
Long Term Hydropower Scheduling 
under Price and Inflow Uncertainty
A Linear Decision Rules Approach

Ajla Hadziomerovic
Nina Ingvoldstad
Ida Alexandra Utheim 
Grønvik

Industrial Economics and Technology Management

Supervisor: Stein-Erik Fleten, IØT
Co-supervisor: Rudolf Egging, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2013

Norwegian University of Science and Technology



 















Preface
This master thesis is the final assignment in the Master of Science degree in
Industrial Economics and Technology Management at the Norwegian University
of Science and Technology (NTNU) in Trondheim, Norway. This thesis has been
written during the spring of 2013 and is a part of the specialization in Financial
Engineering and Managerial Economics and Operational Research.

We would like to thank our supervisor, professor Stein-Erik Fleten, and co-
supervisor associate professor Rudolf Egging, for advice and support during the
writing of the thesis. A special thanks also goes to the hydropower producers for
providing data.

Trondheim, June 11th 2013

Ida Grønvik Ajla Hadžiomerović Nina Ingvoldstad

vii



Abstract
This thesis takes the perspective of a hydropower producer facing the task of
determining a long term reservoir management strategy that maximizes the ex-
pected market value of production. This task is complicated by the uncertainty in
future electricity price and inflow. Linear Stochastic Programming and Stochastic
Dynamic Programming are traditionally used for solving these type of problems.
The size of these problems grows exponentially with the number of stages and
the number of state variables, respectively. Hence the problems may become
computationally cumbersome. In this thesis, a multistage stochastic scheduling
model is developed based on the Linear Decision Rules (LDR) approximation.
This approximation is effective at reducing computational complexity, and permits
scalability to multistage models (Kuhn et al., 2011). By restricting the decision
variables to be affine functions of the realisations of the uncertain parameters,
the original intractable problem is transformed into a tractable one with short
computational time. In order to estimate the loss of optimality incurred by the
complexity reduction, the approximation is applied to both the primal version and
the dual version of the problem. The approach is demonstrated on four Norwegian
hydropower plants, and is proven to give an acceptable trade-off between accuracy
and tractability. It is shown that both the length of the scheduling horizon
considered and the relation between the size of the reservoirs, the amount and
distribution of inflow and the production capacity of the power stations affect
the reservoir management strategies.
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Sammendrag
Denne masteroppgaven tar perspektivet til en vannkraftprodusent som skal
bestemme en langsiktig reservoarhåndteringsstrategi som maksimerer produk-
sjonens forventede markedsverdi. Usikkerhet i framtidig strømpris og tilsig
kompliserer denne beslutningsprosessen. Lineær stokastisk programmering og
stokastisk dynamisk programmering er metoder som vanligvis brukes for å løse
denne typen problemer. Størrelsen på disse problemene vokser eksponentielt
med henholdsvis antall steg og antall tilstandsvariable, noe som kan resultere i
uhåndterbare dimensjoner. I denne masteroppgaven utvikles en stokastisk fler-
stegs planleggingsmodell basert på lineære beslutningsregler. Ved å begrense
beslutningsvariablene til å være funksjoner av de ukjente parameterne kan det
uløselige problemet transformeres til et løsbart et. Metoden reduserer komplek-
siteten til det opprinnelige problemet, noe som medfører korte regnetider. For
å estimere optimalitetstapet som følger av kompleksitetsreduksjonen, brukes
lineære beslutningsregler både på den primale og duale versjonen av problemet.
Metoden demonstreres på fire norske vannkraftverk, og det er vist at både leng-
den på planleggingsperioden og forholdet mellom reservoarstørrelse, mengde
og distribusjon av tilsig og produksjonskapasiteten til kraftstasjonene påvirker
reservoarhåndteringsstrategien.
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1 Introduction
This thesis takes the perspective of a hydropower producer with one or several
reservoirs and power stations, aiming to maximize the expected market value of
production. When deciding a scheduling strategy, there is a trade-off between
releasing water now, receiving the spot price of electricity, or saving the water for
future release (Fleten et al., 2011). The producers flexibility in choosing when to
release the available water depends on the size of the reservoir(s), the amount
and distribution of inflow and the production capacity of the power station(s).
The scheduling task is complicated by the presence of uncertainties and the span
in time in which the scheduling takes place.

The scheduling problem is normally separated into three parts with different
degree of detail and different scheduling horizon; long term, seasonal term and
short term scheduling (Wallace and Fleten, 2003). The focus of this thesis is on
long term scheduling, in which the objective is to obtain optimal use of resources
with a time horizon of one to five years. Long term scheduling represents the
strategic reservoir management, and initialises boundary conditions for the more
detailed seasonal or short term models.

The Nordic countries have a liberialised common market, in which hydropower
constitutes about 50 % of total generation (Gjelsvik et al. 2010). In Norway,
hydropower accounts for 99 % of the total power generation. Due to the high
fraction of hydro, market prices will depend on the hydrological situation, and
taking the stochasticity in inflow into account is therefore essential. Assum-
ing that the individual producers can not influence the market price, it is also
necessary to model stochasticity in price. In this thesis, stochastic models for
price and inflow are developed in order to provide forecasts for the long term
scheduling. Parameters for these models are computed based on historical spot
prices, forward and futures prices and historical inflow data collected from four
Norwegian hydropower producers.

A traditional approach for solving reservoir management problems under uncer-
tainty is Stochastic Dynamic Programming. This approach offer convenient and
efficient solutions for developing complex reservoir management strategies (Cheng
et al., 2008). Instead of solving the large problem directly, this approach con-
sists of solving a sequence of small subproblems. Each subproblem is associated
with a specific time period of the scheduling horizon and a possible state of the
dynamic system (Carpentier et al., 2012). The size of dynamic problems grows
exponentially with the number of state variables.

Another commonly used approach for solving multistage stochastic hydropower
scheduling problems is by approximating the underlying stochastic process of the
uncertain parameters to be discrete. The process can then be represented by a
discrete scenario tree which ramifies at all points when new random data becomes
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known (Rocha and Kuhn, 2012). According to Kaut and Wallace (2007), the
ability to generate good scenario trees is highly dependent on the knowledge of the
underlying process. As the probability distribution of the uncertain parameters
are rarely known, this approach may rely on unrealistic simplifying assumptions
in order to achieve tractability (Guslitser, 2002). The size of these problems grows
exponentially with the number of time stages, and do often suffer from the curse
of dimensionality. According to Shapiro and Nemirovski (2005), multistage prob-
lems are computationally intractable even when medium accuracy solutions are
sought. These findings show that it is important to focus on developing tractable
methodologies, that can reasonably approximate the stochastic programs.

Stochastic programs needs to undergo some simplification in order to gain com-
putational tractability (Kuhn et al., 2011). The Linear Decision Rules (LDR)
approximation consists of restricting the recourse decisions associated with the
stochastic program to be functions of the realisations of the uncertain parameters.
According to Ben-Tal et al. (2003), the uncertain parameters are defined within
an interval around their expected values, in which the size of the interval is
given by the level of uncertainty. By applying the LDR approach, the original
stochastic program is converted into a seminfinite program. In the case of fixed
recourse, provided that the uncertainty set itself is computationally tractable, this
program is computationally tractable. In the case of a polyhedral1 uncertainty
set, the fixed recourse program is equivalent to an explicit linear programming
program. Although the LDR approach is very effective at reducing computational
complexity, it may incur a considerable loss of optimality (Kuhn et al. 2011). By
applying the approximation to both the primal version and the dual version of
the original problem, this loss of optimality can be estimated by the gap between
the optimal objective values of the two models.

The LDR approach was used in reservoir management as early as in 1969 by
Revelle et al. (1969). After a long period of neglect, Ben-Tal et al. (2003)
rediscovered the approach within the framework of robust optimization. LDR has
successfully been used to solve supply chain problems with more than 70 decision
stages (Ben-Tal et al., 2005). Tandberg and Vefring (2012) showed that the LDR
approach can beneficially be applied to the generation planning problem. Network
design problems involving hundreds of random variables (Atamturk and Zhang,
2007), and robust control problems involving 12 state variables and 20 time
stages have also been successfully solved (Goulart and Kerrigan, 2005). Other
application areas for LDR based robust optimization include capacity expansion
of networks (Ordóñez and Zaho, 2007) and project scheduling (Ang et al., 2008).

The contribution of this thesis is the development of a multistage stochastic
hydropower scheduling model based on the LDR approximation. Currently, there
are few studies on this field. To evaluate the applicability of the approximation

1A set P ⊆ Rn is a polyhedron if there is a system of finitely many inequalities Ax ≤ b such
that P = {x ∈ Rn|Ax ≤ b}.
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to the long term scheduling problem, the LDR model will be demonstrated on
four Norwegian hydropower plants. The trade-off between the accuracy and
the tractability of the method will be investigated. Focus will also be on how
uncertainty in price and inflow affects the problem and how the flexibility of the hy-
dropower plants relates to the reservoir management strategies given by the model.

The thesis is divided into ten sections. Section 2 gives a presentation of the
hydropower scheduling problem and the main challenges associated with it, while
information about the four hydropower plants and electricity data is presented
in Section 3. Assumptions and simplifications made throughout the thesis are
presented in the end of this section. Section 4 presents the stochastic models
developed to forecast price and inflow, while Section 5 presents the methods used
to estimate the model parameters and the results from the estimations. The
primal LDR model is presented in Section 6, while the dual version is presented
in Section 7. The analysis and the conclusion is presented in Sections 8 and 9,
respectively, while suggestions for further work are presented in Section 10.
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2 Hydropower scheduling
In this section, a presentation of the hydropower scheduling problem and the
main challenges associated with it is provided.

2.1 Reservoir management

The objective of long term hydropower scheduling is to utilise the available water
resources in a way that maximizes the expected market value of production. This
task is complicated by the presence of uncertainty in electricity price and inflow.
The availability of limited amounts of water in the reservoirs, in combination
with the uncertainty in the future amounts of inflow, makes the optimization
problem more difficult because it creates a link between an operating decision in
a given stage and the future consequences of this decision (Terry et al., 1986).

The average annual hydropower production in Norway is 125 TWh (Ministry
of Petroleum and Energy, 2013), while the actual production may vary with a
magnitude of 40 TWh from a dry year to a wet year (Kristiansen, 2004). The
electricity demand is connected to heating requirements, which for obvious reasons
are much higher in the winter season compared to the other seasons (Kjærland
and Larsen, 2010). Inflow, on the other hand, is lowest during the winter when
precipitation mainly comes as snow and highest during the spring when the snow
melting starts, which can be seen in Figure 2.1.1. This implies that prices are
highly influenced by the seasonal variations in inflow.

Figure 2.1.1: Weekly average, minimum and maximum inflow and demand in
Norway (Doorman, 2012).

Due to the seasonal variations in inflow the year can be divided into three different
periods (Doorman, 2012). In period 1 (week 1-17) precipitation mainly comes
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as snow. Period 2 (week 18-40) is the filling season as precipitation will come
directly as inflow into the reservoirs and the accumulated snow will melt. Period
3 (week 41-52) is statistically the period with most precipitation and the highest
inflow levels.

2.2 The concept of water values

Water is a free resource and the production costs are low and often neglected.
However, the amounts of available water is limited and uncertain. Producing one
unit of water today means that it cannot be produced in the future. This implies
that the water has an opportunity cost, which is called the water value. The
water value refers to the marginal value of having one additional unit of water
available (Doorman, 2012).

Water at the bottom of the reservoir is more valuable than water at the top.
When the reservoir is filled to its limit, the water value is equal to zero. More
inflow will, in this situation, result in spillage. Hence, the extra water has no
value to the producer. When the reservoir is nearly empty the water value is high,
and a situation in which the producer is not be able to meet demand at high
prices may occur. Hence, management of the reservoir at the top and bottom
reservoir levels is crucial to avoid a situation of either spillage or shortage.

2.3 Flexibility of a hydropower reservoir

The term flexibility refers to the ability to allocate energy production to certain
time periods in order to maximize profit(Crona, 2009). High flexibility gives
the producer a larger possibility space to decide when and how much water to
discharge for production, while low flexibility limits this option. The flexibility
depends on the size of the reservoir, the amount and distribution of inflow into
the reservoir and the production capacity. This will be elaborated in Section 3.1.
Restrictions like time varying reservoir limits, maximum and minimum production
requirements and maintenance periods reduces the flexibility of a hydropower
plant.

Hydropower reservoirs are normally categorized within two different types; ”run
of rivers” and ”reservoirs” (Rondeel, 2012). Run of rivers is a type of reservoir
where little or no water storage is provided. They are characterized by a low
degree of control on water discharge and thereby limited possibilities to adjust
production to changes in price and inflow. Reservoirs, on the other hand, allows
for water storage. The opportunity to store water creates an operational flexibil-
ity through which hydropower producers can adapt to price and inflow signals
(Kjærland and Larsen, 2010). This gives hydropower plants with reservoirs an
option to postpone production and wait for higher prices or more information
about conditions affecting the market value of future production. Hence, the
possibility to store water in the reservoirs can be viewed as a real option on future
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energy production where the water value represents the exercise price.

According to real option theory a reservoir with flexibility is more valuable
than a reservoir without flexibility (Dixit and Pindyck, 1993). A similar con-
clusion is reached within optimization theory. For a maximization problem the
objective value is non-increasing when imposing tighter constraints on the prob-
lem, while the opposite is true for a minimization problem (Lundgren et al., 2010).
The water balance constraint is less strict for a reservoir with storage capacity
than for a plant without. Reservoirs with storage capacity are therefore more
valuable to the producer than those without, i.e. run of rivers.

2.4 Decomposed hydropower scheduling

Hydropower scheduling is a complex task, and is normally decomposed into three
parts characterized by the scheduling horizon and the level of detail included.
These levels are long term, seasonal term and short term scheduling (Wallace and
Fleten, 2003). Long term scheduling represents the strategic management of the
water resources. The objective is to obtain optimal use of the water resources
with a time horizon of one to five years, depending on the characteristics of the
system. A more detailed description of the hydropower system is included in
seasonal term scheduling and the time horizon typically varies between 3 and
18 months. Short term scheduling represents the detailed physical operation of
the hydropower plant within a time horizon of a day to a week, and with a time
resolution of an hour or shorter. Stochastic models are used for long term and
normally for seasonal term scheduling, while deterministic models are used for
short term scheduling.

For hydropower systems with reservoirs the short term scheduling problem is
a part of the long term scheduling problem in which the question is whether
to release water now or store it for the future (Fleten et al., 2011). Hence, the
long term scheduling problem imposes boundary conditions on the more detailed
seasonal and short term scheduling. The most common principles for coupling
between a longer term and a shorter term scheduling model are listed below:

• Volume coupling: The longer and shorter term scheduling models are
coupled through a fixed reservoir level at a given point in time, i. e.
the coupling time. This level is calculated in the long term model, and
initialized as a boundary condition in the shorter term scheduling models.
This procedure is rigid, and allows for little flexibility in the case of deviations
from the original scheduling assumptions (Doorman, 2012).

• Penalty functions: The longer term and shorter term scheduling models
are coupled through a fixed reservoir level at the coupling time. However,
a deviation from the fixed volume is allowed, but will cause a penalty in
the objective function. This penalty is not a real cost, but is used to allow
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for some flexibility with respect to deviations from the specified volume
(Doorman, 2012).

• Price coupling: The longer and the shorter term scheduling models are
coupled through a fixed water value at the coupling time. The water value
corresponds to the dual value of the reservoir balance constraint in the long
term model for the time period in which the coupling takes place (Doorman,
2012).
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3 Data description
This section starts with a presentation of important factors describing the flexi-
bility of a hydropower plant. A presentation of the hydropower plants studied in
this thesis will then follow. Thereafter, a short description of the Nordic Power
Market and the assumptions and simplifications made throughout the thesis is
presented. An overview of electricity price properties will then follow, before a
description of the correlation between the data series is presented at the end of
the section.

3.1 Important factors

The relation between the production capacity of a hydropower plant, the size
of the reservoir and the annual amount of inflow affects the flexibility of the
hydropower plant, and can be described through various factors. These factor
will be presented in this section, and Table 3.1.1 shows an overview of the factors
for an average Norwegian producer2.

Table 3.1.1: Factors for an average Norwegian hydropower producer.

Degree of regulation [year] 0.65
Utilization factor [%] 29.5
Load factor [%] 45

3.1.1 Degree of regulation

The degree of regulation is defined by the ratio between reservoir size and expected
annual inflow, and describes the reservoir’s ability to store water (Doorman, 2013).
This factor states how many years it takes to fill the reservoir given average annual
inflow and no generation, and can be used as a tool when determining the schedul-
ing horizon of a hydropower plant. For plants with a high degree of regulation,
decisions regarding water discharge may affect the state of the reservoir far into the
future. Hence, a longer scheduling horizon needs to be considered for plants with
a high degree of regulation than for plants with a lower one (Jain and Singh, 2003).

Inflow prediction will normally be of most significance to systems with a low
degree of regulation because these reservoirs more often reach their maximum
and minimum limits. A plant with a low degree of regulation is forced to produce
more evenly distributed over the scheduling period in order to avoid spillage,
while a plant with a high degree of regulation have more flexibility in choosing
when to produce, enabling the power station to produce more during periods
with high prices.

2The total installed capacity in Norway is 31.7 GW , the total reservoir capacity is 81 888
GWh (Hagem, 2011) and the total mean average inflow to the Norwegian reservoirs is 125
TWh (Ministry of Petroleum and Energy, 2013).
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3.1.2 Utilization time

The utilization time of a hydropower plant measures the size of the reservoir
compared to the power capacity (Ackermann, 2012). This factor describes how
long time it takes to empty a full reservoir when running the generators at
maximum capacity. High utilization time gives the plant little flexibility in
choosing when to produce, while low utilization time enables the power station
to produce more during periods with high prices.

3.1.3 Load factor

The load factor is defined by the ratio between the average annual inflow and
the power capacity. The factor describes how long time it takes to produce an
amount of water corresponding to one year of average inflow when running the
generators at maximum capacity (Doorman, 2012). A high load factor allows for
less flexibility than a lower one.

3.1.4 Energy coefficient

The amount of electricity generated by a hydropower plant is affected by the
energy coefficient of that particular plant (Doorman, 2012). The larger the
energy coefficient, the more energy per volume of water is generated. The energy
coefficient is defined as:

e =
1

3.6 · 106
γ g H η, [kWh/m3 ] (3.1.1)

where γ is the water density [kg/m3 ], g is the gravity acceleration [m/s2 ], H is the
plant head [m] and η is the plant efficiency. Given the energy coefficient and the
discharge capacity, Q [m

3
/s], the power capacity can be defined as:

P = 3.6 Q e, [MW ] (3.1.2)

3.2 Presentation of the Hydropower Plants

The empirical analysis in this thesis is based on data from four Norwegian
hydropower producers. This section presents technical and historical data and
properties for these plants. Figure 3.2.1 shows where the hydropower plants are
located. Figures showing historical and average inflow and reservoir levels are
presented for all plants. In order not to reveal the identity of the hydropower
producers, relative numbers are used, where 1 corresponds to the highest inflow
observation.

3.2.1 Data preparation

The historical inflow series for the four hydropower plants show some degree of
measurement error, as they contain some negative values for all of the hydropower
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plants. All these negative values are set equal to zero. Since these values consti-
tute only a small proportion of the total time series, setting them equal to zero
has a marginal impact on the inflow forecasts.

The inflow data series for Plant 1 is given as weekly energy flow [MWh/week],
while the inflow for Plants 2, 3 and 4 is measured daily and given in volume flow
[m

3
/s]. The LDR model requires the input data to have the unit energy flow per

week [MWh/week]. Daily values for Plants 2, 3 and 4 are therefore aggregated into
weekly values, and multiplied by the energy coefficient of the relevant plant.

Figure 3.2.1: The map shows in were in Norway the four hydropower plants are
located.

3.2.2 Hydropower Plant 1

Hydropower Plant 1 consists of one power station and five reservoirs, of which
the lowest is considerably larger than the four others. The topology of this plant
is presented in Figure 3.2.2. Only aggregated inflow series are available for this
plant, and the reservoirs are therefore aggregated into one reservoir in the long
term scheduling models.

The historical inflow series for Plant 1 consists of weekly observations in the
period from January 1998 to August 2012. Before 2010 inflow were measured
manually. This might have caused too high values in some weeks and too low in
other weeks. From 2010 remote measurement has been used to measure inflow.
The inflow data for Plant 1 show a lower degree of seasonality, and have higher
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Figure 3.2.2: Topology of Plant 1.

inflow levels during the winter compared to the other plants studied in this thesis,
see Figure 3.2.3. This is due to the location in Southern Norway, where the
temperatures in the winter are normally higher than in the north of the country.

The plant has a degree of regulation of 0.55. The utilization factor of the
aggregated reservoir is 23 %, while the load factor is 42 %. These factors are all
lower than for an average Norwegian producer, see Table 3.1.1. The low degree
of regulation means that Plant 1 has a lower ability to store inflow than an
average plant. However the low utilization factor and load factor means that the
production capacity is high compared to reservoir size and inflow, respectively.
This implies that the short time it takes to fill the reservoir is compensated for
by the relatively high production capacity. Due to the degree of regulation, a
scheduling horizon of one year is chosen for Plant 1.

Figure 3.2.3: Historical and average inflow levels for Plant 1.
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Figure 3.2.4: Historical and average reservoir levels for Plant 1.

3.2.3 Hydropower Plant 2

Hydropower Plant 2 consists of one power station and three reservoirs, of which
the lowest is considerably larger than the two others. The topology of this plant
is presented in Figure 3.2.5. Only aggregated inflow series are available for the
plant, and the reservoirs are therefore aggregated into one reservoir in the long
term scheduling models.

Figure 3.2.5: Topology of Plant 2.

The historical inflow series of Plant 2 consists of daily observations in the time
period January 1998 to December 2008, and measurements are made at 12 a.m.
each day. The time series shows a predictable seasonal pattern, with high inflow
during the summer season and low inflow during the winter season, see Figure
3.2.6.

The plant has a degree of regulation of 0.37, which implies that the plant is
less regulated than an average Norwegian plant, see Table 3.1.1. The utilization
factor for the aggregated reservoir is 20 % while the load factor is 53 %. The low
degree of regulation and the high load factor means that the reservoir is filled fast
given average annual inflow, and that it takes long time to produce the average
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annual inflow at maximum capacity. This implies that the reservoir allows for
little flexibility in choosing when to produce, and that the risk of spillage is high.
Due to the degree of regulation, a scheduling horizon of one year is chosen for
Plant 2.

Figure 3.2.6: Historical and average inflow levels for Plant 2.

Figure 3.2.7: Historical and average reservoir levels for Plant 2.

3.2.4 Hydropower Plant 3

Hydropower Plant 3 consists of two reservoirs and four power stations, see Figure
3.2.8. The reservoirs associated with Stations 3 and 4 have limited amount of
storage capacity and can be defined as run of rivers.

The historical inflow series of Plant 3 consist of daily observations in the period
January 2007 to September 2012, and the measurements are made at 12 a.m.
each day. The inflow series shows high variations during the year, with extremely
low inflow in the winter season, see Figure 3.2.9. This is due to the location in
Northern Norway, where the temperatures in the winter are normally low. The
historical reservoir levels for Reservoir 1 are shown in Figure 3.2.10. The reservoir
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Figure 3.2.8: Topology of Plant 3.

patterns are similar for the two reservoirs, and a figure is therefore only provided
for the largest reservoir of this plant.

The high degree of regulation and the low load factor of Power Station 1 indicates
a high flexibility of this power station compared to the three others, see Table
3.2.1. The size of the reservoir and the capacity associated with this power station
is large compared to the other stations, and due to the high degree of regulation
of this station, a scheduling horizon of two years is used for Plant 3.

Table 3.2.1: Parameters for Hydropower Plant 3.

Power station 1 2 3 4
Degree of regulation 1.9 0.7 0.02 0.0
Utilization factor [%] 51.9 45.6 0.03 0.04
Load factor [%] 31.3 61.9 1.4 14.1

Figure 3.2.9: Historical and average inflow levels for Plant 3, Station 1.
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Figure 3.2.10: Historical and average reservoir levels for Plant 3, Reservoir 1.

3.2.5 Hydropower Plant 4

Hydropower Plant 4 consists of two reservoirs and four power stations, see Figure
3.2.11. The reservoirs associated with Stations 3 and 4 have limited amount of
storage capacity and can be defined as run of rivers.

Figure 3.2.11: Topology of Plant 4.

The historical inflow series consists of weekly observations in the period January
1998 to December 2009, developed by NVE for reference reservoirs3. The reference
reservoirs are located close to the reservoirs of Plant 4, and the geographic and
climatic conditions are assumed to be representative. The inflow data for the
reference reservoirs are adjusted to coincide with the mean annual inflow of the
reservoirs of Plant 4 in the period of January 1998 to December 2009. This
adjustment is done by multiplying the observations by the ratio between the
mean annual inflow of the reservoir of interest and the mean annual inflow of the
corresponding reference reservoir. The inflow series show a predictable seasonal

3An overview on how the time series is developed can be found in Holmqvist and Engen
(2008) and Holmqvist (2012).
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pattern, with large amounts of inflow during most of the year, see in Figure 3.2.12.
This is due to the location south west in Norway. The historical reservoir levels
for Reservoir 1 are presented in Figure 3.2.13.

Figure 3.2.12: Historical and average inflow levels for Plant 4, Station 1.

Figure 3.2.13: Historical and average reservoir levels for Plant 4, Reservoir 1.

The degree of regulation, utilization factor and load factor for the four power
stations of Plant 4 can be found in Table 3.2.2. A scheduling horizon of one year
is used for this plant.

Table 3.2.2: Parameters for Hydropower Plant 4.

Power station 1 2 3 4
Degree of regulation 1.1 0.5 0.04 0.0
Utilization factor [%] 47.4 16.3 0.3 0.1
Load factor [%] 41.4 35.5 7.0 11.6
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3.3 The Nordic Power Market

Nord Pool Spot ASA is the Nordic power exchange market and consists of both
a physical and a financial market. In the physical market, contracts are traded
on day-ahead and intra-day basis. The bids to buy and sell electricity for each
hour are aggregated into a demand curve and a supply curve, respectively. The
system price is determined by the intersection of these two curves. Price areas
are introduced due to grid congestions within Norway and between the Nordic
countries. When the transmission capacity between price areas gets constrained,
spot prices will generally rise above the system price in deficit areas and fall below
the system price in surplus areas.

Financial power derivatives such as forward and futures, and options with forward
and futures as underlying, are traded in the financial market. Forward and
futures are used for trading and risk management, and as these derivate markets
mature they will serve an important role in giving economic signals to operations
scheduling (Kristiansen, 2004). The forward and futures prices at Nord Pool
Spot reflect the value of electricity exchange at different times and are therefore
necessary for the optimal use of hydropower during different periods of time
(Nord Pool Spot, 2013).

3.3.1 Assumptions and Simplifications

The following assumptions and simplifications regarding the power market are
made throughout this thesis:

• Market power: It is assumed that the production decisions taken by
the four hydropower producers evaluated in this thesis do not affect the
electricity price. Note that none of the hydropower plants in this thesis
represent more than 0.83 % of the total domestic market share.

• Area prices: Local prices are not taken into account in this thesis. This
simplification is done because longer time series are available for system
prices than for area prices. Hence, the system price is used for each of the
hydropower plants analyzed, and the same price model can be used for all
of the plants. It is assumed that this will not have a significant impact on
the results since the weekly average area prices tend to be similar to the
weekly average system price, see Figure 3.3.1.

• Completeness and no-arbitrage: Risk adjusted prices are used because
expected spot prices in future periods are generally different from forward
prices for the same future periods due to the risk premium. By making
decisions based on risk adjusted prices, the market value of production is
maximized (Wallace and Fleten, 2003).
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Figure 3.3.1: Weekly observed area prices and the system price in Norway during
2012 (Nord Pool Spot, 2013).

3.3.2 Electricity price properties

To analyze the behavior of spot prices, the Elspot data set is obtained from Nord
Pool Spot’s FTP server files (Nord Pool Spot, 2013). The data set consists of
weekly system prices for an eleven year period beginning in the 1st week of 2002
and ending in the 52th week of 2012, containing a total of 572 observations. The
times series of the spot prices are separated into two; cold seasons (week 1-17 and
41-52) and warm seasons (week 18-40).

Table 3.3.1: Descriptive Statistics for the Daily System Price time series (2002-
2012).

Descriptive Seasons
Statistics All Cold Warm
Number of observations 571 319 253
Standard deviation [Euro/ MWh] 14.3 14.6 13.0
Min [Euro/ MWh] 8.4 16.2 8.4
Max [Euro/ MWh] 103.7 103.7 76.2
Skewness 1.1 1.3 0.8
Kurtosis 1.8 2.1 0.5

The statistics presented in Figure 3.3.2 reveals an erratic behavior of the system
price. Prices are controlled by supply and demand and show seasonal and weekly
variations. As can be seen in Table 3.3.2, the prices have maximum and minimum
values of 103.7 EUR/MWh and 8.4 EUR/MWh, respectively, and have a mean value
of 37.2 EUR/MWh during the sample period. The highest prices were reached
during the two first weeks in 2003 and 2011 and last three weeks in 2002 and
2010. This is consistent with the fact that in the Nordic market prices are usually
higher during the winter when the electricity demand is high.

Electricity prices are highly volatile, as measured by standard volatility measures.
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Figure 3.3.2: Daily system price time series in the period 2002-2012 (Nord Pool
Spot, 2013). The daily system price series is plotted above and its daily changes
below.

According to Fleten et al. (2001) the reason for this is that electricity has to be
consumed once it is produced, and since demand is not particularly price elastic
in the short term. The standard deviation of the spot prices is 14.6 for cold
seasons and 13.0 for warm seasons. This indicates a higher stability of the mean
price for warm seasons. The standard deviation for price changes is also higher
for the cold seasons.

Extreme electricity prices are relatively frequent in Elspot. This is reflected
in the sample kurtosis coefficients. For the whole period the kurtosis estimate
is 1.8 and the excess kurtosis estimate is 3.8, which means that the distribution
has heavier tails than a normal distribution with the same variance. This indi-
cates that extremely low and high prices have a higher probability of occurrence.
The positive sign of the skewness estimates reveals that high extreme values
for the price are more likely than low extreme values. These characteristics in-
dicate the existence of unsymmetrical fat tails in the Nordic electricity spot prices.

As discussed in Geman and Roncoroni (2006) the electricity prices show well-
known qualitative features. An implication of these features is that, in contrast
to other commodities, electricity prices are much more likely to be driven by
demand and supply considerations, with demand in the short term market being
inelastic. Some of these essential features are presented below:

• Price spikes: Electricity prices are highly volatile, and sudden price
changes can occur. Many of the larger price jumps are followed by quick
reversion, causing price spikes (Lucia and Schwartz, 2001). An explanation
for these price spikes is large variations in demand and low elasticity of supply.
The low elasticity follows from the limited storeability and transportability
for electricity. In this thesis weekly prices are used, which will result in a
loss of price spikes.
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• Mean reversion: While, in the short run, the price of electricity might
fluctuate up and down in response to different factors, it ought to be drawn
back towards the marginal cost of producing electricity in the long run
(Dixit and Pindyck, 1994). This level can be constant or periodic, where the
latter can incorporate the seasonal trend (Geman and Rocoroni, 2006). In
addition to general mean reversion towards a constant or seasonal dependent
level, spot prices show a faster mean reversion after spikes.

• Seasonality: Spot prices have a seasonal variation throughout the year.
According to Lucia and Schwartz (2001) this follows from the nature of
electricity demand in the Nordic countries. The demand is highly dependent
on the climate and is therefore also seasonal.

3.4 Correlation between data series

In this thesis covariance matrices for price and inflow are computed to be used as
input to the LDR model. Inflow in week t is assumed to be correlated with inflow
in period t− 1 and with inflow in period t+ 1. This is consistent with the choice
of an AR(1)-model for inflow, as described in Section 4.1.1. Correspondingly, the
spot price in week t is assumed to be correlated with the spot price in week t− 1
and the spot price in week t+ 1.

Since hydropower contributes to a great amount of the total power produc-
tion in Norway, the spot price is strongly affected by the aggregated inflow.
Limited inflow leads to lower reservoir levels and subsequently higher system
prices. The spot price is therefore assumed to be negatively correlated with the
inflow on a national level. Because scarce inflows often occurs nationally and
locally at the same time, the spot price is also assumed to be negatively correlated
with local inflow. According to Aas (2007) an aggregation of inflow over a longer
period is suggested when modeling the relationship between inflow and price, due
to the storage capacity of the reservoirs. In this thesis, it is therefore assumed
that the spot price is correlated with inflow 20 weeks back in time.

The matrices are developed based on the residuals from the price and inflow
models. Due to the short historical data set, the method is sensitive to outliers.
To reduce the impact of outliers the residuals for each week t are adjusted, so
that they represent the weighted average of the residuals in week t− 1, t and t+ 1
for the same year. Weights of 0.25, 0.5 and 0.25 are put on the residuals from
period t− 1, t and t+ 1, respectively. To evaluate the accuracy of the matrices,
the results should have been tested. However, testing is not done as correlation
modeling is not the main focus of the thesis.
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4 Stochastic models
Due to the stochastic behavior of price and inflow, stochastic models play a
central role when evaluating future spot prices and inflow. This section presents
the stochastic models used in order to estimate future expected spot prices and
inflow.

4.1 Modeling inflow

Inflow variations cause uncertainty in power systems with a large share of hy-
dropower. The inflow model needs to be versatile enough to capture seasonal
variations and inflow dynamics. The model should also be as simple as possible to
reduce computational complexity (Gjelsvik et. al, 2010). In order to meet these
requirements a discrete time autoregressive and a continuous time one factor
model are fitted to the available historical data set. These models are similar,
but have different time steps and capture seasonality in different ways.

4.1.1 Autoregressive model

Even though inflow varies continuously, it is normally measured at particular
points in time. Due to uncertainty in the inflow measurement, discrete time
intervals of one day or one week are normally used. Since these intervals are
quite long, a discrete time stochastic process as the autoregressive process of
order p, AR(p), can be used to model the inflow, Ψt, in period t, where Ψt can
be presented as:

Ψt = δ +

p∑
i=1

ρi Xt−i + ζt (4.1.1)

where δ and ρi are constants, with −1 < ρi < 1 and ζt is a normally distributed
random variable with zero mean (Gjelsvik et. al, 2010). The first order autore-
gressive process, AR(1), is stationary and the long run expected value is identical
for all values of t. The AR(1) model describes a mean reverting process, because
Ψt tends to revert back to the long run expected value.

Since the historical inflow data sets contain weekly values, and weekly time
steps are relatively long, it is accurate to only use the inflow in period t− 1 when
estimating inflow in period t. This corresponds to an AR(1) process. The order
of the AR process is also tested using statistical hypothesis testing, and is found
to be one. If daily time steps had been used it would probably been necessary to
use a model with lags of higher order than one.

To incorporate the seasonal effects in the inflow patterns into the forecasting
method, a seasonal factor is used to adjust the time series (Hiller and Lieberman,
2001). The seasonal factor measures how a single period compares to the overall
average for an entire year. Using historical data, this formula is:
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Seasonal factor =
Average for the period

Overall average
(4.1.2)

According to Hillier and Lieberman (2001) it is easier to analyze the time series
and detect new trends if the data sets first are adjusted to remove the effect of
seasonal patterns. Thus, this formula is:

Seasonally adjusted value =
Actual value

Seasonal factor
(4.1.3)

The seasonally adjusted values are used when estimating the parameters for
the AR(1) model. This implies that Ψt is seasonally adjusted and need to be
multiplied with the seasonal factor to take the seasonal pattern into account.

4.1.2 One factor model

A one factor model represents future expectation and uncertainty (Lucia and
Schwartz, 2001). The behavior of inflow can be described in terms of two types
of components. The first term is a totally predictable deterministic component
that accounts for regularities in the evolution of inflow, such as a deterministic
trend and any genuine periodic behavior (Seim and Thorsnes, 2007). The second
component is stochastic and will be assumed to follow a particular continuous
time diffusion process. The stochastic inflow parameter, Ψt, can be presented as:

Ψt = f(t) + At (4.1.4)

The predictable components such as the level and the seasonality of the inflow is
modeled by the deterministic function:

f(t) = α + γ cos((t+ τ)
2π

52
) (4.1.5)

where the cosine function tries to capture annual seasonality. It is assumed that
the stochastic part, At, follows a mean reverting Ornstein-Uhlenbeck process with
zero long-run mean and a speed of adjustment for inflow of κΨ:

dAt = −κΨAtdt+ σdZ (4.1.6)

where dZ represents an increment to a standard Brownian motion Zt. To show
the mean reverting nature of the process Eq. 4.1.4 and 4.1.6 are rewritten as:

d(Ψt − f(t)) = κΨt(f(t)−Ψt)dt+ σdZ (4.1.7)

which shows that when Ψt deviates from the deterministic term, f(t), it is pulled
back to it at a rate that is proportional to the deviation. The distribution of Ψt

conditional on A0, where A0 = P0 − f(0), is normal with mean and variance:

E0(Ψt) = E(Ψt|A0) = f(t) + (P0 − f(0))e−κΨt (4.1.8)
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V ar0(Ψt) = V ar(Ψt|A0) =
σ2

2κΨ

(1− e−2κΨt) (4.1.9)

4.2 Modeling spot price

Electricity can be considered as a flow commodity because of the limited oppor-
tunity to store electricity and the limited transportability (Lucia and Schwartz,
2001). In electricity markets, arbitrage across time and space is limited. This
limitation is crucial in explaining the behavior of electricity spot prices and
derivate prices as compared to other commodities, because electricity prices are
strongly dependent on the demand and their determinants like buisniess activity
and temporal weather conditions in every moment.

4.2.1 Two factor model

Schwartz and Smith (2000) and Lucia and Schwartz (2001) discuss factor models
for spot price dynamics and valuations of spot price derivatives. One of the limi-
tations of the one factor models is that all future returns are perfectly correlated
(Cortazar and Schwartz, 2003). This means that these prices always move in
the same direction, a fact that is clearly contradicted by the data. Models with
more factors avoid these limitations and have been shown to perform better than
models with fewer factors. To account for a more realistic stochastic behavior, a
two factor model for modeling the spot price is assumed to be adequate in this
thesis.

The stochastic process followed by the spot price is represented by Πt:

Πt = f(t) + Yt (4.2.1)

The deterministic function f(t) is the same as in Eq. 4.1.5. The stochastic part,
Yt, is decomposed into two factors:

Yt = χt + ξt (4.2.2)

where χt captures short-term deviations and ξt represents the long term equilib-
rium level. Changes in the short run deviations are temporary changes in prices,
while the changes in the equilibrium level represents fundamental market changes
that are expected to persist (Schwartz and Smith, 2000). The mean reverting
Ornstein-Uhlenbeck process with zero long run mean is used to model the short
run deviations:

dχt = −κPχtdt+ σχdzχ (4.2.3)

where κP is the speed of reversion for price. The long term equilibrium level is
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assumed to follow a Brownian motion process:

dξt = µξdt+ σξdzξ (4.2.4)

where the two Wiener processes dzχ and dzξ are correlated through:

dzχdzξ = ρχξdt (4.2.5)

Applying theory of risk neutral valuation, future prices are equal to the expected
future spot price under the risk-adjusted process (Wallace and Fleten, 2003). The
risk adjusted process for the stochastic part, Yt, is obtained from standard arbi-
trage arguments with two derivative assets taking into account the non tradeable
nature of Yt. The risk adjusted processes for the state variables are:

dχt = κΠ(α∗ − χt)dt+ σχdzχ (4.2.6)

dξt = µ∗ξdt+ σξdzξ (4.2.7)

where:

α∗ = −λχσχ
κΠ

(4.2.8)

µ∗ξ = µξ − λξσξ (4.2.9)

dz∗χdz
∗
ξ = ρχξdt (4.2.10)

λχ and λξ are the market prices of risk. It can be proven that a forecast of the
future prices can be represented as:

F0(Π0, T ) = E∗0(ΠT ) = f(T ) + e−κPTχ0 + ξ0 + (1− e−κΠT )α∗ + µ∗ξT (4.2.11)

and the variance as:

V ar∗(ΠT ) = (1− e−2κΠT )
σ2
χ

2κΠ

+ σ2
ξT + 2(1− e−κΠT )

ρχξσχσξ
κΠ

(4.2.12)
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5 Parameter estimation
The stochastic models presented in Section 4 need accurate parameters in order
to give useful forecasting values for inflow and price. The necessary parameters
for the inflow models are estimated by fitting the inflow models to the historical
inflow data provided by the hydropower producers presented in Section 3.2. The
price models use historical spot prices and futures and forward data from the
Nordic power market to estimate parameters. Sections 5.1 and 5.2 briefly describe
the procedures used to estimate parameters, while Sections 5.3 and 5.4 present
the results from the inflow and price parameter estimations, respectively.

Price and inflow models are developed for the purpose of providing input to
the LDR model. However this is not the main focus of this thesis. The data
available for the estimations are limited compared to the data most producers
have available. Moreover most hydropower producers have access to good inflow
and price models, such as the EMPS model (Wolfgang et al., 2009).

5.1 The numerical nonlinear least squares method

The numerical nonlinear least squares method is presented in Cortazar and
Schwartz (2003) and Lucia and Schwartz (2002). This method is based on the
idea of finding the parameters that minimize the sum of the squared errors
between the observed value, Zn, and the calculated value, Ẑn, in the data set:

Sum of squared errors =
N∑
i=1

(Ẑn − Zn)2 (5.1.1)

To calibrate the price model, spot prices and futures and forwards for N number
of dates, ti, where i = 1, ..., N are used. For each date, ti, there are Mi contracts
with different maturities. For a given initial set of parameters the state variables4
that minimize the sum of the squared errors between the values forecasted by
the model and the the spot prices and futures and forward prices that particular
day, are estimated. The estimated state variables and the observed futures
and forwards are used to estimate the volatilities and correlation parameters.
Given the implied state variables and parameters, the remaining parameters
are estimated by minimizing the sum of the squared errors for the whole spot
and derivative contracts sample. This procedure is repeated with the new set of
parameters until convergence.

5.2 The Kalman filter

The state variables in the two factor model presented in Section 4.2.1 are not
directly observable and can be estimated using information contained in futures

4A state variable is a variable in the set of variables that are used to describe the mathematical
"state" of a dynamical system.
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and forward prices (Schwartz and Smith, 2000). The Kalman filter is a recursive
algorithm that produces estimates of these state variables, using related, observ-
able time series of the variables, and a set of mathematical equations estimates
the state variables in a way that minimizes the total sum of squared error (Welch
and Bishop, 2001). Detailed descriptions of the Kalman filter are given in Harvey
(1989) and West and Harrison (1996). Schwartz (1997) and Schwartz and Smith
(2000) do also make use of this method.

5.3 Inflow model estimations

The autoregressive model (Inflow model 1) and the one factor model (Inflow
model 2 and 3), presented in Section 4.1.2, are used for inflow modeling. In Inflow
model 1, time periods of one month are used when estimating the seasonal factors.
For long time series, shorter periods could have been used for estimating the
seasonal factors in order to obtain a more accurate estimate. However, for plants
with short time series, spikes may have affected the estimates to much if shorter
time periods were used. The seasonally adjusted data are used to estimate the
constants δ and ρi for the AR(1) model using ordinary least squares regression in
Excel.

As described in Section 2.1, the year can be divided into three sub periods
of different inflow pattern. This is done for Inflow model 2, and parameters are
estimated using the nonlinear least squared method and the standard Solver of
Excel. The parameters for Inflow model 3 are estimated using the same method
as for Inflow model 2, but here only one period is used to represent the whole
year. This is done to test if dividing the year leads to a better description of the
realized inflow, compared to using just one period.

Data from the years 1998 to 2011 for Plant 1, 1998 to 2008 for Plant 2 and
1998 to 2009 for Plant 4 are used to estimate the parameters. The years 2009 to
2011 (Plant 1), 2006 to 2008 (Plant 2) and 2007 to 2009 (Plant 4) are used to
run out of sample tests to measure the accuracy of the three inflow models. For
Plant 3 the data series for inflow are too short (2007-2011) to run out of sample
tests. Since Plant 2 and 3 have similar inflow patterns and are located in the
same geographical area, the most accurate inflow model for Plant 2 is assumed to
also be the most accurate inflow model for Plant 3. Plant 4 is a multi-reservoir
system, and the testing is done for the largest reservoir. Since the inflow patterns
are similar for all reservoirs, it is assumed that the most accurate inflow model is
the same for all of them.

Table 5.3.1 summarises measures of accuracy for the hydropower plants5. The
results presented in this table indicates that Inflow model 2 gives the least de-

5These error measures are commonly used when comparing different models to realised
data. Cuthbertson and Nitzsche (2001) describes the different error measures used here and
the reader is referred there for future details.
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viation between realized inflow and forecasted inflow for the tested years for all
hydropower plants. Figures 5.3.1 to 5.3.3 show graphically out of sample plots for
Inflow model 2, including relative realised inflow for the tested years compared to
the relative simulated inflow based on the estimated parameters6. Corresponding
figures for Inflow model 1 and 3 are presented in Appendix A.1. Comparing the
figures for Inflow model 2 with the figures for Inflow model 1 and 3 verifies that
Inflow model 2 gives the least deviation. For Plant 2 the error measurements
are quite large. An explanation for this is that the inflow levels are lower than
average in two of the tested years (2006 and 2007). The figures for Plant 2 also
vertify that the difference between the realised and the forecasted inflow is larger
than for the two other plants.

Table 5.3.1: Error measures for out of sample tests for the inflow models.

Mean Mean Mean Mean Mean Root mean
error absolute square percentage absolute square

error error error percentage error
error

Plant 1
Model 1 0.3 2.8 12.5 98.0 % 127.7 % 3.5
Model 2 0.2 2.7 12.4 84.0 % 113.4 % 3.5
Model 3 0.3 3.0 14.4 112.0 % 141.9 % 3.8
Plant 2
Model 1 3.3 7.5 87.1 217.1 % 233.4 % 9.3
Model 2 2.1 7.1 91.0 158.9 % 181.7 % 9.5
Model 3 6.3 10.2 182.8 347.7 % 363.6 % 13.5
Plant 4
Model 1 0.3 2.8 12.5 98.0 % 127.7 % 3.5
Model 2 -0.4 1.6 4.5 52.4 % 92.5 % 2.1
Model 3 0.2 1.8 5.2 91.3 % 123.8 % 2.3

Figures 5.3.4 to 5.3.6 show weekly expected inflow values from the three inflow
models compared to the average inflow for all plants. As described in Section
2.1, there are large inflow variations throughout a year. Intuitively, inflow models
dividing the year into several periods will thus be able to capture this inflow
pattern better than models using just one period. For this reason the results from
Inflow model 1 and Inflow model 2 are assumed to adapt better to the seasonal
variations of inflow than the results from Inflow model 3. This can also be verified
from Figures 5.3.4 to 5.3.6, which show that Inflow model 3 is less fitted to the
historical average inflow data than the two other models. Based on these findings
and the results from the out of sample testing, Inflow model 2 is used in the
further analysis, i.e. to provide input for the long term scheduling models.

6Relative values are calculated by dividing the inflow levels on the maximum inflow level to
anonymize the identity of the hydropower producers.
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Figure 5.3.1: Inflow model 2 for Plant 1 (2009-2011).

Figure 5.3.2: Inflow model 2 for Plant 2 (2006-2008).

Figure 5.3.3: Inflow model 2 for Plant 4 (2007-2009).
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Figure 5.3.4: Forecasted and average inflow for Plant 1.

Figure 5.3.5: Forecasted and average inflow for Plant 2.

Figure 5.3.6: Forecasted and average inflow for Plant 4.
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5.4 Price model estimations

The two-factor model presented in Section 4.2.1 is used for modeling the spot
price. The parameters are estimated using the numerical nonlinear least squares
method (Price model 1 and 2) and the Kalman filter (Price model 3).

The parameters used in Price model 1 are estimated by Lucia and Schwartz
(2001), and the reader is referred there for future details. Some adjustments are
made on the original parameters, and the adjusted parameters can be found in
Appendix A.2. µ∗ξ is set to zero, because the intention is to look at an average
situation for price with an incentive neutral price curve. A negative µ∗ξ will
motivate to discharge water for production today instead of waiting. ρχξ is also
set to zero according to Pilipovic (2007). In order to get a reasonable price
level on the price curve, α∗, χ0 and ξ0 are all set to zero, while α is set equal
to the average spot price for the last ten years (2003-2012), which is 309 NOK/MWh.

For Price model 2, parameters are estimated using data about spot prices and
futures and forward from 2004 to 2012. The spreadsheet that is used is developed
by Seim and Thorsnes (2007), and the futures and forward data are from NAS-
DAQ (2012)7. The Kalman filter used to estimate the parameters for Price model
3 is developed by Bjørnsgard and Hauge (2007)8. Spot prices and yearly contracts
from 2007-2012 are used for estimating the parameters. The short data set is due
to limited futures and forward data. Ideally a longer data set should have been
used. The use of contracts with different maturities, would also improved the
data set. The estimated parameters can be found in Appendix A.2.

In order to measure the accuracy of the three models, the years 2010 to 2012 are
used to run out of sample tests. Price model 1 is based on data from the years
1993 to 1999. However, the model is adjusted to the average price level of the
years 2003 to 2012. It is therefore assumed as acceptable to test this model for
the years 2010 to 2012, even though these years are not part of the data set used
for parameter estimation. Price model 1 specify prices in NOK/MWh, while the
two other models specify prices in EUR/MWh since the futures and forward data
available are given in EUR/MWh. In order to make the results comparable, the
forecasted prices from Price model 1 are converted into EUR/MWh by using daily
exchange rates from DNB (2013)9.

Table 5.4.1 summarizes measures of accuracy for the three price models. The
results from this table verify that Price model 1 gives the least deviation between
realized prices and forecasted prices in the years 2010 to 2012.

7The futures and forwards data have been collected by Benterud et al. (2012).
8Development of a spreadsheet and a Kalman filter is out the scope of this thesis.
9Forward exchange rates could alternatively have been used since futures and forward prices

are used for estimation. However, this will only have a marginal impact on the calculated prices.
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Table 5.4.1: Error measures for out of sample tests for the price models.

Price Mean Mean Mean Mean Mean Root mean
model error absolute square percentage absolute square

error error error percentage error
error

1 -1.9 11.2 211.3 13.7% 36.4% 14.5
2 -0.1 11.3 179.7 17.7% 37.8% 13.4
3 0.2 11.8 210.4 21.1% 40.6% 14.5

The expected prices from the price models and the average weekly system prices
in the period from 2004 to 2012 are shown in Figure 5.4.1. The results from the
price models capture the seasonal variations in the spot prices, and give a fairly
good estimate of the average weekly prices. The largest deviation is about 5.7
EUR/MWh for Price model 1, 7.8 EUR/MWh for Price model 2 and 6.4 EUR/MWh

for Price model 3. The results from Price model 1 is used in the further analysis
since this model has the lowest errors.

Figure 5.4.1: The result from the three price models compared to the average
spot price (2004-2012).
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6 Linear Decision Rules model
This section starts with a presentation of the methodology on which the LDR
model is based. Model assumptions are explained, followed by a presentation of
the deterministic, the stochastic and the LDR model. The problem sizes for the
deterministic and the LDR models are then presented in the following section.
The LDR model is intended to be coupled to a shorter term model through a
fixed water value at the coupling stage. Section 6.4 describes how these water
values can be found, while Section 6.5 presents an approximate method for taking
a variable head of water into account.

6.1 Methodology

Optimization belongs to the field of applied mathematics and encompasses the
use of mathematical models and methods to find the best alternative in decision
making situations (Lundgren et al., 2010). An optimization model finds the
value(s) of one or more decision variables that maximizes or minimizes a specified
objective function, while at the same time satisfying one or more constraints.
Depending on how the functions and variables used to describe the underlying
problem are specified, optimization models are divided into different classes. This
thesis considers Linear Programming (LP), which is a class of problems where all
functions are linearly dependent on the decision variables and all variables are
continuous.

For deterministic problems, all parameters are fully known when the decision
variables are determined. However, most real-life problems include some uncer-
tain parameters. When some of the parameters in a linear program are most
appropriately described using random variables, a Stochastic Linear Program
(SLP) results (Higle, 2005). Before a stochastic model can be developed, the
timing of the decisions, relative to the resolution of uncertainty, must be specified.
Decisions taken after information about the uncertain parameters is available
offer an opportunity to adapt to the received information. These decisions are
referred to as recourse decisions or adjustable variables. On the contrary, non
adjustable variables correspond to variables that must be completely specified
before the true values of the uncertain data become known. Consequently, the
vector x of variables can be partitioned as x = (ut, vt)T , where the sub-vector u
represents the non adjustable and v represents the adjustable variables.

In a Multistage Stochastic Linear Program (MSLP) an initial decision is fol-
lowed by a sequence of uncertain parameters being revealed, and associated
recourse decisions being made. In these models nonanticipativity constraints are
included in order to ensure that the decisions taken at a specific stage10 only
rely on information that is available at this stage. According to Shapiro and
Nemirovski (2005), MSLP’s are computationally intractable even when medium

10A stage is a point in time where new information is available.
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accuracy solutions are sought.

A tractable approximation of a MSLP can be found by restricting the recourse
decisions, v, to be affine functions, i.e. linear plus a constant, of the uncertain
parameters, Π (Ben-Tal et al., 2003). The history of observations up to time t
is denoted Πt := (Π1, ...,Πt). Considering a sequential decision process in which
the decision vt(Π

t) is selected at time t after the outcome of history Πt has
been observed, but before the future outcomes {Πs}s>t have been revealed, the
objective is to find a sequence of decision rules, vt, ∀t ∈ T , that maps available
decisions to observations and minimize or maximize the objective function subject
to certain linear constraints. This gives the following decision rules:

vt = v0
t +

∑
r∈It

vrr · Πr, ∀t ∈ T (6.1.1)

where v0
t and vrr are new non adjustable variables and It is a subset of {1, ..., t}.

Requiring that vt depends solely on Πt reflects the nonanticipative nature of the
problem (Kuhn et al., 2011). The uncertain parameters are defined within an
interval around their nominal values in each time period t, Π∗t . The size of the
interval is given by the uncertainty level, θ. This interval is represented by the
uncertainty set, Ξ, where:

Ξ := [Π∗t · (1− θ),Π∗t · (1 + θ)], ∀t ∈ T (6.1.2)

In the context of robust optimization the solutions must remain feasible for all
realizations of the uncertain data within a given uncertainty set. Under this
constraint, the objective function optimizes the guaranteed (worst case) value of
the (uncertain) objective function. Replacing the objective function by a function
minimizing or maximizing the expected value instead of the worst case value
transforms the program into a stochastic program (Kuhn et al., 2011). In the
case of fixed recourse, provided that the uncertainty set itself is computationally
tractable, this program is computationally tractable. In the case of a polyhedral
uncertainty set11, the fixed recourse program is equivalent to an explicit LP
program.

6.2 Hydropower scheduling models

An aggregated reservoir model and a multi-reservoir model are developed in this
thesis. The aggregated reservoir model considers a hydropower plant with one
aggregated power station and one aggregated reservoir. This means that the
production capacity of all power stations and the potential energy level of all
reservoirs are merged into one power station and one reservoir whose operation
will be optimized. When using aggregated reservoir models, detailed reservoir
drawdown methods are normally used to distribute production between power

11A set P ⊆ Rn is a polyhedron if there is a system of finitely many inequalities Ax ≤ b such
that P = {x ∈ Rn|Ax ≤ b} (Kuhn et al., 2011).
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stations and allocate water between reservoirs12. However, this is considered out
of the scope of this thesis.

In the multi-reservoir model the interaction between the reservoirs and power
stations is taken into account. This model does also take into account that the
water discharged from an upstream reservoir will enter a downstream reservoir,
i.e. that the same water can be used for power generation at several power
station. Moreover, the model includes the opportunity to discharge water from an
upstream reservoir to a reservoir downstream without using the water for power
generation. This may be beneficial in high price periods if the upstream power
station has less production capacity than the downstream power station. For
plants with one reservoir and one power station the two models will provide the
same solution. For this reason, only the multi-reservoir models will be presented
in this section. The aggregated reservoir model can be found in Appendix B.1.

6.2.1 Model assumptions

The model is run forward in time, assuming that present time, t = 0, is the period
in which the reservoirs historically have been at their lowest water level. This
corresponds to week 17, 16, 18 and 15 for Plant 1, 2, 3 and 4, respectively. For
Plant 1, 2 and 4 a scheduling horizon of one year is used, while a two year horizon
is used for Plant 3 due to its high degree of regulation. The objective function is
discounted at a yearly risk free rate of 3 %, corresponding to a weekly risk free
rate of 0.057 %13. This is appropriate due to the risk adjusted prices used in the
stochastic models presented in Section 4.

Water stored in the reservoir at the end of the scheduling horizon is disregarded
in this thesis, i.e. this water is assumed to have zero value. It is assumed that this
simplification will not have any significant influence on the results since the end
of the scheduling horizon is the point in time in which the reservoirs historically
have reached their lowest levels. Another assumption is that 100 % of the water
discharged from the upstream reservoir can be reused in the downstream reservoir.

6.2.2 Deterministic Model

The deterministic hydropower scheduling model assumes that future inflow and
prices are fully known during the whole scheduling period. Using a deterministic
hydropower scheduling model leads to scheduling strategies that essentially allo-
cate water to the periods with the highest prices. (Wallace and Fleten, 2003).
The risk of spillage will be underestimated, and the profit will be overestimated.
Because all parameters are assumed to be fully known, there will be no extra
discharge during the fall in case of more inflow than expected at near maximum

12The reader is referred to Doorman (2012) for a more thorough description of the reservoir
draw down methods.

13The weekly risk free rate is calculated by: 52
√

0.03 = 0.00057 = 0.057% where 3 % is the
yearly risk free rate.
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reservoir levels. Moreover, there will be no holding back extra water during
the winter in case the snow melting starts late and prices will be higher than
expected. For this reason the deterministic model is assumed to give an optimistic
upper bound on the optimal objective value, i.e. the expected market value of
production. The deterministic model is defined as:

Index
t: Index for time periods.
i: Index for hydropower reservoirs.

Set
T : Set of time periods, t = {1, 2, ... , T}.
I: Set of hydropower reservoirs, i = {1, 2, ... , I}.

Parameters
R: Weekly interest rate.
Πt: Electricity price in time period t [NOK/MWh].
Ψt,i: Inflow to reservoir i in time period t [MWh].
Mmax,i: Maximum reservoir level for reservoir i [MWh].
Mmin,i: Minimum reservoir level for reservoir i [MWh].
M0,i: Initial reservoir level for reservoir i at time period t=0 [MWh].
Qmax,i: Maximum amount of production from reservoir i [MWh].
Qmin,i: Minimum amount of production from reservoir i [MWh].

σi,j:
{

1 if water from reservoir i can be discharged into reservoir j.
0 otherwise. .

Variables
V0: Discounted market value of total production [NOK].
mt,i: Reservoir level in reservoir i in time period t [MWh].
qt,i: Production from reservoir i in time period t [MWh].
ht,i,j: Water discharged without production from reservoir i to reservoir j in
time period t [MWh].
st,i: Spillage from reservoir i in time period t [MWh].

Mathematical formulation

V0 = max

T∑
t=1

I∑
i=1

[
1

(1 +R)t
(Πt · qt,i)

]
(6.2.1)

s.t.

qt,i ≥ Qmin,i, ∀i ∈ I, ∀t ∈ T (6.2.2)

qt,i ≤ Qmax,i, ∀i ∈ I, ∀t ∈ T (6.2.3)
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mt,i = M0,i, ∀i ∈ I, t = 0 (6.2.4)

mt,i ≥Mmin,i, ∀i ∈ I, ∀t ∈ T (6.2.5)

mt,i ≤Mmax,i, ∀i ∈ I, ∀t ∈ T (6.2.6)

mt,i = mt−1,i + Ψt,i +
I∑
j=1

σj,i · qt,j +
I∑
j=1

σj,i · ht,j,i

−qt,i −
I∑
j=1

σi,j · ht,i,j − st,i, ∀i ∈ I, ∀t ∈ T

(6.2.7)

qt,i, st,i,mt,i ≥ 0, ∀i ∈ I, ∀t ∈ T (6.2.8)

The objective function, Eq. (6.2.1), represents the discounted market value of
total production from all reservoirs over the whole scheduling horizon. Lower
and upper limits on production are stated by Eq. (6.2.2) and (6.2.3), while the
initial reservoir levels are given by Eq. (6.2.4). The reservoir levels at the end of
each period t have to be larger than a given minimum level and less than a given
maximum level in each time period, stated by Eq. (6.2.5) and (6.2.6). Eq. (6.2.7)
represents the reservoir balance, and states the relationship between the reservoir
level at the end of time period t− 1 and at the end of period t. Eq. (6.2.8) states
that all decision variables have to be nonnegative.

6.2.3 Stochastic model

The stochastic hydropower scheduling model takes uncertainty in future prices
and inflow into account. The variables for production, discharge and spillage are
rewritten as:

q
(Πt,Ψt,i)
t,i : Production depends on price, Πt, and inflow, Ψt,i.
h

(Ψt,i)
t,i,j : Discharge from reservoir i to reservoir j depends on inflow, Ψt,i.
s

(Ψt,i)
t,i : The loss of water due to spillage depends on inflow, Ψt,i.

This gives the following stochastic problem:

V0 = max E

[
T∑
t=1

I∑
i=1

1

(1 +R)t

(
Πt · q

(Πt,Ψt,i)
t,i

)]
(6.2.9)

Qmin,i ≤ q
(Πt,Ψi,t)
t,i ≤ Qmax,i, ∀i ∈ I, ∀t ∈ T (6.2.10)
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Mmin,i ≤M0,i +
t∑

s=1

Ψs,i +
t∑

s=1

I∑
j=1

σj,i · q
(Πr,Ψs,j)
s,j

+
t∑

s=1

I∑
j=1

σj,i · h
(Ψs,j)
s,j,i −

t∑
s=1

q
(Πs,Ψs,i)
s,i −

t∑
s=1

I∑
j=1

σi,j · h
(Ψs,i)
s,i,j

−
t∑

s=1

s
(Ψs,i)
s,i ≤Mmax,i, ∀i ∈ I, ∀t ∈ T

(6.2.11)

q
(Πt,Ψt,i)
t,i , s

(Ψt,i)
i,t ≥ 0, ∀i ∈ I, ∀t ∈ T (6.2.12)

h
(Ψt,i)
t,i,j ≥ 0, ∀t ∈ T, ∀i ∈ I, ∀j ∈ I (6.2.13)

The objective function, Eq. (6.2.9), represents the expected discounted market
value of total production from all reservoirs over the whole scheduling horizon.
Eq. (6.2.10) gives the upper and lower boundaries for production from reservoir
i in time period t. Eq. (6.2.11) gives the upper and lower boundaries for the
reservoir level, while Eq. (6.2.12) and (6.2.13) states that all variables have to be
nonnegative.

6.2.4 LDR model

In the LDR model, the decision variables for production, discharge and spillage
are adjustable, and allowed to depend on the observed data (dτ : τεIt ). It is
assumed that the production decision, qt,i, is made at the beginning of period t.
This decision is made on the basis of the realisations of price, Πr, and inflow, Ψr,
observed in the periods r ∈ It, where It is the set {1, ..., t}. Correspondingly, the
discharge decision is made on the basis of the realisations of inflow, Ψr, observed
in the periods r ∈ It. The variable for spillage, st,i, is auxiliary. This variable do
not correspond to an actual decision, an can adjust itself to the realisations of
inflow, Ψr, observed in the periods r ∈ It. Applying the methodology described
in Section 6.1, the decision making policies are restricted to affine decision rules :

q
(Πt,Ψt)
t,i = δ0

t,i +
∑
rεIt

(δrt,i · Πr + γrt,i ·Ψr,i), ∀t ∈ T, ∀i ∈ I (6.2.14)

h
(Ψt)
t,i,j = ρ0

t,i,j +
∑
rεIt

(ρrt,i,j ·Ψr,i), ∀t ∈ T, ∀i ∈ I, ∀j ∈ I (6.2.15)

s
(Ψt)
t,i = κ0

t,i +
∑
rεIt

(κrt,i ·Ψr,i), ∀t ∈ T, ∀i ∈ I (6.2.16)

where the variables (δ0
t,i, δ

r
t,i, γ

r
t,i, ρ

0
t,i,j, ρ

r
t,i,j, κ

0
t,i and κrt,i) are the new non adjustable

variables. When specifying these policies both future price and inflow are uncertain.
However, both these parameters are assumed to be within the following uncertainty
sets:
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ΞΠ := [Π∗t · (1− θΠ),Π∗t · (1 + θΠ)], ∀t ∈ T (6.2.17)

ΞΨ := [Ψ∗t,i · (1− θΨ),Ψ∗t,i · (1 + θΨ)], ∀i ∈ I,∀t ∈ T (6.2.18)

where θΠ and θΨ are nonnegative, and represent the uncertainty levels of price
and inflow, respectively. Π∗t represents the expected price, while Ψ∗t,i represents
the expected inflow.

Figures 6.2.1 and 6.2.2 illustrates how price and inflow can vary between the
upper and lower limit of their respective uncertainty sets. In these figures the
uncertainty levels for both price, θΠ, and inflow, θΨ, are equal to 20 %, i.e.
Πt ∈ [0.8 ·Π∗t , 1.2 ·Π∗t ] and Ψt,i ∈ [0.8 ·Ψ∗t,i, 1.2 ·Ψ∗t,i]. The dotted lines in Figures
6.2.1 and 6.2.2 represent the lower limits, expected values and upper limits,
while the bold line represents a random sample realisation for price and inflow,
respectively.

Figure 6.2.1: Random sample realisation of price, with expected values and
upper and lower limits.

Figure 6.2.2: Random sample realization of inflow, with expected values and
upper and lower limits.
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The stochastic model is rewritten into an LDR model based on the procedure
described in Appendix B. This gives the following model:

V0 = max

[
T∑
t=1

I∑
i=1

1

(1 +R)t

(
Π∗t · δ0

t,i +
∑
rεIt

δrt,i · Π∗t · Π∗r

+
∑
rεIt

δrt,i · C
Π,Π
t,r +

∑
rεIt

γrt,i · Π∗t ·Ψr +
∑
rεIt

γrt,i · C
Π,Ψ
t,r

)] (6.2.19)

M0,i +
t∑

s=1

Ψs,i − θΨ ·
t∑

r=1

Ψs,i +
t∑

s=1

I∑
j=1

σj,i · δ0
s,j

+
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · δrs,j · Πr − θΠ ·
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · drs,j · Πr

+
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · γrs,j ·Ψr,j − θΨ ·
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · yrs,j ·Ψr,j

+
t∑

s=1

I∑
j=1

σj,i · ρ0
s,j,i +

t∑
s=1

I∑
j=1

∑
rεIs

σj,i · ρrs,j,i ·Ψr,j

−θΨ ·
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · prs,j,i ·Ψr,j −
t∑

s=1

δ0
s,i −

t∑
s=1

∑
rεIs

δrs,i · Πr

−θΠ · drs,i · Πr −
t∑

s=1

∑
rεIs

γrs,i ·Ψr,i − θΨ ·
t∑

s=1

∑
rεIs

yrs,i ·Ψr,i

−
t∑

s=1

I∑
j=1

σi,j · ρ0
s,i,j −

t∑
s=1

I∑
j=1

∑
rεIs

σi,j · ρrs,i,j ·Ψr,i

−θΨ ·
t∑

s=1

I∑
j=1

∑
rεIs

σi,j · prs,i,j ·Ψr,i −
t∑

s=1

κ0
s,i −

t∑
s=1

∑
rεIs

κrs,i ·Ψr,i

−θΨ ·
t∑

s=1

∑
rεIs

krs,i ·Ψr,i ≥Mmin,i, ∀i ∈ I, ∀t ∈ T

(6.2.20)
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M0,i +
t∑

s=1

Ψs,i + θΨ ·
t∑

r=1

Ψs,i +
t∑

s=1

I∑
j=1

σj,i · δ0
s,j

+
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · δrs,j · Πr + θΠ ·
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · drs,j · Πr

+
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · γrs,j ·Ψr,j + θΨ ·
t∑

s=1

I∑
j=1

∑
rεIs

σj,i·

yrs,j ·Ψr,j +
t∑

s=1

I∑
j=1

σj,i · ρ0
s,j,i +

t∑
s=1

I∑
j=1

∑
rεIs

σj,i · ρrs,j,i ·Ψr,j

+θΨ ·
t∑

s=1

I∑
j=1

∑
rεIs

σj,i · prs,j,i ·Ψr,j −
t∑

s=1

δ0
s,i −

t∑
s=1

∑
rεIs

δrs,i · Πr

+θΠ · drs,i · Πr −
t∑

s=1

∑
rεIs

γrs,i ·Ψr,i + θΨ ·
t∑

s=1

∑
rεIs

yrs,i ·Ψr,i

−
t∑

s=1

I∑
j=1

σi,j · ρ0
s,i,j −

t∑
s=1

I∑
j=1

∑
rεIs

σi,j · ρrs,i,j ·Ψr,i + θΨ ·
t∑

s=1

I∑
j=1

∑
rεIs

σi,j·

prs,i,j ·Ψr,i −
t∑

s=1

κ0
s,i −

t∑
s=1

∑
rεIs

κrs,i ·Ψr,i + θΨ ·
t∑

s=1

∑
rεIs

krs,i ·Ψr,i

≤Mmax,i, ∀i ∈ I, ∀t ∈ T

(6.2.21)

δ0
t,i +

∑
rεIt

δrt,i · Πr − θΠ ·
∑
rεIt

drt,i · Πr

+
∑
rεIt

γrt,i ·Ψr,i − θΨ ·
∑
rεIt

yrt,i ·Ψr,i ≥ Qmin,i, ∀i ∈ I, ∀t ∈ T
(6.2.22)

δ0
t,i +

∑
rεIt

δrt,i · Πr + θΠ ·
∑
rεIt

drt,i · Πr

+
∑
rεIt

γrt,i ·Ψr,i + θΨ ·
∑
rεIt

yrt,i ·Ψr,i ≤ Qmax,i, ∀i ∈ I, ∀t ∈ T
(6.2.23)

ρ0
t,i,j +

∑
rεIt

ρrt,i,j ·Ψr,i − θΨ ·
∑
rεIt

prt,i,j ·Ψr,i

≥ 0, ∀t ∈ T, ∀i ∈ I, ∀j ∈ I
(6.2.24)

κ0
t,i +

∑
rεIt

κrt,i ·Ψr,i − θΨ ·
∑
rεIt

κrt,i ·Ψr,i ≥ 0, ∀i ∈ I, ∀t ∈ T (6.2.25)
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− drt,i ≤ δrt,i ≤ drt,i, 1 ≤ r ≤ t ≤ T, ∀i ∈ I (6.2.26)

− yrt,i ≤ γrt,i ≤ yrt,i, 1 ≤ r ≤ t ≤ T, ∀i ∈ I (6.2.27)

− prt,i,j ≤ ρrt,i,j ≤ prt,i,j, 1 ≤ r ≤ t ≤ T, ∀i ∈ I, ∀j ∈ I (6.2.28)

− krt,i ≤ κrt,i ≤ krt,i, 1 ≤ r ≤ t ≤ T, ∀i ∈ I (6.2.29)

The objective function, Eq. (6.2.19), represents the expected discounted market
value of total production from all reservoirs over the whole scheduling horizon.
The upper and lower production levels are stated by Eq. (6.2.23) and (6.2.22),
while Eq. (6.2.21) and (6.2.20) state that the reservoir levels have to be less than
a given maximum level and larger than a given minimum level. Eq. (6.2.24)
and (6.2.25) states that spillage and discharge have to be nonnegative, while Eq.
(6.2.26) to (6.2.29) give the absolute values for the new variables.

All constraints are defined to hold for all possible realizations of price and
inflow within the specified uncertainty sets. This means that the highest possible
production, i.e. the production corresponding to the highest inflow outcome14

and highest price outcome15, can not exceed the production capacity in any time
period. At the same time the lowest possible production, i.e. the production
corresponding to the lowest inflow outcome16 and lowest price outcome17, has
to be greater than or equal to the minimum production requirement in all time
periods.

The constraint requiring that the reservoir levels have to be greater than or
equal to a given minimum level has to hold for the case in which the lowest
possible inflow, the lowest possible production and discharge from upstream
reservoirs and the highest possible production, the highest possible discharge
and the highest possible spillage occur in all time periods. At the same time the
constraint requiring that the reservoir levels have to be less than or equal to a
given maximum level has to hold for the opposite case. The reservoir levels given
by these two extreme cases will hereafter be referred to as the highest possible
and lowest possible reservoir levels. These reservoir levels are unlikely to occur.
However, due to the equivalences presented in Appendix B.1.4, these bounds are

14A situation in which the realization of inflow is equal to its upper bound in all time periods,
i.e. Ψt,i = Ψ∗

t,i + θΨ ·Ψ∗
t,i, ∀t ∈ T .

15A situation in which the realization of price is equal to its upper bound in all time periods,
i.e. Πt = Π∗

t + θΠ ·Π∗
t , ∀t ∈ T .

16A situation in which the realization of inflow is equal to its lower bound in all time periods,
i.e. Ψt,i = Ψ∗

t,i − θΨ ·Ψ∗
t,i, ∀t ∈ T .

17A situation in which the realization of price is equal to its lower bound in all time periods,
i.e. Πt = Π∗

t − θΠ ·Π∗
t , ∀t ∈ T .
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necessary in order to guarantee that no reservoir levels higher or lower than the
reservoir limits can possibly occur.

6.3 Problem size

The deterministic model and the LDR model presented in Sections 6.2.2 and
6.2.4, respectively, are implemented and solved in Xpress MP. In this section, the
problem sizes of these models are presented.

The deterministic model has three decision variables for each reservoir i and time
period t, and one decision variable for each reservoir i, reservoir j and time period
t. The topology parameter is defined such that water can only be discharged
downstream in the topology, meaning that i ≤ j, ∀i, j ∈ I. This gives a total of
3× T × I + 0.5× T × I × I variables. The model has five constraints for each
reservoir i in time period t, which gives a total of 5× T × I constraints. Plant 1,
2 and 4 are run for T = 52 time periods, while Plant 3 is run for T = 104 time
periods. Plant 1 and 2 do both have I = 1 reservoirs, while Plant 3 and Plant 4
have I = 4 reservoirs. The problem size for each plant is presented in Table 6.3.2.

Table 6.3.1: Problem sizes for the deterministic model.

Plant # Variables # Constraints
Plant 1 and 2 182 260

Plant 3 1460 2080
Plant 4 732 1040

When applying the LDR approach, the problem sizes increases. The LDR model
has two decision variables with dimension I×T , six with dimension 0.5×T×T×I,
one with dimension 0.5×T×I×I and one with dimension 0.25×T×T×I×I. The
model has five constraints with dimension T×I, one with dimension 0.5×T×I×I,
one with dimension 1.5×T ×T × I and one with dimension 0.25×T ×T × I × I.
The problem size for each plant is presented in Table 6.3.2.

Table 6.3.2: Problem sizes for the LDR model.

Plant # Variables # Constraints
Plant 1 and 2 8216 4316

Plant 3 195 520 111 072
Plant 4 49 088 28 496

6.4 Water values

The LDR model is intended to be coupled to a shorter term scheduling model with
a scheduling horizon of one week. The coupling is assumed to take place through
a fixed water value at the end of the first period of the scheduling horizon of the
long term scheduling model. Considering a plant with one power station and
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one reservoir, the water value will correspond to the dual value of the following
constraint:

mt + qt + st,= Mt−1 + Ψt, ∀t ∈ T (6.4.1)

Eq. (6.4.1) states that the reservoir level in week t− 1 must equal the reservoir
level in week t plus inflow minus discharge and spillage in week t. The dual value
of this constraint for t = 1 corresponds to the water value at the end of the first
week, and expresses how much the profit increases when one extra unit of water
is available in the initial reservoir.

The reservoir level constraints, Eq. (B.1.46) and (B.1.47) in Appendix B.1.6,
ensure that the reservoir level at the end of each week is within its limits. How-
ever, these constraints do not link one time period to the preceding one such
as Eq. (6.4.1) does. For this reason, the dual variables of these constraints do
not correspond to the water values at the end of each time period. To make it
possible to extract the water value at the end of the first period from the model
results, Eq. (6.4.2) can be added to the LDR model. This constraint is obtained
by inserting the affine decision rules into Eq. (6.4.1). In order to get an inequality
constraint, the spillage variable, st, is removed, and the inequality constraint
is rewritten based on the equivalences presented in Appendix B.1.4. The new
constraint for the LDR model is defined as:

M0 +
t∑

s=1

Ψs + θΨ ·
t∑

s=1

Ψs −
t∑

s=1

δ0
s −

t∑
s=1

∑
r∈Is

δrs · Πr

+θΠ ·
t∑

s=1

∑
r∈Is

drs · Πr −
t∑

s=1

∑
r∈Is

γrs ·Ψr + θΨ ·
t∑

s=1

∑
r∈Is

yrs ·Ψr

−
t∑

s=1

κ0
s −

t∑
s

∑
r∈Is

κrs ·Ψr + θΨ ·
t∑

s=1

∑
r∈Is

krs ·Ψr + δ0
t

+
∑
r∈It

δrt · Πr + θΠ ·
∑
r∈It

drt · Πr +
∑
r∈It

γrt ·Ψr + θΨ ·
∑
r∈It

yrt ·Ψr

≤M0 +
t∑

s=1

Ψs − θΨ ·
t∑

s=1

Ψs, ∀t = 1

(6.4.2)

The dual value of this constraint is equivalent to the water value at the end of the
first period18. This constraint is weakly dominated by Eq. (B.1.46) and (B.1.47),
and will therefore not affect the solution.

18The dual value of Eq. (6.4.2) corresponds to the expected water value, because it states
how much the expected profit increases by having one additional unit of water available. The
word water value will hereafter refer to expected water value.
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6.5 Head variations

Production varies with both water discharge from the reservoir and the head of
water, as can be seen from Eq. (3.1.1) and (3.1.2) in Section 3.1. The head of
water varies with the reservoir volume, indicating that production will be higher
at high reservoir volumes due to a higher head of water. The LDR model can
not directly deal with a variable head of water as this will make the problem
nonlinear and non convex. By assuming a constant average head of water the
model will set too high energy levels at low reservoir volumes and too low energy
levels at at high reservoir volumes.

One way of accounting for a variable head of water is by penalizing low heads of
water and rewarding high heads of water. This can be done by adding head sensi-
tivities of economic gain with respect to small changes in the reservoir volumes
to the objective function. This approach is used in Gjelsvik and Wallace (1996)
and Gjelsvik and Haugstad (2005), and will be described below.

For a hydropower system with I reservoirs, where i = 1, ..., I, V i
t denotes the

reservoir volume at the end of week t, while hit denotes the water surface elevation
referred to sea level. It is assumed that there is a power station with output P i

t

immediately downstream reservoir i. h is the index of an upstream reservoir,
while j is the index of a downstream reservoir. The outlet of power station i is
assumed to be submerged into reservoir j. If a situation in which the volume V i

t

is changed by a small amount, ∆V i
t , without changing the discharge qit, then the

influence of ∆V i
t on production in power station i downstream reservoir i and

power station h upstream reservoir i can be expressed as:

δP i
t

δV i
t

=
δP i

t

δhit
· δh

i
t

δV i
t

=
1

Ait
· P i

t

hit − h
j
t

(6.5.1)

δP h
t

δV i
t

=
δP h

t

δhit
· δh

i
t

δV i
t

=
1

Ait
· P i

t

hht − hit
(6.5.2)

where:
Ait = (

δhit
δV i

t

)−1 (6.5.3)

is the surface area of reservoir i. The spot price in time period t, Πt, is used as
the marginal value of the generation change. The change in profit due to variable
head can then be approximated by adding the following head sensitivity terms to
the objective function

T∑
t=1

n∑
i=1

c̃it ∆ V i
t (6.5.4)

where:
c̃it =

Πt

AIt

[
P i
t

hit − h
j
t

− P i
t

hht − hit

]
(6.5.5)
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The c̃-coefficients can be positive or negative. An increase in the volume of
reservoir i increases the profit associated with the downstream power station
i because the head of water increases, while it decreases the profit associated
with the upstream power station h because the head of water is decreased due
to a higher backwater level. If there is no downstream reservoir or the outlet of
the power station is not submerged, the second term of Eq. (6.5.5) is equal to zero.

By running the deterministic model for the expected values of price and in-
flow without any corrections for variable head, the nominal reservoir operations
schedule with nominal values of P i

t , V i
t , hit and Ait is found. From these values the

c̃-coefficients can be derived. ∆V i
t is defined to be the deviation of the optimal

reservoirs volumes from the expected reservoir volumes in time t (Steinsbø, 2008).
Eq. (6.5.4) is inserted into the objective function of the LDR model for all possible
flows, and a schedule taking variable head of water into account is found.
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7 Dual Linear Decision Rules models
Althrough the LDR approach is very effective at reducing the computational
complexity of stochastic problems, it may result in a considerable loss of opti-
mality. Kuhn et al. (2011) propose to apply the LDR approach not only on the
primal stochastic problem, but also on the dual version of this problem. The
approximation error introduced by the LDR approach can be estimated by the
gap between the optimal objective values of the primal and the dual LDR models,
i.e the duality gap.

This section starts with a presentation of basic duality theory, before the dual
version of the stochastic model presented in Section 6 is presented. The LDR
approximation is applied to the dual stochastic model in order to develop the
dual LDR model, and this model is presented in Section 7.2.2. The dual versions
of the aggregated reservoir stochastic model and the aggregated reservoir LDR
model can be found in Appendix C.1. The final section presents the problem size
of the dual LDR model.

7.1 Duality theory

Associated with every LP problem, there is a dual problem which is defined with
exactly the same input data as the original primal problem (Lundgren et al.,
2010). Let the primal problem (P ) be defined as:

max z = cTx (7.1.1)

Ax ≤ b (7.1.2)

x ≥ 0 (7.1.3)

When formulating the dual version of this problem one dual variable is created
for every primal constraint, and one dual constraint is defined for every primal
variable. Since the primal problem presented above is a maximization problem
the dual problem (D) becomes a minimization problem, and can be defined as:

min w = bTy (7.1.4)

ATy ≤ c (7.1.5)

y ≥ 0 (7.1.6)

The weak and strong duality theorems describe the relationship between the
primal and the dual models. The weak duality theorem states that if x is a
feasible solution for the primal problem with objective c, and y is a feasible
solution for its dual problem with objective b, then:

cTx ≤ bTy (7.1.7)

The theorem implies that the value of the objective function for any feasible
solution of the primal maximization problem is bounded from above by the
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value of the objective function for any feasible solution of the dual minimization
problem. Similarly, the value of the objective function for the dual minimization
problem is bounded from below by the value of the objective function for any
feasible solution of the primal maximization problem.

The strong duality theorem states that if x is an optimal solution for the primal
maximization problem with objective c, and y is an optimal solution for the dual
minimization problem with objective b, then:

cTx = bTy (7.1.8)

This theorem implies that there must exist a feasible solution to each respective
problem with identical objective function values. Strong duality holds if and only
if the duality gap is equal to zero.

Primal LDR leads to a pessimistic approximation of the original problem that
underestimates the producer’s flexibility (Kuhn et al., 2011). In contrast, the
use of dual LDR results in an optimistic approximation that overestimates the
producers flexibility. The duality gap, i.e. the difference between the optimal
objective values of the primal and dual LDR models, can be used to estimate the
approximation error incurred by the LDR approach. The objective value of the
primal LDR model, PL, is a lower bound on the optimal objective value of the
exact problem, P , where the gap between P and PL can be defined as:

∆L = max P −max PL (7.1.9)

where ∆L necessarily is nonnegative as PL is a restriction of a maximization
problem. The objective value of the dual LDR model, DU , is an upper bound on
the optimal objective value of the exact problem, D, where the gap between DU

and D can be defined as:

∆U = min DU −min D (7.1.10)

where ∆U necessarily is nonnegative as DU is a restriction of a minimization
problem. Neither ∆L and ∆U can be calculated, but the joint primal and dual
approximation error will give an indication of the duality gap, defined as:

∆ = min DU −max PL (7.1.11)

The duality gap is illustrated in Figure 7.1.1 and can be found by solving the
primal and dual LDR approximated problems:

∆ = min DU −max PL

∆ = min DU −min D + min D −max P + max P −max PL (7.1.12)
∆ = ∆U + min D −max P + ∆L

∆ ≥ ∆U + ∆L
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The last equality in Eq. (7.1.12) follows from weak duality and show that the
duality gap, ∆, constitutes an upper bound on ∆U and ∆L. A large duality gap
indicates the possibility for a large approximation error, and corresponding low
accuracy. Similarly, a small duality gap indicates a small approximation error
and high accuracy.

Figure 7.1.1: An illustration of the duality gap, ∆, between a primal maximiza-
tion problem and a dual minimization problem.

7.2 Dual hydropower scheduling models

The same assumptions as were made for the primal models presented in Section
6.2.1 are made for the dual models presented in this section.

7.2.1 Stochastic model

The primal stochastic model presented in Section 6.2.3 has three sets of variables
and four sets of constraints, which gives a dual problem with three sets of
constraints and four sets of variables. The new sets of dual variables are defined
as:

ι
(Πt,Ψt,i)
t,i , ζ

(Πt,Ψt,i)
t,i , ν

(Πt,Ψt,i)
t,i and µ(Πt,Ψt,i)

t,i , ∀t ∈ T (7.2.1)

The stochastic dual model is developed based on Lundgren et al. (2010) and
presented below:

Z0 = min E

[
T∑
t=1

I∑
i=1

(
−Qmin,i · ι

(Πt,Ψt,i)
t,i +Qmax,i · ζ

(Πt,Ψt,i)
t,i

+

(
Mmax,i −M0,i −

t∑
s=1

Ψs

)
· ν(Πt,Ψt,i)

t,i

+

(
−Mmin,i +M0,i +

t∑
s=1

Ψs

)
· µ(Πt,Ψt,i)

t,i

)] (7.2.2)
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−ι(Πt,Ψt,i)
t,i + ζ

(Πt,Ψt,i)
t,i +

T∑
s=t

I∑
j=i

σj,i · ν
(Πs,Ψs,j)
s,j −

T∑
s=t

ν
(Πs,Ψs,i)
s,i

−
T∑
s=t

I∑
j=i

σj,i · µ
(Πs,Ψs,j)
s,j +

T∑
s=t

µ
(Πs,Ψs,i)
s,i ≥ 1

(1 +R)t
· Πt,

∀t ∈ T, ∀i ∈ I

(7.2.3)

T∑
s=t

I∑
j=i

σj,i · ν
(Πs,Ψs,j)
s,j −

T∑
s=t

I∑
j=1

σi,j · ν
(Πs,Ψs,i)
s,i

−
T∑
s=t

I∑
j=i

σj,i · µ
(Πs,Ψs,j)
s,j +

T∑
s=t

I∑
j=1

σi,j · µ
(Πs,Ψs,i)
s,i ≥ 0,

∀t ∈ T, ∀i ∈ I, ∀j ∈ I

(7.2.4)

−
T∑
s=t

ν
(Πs,Ψs,i)
s,i +

T∑
s=t

µ
(Πs,Ψs,i)
s,i ≥ 0, ∀t ∈ T, ∀i ∈ I (7.2.5)

ι
(Πt,Ψt,i)
t,i , ζ

(Πt,Ψt,i)
t,i , ν

(Πt,Ψt,i)
t,i , µ

(Πt,Ψt,i)
t,i ≥ 0, ∀t ∈ T, ∀i ∈ I (7.2.6)

7.2.2 LDR model

As for the primal LDR model, the decision making policies are restricted to affine
decision rules :

ι
(Πt,Ψt,i)
t,i = ι0t,i +

∑
r∈It

(ιr1,t,i · Πr + ιr2,t,i ·Ψr,i), ∀t ∈ T, ∀i ∈ I (7.2.7)

ζ
(Πt,Ψt,i)
t,i = ζ0

t,i +
∑
r∈It

(ζr1,t,i · Πr + ζr2,t,i ·Ψr,i), ∀t ∈ T, ∀i ∈ I (7.2.8)

ν
(Πt,Ψt,i)
t,i = ν0

t,i +
∑
r∈It

(νr1,t,i · Πr + νr2,t,i ·Ψr,i), ∀t ∈ T, ∀i ∈ I (7.2.9)

µ
(Πt,Ψt,i)
t,i = µ0

t,i +
∑
r∈It

(µr1,t,i · Πr + µr2,t,i ·Ψr,i), ∀t ∈ T, ∀i ∈ I (7.2.10)

where the variables (ι0t,i, ιr1,t,i, ιr2,t,i, ζ0
t,i, ζ

r
1,t,i, ζ

r
2,t,i, ν

0
t,i, ν

r
1,t,i, ν

r
2,t,i, µ

0
t,i, µ

r
1,t,i and µr2,t,i)

are new nonadjustable variables. The uncertainty sets are defined in the same
way as in Section 6.2.4. The stochastic dual model is rewritten based on the
procedure described in Appendix C, which gives the following model:
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Z0 = min

T∑
t=1

I∑
i=1

[
−Qmin,i · ι0t,i −

∑
r∈It

Qmin,i · ιr1,t,i · Π∗r

−
∑
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Qmin,i · ιr2,t,i ·Ψ∗r,i +Qmax,i · ζ0
t,i +

∑
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−
∑
s∈It

Ψ∗s,i · ν0
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∑
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s,r

−Mmin,i · µ0
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∑
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Mmin,i · µr1,t,i · Π∗r −
∑
r∈It

Mmin,i · µr2,t,i ·Ψ∗r,i

+M0,i · µ0
t,i +

∑
r∈It

M0,i · µr1,t,i · Π∗r +
∑
r∈It

M0,iµ
r
2,t,i ·Ψ∗r,i

+
∑
s∈It

Ψ∗s,i · µ0
t,i +

∑
s∈It

∑
r∈It

µr1,t,i ·Ψ∗s,i · Π∗r +
∑
s∈It

∑
r∈It

µr1,t,i · CΠ,Ψ
s,r

+
∑
s∈It

∑
r∈It

µr2,t,i ·Ψ∗s,i ·Ψ∗r,i +
∑
s∈It

∑
r∈It

µr2,t,i · CΨ,Ψ
s,r

]

(7.2.11)

ι0t,i +
∑
r∈It

ιr1,t,i · Πr − θΠ ·
∑
r∈It

lr1,t,i · Πr +
∑
r∈It

ιr2,t,i ·Ψr,i

−θΨ ·
∑
r∈It

lr2,t,i ·Ψr,i ≥ 0, ∀t ∈ T, ∀i ∈ I
(7.2.12)

ζ0
t,i +

∑
r∈It

ζr1,t,i · Πr − θΠ ·
∑
r∈It

cr1,t,i · Πr +
∑
r∈It

ζr2,t,i ·Ψr,i

−θΨ ·
∑
r∈It

cr2,t,i ·Ψr,i ≥ 0, ∀t ∈ T, ∀i ∈ I
(7.2.13)

ν0
t,i +

∑
r∈It

νr1,t,i · Πr − θΠ ·
∑
r∈It

vr1,t,i · Πr +
∑
r∈It

νr2,t,i ·Ψr,i

−θΨ ·
∑
r∈It

vr2,t,i ·Ψr,i ≥ 0, ∀t ∈ T, ∀i ∈ I
(7.2.14)
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µ0
t,i +

∑
r∈It

µr1,t,i · Πr − θΠ ·
∑
r∈It

ur1,t,i · Πr +
∑
r∈It

µr2,t,i ·Ψr,i

−θΨ ·
∑
r∈It

ur2,t,i ·Ψr,i ≥ 0, ∀t ∈ T, ∀i ∈ I
(7.2.15)

−ι0t,i −
∑
r∈It

ιr1,t,i · Πr − θΠ ·
∑
r∈It

lr1,t,i · Πr −
∑
r∈It

ιr2,t,i ·Ψr,i

−θΨ ·
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ζr1,t,i · Πr − θΠ ·
∑
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I∑
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− lrt,i ≤ ιrt,i ≤ lrt,i, lrt,i = |ιrt,i|, 1 ≤ r ≤ t ≤ T, ∀i ∈ I (7.2.19)
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− crt,i ≤ ζrt,i ≤ crt,i, crt,i = |ζrt,i|, 1 ≤ r ≤ t ≤ T, ∀i ∈ I (7.2.20)

− vrt,i ≤ νrt,i ≤ vrt,i, vrt,i = |νrt,i|, 1 ≤ r ≤ t ≤ T, ∀i ∈ I (7.2.21)

− urt,i ≤ µrt,i ≤ urt,i, urt,i = |µrt,i|, 1 ≤ r ≤ t ≤ T, ∀i ∈ I (7.2.22)

7.3 Problem size

The dual LDR model presented in Section 7.2 is implemented and solved in Xpress
MP. This model has four decision variables with dimension T × I and 16 decision
variables with dimension 0.5× T × T × I. The model has six constraints with
dimension T × I, one constraint with dimension T × I × I and four constraints
with dimension 0.5 × T × T × I. The problem size of the dual LDR model is
presented in Table 7.3.1.

Table 7.3.1: Problem sizes for the dual LDR model.

Plant # Variables # Constraints
Plant 1 and 2 21 840 5 720

Plant 4 87 360 23 712
Plant 3 347 776 90 688
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8 Analysis
This section starts with a presentation of the results from the primal LDR model.
The analysis of these results will focus on how the reservoirs are managed in order
to maximize the expected market value of production, and how the proposed
reservoir management strategies relates to the properties of the hydropower plants.
The following section presents the computational times of both the primal and
the dual LDR model. This section will also investigate the complexity reduction
introduced by the LDR approach and present the duality gaps for all the four
hydropower plants for different uncertainty levels.

In order to demonstrate how the LDR model is intended to be used by the
hydropower producers, and to compare the performance of the LDR model and
the deterministic model, a ten years series simulation is performed for Plant 1.
The results from this simulations is presented in Section 8.3. The main objective
of long term scheduling is to initialise boundary conditions for the shorter term
scheduling models. To illustrate how this can be done, water values at the end
of the first week, as a function of the initial reservoir level, are presented in the
following section. An approximate method for taking a variable head of water
into account is presented in Section 8.5, before the main shortcomings of the
approach taken in this thesis are presented in Section 8.6.

8.1 Results from the primal models

The deterministic model and the LDR model presented in Section 6.2 is imple-
mented and solved in Xpress MP. As described in Section 6.2.2 the deterministic
model assumes that price and inflow are fully known and equal to their expected
values, while the LDR model assumes that price and inflow can drift around their
expected values, varying within a given uncertainty set. In Sections 8.1.2 and
8.1.3, it will be shown that this causes the LDR model to provide more restrictive
reservoir management strategies than the deterministic model. As a result, the
expected profit given by the deterministic model is higher than the expected
profit given by the LDR model. This result verifies that the LDR model behaves
like it is intended to, but does not provide an correct representation of how the
two models perform in relation to each other. For this reason, the profits are
only presented for Plant 1 and 2. In reality, the actual price and inflow deviate
from their expected values, which will cause the LDR model to perform better
than the deterministic model. This is verified through simulation, and will be
elaborated in Section 8.3.

Figures depicting the reservoir management strategies given by the deterministic
model and the LDR model are presented for all plants, while figures showing
the corresponding production strategies can be found in Appendix D. All figures
are operating with relative numbers, in which 1 corresponds to the maximum
reservoir level. This is done in order not to reveal the identity of the hydropower
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producers.

For all plants the uncertainty levels of price and inflow are assumed to be equal
and constant in all time periods. In reality, there is higher uncertainty related to
some periods of the year than others, which could have been incorporated in the
model. However, constant uncertainty levels are used because a thorough analysis
of historical uncertainty levels has not been performed in this thesis. For this
reason, there is lack of basis for determining neither how high the uncertainty
levels for price and inflow are compared to each other, nor how the uncertainty
relates to different time periods.

8.1.1 Reservoir management

Due to uncertainty in the future amount of inflow, hydropower producers faces
the risk of spillage at high reservoir levels, and the risk of emptying the reservoir
too early in the winter. Spillage will result in a loss of water, while emptying
the reservoir too early may result in a lost opportunity to produce at high prices.
Both situations will result in lost profits, and producers aim to avoid them when
deciding their long term reservoir management strategy. As the uncertainty in the
future amount of inflow increases, the risk that one or both of these situations will
occur increases. This gives the producers an incentive to operate the reservoirs
more restrictively when the uncertainty is high, i.e. to avoid filling or emptying
the reservoirs to its boundaries. As a consequence, the producers flexibility in
choosing when to produce will decrease with increasing uncertainty.

The realisations of price and inflow are uncertain when running the LDR model
forward in time, and the constraints are defined to hold for all possible realisations
of price and inflow within a given uncertainty set. Increasing the uncertainty
level will cause the constraints to tighten as they have to hold for a larger range
of outcomes. As a consequence, the feasible region for the production variables
decreases. In other words, the flexibility in choosing a strategy that will keep the
reservoir within its upper and lower limits regardless of which price and inflow
outcome that occurs, decreases.

Due to the decision rule, Eq. (6.2.14) in Section 6.2.4, the LDR model al-
lows for adjustment of production based on the realisations of price and inflow.
The production variables can take values that allow for adjustment to a greater
or lesser extent19. A high degree of adjustment will cause a larger difference
between the highest possible and the lowest possible production than a low de-
gree of adjustment20. This will in turn cause a larger gap between the highest

19If qt represents production and qt = δ0
t +

∑t
r=1 Πr · δrt +

∑t
r=1 Ψr · γrt , high values on δrt

and γrt compared to δ0
t will cause a high degree of adjustment, while the opposite will cause

a low degree of adjustment. If both δrt and γrt equal zero, production will neither depend on
realised price nor on realised inflow.

20For zero degree of adjustment, the highest possible production will equal the lowest possible
production.

55



possible and the lowest possible reservoir level. This can be explained by the
fact that the lowest possible reservoir level corresponds to the case of the highest
possible production, while the highest possible reservoir level corresponds to
the case of the lowest possible production, see Section 6.2.4. Moreover, a high
degree of adjustment will cause the gap to increase more at increasing uncertainty
level. As a result, a higher degree of adjustment is possible without causing in-
feasibility when the uncertainty level is low than when the uncertainty level is high.

At a certain uncertainty level there will only be one scheduling strategy that
satisfies both the maximum and the minimum reservoir level constraints, Eq.
(6.2.20) and (6.2.21) in Section 6.2.4. Production, discharge and spillage will thus
be the same for all realisations of price and inflow, i.e. the decisions can not be
adjusted based on the realisations of the two parameters. At this uncertainty level,
a point at which the lowest possible reservoir level equals the minimum reservoir
limit and the highest possible reservoir level equals the maximum reservoir limit,
will be reached. If this uncertainty level is exceeded, either higher production,
discharge or spillage must be scheduled in order for the maximum reservoir
constraint to hold. However, if production, discharge or spillage increases, the
minimum reservoir constraint will be violated.

The highest uncertainty level for which the model is still feasible depends on the
flexibility of the hydropower plant and on the length of the scheduling horizon
considered. As described in Section 3.1, high flexibility entails more options
regarding when to discharge the available water than low flexibility. This means
that water can be stored during the summer when prices are low, and produced
during the winter when prices are high. At low flexibility there are few possible
strategies making it possible to avoid both spillage and emptying the reservoir
when prices are still high. This will make it necessary to produce at low prices
instead of saving water for production in the high price periods. As mentioned in
the above paragraphs, increasing the uncertainty level will reduce the flexibility
in choosing when to produce further, and eventually make it impossible to find
a reservoir management strategy that will hold for all realisations of price and
inflow within the uncertainty set.

The difference between the total amounts of inflow in the highest and the lowest
inflow outcomes increases for each time period of the scheduling horizon. When
the length of the scheduling horizon increases, the feasible solution space will
thus decrease. This will in turn lead to a decrease in the highest uncertainty
level for which the model is still feasible. In reality, a situation in which either
the highest or the lowest possible inflow outcome occurs in each period of the
scheduling horizon is not realistic. In order to avoid these situations, restrictions
on the total inflow from all time periods could have been introduced. This will
be elaborated in Section 8.6.

56



8.1.2 Results from the aggregated reservoir models

As mentioned in Sections 3.2.2 and 3.2.3, only aggregated inflow data is available
for Plant 1 and 2. For this reason, the aggregated reservoir model presented in
Appendix B is used for these plants. Both of the plants have one power station
and several reservoirs, of which the lowest reservoir is considerably lager than the
others. Due to these topologies, the aggregated reservoir model is assumed to
provide acceptable results for both plants. A scheduling horizon of 52 weeks is
used for both plants.

Plant 2 is characterised by a low degree of regulation and a high load factor, i.e.
the production capacity is low compared to both the size of the reservoir and the
expected amount of inflow. This implies that the reservoir fills up quickly, and a
large amount of the total production has to take place in low price periods in order
to avoid the risk of spillage. In other words, the flexibility in choosing when to pro-
duce is low. Plant 1 has a higher degree of regulation and a lower load factor than
Plant 2, which implies that this plant is more flexible in choosing when to produce.

The results from the LDR model show that the expected levels to which the
reservoir of both plants are filled decreases at increasing uncertainty level, see
Figures 8.1.1 and 8.1.2. This can be explained by the increased risk of spillage,
and implies that the available water is discharged at lower prices when the uncer-
tainty is high than when the uncertainty is low. As a result, the profit decreases
at increasing uncertainty level, which can be seen in Table 8.1.1. Due to the
low flexibility of Plant 2, the reservoir management strategies for the different
uncertainty levels are relatively similar, which implies small differences in profit
for this plant.

The reservoir management strategies given by the deterministic model causes
the reservoirs of both plants to empty completely at the end of the scheduling
horizon. However, none of the expected scheduling strategies given by the LDR
model will cause the expected reservoir level to reach its lower limit at any point,
see Figures 8.1.1 and 8.1.2. This is due to the fact that the minimum reservoir
constraints have to hold for lowest possible reservoir level, shown in Figures 8.1.3
and 8.1.421. Increasing production in the last scheduling periods will thus cause
negative reservoir levels if the lowest possible reservoir level occurs, which is
obviously not possible. The restrictive strategies given by the LDR model causes
the expected profit to be lower than the profit given by the deterministic model,
which can be seen in Table 8.1.122.

21Figures are only provided for Plant 1. Similar figures for Plant 2 can be found in Appendix
D.

22As mentioned in Section 1, these profits apply for the case in which the realised price and
inflow equals their expected values. In reality, the realisations will deviate from the expected
values which will cause the LDR model to perform better than the deterministic model, see
Section 8.3.
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Table 8.1.1: Expected profits obtained from the LDR model in percentage of the
profit given by the deterministic model.

Uncertainty level 5 % 10 % 15 % 20 % 30 %
Profit Plant 1 [%] 94 89 - 84.9 73.2
Profit Plant 2 [%] 83.04 83.02 82.51 - -

In the case of 30 % and 15 % uncertainty for Plant 1 and 2, respectively, there is
only one scheduling strategy that ensures feasibility regardless of the realisations
of price and inflow within the uncertainty set. The maximum feasible uncertainty
level of Plant 1 exceeds the maximum level of Plant 2 because this plant has
higher flexibility in choosing when to produce.

Figure 8.1.1: Relative expected reservoir levels for Plant 1.

Figure 8.1.2: Relative expected reservoir levels for Plant 2.

58



Figure 8.1.3: The figure show the lowest possible, the expected and the highest
possible reservoir level for an uncertainty level of 5 % for Plant 1.

Figure 8.1.4: The figure show the lowest possible, the expected and the highest
possible reservoir level for an uncertainty level of 30 % Plant 1.

8.1.3 Results from the multi-reservoir models

A scheduling horizon of 104 weeks is used for Plant 3, while 52 weeks is used
for Plant 4. Power Station 1 in Plant 3 is characterised by a high degree of
regulation, see Section 3.2.4. Regardless of the realisations of price and inflow,
the storage capacity of the reservoir corresponding to this power station will never
be fully utilised. The reservoir is filled to a level such that the minimum reservoir
constraint will hold for all realisations of price and inflow in all time periods.
As a result, the level to which the reservoir is filled increases with increasing
uncertainty level, see Figure 8.1.5. Despite the fact that there is unused storage
capacity, and more water potentially could have been stored for production in
high price periods, the power station produces relatively evenly in all the other
time periods, see Figure D.3.1 in Appendix D. The reason for this is that all
the water used for power generation in Power Station 1 can be reused in Power
Station 4. The reservoir associated with Power Station 4 is a run of river with
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no storage capacity and the power station has lower production capacity than
Power Station 1. Spillage will therefore occur whenever the production at Power
Station 1 is higher than the maximum capacity of Power Station 4.

Power Station 2 in Plant 3 has a relatively low degree of regulation and a
high load factor compared to Power Station 1. This implies that the power
station has to produce at maximum capacity during much of the year in order to
avoid the risk of spillage. As can be seen from Figure 8.1.6, the level to which
Reservoir 2 is filled decreases at increasing uncertainty level due to the increased
risk of spillage. Since the reservoirs associated with Power Station 3 and 4 are
run of rivers, they will produce the minimum of the amount of water that enters
the power station and their production capacity in all weeks.

As can be seen from Figures 8.1.7 and 8.1.8, the reservoir management strategies
for Power Stations 1 and 2 in Plant 4 are relatively similar to the strategies pre-
sented for Plant 3. All the water discharged from Reservoir 1 will enter Reservoir
2, and Reservoir 2 will therefore reach its highest level later than Reservoir 1. Due
to the large amount of water that enters Reservoir 2, this power station produces
at maximum capacity during most of the year, see Figure D.4.2 in Appendix D.
The reservoirs associated with Power Station 3 and 4 are run of rivers, and will
produce the minimum of the amount of water that enters the power station and
their maximum production capacity in all weeks.

In the case of 15 % and 20 % uncertainty for Plant 1 and 2, respectively, there is
only one scheduling strategy that will ensure feasibility regardless of the realisa-
tions of price and inflow. Due to the arguments provided in Section 8.1.1, it is
assumed that the model would have remained feasible for a higher uncertainty
level for Plant 3 if a scheduling horizon of one year had been used.

Figure 8.1.5: Relative expected reservoir levels for Reservoir 1 in Plant 3.
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Figure 8.1.6: Relative expected reservoir levels for Reservoir 2 in Plant 3.

Figure 8.1.7: Relative expected reservoir levels for Reservoir 1 in Plant 4.

Figure 8.1.8: Relative expected reservoir levels for Reservoir 2 in Plant 4.
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8.1.4 Uncertainty levels

Sections 8.1.2 and 8.1.3 present the maximum uncertainty levels for which the
models are feasible. This level is limited by the uncertainty in inflow because
the level of inflow affects the reservoir level directly, and will hence affect the
feasibility of the maximum and minimum reservoir level constraints. The price
determines which periods that are the most profitable for production, and will
thus affect the reservoir levels indirectly. However, the price will only affect the
scheduling strategy in situations in which the producer has flexibility in choosing
when to produce. At low flexibility, the producer has little or no possibility
to let the price affect the scheduling strategy. Increasing the uncertainty level
of the price will therefore be of low or no significance for the feasibility of the model.

Looking at historical inflow data, there are several periods in which the re-
alisations of price and inflow are not within the uncertainty sets defined by the
maximum feasible uncertainty levels. However, none of the years in historical
data sets have values that are either above or below the uncertainty set in all
weeks. High values in some weeks tend to be balanced by low values in others. For
this reason it is not considered as necessary to use an uncertainty level covering
all historical realisations of price and inflow.

Figure 8.1.9: The scatter points corresponds to the total annual inflow for Plant
1 in the years 2001-2011. The dotted lines corresponds to the total annual inflow
if the highest and the lowest inflow outcomes occur in all periods. The lines apply
for an uncertainty level of 30 %.

When evaluating which uncertainty level to use, it is interesting to look at
the range of the historical total annual inflow levels. Figure 8.1.9 shows that
the realised total annual inflow for Plant 1 is between the total annual inflow
corresponding to the lowest and highest inflow outcomes for an uncertainty level of
30 % in all the years 2001 to 2011, except for 2010. This is the maximum feasible
uncertainty level for Plant 1. From Figure 8.1.10 it can also be seen that the
average inflow for these years is between the highest and lowest inflow outcomes
in almost all weeks. Similar results are found for the three other plants for their
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respective maximum feasible levels. Based on these findings, an uncertainty level
of 30 % is considered necessary for Plant 1 in order for the uncertainty set to
cover both wet years and dry years. However, taking into account that both these
extremes may occur will cause extremely restrictive scheduling strategies. It will
in Section 8.3 be proven that an uncertainty level of 10 % would have given the
highest profits for Plant 1 in the years 2002 to 2012.

Figure 8.1.10: The solid line corresponds to average inflow for Plant 1 in the
years 2001-2011, while the dotted lines corresponds to the highest and the lowest
inflow outcomes in all periods. The lines apply for an uncertainty level of 30 %.

8.2 Computational times and complexity reduction

As described in Section 1, the size of the stochastic models often used to solve
long term hydropower scheduling problems grow exponentially with the number
of time stages or state variables, and the problems may become computationally
intractable. The LDR model grows only polynomially with the number of time
stages and enables scalability to multistage models.

Table 8.2.1: The table presents the computational times of the primal and dual
LDR models.

Number of time stages 52 104
Primal model with I=1 [s] 4.0 119.4
Dual model with I=1 [s] 3.0 90.8
Primal model with I=4 [s] 10.7 268.1
Dual model with I=4 [s] 36.8 1428.1

The results presented in Table 8.2.1 shows that both the primal and the dual
LDR models have short computational times. This is one of the most impor-
tant properties of the LDR model, and an important argument for using this
approach for long term hydropower scheduling. Due to the short computational
times, the approach introduces the opportunity to rerun the model whenever new
information is available. The long term scheduling model can, for instance, be
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rerun whenever a shorter term scheduling model is run, within an acceptable
time frame. As a result the LDR model is able to provide updated boundary
conditions to shorter term scheduling models more frequently than models with
longer computational times.

As described in Section 1, LDR are very effective at reducing computational
complexity, but may incur a considerable loss of optimality. Hence, the solution
of the LDR model is expected to deviate somewhat from the solution of the exact
problem. The duality gap, explained in Section 7.1, measures how large this loss
of optimality is.

Table 8.2.2: Duality gaps for all the hydropower plants.

Uncertainty level 5 % 10 % 15 % 20 % 30 %
Plant 1 [%] 8 17 - 32 44
Plant 2 [%] 21 24 31 - -
Plant 3 [%] 20 36 58 - -
Plant 4 [%] 11 24 32 54 -

The results presented in Table 8.2.2 show that the duality gap increases with
increasing uncertainty levels. The gaps for Plant 1, 2 and 4 are relatively similar,
while Plant 3 stands out with higher duality gaps. The high gaps can be explained
by the scheduling horizon of two years used for this plant. The gaps for all plants
are relatively large, but taken into account that the uncertainty level for price
and inflow applies in every time period and that these models are run once for T
time periods, the results are considered as acceptable. If the models are rerun
whenever new information is available, the duality gap is expected to decrease.

Figure 8.2.1: Illustration of a rerunning process.

Figure 8.2.1 illustrates a rerunning process where the LDR model is ran twice for
Plant 2. The first run is at the start of week 16 and the second run is at the start
of week 42. When the model is rerun, the reservoir level at the end of week 41
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is used as input, and the model proposes a new reservoir management strategy
for the rest of the scheduling period. As can be seen from this figure, the lowest
possible and the highest possible reservoir levels for the second run lies between
the corresponding reservoir levels for the first run. The gap at the end of the
scheduling period is significantly smaller for second run than for the first run.
This indicates that the rerunning process will lead to a more accurate solution
for the scheduling problem. Rerunning the model every time new information is
available is therefore assumed to cause lower duality gaps than those presented in
Table 8.2.2. Based on the computational times and the duality gaps presented in
this section the LDR approximation is considered to give an acceptable trade-off
between tractability and accuracy for long term hydropower scheduling problems.

8.3 Simulations

In order to demonstrate how the hydropower producers can use the LDR model
in practice, and to investigate how the LDR model performs compared to the
deterministic model, simulations are performed23. A series of simulations over
10 years has been run for Plant 1, where the realisations of price and inflow
equal the realised system prices and inflow to this plant from week 17 in 2002 to
week 16 in 201224. Plant 1 is arbitrarily chosen as the test plant for the simulations.

The models are run for 52 time periods, and rerun every fourth week, with
a total of 130 runs. In reality, the model is intended to be rerun at least every
week in order to be coupled to a shorter term model. However, it is assumed
that rerunning the model every fourth week will provide a satisfactory basis for
demonstrating how the LDR model is supposed to be used, and to compare the
performance of the two models. At every rerun, the reservoir level at the end of
the preceding four week period is used as the initial reservoir level for the next
run. Expected price and inflow given by the price and inflow models presented
in Section 4 are used as input25. The LDR model is run for uncertainty levels
of 5 %, 10 % and 30 % in order to investigate which level that leads to the best
performance.

Running the LDR model for the previously mentioned uncertainty levels will cause
scheduling strategies that are feasible for all realisations of price and inflow within
the defined uncertainty set. However, in some time periods the actual realisations
of price and inflow are not within this uncertainty set. The simulation results
show that this may cause an infeasible production strategy. In periods in which

23Ideally the LDR model should have been compared to a model that is currently used in
practice instead of the deterministic model. A brief overview of these methods is given in
Section 1. However, such a model has not been available for this thesis.

24System prices are used because local prices are not available on Nord Pool Spot for the
entire simulation period.

25In order to get a more realistic forecast of the expected prices, forward prices could have
been discounted and used as input. However, these data are not readily available, and have not
been collected.
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the actual realisations are higher than the upper limit of the uncertainty set, the
calculated production may exceed the production capacity26. When the actual
realisations are lower than the lower limit of the uncertainty set, production
strategies resulting in negative reservoir levels may occur. In both cases the
production has been adjusted manually in order to obtain a feasible strategy. It
is assumed that this problem can be avoided or reduced by using better price and
inflow forecasts, as this will cause less realisations of price and inflow outside the
uncertainty set.

The profits obtained from the simulations are presented in Table 8.3.1. As
can be seen from this table, the LDR model performs better than the determin-
istic model for all the uncertainty levels for which it is run. The highest profit
is obtained at an uncertainty level of 10 %. The profits are therefore given in
percentage of the profit for this uncertainty level. Table 8.3.2 presents the average
prices obtained per produced and per released unit of water. The prices are
obtained by dividing the total profit on the total production and on the sum of
the total production and the total amount of spillage, respectively.

Table 8.3.1: Simulated profits given in percentage of the profit obtained at an
uncertainty level of 10 %.

Uncertainty level Deterministic 5 % 10 % 30 %
Profit [%] 96.1 99.6 100.0 98.0

Table 8.3.2: Average prices produced and released unit of water. The prices are
given in NOK/MWh.

Uncertainty level Deterministic 5 % 10 % 30 %
Av. price per produced MWh 323.1 334.9 333.7 323.9
Av. price per released MWh 317.4 327.4 328.9 320.0

The main reason why the LDR model performs better than the deterministic
model is the ability to adjust production to the realisations of price and inflow.
As explained in Section 8.1.1, the allowed degree of adjustment increases at
decreasing uncertainty level. This implies that production is most adapted to the
realisations of price and inflow at an uncertainty level of 5 %. This can be proven
by the fact that the highest average price per produced unit of water is obtained
at this uncertainty level, see Table 8.3.2. However, at this uncertainty level, the
model does not take into account that the realised price and inflow can be more
than 5 % higher or lower than expected. This causes more realisations outside the
uncertainty set than for higher uncertainty levels, which leads to more periods of
spillage and more periods at which the reservoir is empty at high prices. Taking
spillage into account, the average price per released unit of water is lower for 5

26qt = δ0
t +
∑t

r=1 Πr ·δrt +
∑t

r=1 Ψr ·γrt � Qmax, where qt represents the calculated production
and Πr and Ψr represent realised price and inflow, respectively.
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% than for 10 % uncertainty. At an uncertainty level of 10 % the production
does not adapt to the realisations of price and inflow to the same extent as at
uncertainty level of 5 %. However, the scheduling strategy for 10 % uncertainty
causes less spillage and a higher total production. This gives a higher total profit
and a higher average price per water unit released.

Figure 8.3.1: Relative reservoir levels for the years 2002-2007.

Figure 8.3.2: Relative reservoir levels for the years 2007-2012.

Figures 8.3.1 and 8.3.2 show the expected reservoir levels given by the LDR model
for an uncertainty level of 10 %, the reservoir levels given by the deterministic
model and the historical reservoir levels. As can be seen from these figures, the
reservoir levels given by the LDR model fluctuate more from year to year and
within the year than the reservoir levels given by the deterministic model. This
is due to the fact that the LDR model adapts to variations in price and inflow,
in contrast to the deterministic model. Moreover, since the LDR model takes
into account that the realisations of price and inflow can be 10 % higher than
expected, this model causes 24 % less spillage than the deterministic model.
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The strategy given by the LDR model causes the reservoir to be filled and
emptied closer to its boundaries compared to the historical reservoir levels. This
leads to higher reservoir levels when the expected prices are high and potentially
higher profits. However, this strategy involves a higher risk of spillage and of
emptying the reservoir when prices are still high. Information about reserve
requirements, maintenance and shutdowns during the simulation period is not
available, and is not taken into account when comparing the reservoir levels.

8.4 Water values

The LDR model is intended to be coupled to a shorter term model. As explained
in Section 2.4, this coupling may take place through a fixed water value. It is
assumed that the coupling will take place at the end of the first week of the
scheduling period. Water values for different initial reservoir levels are found for
Plant 2 to demonstrate how the long term model can be coupled to a shorter
term model. Plant 2 is arbitrarily chosen as the test plant for the water value
calculations.

The water values are found from the dual values of Eq. 6.4.2 in Section 6.4. In
order to verify the results, the water values are also found by first running the
model for a set of initial reservoir levels, and then running the model again adding
one extra unit of water to the initial reservoir levels. The differences in profits
with and without the extra unit of water express the water values for the different
initial reservoir levels.

As described in Section 2.2, the water value expresses how much the profit
increases by having one extra unit of water available in the reservoir. As long as
there is production capacity available, the extra unit of water will be produced in
the period causing the largest increase in profit. The water value will therefore
equal the expected price of one MWh in this period. When the initial reservoir
level increases, the flexibility in choosing which period to produce the extra unit
of water decreases since the maximum production level is reached in more of the
periods. As a result, the water value is a non increasing function of the initial
reservoir level. This can be seen in Figures 8.4.1 and 8.4.2, which show the water
value at the end of the first week as a function of the initial reservoir level for
uncertainty levels of 15 % and 5 %, respectively.

When the initial reservoir level reaches 73 000 MWh and 113 000 MWh, for
uncertainty levels of 15 % and 5 % respectively, the water value equals zero.
At these initial reservoir levels, spillage will occur during the scheduling period.
Adding one extra unit of water will therefore increase the amount of spilled water,
and not cause any increase in profit. At increasing uncertainty levels of price and
inflow, the risk of reaching the upper reservoir limit increases, and hence the risk
of spillage increases. This is why the water value reaches zero at a lower initial
reservoir level for 15 % uncertainty compared to 5 % uncertainty.
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Figure 8.4.1: The water value at the end of week one as a function of the initial
reservoir level for an uncertainty level of 15 %.

Figure 8.4.2: The water value at the end of week one as a function of the initial
reservoir level for an uncertainty level of 5 %.

8.5 Head corrections

The models presented in this thesis can not deal with a variable head in an exact
way, as the problem will become nonlinear and non convex. As a result the
energy generated per amount of water is overestimated for low reservoir levels
and underestimated for high reservoir levels. The approach outlined in Section
6.5 has been tested on one arbitrarily chosen plant, Plant 2, in order to see how
corrections for a variable head will affect the reservoir management strategy. The
reservoir of Plant 2 is assumed to be shaped like a cylinder.

Table 8.5.1: Increase in profit with head corrections.

Uncertainty level 5 % 10 % 15 %
Change in profit [%] 0.6 0.3 0.0
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The percentage increase in profit when head corrections are included is presented
in Table 8.5.1 for uncertainty levels of 5 %, 10 % and 15 %. Figures 8.5.1 and
8.5.2 show the expected reservoir levels with and without head corrections at
uncertainty levels of 5 % and 10 %, respectively. For an uncertainty level of 15
% the graphs representing the reservoir level with and without head corrections
overlap completely, and a figure is therefore not included for this uncertainty
level.

Figure 8.5.1: Expected relative reservoir levels with and without head corrections
for an uncertainty level of 5 %.

Figure 8.5.2: Expected relative reservoir levels with and without head corrections
for an uncertainty level of 10 %.

When head corrections are included, the model will recognize an incentive to keep
the reservoir level high, as this will give a higher head. Producing at a higher
head causes a larger proportion of the potential energy in the discharged water
to be converted into electrical energy. At uncertainty levels of 5 % and 10 % an
increase in volume can be seen until week 46, which leads to increased profits. At
15 % uncertainty, there is only one feasible production strategy, which means that
the model has no ability to adjust the reservoir level depending on the correction
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factors. This is the reason why the graphs representing the reservoir levels with
and without head corrections overlap. It is assumed that deviation between the
reservoir levels with and without head corrections will increase somewhat for
plants with a higher flexibility than Plant 2.

8.6 Main shortcomings

The approach taken in this thesis has several shortcomings, which leaves room
for future improvements. The main shortcomings are presented in this section.

The LDR model is quite sensitive to input data, and realistic input data for price
and inflow is therefore of importance for the results. The stochastic price and
inflow models developed in this thesis are based on short time series. As a result,
extreme values affect the price and inflow forecasts too much. The covariance
matrices used as input to the LDR models are derived from the residuals from
the price and inflow models, and are thus based on the same time series. Longer
time series would have provided a better basis for analysis, giving more realistic
representations and better foundations for the parameter estimations. However,
price and inflow modeling is not the main focus of this thesis and the results
from the price and inflow models are therefore assumed to be acceptable for
the purpose of the thesis. Most hydropower producers have access to better
forecasting models, such as the EMPS model (Wolfgang et al., 2009), and may
also have longer historical time series for price and inflow available. It is assumed
that using input data from such models will give more realistic forecasts for the
long term scheduling.

Weekly time steps are used in all models, and this results in a loss of price spikes.
This means that weeks with large internal price variations will be smoothed out,
which may result in too low or too high water allocations to these weeks. However,
it is assumed that the this will be captured in the shorter term scheduling models.

As described in Section 8.1, the uncertainty levels for price and inflow are
assumed to be equal and constant for all time periods. If longer time series
were available, studies of how the historical uncertainty levels vary could have
been performed. It is assumed that this would have resulted in a more realistic
uncertainty representation, and is left for future studies.

The LDR model is defined to hold for both the lowest and highest price and
inflow outcomes in all time periods. When the scheduling horizon is long and the
uncertainty levels are high, the gap between the highest possible and the lowest
possible reservoir level will be large at the end of the scheduling horizon. However,
a situation in which either the highest or the lowest inflow outcome occurs in each
time period is not realistic. As mentioned in Section 8.1.1 this could have been
accounted for by restricting the total inflow from all periods. The gap between
the two extreme reservoir levels would then decrease, leading to a higher solu-
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tion space for production and presumably higher profits. It is also assumed that
this would have caused the model to remain feasible for higher levels of uncertainty.

In practice the flexibility of a power station is often restricted by time vary-
ing constraints on reservoir level and/or dispatch volumes due to environmental
reasons. These restrictions are not accounted for by the models developed in
this thesis. This leads to an overestimation of the actual profit. In addition,
information about maintenance and discharge restrictions could be incorporated
to improve the analysis. However, these data were not available for the majority
of the producers.
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9 Conclusion
In this thesis a multistage stochastic hydropower scheduling problem, in which
price and inflow are uncertain parameters, is studied. Based on historical spot
prices and inflow data from four hydropower producers, stochastic price and inflow
models are developed. The forecasts provided by these models are evaluated
through out-of-sample testing, and a one factor model for inflow and a two factor
model for price are proven to give the most accurate results.

A stochastic multistage scheduling model is developed based on the LDR ap-
proximation. The uncertain parameters are defined within an interval around
their expected values, in which the size of the interval is given by the uncertainty
levels of the parameters. Increasing the uncertainty levels is shown to cause more
restrictive reservoir management strategies. It is also shown that more restrictive
strategies are proposed for plants with a low flexibility than for plants with a
higher one. The problem is proven to be feasible up to a certain uncertainty level,
depending on the flexibility of the hydropower plants and on the length of the
scheduling horizon.

To compare the performance of the LDR model and the corresponding determin-
istic model, a ten year series simulation is performed for one of the hydropower
plants studied in this thesis. The simulation scenario corresponds to the realisa-
tions of price and inflow in the years 2002 to 2012, and both models are rerun
every fourth week with updated initial reservoir levels. At an uncertainty level of
10 % the LDR model is shown to give an average price per released MWh that
is 11.5 NOK higher than the price given by the deterministic model. The main
reason for this result is the ability of the LDR model to adjust production to the
realisations of price and inflow.

The LDR approximation is applied to both the primal version and the dual
version of the original stochastic problem. The difference between the optimal
objective values of the two problems defines the duality gap, which corresponds
to the upper bound on the approximation error imposed by the LDR approach.
It is found that the duality gap increases as the uncertainty levels of price and
inflow increases. For a scheduling horizon of 52 time stages, the gaps are found to
be in a range of 8 % to 44 % for uncertainty levels of 5 % to 30 %. This indicates
that the LDR approximation causes potentially high duality gaps. However, the
gaps are expected to decrease if the model is rerun whenever new information is
available.

The complexity reduction caused by the LDR approximation leads to short
computational times. When solved for 104 time stages, the primal LDR model
has a run time of 268 seconds. This implies that the model can be rerun whenever
new information about price and inflow is available. As a result, the model
is able to provide updated boundary conditions to a shorter term model more

73



frequently than models with longer computational times. In conclusion, the LDR
approximation is considered to give an acceptable trade-off between tractability
and accuracy for multistage stochastic hydropower scheduling problems.
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10 Further Work
Many aspects of this thesis can be further developed, and some of them are
presented in this section:

• A study of the historical price and inflow data will give a better understand-
ing of the price and inflow uncertainty dynamics. Based on these results,
different uncertainty levels for price and inflow can be used for different
time periods.

• A situation where either the highest or lowest inflow outcome occurs in
each time period is unrealistic. In order to account for this, restrictions on
the total annual inflow could have been introduced in the LDR model.

• The LDR model grows polynomially with the number of time stages, and has
a short computational time. This leads to an opportunity to use daily time
steps instead for weekly, and daily prices can then be taken into account.
Hence, the impact of weekdays and holidays could have been incorporated
through dummy variables.

• The performance of the LDR model can be compared to the performance
of a currently used method for long term hydropower scheduling through
simulation.
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A Parameter estimation
This appendix presents the numerical results from the parameter estimations for
inflow and graphically out of sample plots for relative realised inflow compared
to the relative simulated inflow from Section 5. The parameters estimated from
the price model is presented in the end of this appendix.

A.1 Inflow parameters

The parameters estimated from the inflow models in Section 5.3 is presented in
Table A.1.1.

Table A.1.1: The estimated inflow parameters

Parameters α γ τ κ
Plant 1
Inflow model 2

Period 1 7.69 -5.82 -9.03 0.02
Period 2 5.06 -5.82 18.28 -0.001
Period 3 -0.19 -6.97 33.07 1.11

Inflow model 3
4.887 -2.75 -1.92 10.33

Plant 2
Inflow model 2

Period 1 18.32 13.62 -33.28 0.05
Period 2 22.76 14.48 -15.63 0.05
Period 3 9.25 -6.15 -1.60 0.001

Inflow model 3 22.26 16.70 24.72 0.06
Plant 3
Inflow model 2

Period 1 2.48 1.34 14.74 2.55
Period 2 -1.07 21.18 -2.10 0.38
Period 3 -0.36 -5.16 -14.97 0

Inflow model 3 8.95 -8.70 -3.26 0.31
Plant 4
Inflow model 2

Period 1 3.39 -1.67 41.57 0.01
Period 2 3.74 -1.42 17.92 0.97
Period 3 2.69 -2.47 41.57 0.41

Inflow model 3 3.35 -1.86 -10.81 10.30
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A.1.1 Inflow simulations

Figure A.1.1: Inflow model 1 for Plant 1 (2009-2011).

Figure A.1.2: Inflow model 3 for Plant 1 (2009-2011).

Figure A.1.3: Inflow model 1 for Plant 2 (2006-2008).
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Figure A.1.4: Inflow model 3 for Plant 2 (2006-2008).

Figure A.1.5: Inflow model 1 for Plant 4 (2007-2009).

Figure A.1.6: Inflow model 3 for Plant 4 (2007-2009).
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A.2 Price parameters

The parameters estimated from the price models in Section 5.4 is presented in
Table A.2.1.

Table A.2.1: The estimated price parameters

Parameters α γ τ κ α∗ µ∗ σx σε
Price model 1 309 30.27 3.96 0.01 0 0 5.77 3.10
Price model 2 11.27 -10.66 -2.74 0.12 -2.66 0.001 3.41 0.22
Price model 3 10 2.33 1 0.8 -6.25 0 5 3.99
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B Primal Linear Decision Rules
This appendix presents the rewriting of a stochastic aggregated reservoir model
to a LDR models. The rewritings are based on Ben-Tal et al. (2003) and Kuhn
et al. (2011). The multi-reservoir model presented in Section 6.2 is developed
based on the same procedure.

B.1 Aggregated reservoir model

The stochastic aggreagted reservoir model is presented as:

V0 = max E

[
T∑
t=1

1

(1 +R)t

(
Πt · q(Πt,Ψt)

t

)]
(B.1.1)

s.t.

Qmin ≤ q
(Πt,Ψt)
t ≤ Qmax, ∀t ∈ T (B.1.2)

Mmin ≤M0 +
t∑

r=1

Ψr −
t∑

r=1

q(Πr,Ψr)
r −

t∑
r=1

s(Ψr)
r ≤Mmax, ∀t ∈ T (B.1.3)

q
(Πt,Ψt)
t , s

(Ψt)
t ≥ 0, ∀t ∈ T (B.1.4)

B.1.1 Affine decision rules

The decision making policies are restricted to be affine functions of the uncertain
parameters, i.e. price and inflow:

q
(Πt,Ψt)
t = δ0

t +
∑
rεIt

(δrt · Πr + γrt ·Ψr), ∀t ∈ T (B.1.5)

s
(Ψt)
t = κ0

t +
∑
rεIt

(κrt ·Ψr), ∀t ∈ T (B.1.6)

where the coefficients are new non adjustable variables. The uncertain parameters
are assumed to be within the following limits:

Π∗t (1− θΠ) ≤ Πt ≤ Π∗t (1 + θΠ), ∀t ∈ T (B.1.7)

Ψ∗t (1− θΨ) ≤ Ψt ≤ Ψ∗t (1 + θΨ), ∀t ∈ T (B.1.8)

where θΠ and θΨ are nonnegative, and represent the uncertainty levels of price
and inflow respectively. Π∗t and Ψ∗t represent the expected price and inflow in
period t.
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B.1.2 Substituting the affine decision rules into the stochastic model

The affine decision rules from Appendix B.1.1 are substituted into the original
stochastic model from Appendix B.1. This gives:

V0 = max E

[
T∑
t=1

1

(1 + r)t

(
Πt ·

(
δ0
t +

∑
r∈It

(δrt · Πr + γrt ·Ψr)

))]
(B.1.9)

s.t.

Qmin ≤ δ0
t +

∑
r∈It

(δrt · Πr + γrt ·Ψr) ≤ Qmax, ∀t ∈ T (B.1.10)

Mmin ≤ M0 +
t∑

s=1

Ψs −
t∑

s=1

(
δ0
s +

∑
r∈Is

(δrs · Πr + γrs ·Ψr)

)
−

t∑
s=1

(
κ0
s +

∑
r∈Is

(κrs ·Ψr)

)
≤Mmax, ∀t ∈ T

(B.1.11)

δ0
t +

∑
rεIt

(δrt · Πr + γrt ·Ψr) ≥ 0, ∀t ∈ T (B.1.12)

κ0
t +

∑
rεIt

(κrt ·Ψr) ≥ 0, ∀t ∈ T (B.1.13)

∀ Πt ∈ [Π∗t (1− θΠ),Π∗t (1 + θΠ)], ∀t ∈ T (B.1.14)

∀ Ψt ∈ [Ψ∗t (1− θΨ),Ψ∗t (1 + θΨ)], ∀t ∈ T (B.1.15)

where Eq. (B.1.14) and (B.1.15) apply for all the constraints, and implies that
all the constraints must remain feasible for all possible realizations of price and
inflow. Splitting the equations and reorganizing the model gives:

V0 = max E
T∑
t=1

1

(1 + r)t

[
Πt · δ0

t +
∑
r∈It

(δrt · Πr · Πt + γrt ·Ψr · Πt)

]
(B.1.16)

s.t.

δ0
t +

∑
r∈It

(δrt · Πr + γrt ·Ψr) ≥ Qmin, ∀t ∈ T (B.1.17)

δ0
t +

∑
r∈It

(δrt · Πr + γrt ·Ψr) ≤ Qmax, ∀t ∈ T (B.1.18)
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t∑
s=1

Ψs −
t∑

s=1

δ0
s −

t∑
s=1

∑
r∈Is

(δrs · Πr + γrs ·Ψr)−
t∑

s=1

κ0
s

−
t∑

s=1

∑
r∈Is

κrs ·Ψr ≥Mmin −M0, ∀t ∈ T
(B.1.19)

t∑
s=1

Ψs −
t∑

s=1

δ0
s −

t∑
s=1

∑
r∈Is

(δrs · Πr + γrs ·Ψr)−
t∑

s=1

κ0
s

−
t∑

s=1

∑
r∈Is

κrs ·Ψr ≤Mmax −M0, ∀t ∈ T
(B.1.20)

δ0
t +

∑
r∈It

(δrt · Πr + γrt ·Ψr) ≥ 0, ∀t ∈ T (B.1.21)

κ0
t +

∑
rεIt

κrt ·Ψr ≥ 0, ∀t ∈ T (B.1.22)

or, which is the same:

V0 = max
T∑
t=1

1

(1 + r)t

(
E[Πt] · δ0

t +
∑
r∈It

δrt · E[Πr · Πt]

+
∑
r∈It

γrt · E[Ψr · Πt]

) (B.1.23)

s.t.

δ0
t +

∑
r∈It

δrt · Πr +
∑
r∈It

γrt ·Ψr ≥ Qmin, ∀t ∈ T (B.1.24)

δ0
t +

∑
r∈It

δrt · Πr +
∑
r∈It

γrt ·Ψr ≤ Qmax, ∀t ∈ T (B.1.25)

t∑
s=1

Ψs −
t∑

s=1

δ0
s −

t∑
s=1

∑
r∈Is

δrs · Πr −
t∑

s=1

∑
r∈Is

γrs ·Ψr −
t∑

s=1

κ0
s

−
t∑

s=1

∑
r∈Is

κrs ·Ψr ≥Mmin −M0, ∀t ∈ T
(B.1.26)
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t∑
s=1

Ψs −
t∑

s=1

δ0
s −

t∑
s=1

∑
r∈Is

δrs · Πr −
t∑

s=1

∑
r∈Is

γrs ·Ψr −
t∑

s=1

κ0
s

−
t∑

s=1

∑
r∈Is

κrs ·Ψr ≤Mmax −M0, ∀t ∈ T
(B.1.27)

δ0
t +

∑
r∈It

δrt · Πr +
∑
r∈It

γrt ·Ψr ≥ 0, ∀t ∈ T (B.1.28)

κ0
t +

∑
rεIt

κrt ·Ψr ≥ 0, ∀t ∈ T (B.1.29)

∀ Πt ∈ [Π∗t (1− θΠ),Π∗t (1 + θΠ)], ∀t ∈ T (B.1.30)

∀ Ψt ∈ [Ψ∗t (1− θΨ),Ψ∗t (1 + θΨ)], ∀t ∈ T (B.1.31)

Eq. (B.1.28) is dominated by Eq. (B.1.24) and can be removed.

B.1.3 Covariance

The objective function are defined such that it maximizes the expected value
market value of production, and includes the terms E[Πt ·Πr] and E[Πt ·Ψr]. The
following equivalences are used in order to rewrite the objective function in the
model from Appendix B.1.2:

E[Πt] = Π∗t , ∀t ∈ T (B.1.32)

E[Πt · Πr] = E[Πt] · E[Πr] + Cov[Πt · Πr] = Π∗t · Π∗r + CΠ,Π
t,r ,

1 ≤ r ≤ t ≤ T
(B.1.33)

E[Πt ·Ψr] = E[Πt] · E[Πr] + Cov[Πt ·Ψr] = Π∗t ·Ψ∗r + CΠ,Ψ
t,r ,

1 ≤ r ≤ t ≤ T
(B.1.34)

B.1.4 Equivalences

The following equivalences from Ben-Tal et al. (2003) are used in order to rewrite
the constraints in the model from Appendix B.1.2:

T∑
t=1

dt · xt ≤ y, ∀dt ∈ [d∗t · (1− θ), d∗t · (1 + θ)] (B.1.35)

m
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∑
t:xt<0

d∗t · (1− θ) · xt +
∑
t:xt>0

d∗t · (1 + θ) · xt ≤ y (B.1.36)

m

T∑
t=1

d∗t · xt + θ ·
T∑
t=1

d∗t · |xt| ≤ y (B.1.37)

When:
T∑
t=1

dt · xt ≥ y, ∀dt ∈ [d∗t · (1− θ), d∗t · (1 + θ)] (B.1.38)

the result is:
T∑
t=1

d∗t · xt − θ ·
T∑
t=1

d∗t · |xt| ≥ y (B.1.39)

B.1.5 Additional variables

The equivalences described in Appendix B.1.4 entail a need for introducing new
variables representing the absolute value of all the variables in the model from
Appendix B.1.2. The new variables are defined as:

− drt ≤ δrt ≤ drt , drt = |δrt |, 1 ≤ r ≤ t ≤ T (B.1.40)

− yrt ≤ γrt ≤ yrt , yrt = |γrt |, 1 ≤ r ≤ t ≤ T (B.1.41)

− krt ≤ κrt ≤ krt , krt = |κrt |, 1 ≤ r ≤ t ≤ T (B.1.42)

B.1.6 The LDR model

Rewriting the objective function as described in Appendix B.1.3 and the con-
straints in the model from Appendix B.1.2 using the equivalences from Appendix
B.1.4 and the new additional variables from Appendix B.1.5 results in the following
aggregated reservoir LDR model:

V0 = max

T∑
t=1

1

(1 + r)t

(
Π∗t · δ0

t +
∑
r∈It

Π∗t · Π∗r · δrt +
∑
r∈It

CΠ,Π
t,r · δtt

+
∑
r∈It

Π∗t ·Ψ∗r · γrt +
∑
r∈It

CΠ,Ψ
t,r · γrt

) (B.1.43)
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s.t.

δ0
t +

t∑
r=1

Π∗r · δrt − θΠ ·
t∑

r=1

Π∗r · drt +
t∑

r=1

Ψ∗r · γrt

−θΨ ·
t∑

r=1

Ψ∗r · yrt ≥ Qmin, ∀t ∈ T
(B.1.44)

δ0
t +

t∑
r=1

Π∗r · δrt + θΠ ·
t∑

r=1

Π∗r · drt +
t∑

r=1

Ψ∗r · γrt

+θΨ ·
t∑

r=1

Ψ∗r · yrt ≤ Qmax, ∀t ∈ T
(B.1.45)

t∑
s=1

Ψ∗s + θΨ ·
t∑

s=1

Ψ∗s −
t∑

s=1

δ0
s −

t∑
s=1

∑
r∈Is

Π∗r · δrs + θΠ ·
t∑

s=1

∑
r∈Is

Π∗r · drs

−
t∑

s=1

∑
r∈Is

Ψ∗r · γrs + θΨ ·
t∑

s=1

∑
r∈Is

Ψ∗r · yrs −
t∑

s=1

κ0
s −

t∑
s=1

∑
r∈Is

Ψ∗r · κrs

+θΨ ·
t∑

s=1

∑
r∈Is

Ψ∗r · krs ≤Mmax −M0, ∀t ∈ T

(B.1.46)

t∑
s=1

Ψ∗s − θΨ ·
t∑

s=1

Ψ∗s −
t∑

s=1

δ0
s −

t∑
s=1

∑
r∈Is

Π∗r · δrs − θΠ ·
t∑

s=1

∑
r∈Is

Π∗r · drs

−
t∑

s=1

∑
r∈Is

Ψ∗r · γrs − θΨ ·
t∑

s=1

∑
r∈Is

Ψ∗r · yrs −
t∑

s=1

κ0
s −

t∑
s=1

∑
r∈Is

Ψ∗r · κrs

−θΨ ·
t∑

s=1

∑
r∈Is

Ψ∗r · krs ≥Mmin −M0, ∀t ∈ T

(B.1.47)

t∑
s=1

κ0
s +

t∑
s=1

∑
r∈Is

Ψ∗r · κrs − θΨ ·
t∑

s=1

∑
r∈Is

Ψ∗r · krs ≥ 0, ∀t ∈ T (B.1.48)

− drt ≤ δrt ≤ drt , 1 ≤ r ≤ t ≤ T (B.1.49)

− yrt ≤ γrt ≤ yrt , 1 ≤ r ≤ t ≤ T (B.1.50)

− krt ≤ κrt ≤ krt , 1 ≤ r ≤ t ≤ T (B.1.51)
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C Dual Linear Decision Rules
This appendix presents the development of an aggregated reservoir dual LDR
models. The dualisation is based on Lundgren et al. (2010) and the rewritings are
based on Ben-Tal et al. (2003) and Kuhn et al. (2011). The multi-reservoir dual
LDR model presented in Section 7.2 is developed based on the same procedure.

C.1 Aggregated reservoir model

The stochastic primal model presented in Appendix B.1 is rewritten to normal
form:

V0 = max E

[
T∑
t=1

1

(1 + r)t

(
Πt · q(Πt,Ψt)

t

)]
(C.1.1)

s.t.

− q(Πt,Ψt)
t ≤ −Qmin, ∀t ∈ T (C.1.2)

q
(Πt,Ψt)
t ≤ Qmax, ∀t ∈ T (C.1.3)

−
t∑

s=1

q(Πs,Ψs)
s −

t∑
s=1

s(Ψs)
s ≤Mmax −M0 −

t∑
s=1

Ψs ∀t ∈ T (C.1.4)

t∑
s=1

q(Πs,Ψs)
s +

t∑
s=1

s(Ψs)
s ≤M0 −Mmin +

t∑
s=1

Ψs ∀t ∈ T (C.1.5)

q
(Πt,Ψt)
t , s

(Ψt)
t ≥ 0, ∀t ∈ T (C.1.6)

C.1.1 The stochastic dual model

The primal problem has four sets of constraints and two sets of decision variables,
which gives the dual problem two sets of constraints and four sets of decision
variables. The decision variables can be defined as:

ι
(Πt,Ψt)
t , ζ

(Πt,Ψt)
t , ν

(Πt,Ψt)
t , µ

(Πt,Ψt)
t (C.1.7)

The duality theory from Section 7.1 and the new dual variables are used to dualize
the primal problem from Appendix C.1. This gives:
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Z0 = min E

[
T∑
t=1

(
−Qmin · ι(Πt,Ψt)

t +Qmax · ζ(Πt,Ψt)
t

+

(
Mmax −M0 −

t∑
s=1

Ψs

)
· ν(Πt,Ψt)

t +(
M0 −Mmin +

t∑
s=1

Ψs

)
· µ(Πt,Ψt)

t

)] (C.1.8)

−ι(Πt,Ψt)
t + ζ

(Πt,Ψt)
t −

T∑
s=t

ν(Πs,Ψs)
s +

T∑
s=t

µ(Πs,Ψs)
s ≥ 1

(1 + r)t
· Πt,

∀t ∈ T
(C.1.9)

−
T∑
s=t

ν(Πs,Ψs)
s +

T∑
s=t

µ(Πs,Ψs)
s ≥ 0, ∀t ∈ T (C.1.10)

ι
(Πt,Ψt)
t , ζ

(Πt,Ψt)
t , ν

(Πt,Ψt)
t , µ

(Πt,Ψt)
t ≥ 0, ∀t ∈ T (C.1.11)

C.1.2 Affine Decision Rules

The Affine decision Rules for the dual sets of variables are defined as:

ι
(Πt,Ψt)
t = ι0t +

∑
r∈It

(ιr1,t · Πr + ιr2,t ·Ψr), ∀t ∈ T (C.1.12)

ζ
(Πt,Ψt)
t = ζ0

t +
∑
r∈It

(ζr1,t · Πr + ζr2,t ·Ψr), ∀t ∈ T (C.1.13)

ν
(Πt,Ψt)
t = ν0

t +
∑
r∈It

(νr1,t · Πr + νr2,t ·Ψr), ∀t ∈ T (C.1.14)

µ
(Πt,Ψt)
t = µ0

t +
∑
r∈It

(µr1,t · Πr + µr2,t ·Ψr), ∀t ∈ T (C.1.15)

Remember that:

Π∗t (1− θΠ) ≤ Πt ≤ Π∗t (1 + θΠ), ∀t ∈ T (C.1.16)

Ψ∗t (1− θΨ) ≤ Ψt ≤ Ψ∗t (1 + θΨ), ∀t ∈ T (C.1.17)
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C.1.3 Substituting the affine decision rules into the stochastic model

The affine decision rules from Appendix C.1.2 are substituted into the stochastic
dual problem from Appendix C.1.1. This gives:

Z0 = min E
T∑
t=1

[
−Qmin ·

(
ι0t +

∑
r∈It

(ιr1,t · Πr + ιr2,t ·Ψr)

)

+Qmax ·

(
ζ0
t +

∑
r∈It

(ζr1,t · Πr + ζr2,t ·Ψr)

)

+

(
Mmax −M0 −

∑
s∈It

Ψs

)
·

(
ν0
t +

∑
r∈It

(νr1,t · Πr + νr2,t ·Ψr)

)
(
−Mmin +M0 +

∑
s∈It

Ψs

)
·

(
µ0
t +

∑
r∈It

(µr1,t · Πr + µr2,t ·Ψr)

)]
(C.1.18)

−

(
ι0t +

∑
r∈It

(ιr1,t · Πr + ιr2,t ·Ψr)

)
+

(
ζ0
t +

∑
r∈It

(ζr1,t · Πr + ζr2,t ·Ψr)

)

−
T∑
s=t

(
ν0
s +

∑
r∈Is

(νr1,s · Πr + νr2,s ·Ψr)

)

+
T∑
s=t

(
µ0
s +

∑
r∈Is

(µr1,s · Πr + µr2,s ·Ψr)

)
≥ 1

(1 + r)t
Πt, ∀t ∈ T

(C.1.19)

−
T∑
s=t

(
ν0
s +

∑
r∈Is

(νr1,s · Πr + νr2,s ·Ψr)

)

+
T∑
s=t

(
µ0
s +

∑
r∈It

(µr1,s · Πr + µr2,s ·Ψr)

)
≥ 0, ∀t ∈ T

(C.1.20)

ι0t +
∑
r∈It

(ιr1,t · Πr + ιr2,t ·Ψr) ≥ 0, ∀t ∈ T (C.1.21)

ζ0
t +

∑
r∈It

(ζr1,t · Πr + ζr2,t ·Ψr) ≥ 0, ∀t ∈ T (C.1.22)

µ0
t +

∑
r∈It

(µr1,t · Πr + µr2,t ·Ψr) ≥ 0, ∀t ∈ T (C.1.23)
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ν0
t +

∑
r∈It

(νr1,t · Πr + νr2,t ·Ψr) ≥ 0, ∀t ∈ T (C.1.24)

∀ Πt ∈ [Π∗t − θ · Π∗t ,Π∗t + θ · Π∗t ], ∀t ∈ T (C.1.25)

∀ Ψt ∈ [Ψ∗t − θ ·Ψ∗t ,Ψ∗t + θ ·Ψ∗t ], ∀t ∈ T (C.1.26)

where Eq. (C.1.25) and (C.1.26) apply for all the constraints, and implies that
all the constraints must remain feasible for all possible realizations of price and
inflow. Rewriting the model gives:

Z0 =

min
T∑
t=1

[
−Qmin · ι0t −

∑
r∈It

Qmin · ιr1,t · E[Πr]−
∑
r∈It

Qmin · ιr2,t · E[Ψr]

+Qmax · ζ0
t +

∑
r∈It

Qmax · ζr1,t · E[Πr] +
∑
r∈It

Qmax · ζr2,t · E[Ψr]

+Mmax · ν0
t +

∑
r∈It

Mmax · νr1,t · E[Πr] +
∑
r∈It

Mmax · νr2,t · E[Ψr]

−M0 · ν0
t −

∑
r∈It

M0 · νr1,t · E[Πr]−
∑
r∈It

M0 · νr2,t · E[Ψr]

−
∑
s∈It

E[Ψs] · ν0
t −

∑
s∈It

∑
r∈It

νr1,t · E[Πs ·Ψr]−
∑
s∈It

∑
r∈It

νr2,t · E[Ψs ·Ψr]

−Mmin · µ0
t −

∑
r∈It

Mmin · µr1,t · E[Πr]−
∑
r∈It

Mmin · µr2,t · E[Ψr]

+M0 · µ0
t +

∑
r∈It

M0 · µr1,t · E[Πr] +
∑
r∈It

M0 · µr2,t · E[Ψr]

+
∑
s∈It

E[Ψs] · µ0
t +

∑
s∈It

∑
r∈It

µr1,t · E[Ψs · Πr] +
∑
s∈It

∑
r∈It

µr2,t · E[Ψs ·Ψr]

]

(C.1.27)

−ι0t −
∑
r∈It

ιr1,t · Πr −
∑
r∈It

ιr2,t ·Ψr + ζ0
t +

∑
r∈It

ζr1,t · Πr +
∑
r∈It

ζr2,t ·Ψr

−
T∑
s=t

ν0
s −

T∑
s=t

∑
r∈Is

νr1,s · Πr −
T∑
s=t

∑
r∈Is

νr2,s ·Ψr

+
T∑
s=t

µ0
s +

T∑
s=t

∑
r∈Is

µr1,s · Πr +
T∑
s=t

∑
r∈Is

µr2,s ·Ψr

≥ 1

(1 + r)t
Πt, ∀t ∈ T

(C.1.28)
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−
T∑
s=t

ν0
s −

T∑
s=t

∑
r∈Is

νr1,s · Πr −
T∑
s=t

∑
r∈Is

νr2,s ·Ψr

+
T∑
s=t

µ0
s +

T∑
s=t

∑
r∈Is

µr1,s · Πr +
T∑
s=t

∑
r∈Is

µr2,s ·Ψr

≥ 0, ∀t ∈ T

(C.1.29)

ι0t +
∑
r∈It

ιr1,t · Πr +
∑
r∈It

ιr2,t ·Ψr ≥ 0, ∀t ∈ T (C.1.30)

ζ0
t +

∑
r∈It

ζr1,t · Πr +
∑
r∈It

ζr2,t ·Ψr ≥ 0, ∀t ∈ T (C.1.31)

µ0
t +

∑
r∈It

µr1,t · Πr +
∑
r∈It

µr2,t ·Ψr ≥ 0, ∀t ∈ T (C.1.32)

ν0
t +

∑
r∈It

νr1,t · Πr +
∑
r∈It

νr2,t ·Ψr ≥ 0, ∀t ∈ T (C.1.33)

∀ Πt ∈ [Π∗t − θ · Π∗t ,Π∗t + θ · Π∗t ], ∀t ∈ T (C.1.34)

∀ Ψt ∈ [Ψ∗t − θ ·Ψ∗t ,Ψ∗t + θ ·Ψ∗t ], ∀t ∈ T (C.1.35)

C.1.4 Covariance

The terms E[Πt], E[Ψt], E[Ψt · Πr] and E[Ψt ·Ψr] arise in the objective function.
These terms can be rewritten to:

E[Πt] = Π∗t , ∀t ∈ T
E[Ψt] = Ψ∗t , ∀t ∈ T

E[Πt ·Ψr] = Π∗t ·Ψ∗t + CΠ,Ψ
t,r , 1 ≤ r ≤ t ≤ T

E[Ψt ·Ψr] = Ψ∗t ·Ψ∗t + CΨ,Ψ
t,r , 1 ≤ r ≤ t ≤ T

(C.1.36)
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C.1.5 Additional variables

In order to use the equivalences from Appendix B.1.4 new additional variables
for the non-adjustable variables are defined as:

− lrt ≤ ιrt ≤ lrt , lrt = |ιrt |, 1 ≤ r ≤ t ≤ T (C.1.37)

− crt ≤ ζrt ≤ crt , crt = |ζrt |, 1 ≤ r ≤ t ≤ T (C.1.38)

− vrt ≤ νrt ≤ vrt , vrt = |νrt |, 1 ≤ r ≤ t ≤ T (C.1.39)

− urt ≤ µrt ≤ urt , urt = |µrt |, 1 ≤ r ≤ t ≤ T (C.1.40)

C.1.6 The dual LDR model

Rewriting the objective function as described in Appendix C.1.4 and the con-
straints in the model from Appendix C.1.3 using the equivalences from Appendix
B.1.4 and the new additional variables from Appendix C.1.5 results in the following
aggregated reservoir dual LDR model:

Z0 =

min E
T∑
t=1

[
−Qmin · ι0t −

∑
r∈It

Qmin · ιr1,t · Π∗r −
∑
r∈It

Qmin · ιr2,t ·Ψ∗r

+Qmax · ζ0
t +Qmax ·

∑
r∈It

ζr1,t · Π∗r +Qmax ·
∑
r∈It

ζr2,t ·Ψ∗r

+Mmax · ν0
t +Mmax ·

∑
r∈It

νr1,t · Π∗r +Mmax ·
∑
r∈It

νr2,t ·Ψ∗r

−M0 · ν0
t −M0 ·

∑
r∈It

νr1,t · Π∗r −M0 ·
∑
r∈It

νr2,t ·Ψ∗r

−
∑
s∈It

Ψ∗s · ν0
t −

∑
s∈It

∑
r∈It

Ψ∗s · Π∗r · νr1,t −
∑
s∈It

∑
r∈It

CΠ,Ψ
s,r · νr1,t

−
∑
s∈It

∑
r∈It

Ψ∗s ·Ψ∗r · νr2,t −
∑
s∈It

∑
r∈It

CΨ,Ψ
s,r · νr2,t

−Mmin · µ0
t −Mmin ·

∑
r∈It

µr1,t · Π∗r −Mmin ·
∑
r∈It

µr2,t ·Ψ∗r

+M0 · µ0
t +M0 ·

∑
r∈It

µr1,t · Π∗r +M0 ·
∑
r∈It

µr2,t ·Ψ∗r

+
∑
s∈It

Ψ∗s · µ0
t +

∑
s∈It

∑
r∈It

Ψ∗s · Π∗r · µr1,t +
∑
s∈It

∑
r∈It

CΠ,Ψ
s,r · µr1,t

+
∑
s∈It

∑
r∈It

Ψ∗s ·Ψ∗r · µr2,t +
∑
s∈It

∑
r∈It

CΨ,Ψ
s,r · µr2,t

]

(C.1.41)
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−ι0t −
∑
r∈It

ιr1,t · Π∗r − θΠ ·
∑
r∈It

lr1,t · Π∗r −
∑
r∈It

ιr2,t ·Ψ∗r − θΨ ·
∑
r∈It

lr2,t ·Ψ∗r

+ζ0
t +

∑
r∈It

ζr1,t · Π∗r − θΠ ·
∑
r∈It

cr1,t · Π∗r +
∑
r∈It

ζr2,t ·Ψ∗r − θΨ ·
∑
r∈It

cr2,t ·Ψ∗r

−
T∑
s=t

ν0
s −

T∑
s=t

∑
r∈Is

νr1,s · Π∗r − θΠ ·
T∑
s=t

∑
r∈Is

vr1,s · Π∗r

−
T∑
s=t

∑
r∈Is

νr2,s ·Ψ∗r − θΨ ·
T∑
s=t

∑
r∈Is

vr2,s ·Ψ∗r

+
T∑
s=t

µ0
s +

T∑
s=t

∑
r∈Is

µr1,s · Π∗r − θΠ ·
T∑
s=t

∑
r∈Is

ur1,s · Π∗r

+
T∑
s=t

∑
r∈Is

µr2,s ·Ψ∗r − θΨ ·
T∑
s=t

∑
r∈Is

ur2,s ·Ψ∗r ≥
1

(1 + r)t
(Π∗t + θΠ · Π∗t ),

∀t ∈ T

(C.1.42)

−
T∑
s=t

ν0
s −

T∑
s=t

∑
r∈Is

νr1,s · Π∗r − θΠ ·
T∑
s=t

∑
r∈Is

vr1,s · Π∗r

−
T∑
s=t

∑
r∈Is

νr2,s ·Ψ∗r − θΨ ·
T∑
s=t

∑
r∈Is

vr2,s ·Ψ∗r

+
T∑
s=t

µ0
s +

T∑
s=t

∑
r∈Is

µr1,s · Π∗r − θΠ ·
T∑
s=t

∑
r∈Is

ur1,s · Π∗r

+
T∑
s=t

∑
r∈Is

µr2,s ·Ψ∗r − θΨ ·
T∑
s=t

∑
r∈Is

ur2,s ·Ψ∗r

≥ 0, ∀t ∈ T

(C.1.43)

ι0t +
∑
r∈It

ιr1,t · Π∗r − θΠ ·
∑
r∈It

lr1,t · Π∗r +
∑
r∈It

ιr2,t ·Ψ∗r − θΨ ·
∑
r∈It

lr2,t ·Ψ∗r

≥ 0, ∀t ∈ T
(C.1.44)

ζ0
t +

∑
r∈It

ζr1,t · Π∗r − θΠ ·
∑
r∈It

cr1,t · Π∗r +
∑
r∈It

ζr2,t ·Ψ∗r − θΨ ·
∑
r∈It

cr2,t ·Ψ∗r

≥ 0, ∀t ∈ T
(C.1.45)

ν0
t +

∑
r∈It

νr1,t · Π∗r − θΠ ·
∑
r∈It

vr1,t · Π∗r +
∑
r∈It

νr2,t ·Ψ∗r − θΨ ·
∑
r∈It

vr2,t ·Ψ∗r

≥ 0, ∀t ∈ T
(C.1.46)
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µ0
t +

∑
r∈It

µr1,t · Π∗r − θΠ ·
∑
r∈It

ur1,t · Π∗r +
∑
r∈It

µr2,t ·Ψ∗r − θΨ ·
∑
r∈It

ur2,t ·Ψ∗r

≥ 0, ∀t ∈ T
(C.1.47)

−lrt ≤ ιrt ≤ lrt , 1 ≤ r ≤ t ≤ T (C.1.48)

−crt ≤ ζrt ≤ crt , 1 ≤ r ≤ t ≤ T (C.1.49)

−vrt ≤ νrt ≤ vrt , 1 ≤ r ≤ t ≤ T (C.1.50)

−urt ≤ µrt ≤ urt , 1 ≤ r ≤ t ≤ T (C.1.51)
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D Results from the primal models
This appendix presents figures showing expected production strategies for all the
hydropower plants evaluated in this thesis. Figures showing the lowest possible,
the expected and the highest possible reservoir levels are presented for Plant 2
for uncertainty levels of 5 % and 15 %. All figures are operating with relative
numbers, in which 1 corresponds to the maximum production level and maximum
reservoir capacity.

D.1 Hydropower plant 1

Figure D.1.1: Relative expected production levels for Plant 1

D.2 Hydropower plant 2

Figure D.2.1: Relative expected production levels for Plant 2
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Figure D.2.2: The figure show the lowest possible, the expected and the highest
possible reservoir level for an uncertainty level of 5 %.

Figure D.2.3: The figure show the lowest possible, the expected and the highest
possible reservoir level for an uncertainty level of 15 %.

D.3 Hydropower plant 3

Figure D.3.1: Relative expected production levels for Power Station 1
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Figure D.3.2: Relative expected production levels for Power Station 2

Figure D.3.3: Relative expected production levels for Power Station 3

Figure D.3.4: Relative expected production levels for Power Station 4
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D.4 Hydropower plant 4

Figure D.4.1: Relative expected production levels for Power Station 1

Figure D.4.2: Relative expected production levels for Power Station 2

Figure D.4.3: Relative expected production levels for Power Station 3
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Figure D.4.4: Relative expected production levels for Power Station 4
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