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Abstract

An important decision in the development of a mixed oil and natural gas field is whether

to produce or re-inject the natural gas. There is a trade-off between the income from the

sale of natural gas and the higher oil production obtained from re-injection. We consider

the optimal timing problem of when to stop natural gas injection for a set of offshore

petroleum fields using a real option approach. The real option valuation price the option to

switch significantly higher than a net present value approach. A two-factor price model is

implemented for both the oil price and the gas price. The option valuation is based on the

Least-Squares Monte Carlo algorithm.

Keywords: Investment uncertainty, petroleum production, field development, energy

commodities

1 Introduction

We study the flexibility related to extraction timing in offshore petroleum production, and its effect on the total

value of the reservoir. As fewer new fields are discovered, decisions related to fields already in production become

more important. An important choice in this respect is whether to re-inject the produced gas in order to produce

more oil, or sell the produced gas. On the Norwegian Continental Shelf injected water is the most common pres-

sure support, but several fields employ gas injection1. Examples include the field Oseberg, where gas export has

been delayed several times in order to extract more oil, and Ula where gas is purchased from a nearby field for

injection. At the field Prudhoe Bay, the largest oil field in North America, operators have increased the recovery

factor substantially due to gas injection together with other techniques2. As the oil production from the field falls, a

gas pipeline to export the gas is being discussed. Unlike the Norwegian Continental Shelf, necessary infrastructure

for large-scale gas export is not currently present. Gas is also used for enhanced oil production in the Middle East.

In 2008 around 16% of Iran’s gas production was re-injected to increase oil production3. Oseberg contained 2.3

billion barrels of oil when it went into production, making even a small increase in producible reserves a project

worth millions, if not billions, of dollars. We intend to value the flexibility related to when to stop injection, and

1Norwegian Petroleum Directorate, Petroleum resources on the Norwegian Continental Shelf, 2009
2BP Prudhoe Bay fact sheet, retrieved 28.05.2010
3EIA Iran Contry Analysis Briefs, retrieved 28.05.2010
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begin to export the produced gas. Since 2000 oil and gas prices have been increasingly volatile, making it more

difficult to determine an optimal switching time using static valuation approaches like net present value (NPV).

The problem of optimal extraction timing may be interesting for both practitioners assessing field strategies and

officials and researchers forecasting the future petroleum supply.

Real option valuation has been applied to petroleum projects for a long time as they have many attributes that

make them suitable for a real option pricing approach. The projects often involve a large initial investment, the

output is a risky and easily traded commodity, and management have many strategic choices available, related

to timing, technology and capacity. Siegel, Smith, and Paddock (1988) assess investing in offshore petroleum

leases and compare Real Option Valuation (ROV) with both NPV approaches and observed bid prices. Cortazar

and Schwartz (1998) use a Monte Carlo model to find the optimal timing of investing in a field with a set oil

rate that declines exponentially and with varying but deterministic operating costs. With this predetermined pro-

duction rate the value of the field becomes a function of the oil price, which is modeled as a two-factor model

where the spot price follows a geometric Brownian motion and the convenience yield follows a mean reverting

process. McCardle and Smith (1998) consider the timing of investment, the option to abandon and to tie in sur-

rounding fields. Both prices and production rates are modeled as stochastic processes, where the price follows

a geometric Brownian motion. Ekern (1988) use a ROV model to value the development of satellite fields and

adding incremental capacity using a binomial model. Lund (1999) consider an offshore field development by

using a case from the North Sea field Heidrun, employing a dynamic programming model that take into account

the uncertainty regarding both reservoir size and well rates, in addition to the oil price. The paper assumes the

price follows a geometric Brownian motion, and use a binomial valuation model to find the optimal size of the rig

and investment timing. Dias, Lazo, Pacheco, and Vellasco (2003) utilize Monte Carlo simulations together with

non-linear optimization to find an optimal development strategy for oil fields when considering three mutually

excluding alternatives. Chorn and Shokhor (2006) combine dynamic programming and real options valuation to

value investment opportunities related to petroleum exploration. Dias (2004) provides a more thorough review of

real option valuation related to the petroleum industry, and Suslick and Schiozer (2004) give an overview of risk

analysis for petroleum exploration and production.

In this work we take into account price risk and reservoir risk in a ROV model based on the Least Squares Monte

Carlo algorithm presented in Longstaff and Schwartz (2001). We do not consider the problem of initial investment,

as it has been applied to petroleum projects and a large range of other industries before. Also, in their comparison

of a option valuation and a discounted cash flow approach Siegel et al. (1988) could not prove that the option

valuation gave a different result for the price of a set of real-world oil tracts. Lund (1999) found that the value

of deferring an investment is generally low in petroleum production as opportunity costs associated with delaying

are high and new information rarely change the investment decision. Instead we focus on decisions being made as

the field is in production, specifically when to begin exporting the gas.

In Section 2 we present data. In Section 3 we introduce the price models, reservoir model and valuation framework

used in this work. We apply these in Section 4 to three real-life cases, and present our conclusions in Section 5.
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2 Data

To study the long term behavior of the oil price and to find a suitable time series model we have used the forward

prices of crude oil with 6 expiration times from 0.25 years to 2.5 years4. The forward series have weekly obser-

vations. Using these data we estimate the long and short term volatility, as well as risk neutral price growth. A

equivalent forward series for gas forwards have been used for estimating the gas price process. The forwards for

natural gas are from NYMEX4, and converted into USD per standard cubic meter oil equivalent, USD/Sm3o.e..

There are several methods for estimating the risk-free rate. Bruner, Eades, Harris, and Higgins (1998) argue that

on one hand 90-day T-bills are more consistent compared to long-term bonds, and truly reflect risk-free returns.

On the other hand short-term interest rates fluctuate over time, introducing reinvestment risk when considering

long periods. Long-term bonds reflect the default-free holding period returns closer than short-term T-bills for

long investment periods, and avoid the reinvestment problem. The empirical study performed by Bruner et al.

(1998) show that practitioners have a strong preference for using long-term bonds to estimate long-term risk-free

interest rates. Koller, Goedhart, and Wessels (2005) recommend using liquid long-term zero-coupon government

securities. To estimate the USD-denominated risk free rate, we have used 20-year US Treasury bonds4. The risk

free rate is estimated to be 4.3% per year.

The reservoir data used in the case study is from the Norwegian Petroleum Directorate5, where reserves and

production data for all Norwegian fields can be found. Observed production rates for Oseberg are also retrieved6.

3 Methodology

Several key choices needs to be made when constructing a ROV model. These include which uncertainties to take

into account, how to model these, and which simplifications to make. Bickel and Bratvold (2008) make a survey of

which uncertainties oil and gas practitioners find most relevant. The most important uncertainties from the survey

are subsurface risk, followed closely by hydrocarbon prices. Subsurface risk cover a wide range of uncertainties,

from reservoir properties to the well flow response to new production or injection wells. In our model we take

account of subsurface risks by modeling the extractable reserves as uncertain. We also include price risk. The

valuation procedure is presented in Section 3.3.

3.1 Time series analysis of oil and gas prices

When considering the decision to switch from oil production to gas production, two critical factors that must be

included are the oil price and natural gas price. The two variables are thought to be cointegrated to a certain

extent. In the United States oil power plants have been able to switch between using oil and natural gas as fuel.

This connect the two prices as producers choose the most economical fuel. Today there are a smaller share of

power plants than before that can switch between the two fuels (Brown 2005). The crude oil prices and natural

gas prices are still to some degree linked, since they are substitutes in other areas as well, i.e. heating. Crude

oil and natural gas are used as components in refineries, with the result that the two petroleum prices are more

cointegrated than they otherwise would be. Another factor linking the prices of oil and natural gas is that natural

4EcoWin Reuter Database, retrived 03.02.2010
5Norwegian Petroleum Directorate, Facts 2009 - The Norwegian petroleum sector, 2009
6Norwegian Petroleum Directorate Web page, fact section, www.npd.no, retrieved 07.05.2010
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gas is often a co-product of oil production, meaning that if one increases the oil production the gas production will

also often increase. An increased demand in crude oil following a price increase may also lead to increased costs

related to petroleum extraction (Villar and Joutz 2006). This will increase the marginal cost of natural gas as well,

creating an upwards pressure on gas prices.

Villar and Joutz (2006) show that natural gas and crude oil prices have had a stable relationship historically, even

though there are periods where they have appeared to decouple. Brown and Yücel (2008) also document a long-

term relationship between the two prices. Brown (2005) found that U.S natural gas prices are related to crude oil

prices, with natural gas prices adjusting to changes in the crude oil prices. Most Liquefied Natural Gas (LNG)

contract are indexed to oil prices. This creates a direct link between crude oil and natural gas prices (Foss 2005).

The geometric Brownian motion (GBM) and the Ornstein-Uhlenbeck process has often been used to describe the

movement of oil prices. Pindyck (1999) argues that oil price can be forecasted by incorporating mean reversion

to a stochastically fluctuating trend line. Even though the mean reversion model often is used, Pindyck (1999)

finds that the mean reversion is slow for oil, coal and natural gas prices. This suggest that the GBM may be a fair

approximation for many applications. Schwartz and Smith (2000) demonstrate that the two-factor model outper-

form the simpler one-factor models. For that reason we use this two-factor model to estimate the oil and gas price

process. We proceed by testing the two time series obtained from the two-factor model and analyze if they have

the characteristics assumed in the model description. This provides an indication on whether the two-factor model

renders a good explanation of observed price behavior.

3.1.1 A two-factor model for commodity prices by Schwartz and Smith (2000)

Schwartz and Smith (2000) develop a two-factor model of commodity prices that allows mean-reversion in the

short-term price while the long-term price follows an arithmetic Brownian motion. The two-factor model com-

bines the Brownian motion and mean reverting effects seen in commodity prices, and gives a more realistic rep-

resentation of commodity price movement than any of the two one-factor models on their own. Forward prices

are used to separate the long-term component and the short-term component. The changes in the long-term prices

reflect the changes in demand and supply following political situations, exhaustion and discovery of commodities

and improving technology, while changes in short-term price reflects changes in demand resulting from variations

in weather or intermittent problems (Schwartz and Smith 2000).

The two factor risk-neutral processes are given by:

ln(S) = χt +ξt (1)

dχt = (−κχt −λχ)dt +σχ dzχ (2)

dξt = µ
∗
ξ

dt +σξ dzξ (3)

S denotes the modeled spot price, dzχ and dzξ are increments of a risk neutral Brownian motion processes with

dzχ dzξ = ρχξ dt. The short-term deviation, χ , is an Ornstein-Uhlenbeck process reverting to −λχ/κ rather than
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zero as assumed in the true process, while the equilibrium prices or the long-run price, ξ , is a Brownian motion

with drift µ∗
ξ

. κ denotes the mean-reversion coefficient, λχ the short-term risk premium, ρχξ the correlation in

increments while σχ and σξ denote the volatility for the short-term deviation and the equilibrium price level re-

spectively (Schwartz and Smith 2000).

3.1.2 Implementation of the two-factor model

To estimate the model parameters we fit the constructed forward curve from the model to the observed forward

curve for a number of observations, and change the parameters in order to minimize the sum of squared errors. To

estimate a forward curve we use equations (4) and (5).

ln(FT,t) = ln(E∗[ST ]) = e−κT
χt +ξt +A(T ) (4)

A(T ) = µ
∗
ξ

T − (1− e−κT )
λχ

κ
+

1
2

(
(1− e−2κT )

σ2
χ

2κ
+σ

2
ξ

T +2(1− e−κT )
ρχξ σχ σξ

κ

)
(5)

The estimation is done in three steps following Lucia and Schwartz (2002). In the first step, while estimating a set

of reasonable parameters, a linear least square regression is performed to estimate the long-term and short-term

component that give the smallest error between the models forecast and market forward prices. Each time-step

is estimated independently from the others. In the second step the variance and correlation estimate is updated,

and the regression is repeated till the short-term and long-term estimated variance and correlation is close to the

observed values. The correlation between the oil and gas price is estimated from the modeled short-term and

long-term time-series. In the third step, long-term and short-term prices and variance is fixed, and a non-linear

optimization is performed in order to find the values of κ , µ∗
ξ

and λχ that minimize the sum of squared errors in

the forward curve fit. For the non-linear optimization we have used the interior-point solver Ipopt developed by

Wachter and Biegler (2006). The three steps are then repeated until the parameters converges.

3.1.3 Oil model

The forward curve is obtained from NYMEX crude oil futures maturing at 3, 6, 9, 12, 18, 24 and 30 months, with

observations from week 36 in 1995 to week 5 in 2010, a total of 749 observations for each of the seven futures.

Figure 1 compares the spot price to the modeled spot price and the long-term price. We see that the modeled price

is close to the historical spot price. The mean deviation between the spot price and the estimated spot price from

the model is 1.66% of the average spot price.

Statistical analysis of the oil price data In order to decide if the model is suitable to describe the price move-

ments, one need to examine if different characteristics can be found in the series. Schwartz and Smith (2000)

model the long-term price as an arithmetic Brownian motion in the two-factor model. In order to examine if our

model is in pursuant with the theory we test for a unit root. In a random walk, a unit root and no serial correlation

should be present.
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Figure 1: Comparing log-values of spot price, modeled spot price and long-term price denominated in log USD

per bbl

In this analysis the logarithmic values of the short-term and long-term prices are used. We find evidence of some

positive autocorrelation in the long-term oil price residuals. When autocorrelation is detected the estimates will

still be unbiased, but they will be inefficient and have larger standard errors.

Unit root test results The Dickey-Fuller (DF) test presented in Dickey and Fuller (1979) investigate if a series

is stationary or not by trying to prove that it does not contain a unit root. If there are no unit roots in a series, it

is stationary. We also test for a unit root using a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski,

Phillips, Schmidt, and Shin 1992). The null hypothesis for a KPSS-test is the reverse of a DF-test. By using both

test one tests the robustness of the result. Both tests are given in Section A.1. The result is shown in Table 1. H∗
0

indicate a rejection of H0 on a 10% significance level, H∗∗
0 5% level, H∗∗∗

0 1% level.

Table 1: Testing oil two-factor model for unit root

Time series DF Result DF KPSS Result KPSS

χ -2.73 Reject H∗
0 0.577 Reject H∗∗

0

ξ -0.075 Do not reject H0 3.00 Reject H∗∗∗
0

∆ξ -22.5 Reject H∗∗∗
0 0.17 Do not reject H0

The DF test indicate that a unit root is present, hence the series does not seem to be stationary. This is confirmed

by the KPSS test which reject the stationarity of the long-term price on a 1% significance level. The long-term

returns are however deemed to be stationary by the DF test, also on a 1% significance level, which is corroborated

by the KPSS-test. Both results support the assumption that the long-term price can be modeled as a Brownian

motion.

The DF test statistic for the short-term price reject the null hypothesis at a 10% significance level. According to a
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Figure 2: Price estimation sensitivity to short-term risk premium parameter denominated in log USD per bbl

KPSS-test stationarity is rejected on a 5% level. The result from the DF and the KPSS tests conflict, which imply

that the conclusion is not robust. Since we cannot prove that the short-run price series is stationary it could signify

that the two-factor model is the wrong formulation for this commodity. We still use the two-factor model as our

results are inconclusive, and Schwartz and Smith (2000) has proven it to be a good model for commodity prices

including crude oil.

Convergence and sensitivity The parameter estimation was performed from several different starting points, in

order to discover possible sub-optimal local minima and to assess the convergence of the algorithm. When at-

tempting different starting points for all parameters, the procedure converge to the same values for all parameters

except the short-term risk premium, λχ . Two local minima was discovered, one with a sum of squared residuals

of 0.5599, and a λ of -0.012. The best result was 0.5598 with a λ of 0.086. The difference between the two

minima is very modest. The other parameters did not change significantly. This large difference in the short-term

risk-premium have a large impact on the absolute values of the short-term and long-term prices. The shape of the

long-term and short-term curves are however not affected, as can be seen in Figure 2. The estimation procedure

compensates changes in the short-term risk premium by changing the level of the short-term price. This make it

difficult to assess which of the models is more correct, as the difference in squared residuals is very small.

Results The two-factor model results are given in Table 2. We see that the results are similar to those given

in Schwartz and Smith (2000). They use data from NYMEX futures from 1/2/90 to 2/17/95. The parameters

are similar to the estimates from Schwartz and Smith (2000) and have the same signs, except the correlation in

increments which have an opposite sign, and the short-term mean reversion rate which differ substantially. One

obvious reason for the difference in the estimates is that the data-set used by Schwartz and Smith (2000) is older
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than the data used in our model.

Negative correlation in increments indicate that when there is a positive shock in the equilibrium price one can

to some extent expect the short-term price to fall. This suggest that there is some inertia in the spot price, as a

long-term change is to some degree offset by a short-term price adjustment in the opposite direction.

Table 2: Comparing oil model with results from Schwartz and Smith (2000)

Parameter Description Schwartz and Smith estimates Oil model

κ Short-term mean reversion rate 1.49 0.789

σχ Short-term volatility 0.286 0.267

λχ Short-term risk premium 0.157 0.086

µ∗
ξ

Equilibrium drift rate -0.0125 -0.0137

σξ Equilibrium volatility 0.145 0.161

ρξ χ Correlation in increments 0.300 -0.124

3.1.4 Gas model

Gas prices are more regional than the oil price. There are several regional gas markets around the world, and in

contrast to the oil market the different gas markets does not have as much influence on each other. One important

link between the different gas markets is the LNG-shipments, which transport natural gas over long distances. We

use data from the Henry Hub gas market traded on NYMEX. Henry Hub is one of the largest gas markets in the

world, and should be more liquid and complete than smaller markets. This is discussed further in section 3.4.

Villar and Joutz (2006) show that while the changes in oil price have an impact on gas prices, the natural gas

price does not influence oil price considerably. And though the prices of crude oil and natural gas at times have

appeared to drift away from each other, oil and gas have still had a stable relationship (Villar and Joutz 2006).

There are several rules of thumb regarding the relationship between oil and gas prices, but none of these rules of

thumb have been consistently accurate over time. We see in Figure 3 that the crude oil price and natural gas price

have followed each other and have the same characteristics.

To estimate the model parameters we follow the procedure in section 3.1.3 and fit a forward curve from the model

to the observed forward curve for a number of observations. We then change the parameters in order to minimize

the sum of squared errors. The forward curve is obtained from Henry Hub spot price and futures maturing at

3, 6, 9, 12, 18, 24 and 30 months, with observations from week 15 in 1996 to week 5 in 2010, a total of 719

observations. The estimated forward curve is found using equations (4) and (5).

Analysis of the gas model We model the gas price by using a two-factor model. In order to analyze the model

we do the same unit root tests as for the oil price model. We analyze the logarithmic values of the short-term and

long-term prices for the natural gas in the period from week 15 in 1996 to week 5 2010 a total of 710 observations.

The results of the DF-test and the KPSS-test are shown in Tabel 3. H∗
0 indicate a 10% significance level, H∗∗

0 a

5% level and H∗∗∗
0 a 1% level.
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Figure 3: Comparing natural gas log-prices denominated in log USD per Sm3o.e and oil log-prices denominated

in log USD per bbl using weekly observations from 1995 to 2010

Table 3: Testing gas two-factor model for unit root

Time-series DF Result DF KPSS Result KPSS

χ -4.71 Reject H∗∗∗
0 0.90 Reject H∗∗∗

0

ξ -1.34 Do not reject H0 2.86 Reject H∗∗∗
0

∆ξ -28.43 Reject H∗∗∗
0 0.16 Do not reject H0

Using equations (23) and (24) the DF test statistic for the long-term price series implies that the null hypothesis

can’t be rejected and there can be a unit root present. This result is confirmed by the KPSS test which rejects

stationarity. The long-term returns DF test indicates that the return is stationary on a 1% confidence interval,

while the KPSS test can’t reject stationarity. This is according to the assumption that the long-term price can be

modeled as a Brownian motion.

The test statistic for the short-term natural gas price is significant at a 1% confidence interval, suggesting that the

series does not contain a unit root. The KPSS test rejects stationarity, however. The results for the short-run price

series is not robust, and it is difficult to say if the stationarity assumptions for the two-factor model should be

rejected. This is the same conclusion as for the crude oil price. The reason for the inconclusive result may be that

the time-period in the analysis is too short. We find no evidence of autocorrelation in the long-term natural gas

price residuals. This is according to the two-factor assumptions.

Results gas model Figure 4 compares the modeled gas price against the historic natural gas spot price. The

model fits the historic data very well, as the mean deviation between the historic spot price and the modeled gas

price is 0.19% of the average gas spot price. The reason why this value is lower than for the oil price is mainly

because we have included the spot price in the estimation of the natural gas price model. When excluding the spot
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Figure 4: Comparing log values of natural gas spot price, modeled spot price and long-term price denominated in

denominated in log USD per Sm3o.e

price, the accuracy of the model was low when encountering price spikes. We find that the short-term price on

average is close to −λχ/κ even though this was not a specified restriction in our gas model. This is in accordance

with the risk-neutral two-factor model assumptions, where the short-term deviations are expected to have a mean

of −λχ/κ .

The two-factor model results are given in Table 4. The results from the model developed in this paper is compared

to the futures data given in Cartea and Williams (2008). The data set in Cartea and Williams (2008) use data from

IPE Natural Gas Futures from Aug 2003 - Jan 2006. Our parameters seem reasonable compared to the estimates

from Cartea and Williams (2008). Their values are estimated for the European gas market and one would expect

to see some differences. They have also removed seasonality in their model. This will also cause some deviation

from our results. A difference is that we found the short-term volatility and the correlation in increments to be

lower. Both models have high short-term mean reversion rates, suggesting that the price reverts quickly to a short-

term mean value. This is explained by price spikes in natural gas which last for a short period before reverting

back to a more normal level. As in the estimates from Cartea and Williams (2008) we have a negative correlation

in increments, but it is almost zero. This means that for this gas market, increments in the short-term price and

increments in the equilibrium level seem to be almost uncorrelated with each other.

The estimates given in Cartea and Williams (2008) is estimated on the London based IPE futures. That our results

are fairly close to their estimates, can be an indication that the behavior of the two gas markets are similar. We

assume that our estimates are satisfactory to apply in the case studies from the North Sea.

3.1.5 Estimating oil and natural gas correlation

Finally we need to find how the oil and natural gas time-series are correlated. Villar and Joutz (2006) found that the

natural gas price depend on the oil price and Brown and Yücel (2008) found the natural gas price to be anchored

in a long-term relationship with crude oil prices, but with the short-term dynamics of natural gas prices driven by
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Table 4: Comparing natural gas model with futures data found in Cartea and Williams (2008)

Parameter Description Cartea and Williams estimate Gas model

κ Short-term mean reversion rate 10.18 7.0

σχ Short-term volatility 1.38 0.5

λχ Short-term risk premium 1.29 0.12

µ∗
ξ

Equilibrium drift rate 0.15 -0.04

σξ Equilibrium volatility 0.24 0.24

ρξ χ Correlation in increments -0.33 -0.05

exogenous factors. After estimating a two-factor model for the crude oil price and one for the natural gas price,

we have a total of four time-series. In Table 5 we have show the correlation between the first differences of the

time-series. We see that the strongest correlation is between the two long-run time-series, and the second strongest

between the two short-run time-series. In each case we also have negative correlation between the short-run and

long-run for both the oil and for the gas price. We note that all correlations are significant, except the correlation

between long-run oil price and short-run gas price. (∗) indicate a 10% significance level, (∗∗) a 5% level and (∗∗∗)

a 1% level against a two-tailed test.

Table 5: Correlation matrix between two-factor components in gas and oil

Short-run gas Long-run gas Short-run oil Long-run oil

Short-run gas 1.00 −0.06∗ 0.14∗∗∗ 0.05

Long-run gas −0.06∗ 1.00 0.11∗∗ 0.21∗∗∗

Short-run oil 0.14∗∗∗ 0.11∗∗ 1.00 −0.12∗∗

Long-run oil 0.05 0.21∗∗∗ −0.12∗∗ 1.00

3.2 Reservoir model

To determine the effect from the switch decision, the consequences the switch will have on oil and gas rates need

to be estimated as well as the price behavior. Hence a reservoir model is necessary. There are many ways of

modeling a petroleum reservoir, from simple zero-dimensional tank models to full three-dimensional models that

take into account almost all relevant information. Wallace, Helgesen, and Nystad (1987) argue that simpler mod-

els might be preferable for general studies or for ranking many different project opportunities, and that the more

complex models are preferable for finding optimal production patterns in specific fields. For our analysis, we have

chosen to use a tank model in order to keep the analysis transparent. However, the valuation method is possible to

implement employing commercial reservoir simulators, as the only output required are production profiles of the

different production modes.
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3.2.1 Model specifications

To estimate the option value of producing natural gas, the production volumes and the time of production are re-

quired. In this work a zero-dimensional model based on the models in Wallace et al. (1987) is modified to include

gas injection. The model treats the reservoir as a tank with a uniform fluid and with uniform properties in the

whole reservoir. Thus it does not account for differences in permeability in different areas or local differences

in pressure caused by the well flow as the areas surrounding the producing wells empties. It is a simple model

which has great computational advantages compared to more complex reservoir models, and it creates the shape

of reservoir production profiles of a wide range of petroleum fields (Lund 1999).

Table 6: Reservoir Parameters

Pw,0 - Initial reservoir pressure

Pw,t - Reservoir pressure at time t

Pmin - Abandonment pressure

R0 - Initial reservoir volume

Rt - Reservoir volume at time t

qr,t - Maximum reservoir depletion rate at time t

qw - Maximum well rate

qmax - Maximum capacity, or plateau production

qramp−up,t - Maximum production during field development

Nt - Number of wells producing at time t

The reservoir pressure and reservoir volume abide by the following relation:

Pw,t = Pw,0 −
R0 −Rt

R0
∗ (Pw,0 −Pmin) (6)

The reservoir pressure provides the maximum well flow, which decays exponentially with time with continuous

production if there are no other constraints on the well flow. The maximum well rate is based on the capacity of

the wells installed.

qr,t = Nt ∗qw ∗
Pw,t −Pmin

Pw,0 −Pmin
(7)

Together, equations (6) and (7) becomes the simple equation

qr,t = Nt ∗qw ∗ Rt

R0
(8)

This is the maximum production from the field given the pressure in the reservoir. It is rarely optimal to

construct the production unit so that it can produce at the maximum rate qr,t , because this requires high investment

costs. When the field has a maximum processing capacity that is lower than the field maximum production, the

production profile will have a flat region where the production is equal to the maximum capacity. This level is

called the plateau production. The optimal plateau level is mainly a function of investment cost, production and

required rate of return, since it is a trade-off between investment cost and the ability to get the petroleum quickly

out of the ground. There might also be technical reasons to limit the capacity. We have included a ramp-up period
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of three years, which is similar to the case found in Robinson (2009). During this ramp-up period we have assumed

that the production grows linearly to the capacity maximum over a two year period. The reason for including such

a ramp-up period is related to well drilling. It will not be possible to drill all wells at the same time, and connecting

the streams to the platform will also require some time. The actual production is the minimum of qr,t , qmax and

qramp−up,t .

3.2.2 Oil and gas production

When modeling production of both oil and gas, an important assumption is the ratio between the two fluids in the

production. This will be influenced by a large number of factors, where both individual well placement and flow

will be important. In a zero-dimensional model we are not able to capture these effects, and thus have to make

simplifying assumptions. We assume that the composition of the well flow is the same as the reservoir composi-

tion, so that:

qo =
Vo

Vo +Vg
∗q (9)

qg =
Vg

Vo +Vg
∗q (10)

Vo and Vg are denominated in Sm3o.e. qo and qg represents the flow of oil and gas respectively, denominated in

Sm3o.e. per year.

3.2.3 The effects of gas production

Another complex question related to the joint production of oil and gas is the interactions between the two fluid

regions. In the case of the Troll field, the gas stabilizes the oil region so the oil does not move upwards into the gas

domain. This makes it possible to extract the oil. Producing the gas too early or too fast can cause large amounts of

oil to become impossible to extract7. This is one reason to re-inject the gas in the beginning of the field’s lifetime.

Another reason to inject gas is to push the oil towards the wells. The effect of gas injection is dependent on the

reservoir properties of each field, and placement of injecting and producing wells. We have assumed that the oil

production drops to zero when the gas is produced to capture the effect of reduced oil production. This might be

a fair approximation if the oil layer is thin, where many wells can move below the oil-water contact if this shifts

slightly upwards. In fields where gas is mostly used for moving the oil towards the wells this might be a poor

approximation, and more complex reservoir models will be necessary. In Figure 5 the production from the field

Oseberg is shown. The gas production was started in 2000, 14 years after the field started producing oil. The oil

production does not drop as quickly as we have modeled it to do, suggesting that in order to get realistic results

a more complex reservoir model must be used. For initial analysis and to identify key parameters in the ROV the

model should be sufficient, however.

3.2.4 Uncertainty in production

Production volumes are uncertain, and they remain uncertain during the entire field lifetime. There are several

elements contributing to this uncertainty. One of them is that the operator bases his predictions and actions on

7Norwegian Petroleum Directorate, Petroleum resources on the Norwegian Continental Shelf, 2009
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Figure 5: Historical Oseberg oil and gas production

imperfect information about the reservoir. As the field is producing some of this uncertainty will be resolved. An-

other important source of uncertainty is the development of technology (Haugen 1996). The development of new

technologies can cause jumps in the extractable reserves, where the effect, cost and timing of these innovations

are uncertain.

Lund (1999) consider the uncertainty related to varying well capacity. The well capacities depends on a number

of factors, including the location of the water/oil and oil/gas contact and the permeability and rock-fractures near

the well. These change over time and can be difficult to predict. Lund (1999) models the well capacity as a simple

stochastic function, where the well can either have a high or a low oil rate. Each well capacity will be highly

random, but with a large number of wells the process resemble a mean reverting stochastic process. The variance

of the field production will be very dependent on the number of wells connected to the field. McCardle and Smith

(1998) take a different approach by modeling the decline rate as a geometric Brownian motion. This might be

appropriate when the field is in decline, but it does not take into account the effect of the production capacity limit

and it does not clarify which fundamental property that varies. Salomao and Grell (2001) estimate probability

functions for the oil volume and recovery factor in order to obtain the distribution of the recoverable oil. They

provide numerical probabilities for their test case, where the uncertainty in recoverable volume is 10% of the

mean. If we assume that the process follows an arithmetic Brownian motion, this leads to a yearly volatility of 2.2

% for a 20-year lifetime. We use the probability distribution from Salomao and Grell (2001) and assume that the

recoverable resources varies according to equation (11). We have assumed that the expected increase in reserves

is zero. This leads to similar results as the model by McCardle and Smith (1998), but includes the possibility

of plateau production. To include the possibility of future technological advances one can include a growth term

in the reserve function. We have chosen not to do this due to the difficulty of assessing the expected growth in

reservoir producible reserves.

dRt = σdZ (11)
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3.3 Least Square Monte Carlo

An important decision is the choice of valuation procedure. When analytical solutions are not possible due to

option complexity, numerical techniques can provide an answer. There are several numerical methods that can

be used to value American options. Of these the most common are the finite differences approach, lattice-based

methods and simulation methods. Geske and Shastri (1985) compare the binomial model and a finite differences

valuation of American calls and puts. They find that the binomial model is more intuitive and easy to imple-

ment, while the finite differences method is more efficient. They conclude that a binomial approach might be

best for researchers evaluating relatively few options, and the finite differences model might be more suitable for

practitioners evaluating a large number of options. The binomial lattice method is developed by Cox, Ross, and

Rubinstein (1979). An issue with lattice-based methods is the size of the lattices. Due to the exponential increase

in size with the number of stochastic processes, they become computationally expensive to solve for more than

one stochastic element (Stentoft 2004a). This is especially an issue in real option valuation that often depend on

several stochastic factors.

Simulation procedures based on Monte Carlo simulations provide an alternative to the lattice-based methods.

These methods have the advantage of not growing significantly in size and computational demand when increas-

ing the number of stochastic elements compared to alternative methods. It is also considered to be flexible, easy

to implement and modify (Boyle, Broadie, and Glasserman 1997). One issue with the Monte Carlo method is

that many simulation-paths may be required to obtain robust results, especially in complex problems. Boyle et al.

(1997) list several techniques to reduce variance, where the most common are antithetic draws and the control

variate method. In pricing American options using Monte Carlo simulation the main challenge is to analyze the

conditional expectation and the value of early exercise. Various different methods have been presented8. One of

the more popular methods is presented in Longstaff and Schwartz (2001), and is known as Least Squares Monte

Carlo (LSM). The paper proposes a least squares regression on a set of basis functions to estimate the continuation

value, including only in the money paths in the regression. The convergence properties of the LSM method have

been examined, and it is found that the algorithm converge to the true price9. Moreno and Navas (2003) studied

the robustness of the LSM to the number and choice of basis functions. They found that for simple American

options the method produces similar valuation results with different choices of basis functions, but that robustness

is not guarantied when applied to more complex options. Stentoft (2004b) shows that the LSM algorithm is more

efficient than finite differences and the binomial model when considering options on multiple assets, and that sim-

ple monomials is preferable to Laguerre polynomials when choosing basis functions. Cortazar, Gravet, and Urzua

(2008) has extended the approach to cover multi factor risk models more suitable to long-term commodity real

options.

The LSM-algorithm starts at the last possible exercise time T by calculating the exercise value, Vn,T = max(S−
K,0). The option is exercised if and only if the estimated value of exercising is positive, which provides input

into the continuation value regression in the previous period. The value of keeping the option alive is calculated

by approximating the continuation value, Fn,T−1, by Fn,T−1 = aT−1 ∗Xn,T−1, where X is the set of basis functions

and at represent the regression coefficients from Equations 14. The basis function coefficients are found solving

the following least squares problem:

8See, for example, Tilley (1993), Barraquand and Martineau (1995), Carriere (1996) and Tsitsiklis and Van Roy (2000).
9See, for example, Clement, Lamberton, and Protter (2002) and Stentoft (2004a).
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Xt = [X1
n,t ,X

2
n,t , ..,X

j
n,t ] (12)

Yt+1 = Vn,t+1 (13)

at = (Xt
T ∗Xt)

−1Xt
T Yt+1 (14)

By only including the realizations where the option exercise is positive in the regression, the accuracy of the

algorithm is increased significantly (Longstaff and Schwartz 2001). The value in each node, Vn,t is the largest of

the exercise value and the discounted continuation value. A higher exercise value will trigger early exercise in that

node for all t less than T.

Fn,t = at ∗Xn,t (15)

Vn,t = max(Fn,t ∗ er f ∗∆T ,Sn,t −K) (16)

3.4 Risk-neutral pricing

Determining an asset’s price can be done by assessing the risk and return profile of the asset, and estimating how

much investors are willing to pay to own it. The capital asset pricing model (CAPM) developed by Sharpe (1964)

and Lintner (1965) is a well-known example of this class of models. They argue that since individual risk can

be hedged by investing in other companies and industries there will only be a risk-premium for the systematic

risk. This is measured as the asset’s correlation with the market. This model is widely used but it has a poor

empirical track record (Fama and French 2003). Risk-neutral pricing is based on a different principle, and avoids

having to estimate investors preference towards risk and reward. It is based on the assumption of no arbitrage,

and prices derivatives by replicating their payoff using other traded securities. Since both the derivative and the

portfolio have the same payoff in all states their price need to be the same to avoid arbitrage. This treats risk in

a consistent manner compared to market prices, and avoid biases that can occur otherwise (Laughton, Guerrero,

and Lessard 2008). The pricing formula for European options developed by Black and Scholes (1973) is based on

this principle, and so is the contingent claims approach as presented by Dixit and Pindyck (1994) for pricing real

options.

In our case the market for crude oil is a well-developed and global market. This allows us to use risk-neutral

pricing by treating the oil production as a portfolio of future oil sales. A similar argument is made for the natural

gas price risk. The markets for natural gas are to a high degree regional, however, and the price behavior might be

different in the different markets. Further, according to Juris (1998) there have been few liquid and mature spot

markets for natural gas and the only well-developed financial gas market is located in the United States. Due to

this we have used natural gas price data from Henry Hub, USA, to obtain risk-neutral parameters for the gas price

model. The reservoir risk is difficult to price in a risk-neutral framework, as there is no traded asset that have the

exact risk profile of an individual petroleum reservoir. To price the reservoir risk we use an argument similar to the

CAPM argument based on the assumption that the reserve risk is not correlated with the market. Thus, including

reserve risk in the valuation does not change the risk-premium of the project.
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3.5 Outline of the model

The model solves the optimal timing problem of when to stop gas-injection and start producing natural gas. There

can be significant costs related to switching, if gas processing equipment or pipe lines need to be built. Once gas

production is started we assume that decision is irreversible. These elements make the decision to switch a ROV

candidate. The decision to switch is modeled as the option to buy a derivative worth the risk-neutral expected

income from future gas production less the expected income from the lost oil production and the investment cost.

V (S, t0) = maxE [(St −K)∗ e−r f ∗∆T∗(t−t0),0] (17)

Vt denotes the option value of switching, St the NPV from switching and K the investment needed to switch. K

is in options terminology also known as the strike price. We see from equation (17) that the operator will only

switch if it is profitable at that time. He must also take into account that the decision to switch is irreversible.

In equation (17) V (S) is written as a conditional expectation that is a function of the observed S, the stochastic

behavior of S and time. In our model the cost of switching is assumed to be deterministic and not time dependent.

This is a simplification, as the cost of pipelines are highly dependent on steel prices and laying costs that both are

uncertain.

St =
i=T

∑
i=t

(Fg,t,i ∗E(Pg,t,i)−Fo,t,i ∗E(Po,t,i))∗ e−r f ∗∆T∗(i−n) (18)

T denotes the last period. Fg,t,i and Fo,t,i denotes the forward price at time t of gas and oil delivered at time i,

E(Pg,t,i) and E(Po,t,i) the expected production at time t of oil and gas in time i and e−r f ∗∆T∗(i−n) is the risk-neutral

discount factor with continuous compounding. K represents the investment needed to switch production. The

present value of switching production, S, is the difference in value between oil and gas production based on the

knowledge at that time. In each time-step a forward curve is observed, which combined with the expectation

of the oil and gas production generate a risk-neutral expectation of the value from the oil and gas production.

This allows us to discount the cash-flows with a risk-free rate of return. The option value is dependent on the

stochastic processes that the reservoir production and petroleum prices follow, as these determine the form of the

forward curves and the expected production. Hence the choice of price model and the description of the stochastic

behavior impacts the option price. We also compare the results from the ROV to a static net present value (NPV)

maximization. The optimal NPV is found by switching at the point giving the highest value:

NPV (S0) = maxE [(St −K)∗ e−r f ∗∆T∗t ,0] (19)

The difference between the NPV approach as implemented in equation (19) and the ROV in equation (17) is that

the NPV is based on the expected value seen from t=0, while the ROV uses updated conditional expectations at

each time step that take into account the development of prices and reservoir conditions. Updating the conditional

expectations will e.g. lead to a earlier switch decision if gas prices are higher than expected and oil prices lower

than expected, and vice versa. This is most likely a more accurate description of the decision process of the oper-

ator than the static NPV, and will thus lead to a more accurate valuation of the switching option.

We have implemented the ROV model using the LSM method using monomial polynomials as recommended by

Stentoft (2004b). 100 time steps and 100 000 price paths are simulated using antithetic draws, and the continua-

tion value is regressed on monomials up to the second order and cross terms of the five different stochastic factors.
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We also calculate a optimal static NPV as a benchmark for the option value. The optimal static NPV is found by

switching at the time that gives the highest NPV when taking the mean of all simulations.

Long-term and short-term oil and gas prices are simulated by Monte Carlo simulations of the two-factor model.

We obtain correlated normal-distributed increments using a Cholesky decomposition. When the Cholesky de-

composition is applied to the correlation matrix and multiplied with a vector of uncorrelated samples, a vector

with correlated normal random variables is obtained. The method is described further in Lurie and Goldberg

(1998). The simulation is done by drawing four sets of correlated standard normal-distributed increments. From

the long-term and short-term prices a set of forward prices are produced using equation (4) to form a risk-neutral

expectation of future oil and gas prices. The petroleum production is predicted based on the level of production in

that node by using equation (11).

4 Case Studies

In this section we apply the model to data sets based on the fields Norne, Oseberg and Troll on the Norwegian

Continental Shelf. In the three cases we have assumed a lifetime of the production unit of 20 years, and an annual

maximum production of one tenth of the initial total reserves. Further, we model the cost of switching to be equal

to the cost of a connecting pipeline, estimated at 200 MUSD. This was the cost of the gas pipeline connecting

Norne in 200110. We estimate an initial long-run oil-price of 60 USD per barrel, and an initial long-run gas price

of 155 USD per Sm3o.e.. The short-run prices are assumed to be zero at the start of production. As the lifetime

of the field is fixed, we are not considering operating costs or initial investment costs as these will be incurred re-

gardless of which decision is made. Hence, both net present values and option values will only reflect the change

in income from the switch, and not the overall value of the field.

When it began production in 1997 the Norne field contained about 110 MSm3o.e.. About 85% of this was oil, the

rest was natural gas and natural gas liquids. Using parameters from Section 2 and 3.1 we obtain a optimal static

NPV of 0, indicating that with a NPV approach switching production would not take place. Valuing the possibility

to switch as an option, we obtain a option value of 35.5 MUSD.

Oseberg is a larger field than Norne, containing 490 MSm3o.e. extractable reserves when brought on stream. Of

these 75% was oil. In this case the static NPV is still 0, indicating the value of the oil lost still outweighs the value

of the gas. The option value of switching is 1170 MUSD. If we adjust for the size difference between Oseberg and

Norne, we obtain an option value of 225 MUSD. This is significantly higher than the 35 MUSD from the Norne

case, and shows that the relative oil and gas amount is an important parameter.

We also consider the case of Troll. Troll is primarily known for its large gas production, but it also have substan-

tial amounts of oil in the reservoir. In the western oil-producing part of the reservoir much of the produced gas is

re-injected in order to continue the oil production, while gas production is taking place at the Troll I platform. We

simplify by assuming one single production unit. The field initially contained 1600 MSm3o.e., of which around

15% was oil. Switching to gas-production gives a NPV of 80 billion USD, and an option value of 84 billion USD.

We also note that when treating Troll like a single reservoir the optimal time to switch from a NPV point of view

10Norwegian Petroleum Directorate, Facts 2009 - The Norwegian petroleum sector, 2009
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(a) Norne (b) Oseberg

(c) Troll

Figure 6: Value of switching when varying the time of switching while considering the cost of switching, the value

from the gain in gas production and the lost income from the forfeited oil

is after 6.5 years.

In Figure 6 we present the development of the NPV for the three fields. Troll is the only field where switching is

profitable in a static NPV framework. The shape of the NPV-curve is fairly flat around the maximum, indicating

that little value is lost if the operator switches at a sub-optimal time. This indicate that simpler, albeit sub-optimal,

valuation methods might be a viable alternative. The decision to change production at Oseberg have a significant

option value, even though the NPV-approach advices not to switch at any time. Hence, a ROV approach might be

warranted when considering this issue in fields where the switch is not very valuable at current prices. Figure 6

also display the standard deviation. The future value of switching is uncertain, supporting the adoption of a ROV

approach as new information can have an impact on the optimal timing.

4.1 Sensitivity analysis

Many of the parameters in the model are uncertain, and in order to investigate which parameters that have a

significant impact on the option value and the NPV we perform a sensitivity analysis. We consider a model field

with 200 MSm3o.e. in reserves, and of which 50% is oil and 50% is gas. The NPV-development of the model field
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is shown in Figure 7.

Figure 7: NPV development of the decision to switch considering the model field

4.1.1 Initial long-term prices

An important parameter in our study is the initial oil and gas long-term prices. Since both the oil and gas long-

term price is modeled as a Brownian motion, the initial long-term price will have a large impact on both the NPV

and the option value. Figure 8a shows the development of the real option value and the optimal static NPV when

changing the initial long-term oil price. The option behaves like a put with respect to the oil price, and having

the option to switch can be seen as insurance against falling oil prices. We observe that the value of switching is

larger at all times than the optimal static rule. From this we conclude that arranging to adjust development plans

when facing changing prices is a better alternative than the best static policy found when starting extraction. The

long-term gas price is also expected to have a significant impact on the value of switching. In Figure 8b the NPV

and option value is shown with varying initial gas price. The option acts as a call with respect to the gas price,

increasing in value as the gas price rise.

(a) Initial oil price (b) Initial gas price

Figure 8: Value sensitivity to initial long-term prices

20



4.1.2 Investment cost

In the base case the investment cost taken into account is the cost of the pipeline. This is a valid approximation,

given that the production unit already has gas processing equipment and the platform has not already been

connected to a gas grid. The unit will need to separate the gas from the oil when re-injecting the gas, so the

gas processing equipment will in most cases be built before starting production. The gas pipe line might be built

as the platform starts producing, leading to a very low switching cost. In any case the cost of connecting the field

will be very dependent on the distance to existing infrastructure. We have investigated the effect of the investment

cost on the option value and static NPV. As expected, the NPV decreases linearly with the added switching cost.

The option value does not have a linear decrease, and is less sensitive to the switching cost. This implies that

it is worthwhile to consider the possibility of extracting natural gas from fields currently too far from existing

infrastructure, since increased gas prices, new infrastructure in surrounding areas or falling steel prices can make

switching attractive.

Figure 9: Value sensitivity to investment cost

4.1.3 Long-term volatility

An important characteristic of price models like the geometric Brownian motion and the Ornstein-Uhlenbeck

process is that the expected value of the price is not a function of the variance. In the two-factor model by

Schwartz and Smith (2000) the expected value of the logarithm of the long-term price is ξ +µt, and will not vary

with changing volatility. The real long-term price will however be affected by the volatility. This can be explained

by Ito’s lemma in equation (20). The long-term price can be written as eξ and ξ follows dξ = (µ −λ )dt +σdZ∗

where dZ∗ is increments of a standard Brownian motion. Ito’s lemma gives us:

deξ =
δeξ

δξ
∗dξ +

1
2

δ 2eξ

(δξ )2 ∗ (dξ )2 +
δeξ

δ t
∗dt (20)

deξ = eξ ((µ +
1
2

σ
2
ξ
)dt +σξ dZ∗) (21)

As the volatility of the log-price increases, the expected increase with time of the long-term price will increase

with a factor of 1
2 σ . This is the reason for the negative impact on the NPV from the increased volatility in the

log-price of oil, and the positive impact from the gas volatility seen in Figure 10.
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(a) Oil (b) Gas

Figure 10: Value sensitivity to long-term price volatility

4.1.4 Short-term volatility

Option values are known to increase with volatility, but this is not necessarily true for the short-term volatility

when considering long-term decisions. It will be difficult to take advantage of positive short-term price shocks,

as it will quickly revert back to normal levels. The sensitivity to short-term price volatiltiy is seen in Figure 11.

As illustrated, the sensitivity of both the option value and for the NPV to the short-term price volatility parameter

is very low. An increase in the oil price volatility has a slight tendency to decrease the value, and similarly,

an increase in the gas price volatility tend to increase value. This is explained by a similar argument as in

Section 4.1.3. We have calculated the increment in the short-term price, and we note that increased σχ causes

an increase in the mean-reversion level of short-term price. Unlike the increase in the long-term drift, the mean-

reversion level does not compound and the effect from the increased volatility should thus be smaller. This also

explain the slight negative slope from an increase in the short-term volatility of oil in Figure 10a, and the slight

positive slope in Figure 10b.

deχ = eχ((−κχ −λ +
1
2

σ
2
χ)dt +σχ dZ∗) (22)

4.1.5 Short-term mean-reversion speed

The mean-reversion speed is expected to have an impact on the option value. A slower mean-reversion speed

should increase the volatility, as short-term shocks diminish more slowly. This should in turn increase the option

price. Figure 12 shows that when the gas mean-reversion speed becomes very low, the option value increases.

The short-term volatility is much higher for the gas price compared to the oil price, and hence the effect from the

lower mean reversion speed is greater in the gas price case. However, in the relevant area around to the modeled

parameters of oil and gas at 0.8 and 7.0 the sensitivity is very low. Slight changes in the mean-reversion speed

over time should thus not make an impact on the switch-decision.
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(a) Oil (b) Gas

Figure 11: Value sensitivity to short-term price volatility

(a) Oil (b) Gas

Figure 12: Value sensitivity to short-term mean-reversion

4.1.6 Short-term risk premium

In the estimation procedure in Section 3.1 estimating the short-term risk premium proved to be challenging and

important, as it determined the mean level of the short-term price. It is interesting to see how a mistake in the

short-term risk premium influence the option value, since there is some uncertainty around the true value of the

parameter. An increase in short-term risk-premium will reduce the mean level of the short term price, explained by

equation (22). This explains why an increase in the short-term risk premium of oil (gas) has a positive (negative)

impact on the value of switching. Figure 13 show the option value and NPV as a function of the short-term risk

premium of oil and gas. The value is more sensitive to the risk premium of oil than that of gas, attributable

to the lower mean-reversion speed of oil. The log of the short-term mean price revert to −λ

κ
, causing the fast-

reverting short-term gas price to be less sensitive to the short-term risk premium. The short-term risk premium

also seem to affect the NPV more than it affects the option value in both cases. Decreasing oil prices make the

decision to produce the gas more attractive. The reduced uncertainty concerning whether the gas can be produced
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(a) Oil (b) Gas

Figure 13: Value sensitivity to short-term risk premimum

profitably should reduce the difference between the two valuation methods. Similarly, as the gas price decrease

the uncertainty increase, amplifying the difference between the two approaches.

4.1.7 Sensitivity with respect to oil-percentage

The amount of oil initially in the reservoir is likely to have a large impact on the decision to switch. For a low

oil-percentage, we expect the switch to be more valuable and to occur earlier. This is confirmed in Figure 14, with

a highly valuable switch when the oil-percentage is low. The value of the switch is very sensitive to the oil content

in the field. We also note that the option to switch has value even in cases where the NPV of switching is zero.

The advantage of the ROV-approach is higher in fields with a low gas content, when the NPV of switching is close

or equal to zero and the ROV-approach still has a value greater than zero.

Figure 14: Value sensitivity to reservoir oil-content ratio
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4.1.8 Reservoir risk

As illustrated in Figure 15 the reservoir-risk seem to have little effect on the option value. The reservoir risk

is small compared to other sources of risk, and the small effect on the option value indicate that reservoir risk

could be left out of the formulation. If reservoir-risk can be disregarded, several benefits can be realized. First,

leaving out reservoir risk let us simulate only one reservoir-simulation compared to 100 000 simulations needed

in a Monte Carlo simulation. The run-time can be significantly reduced by this as the reservoir model is one of the

most time-consuming parts of the algorithm. Second, as fewer simulations are needed, more complex and more

realistic simulation models can be utilized.

Figure 15: Value sensitivity to reservoir risk

5 Conclusion

In this paper we investigate the flexibility related to the option to switch from oil production to gas production

in a petroleum reservoir containing both hydrocarbons. We find that option valuation is superior to a static NPV

approach for such real options, and that taking into account the development of prices and reservoir behavior is

important for optimal management of a petroleum field. The main source of risk that influence the switch value

is found to be the long-term oil and gas prices. The short-term component of the price model seem to have little

effect on the switch decision. This can be explained by the fact that the decision to switch is a long-term decision,

and short-term changes will not affect the decision to a large degree. A simpler one-factor long-term price model

might thus be a sufficient alternative when considering this class of strategic decisions. Reservoir uncertainty as

formulated in this paper have a minor impact on the option value, and could be left out of the formulation.

For further work we recommend incorporating a more realistic reservoir model. The reservoir model used in this

paper is a simple model that captures the main features of petroleum production profiles, but it does not capture

the complex interactions related to joint oil and gas production. Uncertainty in the development of the well flow

is shown to have little impact, and the production can be modeled as deterministic. Another interesting addition

would be to include a stochastic investment cost, which will likely be important in areas where large infrastructure

investments are needed.
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A Appendix

A.1 Time-series analysis

A.1.1 Dickey-Fuller-test

The model for the DF unit root test is

∆yt = ψyt−1 +µ +λ t +ut (23)

and the test statistics for the DF-tests are defined as

test statistic =
ψ̂

ŜE(ψ̂)
(24)

The critical values for the Dickey-Fuller test are given in Table 7.

Table 7: Dickey-Fuller critical values for different significance levels

Sample size T 1% Significance 5% Significance 10% Significance

700-750 -3.439 -2.865 -2.569

A.1.2 KPSS-test

For a KPSS-test it is assumed that the observed series yt follows the time series process (Hornok and Larsson

2000):

yt = ξ t + rt + εt (25)

rt = rt−1 +ut (26)

Where rt is a random walk defined by equation( 26) and εt is the stationary error. The null hypothesis of the

KPSS-test say that the data is stationary. The KPSS statistic is given by

η̂ = T−2
T

∑
t=1

S2
t /s2(l) (27)

Where St is the sum of the residuals up to period t. The critical values for the KPSS-test are given in Table 8.

Table 8: KPSS critical values for different significance levels

Sample size T 1% Significance 5% Significance 10% Significance

700-750 0.739 0.463 0.347
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