C. B is able to store the 

marginal unit of water longer than C, hence B can wait longer for higher prices. Consequently, 

the water value for B is higher than for C. D has the same relative storage level and storage 

capacity as B, but a bigger turbine capacity. D has better ability than B to produce in the hours 

with highest prices, which results in a higher water value than B. E is identical to plant B, except 

a lower present relative storage level and consequently a higher water value.  

In this thesis, estimation of the aggregated supply curve
13

 is of interest. The simplest approach is 

to aggregate hydro reservoirs and turbine capacities for all plants in the market into one 

equivalent plant, thus assuming all producers share the same water value. As the above 

discussion illustrates, the result will be an exaggeration of the flexibility of generation. Modeling 

the water value curve as a function of the total hydro generation level is a crude way to take 

account of plant specific capacities and reservoir levels. Given the scope of this thesis, increasing 

the accuracy by modeling individual plants or plant groups is not considered feasible. 

                                                 
13

 The aggregated supply curve (or merit order) of all hydro plants in the market is in this thesis also 

denoted market water value curve, or simply water value curve. 
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Vehviläinen and Pyykkönen model generation with water value of zero and close to zero through 

a division between regulated and unregulated generation
14

. Unregulated generation is equal to 

unregulated inflow, which is assumed to be of the form:  

                           (27) 

                    (28) 

 

      denotes unregulated inflow as percentage of total inflow, whereas      and      are 

constants to be estimated. 

A constant share of the inflow,     , pass through run-of-river hydro plants without storage 

capacity. Of the (1-    )% of the inflow which arrives to plants with storage capacity, 

              % are sent directly through the turbines in order to avoid future spillage. 

We will use Vehviläinen and Pyykkönen's approach to model unregulated generation. Therefore, 

the water value of regulated generation will be modeled as a function of regulated generation and 

not the total generation level.  

Expected future inflow and spot prices 

The expected value of storing water to later periods depends on the expected distribution of 

future inflow levels and spot prices (Tipping, 2007). As pointed out, snow reservoir levels yields 

information about expected inflow during the snow melting season. Precipitation levels are more 

difficult to forecast. Most players in the Nord Pool area use raw data from the European Centre 

for Medium-Range Weather Forecasts (ECMWF) in their inflow models, which provide 10-day-

ahead forecasts (ECMWF, 2009). We will therefore assume producers have access to accurate 

forecasts of the inflow level for the next week, such that the expected inflow is (approximately) 

equal to the realization. By modeling the water value as a function of the hydro and snow 

reservoirs in the end of the week rather than the observed levels at the start of the week, the 

influence of inflow expectations are included
15

.  

Futures prices reflect expectations regarding future spot prices. When modeling the water value 

for an individual plant, the time to maturity for the chosen futures contract should be tied to the 

producer's ability to store water (Sandsmark and Tennbakk, 2010). Thus, it is difficult to choose 

the relevant time to maturity when we model the water value curve for the whole market. Futures 

prices are therefore not included in our water value model. 

                                                 
14

 The terms regulated and unregulated will in this thesis be used to characterize hydro generation, not to 

describe the market structure. 
15

 The weekly generation level is implicitly known from the end-of-week hydro reservoir level. Thus, it 

makes no sense to model the water value to an individual producer as a function of both the generation 

level and the end-of-week reservoir level. However, the approach to model water value as a function of 

generation level explained above will still be used to describe differences in water values between 

producers.  
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Marginal costs of thermal generation 

Marginal costs of technologies competing with hydro power influence the water value, since a 

decrease in hydropower generation have to be compensated by an increase in output from other 

technologies
16

. A change in output of hydropower is assumed to mainly affect the generation 

level of coal plants, as coal generation typically is the technology closest to hydropower on the 

merit order (ECON, 2004).  

The water value equation 

Combining the above discussed aspects, we propose the following empirical approximation of 

the water value curve: 

                                     
                     

     

                                     
                       

(29) 

 

where 

-             

 
is the relative storage level of the hydro reservoirs in the end of week  . 

      

 
 may either be the mean reservoir level, the median, the tenth percentile or a 

moving average of one of these; the representation will be selected based upon fit with 

historical data. 

-             

 
is the relative storage level of the snow reservoirs in the end of week  .  

-            is the level of regulated hydro power production in week   relative to the 

installed turbine capacity. For a particular value of           , the equation should return 

the water value to the marginal hydro unit producing. 

-                  are parameters to be estimated. 

-           is the season index. Season 1 is the snow melting period (summer season), 

characterized by high inflow and increasing hydro reservoirs. Season 2 is the snow 

accumulation period (winter season), when inflow is low relative to demand and the 

hydro reservoirs are declining. 

 

Seasonality is partly accounted for by the factor approximating plant characteristics, since the 

regulated generation level is highest in the winter season. Seasonally dependent parameters are 

included in order to test whether further seasonal adjustment is needed. The decrease in water 

value for high relative storage levels and low generation levels is not modeled in (29), but 

accounted for through the division of unregulated and regulated inflow.  

 

 

                                                 
16

 Since the price elasticity of consumption is assumed to be zero. 
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Statistical benchmark: Artificial neural network 

Despite (29) is formulated according to fundamental considerations, selection of the exact 

functional form is based on judgment only. To get an idea of how well the formulation performs, 

we compare (29) with a statistical model using the same input variables. Due to the nonlinear 

relationship between the water value and the explanatory variables, an artificial neural network 

will be used as benchmark.  

An artificial neural network consists of neurons organized in parallel layers: An input layer, one 

or more hidden layers and an output layer. As illustrated in Figure 4, each neuron in the hidden 

and output layers takes a set of inputs (including a constant bias), forms a weighted sum and 

transforms the sum through a transfer function. The use of nonlinear transfer functions makes the 

network able to map the nonlinear relationship between the water value and the input variables. 

The appropriate mapping is found by training the network. During training, the input weights for 

each neuron are adjusted using a backpropagation algorithm. The final weights depend on the 

initial weights assigned to the inputs. (Bishop, 1995; Hassoun, 1995) 

As (29) contains no lags of the water value or the inputs, we will use a feedforward network 

without input delays. Only one hidden layer will be applied. More hidden layers increase the 

amount of data needed to calibrate the network, and studies using neural networks to model 

electricity prices have found that one hidden layer is appropriate (see e.g. Catalão et al. (2007) 

and Pao (2007)). To find a well-performing network, several networks with different 

combinations of initial input weights and number of hidden neurons must be tested.  

 

Figure 4. Artificial neural network structure 
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Reservoir balance 

To keep track of the hydro reservoir, the following reservoir balance is used: 

                                                         (30) 

 

The change in reservoir level from period     to period   is calculated as inflow less hydro 

generation (regulated and unregulated) and spills in the period. Spills arise when reservoirs are 

full or when hydro producers release water without producing in order to prevent full reservoirs.  

2.5 Exchange 
The Nord Pool system price is influenced by electricity exchange with the Netherlands, 

Germany, Poland, Estonia and Russia. In this section, we consider possible approaches to model 

exchange. Characteristics of the price in the markets connected to Nord Pool, presented in 3.4, 

will later be used to select suitable exchange models for each market. 

Electricity exchange between two markets is influenced by the price difference and restricted by 

transmission capacities. As an illustration, consider two connected markets M1 and M2 during a 

short time period when the prices are constant in both markets. A domestic market equilibrium 

with higher price in M1 (   ) than in M2 (   ) will lead to exchange from M2 to M1. Parts of the 

demand in M1 are then covered by M2, and the need for domestic supply in M1 is reduced. 

Hence, the demand curve shifts to the left on the merit order in M1, whereas it shifts to the right 

in M2. This implies lower price in M1 and higher price in M2, compared to a situation without 

exchange. The exchange volume is either the volume which equalizes the prices or equal to the 

transmission capacity (Wangensteen, 2007).  

In case of     constantly higher or lower than    , the exchange will be equal to the available 

capacity in every period. Historic exchange volumes, reflecting the average available capacity, 

can then be used to forecast future exchange.  

With     and     in the same range, the domestic market equilibrium and the shift in demand 

curves caused by exchange must be computed for each period. As spot prices are cleared with 

hourly steps, the period length should ideally be one hour. To reduce computing time, we will 

aggregate hours in the week for which prices are approximately equal. The selection of these 

periods is elaborated in Chapter 2.6. When using this approach, we assume that exchange 

between Nord Pool and the connected market influence the price in Nord Pool only. Exchange 

can then be modeled without considering the merit order of the connected market. Due to the 

size of the continental markets connected to Nord Pool, this approximation is reasonable.  

Compared to the above multi-period approach, a more straightforward way to estimate weekly 

exchange levels is to specify a simple linear model:  

                                                               (31) 
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Net import
17

 to Nord Pool is thus modeled as a function of the difference between the weekly 

averages of the Nord Pool system price and the foreign price    ).      incorporates changes in 

installed capacity, while       and       restrict the feasible range. The equation is calibrated 

using historical exchange volumes. While simple, this single-period approach is likely to have 

significant drawbacks: With high price variations during the week, the difference in average 

prices may have limited ability to explain exchange volumes. In both the multi-period and 

single-period approach, we neglect the impact of transmission fees on exchange volumes. 

To forecast available exchange capacity, a stochastic process for cable outages similar to the 

nuclear outage model would be the most accurate approach. To keep the number of stochastic 

factors at a computationally acceptable level, available capacity will instead be forecasted by the 

historical average availability of cables in operation at the end of the estimation period.  

As several of the markets connected to Nord Pool are highly interconnected, aggregation of 

markets by using a common reference price can reduce the complexity of the exchange model 

without significant loss of accuracy.  

2.6 Load periods 
The intraweek variation in consumption makes different generation units to be marginal, and 

hence the price to vary in a similar pattern. Consequently, the merit order should be evaluated for 

different subperiods of the week. In the EMPS model, weekly consumption estimates are 

typically divided into four to eight load periods using relative factors (Doorman, 2009; 

Matilainen et al., 2009). In addition to consumption, we apply this approach to capture the 

intraweek variation in the EEX price. The intraweek EEX estimates will then be used to forecast 

exchange when using the multi-period approach. For computationally simplicity, the same 

subperiods will be applied to consumption and the EEX price.  

We will select load periods such that the historical average consumption and EEX profiles can be 

replicated in an acceptable way. The relative factors for each period are then calculated as the 

levels which minimize the squared deviation between the factor and historical values. 

Restrictions are applied to ensure consistency with the aggregated weekly forecasts. 

For consumption, minimization of the squared deviation yields: 

                
 

               

 (32) 

 

  is the set of all subperiods within the week,   is the set of the historical weeks used in 

calibration of the relative factors and   is the set of all hours in the week. The relative 

consumption      is the actual consumption in hour  , week   and period   divided by the average 

                                                 
17

 Total import less total export. 
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consumption in week  .     is the estimator for the relative consumption in period  . The sum of 

consumption estimates in all subperiods during the week must equal the total weekly (forecasted) 

consumption, which is equivalent to: 

        

     

 (33) 

 

  is the number of hours per week, while    is the length of period  . The Lagrange 

formulation of (32) - (33) and the corresponding optimality conditions are attached in Appendix 

A.1. 

The similar procedure applied to the EEX price gives the following optimization problem: 

                        
 

               

 (34) 

            

     

 (35) 

 

The relative EEX price          is defined as the actual price in hour  , week   and period   

divided by the average price in week  .         is the estimator for the relative price in period  . 

The constraint (35) ensures that the weighted average of intraweek prices equals the forecasted 

weekly average price.  

2.7 Market equilibrium 
When simulating the system price, the models for generation, consumption and exchange are 

combined to find the market equilibrium. The generation levels of nuclear, CHP industry, CHP 

district, unregulated hydro and wind power are assumed to be independent of the price, as 

previously described. Together with exchange with markets characterized by prices constantly 

above or below the Nord Pool price, these technologies are stacked to the left of the merit order. 

The marginal water value curve is then combined with condensing generation to form an 

aggregated supply curve of the price dependent technologies.  

A preliminary price is found by calculation of the intersection with the consumption curve. This 

market equilibrium is adjusted to account for exchange with markets whose prices are in the 

same range as the Nord Pool price, such as the German market. As explained in 2.5, the 

exchange forces a shift of the demand curve. In the particular example illustrated by Figure 5, the 

foreign price (the EEX price) is higher than the preliminary Nord Pool price, and the demand 

curve is shifted to the right. As equalization of prices is impossible given the exchange capacity, 

the exchange volume becomes equal to the capacity.  



26 

 

If demand exceeds the maximum level of supply, load shedding occurs. The value of lost load 

will not be modeled, but is instead set to 1000 EUR/MWh, well above the marginal costs for 

hydro and condensing power. 

The above procedure is repeated for each subperiod of the week, during all weeks, for all price 

scenarios. As the water value curve is assumed to depend on the end-of-week hydro reservoir, all 

intraweek equilibriums are solved simultaneously. The weekly system price is calculated as the 

weighted average of the intraweek prices. 

 

Figure 5. Conceptual merit order example 
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3. Data 
Data are collected from Denmark, Finland, Norway and Sweden, and then aggregated to 

representative levels for the whole Nord Pool area. Time series are converted to weekly basis and 

divided into an estimation period and a forecast period. In order to enable out-of-sample 

forecasts for two years, the forecast period commences week 27, 2008.  

3.1 Consumption modeling 
Information on time series which may be applied in consumption modeling is summarized in 

Table 1, including period, granularity and source.  

Table 1. Consumption data 

Description Period Granularity Source 

Consumption 2000-2010 Hourly Nord Pool Spot 
Temperature, Norway 1993-2010 Daily Norwegian Meteorological Institute 
Temperature, Finland 1993-2010 Daily Finnish Climate Centre 
Temperature, Sweden 1993-2010 Daily Swedish Meteorological and 

Hydrological Intitute (SMHI) 
Temperature, Denmark 1993-2010 Daily SMHI 
Day length - Daily Norwegian Water Resources and 

Energy Directorate (NVE) 
Heating oil prices 2000-2010 Monthly Statistics Norway 
Retail trade index, Norway 2000-2010 Monthly Statistics Norway  
Retail trade index, Sweden 2000-2010 Monthly Statistics Sweden 
Retail trade index, Finland 2000-2010 Monthly Statistics Finland 
Retail trade index, Denmark 2000-2010 Monthly Statistics Denmark 

 

Daily mean temperatures over 17 years are collected for locations which are assumed to be 

representative for the respective countries. The most populated locations are chosen, since the 

temperatures are to be applied in consumption modeling. Coast climate are characteristically for 

all these sites, which may be disadvantageous due to more varying inland temperatures.  

The temperature in Stockholm is collected from Sweden, whereas the temperature in Harmaja, 

near Helsinki, is used for Finland. In lack of available Danish data, the temperature in Malmö is 

assumed to reflect the temperature in Copenhagen. For Norway, temperatures in Oslo, Bergen, 

Værnes and Tromsø are weighted according to population in the region in which they are 

located.  

Since HDD is applied instead of temperature, modeled consumption will only be affected by 

temperatures below the critical temperature. The critical temperature is selected as 16 degrees 

Celsius, consistent with Johnsen and Willumsen (2010). Daily HDD values for each country are 

summed up to weekly figures and the four series are weighted according to consumption in the 

respective countries. This leads to weekly accumulated weighted HDD, illustrated in Figure 6.  
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Figure 6. HDD time series 

Data for day length (time from sunrise to sunset) is collected for each day of the year. Retail 

trade indexes are weighted due to consumption in each country, and a 12 month moving average 

will be used as an indicator of the trend in consumer expenditures. Heating oil can act as a 

substitute for electricity, and the development in heating oil prices is illustrated in Figure 7. The 

rapid growth in the end of the estimation period complicates modeling of the further progression. 

Representative wind speed data for the whole area is hard to obtain, and will not be implemented 

in the model.  

 

Figure 7. Heating oil price index time series 

A consumption model based on an appropriate selection of these data will be compared with the 

real consumption series in Figure 8. Consumption and HDD have similar seasonality, suggesting 

that HDD is the most important explanatory variable. Consumption figures include TSO 

consumption, i.e. system losses.  

 

Figure 8. Consumption time series 

 

HDD

W
e

e
k
ly

 a
c
c
u

m
u

la
te

d
 w

e
ig

h
te

d
 H

D
D

1995 2000 2005 2010

0
5

0
1

0
0

1
5

0
2

0
0

Heating Oil

H
e

a
ti
n

g
 o

il
 p

ri
c
e

 i
n

d
e

x

2000 2002 2004 2006 2008 2010

1
5

0
2

0
0

2
5

0
3

0
0

Consumption

C
o

n
s
u

m
p

ti
o

n
 [
G

W
h

/w
e

e
k
]

2000 2002 2004 2006 2008 2010

5
0

0
0

7
0

0
0

9
0

0
0



29 

 

3.2 Hydrology  
A brief summary of collected hydrological data (inflow, snow reservoirs and hydro reservoirs) is 

presented in Table 2. 

Table 2. Hydrological data 

Description Period Granularity Source 

Inflow 1995-2010 Weekly Nord Pool Spot 
Snow reservoirs, Norway 1993-2010 Daily NVE 
Median culmination, Norway 1971-2000 - NVE 
Median culmination, Sweden 1981-2005 - SMHI 
Hydro reservoirs, Norway 1993-2010 Weekly NVE 
Hydro reservoirs, Sweden 1993-2010 Weekly Svensk Energi 
Hydro reservoirs, Finland 1993-2010 Weekly Finnish Environment inst.  

 

Total weekly inflow to the hydro reservoirs in Norway, Sweden and Finland is plotted in Figure 

9. Due to snow melting, inflow levels are highest from April and throughout the spring and 

summer. The inflow may still be high in the autumn, depending on precipitation levels. From the 

end of November, precipitation falls mainly as snow in the mountain areas and inflow levels 

remain low until snow melting starts.  

 

Figure 9. Inflow time series 

Figure 10 illustrates historical energy content of the Norwegian snow reservoirs which drain to 

hydro reservoirs. End-of-week energy content is graphed as a percentage of median culmination. 

The median culmination is the maximum value of the annual profile of median snow reservoirs, 

based on data from 1971 to 2000. Snow reservoirs are generally overestimated throughout the 

year, and NVE therefore set the energy content to zero each autumn to avoid escalating levels in 

the data (Holmquist, 2010). For that reason, a rapid decrease in reported reservoir levels appears 

at this time some years. In order to convert the energy content into TWh, the values are 

multiplied by the median culmination. The median culmination in Norway is no easy factor to 

decide due to lack of measurements, and consequently a major source of error. It is probably 

between 40 and 70 TWh (Holmquist, 2010), and 60 TWh will be applied in our model, similar to 

Johnsen and Willumsen (2010).  
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Figure 10. Snow reservoir time series 

Calculations by SMHI indicate a median culmination of approximately 24 TWh in Sweden 

(Johansson, 2010). Historical time series for the energy content of snow reservoirs in Sweden 

was not available, and the Norwegian time series is thus assumed to be representative for 

Sweden. There is also lack of time series for snow reservoirs in Finland. Due to different 

topography and lower levels of hydropower generation, neglecting the Finnish snow reservoirs 

should not be a significant source of error. Hence, the total snow reservoir is calculated by 

multiplying the relative energy content of Norwegian reservoirs by 84 TWh.   

The end-of-week aggregated hydro reservoir level for the three hydropower nations is presented 

in Figure 11. Logically, the seasonality is opposite to that of the snow reservoirs. Data for hydro 

spillage and the division between regulated and unregulated inflow are not found.  

 

Figure 11. Historical hydro reservoir levels 
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3.3 Generation modeling 
Historical fuel prices and generation levels as well as plant characteristics will be applied in 

generation modeling. Table 3 gives an overview of the collected data. 

Table 3. Generation data 

Description Period Granularity Source 

Electricity generation per technology, Finland 2000-2010 Weekly Finnish Energy Industry 
Electricity generation per technology, Sweden 2000-2010 Weekly Svensk Energi 
Electricity generation per technology, Denmark 2000-2010 Hourly Energinet.dk 
Electricity generation, Norway 2000-2010 Weekly Nord Pool Spot 
Nuclear outages 2000-2010 - Nord Pool Spot UMM 

Service 
Generation at the Barsebäck plant 2000-2005 Weekly Vattenfall 
Coal spot prices 2000-2010 Weekly McCloskey 
Gas spot prices  2000-2010 Daily Reuter Ecowin,  

Nord Pool Gas 
CO2 futures prices 2005-2010 Daily NASDAQ OMX 

Commodities Europe 
Capacities, efficiencies, operating costs and 
emissions for condensing plant categories 

- - Thema Consulting Group, 
SKM Market Predictor 

 

Historical electricity generation from the different technologies is illustrated in Figure 12. Hydro, 

CHP district and nuclear generation vary in a seasonal pattern, peaking during the winter. 

Condensing generation is less seasonally dependent, CHP industry generation is almost constant, 

whereas wind generation is random.  

Norwegian generation is dominated by hydro power, with a share of 98.6% in 2008 (Nordel, 

2009). As an approximation, the entire Norwegian generation is assumed to stem from this 

category. Time series for hydro, nuclear, condensing, CHP district, CHP industry and wind 

generation are collected for Sweden and Finland. Generation data from Denmark is separated 

into central generation, decentral generation and wind generation (Energinet.dk, 2010). 

According to Rasch (2010), decentral generation mainly stems from municipal CHP units. 

Danish CHP industry generation is small, there is no nuclear power and hydro power is 

negligible (Nordel, 2009). Therefore, condensing generation is set equal to the central 

generation.  

The nuclear generation curve has an uneven shape because of plant outages. Information 

concerning frequency, size and duration of forced outages are collected from Nord Pool Spot's 

Urgent Market Message (UMM) archive. Only outages lasting at least one day are considered. 

Additionally, separate generation data from the Barsebäck nuclear plant is gathered. Barsebäck 

closed in 2005, and the historical mean generation level applied in our model is adjusted for the 

capacity reduction associated with this shutdown.  
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Figure 12. Generation per technology 

Coal, gas and CO2 quota prices are required in modeling of marginal costs for condensing units. 

Time series for steam coal prices in USD/ton delivered CIF (including cost, insurance and 

freight) within the ARA (Antwerpen/Rotterdam/Amsterdam) zone are collected
18

. Differences in 

freight rates to the ARA zone compared to plants in the Nord Pool area will be neglected. 

Natural gas prices on the EEX market are used throughout the estimation period, whereas prices 

on the Nord Pool Gas exchange are considered past mid 2009, when the liquidity in this new 

market had improved. Figure 13 shows a rapid growth in the fuel prices prior to the end of the 

estimation period, complicating modeling of the further price path.  

 

Figure 13. Fuel price time series 

 

EUA (European Union Allowance) futures prices for CO2 emissions in EUR/ton are illustrated in 

Figure 14. In particular, the curve corresponds to current futures prices at NASDAQ OMX 

Commodities whose time to expiry is shortest, as from the European CO2 market was 

established. There is an increasing trend in the price until April 2006, when it suddenly drops by 

more than 50 percent in three days due to news regarding lower than expected CO2 emissions. 

Some nations had reported too high emissions in order to receive large quotas, which led to 

oversupply (Bjerke, 2006; Daskalakis et al., 2009). The price declines further due to the low 

scarcity of quotas, until the second phase of the European Union Emission Trading Scheme (ETS 

2) commenced in 2008. The jump diffusion behavior pointed out by Daskalakis et al. (2009) is to 

a high extent tied to the price drop in April 2006. Neglecting the possibility for such events, 

approximating the price process as an ordinary Geometric Brownian Motion seems reasonable. 

                                                 
18

  In order to convert the prices to EUR/MWh, they are divided by the corresponding USD/EUR 

exchange rate and a heating value of 7 MWh/ton, suggested by Nyland (2011). 
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Figure 14. CO2 futures prices 

Figure 15 gives an overview of generation capacities for each condensing plant category. 

Efficiencies, operational costs and CO2 emissions are specified for these categories, based upon 

estimates by Thema Consulting Group (2011) and SKM Market Predictor (2011). Aggregated 

plant data are associated with uncertainty, and the chosen estimates are not necessary identical to 

those used in other power market models. Variable operational costs are approximated to 3 

EUR/MWh, except for peak load units (gas turbines) where costs of 25 EUR/MWh also reflects 

capital costs and costs associated with staying idle. A carbon content of 0.34 ton per MWh input 

is used for coal, whereas the corresponding value is 0.20 for gas. The efficiency is assumed to be 

54% for CCGT power plants, 39% for gas extraction plants and 35 % for peak load units. Coal 

condensing plants in Denmark are assumed to have an efficiency of 43%, somewhat higher than 

for Finish plants at 41%. Efficiencies of coal extraction plants are 42% and 40% in Denmark and 

Finland respectively. In particular, these figures represent average total plant-efficiencies at 

maximum output.  

 

Figure 15. Condensing generation capacities (Thema Consulting Group, 2011) 

As no aggregate availability statistics for condensing plants in the Nordics are found, the average 

energy availability for fossil fueled units in Germany from 2000 to 2007 of 86.2% is applied to 

the model (VGB, 2010). 
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3.4 Exchange 
Historical exchange data, transmission capacities and spot prices are collected (Table 4). Figure 

16 displays net electricity import from each country connected to Nord Pool. Electricity spot 

prices in Nord Pool, Germany
19

 and Poland
20

 are plotted in Figure 17. Another view of the 

German price is presented in Figure 18, which shows the annual EEX price variation during the 

estimation period. 

Table 4. Exchange and price data 

Description Period Granularity Source 

Exchange with connected markets 2000-2010 Weekly Nord Pool Spot 
Transmission capacities  2000-2008 - Nord Pool Spot, Nordel, 

Energinet.dk  
Nord Pool system price 2000-2010 Hourly Nord Pool Spot 
EEX spot price 2000-2010 Hourly EEX 
POLPX (IRDN) spot price 2000-2010 Weekly Polish Power Exchange 

 

 

Figure 16. Net import time series 

 

Figure 17. Nord Pool, EEX and POLPX spot price time series 

                                                 
19

 The Phelix price at the European Energy Exchange (EEX), here referred to as the EEX price. 
20

 The IRDN index at the Polish Power Exchange (POLPX), here referred to as the POLPX price. 
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Figure 18. Annual EEX price paths  

Germany 

As evident from Figure 17, the EEX price has a higher mean and is more volatile than the Nord 

Pool price. The average price is highest during the winter season (Figure 18), a seasonality which 

seems to be more tied to increased frequency of spikes than higher base prices. Also apparent is 

the fast mean reversion after price jumps, indicating that spikes are more relevant to model than 

regime-switching jumps.  

Exchange volumes presented in Figure 16 are consistent with the price behavior: The exchange 

varies to a large extent, although the volumes are positive in direction of Germany over time. 

Large transmission capacity enables the high exchange volumes: Onshore interconnections, the 

Kontek cable and the Baltic cable have a total capacity of 2100 MW to Nord Pool and 2650 MW 

from Nord Pool. However, the effective capacity of the Baltic cable is reduced because of 

limitations in the German network (Nordel, 2009). 

The Netherlands 

The NorNed cable has been in operation between Norway and the Netherlands since May 2008, 

with a capacity of 700 MW (NordREG, 2008). The Dutch spot price (APX spot) exhibits a 

strong degree of correlation with the EEX price (Morsy et al., 2008), and consistently net 

exchange volumes are variable over time (Figure 16). Given this strong correlation and the 

modest capacity, it is reasonable to use the EEX price as reference in modeling of exchange with 

the Netherlands.  

Poland 

The POLPX price remained relatively stable during most of the estimation period, but the 

volatility and the correlation with the EEX price increased considerably in the end. The 

correlation was 71% from 2007 to the end of the estimation period, compared to 34% from 2000 

to 2007. Nord Pool is connected to Poland via a 600 MW submarine cable, the SwePol link, 

which entered operation in June 2000 (NordREG, 2008). Introducing the Polish spot price as a 

separate stochastic factor may not be beneficial due to the size of the interconnection and the 

increased correlation with EEX.  
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Russia  

Finland is connected to Russia by a total capacity of 1400 MW (NordREG, 2008). Due to 

technical restrictions, import to Finland is possible only (ENTSO-E, 2010). Exchange is possible 

in both directions between Norway and Russia, but the capacity is limited to 50 MW. There is an 

electricity surplus in northwestern Russia, and generation is dominated by low-cost nuclear 

power. The prices are consequently lower than in the Nordics, typically around 20 EUR/MWh 

(Eliassen, 2011). For that reason, import levels are close to the maximum capacity throughout 

the year, except for maintenance periods typically taking place in the summer. Due to the low 

Russian electricity prices, forecasting exchange by historical volumes is appropriate.  

Estonia
21

  

A 350 MW interconnection (Estlink) links Finland to Estonia (NordREG, 2008). The import 

from Estonia is stable during the winter, but tends to be more variable in the summer. Due to a 

power surplus (EIA, 2011), electricity prices in Estonia are among the lowest in Europe. For 

instance, industrial power prices were the third lowest among the EU member states in 2006 

(European Commission, 2007). Given spot prices below those in Nord Pool, historical exchange 

volumes can be used to predict future exchange.  

Available capacities  

When using the multi-period approach, historical average available capacity of connections in 

operation at the end of the estimation period will be applied to restrict exchange volumes. 

Average available capacities between Nord Pool and the Netherlands, Germany and Poland are 

compared to installed capacities in Table 5, whereas the time series of available capacity is 

illustrated in Figure 19. The variability for some of the connections indicates that using average 

available capacities is a rather crude method to restrict exchange volumes.  

Table 5. Transmission capacities for connections between Nord Pool and                                                    

the Netherlands, Germany and Poland, January 2007 – June 2008. 

 Installed capacity (MW) Average available capacity (MW) 
 To Nord Pool From Nord Pool To Nord Pool From Nord Pool 

SwePol Link22 600 600 98 468 
Baltic cable 600 600 509 392 
Denmark West - Germany 950 1500 920 1316 
NorNed cable 700 700 668 668 
Kontek cable 550 550 441 435 
Total 3400 3950 2636 3280 

 

                                                 
21

 Note that the Estonian power market is moving in direction of deregulation, and Estonia was included 

in the Nord Pool Spot area in April 2010 (Nord Pool Spot, 2011c). 
22

 The available capacity of the SwePol link has been reduced because of grid constraints in Poland and 

Sweden (Andruszkiewicz, 2010). 
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Figure 19. Transmission capacities between Nord Pool and the Netherlands, Germany and Poland  

3.5 Intra-week consumption and prices 
The shapes of historical weekly load profiles are illustrated in Figure 20. Consumption follows 

approximately the same pattern all weekdays, whereas weekend levels are somewhat lower. The 

average profile of the Nord Pool system price is plotted together with the load profiles, both 

scaled by the weekly average level. The average price and consumption profiles are highly 

correlated; indicating that consumption is the main driver behind intraweek price differences. 

 

Figure 20. Historical intraweek load profiles 

Figure 21 displays the variation in the EEX price within the week. Compared to Nord Pool, the 

peak price (and consequently peak consumption) appears later in the day. The higher variation in 

the average EEX profile is tied to the use of hydro reservoirs to smooth out price differences in 

the Nord Pool area. 

 

Figure 21. Historical intraweek EEX price paths  
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4. Estimation 
Each part of the framework described in Chapter 2 is modeled by either a statistical equation, a 

fundamental equation or as an integral part of the price simulations (Table 6). For the statistical 

and fundamental equations, statistical software are applied to find optimal coefficient estimates. 

Time series models are calibrated in R, whereas other estimations are performed in EViews. 

MATLAB is used for simulations of stochastic factors and calculation of the market equilibrium, 

including determination of system price, hydro generation, condensing generation, hydro 

reservoirs and exchange. Source code is attached in Appendix B. 

Table 6. Overview of the modeling approach 

Model Modeling approach 

 Statistical 
equation 

Fundamental 
equation 

Within simulation 
model 

Stochastic factors X   

Consumption X   

CHP industry generation  X  

CHP district generation  X  

Condensing generation   X 

Hydro power generation   X 

Water value  X  

Exchange  X X 

 

As the total number of simulations grows exponentially with the number of scenarios for each 

stochastic factor, the number of scenarios for each factor is kept relatively low (Table 7). In total, 

22 500 scenarios for the system price are simulated. The computation time is approximately 1.5 

seconds for each market equilibrium scenario path (108 weeks), using a PC with a CPU of 3.33 

GHz and a RAM of 3.8 GB. 

Table 7. Number of scenarios for each stochastic factor 

Stochastic factor Number of scenarios 

Inflow23 5 

Snow reservoirs 5 

HDD 5 

EEX price 5 

Nuclear generation 5 

Wind power generation - 

Coal price 4 

Natural gas price 3 

CO2  quota price 3 

                                                 
23

 Each inflow scenario corresponds to a snow reservoir scenario. 
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The statistical models are evaluated based on tests for stationarity, parameter stability, residual 

autocorrelation and residual distribution. For the simple fundamental equations, it is likely that 

not all relevant explanatory variables are included. Thus, residuals will typically exhibit 

autocorrelation. The parameter estimates are still unbiased when residuals are autocorrelated, but 

standard error estimates are generally not correct (Brooks, 2008). Therefore, t-ratios cannot be 

used to assess parameter significance. The practical consequences of this are limited; since the 

fundamental models are selected according to an underlying theory, all included parameters 

should be significant.  

4.1 Stochastic factors  

4.1.1 HDD 
As outlined in 2.1.1, a SARIMA(p,d,q)(P,D,Q)S model with   = 1,   = 52 and     ≤ 1 is 

selected in order to capture the seasonality in the HDD time series. Models are estimated for all 

possible combinations of AR and MA lags, up to an upper limit of 9 lags, using maximum 

likelihood estimation. In case of autocorrelated residuals, the estimated model is rejected. From 

the remaining models, the one with lowest value of Akaike's information criterion is selected. 

The script for implementation of this procedure in R is attached in Appendix B. 

The Ljung-Box test is applied to detect autocorrelation in the residuals. The null hypothesis of no 

autocorrelation until lag   is rejected if the p-value is less than 10%. The parameter   is set to 

5% of the length of the series, as the test starts to deteriorate when number of lags exceeds this 

level (Burns, 2002).  

Stationarity of the seasonally differenced HDD series is tested with the Augmented Dickey-

Fuller test. Schwarz’ information criterion is used to choose the lag length. As the test yields a p-

value less than 1%, the null hypothesis of non-stationarity is rejected. We therefore start to 

consider models without non-seasonal differencing.  

Without non-seasonal differencing, none of the evaluated models pass the Ljung-Box test.  

Following the suggestion of Brooks (2008), non-seasonal differencing (  = 1) is applied to 

remove autocorrelation. As deseasonalized HDD is stationary and follows a mean-reverting 

process, adding non-seasonal differencing may lead to overdifferencing. Overdifferencing is 

typically characterized by a first lag autocorrelation of -0.5 or less (Nau, 2010). For the 

differenced HDD series, the first lag autocorrelation is well within this limit (-0.32), and we 

assume overdifferencing is avoided.  

A model with 6 AR-terms, 6 MA-terms and an SMA-term is selected. Due to the SMA term, the 

model can be interpreted as a seasonal exponential weighted moving average (EWMA) model. 

The weights applied to observations in previous seasons decline exponentially, and are given 
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by   
          where   is the number of seasons back in time (Pankratz, 1991). Since the 

SMA coefficient equals -1, all past seasons are given equal weight in the forecast. Table 8 

summarizes the coefficient estimates.   

Table 8. Coefficients in the HDD model 

AR1 AR2 AR3 AR4 AR5 AR6  
0.5203 -0.0634 -0.299 -0.0866 0.6954 -0.1545  

MA1 MA2 MA3 MA4 MA5 MA6 SMA 
-1.0863 0.1355 0.3178 -0.0362 -0.9782 0.6473 -1 

 

Characteristics of the residuals are presented in Appendix A.2, including sample autocorrelation 

function (SACF) plot, normal quantile plot and Ljung-Box p-values for different number of lags. 

The Ljung-Box test indicates no autocorrelation in the residuals for the selected lag length and 

significance level. A Shapiro-Wilk normality test yields a p-value near zero, and the null 

hypothesis of normally distributed residuals is clearly rejected. This conclusion is supported by 

the density plot (Figure 22), which reveals that the residual distribution has excess kurtosis and 

fat tails. Normally distributed residuals are not critical for obtaining good parameter estimates 

(Hipel et al., 1977), but standard error estimates assume normally distributed residuals (Brooks, 

2008). Hence t-ratios cannot be used to assess the significance of the parameters. All coefficients 

are therefore assumed significant and included the model.  

 

Figure 22. Density of HDD residuals 

 

A CUSUM test is performed to check the stability of the model parameters. The CUSUM chart 

(Figure A.10) indicates that the parameters of the HDD model are stable.  See Appendix A.3 for 

further details. 

The residual distribution will be used in simulation of HDD scenarios. Since the residuals are 

non-normally distributed, we use historical residuals to bootstrap an empirical distribution. For 

any distribution, percentiles are uniformly distributed (McDonald, 2006). Bootstrapping is 

therefore performed by drawing the residual corresponding to a given percentile generated from 

an       -distribution. Instead of using a pseudorandom number generator to simulate the 

-40 -20 0 20 40 60

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Density of HDD Residuals

D
e

n
s
it
y



41 

 

uniform distribution, we apply a Sobol sequence. A Sobol sequence is a low-discrepancy 

sequence of quasi-random numbers more evenly distributed than a similar series of pseudo-

random numbers (Glasserman, 2004). Due to the higher uniformity, a Sobol sequence is better 

suited to represent the       -distribution than pseudo-random numbers. The consequence is 

HDD scenarios converging more rapidly to the theoretical forecast, which is critical due to the 

low number of scenarios applied. 

The high number of historical observations indicates that the bootstrapping procedure will 

perform well. Alternatively, a theoretical distribution could have been fitted to the residuals or a 

Box-Cox transformation could have been applied to the HDD series in search for normally 

distributed residuals (Hipel et al., 1977).  

Figure 23 illustrates how realized HDD evolves compared to five simulated scenarios and the 

forecasted level. The forecast tracks the realized HDD well, except in the cold winter of 2010. In 

this period, the actual level was higher than all scenarios. The mean of the simulations are close 

to the forecasted level, indicating that a sufficient number of scenarios are simulated.  

 
Figure 23. HDD forecast and scenarios 

 

4.1.2 Snow reservoirs 
SARIMA models for snow reservoirs are estimated according to the procedure presented in 

4.1.1. Since the median culmination is uncertain (as pointed out in 3.2), we choose to model the 

relative energy content (   ) instead of the absolute reservoir level. The ADF test for the 

seasonally differenced data yields a p-value less than 1%, which confirms stationarity. 

Estimation of models without non-seasonal differencing leads to alternatives which pass the 

Ljung-Box test. However, we do not find any model whose parameters are proven to be stable, 

even not when increasing the lag length limit. A SARIMA(9,0,9)(0,1,1)52 model is chosen, as it 

has the lowest AIC value and the most promising CUSUM chart among the alternatives.  

The CUSUM chart (Appendix A.3) yields indications of instability, but we cannot conclude that 

the parameters are unstable at a 1% significance level. Natural time series are generally stable 

over time, and applying a longer historical series for calibration may result in stable parameter 

estimates. Given the high variation in snow reservoirs from year to year, stability problems are 

not unexpected when a limited number of years are available for calibration.  
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Coefficient estimates for the selected model are presented in Table 9. The residual characteristics 

(Appendix A.2) show that the residuals are non-normally distributed, while it is clear that the 

model pass the Ljung-Box test for the given specifications. 

Table 9. Coefficients in the snow reservoir model 

AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9  
0.0849 -0.1794 0.2637 0.3953 0.5084 0.3840 -0.0210 0.2229 -0.7998  

MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8 MA9 SMA 
1.2570 1.5101 1.3323 0.8607 0.1588 -0.4179 -0.6482 -0.9584 -0.2494 -0.9263 

 

Historical snow reservoirs (Figure 10) are near continually increasing in the snow accumulation 

period and continually decreasing in the snow melting period, a behavior not captured by 

SARIMA models. To explicitly model this behavior, scenarios could instead be drawn from 

historical snow reservoir paths. By using historical paths instead of a time series model, the 

correlation between the end of the estimation period and the forecast period will not be modeled. 

Therefore, we do not reject the SARIMA approach, but restrict the scenario generation process to 

only accept scenarios which are in accordance with the historical behavior. 

Five scenarios are simulated using the procedure presented in 4.1.1. Figure 24 illustrates 

realized, forecasted and simulated levels. The forecast fit reasonable well for the 2008-2009 

season, while the low snow reservoirs in the next season cause the forecast to fail.  

 

Figure 24. Snow reservoir forecast and scenarios 

4.1.3 Reservoir inflow  
The correlation between inflow and the change in snow reservoirs is -79% in the estimation 

period
24

, confirming that inclusion of snow reservoirs is advantageous in inflow modeling. Snow 

reservoir changes in week   and     are significant in explaining inflow in week  , as evident from 

the impulse response function (Appendix A.4). As a slight simplification, we will model inflow 

as a function of the change in the week   snow reservoir only (i.e.,         ).  

                                                 
24

 The coefficient is in the same range in the snow melting season and the snow accumulation season. 

Thus, we do not apply seasonally dependent coefficients in the inflow model. 
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First, a regression similar to (4) is estimated by ordinary least squares: 

                     (36) 

 

The seasonal lags of the residual autocorrelation function decay slowly, thus seasonally 

differencing of (36) is necessary. The new regression is:  

   
             

           
       

      
    (37) 

 

The ADF test applied to   
  yields a p-value close to zero, and non-seasonal differencing is not 

applied. A SARIMA model with 5 AR-terms, 7 MA-terms and an SMA-term is selected for   
  

according to the AIC criterion. Hence, the final model is: 

 

   
        

   
         

      
       

         
   

             
   (38) 

 

Residual characteristics (Appendix A.2) reveal that the residuals   are non-normally distributed. 

The plot of Ljung-Box p-values implies the model satisfies the requirements related to residual 

autocorrelation. Table 10 summarizes the coefficient estimates, which stability is confirmed by 

the CUSUM chart (Appendix A.3).  

 

Table 10. Coefficients in the inflow model 

AR1 AR2 AR3 AR4 AR5  βS%  
-0.4125 -0.0620 -0.1276 0.2660 0.8544  -6922  

MA1 MA2 MA3 MA4 MA5 MA6 MA7 SMA 
1.1251 0.6131 0.4190 0.0124 -0.9113 -0.5434 -0.1297 -0.8319 

 

We simulate five inflow scenarios, each corresponding to a snow reservoir scenario. The 

scenarios are simulated using bootstrapping of residuals and a Sobol sequence. Except for a 

period of extremely high inflow in the spring of 2010, the forecast is in the same range as the 

realization. The inflow forecast is calculated using forecasted snow reservoir levels as input.  

 

Figure 25. Inflow forecast and scenarios 
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A disadvantage by not applying a Box-Cox transformation to the inflow series is evident from 

the scenarios in Figure 25: The variance in simulated inflow during the summer is higher than 

what seems realistic from historical data (Figure 9). As implied by the historical series, the 

variance in inflow increases with the magnitude. The appropriate Box-Cox transformation may 

stabilize the variance of the series to be modeled, and also result in a residual distribution closer 

to the normal distribution (Hipel and McLeod, 1994). In this case, a logarithmic transformation 

is reasonable due to the rise in variance with the inflow level. However, we choose to not use 

Box-Cox transformations. The physical relationship between inflow and the change in snow 

reservoirs is linear, and a transformation will thus reduce the explanatory power of the dependent 

variable. Pianosi and Raso (2008) discuss this shortcoming of the transformation approach in 

more detail, and shows that values of the input variable exceeding the maximum value used in 

calibration can lead to significant overestimation of the inflow
25

.  

Modeling the variance structure of inflow is discussed in Chaper 4.8.1, where the impact of 

inflow on price variations is considered in detail. 

4.1.4 Wind power generation 
The ARIMA(p,d,q) process for wind power generation is estimated using maximum likelihood. 

Models are compared for different numbers of AR and MA lags. From models without 

autocorrelation in the residuals, the alternative with lowest AIC is chosen.  

Due to convergence problems, the logarithm of wind generation is modeled instead of absolute 

levels. The ADF test of the transformed series yields a p-value of 59%, and non-seasonal 

differencing is applied. A model with 5 AR-terms, 7 MA terms and a constant term is selected. 

The constant term implies an increasing trend in wind generation, reflecting the growth in 

installed capacity.  

Table 11. Coefficients in the wind power generation model 

AR1 AR2 AR3 AR4 AR5  Constant 
-0.2796 0.2150 -0.5375 0.0226 0.7752  0.0016 

MA1 MA2 MA3 MA4 MA5 MA6 MA7 
-0.3477 -0.5824 0.6080 -0.3118 -0.9671 0.5070 0.0941 

 

The residual characteristics (Appendix A.2) show non-normally distributed residuals, 

characterized by excess kurtosis and skewness. Results from Ljung-Box tests demonstrate that 

requirements concerning residual autocorrelation are satisfied. 

                                                 
25

 Pianosi and Raso (2008) forecast inflow with precipitation as the dependent variable, and use a 

deseasonalized ARMAX model instead of a SARIMA based dynamic regression model. The results are 

yet transferable to our case. Due to the shortcomings of the ARMAX method, they propose a nonlinear 

model which includes the dependent variable as a linear term. With a rather complicated calibration 

method required, we consider this approach to be outside the scope of our study. 
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Figure 26 displays some example scenarios along with the realized generation. Both simulated 

and actual generation levels oscillate randomly.  

 

Figure 26. Simulations of wind power generation  

 

4.1.5 The EEX spot price 
EEX spot prices are modeled by the mean reverting jump diffusion models proposed in 2.1.4. 

The common jump diffusion part is estimated before calibrating the different mean reversion 

parts. For numerical convenience, we choose to model the logarithm of the price.  

Spikes are removed from the series of historical logarithmic returns by implementation of a 

recursive filtration algorithm. Returns located outside a selected quantile level of the normal 

distribution fitted to the return series are removed. This process is repeated iteratively with 

remaining returns until no new spikes are identified (Clewlow and Strickland, 2000). Following 

Cartea and Figueroa (2005), the quantile level is defined such that returns with absolute values 

higher than three times the standard deviation are filtered. Properties of the identified spikes are 

summarized in Table 12. Prices are not deseasonalized, as the slightly higher prices in the winter 

season seemed to be a result of increased spike frequency, not higher base prices. 

Table 12. Spike properties 

Property Value 
Frequency,    0.05263 
Mean,    026 
Standard deviation,   

  0.7650 
 

Since the mean reversion process is a log-normal diffusion process (Guimarães Dias, 2008), 

returns should be normally distributed. The Shapiro-Wilk test demonstrates lack of normality for 

unfiltered returns. Removal of fat tails through filtration makes the normality assumption more 

realistic, albeit the null hypothesis still is accepted at the 1% level only. Normality is accepted at 

                                                 
26

 Robust estimation of the mean is difficult to obtain (Clewlow and Strickland, 2000), and consequently 

we define the mean to be zero. The data yielded a slightly negative mean of -0.0166. 
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the 5% level for spikes. Thus, assuming normally distributed jump sizes is reasonable. See 

Appendix A.5 for details.  

To estimate the discretization of the Ornstein-Uhlenbeck process (7), the following regression is 

specified: 

                                         (39) 

where               . 

The parameters are calculated according to Dixit and Pindyck (1994): 

         
    

    
 (40) 

                  (41) 

         
            

        
 
  

 (42) 

Parameter values turn out to be        = 3.437,    = 0.08292 and      = 0.1478. Figure 27 presents 

30 simulated price paths from the combined Ornstein-Uhlenbeck jump diffusion model. The 

simulated mean is reasonable close to the actual level, except for week 52 in 2009 and during the 

autumn of 2008. Notably, the realized price path experiences a lower spike frequency in the 

forecast period than in the estimation period. 

 

Figure 27. EEX scenarios created from the Ornstein-Uhlenbeck jump diffusion model 

 

The regression approach (39) for calibration of the Ornstein-Uhlenbeck model provides the 

maximum likelihood parameter estimates (Brigo et al., 2009). The likelihood function for the 

Ornstein-Uhlenbeck model is (based on Franco, 2003):  
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(43) 

 

Given the parameter estimates, the log-likelihood value is 574.15
27

, which will be compared to 

the log-likelihood of the geometric mean reversion model.  

For the discretization of the geometric mean reversion model, Yang and Yang (2008) derive the 

following likelihood function of the parameters: 

 

                   

  
 

           
 
   
   
   

     
  

     
   

       
  

       
    

   

  
(44) 

 

where                     is the vector of historical prices (except the start price   )
28

. 

 

In Appendix A.6, we derive the maximum likelihood parameter estimates from (44). For the 

proportional mean reversion speed  , we obtain: 
 

    
            

 
 

   
       

   
      

       
  

   
    

 
  

   
   
    

 
    

    
   

 (45) 

 

Given the estimate of  ,    and      
  are calculated as: 
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 (47) 

 

Numerical values are    = 0.02384,    = 0.08643 and      
 

 = 0.04038. Figure 28 displays the 

simulated price paths. As expected, spikes simulated by the geometric-mean reversion model 

revert faster than those simulated by the Ornstein-Uhlenbeck model. 

                                                 
27

 Note that a positive likelihood value is possible for a continuous distribution. 
28

 The vector   is not static due to spike filtration. Consider a spike at    . The term 
       

  
 is included 

in (44) to capture mean reversion after the spike, while the relative spike return 
       

    
 is not included. 
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Figure 28. EEX scenarios created from the geometric mean reversion jump diffusion model 

 

The log-likelihood value for the geometric mean reversion model (44) is 213.07. Since the 

Ornstein-Uhlenbeck jump diffusion model yields the highest log-likelihood value, it is selected 

to simulate the EEX spot price. Five randomly selected scenarios, displayed in Figure 27, will be 

applied in the market equilibrium simulations. 

After the peak period in 2008, the realized price reverts to a level near the historical mean. 

Consequently, the forecasts of both mean-reverting models fit the realized price well. As pointed 

out in 2.1.4, the equilibrium price level is dependent on e.g. fuel prices. Thus, the performance 

obtained by the mean-revering models may not be representative for other periods. Extending the 

model by adding fuel prices as explanatory variables is therefore a possible extension.  

 

4.1.6 Coal, gas and CO2 prices  
Gas and coal prices (Figure 13) as well as CO2 prices (Figure 14) started to fall rapidly in the 

beginning of the forecast period, caused by the financial crisis. No econometric model is able to 

predict the price fall related to this crisis, and forecasts will diverge tremendously from actual 

prices. Based on historical data, prices are expected to increase or fluctuate around the current 

level. In order to provide a realistic picture of the influence of coal, gas and CO2 prices on the 

electricity price, the processes for these prices are calibrated using realized data from the forecast 

period. The intention is to show how the electricity price distribution model works, not to create 

a valid forecast. If the latter is the objective, fuel prices must of course be modeled using 

historical prices.  
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CO2  prices 

CO2 prices are simulated according to (15), where the mean and variance of the log returns are 

estimated using data from the forecast period. Figure 29 shows three scenarios for the CO2 price.  

 

Figure 29. Scenarios for the CO2 price   
 

Coal and natural gas prices 

In order to capture the steep decrease in fuel prices in the forecast period, mean reverting 

scenarios are simulated around the actual prices. Figure 30 and 31 illustrate four scenarios for the 

coal price and three for the natural gas price, respectively.  

 

Figure 30. Scenarios for the coal price 

 

 

Figure 31. Scenarios for the natural gas price 
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4.2 Consumption 

4.2.1 Descriptive statistics  
Table 13 presents the correlations between consumption and relevant explanatory variables 

introduced in 2.2.1.  

Table 13. Correlations between consumption and explanatory variables 

Dependent variable Correlation 

HDD 95.6 % 
Day length -83.0% 
RTI 70.7 % 
Heating oil price 9.6% 

 

As apparent, consumption is closely tied to the HDD. The correlation with day length is also 

high. However, HDD and day length are correlated by a coefficient of -74%, which can cause 

collinearity problems in the estimations. The retail trade index (RTI) is compared with a 52-week 

moving average of consumption. The correlation of 71% demonstrates that the index is well 

suited to explain the growth pattern in consumption over time. Deseasonalized consumption 

values are used to assess the impact of heating oil prices. As the correlation is low and the rapid 

growth in the end of the estimation period makes forecasting of heating oil prices difficult, we 

exclude heating oil prices from the model. 

The scatter plot in Figure 32 adds further insight to the relation between consumption and HDD. 

The electricity consumption in the Nord Pool area seems to be around 6000 GWh per week when 

no heating is required, and  increases thereafter linearly with the HDD. 

 

Figure 32. Correlation between consumption and HDD 
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4.2.2 Error correction model 
The Augmented Dickey-Fuller test applied to the historical consumption series yields a p-value 

of 31%, hence the null hypothesis of a unit root cannot be rejected. While Johnsen and 

Willumsen (2010) found that the Norwegian consumption series in their study was stationary, we 

conclude that the Nordic consumption series is non-stationary. Consequently, an error correction 

model should be appropriate.  The following cointegration relationship is modeled: 

                                                             (48) 
  

where 

-      is the 12-month moving average retail trade index in week  . 

-     is the average day length in week  . 

-     ,           are holiday dummies for the summer holiday (3 weeks) and the Christmas 

holiday, respectively. 

-            are constants to be estimated. 

 

After estimating (48), the Engle-Granger test is applied to confirm that the estimated equation is 

cointegrated, i.e. that the residual series is stationary. Using a lag length of 31 based on the AIC 

criterion, the Engle-Granger test gives a p-value of 48%. Therefore, the null hypothesis of no 

cointegration cannot be rejected. If instead the SBIC criterion is used to select the lag length, a 

length of 3 is suggested, yielding an Engle-Granger p-value close to zero. This ambiguous result 

continues when applying the   -transformation to consumption and day length. 

Assuming that the variables are cointegrated, we estimate the whole error correction model (16). 

The residuals show clear signs of autocorrelation, even when multiple lags of the difference 

terms in (16) are applied. As a consequence of the autocorrelation problems and doubt whether 

the variables are cointegrated, we conclude that a dynamic regression model may be a better 

choice for our data. 

4.2.3 Dynamic regression model 
First, a regression similar to the cointegration expression in (48) is estimated by OLS: 

                                                              (49) 

 

An R
2
 value

 
of 97.3% indicates a good fit. A model with only HDD as input yields a fit of 92.1 

%, illustrating that HDD is the by far most influential variable.  

Seasonally differencing is applied, as the seasonal lags of the sample autocorrelation function for 

the residuals from (49) decay slowly. The residual series is stationary according to the ADF test 

(which yields a p-value close to zero), but non-seasonal differencing (   ) is applied to 

remove autocorrelation. The first lag autocorrelation of the differenced consumption series 



52 

 

(      ) is less than 0.5 (-0.26), and consequently there are no indications of overdifferencing. 

The new regression is: 

                                                    

                                    
   

       
           

(50) 

 

Not unexpected, the differenced day length and HDD series turn out to be collinear, and day 

length is excluded as an input to the model. Furthermore, the retail trade index and both holiday 

dummies are not significant in the new model. Therefore, the model has boiled down to a single-

input model with HDD as the only explanatory variable (51). With R
2 
at 75 % for the differenced 

model, the fit is still good
29

. 

 

                       
   (51) 

 

Evaluation of SARIMA models for    
  leads to a (6,1,8)(0,1,1)52 model, and the final 

consumption model is thus:  

                    
      

       
         

   

             
   

 

(52) 

Estimation results are summarized in Table 14, whereas Appendix A.2 contains the residual 

characteristics.   

Table 14. Coefficients in the consumption model 

AR1 AR2 AR3 AR4 AR5 AR6  βDR  

-1.7676 -1.3180 0.0099 1.1595 1.1227 0.2294  15.5028  

MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8 SMA1 

1.3333 0.2569 -1.0487 -1.4544 -0.6339 0.4766 0.2330 -0.0335 -0.9963 

 

Figure 33 compares forecasted consumption and realized levels. Note that forecasted, not actual, 

HDD is used as input. The forecast fits the realized consumption well, but the consumption is 

generally somewhat overestimated. The overestimation can be explained by the economic 

downturn following the financial crisis. Due to reductions in operating margins, power intensive 

industry reduced the consumption levels by permanent and temporary shutdowns (Hydro, 2010; 

Vattenfall, 2011). On the other hand, consumption is underestimated in the period from 

December 2009 to February 2010. This is due to the high HDD in this period, which is not 

captured by the HDD forecast. 

                                                 
29

 Remark that R
2
 for a differenced and an undifferenced model are not comparable. 
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Figure 33. Consumption forecast  

4.3 Thermal generation 

4.3.1 Nuclear power 
As explained in 2.3.1, the model for nuclear power generation consists of a deterministic part and 

a process for forced outages. The historical mean generation level throughout the year, adjusted 

for forced outages and the Barsebäck shutdown, is presented in Figure 34. As expected, 

generation levels are high and stable during the winter. The highest amount of planned outages 

occurs around week 23, when the inflow level from snow melting peaks, and in week 31-34 

(holiday period), when the consumption is low. 

 

Figure 34. Historical outage-adjusted mean nuclear generation level 

 

Table 15 displays historical failure rates
30

. The variation among the different reactors is quite 

high.  

 

 

 

                                                 
30

 Defined as the number of failures in the estimation period divided by the total time the reactor operated 

without failures. 
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Table 15. Estimated failure rates at nuclear reactors 

Reactor Failure rate (λE) 

Loviisa31 
0.001993 

Okiluoto31 
0.003587 

Oscarshamn 1 0.007017 
Oscarshamn 2 0.002287 
Oscarshamn 3 0.002927 
Forsmark 1 0.003368 
Forsmark 2 0.005864 

Forsmark 3 0.001294 
Ringhals 1 0.006361 
Ringhals 2 0.004747 
Ringhals 3 0.006164 
Ringhals 4 0.003606 

 

Since only outages lasting at least one day are covered, the Weibull distribution is fitted to 

historical repair times subtracted one day. The resulting distribution is characterized by a scale 

parameter    = 4.326 and a shape parameter    = 0.572. As    < 1, the expected remaining 

time to repair increases with the time the outage has lasted. In Figure 35, the fitted distribution is 

compared to the distribution of historical repair times. 

 

Figure 35. Weibull distribution fitted to repair times  

When simulating generation paths for the forecast period, failure and repair processes are 

discretized to daily resolution. Figure 36 illustrates the simulation results. The average of the 

simulated paths deviates from the historical mean at the start of the forecast period, due to an 

ongoing outage at Forsmark 2. After some weeks, the expected generation level converges to the 

historical mean. However, the fit between scenarios and realized generation is low. Throughout 

most of the forecast period, Swedish nuclear generation experienced serious operational 

                                                 
31

 Due to the low failure frequency at Loviisa and Okiluoto, the failures at the individual reactors at each 

plant are aggregated. 
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problems (NVE, 2010a; NVE, 2010d). Frequent outages and delayed restarts after maintenance 

resulted in realized generation lower than the historical minimum for long periods. Those events 

were impossible to foresee in advance, and our scenarios reflect the outage risk that seemed 

realistic at the end of the estimation period. In the market equilibrium simulations, five randomly 

drawn scenarios will be employed.  

 

Figure 36. Simulated nuclear generation in the forecast period (converted to weekly granularity) 

 

4.3.2 CHP industry 
CHP industry generation forecasted by the historical average is compared with actual generation 

in Figure 37. As evident, the historical mean provides a good prediction of future generation.  

 

Figure 37. Actual and forecasted CHP industry generation 
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4.3.3 CHP district 
Figure 38 illustrates the strong correlation 

between weekly CHP district generation and 

weekly HDD, and thus backs up the functional 

form of the models proposed in 2.3.3. The 

models (22) and (23) are estimated by ordinary 

least squares. Limiting the maximum 

generation does not improve the goodness of 

fit. Model (23) is therefore preferred, with a fit 

of 96%: 

                             
   

    
     (53) 

 

CHP district generation is forecasted by 

inserting the HDD forecast into the above 

model. Figure 39 illustrates the forecasted 

generation compared to the actual. In the first 

year, the forecast fits the realized values well. 

The generation is underestimated during most 

of the second year, as result of a HDD forecast 

below the actual levels. 

 

Figure 38. CHP district generation versus HDD 

 

 

Figure 39. CHP district generation forecast 

In the market equilibrium simulations, the maximum allowable generation level will be specified 

as equal to the capacity.  

4.4 Hydro generation and the marginal water value 
Equation (29) is a model for the market water value curve. Given a particular level of regulated 

hydro generation as input, the equation should return the water value to the marginal hydro 

producer. As water values are not public available information, several assumptions must be 

introduced when calibrating the equation.  
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First, we assume a hydro plant is the marginal unit which bid is accepted. In reality, also 

condensing plants or import from EEX may clear the market. To increase the likelihood of the 

assumption being valid, we will approximate water values using prices from the NO1 price area, 

where the share of hydro power is high.  

The short run marginal cost of condensing plants is assumed constant during a week. Since the 

water value curve is modeled as a function of the end-of-week hydro and snow reservoirs, the 

only explanatory variable changing during the week is the level of regulated hydro generation. A 

reasonable approach would therefore be to calibrate the equation using generation levels and area 

prices for each hour of the week. 

However, data on hydro generation was found with weekly granularity only. Thus, the area 

prices used in calibration should reflect the water value to the marginal hydro producer during 

the week. Consistent with the assumption of hydro being the marginal technology, the maximum 

weekly area price can be used for calibration.  

A drawback by using the maximum weekly price is sensitivity to special circumstances, such as 

short-duration outages of plants or transmission lines. Such events can increase the maximum 

weekly price without affecting the total weekly level of regulated hydro generation to a high 

extent, and thus deteriorate the relationship between generation level and water value which we 

try to capture in the water value equation.  

To avoid such problems, we will use the median of the daily NO1 peak prices as our water value 

proxy. Choosing the median is founded on the approximation of constant daily profiles for 

regulated hydro generation within a particular week, except for the hours in which extraordinary 

events lead to deviations.   

As explained above, the shape of the modeled water value curve is constant during the week. A 

relatively constant water value curve over a week may also be a reasonable approximation in 

reality: Although water values vary continuously as new information arrives, producers will use 

their flexibility trying to follow the optimal constant water value policy.  

A constant daily profile of regulated hydro generation in combination with a constant water 

value curve yields the same water value for the marginal unit each weekday. To remove the 

effects of events as e.g. outages, the median of the daily peak prices during the week is used to 

approximate the water value to the marginal hydro unit. 

Table 16 displays the historical correlations between the water value approximation and the 

dependent variables. The signs of all correlation factors are consistent with the theory outlined in 

2.4.  
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Table 16. Correlations between the water value and explanatory variables 

Dependent variable Correlation 

        
  40.0% 

            
   

-63.8% 

             -40.8% 
          15.8% 

 

Calibration of (29) by nonlinear least squares estimation gives the coefficient estimates in Table 

17. The seasonal differences in the parameter estimates turns out to be small; hence, we apply the 

same parameter values for both seasons. Using the mean hydro filling degree (       ) as 

      

 
and the lower tenth percentile of the snow reservoir (       ) as       yielded the best fit. 

In particular, the fit of the chosen equation is 74% in the estimation period. 

Table 17. Coefficient estimates 

Coefficient Value 

     
 3.178 

     
 0.111 

      6.003 

      2.128 

     
 0.675 

 

Figure 40 shows the realized water value approximation along with fitted values in the 

estimation period and out-of-sample calculated water values in the forecast period. The estimated 

series tracks the realized water value approximation in an overall convincing way, although the 

fit is low during some periods with price jumps. Considering the forecast period (Figure 41), 

sizing of peaks is still the main weakness of the model
32

. 

 

Figure 40. Fitted and modeled values of the water value approximation 

                                                 
32

 In addition, a downward jump is modeled for week 20, 2010. This week was characterized by a steep 

increase in inflow levels (NVE, 2010a). The resulting increase in unregulated hydro generation resulted in 

a downward jump in low-load prices, but the peak prices used in calibration of the water value curve was 

only minorly affected. 
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Figure 41. Modeled and realized values of the water value approximation in the forecast period 

 

The feedforward neural network for the water value is estimated using MATLAB's Neural 

Network Toolbox. Networks with up to 20 hidden neurons are trained several times with 

randomly chosen initial weights. A network with 10 hidden neurons resulted in the highest fit 

with realized values in an independent test sample
33

. Figure 42 shows the simulated water value 

path from this network, using realized values of the input variables. Modeled water values are in 

the same range and seem to vary similar to the realized water value approximation. However, the 

magnitude of the peak in early 2010 is underestimated. As the hydro reservoir level was critical 

at this time, the gap between modeled and realized values indicates that the impact of the relative 

storage level is not properly captured by the network. Due to the trial and error approach applied 

in network selection, networks with improved fit may be possible to obtain.  

 

Figure 42. Comparison of water values modeled with neural network and realized values  

The water value equation has a fit of 77% in the forecast period, while the neural network has a 

fit of 55%. Thus, we have not found any better input-output mapping than the water value 

equation, and we conclude that the equation is a reasonable approximation of the dynamics 

influencing the water value. Of course, the equation can be subject for improvements, especially 

regarding the sizing of peaks.  

                                                 
33

 The test sample contains 20% of the observations in the estimation period, and is selected randomly. 

Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010
0

10

20

30

40

50

60

70

80

90

100
M

a
rg

in
a
l 
w

a
te

r 
v
a
lu

e
 v

a
lu

e
 [

E
U

R
/M

W
h
]

 

 

Actual

Modeled

Jun 2008 Jan 2009 Jun 2009 Jan 2010 Jun 2010

0

10

20

30

40

50

60

70

80

90

M
a
rg

in
a
l 
w

a
te

r 
v
a
lu

e
 [
E

U
R

/M
W

h
]

 

 

Actual

Modeled



60 

 

Due to lack of data for the division between regulated and unregulated hydro generation, we 

apply the coefficient estimates found by Vehviläinen and Pyykkönen in (27): 

                           (54) 

 

An empirical spillage function could have been fitted to implied spill levels from historical 

reservoir balances. However, this approach is not appropriate as the aggregated reservoir and 

inflow data are too inaccurate. Consequently, hydro spillage is neglected.   

4.5 Exchange  

4.5.1 The Netherlands, Germany and Poland  
Due to high correlation between the APX price and EEX, increased correlation between the 

POLPX price and EEX, and modest capacities of the connections with the Netherlands and 

Poland, exchange with the Netherlands, Poland and Germany is modeled together. The EEX 

price is thus applied as a common reference price for those markets. 

With the single-period approach, (31) is calibrated with       equal to historical minimum net 

import (-481 GWh/week) and       equal to historical maximum net import (291 GWh/week). 

As no capacity extensions were known at the end of the estimation period,      is held constant 

during the forecast period. The forecast turns out to be: 

                                                                                  (55) 

   

The fit in the estimation period is 57%. Figure 43 illustrates the out-of-sample performance, 

where the actual net import is compared to net import calculated using the realized price 

difference.  

 

Figure 43. Actual and modeled net import from the Netherlands, Germany and Poland 

In the multi-period approach, exchange levels are computed simultaneously with the system 

price during the simulations. The unsatisfactory fit of (55) throughout the estimation period 

indicates that the more computationally intensive multi-period approach is necessary. Results for 

this methodology are discussed in Chapter 4.7, along with other simulation results.  
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4.5.2 Russia 
Import from Russia is represented by a constant value, as the levels stay near the maximum 

capacity for most of the estimation period and the maintenance periods are hard to predict. The 

import is assumed to be equal to the maximum of the historical weekly average: 

                       (56) 

 

The value is obtained using data from 2003 and onwards, when the last of the three lines between 

Russia and Finland was put in operation (RAO, 2002). Realized import is compared with the 

forecast in Figure 44.  

 

Figure 44. Actual and forecasted import from Russia  

 

4.5.3 Estonia 
As the import from Estonia varies with the season, it is forecasted by different constants for 

summer and winter. Weekly import during the summer (week 17-35) is set equal to the historical 

average for the summer season, and vice versa for the winter. 

        
                    
                  

              
(57) 

 

Figure 45 shows realized and predicted import levels.  

 

Figure 45. Actual and forecasted net import from Estonia  
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4.6 Load periods 
The week is divided into five load periods: Peak, day, morning and evening, night and weekend 

day. The duration of these load periods and the corresponding relative factors, calculated 

according to (32) - (35), is presented in Table 18. 

Table 18. Load periods and relative factors 

Period Duration Relative factors 
  Consumption EEX 

Morning  and evening 6 - 8 and 20 - 24 1.0217 1.0296 
Day 8 -10 and 15 - 20 1.0973 1.3058 
Peak 10 - 15 1.1127 1.5036 
Night 24 - 6 0.8758 0.6025 
Weekend day 6 - 24 0.9540 0.7920 

 

The fitted consumption profile is compared to the historical average in Figure 46. Similarly, the 

fitted EEX price profile is displayed in Figure 47. As the consumption and EEX profiles have 

somewhat different shapes, the selection of load periods is a tradeoff between the fit with the two 

profiles. More subperiods would have improved the fit, but likewise increased the calculation 

time required for the market equilibrium simulations.  

 

Figure 46. Approximated variation in consumption within the week  

 

Figure 47. Approximated EEX price variation within the week 
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4.7 Market equilibrium simulations 
Models for generation, consumption and exchange are combined as explained in 2.7, to find the 

supply-demand equilibrium. Condensing generation, regulated hydro generation, hydro reservoir 

levels, exchange and the system price are determined implicit from the merit order. In this 

section, simulated scenarios for these variables will be presented and discussed. 

Calculated scenario paths for the aggregated hydro reservoir are shown in Figure 48, along with 

the realized reservoir series, the historical mean and the upper and lower 10% percentiles of the 

simulations. The expected reservoir series (the average of the scenarios) is close to the realized 

series the first weeks, and approaches subsequently the historical average. This behavior is as 

expected: Most stochastic factors are mean-reverting, thus the expected hydro reservoir 

conditioned on information from week 26 in 2008 and backwards converges to the unconditional 

expectation with time. A complementary interpretation can be raised from the idea behind the 

water value equation (Chapter 4.4): Since the optimal reservoir management policy is 

approximated to be the strategy which keeps the hydro reservoir at the long-term mean, the price 

formation should drive the reservoir level towards the mean. 

 

Figure 48. Hydro reservoir scenarios 

A slight deviation from the mean trajectory is present in the 2009-10 winter season. The 

deviation is likely to be a result of several factors, including neglected spills, inaccurate input 

data and a slight overestimation of the expected inflow compared to the historical average in 

some periods.   

Until January 2010, the realized reservoir series stays within the 10% percentiles. The rapidly 

decrease in the reservoir in the 2009-10 winter season has two main reasons: High levels of 

hydro generation due to massive nuclear outages in Sweden the fourth quarter of 2009 (4.3.1), 

and lower than normal inflow throughout the whole period (NVE, 2010b; NVE, 2010c). High 

temperatures in the spring of 2010 resulted in early snow melting, and consequently the realized 
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hydro reservoir turns back within the 10% percentiles. However, the total snow reservoir was 

lower than normal (NVE, 2010d), which again led to a deviation from the expected range at the 

end of the forecast period. 

Simulation results for regulated hydro generation are displayed in Figure 49. A high reservoir 

level resulted in a water value lower than average in the start of the forecast period. As fuel 

prices were still high, the marginal cost of condensing generation was higher than normal. 

Consequently, hydro was more competitive than average compared to condensing power, and the 

simulated and realized levels of regulated hydro generation exceed the historical average. The 

level of regulated hydro generation converges towards the historical mean with time, although 

the fit is somewhat varying.  

The largest deviations between realized and forecasted generation levels occur in the 2009-10 

winter season. As mentioned, nuclear outages resulted in high levels of hydro generation in the 

fourth quarter of 2009. The combination of low hydro reservoirs, low inflow expectations due to 

dry weather and small amounts of snow in the mountains (NVE, 2010c) increased the 

opportunity cost of hydro power production in the second half of the winter. As a result, the 

generation level fell below the lower tenth percentile of the simulations. 

 

Figure 49. Scenarios for regulated hydro generation 

Figure 50 shows simulated condensing generation compared to realized levels. Realized 

generation stays within the 10% percentiles most of the period, but are higher than all simulated 

values the first weeks. In these weeks, marginal costs of condensing units were high because of 

the high fuel prices, whereas hydro power was attractive due to the reservoir filling. Given the 

low consumption in the summer, no condensing generation was implicated from the merit order.  

However, there was some condensing generation in reality, due to internal bottlenecks in the 

Nordic grid. Because of transmission constraints, hydro power in Norway and Sweden was not 

able to substitute condensing generation in Denmark. The internal transmission constraints are 
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demonstrated by Danish area prices twice as large as those in Southern Norway in the first week 

of the forecast period (NVE, 2008).  

 

Figure 50. Realized and simulated condensing generation 

Realized and simulated levels for exchange with the Netherlands, Germany and Poland are 

illustrated in Figure 51, where positive exchange indicates net import to Nord Pool. The mean of 

the simulations tends to be higher than realized levels, i.e. weekly net import to Nord Pool is 

often estimated to be too high. Although price differences is the major driver of exchange, 

comparing simulated EEX and Nord Pool prices with their realizations does not explain a higher 

simulated mean. On the other hand, it may be explained by simplifications in the modeling 

approach. In reality, exchange is determined by node prices in the connected areas rather than 

system prices. Furthermore, transmission costs complicate the picture.  

 

Figure 51. Realized and simulated exchange with the Netherlands, Germany and Poland 

Figure 52 presents the resulting price scenarios. The mean of the scenarios is relatively close to 

the realized system price until January 2010, expect for the peak period in 2008. This price peak 
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seems to be a consequence of a peaking EEX price, still high fuel prices and normalization of the 

hydrological balance. As only one of the applied EEX scenarios spikes in this period and the 

water value equation underestimates the peak (Figure 41), the mean of scenarios diverges from 

the realized price. A rapid increase in the system price started in January 2010, due to the above 

discussed increase in water value. With a strongly negative hydrological balance, the system 

price stayed well above the mean of the simulations during the remaining forecast period.  

 

Figure 52. Nord Pool system price scenarios 

Comparing the realized price to its simulated distribution indicates that the price risk is 

underestimated. For instance, no scenarios capture the price spike in February 2010. The main 

reason is the low number of scenarios for each stochastic factor. Thus, more unlikely values of 

the stochastic factors leading to extreme price scenarios are not included. In addition, the 

shortcomings of the inflow model discussed in 4.1.3 results in a lower inflow risk during the 

winter than what is realistic. In Chapter 4.8.1, we will show how an extended sample space of 

inflow scenarios affects the price distribution, and how the variance structure can be modeled 

more realistic. 

4.8 Case studies 
The model can be applied to learn more about the impact of different variables. First, we 

consider the price risk caused by inflow volatility. Then the relative influence of the stochastic 

factors is investigated. Finally, we study the impact of changes in the exchange capacity on the 

price and its distribution. 

4.8.1 Inflow risk 
The inflow model used in the base case simulations did not incorporate the seasonality in the 

variance, as previously explained. Therefore, we present two case studies which provide a more 

realistic picture of the price risk caused by inflow volatility. 
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First, the inflow scenarios for 2009 are substituted by the realized series for the years with 

maximum and minimum total inflow in the data sample (2000 and 1996, respectively). For the 

remainder of the forecast period, the original inflow scenarios are used. Snow reservoir scenarios 

are replaced by realized values from the autumn of 2008 and throughout 2009, to ensure 

consistency with inflow. Figure 53 displays the average hydro reservoir level together with the 

upper and lower tenth percentiles for the base case (with original inflow scenarios) and the two 

extreme scenarios. The shape is as expected, with large deviations between the three mean series 

in 2009, and convergence towards the base case in 2010.  

 

Figure 53.  Hydro reservoir scenarios for extreme inflow scenarios 

The deviations in hydro filling lead to large differences between the expected price paths, as 

evident from Figure 54. Deviations between the three cases appear already in the end of 2008, 

due to differences in snow reservoirs, and augment rapidly from January 2009. The higher price 

uncertainty (indicated by the percentiles) for the minimum inflow case, compared to the 

maximum case, is a consequence of the increasing steepness of the water value function with 

decreasing relative storage levels. When the original inflow scenarios are substituted back in 

2010, convergence towards the base case price distribution appears as expected. 
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Figure 54. System price scenarios for extreme inflow scenarios 

The above analysis provides a picture of the inflow risk and demonstrates that the model works 

as it should. To exploit the inflow risk in a more systematic manner, a case with 10 000 inflow 

scenarios is also simulated. Scenario paths for the other stochastic factors are chosen randomly 

from the set used in the base case simulations. 

When assessing inflow risk in particular, the inflow variance should be modeled as realistic as 

possible. Thus, we prioritize a correct representation of the variance instead of modeling the true 

physical relationship with snow reservoirs. To better represent the inflow variance in this case 

study, we replace our original inflow model with an alternative model. In addition to the 

SARIMA-based dynamic regression models with logarithmic transformation proposed in 4.1.3, 

dynamic regression models with deseasonalized variables are potential alternatives. With the 

latter models, both the input and output series are deseasonalized according to (1), in line with 

the approach suggested by Hipel and McLeod (1994). Deseasonalizing take explicit account to 

the differences in variance throughout the year, thus transformations are not necessary to achieve 

a correct representation of the variance structure.  

A model with deseasonalizing and without logarithmic transformation is chosen. Models with 

transformation led to forecasts slightly exceeding the historical average after convergence should 

have occurred. However, the explanatory power of the change in snow reservoirs disappears 

after deseasonalizing. Exclusion of snow reservoirs leads to an ordinary deseasonalized ARIMA 

model. According to the AIC criterion, the Ljung-Box test and the ADF test, an ARIMA(4,0,5) 

model is selected. Table 19 lists the coefficient estimates, while 10 000 simulated scenarios are 

shown in Figure 55. Due to the high number of simulations, convergence to the theoretical 

forecast is achieved without applying a Sobol sequence. 
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Table 19. Coefficients in the deseasonalized inflow model 

AR1 AR2 AR3 AR4  
0.2344 -0.3721 0.1313 0.5857  

MA1 MA2 MA3 MA4 MA5 
0.4337 0.6020 0.2977 -0.3605 -0.2098 

 

 

Figure 55. Inflow scenarios from a deseasonalized ARIMA model 

Figure 55 exposes the disadvantage of deseasonalized ARIMA models discussed in Chapter 

2.1.1. The lower variance in week 20 and 21 compared to 19 and 22 has no natural explanation, 

and may be a consequence of a smaller calibration set than necessary to achieve robust variance 

estimates. For the remaining part of the year, the distribution seems reasonable. 

Compared to the base case simulations (Figure 48), the hydro reservoir sample space is much 

wider (Figure 56). This leads to occurrence of more extreme price scenarios (Figure 57). 

Extreme prices start to appear when inflow peaks, and the frequency is then gradually decreasing 

until the next hydrological cycle begins. Such behavior is not representative for the actual price 

distribution, but reflects the price risk caused by inflow stochasticity.  

The high inflow variance in late spring will in some scenarios lead to reservoir levels deviating 

dramatically from the average. When the deviation is negative, the water value becomes high and 

the price peaks. The size of those peaks should be considered as a conceptual indication only: 

With an extremely negative hydro balance, it is likely that non-flexible technologies as nuclear 

will deviate from the scheduled maintenance periods and provide additional generation capacity. 

In addition, such relative storage levels are outside the sample used to calibrate the water value 

equation. The gradually decreasing peak frequency is tied to the gradually decrease in inflow 

volatility throughout the fall and winter. When the variance is lower, chances are higher that 

hydro producers can schedule generation such that the median trajectory policy is reached. This 

is shown in Figure 56, where the reservoir tenth percentiles are gradually narrowing from the 

summer of 2009 until the next hydrological cycle.  
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Figure 56. Hydro reservoir scenarios for 10 000 inflow scenarios  

As pointed out, the applied inflow model was not able to capture the relationship between snow 

reservoirs and inflow. Thus, the snow reservoir scenario path is selected randomly for each 

inflow path. If the correlation structure between inflow and snow had been included, price peaks 

would have been more evenly distributed throughout the year. 

A price equal zero appears when reservoir levels are extremely high, such that unregulated hydro 

cover all demand together with the other non-flexible technologies.  

The expected price path is in the same range as for the base case. Most of the time, the price 

range within the tenth percentiles are slightly wider. Consequently, variations in inflow result in 

price fluctuations larger than the average price volatility caused by the other stochastic factors. 

 

Figure 57. System price scenarios for 10 000 inflow scenarios 
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4.8.2 The relative influence of the stochastic factors 
The stochastic factors have different influence on price variations. To quantify the impact of 

each factor, we simulate the market equilibrium using a set of scenarios for the stochastic factor 

under study and forecasts for the other factors. To make the results comparable, each factor is 

simulated by 40 scenarios. The deseasonalized inflow model is applied in order to model the 

variance properly.  

The first column of Table 20 shows the average price volatility caused by each stochastic factor 

throughout the forecast period. In the second column, the risk of each factor is given by the 

average coefficient of variation
34

 of the scenarios during the forecast period. We also present the 

average relative price volatilities, defined by the average price volatility divided by the average 

coefficient of variation.      

Table 20. Variance analysis 

 Average price 
volatility 

(EUR/MWh) 

Average 
coefficient of 

variation 

Average relative 
price volatility 
(EUR/MWh) 

Inflow 2.5927 0.2444 10.600 
HDD 0.4483 0.1694 2.6463 
EEX price 2.7666 0.4885 5.6638 
Nuclear generation 0.3925 0.0381 10.295 
Wind power generation 0.4649 0.4841 0.9603 
Coal price 3.4538 0.2469 13.986 
Natural gas price 0.4149 0.2439 1.7194 
CO2 quota price 3.4958 0.3126 11.184 

 

Inflow, EEX prices, coal prices and CO2 quota prices are the most important factors with regard 

to price variations. However, due to the extreme movements in fuel and quota prices caused by 

the financial crisis, the modeled impact of these factors might be larger than what is the case 

under normal market conditions. The relative importance of these three factors is still interesting: 

The average price volatility caused by CO2 prices are higher than for coal, but this result is tied to 

the larger variation in the CO2  price scenarios. Coal prices cause higher relative price volatility 

than CO2 prices, which is expected since coal prices represent a larger share of the short run 

marginal cost of condensing units. Natural gas prices have much less importance, due to three 

main reasons: The installed capacity of gas fueled plants is less than the capacity of coal plants, 

gas turbines are often staying idle as they act as peak load plants, and the marginal cost of gas 

fueled units is not assumed to have direct impact on the water value. 

The relatively low importance of HDD is to some extent explained by the partial hedging 

provided by CHP district plants: Both consumption and CHP district generation are modeled as 

                                                 
34

 The coefficient of variation is defined as the sample standard deviation divided by the sample mean. 
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linear functions of HDD. In addition, the low volatility in HDD throughout the summer season 

results in small price variations only. 

As a consequence of low variation in generation volumes, the price variations caused by nuclear 

generation are rather small. On the other hand, the impact is high relative to the modeled 

variation. If the scenarios had managed to capture the massive realized outages, the volatility of 

the scenarios and the influence on the system price would have been much higher. As described 

in 4.7, outages of nuclear generation were one of the main reasons behind the realized price peak 

in the 2009-10 winter season. Despite nuclear generation cause small variations in our case, the 

frequency of failures throughout the forecast period may support the use of nuclear generation as 

a stochastic factor in future use of the model.  

In contrast to nuclear generation, the modeled impact of wind generation is tightly tied to the 

high variation in the scenarios. Relative to the variation coefficient, wind generation has by far 

the least impact on the system price.        

4.8.3 Changes in exchange capacity 
Several new interconnections between the Nord Pool area and Continental Europe are under 

planning (ENTSO-E, 2009). For instance, the Nord.Link and NorGer projects, both with a 

planned capacity of 1400 MW between Norway and Germany, are currently undergoing 

concession processes. New connections are partly motivated by the increasing share of 

renewable generation at the Continent: A tighter connection to the hydro reservoirs in the Nord 

Pool area will enable higher utilization of the non-flexible renewables. In addition, a power 

surplus in the Nordics towards 2025 will make additional export capacity profitable (Statnett, 

2011; Statnett, 2010). Increased integration with Estonia (included in the Nord Pool area in 

2010) and Russia is also expected in the coming decade (Statnett, 2010). Opposition against the 

integration trend is represented by the Minister of Petroleum and Energy in Norway, Ola Borten 

Moe, who wants to restrict exchange with the Continent and instead expand the domestic 

generation capacity (Sprenger, 2011). 

In this context, evaluation of the sensitivity to changes in exchange capacity is of interest. As 

conceptual examples, we show how the price scenarios in the forecast period are affected by a 

doubling and a removal of the capacity to the Continent and Russia. Bear in mind that these 

examples not necessarily provide a correct picture of consequences of future capacity changes, as 

the price characteristics are likely to change.  

Figure 58 shows the effect of changes in capacity shared with Germany, Poland and the 

Netherlands. Neither the expected system price nor the price distribution (indicated by the tenth 

percentiles) in the forecast period is much affected by changes in exchange capacity. This result 

is tied to the small differences between forecasted price levels for Nord Pool and EEX. 

Consistent with the higher historical variance of the EEX price, we find periods when increased 
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capacity leads to both the most extreme upper tenth percentile and the most extreme lower tenth 

percentile. 

 

Figure 58. System prices for different exchange capacities to Central Europe  

In Figure 59, the changes in the price distribution due to changed import capacity from Russia 

are displayed. Since the price of electricity imported from Russia is assumed to always be lower 

than the Nord Pool system price, increased capacity yields a lower system price throughout the 

period. On average, a doubling of the capacity results in a system price decrease of 7%.   

 

Figure 59. System prices for different exchange capacities to Russia 
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5. Discussion  
As the model of this thesis considers the uncertainty in future spot prices, it is well suited for 

assessing risks related to price variation. It can be useful in planning with a horizon up to two 

years, typically generation scheduling and risk management in energy-intensive industry. The 

major strength of the model is inclusion of fundamental factors and relations between them.  

Compared to EMPS, the use of an empirical approximation of the water value makes our model 

to be a less computationally intensive approach for system price forecasting. On the other hand, 

the high number of stochastic factors boosts up computation time. The number of scenarios for 

each factor should therefore be carefully evaluated when using the model. Our focus has been to 

show how stochastic factors influencing the price can be estimated and implemented in the 

model. To reduce computation time, applying forecasts for the less important factors and 

simulations for the most risky factors may be a good alternative in practical use. 

Bottom-up modeling of electricity prices is a comprehensive task, involving a large set of models 

and extensive amounts of data. Consequently, we had to introduce several assumptions and 

simplifications. The model can therefore be improved by component wise extensions. 

When modeling reservoir inflow, we did not manage to incorporate both the variance structure 

and the explanatory power of snow reservoirs in a single model. Thus, more advanced models 

outside the ARMA family should be considered. Relationships between other stochastic factors 

may also be implemented in the model structure. HDD can be used as an explanatory variable for 

snow reservoirs and inflow. The correlation between carbon quota prices, fuel prices and the 

EEX price can also be modeled.  

We will encourage future work on the empirical water value approximation, especially 

concerning more accurate modeling of price peaks. Improved consumption forecasts can be 

obtained by including electricity price elasticity for energy-intensive industry. Another possible 

extension is to include internal transmission constraints and model area prices. The simulation 

results revealed that exclusion of transmission constraints within the Nord Pool area explained 

deviations between realized and forecasted levels of condensing generation and exchange. 

Despite the data set is extensive; it can be improved in different ways. Longer time series for 

inflow and snow reservoirs should be considered, in order to obtain more robust parameter 

estimates. Time series for hydro reservoir spillage would also be of value. The model is sensitive 

to the parameter values in the water value function, and using longer time series to calibrate the 

function may increase its accuracy. Due to the financial crisis, we had to use hindsight in 

parameter estimation of the fuel price and carbon quota price processes. Testing and calibrating 

the model over other time periods than we did may thus be advantageous. 
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Appendix A 
 

A.1 Optimization of relative factors for consumption 
Lagrange formulation of (32) - (33): 

                   
 

               

           

     

  (A.1) 

 

where λ is the Lagrange multiplicator. The optimality conditions are: 

  

    
               

 
      

          

 (A.2) 
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A.2 Residual characteristics 
Figures A.1 – A.8 display the residual characteristics for the (S)ARIMA models. The degrees of 

freedom in the Ljung-Box test is set equal to the particular lag length less the number of 

estimated coefficients,            , according to Shumway and Stoffer (2010). Normal 

quantile plots (with points deviating from a straight line), density plots and Shapiro-Wilk p-

values close to zero reveal that all models have non-normally distributed residuals. 

 

Figure A.1 Characteristics of HDD residuals 
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Figure A.2 Characteristics of snow reservoir residuals 

 

Figure A.3 Density of snow reservoir residuals 
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Figure A.4 Characteristics of inflow residuals 

 

 

 

Figure A.5 Density of inflow residuals 
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Figure A.6 Characteristics of wind power residuals 

 

 

Figure A.7 Density of wind power residuals 
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Figure A.8 Characteristics of consumption residuals 
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A.3 CUSUM charts 
We create CUSUM charts to assess the stability of the SARIMA parameters, a methodology 

introduced by Brown et al. (1975). The cumulative sum of recursive residuals (CUSUM) is 

defined as (Angeriz and Arestis, 2007): 

            

 

     

 (A.4) 

 

      
       
    

 (A.5) 

 

where 

-    is the realized value of the time series at time step  . 
-      is the one-step ahead forecast of the time series at time step  . 
-      is the standard deviation of one-step ahead forecast errors up to and including time 

step  . 
-      is the one-step ahead standardized forecast error (i.e. standardized recursive 

residual) at time step  . 
-   is the first time step for which forecasts are possible to calculate. 

 

If the cumulative sum of standardized recursive residuals stays within a pair of critical lines, the 

model parameters are considered stable. The critical lines are given by the points            

and            , where   is the length of the series (Brown et al., 1975). The parameter   

equals 1.143 for a significance level ( ) of 1%, 0.948 when   = 5% and 0.850 when   = 10%.  

CUSUM charts for the inflow, HDD and snow reservoir model are illustrated in Figure A.9, 

A.10 and A.11, respectively. We conclude that the parameters of the inflow and HDD models are 

stable, as standardized cumulative recursive residuals stay in the area between the critical lines. 

On the other hand, there are indications of instability for the snow reservoir model parameters. 

The model fails the test at the 5% significance level, but pass at the 1% level.  

 

Figure A.9 The CUSUM chart indicates parameter stability for the inflow model 
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Figure A.10 The CUSUM chart indicates parameter stability for the HDD model 

 

Figure A.11 The CUSUM chart yields indications of unstable snow reservoir model parameters 

 

A.4 Impulse response function for inflow 
Figure A.12 displays the modeled impulse response function for inflow. As apparent, snow 

reservoir (    ) impulses in the present and previous week have a significant impact on the 

inflow level in the present week. 

 

Figure A.12 Impulse response function for inflow 
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A.5 EEX logarithmic return properties 
 

Table A.1. Shapiro-Wilk normality tests for EEX logarithmic returns 

  Test statistic P-value 

Unfiltered returns 0.8607 0.00000 
Filtered returns 0.9906 0.01269 
Spikes 0.9197 0.07498 

 

 

Figure A.13 Density of unfiltered logarithmic returns compared to filtered returns 

 

 

Figure A.14 Density of (logarithmic) spikes 
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A.6 Derivation of maximum likelihood parameter estimates 

for the discrete-time geometric mean reversion model 
Starting with (44), taking the logarithm and removing constant terms, we end up with the 

following problem: 

   
        

                        
        

                    (A.6) 

 

where 

                                     
  

     
   

       
  

       
    

   

 (A.7) 

 

First order conditions for optimal solution:  
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where 

  

  
  

  

    
   

       
  

       
    

   

 (A.9) 
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 (A.11) 

 

Solving (A.8) is straightforward, and results in the parameter estimates (45) – (47). The solution 

is a global minimum since the function increases strictly for parameter values approaching   . 
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