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Abstract

The main goal of this study is to quantify the impact of long term storage flexibility
on potential revenues for hydropower stations. Using empirical data from 14 Norwegian
producers, we find that the value of storage flexibility on average accounts for 22 % of
the actual revenues, ranging as high as 40 % for power stations with the highest relative
regulation. With the motivation to quantify the impact of factors driving flexibility
(relative regulation, degree of inflow seasonality and capacity factor) on revenues, we
build a complete stochastic model for hydropower stations with reservoir. This model
includes a stochastic inflow model, taking into account autocorrelation and seasonality,
and an application on of the geometric multi-factor spot price model proposed by Benth
et al. [2008] on Nord Pool data. The correlation between water inflow and spot prices is
incorporated by letting the mean level of the base component of the spot price depend
on the deviation from normal aggregated reservoir content in Norway. We use a param-
eterization of the water value function proposed by Näsäkkälä and Keppo [2008] as one
of two methods to simulate operator’s dispatch strategy. By comparing the simulated
results with the empirical results, we evaluate the overall performance of the stochastic
model to be sufficient for our analysis.

By conducting a sensitivity analysis with regards to relative regulation, degree of inflow
seasonality and capacity factor, we find that the value of storage flexibility increases
with increasing degree of inflow seasonality. Given high degree of inflow seasonality, in-
creasing relative regulation from 0.1 to 1.0 increases the revenue potential with as much
as 35 %, while such an increase has no effect on revenues under low inflow seasonality.
Further, an increase of production capacity, will reduce the need for (value of) storage
flexibility.
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Chapter 1

Introduction

The main focus of this study is to understand how the of degree flexibility impacts rev-
enues for hydropower stations with reservoir. According to IHA [2010], 16 % of the global
electricity supply is generated from hydropower, making it the biggest, and according to
REN21 [2009] the fastest growing, source of renewable energy in the world. The ability
to store electricity in form of water in reservoirs, and the capability to quickly adjust
generation output, makes hydropower a versatile source of electricity for both base and
peak load. In this way hydroelectricity from power stations with reservoir differs sub-
stantially from the two other fastest growing renewable energy sources, wind and solar
(REN21 [2009]). For both these sources, the generation output is directly dependent on
uncontrollable exogenous conditions; wind speed and sunlight. Hence, with the increase
of electricity generation from these renewable sources, the flexibility of hydropower will
become even more important in order to ensure security of supply in the years to come.
According to the Nordic power exchange Nord Pool [2010], 57 % of the total electricity
in the Nordic countries is generated from hydropower. In Norway, which is one of the
largest hydropower producers in the world, 99 % of the generated electricity (around 120
[TWh] yearly) is produced by hydropower stations. In this study we use data from 14
different Norwegian hydropower producers, consisting of inflow, reservoir and produc-
tion time series from April 2000 to April 2009, to study the value of the ability to store
water from the viewpoint of individual price taking power stations. To our knowledge
there has not been conducted any similar empirical studies of hydropower with such an
extensive dataset.

To understand the basics behind the hydropower production and the Nordic power
market, a short introduction follows. Hydropower producers generate revenues by dis-
patching water from one or multiple reservoirs under the uncertainty of prices and future
inflow. The flexibility of a power station depends on the size of this reservoir, the amount
and distribution of inflow flowing into the reservoir and the production capacity. If the
size of the reservoir is small relative to the annual inflow, the producer will be less flexible
as it has to produce more often to avoid spillage. The amount of electricity generated by
a hydropower plant is determined by the energy coefficient of the particular plant, which
depends on the head (the difference in height between reservoir level and the turbine).
The larger the energy coefficient (or equivalently the larger the head), the more energy
per volume of water is generated. Every day the producers submit price dependent bids
to the spot market on Nord Pool (Elspot) for the hourly production the following day.
The demand and supply bids are aggregated to determine the equilibrium price, called
the system price. Further, power derivatives are traded on Nord Pool financial market
on working days, enabling the power producers to hedge against price uncertainty.
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When analyzing the flexibility, it is necessary to distinguish between short term and
long term flexibility. Having short term flexibility enables power stations to profit from
hourly changes in prices by changing the dispatch of water from hour to hour. Long
term flexibility, however, enables the producers to obtain higher prices by storing water
throughout the season. We will focus on long term flexibility in this paper, with a time
horizon of one season. The power stations profit from seasonal variations in demand
(and hence prices) primarily driven by the need for heating during cold winter months
in the Nordic region. Having negligible start-up costs and fast response times, the flex-
ibility of hydropower stations is mainly limited by water availability and production
capacity. This flexibility, defined as the degree of freedom available when establishing
their dispatch plans, affects the revenue potential as it enables producers to benefit from
volatile electricity prices by producing when the price is high and save water when the
price is low. Using an analogy from financial theory, hydropower stations provide the
operator with a series of American put options with very low strike prices (production
costs). The number of options and their time to maturity depends on the inflow distri-
bution, reservoir size and production capacity. This study focuses on how these factors
influence the revenues for hydropower stations, the main goal being to isolate the value
of storage flexibility.

There exists extensive literature analyzing the dynamics of storage assets. This ranges
back to the classical “warehouse problem” introduced by Cahn [1948], who analyzes the
optimal pattern of operation under seasonal price and cost variations. In more recent
work, Secomandi [2010] studies the optimal management of commodity storage assets,
with an application on natural gas storage. Oil and natural gas storage is the topic of
several recent studies, as in papers by Boogert and de Jong [2008], Wu et al. [2010],
Ludkovski and Carmona [2009], Thompson et al. [2009] and Bjerksund et al. [2008]. De-
pending on the region, gas prices can show seasonal trends similar to electricity prices,
due to for example varying heating demand. Boogert and de Jong [2008] use a Monte
Carlo method incorporating gas price dynamics and flexibility constraints, to quantify
the value of natural gas storage assets. Wu et al. [2010] focus on the limited flexibility
due to storage capacity and the maximum injection and withdrawal rates, and show how
optimal revenues depend on these limits to flexibility in a three-period model. Thomp-
son et al. [2009] apply a real option approach to derive differential equations for the
value of natural gas storage assets, opening for the possibility of incorporating complex
(continuous) spot price dynamics. In an earlier study, Thompson et al. [2004] use the
same approach to value a pumped-storage hydropower facility, sharing many similar-
ities with natural gas storage. Ludkovski and Carmona [2009] also show how storage
flexibility affects the value function of natural gas storage, and how the same model
can be applied to a pumped-storage asset. The main focus of papers on natural gas
and hydropower pumped-storage is when to purchase and when to sell in order to profit
from short and long term price variation. Traditional reservoir hydropower, being the
focus of this study, deviates from pumped-storage in the way that the producers have
no possibility to pump (inject) water (gas). The inflow into the reservoir is stochastic,
which changes the problem dynamics.

The main focus of literature on traditional hydropower is on how to optimally dis-
patch the water available, taking into account the uncertainty of future inflow. The
optimal production scheduling under these conditions has been studied by Fosso et al.
[1999], which give an overview of the production scheduling problem and possible tools
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in the long-, medium- and short term. The study of Näsäkkälä and Keppo [2008] also
focuses on medium- and long term planning, proposing a parameterization for the op-
timal production strategy. For a more comprehensive review of the economic theory of
hydropower scheduling, see Foersund [2007]. Fleten et al. [2009] conduct an empirical
study related to the optimal dispatch on water, showing how financial information im-
pacts of on the production strategy of producers based on empirical data. In this study
we use findings from both literature on storage assets and literature on traditional hy-
dropower scheduling to study the impacts on revenues of factors limiting flexibility.
Following an approach similar to Wu et al. [2010], we define several flexibility cases de-
scribing different levels of storage flexibility and information availability. Using detailed
empirical data, we provide insights on how the revenues vary with different degrees of
flexibility. Looking at the power station’s technical characteristics gives a preliminary
picture on how reservoir size, inflow distribution and production capacity impact the
revenues. Further, we isolate the value of storage flexibility, finding that on average
this accounts for 22 % of the actual revenues for the power stations in our sample. To
further quantify the impact of the factors, we build a comprehensive stochastic model
for hydropower stations, enabling the arbitrarily change of any factor. This model
consist of several components; an inflow model taking into account different forms of
seasonality in the level and variance, a detailed model for Nord Pool spot prices using
a multi-factor model, as described by Benth et al. [2008], with the estimation approach
of Meyer-Brandis and Tankov [2008], and two production strategies for the dispatch of
water. One of these dispatch models is an application of the threshold function method
described by Näsäkkälä and Keppo [2008], expanded to incorporate findings from the
project thesis by Kolsrud and Prokosch [2009]. The model components are estimated
based on daily empirical data from the 14 power stations, Nord Pool electricity prices
and aggregated reservoir data for Norway. The results from Monte Carlo simulations
of the model dynamics are compared with the empirical results to review overall model
performance. By running sensitivities, we quantify the impact of reservoir size, inflow
distribution and production capacity on the revenue potential and the value of storage
flexibility.

The layout of this study is as follows: In Chapter 2, we present the empirical data
used in the preliminary analysis and estimation of the stochastic model. In Chapter 3,
we introduce the framework with the different flexibility cases and define the value of
storage flexibility. The components for the stochastic model , and how these are esti-
mated, is presented in Chapter 4. In Chapter 5, we compare the model with empirical
data and quantify the impact of different factor on revenues through sensitivity analysis.
Chapter 6 concludes this thesis.
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Chapter 2

Data description

The empirical analysis and estimations in this study are based on inflow, production and
reservoir data for 14 Norwegian hydro power stations, electricity spot and future/forward
prices and aggregated reservoir levels in Norway.

2.1 Power producer data

When selecting power stations to include in the analysis, we follow a number of selection
criteria. As the underlying problem of this paper is to analyze the impact of flexibility of
power stations, we want power stations that have a certain level of freedom in choosing
when and how much to produce. The selection criteria are summarized below:

• Independent: The power station should be as independent of other stations
as possible, meaning no coupling to other stations upstream of the reservoir or
downstream of the generator. This is to avoid having to take into account interde-
pendencies between power stations in the analysis and modeling. We also include
only one power station per producer to further ensure independence.

• Sufficient reservoir capacity: Due to limited reservoir capacity, or lack thereof,
run-of-river plants are significantly less flexible than power stations with dedicated
reservoirs. In the analysis in Chapter 3 we argue that the run-of-river equivalent
represents the value of having no long term flexibility, and use this equivalent as
a basis to value flexibility. Hence no pure run-of-river plants are included in our
sample.

• Price taker: We want to assume that the producer’s production decisions have
no influence on spot or derivatives prices. By excluding the largest producer in
Norway, Statkraft, we ensure that none of the producers in the sample have more
than 1.8 % market share, which limits their potential market power. The market
share for the top 10 producers in Norway is listed in Table A.2 in the Appendix.
By doing this we also ensure that changes in the reservoir levels of our power
stations have small impact on the aggregated reservoir content in Norway.

Table 2.1 gives an overview of the power stations included in the sample with selected
technical characteristics. The calculated values for relative regulation and capacity
factor both affect the amount of flexibility of each producer. For each power station,
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Table 2.1: Selected technical characteristics for each power stations in the sample. The
average energy coefficient is defined as the average energy generated [kWh] per volume of
water [m3]. Relative regulation is defined as reservoir capacity divided by average annual
inflow. Capacity factor is average annual inflow divided by production capacity, here given
in percentage of one year.

Power
station

Price
area

Energy
coefficient

Production
capacity

Reservoir
capacity

Average
inflow

Relative
regulation

Capacity
factor

[kWh/m3] [MW] [MWh] [MWh/yr] [yr] [%]

A NO4 1.24 128 222 063 605 586 0.367 54

B NO4 1.69 120 801 152 488 719 1.639 46

C NO5 1.23 31 50 226 92 338 0.544 34

D NO3 1.27 33 51 816 138 606 0.374 48

E NO5 0.67 28 118 900 87 831 1.354 36

F NO2 0.16 23 14 016 153 029 0.092 76

G NO1 1.25 68 255 000 271 250 0.940 46

H NO1 1.09 167 272 500 451 661 0.603 31

I NO4 1.50 62 142 000 230 643 0.616 42

J NO3 0.95 41 42 599 81 337 0.524 23

K NO3 1.36 153 380 800 662 862 0.574 49

L NO4 1.55 182 940 075 916 284 1.026 57

M NO4 0.66 26 89 562 124 440 0.720 55

N NO3 1.66 90 172 972 371 680 0.465 47

the factors are defined as follows:

Relative regulation =
Rmax

I
tot (2.1)

Capacity factor =
I
tot

Pmax
(2.2)

where Rmax is the power station’s reservoir capacity, I
tot

the average annual inflow and
Pmax the production capacity. Relative regulation should be interpreted as the amount
of time it takes to fill up the reservoir with the average annual inflow, while the capacity
factor is the share of time the producer needs to run at maximum capacity to produce
all inflow in an average year. Note that a high production capacity corresponds to a low
capacity factor.

Table 2.1 shows that the sample is well diversified both in terms of head (directly in-
fluencing the energy coefficient), production capacity, reservoir size and average annual
inflow. The power stations are also geographically well spread, here seen by the Nord
Pool price area. Power station F stands out with the smallest reservoir in the sample.
This low reservoir size combined with a a large drainage basin causing high inflow, re-
duces F’s relative regulation. In this way F is close to being a run-of-river plant, and
hence has the lowest degree of storage flexibility in our sample. Regarding the rest of
the power stations, B, E, G and L stand out with the highest relative regulation, and
are expected to be able to obtain additional value by storing inflow.

For the inflow, reservoir and production data series we have data from season 2000/01
to season 2008/09, where each season is defined to start in week 17 and last throughout
week 16 in the following year. Hence the sample consist of 9 years, 470 weeks and 3
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290 days, starting from April 24th 2000 and the last day being April 19th 2009. The
choice of using week 17 as start of the season is discussed in the reservoir data section
below. Both production, inflow and reservoir data are here given in their energy equiva-
lents [MWh], where inflow and reservoir volumes are converted using the average energy
coefficient1. For power stations with multiple reservoirs, inflow and reservoir data are
aggregated. We lack data from some seasons for a few power stations, as pointed out
below.

2.1.1 Inflow data

The inflow data series show high measurement uncertainty, as they contain negative
daily and/or hourly values for several power stations. Our hypothesis is that producers
correct measuring errors during the last days/hours by registering negative inflow. To
account for the uncertainty, we reduce the number of negative data points by aggre-
gating daily/hourly inflow to weekly values. Even after doing so, some weeks still have
negative inflow, and hence these are in our dataset set equal to zero. This method leads
to a higher value for total inflow than when summing the original data series. How-
ever, the difference between the total seasonal inflow obtained by the aggregated data
and the original data is relatively low for all producers; power station J has the largest
average annual deviation of 7 %. Daily data points are obtained by evenly distributing
the weekly inflow throughout the week. We will lose the daily variations in inflow by
performing the weekly aggregation, but do on the other hand obtain more consistent
values.

Table 2.2: Descriptive statistics for weekly inflow for each power station. Note: Negative
inflow values were set equal to zero.

Power
station

Min Max Weekly
stdv

Seasonal
stdv

[MWh] [MWh] [%] [%]

A 0 74 882 105 15

B 0 63 533 119 9

C 0 7 539 81 18

D 0 12 065 81 15

E 0 8 643 98 21

F 0 34 496 115 43

G 48 52 465 140 17

H 93 81 076 141 19

I 0 32 790 127 12

J 0 12 224 116 13

K 0 71 400 113 13

L 0 104 463 116 10

M 0 22 658 137 12

N 0 52 680 103 15

Table 2.2 shows statistics for weekly inflow for each power station. Not surprisingly
the variation in weekly inflow is relatively high for all power stations, here shown by the
standard deviation. The variation across seasons are relatively low for the majority of

1The calculation of average energy coefficient is described in Table 2.1.

11



A

0.
0

0.
1

0.
2

B

C

0.
0

0.
1

0.
2

D

E

0.
0

0.
1

0.
2

F

G

0.
0

0.
1

0.
2

H

I

0.
0

0.
1

0.
2

J

K

0.
0

0.
1

0.
2

L

M

20 25 30 35 40 45 50 1 5 10 15

0.
0

0.
1

0.
2

N

20 25 30 35 40 45 50 1 5 10 15

00/01
01/02
02/03

03/04
04/05
05/06

06/07
07/08
08/09

Figure 2.1: Weekly inflow relative to the average seasonal total. The horizontal axis
represents week number

12



Cumulative inflow

20 30 40 50 5 15

0.
0

0.
5

1.
0

Autocorrelation function

0 2 4 6 8 10 12 14

0.
0

0.
5

1.
0

A
B
C
D
E
F
G

H
I
J
K
L
M
N

Figure 2.2: Left: Average cumulative weekly inflow for each power station, given in
percentage of total seasonal inflow, with week number on the horizontal axis. The vertical
axis shows the share of total seasonal inflow expected to occur up to a specific week. Right:
Autocorrelation function of weekly inflow for each power station, with maximum number of
lags equal to 14 weeks on the horizontal axis.

power stations. An exception is power station F, which has a seasonal standard devi-
ation of 43 %. This is to a large degree caused by extremely high inflow in the season
2000/01, as seen in Figure 2.1, which shows weekly inflow per season. A majority of the
power stations experience high seasonal variation; often the largest share of the inflow
occurs in the first part of the season. To investigate the distribution of inflow through-
out the year, cumulative average inflow (counting from the beginning of the season) is
plotted left in Figure 2.2. We see power stations C, D, F and J have relatively evenly
distributed inflow, while the inflow of the other power stations is more concentrated.
How the inflow is distributed depends on geographical placing of the reservoir; areas in
the north and high above sea level have a larger share of inflow coming snow during the
winter, which results in low inflow in winter but high inflow during the melting period
in the spring. Power stations along the coast can expect more evenly distributed inflow.
The right plot of Figure 2.2 shows the autocorrelation function up to a lag of 14 weeks.
The autocorrelation seems to decrease exponentially for most power stations, but with
varying rate of decay. Power stations A, D, E, H and J all have below 50 % correlation
between weeks further than 1 week apart, while power stations B, I, K and L have the
slowest decaying autocorrelation function with over 50 % correlation remaining after 4
weeks.

Figure 2.3 shows total seasonal inflow relative to the historical average. For most of
the power stations inflow in seasons 2002/03 and 2006/07 where relatively low. Note
that inflow data from season 2008/09 is missing for power station B, and from seasons
2000/01 and 2008/09 for L.

2.1.2 Reservoir data

Reservoir content is for some power stations measured each hour, some once a day and
for some on weekly basis. We use daily reservoir series in our analysis, and hence the
hourly and weekly series are converted accordingly. We use the hourly reservoir level at
midnight as the daily level the following day, while weekly reservoir data are interpolated
where missing. Daily reservoir levels for each power station are plotted in Figure 2.4. The
data shows a clear seasonal trend; reservoir levels are at their lowest in the spring and
are filled up during the summer and fall. This seasonality is a result of the relationship
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Figure 2.3: Total seasonal inflow relative to historical average for each power station. Note
that the value for power station F in season 2000/01 is 2.33, which is higher than the limit
of the vertical axis.

between inflow and demand for electricity. During the winter the demand is high, while
most of the depreciation comes as snow, causing low inflow. Hence, hydropower stations
save water during the summer and fall to meet the upcoming increase in demand. The
period where the reservoirs are filled up is referred to as the filling season, while the
period where the water is used as the drawdown season. The timing of these seasons
may not be equal for different power stations, depending on geographical placement.
However, we use a general definition based on the lowest and highest point of the average
reservoir level in our sample; the filling seasons lasting from week 17 to the end of week
39, and the drawdown season from week 40 to end of week 16. Note that reservoir data
for season 2000/01 and 2008/09 are missing for power station L.
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2.1.3 Production data
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Figure 2.5: Daily production relative to maximum daily production capacity for each
power station.

The production data is given on hourly basis for all power stations. Figure 2.5 shows the
daily production relative to the maximum production capacity. Several producers shut
down operations completely during the summer months, such as C, E, G and J. These
power stations have low capacity factors, and hence can concentrate their production in
time. We also see that the majority of the power stations choose to produce at a level
close to their production capacity or not at all. This is especially seen by the many
vertical lines, i most cases representing weekends (with lower prices).

16



1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.
0

0.
5

1.
0

Figure 2.6: Overall reservoir content in Norway relative to total reservoir capacity, from
season 2000/01 to 2008/09. The dashed line is the average level for years 1998 to 2009.

2.2 Overall reservoir data

Aggregated weekly reservoir content in Norway is downloaded from The Norwegian
Water Resources and Energy Directorate’s, see NVE [2010]. Figure 2.6 shows the weekly
reservoir content for each season together with the average level. We notice a clear
relationship between inflow and overall reservoir content; as pointed out above, most of
the power stations experienced relatively low inflow during seasons 2002/03 and 2006/07,
coinciding with particularly low reservoir as seen in Figure 2.6. The aggregated reservoir
levels for season 2003/04 also where below average, indicating a dry year.

2.3 Electricity price data

Electricity price data are downloaded from the FTP statistical database for Nord Pool
[2010]. Nord Pool offers trading of physical and financial power contracts in the Nordic
countries. In the physical market, contracts are traded on a day-ahead and intra-day
basis. Financial power derivatives such as forward, futures and options with these as
underlying are traded in the financial market. We use data from both the physical and
the financial market in this study, and the following sections explains the different data
sets. Some early prices are listed in Norwegian kroner [NOK], and hence are converted
to [EUR] using the historical exchange rate. Note that a future exchange rate should
be used to transform the prices of financial products with cash flow occurring at a later
point in time, but for products with relatively short time to delivery the use of a spot
exchange rate is justified.

2.3.1 Spot prices

Nord Pool spot prices are actually day-ahead future prices for each hour the next day.
The price is set based on the balance between supply and demand bids from all market
participants in the Nordic countries. This balancing price is called the system price.
However, due to grid congestions within Norway and between the Nordic countries,
price areas are introduced. Table 2.3 shows statistics for hourly and daily prices for
different price areas within Norway as well as the system price. The number of price
areas and their borders change over time, however in this paper we fix the areas as of
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May 20092. Due to the changes in areas, two or more of the spot price series may be
equal in periods when they where merged into one. Prices are given in [EUR/MWh].
We see that prices are somewhat higher in areas NO3 and NO4, which cover the Middle
and Northern part of the country. This is mainly due to bottlenecks in the transition
lines between the Middle and the South of Norway.
Figure 2.7 shows the daily system spot price and its natural logarithm for season 2000/01
throughout 2008/09. We see that the winter 2002/03, 2006 and winter 2008/09 had
especially high prices. This coincides with the abnormal low inflow and low reservoir
levels discussed previously. Both hourly and daily prices show well-known qualitative
features, as discussed in literature by Geman and Roncoroni [2006]. We will briefly
mention some of these features below, while leaving more detailed discussions to other
studies.

• Seasonality: Spot prices are in general higher during winter than during sum-
mer. This follows from the nature of demand for electricity in the Nordic countries;
during winter the low temperatures increases the need for heating, which increases
demand for electricity. Hence prices tend to follow a seasonal trend, with periods
of one season. In addition we see a positive trend during the sample period; the
average price level rises throughout the period. It is important to keep this in mind
when comparing revenues from different time periods. To account for the change
in price level, we propose a method for detrending prices later in this section.

• Spikes: Price spikes, or more specifically sudden price changes followed by quick
reversion, are fairly normal for prices. An example is beginning of February 2001,
where the average daily system price more than tripled in one day, going from 23
to 77 [EUR/MWh]. Two days later it went back to its original level. Such pos-
itive spikes can be caused by sudden supply shortages due to unplanned outages
of power plants or transmission lines. Sudden increases in electricity demand for
heating on abnormally cold winter days can also cause positive spikes. Negative
spikes, however, tend to occur more often during summer, when the share of ther-
mal production is high. The presence of start up costs in thermal units increases
the threshold for shutting down units during periods of low demand, which can
lead to a surplus of supply.

• Mean reversion: As pointed out by Geman and Roncoroni [2006] a character-
istic of electricity and other commodity prices are mean reversion toward a level
that represents the marginal cost. The mean reversion level could be constant or
periodic, where the latter can incorporate the seasonality mentioned above. We
also see that after the occurrence of price jumps, the prices tend to revert to pre-
vious levels after no more than a couple of days. Hence, in addition to a general
mean reversion to some constant or seasonal dependent level, spot prices show a
faster mean reversion after spikes.

2.3.2 Prices of financial contracts

In this study we use a range of financial contracts, with various length of delivery
period; from weekly contracts with delivery next week up to monthly or four week block

2Price data from Nord Pool where given for five different Norwegian cities: Oslo, Kristiansand,
Bergen, Trondheim and Tromsø. We name these price series after the price area they are belonging to
as of May 2009.
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Table 2.3: Descriptive statistics for daily area spot prices [EUR/MWh] from 01.01.2000
to 19.04.2009. Hourly values are shown in parentheses.

Area Mean Min Max Stdv

System 29.99 3.89 (2.04) 114.61 (238.01) 14.57 (15.03)

NO1 30.38 2.07 (0.17) 114.61 (238.01) 14.61 (14.88)

NO2 30.38 2.07 (0.17) 114.55 (237.77) 14.62 (14.89)

NO3 32.15 2.99 (2.07) 114.61 (475.75) 15.11 (15.80)

NO4 31.97 2.99 (2.36) 114.61 (475.75) 14.74 (15.36)

NO5 30.38 2.07 (0.17) 114.61 (237.77) 14.62 (14.88)

contracts3. Nord Pool uses the term futures for daily and weekly contracts with and the
term forwards for contracts with longer delivery periods. In practice these contracts are
what financial literature refer to as swaps, as they consist of payments settled against
the average spot price during a delivery period, see Benth et al. [2008] for more details.
The term swap is used for both futures and forwards in the remainder of this study.
As the current price of a swap gives an indication of the expected spot price during
the delivery period, it provides useful information for the hydropower producers when
planning the dispatch. Fleten et al. [2009] show empirically that this information is in
fact used by hydropower stations. To obtain realistic results, we incorporate information
from the financial market when simulating the dispatch later in this study by using the
expected spot price defined below.

Deriving expected spot prices

In the dispatch model described in Chapter 4, we use the average expected spot price for
the next six weeks as an input to the production planning. This figure can be derived
from market prices for swaps with delivery periods during the upcoming weeks. There
exists extensive literature on how to construct smooth forward curves in electricity
markets, such as Fleten and Lemming [2003] and Benth et al. [2007]. However, in
our case we only look at the average expected spot prices, and thus do not need to
implement methods to obtain high-resolution forward price curves. Still, we need to
take into account a possible risk premium when deriving expected spot prices from
traded swap prices. A widely cited paper by Longstaff and Wang [2004], using empirical
data from the PJM electricity market in the US, shows significant variations in these
risk premia, depending on the delivery period. Botterud et al. [2009] and Frestad et al.
[2010] use data from the Nord Pool market, finding a declining negative risk premium
(favoring electricity producers) for short term weekly contracts. Based on the findings
in these papers, we assume a constant risk premium of 0.2 % daily for our six weeks
horizon4. Figure 2.8 shows the constructed average expected spot price, using closing
prices from the previous trading day. As expected, the average expected spot for the
next six weeks follows the spot price very closely.

3The range of financial contracts traded on Nord Pool has changed somewhat during our sample
period. A three-seasonal contract system has been replaced by quarterly contracts. On more short
term, four week blocks have been replaced by monthly contracts.

4For simplicity we choose a constant rate. Using the average of the expected spot prices will even
out the effects of a declining risk premium
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2.3.3 Detrending prices

The positive trend in the spot price series complicates the process of comparing revenues
from different time periods. This is solved by detrending the price data; converting all
prices to the same reference level. In Chapter 4 we model the seasonality in spot prices
as a deterministic function containing (among other factors) an exponential trend. This
trend estimate is used to detrend the historical prices, and corresponding to 0.03 % per
day, or 11.6 % on yearly level5. As we expect the forward and future prices to show
the same trend as the spot price, these are detrended using the same factor. Figure
2.9 shows the daily spot prices detrended to the level of the last day in our data; 19th
of April 2009. The actual historical spot prices are plotted as a reference. For the
remainder of this study we use detrended prices.

2.4 Correlation between data series

As pointed out in the earlier sections, we see a correlation between inflow, reservoir
content and spot prices for some seasons. For example, the low inflow in season 2002/03,
coincides with low reservoir level and high prices. This relationship is not surprising,
as lack of water will cause the long term supply of hydropower to decrease, driving up
prices. In this section we will investigate the relationship between these series further.

Table 2.4: Pearson’s product moment correlation coefficient for deviation from normal for
cumulative inflow last 20 weeks against deviation from normal overall reservoir content and
spot price, per power station. Given below: Correlation between spot price and deviation
from normal of overall reservoir content. Note that the null hypothesis is a correlation
coefficient equal to zero.

Power station Δit,Δroverallt Significance Δit, St Significance

A 0.535 *** -0.244 ***

B 0.438 *** -0.095 ***

C 0.471 *** -0.268 ***

D 0.448 *** -0.209 ***

E 0.581 *** -0.250 ***

F 0.327 *** -0.367 ***

G 0.701 *** -0.309 ***

H 0.495 *** -0.340 ***

I 0.449 *** -0.250 ***

J 0.270 *** -0.199 ***

K 0.519 *** -0.143 ***

L 0.756 *** -0.308 ***

M 0.497 *** -0.256 ***

N 0.653 *** -0.241 ***

Correlation for Δroverallt and St: -0.377 ***

Significance codes for Pearson’s correlation coefficient: 0 (***), 0.001 (**), 0.01 (*), 0.05 (.), 0.1 ( )

5Note that growth rate is surprisingly high compared with normal inflation rates, and could be caused
by abnormal price variations in our estimation window ranging from April 26th 1999 to April 19th 2009
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2.4.1 Correlation between inflow and reservoir level

There is an obvious relationship between inflow and reservoir content of a specific power
station. If the inflow has been higher than normal, the reservoir level is also expected to
be higher than normal and vice-versa6. This means that the cumulative inflow during
the last weeks, relative to the normal cumulative inflow in the same period, should be
highly correlated to the deviation from normal reservoir level. Based on observations
in the sections above, we also expect such a relationship between a particular power
station’s inflow and the aggregated reservoir content in Norway. However, the size of
this correlation varies between the power stations, depending mostly on their location.
Figure 2.10 shows the deviation from normal for the overall reservoir content and for
the cumulative inflow the last 20 weeks7. We see a clear positive correlation for all
power stations, but as expected the degree of correlation varies. Table 2.4 shows the
different correlation coefficients, ranging from 0.27 to 0.76. Power station F and J
have the lowest correlation coefficients, both being located in areas with low density of
hydropower stations, while power station G and L have the highest correlation. The
null hypothesis of no correlation is rejected for all power stations.

2.4.2 Correlation between overall reservoir level and spot prices

As pointed out earlier, low overall reservoir content tends to coincide with high spot
prices. This relationship follows from basic microeconomics; in the Nord Pool area, were
the share of hydropower is high, the aggregated reservoir content is an indication for
the (cost efficient) supply of electricity. Naturally, when reservoir levels are low, prices
increase as the result of lower supply. For a more general discussion on the relationship
between inventory levels and spot prices for commodities, we refer to Pindyck [2001].
Figure 2.11 shows the daily spot price and the deviation from normal for overall reservoir
content. As expected, the correlation coefficient is negative, being equal to -0.38 and
significantly different from zero, as found in the bottom of Table 2.4.

2.4.3 Correlation between inflow and spot prices

Based on the two subsections above we expect a negative correlation for the deviation
from normal for individual power station’s cumulative and the spot price. These two
data series are shown in Figure 2.12, while Table 2.4 lists the correlation coefficients
for each power station. The values range from -0.09 to -0.37, with power station B
having the lowest absolute correlation and F having the highest. Note that the relatively
low absolute correlation for some power stations can be caused by positive (negative)
price spikes not coinciding with low (high) inflow, reducing the absolute correlation.
As discussed earlier, price spikes tend to occur as a result of sudden supply/demand
shortages/surpluses, and not changes in inflow affecting the medium and long term
supply. The null hypothesis of no correlation is also here rejected for all power stations.

6Especially during the filling period, when production is low
7The choice of a window of 20 weeks is based on testing on the sample inflow data, showing a

consistent correlation

21



1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0
40

80
12

0

1
3

5

Spot
Log spot
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Figure 2.8: Average expected spot price [EUR/MWh] for the next six weeks based on
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prices (grey). Prices are detrendend to a level corresponding to end of season 2008/09, using
a daily trend of 0.03% estimated by regression on the historical data.
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Figure 2.10: Deviation from normal for overall reservoir level (blue) and for each power
station’s cumulative inflow last 20 weeks (red). The dashed line (zero deviation) corresponds
to normal cumulative inflow and overall reservoir levels. Due to the 20 week lag, the
cumulative inflow series is 20 weeks shorter than the original inflow data.
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Figure 2.12: Deviation from normal for cumulative inflow last 20 weeks (red, left axis) for
each power station, together with the daily spot price (dark gray, right axis). The dashed
line corresponds to normal inflow volumes (zero deviation). Due to the 20 week lag, the
cumulative inflow series is 20 weeks shorter than the original inflow data.
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Chapter 3

Framework for analyzing the
impact of flexibility

In the following sections we will develop a framework for analyzing the impact of flex-
ibility on revenues for hydropower producers. By defining different levels of flexibility,
and reviewing revenues for each case, we are able to isolate the value of storage flexibil-
ity. The results from applying the framework on empirical data will serve as a basis of
comparison for the stochastic model developed in Chapter 4.

3.1 Defining flexibility and its value

What exactly does the word flexibility mean for a hydropower producer? In general,
flexibility is the degree of freedom available when establishing a power station’s dispatch
plan. Thus, high flexibility gives producers a large possibility space when deciding when
and how much to produce, while low flexibility confines their options. For power pro-
ducers it is necessary to distinguish between short and long term flexibility. Short term
flexibility impacts the producers’ ability to profit from hourly price variations. A large
degree of freedom enables producers to vary their output from hour to hour, and poten-
tially to profit from participating in the regulating power market, a market studied by
Skytte [1999]. In the long term, high flexibility enables the producers to obtain higher
prices by storing water flowing into their reservoirs throughout the season. As discussed
in section 2.3 there are clear seasonalities in spot prices on Nord Pool. By storing the
water, producers are able to profit from both these expected price differences and sudden
unexpected spikes. In this paper, we choose to focus primarily on long term flexibility.

So how is the value of storage flexibility defined? To isolate this value, we must first
consider the base value of a hydropower station without storage flexibility. The hypo-
thetical case where a producer must dispatch (by producing and through overflow) all
it’s water at the exact moment of inflow, could be interpreted as having no flexibility.
This is typical for a run-of-river hydropower plant. These type of plants typically have
the possibility to vary their output somewhat from hour to hour using a very limited
reservoir, but are not able to store the water over longer periods. In other words, run-
of-river plants have no long term flexibility. The value of storage flexibility for a specific
hydropower station can be defined as the increase in revenues when going from hypo-
thetically having no reservoir to having it’s actual reservoir size, everything else being
equal. This definition is used in the remainder of this study, and is further specified in
Section 3.1.2.

26



3.1.1 Levels of flexibility and information

We now specify several cases of storage flexibility, with expressions for revenues obtained
by producers in each case.

No flexibility

As mentioned above, the case of no flexibility is equivalent to a run-of-river plant. In this
case it is assumed that the producer has no ability to store the water, hence all inflow
has to be produced at the time of arrival. This case reduces the production scheduling
to a deterministic problem, where the production in each time step is equal to the
corresponding inflow, with production capacity serving as the upper limit. All inflow
above the maximum production capacity is lost as overflow. Thus, the hypothetical
revenues during one complete season obtained in this situation are defined by:

Πriver =

T∑
t=1

min(It, P
max)St (3.1)

where It is the historical inflow and St the historical spot price (for the specific Nord
Pool price area) in period t. T is the number of periods in one season and Pmax is the
production capacity during a single period.

Limited flexibility

In this case it is assumed that the power station has a positive reservoir size, enabling
flexibility in terms of when to produce the water that has come as inflow up to the
current time. However, with an upper limit of the reservoir, the producer needs to take
into account the probability of overflow during periods with high reservoir levels. This
restriction limits the producer’s flexibility. In other words, this is the real world case for
a hydropower station with reservoir.

The production scheduling problem in this case is stochastic, due to the uncertainty
of the future inflow and spot prices. The producer must base it’s dispatch strategy
solely on information available at the current time, taking into account these uncertain-
ties. As shown in Fleten et al. [2009], producers base their decision on several factors,
including forward prices traded on Nord Pool’s financial market and the expected inflow
during the next week. The revenues obtained in this flexibility case are calculated by
using the actual historic dispatch plan for each power station:

Πactual =
T∑
t=1

PtSt (3.2)

Where Pt represents the historical production in period t, and the other variables are
defined as above. Later, when using this framework in the stochastic model, the actual
production Pt is approximated by implementing a model for the dispatch strategy.

In order to obtain a theoretical upper limit for the revenues obtainable under limited
storage flexibility, we also calculate the theoretical revenues assuming that producers
have full information. In this case we assume that producers are clairvoyant, knowing
the spot price and the inflow up front. This reduces the production scheduling problem
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to a deterministic linear programming (LP) problem. Using the historical reservoir lev-
els at the start and the end of each season as boundary conditions, the revenues for one
season are calculated by solving the following LP-problem:

Πclairvoyant = maximize
pt,ot

T∑
t=1

ptSt (3.3)

subject to the restrictions

rt − rt−1 = It − pt − ot (3.4)

rt ≤ Rmax (3.5)

pt ≤ Pmax (3.6)

rt, pt, ot ≥ 0 (3.7)

for t = 1, 2, . . . , T . Here rt is the reservoir level at the end of period t, while pt is the
production variable and ot is the overflow during period t. Rmax is the upper limit
for the reservoir level, while the other variables are the same as above. Restriction 3.4
represents the reservoir balance equation, taking into account the historic inflow and the
production and overflow variables. The LP-problem is solved for the given boundary
conditions

r0 = Rstart (3.8)

rT = Rend (3.9)

Where Rstart and Rend are the historic reservoir levels at the beginning and end of the
season respectively.

Unlimited flexibility

In this case we relax the limits to flexibility be removing the reservoir restriction and
assuming that all of the seasonal inflow is available at the beginning of the season. Still
assuming full information, the revenues in this case are equivalent to the theoretical
upper limit obtainable under what we define as unlimited flexibility. Here, the produc-
tion scheduling problem is reduced to a simple price duration curve analysis, where the
production (being equal to the total seasonal inflow, adjusted for reservoir level changes)
is simply allocated to the periods with the highest prices. The revenues are obtained by
the following equation:

Πmax =

[( �τ�∑
j=0

Ssorted
j

)
+ (τ − �τ�)Ssorted

�τ�+1

]
Pmax (3.10)

τ =

T∑
t=1

It +Rend −Rstart

Pmax
(3.11)

where τ is the load factor1 and Ssorted
j , j = 1, 2, . . . , T are the historic spot prices in

descending order for the given season. See the last plot in Figure 3.1 for an illustrative
example.

1Load factor equals total production in a period divided by production capacity, and are here mea-
sured in days.
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The four cases described above are summarized in Table 3.1 and the revenues are il-
lustrated in Figure 3.1. From our definition of flexibility, higher flexibility means more
possibilities when deciding when and how much water to dispatch from the reservoir.
This is influenced by the availability of water (given by the reservoir size and inflow dis-
tribution), and the ability to dispatch this water (given by the production capacity and
other flow restrictions). Our four cases represent different degrees of storage flexibility,
by varying reservoir and inflow. Varying production capacity will influence the revenues
in all cases, and hence its impact is studied by comparing revenues across producers
with different capacity factors. The four cases provide us with both a lower bound for
revenues (no flexibility), the real world case, and the theoretical upper bound for lim-
ited flexibility. The revenues under unlimited flexibility are included as a reference for
studying the effects of limiting storage flexibility.

No flexibility

0
40

80

Limited flexibility, limited information

Limited flexibility, full information

0
40

80

0 100 200 300

Unlimited flexibility

0 100 200 300

Figure 3.1: Example of revenues in the four different flexibility cases illustrated by
price/load duration curves (data for producer A for season 2007/08). The shaded areas
represents the revenues relative to production capacity. In all plots the vertical axis rep-
resent daily average spot prices [EUR/MWh], while the horizontal axis represent duration
[days].

Table 3.1: Flexibility cases with specification of limitations. Note: Limited flexibility with
limited information represents the real world case faced by power stations with reservoir.

Flexibility case Revenue
variable

Information Reservoir Inflow Production
capacity

No flexibility Πriver Deterministic None Distributed Limited

Limited flexibility
Πactual Limited Limited Distributed Limited

Πclairvoyant Full Limited Distributed Limited

Unlimited flexibility Πmax Full Unlimited Concentrated Limited
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3.1.2 Relative flexibility value

To complete the framework, we will now define a measure for relative value of storage
flexibility based on the different cases above :

Definition: For a specific hydropower station with reservoir, let Πactual
i be the actual

revenues realized with limited flexibility in season i as defined in equation 3.2. Let
Πclairvoyant

i be the theoretical maximum revenues with limited flexibility in season i as
defined in equations 3.3 through 3.9, while Πriver

i being the revenues under no flexibility
(run-of-river) as in equation 3.1. Then the relative flexibility value υ for this power
station is given by:

υclairvoyant =

∞∑
i=1

Πclairvoyant
i −

∞∑
i=1

Πriver
i

∞∑
i=1

Πclairvoyant
i

≤ 1 (3.12)

υactual =

∞∑
i=1

Πactual
i −

∞∑
i=1

Πriver
i

∞∑
i=1

Πactual
i

≤ 1 (3.13)

The clairvoyant flexibility value υclairvoyant represents the share of the revenues in the
clairvoyant case that comes from storage flexibility, or more specifically the ability to
store water. The actual flexibility value υactual is the same share, using actual revenues
for the power station.

When comparing the revenues for the different producers, we use relative figures. Hence
we use the total revenues relative to the total water used (both through production and
overflow) during all seasons, adjusted for price differences between the Nord Pool price
areas2. These relative revenues are noted π with the unit [EUR/MWh water]. For the
different flexibility cases a = {river, actual, clairvoyant,max} the relative revenues are
defined as:

πa =

∞∑
i=1

Πa
i

∞∑
i=1

Ti∑
t=1

Ii,t

(3.14)

To estimate the relative revenues and flexibility values for the 14 power stations in our
sample, we will use the historical data described in Chapter 2. We need to take into
account the reservoir difference when using a relatively low number of seasons. This

2Adjustment for price differences between the Nord Pool price areas is done by multiplying each
seasonal revenue by the ratio between the average system spot price and average area spot price for that
season.
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results in the following equation:

π̂a =

N∑
i=1

Πa
i

N∑
i=1

Ti∑
t=1

Ii,t +Rstart
1 −Rend

N

(3.15)

Where N is the number of seasons with available data. Further, the relative flexibility
values are estimated as follows:

υ̂clairvoyant =
π̂clairvoyant − π̂river

π̂clairvoyant
(3.16)

υ̂actual =
π̂actual − π̂river

π̂actual
(3.17)

3.1.3 Factors influencing revenues in the flexibility cases

There are several factors that are expected to influence the revenues in the different
cases above. Obviously, reservoir size is an important factor, or more specifically it’s
size relative to the expected annual inflow. These and other factors are summarized in
the following list:

• Relative regulation: The ratio between the reservoir size and the expected
seasonal inflow, defines the ability to store the water. A low relative regulation
forces the power station to produce more evenly distributed over the season in
order to avoid overflow. Hence, a higher relative regulation will increase revenues
under limited flexibility, and have a positive effect on the flexibility value.

• Inflow seasonality: Strong seasonalities in the inflow increase the need for high
relative regulation in order to store the water. As seen in Section 2.1.1, the inflow
for a majority of the power stations is high during the spring flood compared to
the rest of the season. With a small reservoir, the producer must produce during
the spring flood in order to avoid overflow, decreasing the ability to profit from
seasonalities in spot prices. However, with a sufficiently large reservoir, strong
inflow seasonality could be an advantage rather than problem, as most of the
inflow is available early in the season which enables the producer to profit form
unexpected price increases. Strong inflow seasonality will impact the revenues
in the no flexibility case negatively, due to large amounts of overflow during the
spring flood. Hence, for power stations with high (low) relative regulation, strong
inflow seasonalities is expected to increase (decrease) the flexibility value.

• Capacity factor: The production capacity of a power station sets the amount
of time needed to produce the water in the reservoir. High capacity enables the
power station to produce more during periods with high prices and thereby increase
the revenues under both limited and unlimited flexibility. At the same time,
higher production capacity increases the theoretical revenues under no flexibility by
decreasing the water lost to overflow in the run-of-river case. Hence, the revenues
for all flexibility cases increase with decreasing capacity factor. However, it is not
clear how a change in capacity factor influences the value of storage flexibility.

• Other restrictions: Several other restrictions limit the flexibility of hydropower
stations, such as water flow limits downstream of the generator, time-varying reser-
voir limits and maintenance periods. These restrictions will clearly impact the
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revenues negatively in the limited flexibility cases, and thereby decreasing the
flexibility value. However, for simplification we do not account for any of these
restrictions when calculating the revenues for the theoretical flexibility cases.

See Table 3.2 for an overview of the expected impact of the different factors on the
revenues in each flexibility case and on relative flexibility value.

Table 3.2: Factors influencing flexibility, with expected impact on revenues and relative
flexibility value. Increasing the influencing factor is expected to affect the revenues and
flexibility according to the arrows (↑ for positive, ↓ for negative). Alternating arrows (↑↓)
indicate ambiguous impact.

Influencing factor πriver πactual πclairvoyant πmax Flx. value υ

Relative regulation - ↑ ↑ - ↑
Capacity factor ↓ ↓ ↓ ↓ ↑↓
Inflow seasonality ↓ ↑↓ ↑↓ - ↑

3.2 Application of framework on empirical data

We now apply the framework defined above on the daily data available for the 14 hy-
dropower stations.3. The estimates for the relative revenues for the different flexibility
cases and the respective values are shown in Table 3.3. Comparing the relative revenues
across the power stations in our sample, provides useful insights. Firstly, we can study
how the different factors influence the actual realized revenues (πactual), decomposing
this figure into the run-of-river equivalent (πriver) and the isolated gains from storage
flexibility (πactual − πriver). Secondly, this framework quantifies the upper boundary
for potential revenues, given each producer’s flexibility restrictions (πclairvoyant). Fi-
nally, the additional gain when relaxing the storage flexibility restriction can be found
(πmax − πclairvoyant).

3.2.1 Relative revenues in each flexibility case

Figure 3.2 graphically shows the revenues for the no flexibility case together with the
increase in revenues when going through the other three flexibility cases. The relative
revenues in the no flexibility case πriver range from 30.9 to 45.6 [EUR/MWh water] for
the different producers. Like shown in Table 3.2, the run-of-river equivalent is affected
by capacity factor and the degree of inflow seasonality. Power stations C, D and J, all
having low inflow seasonality combined with medium to low capacity factors (indicat-
ing high production capacity), obtain the highest relative revenues πriver of around 44
[EUR/MWh water]. This is expected, as high production capacity combined with low
inflow seasonality reduces the chance of overflow in the run-of-river case. Power stations
G, L and M all have strong inflow seasonality combined with medium ranged capacity
factors, resulting in low relative revenues ranging from 30.9 to 34.8 [EUR/MWh water].
Power station F is a special case, having low seasonalities in inflow combined with the
highest capacity factor, obtaining a πriver of 32.5 [EUR/MWh water]. Here the high
capacity factor (low production capacity) seems to outweigh the low inflow seasonality,
resulting in a low relative revenue. In general the empirical results are as expected with

3Hourly production and price data could also have been used, however the difference in calculated
revenues using hourly vs. (average) daily data is small. Figure A.2 in the Appendix shows a deviation
from 0 % to 2.5 % for the power stations in our sample.
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Table 3.3: Historic relative revenues and flexibility values per producer. Note: The rev-
enues are corrected for trend in prices and differences between the different Nord Pool price
areas.

Power
station

π̂river π̂actual π̂clairvoyant π̂max υ̂clairvoyant υ̂actual

[EUR/MWh water] [%] [%]

A 36.6 48.0 58.4 62.4 37.2 23.7

B 41.5 58.1 67.9 67.9 39.0 28.6

C 43.4 51.8 65.9 69.0 34.1 16.2

D 44.3 46.8 59.7 63.3 25.8 5.4

E 41.7 54.9 64.0 64.5 34.8 24.0

F 32.5 32.6 44.0 49.2 26.3 0.5

G 30.9 53.9 63.4 63.7 51.3 42.7

H 37.6 52.7 67.7 71.0 44.5 28.7

I 38.5 53.5 62.7 66.1 38.5 27.9

J 45.6 48.6 68.2 73.2 33.1 6.1

K 38.3 50.0 61.1 63.8 37.3 23.4

L 34.8 55.5 62.2 62.4 44.0 37.3

M 33.8 51.4 60.0 60.7 43.6 34.2

N 40.2 48.3 58.9 62.6 31.8 16.8

Average 38.5 50.4 61.7 64.3 37.2 22.5
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Figure 3.2: Estimated historic relative revenues per producer for each flexibility case in
[EUR/MWh water]. Note: The revenues are corrected for trend in prices and differences
between the different Nord Pool price areas.

both low seasonality and low capacity factor driving up the relative revenues under no
flexibility.

Looking at the actual relative revenues πactual, we see that the different power sta-
tions gain from 0.2 to 23.0 [EUR/MWh water] when going from having no storage
flexibility to their actual reservoir size. Not surprisingly power station F, which like
discussed earlier is fairly close to being a run-of-river plant, achieves the lowest gain.
The difference between no flexibility and limited flexibility defines the flexibility value,
and will be further discussed below. The total actual relative revenues range from 32.6
to 58.1 [EUR/MWh water]. Power station B, E, G and L achieve the highest realized
relative revenues, with G gaining 23.0 [EUR/MWh water] over it’s run-of-river equiv-
alent. These four power stations have the highest relative regulation, which combined
with medium capacity factors explains the high relative revenues πactual, as predicted
from Table 3.2. However, the actual revenues depend highly on the production strategy
of each producer and do implicitly take into account the additional restrictions men-
tioned in Section 3.1.3. Hence, these actual relative revenues should only be used as an
indication of performance keeping this in mind.

The clairvoyant case, πclairvoyant, shows the upper bound for revenues achievable with
limited flexibility, and ranges from 44.0 to 68.2 [EUR/MWh water]. Somewhat surpris-
ingly, none of the power stations E, G and L (being among the top four under limited
information), are among the top three in this case. Power station B, however, achieve
high revenues in both cases under limited flexibility, which with 67.9 [EUR/MWh water]
has the second highest revenues in the clairvoyant case. This could indicate that the
impact of the factors on relative revenues is somewhat different with full information.
Reviewing the characteristics for power station C, H and J, which with relative revenues
ranging from 65.9 yo 68.2 [EUR/MWh water] make out rest of the top four in this case,
we see that they have the lowest capacity factors in our sample. Comparing with power
stations E, G and L, they have significantly lower relative regulation of around 0.5.
Thus, the empirical results indicate that relative reservoir size plays a less important
role than the capacity factor under full information. This can be explained as follows;
under full information, the solution of the LP-problem will be situated on the borders
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of the feasible region defined by the constraints. With a low relative regulation, it is
expected that the reservoir size is a binding constraint in many time periods, thus the
reservoir level will be equal to its limit accordingly often. However, under limited infor-
mation, it is risky for a producer to have a reservoir level close to the limit due to the
inflow uncertainty. This increases the impact of the relative regulation on the relative
revenues under limited information. Hence, it is expected that the difference between
limited and full information is larger for power stations with medium or low relative
regulation compared to those with high.

Comparing the relative revenues obtained in the two cases of limited flexibility, we
see that power station B, E, G, I, L and M are closest to obtaining actual revenues
πactual, equal to the upper bound, πclairvoyant. This result indicates that the operators
for these power stations have implemented good dispatch strategies, resulting in the
highest actual relative revenues. We should however be careful to deduce that the other
operators have poor dispatch strategies, due to other constraints not being taken into
account when calculating πclairvoyant. We will return to possible reasons for large dif-
ferences between the actual and clairvoyant relative revenues in the next section when
discussing the relative flexibility value.

Looking at the revenues under unlimited flexibility, πmax, we see that power stations C,
H and J also have the highest revenues in this case, ranging from 69.0 to 73.2 [EUR/MWh
water]. This is again due to their low capacity factor; they only need to produce around
23 % to 34 % of the time to consume their average seasonal inflow. Given unlimited
flexibility (with full information), they will then utilize the 23-34 % highest prices, thus
obtaining high relative revenues. On the other end of the scale, with a capacity factor of
76 %, power station F needs to produce at maximum capacity during a majority of the
periods and obtain the lowest relative revenue of 49.2 [EUR/MWh water]. The general
observation is that the higher capacity factor, the lower is the relative revenue under
unlimited flexibility, as predicted in Table 3.2.

The relative difference between πmax and πclairvoyance indicates how much the power
station could gain by relaxing the reservoir and inflow restrictions. The power stations
with a low relative difference (πclairvoyant close to the theoretical upper bound, πmax)
have higher storage flexibility than the others. This difference is less than 1.3% for
power stations B, E, G, L and M, which also are the power stations with highest rela-
tive regulation. Power station A, D, F, J and N show a difference of more than 5.8%,
indicating that reservoir size and/or inflow seasonality limits their potential revenues
significantly.

3.2.2 Relative flexibility value

The relative flexibility value shows how much of the revenues that are due to the stor-
age flexibility of a power station. Figure 3.3 shows the estimated clairvoyant and actual
flexibility values for each power station. The clairvoyant relative flexibility values range
from 25.8 % to 51.3 %. These values represent the upper boundaries for the value cre-
ated through storage flexibility for each producer. Power stations G, H, L and M have
the highest clairvoyant flexibility value, all being above 40%. Hence, when utilizing
their full potential, over 40 % of the revenues come from storage flexibility. Note that
a high flexibility value does not necessary indicate that a power station is more flexible
than power stations with lower flexibility value. Power station B and E have a average
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Figure 3.3: Estimated historic relative clairvoyant and actual flexibility value per pro-
ducer. Relative flexibility value is the share of revenues (actual/clairvoyant) that exceeds
the revenues for the run-of-river equivalent

flexibility value, despite being the most flexible in terms of reservoir size as seen by the
relative difference between πmax and πclairvoyance. Their high revenues under no flexi-
bility reduces the relative flexibility value, as seen in Table 3.3 and Figure 3.2. Power
station D and F have the lowest relative flexibility value. Both have values under 30
%, saying that over 70% of the potential revenues could be achieved without having a
reservoir at all.

The estimates for the actual relative flexibility value range from 0.5 % to 42.7 %. On
overall there seems to be a strong link between the clairvoyant and actual relative flexi-
bility value, however the range is significantly wider is this case (42 % points compared
to 25 % points). The difference between the clairvoyant and actual value is largest for
those with low clairvoyant flexibility value, as for example for producer D, F and J.
For these power stations only 0.5 % to 6.1 % of the actual revenues are due to storage
flexibility. As explained earlier, this large difference is partly caused by the fact that full
information gives a greater advantage under strict restrictions. All three power stations
have below average relative regulation.

As previously mentioned, a large difference between the clairvoyant and actual relative
revenues (or the flexibility values) should not be interpreted as a sign of bad operator
performance. There are several reasons to expect a varying degree of differences between
the actual and clairvoyant case among the power stations in out sample. First of all, the
estimates shown here are based on nine seasons with data, leading to uncertainty in the
results. Different production strategies in general and/or maintenance periods during
high price periods could have large impact on the overall figures with such few seasons.
Secondly, we have not taken into account other restrictions such as water flow restric-
tions up- or downstream of the generator etc., as mentioned earlier. Finally there could
be large differences in the ability to forecast inflow for the different producers, affecting
the advantage of having full information. For example snow measuring could give a more
precise estimate for power stations located higher above sea level than those located in
the low lands. By implementing a stochastic model, and using the same dispatch strat-
egy for all producers, we are able to study the difference between the clairvoyant and
actual relative flexibility value on more unbiased terms.
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3.2.3 Main observations

There are several power stations that distinguish themselves as being more flexible than
the rest in our sample. Power station B, E, G, L and M have a low relative difference
between the revenues in the unlimited flexibility case and the revenues in the limited
flexibility case. These are the plants with the highest relative regulation combined with
having strong inflow seasonalities and medium capacity factors, providing them with
both high storage flexibility and medium production flexibility. The average actual rela-
tive revenues for this group is about 9 % higher than the sample average. Power station
C, H, I and J have lower storage flexibility, but all have low capacity factors giving them
high production flexibility. Their average actual revenues are about the same as the
sample mean. On the lower end of the scale we have power station A, D, F, K and N
being the least flexible in terms of both storage and production capacity in our sample.
On average they obtain actual revenues about 10 % below average. These results show
that both storage and production flexibility have significant impacts on revenues. Note
that the variation in revenues is fairly large within each group, and the results should
be regarded as preliminary.

The average flexibility values for our sample are 37.2 % and 22.5 % in the clairvoy-
ant and actual case respectively. This means that for the average power station, about
one third of the potential revenues come from storage flexibility. For power stations with
high clairvoyant flexibility value, there is potentially a lot to gain from investing in good
dispatch models to exploit the storage flexibility. The difference between clairvoyant
and actual flexibility value is notably large for several of the less flexible stations (D, F
and J), indicating particularly challenging production planning conditions under limited
information when having strict reservoir constraints.

The analysis above also shows that the defined levels of storage flexibility and the flexi-
bility value provide a good framework for analyzing the revenues for hydropower stations
with different degrees of flexibility. However, it is difficult to get an unbiased estimate
for the actual revenues, as the actual revenues implicitly take into account restrictions
not modeled in the other flexibility cases. To further evaluate the impact of the dif-
ferent factors on the revenues in each flexibility case, we will develop a comprehensive
stochastic model for hydropower stations with reservoir. This model will provide us
with sensitivities for all factors, and enables the study any type of hydropower station,
with arbitrary technical characteristics.
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Chapter 4

Stochastic model

In this section we introduce a complete stochastic model for a hydropower station with
reservoir. With this model we can study the impact of different factors on the revenues
and flexibility value by running simulations for a large number of seasons. The model
consists of several components; a producer dependent inflow model, a general spot model
for electricity prices and a model for the overall reservoir content in Norway in order to
account for the correlation between inflow and spot prices. The data series generated
by these models are then used as input in the dispatch model, mimicking production
strategy of operators. The model components are shown in Figure 4.1, and explained in
detail below. This section is rounded off with a step by step example on how the model
is implemented on our empirical data.

Spot modelInflow model

Dispatch 
model

Inflow volumes Spot prices

Cumulative 
inflow deviation

1 2

3

Overall reservoir 
model 

Overall 
reservoir levels

Figure 4.1: Overview of the stochastic model, showing the components and their interac-
tions. The overall reservoir model is included to account for the correlation between each
power station’s inflow and the spot price.

4.1 Modeling inflow

In order to capture the dynamics of inflow for different hydropower stations in one
general model, this model needs to be versatile enough to capture several different
inflow dynamics. Recalling the inflow data in Chapter 2, such a model must take into
account the varying degree of seasonality and autocorrelation of the inflow series. One
way to model inflow for a specific power station is to draw from a pool of historic inflow
series, like done in the EMPS model developed by SINTEF Energy Research which is
described in for example Doorman [2009]. However, if only a few seasons of inflow data
is available, this method results in a relatively small sample space. In such a case it is
preferable to use a stochastic model fitted to the historic data available. This enables
us to generate large numbers of inflow series using general simulation methods such as
Monte Carlo. In the following sections we will formulate a stochastic inflow model, and
describe how to estimate its parameters using empirical data.
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4.1.1 Model formulation

Although the flow of water is a continuous process, it is only measured over discrete time
intervals. Due to the high uncertainty in the measuring, these time intervals are normally
quite long (ranging from one day to one week). This motivates the use of discrete models
for the inflow series. There are several ways to model the seasonality of the inflow. One
way is to add a deterministic seasonality function f I(t) to an autoregressive (AR) model
of order p, Xt, with a long range mean of zero. This model is from now on referred to
as model 1, with dynamics defined in the following equations:

It = f I(t) +Xt (4.1)

Xt =

p∑
i=1

ϕiXt−i + ξt

where It is the inflow during time period t, |ϕi| < 1 are the coefficients for the autore-
gressive model and ξt are assumed to be i.i.d. normal distributed errors with mean zero
and standard deviation σI . In the model above, the variance of the inflow It is assumed
to be independent of time t, neglecting a possible seasonal variation. In case of strong
heteroskedasticity, the assumption of the error term being equally distributed is violated.

One way to take into account time-varying variance, is to assume that the variance
is proportional to the time-varying seasonal mean defined by f I(t). Here a transforma-
tion of the inflow follows a autoregressive process Xt similar to the one above, but with
different coefficients ϕi and different errors ξt. This model is from now on referred to as
model 2, with dynamics defined in the following equation:

It = f I(t)(Xt + 1) (4.2)

Xt =

p∑
i=1

ϕiXt−i + ξt

Here it is assumed that f I(t) > 0 for all t. In this model, the variance of It will depend
on the expected amount of inflow at time t. It is also possible to formulate a process
σI
t for the standard deviation, separately from f I(t), to achieve time-varying variance.

However, to avoid adding more complexity, these options are not further examined.

The seasonality function f I(t) needs to be versatile enough to fit inflow trends of many
different power stations. These trends could consist of one or multiple peaks of differ-
ent size and width per season. In addition, many power stations experience a strong
decay in the general level of inflow during the drawdown season. These dynamics can
be captured by the a seasonality function on the following form:

f I(t) = Ae−at +Be−bt sin(C + ct) (4.3)

where A, a, B, b, C and c are constant parameters. Here Ae−at represents a vertical shift
of the inflow level, starting at A and with decay in time defined by a. Be−bt sin(C + ct)
represents a sinusoidal peak function with frequency c, horizontal shift C and decay b.
B controls the amplitude of the peaks. This function is smooth and continuous in time,
and is flexible enough to mimic many different inflow trend forms. See Figure 4.2 for
several examples of seasonality functions of this form.
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Figure 4.2: Inflow seasonality function examples with high, medium and low degree of
seasonality, using estimated parameters for power stations G, N and C respectively.

4.1.2 Model estimation

In order to estimate model parameters based on historic inflow series, we perform a
regression on the following equation for model 1:

It = Ae−at +Be−bt sin(C + ct) +Xt (4.4)

Xt =

p∑
i=1

ϕiXt−i + ξt

and for model 2:

It =

(
Ae−at +Be−bt sin(C + ct)

)
(Xt + 1) (4.5)

Xt =

p∑
i=1

ϕiXt−i + ξt

Due to the non-linearity of the function f I(t), it is not possible to use linear regression
to estimate all of the coefficients. Hence we use the solution of first finding an estimate
for the seasonal trend function, denoted f̂ I(t) through non-linear optimization, before
doing a regression on the residuals (in the case of model 1) and on a transformation of
the inflow dependent variable (It/f̂

I(t)−1) (is the case of model 2). This is summarized
in the following equations:

f̂ I(t) = f(Â, â, B̂, b̂, Ĉ, ĉ, t) = f I(Θ̂, t) (4.6)

where

Θ̂ = argmin
A,a,B,b,C,c

∑
∀t

(
It − f I(A, a,B, b, C, c, t)

)2

(4.7)

Since the problem above is non-convex (due to the sinusoidal function), the (local) solu-
tion found from standard non-linear optimization depends on the starting values. Hence,
we manually adjust the function to fit the historic inflow through visual observation, and
define ranges for the different parameters, before running the optimization. This way
we ensure that our solution is close to the global minimum. To estimate the coefficients
ϕi in each case, we use the following linear equation:

X̂t =

p∑
i=1

ϕiX̂t−i + ξt (4.8)
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where X̂t = It− f̂(t) for model 1 and X̂t = (It/f̂(t)−1) for model 2. The equation above
can be solved using ordinary least squares to obtain estimates for both the coefficients
ϕi and the standard deviation σI . The order of the AR process is determined depending
on the significance of the coefficients ϕi.

4.2 Modeling spot prices

In this section we present a model for daily spot prices. As discussed in Chapter 2,
daily electricity spot prices (and their logarithm) have certain characteristics such as
mean reversion, seasonality and spikes. To account for these special characteristics,
several models are proposed in literature. We will briefly mention some different types
of stochastic models, before presenting the model of choice. The modeling of seasonality
is done separately from the stochastic component, and hence the following models should
be regarded as models for deseasonalized prices.

• One-factor mean reversion models: As a starting point we consider a Brow-
nian motion driven Ornstein-Uhlenbeck process with possibly time-varying mean:

dSt = β(μt − St)dt+ σdBt

This one-factor model reverts to a mean μt with speed of reversion β. The standard
deviation of the diffusion part Bt is defined by σ. A geometric version of the process
above is used to model commodity prices by Schwartz [1997]. Although this model
captures the mean reversion of electricity spot prices, it does not allow for jumps
which are obviously apparent in the data. However, this model could suit well to
price series with few or no jumps.

• Jump diffusion models: Several models extend Schwartz’ model (or other sim-
ilar one-factor models) to include a jump component. In the general case this can
be expressed in the following way:

dSt = β(μt − St)dt+ σdBt + dZt

where Zt =
∑N(t)

i=1 Di is the jump component, with
{
N(t), t > 0

}
being a counting

process and
{
Di, i ≥ 1

}
the random jump sizes. The other factors are as defined

above. One example of such a process is the one used by Geman and Roncoroni
[2006]. In their model the sign of the jump is determined by the current price level;
if the price is below (above) a certain threshold, jumps are expected to be positive
(negative). This ensures that prices return to normal levels after the occurrence of
spikes. However, this model does not account for negative jumps when prices are
at “normal” levels. A similar jump diffusion model is proposed by Weron et al.
[2004a], where positive jumps are immediately followed by a negative jump to
capture the fast mean reversion. However, this does not allow the mean reversion
to last longer than a predefined number of time steps.

• Regime switching models: To allow for spikes to last longer than one time
step, Weron et al. [2004b] propose a regime switching model. Two dynamics are
defined in this case; one for the normal regime and one for the spike regime.

St =

{
Y1,t if in the base regime
Y2,t if in the spike regime

dY1,t = (c1 − β1Y1,t)dt+ σdBt

Y2,t ∼ logN(c2, σ)
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The variable that determines the current state follows a Markov chain with two
possible states, and transition between the regimes are determined by the transi-
tion probabilities. Several other authors propose different types of regime switching
models with two or more regimes, such as in Haldrup and Nielsen [2006]. Although
regime switching models capture the changing behavior of the spot price, they have
limitations. The price can never be in more than one regime at the time, implying
that in the spike regime it will only follow the dynamics of this regime, independent
of variations in the base signal.

• Multi-factor models: Benth et al. [2008] and Lucia and Schwartz [2002] model
spot prices with multi-factor models, assuming the price be a sum of several Levy-
driven (geometric) Ornstein-Uhlenbeck processes:

St =
N∑
i=0

Yi,t (4.9)

dYi,t = θi(μi,t − Yi,t) + dLi,t (4.10)

Where N is the number of factors. For the processes Yi,t for i = 1, . . . , N , θi > 0 is
the mean reverting rate and μi,t is a possibly time dependent mean reverting level.
This allows for the spike component to be modeled as one factor with possibly high
and rare (absolute) jumps with fast mean reversion, and the “base” component as
a Brownian motion driven process with slower mean reversion. Being independent
processes, the mean reversion of the Brownian motion driven process is taken into
account throughout the series, also during spikes. It is also relatively easy to add
complexity and refine the model by including more factors.

4.2.1 Model formulation

In this study we apply a multi-factor model, due to both it’s simplicity and good ability
to capture the dynamics of electricity prices. Specifically, daily deseasonalized log prices
are modeled as a sum of two factors, using the logarithm to avoid negative spot prices.
The following model formulation is to a large degree based on the approach of Meyer-
Brandis and Tankov [2008], who apply a two-factor model for EEX1 spot prices. Note
that we use capital S for the spot price and small s for its logarithm; lnSt = st in the
remainder of this study.

The seasonality of spot prices is modeled with the deterministic function fS(t) is es-
timated and subtracted from the original log price data. This function consists of a
constant, a linear trend and a linear combination of sine and cosine functions with
periods of 6 and 12 months:

fS(t) = β0 + β1t+ β2 sin(
2πt

365
) + β3 cos(

4πt

365
) + β4 sin(

2πt

365
) + β5 cos(

4πt

365
) (4.11)

where t is time in days. The deseasonalized spot price, sdest , is modeled as the sum of
two independent Levy driven Ornstein-Uhlenbeck processes:

sdest = st − fS(t) (4.12)

sdest = Y1,t + Y2,t (4.13)

1European Energy Exchange.
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where Y1,t and Y2,t are as defined in Equation (4.10). In our model we chose Y2,t to be a
spike process to model the high jumps and their fast mean reversion, while Y1,t models
the remaining base variations in log prices. According to our observations in Chapter
2, both this processes are mean reverting, but with possibly different mean levels and
reversion speeds. The process Y1,t is referred to as the base process and is assumed to be
an Ornstein-Uhlenbeck process driven by a Brownian motion, Bt with a possibly time
dependent mean level, μ1,t. This leads to the following dynamics for the base signal:

dY1,t = θ1(μ1,t − Y1,t)dt+ σSdBt (4.14)

The spike process is assumed to revert to zero, μ2,t = 0, and is driven by a compound

Poisson process Zt =
∑N(t)

i=1 Di where
{
N(t); t > 0

}
is a Poisson process with intensity

λ, and the jump sizes
{
Di; i ≥ 1

}
are i.i.d random variables:

dY2,t = −θ2Y2,t + dZt (4.15)

The absolute spot price is given as the exponential of the sum of the components defined
above:

St = ef
S(t)+Y1,t+Y2,t (4.16)

Before going into more detail on how to separate and estimate the different factors of
this price model, we will look at how to calculate expected spot prices assuming the
dynamics defined above.

Expected spot price

A view of the price development in the future is essential for hydropower station’s when
doing the production planning. Having a model for the spot price, we can derive the
expected spot at a future time t. Assuming that the components of the spot price are
uncorrelated, the expectation of each component can be computed separately. Hence,
being at time s, the expected spot price at time t > s is defined as:

E[St|Fs] = E[ef
S(t)+Y1,t+Y2,t |Fs] (4.17)

= ef
S(t)

E[eY1,t |Fs]E[e
Y2,t |Fs]

where Fs is the filtration at the current time s, including knowledge of Y1,s and Y2,s
In this case we assume the mean μ1,t to be deterministic. In cases where the mean is
stochastic, as later defined in Section 4.2.3, this is a unrealistic assumption when t − s
is large. In that case the expression for expected spot price should only be used for
relatively short horizons.

The expectation of the base component is calculated using the closed form of the ge-
ometric Brownian motion driven Ornstein-Uhlenbeck process (also referred to as the
Dixit and Pindyck model in financial literature):

lnE[eY1,t |Fs] = e−θ1tY1,s +
∫ t

s
e−θ1(t−u)θ1μ1,udu+ lnE[e

∫ t
s σe−θ(t−u)dBu |Fs] (4.18)

where the last expectation is given by

lnE[e
∫ t
s σSe−θ1(t−u)dBu |Fs] =

1

2
σ2

∫ t

s
e−2θ(t−u)du =

σ2

4θ1
(1− e−2θ1(t−s)) (4.19)
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Note that for notational convenience, σ stands σS in the equation above. For the spike
component, being driven by a compound Poisson process, the expectation is computed
as follows:

lnE[eY2,t |Fs] = e−θ2(t−s)Y2,s + lnE[e
∫ t
s e−θ2(t−u)dZu |Fs] (4.20)

As the last expectation depends on the distribution of Zu, and hence on the chosen
distribution for the jump sizes, D, it is in general complex to solve analytically. However,
it is possible to estimate this expectation by simulating large samples for Z for all wanted
intervals of (t− s)2. For a proof of the general solution of the expectation for geometric
multi-factor spot models, see Benth et al. [2008]. Note that the expected spot price is not
necessarily equal to the forward price, which needs to be calculated using risk-neutral
probabilities taking into account a possible risk premium.

4.2.2 Model estimation

In this section we explain how to estimate the parameters of the spot model using
discrete historical data. The estimation of the seasonality function defined in Equation
(4.11) is relatively straight forward: the function fS(t) is fitted to historical log prices
using ordinary least squares on the following formula:

st = fS(t) + ut (4.21)

Where the residuals ut from this regression form the deseasonalized log prices. These
residuals contain spikes and hence are obviously not Gaussian, violating the normality
assumption. However, note that the purpose of this regression is to estimate the seasonal
component, not to derive confidence intervals or test the estimated parameters. Hence
the normality assumption is not necessary, as it has no impact on the parameters.

Separating the spike and base process

To estimate the parameters of the base signal, Y1,t and the spike process, Y2,t, we first
separate these two components for the historic deseasonalized log price series. The chal-
lenge is to determine which price variations that are caused by jumps, and which that
are caused by variations in the underlying base signal. Relying on Meyer-Brandis and
Tankov [2008], we choose a procedure referred to as hard thresholding, to filter out spikes.

The basic idea is to filter out the spikes one by one, by optimally placing one custom
sized spike at the time, taking into account the mean reversion of both components. We
assume that the spike series is a deterministic function g(t);

g(t) =
M∑
i=1

Di1t≥τie
−θ2(t−τi) (4.22)

where M is the number of spikes, Di are the jump sizes and τi are the jump times. The
part 1t≥τie−θ2(t−τi) represents the mean reversion of the placed spikes. The speed of
mean reversion, θ2, is at this point assumed known, and we will come back to how to
determine this later. Initially this spike series is set equal to zero, M = 0. The first spike
is placed at the time τ1 and with size D1, which reduces the variance of the price series

2The expectation for such a jump process with low intensity is expected to converge very slowly, due
to large variation in the sample. Hence a large number simulations, in our case 10 000 000, are needed
to achieve convergence
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the most. After finding the first spike, denoted {D1, τ1}, the spike function is updated
and subtracted from the initial deseasonalized log prices. Then the process starts over
again, placing spike number two etc. A target variance of the base signal determines
when to stop the spike filtering. When this target level is achieved, the two separate
price components are obtained by setting:

Y2,t = g(t) =

M∑
i=1

Di1t≥τie
−θ2(t−τi) (4.23)

Y1,t = sdest − g(t) (4.24)

The spike intensity λ is estimated by the ratio of the total number of spikes found, M ,
and the total number of time steps in our data, N ; λ̂ = M

N . Further, the distribution for
the spike sizes is found using the series of placed spike sizes Di. For the mathematical
background, and a more detailed description of spike detection through hard threshold-
ing, we refer to Section A.1 in the Appendix. and Meyer-Brandis and Tankov [2008].
The spike filtering procedure is illustrated in Figure 4.3, showing an example of daily
deseasonalized log prices separated into the base and the spike process after placing two
spikes.

Log spot deseasoned and base process
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Figure 4.3: Illustration of spike detection procedure for spot prices. The plot show the
daily deseasonalized log price (gray) separated into the base process (blue) and the spike
process (red) after placing two spikes.

Base signal

After subtracting the estimated spike series from the log price series, the parameters of
the base signal can be estimated. In our model we assume that the mean reverting level
of the base process is known, and we can subtract this from the original base process to
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obtain the following dynamics:

Xt = Y1,t − μ1,t

dXt = d(Y1,t − μ1,t) = dY1,t (4.25)

where the last equality only holds when the mean reverting level is constant. Xt will
then be a mean reverting process with mean reverting level 03. The discrete dynamics
when following Dixit and Pindyck [1994] are:

dXt = −θ1Xtdt+ σSdBt (4.26)

Xt+1 −Xt = (e−θ1 − 1)Xt + ut (4.27)

Xt+1 = e−θ1Xt + ut (4.28)

Xt+1 = βXt + ut (4.29)

where ut are assumed to be i.i.d normal distributed errors with mean zero standard
deviation σu. To estimate the parameters θ1 and the variance of the Brownian motion
σS , we perform a OLS regression on the log price series remaining after we have filtered
out the spikes and subtracted the mean reverting level. The variance σS is estimated
using the standard error of the regression, σu, and the two parameters are determined
by the following equations

(σS)2 =
2θ1(σ

u)2

1− e−2θ1
θ1 = −lnβ

as in Dixit and Pindyck [1994].The mean reverting level is preliminary set equal to
zero, μ1,t = 0. This level is reasonable since the deseasonalized log prices are distributed
around zero (follows from Equation (4.12)), and the spike series around zero. However, to
incorporate the correlation with inflow, we will include a time dependent mean reversion
level below.

4.2.3 Spot and inflow correlation model

As shown in Chapter 2, there is a correlation between a power station’s inflow and the
spot price. The inflow and spot processes presented above are assumed to be indepen-
dent, and hence do not take this into account. Since in reality, high inflow often coincides
with low spot, this would result in unrealistic high (low) revenues in cases with high
(low) inflow. To make our model more realistic, we incorporate the correlation with
inflow by extending the spot model to take into account the overall reservoir level.

Spikes are often a result of supply shortage (or surplus) do to plant outages rather
than sudden changes in inflow. Hence the correlation is incorporated in the base pro-
cess, Y1,t, or more specifically in the mean reverting level of this process, μ1,t. It is
possible to incorporate the correlation by letting each power station’s inflow influence
the mean reverting level of the spot directly. However, since the degree of correlation
varies between power stations, this would require us to estimate separate spot models
for each power station. This is not desirable, and hence we propose to link inflow and
spot through an model for the overall reservoir level instead, as explained below.

3We will also use this approximation when μ1,t is time varying, but with a derivative close to zero.
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Inflow and overall reservoir dependency

The empirical data shows a positive correlation between deviation from normal cumu-
lative inflow the last 20 weeks and the deviation from normal overall reservoir level.

Δicumt =
Icumt − Īcumt

Īcumt

(4.30)

Δroverallt =
Roverall

t − R̄overall
t

Roverall,max
t

(4.31)

where Icumt is the actual cumulative inflow the last weeks and Īcumt is the normal (historic
average) cumulative inflow during the same period. Roverall

t is aggregated reservoir level
at the end of period t, and R̄overall

t is the normal (historic average) aggregated reservoir
level. Their relationship is here modeled in the following way:

Δroveralli,t = βi,1Δroveralli,t−1 + βi,2Δicumi,t + εi,t (4.32)

where t is measured in weeks, εi,t are assumed to be i.i.d errors with mean zero and
variance σR

i , and i indicates the power station. After estimating βi,1 and βi,1, we can
simulate the corresponding overall reservoir level roveralli,t when the inflow series Ii,t is
given. Daily overall reservoir deviations are obtained by linear interpolation.

Spot and overall reservoir dependency

We let the mean reverting level of the base process depend on each power station’s inflow
through the overall reservoir level. This relationship is formulated as follows:

μ1,t = ηΔroverallt−1 (4.33)

where Δroverallt is the deviation from normal for the overall reservoir level in Norway at
the end of period t and η is a parameter that determines to which degree the correlation
between the base process Y1,t and Δroverallt should be incorporated. η is estimated in
such a way that the correlation between the simulated base process of the price and the
deviation from normal reservoir level converge to the historic value. Note that roverallt

(and hence μ1,t) is autocorrelated and with relatively small variance in the error terms
from day to day. Hence we estimate the base process by subtracting μ1,t from Y1,t and
assume that the resulting process Xt is mean reverting to zero, as previously explained.

4.3 Modeling dispatch

In order to simulate the actual revenues obtained by each power station, a model for
the dispatch strategy is needed. When planning the dispatch under limited information,
power stations need to take into account the uncertainty of inflow and spot prices. In
practice, producers try to maximize their expected revenues using advanced models to
estimate the marginal value of the water in their reservoir. These models are normally
divided into long, medium and short term models, which are re-ran on a regularly basis
in order to do long term planning and to determine the production strategy for the next
day or week, as explained in Doorman [2009]. These models are highly complex and
computer-intensive, resulting in long simulation times, and thus they are not applicable
for this study. Instead we try to replicate the operators production planning by using
two different (simplified) dispatch strategies. The first is a simple and intuitive decision
rule based on normal reservoir level, while the second dispatches water according to a
threshold function which approximates the marginal water value. Both these dispatch
strategies are simple to implement and can easily be used in practice.
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4.3.1 Simple decision rule

The simple decision rule is based on the assumption that producers want to stay as close
to the normal reservoir level as possible. Hence, the amount of water to dispatch/produce
Pt is determined with the aim of minimizing the difference between the current reservoir
level and the normal target level R̄t:

Pt = min
{
Pmax,max(0, Rt−1 + It − R̄t)

}
(4.34)

where Pmax is the maximum production capacity during one time step t, Rt the reservoir
level at end of time step t and It the inflow occurring in the current period (assumed to
be known to the producer). The target level R̄t can be determined by using the historic
average reservoir, or through simulations assuming full information. The term within
the max clause ensures that if the reservoir is below the target level, the production
should be zero. If on the other hand the reservoir is higher, the power station should
produce the amount needed to reach the target level. The production is limited by the
installed capacity, as accounted for by the min clause. This simple decision rule is naive
in the way that it ignores inflow forecasts and information about future spot prices.
Still, it should at least provide a lower bound for the actual revenues obtained by the
power stations.

4.3.2 Threshold function

Several sources justify the use of a threshold function in the production planning. In
Chapter 2 we saw that power stations often choose to produce close to maximum ca-
pacity or not at all, which suggest that the producers use a bang-bang strategy for the
dispatch planning. This is also in line with the study of Kolsrud and Prokosch [2009],
who use a real option approach to estimate the value of the price threshold. This thresh-
old function estimates the marginal water value depending on several factors, and the
producer should produce if the current spot price is higher than this value, and wait if
else. Näsäkkälä and Keppo [2008] argue for the use of such a threshold function, and
provide a parameterization of this function based on empirical data for one Norwegian
power station. We will use a customization of this parameterization, taking into ac-
count the findings of Kolsrud and Prokosch [2009] on how this function should depend
on the current reservoir level. This leads to the following parameterization of the price
threshold Λ:

Λ(t, S̃t, Ĩt, Rt) = αsS̃te
− αt

T−t
−αiΔĩt + αr ln(

1

rt
− 1) (4.35)

αs, αt, αi, αr ≥ 0

where T is the last time period in the current season and rt is the relative reservoir
level at time t. ΔS̃t is the average of the expected spot price for a specific time interval
ahead, calculated using Equation (4.17) for each day in the interval. Ĩt is the average
daily inflow the next seven days, relative to normal inflow in the same period. Hence
we assume that the inflow the upcoming seven days is known to the producers when
planning the dispatch. In practice good weather forecasts are available in the short run,
which justifies this assumption.

While Näsäkkälä and Keppo [2008] suggest that the water value should be exponential
with respect to the current reservoir, we choose instead to include a s-shaped function
ln((rt)

−1−1) based on the findings in Kolsrud and Prokosch [2009]. When the reservoir
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is close to its minimum (maximum), the threshold function goes to infinity (minus infin-
ity). This reflects the producer’s desire to avoid extremely low or high reservoir levels,
due to the risk of running dry or spilling water by overflow. The rest of the variables
are incorporated as in Näsäkkälä and Keppo [2008]; the expected spot price has a linear
positive effect on the threshold, the inflow a negative exponential, and when the time
approaches end of the season the first term in the threshold will decrease exponentially
to zero. In Section 4.4.1 Figure 4.9 represents an example of the estimated threshold
function, showing dynamics that are close to the theoretical threshold function found in
Kolsrud and Prokosch [2009].

Estimation of threshold parameters

To find the optimal parameters αs, αt, αi and αr, we try a large number of different
combinations within a set of realistic ranges for each, as done by Näsäkkälä and Keppo
[2008]. The dispatch for each parameter combination is simulated using historical inflow
and price data. The expected spot price is calculated using forward and future prices
on Nord Pool, as discussed in Chapter 2. For each power station the parameter set
which gives the highest revenues is chosen, and used for the threshold function in the
stochastic model.

4.4 Implementing the model

It’s now time to implement the different components described above and integrate
them into one complete model. The implementation mainly consist of three steps; first
we estimate the producer independent parameters, or more specifically the parameters
of the spot model. Second we estimate the producer dependent parameters related
to the inflow, overall reservoir and the threshold function used in the dispatch model.
Finally we implement simulation methods for the different components and integrate
the modules into a single procedure. All of the calculations and operations described
below are performed using the statistical computing environment R on standard desktop
computers. We want to point out that even though some of the model assumptions do
not seem to hold for our empirical data, as described in more detail below, the verdict
on the model’s overall performance is left for the Chapter 5.

4.4.1 Estimated producer independent parameters

The parameters for the spot model are estimated based on historic daily prices, using
the historic overall reservoir content to account for the correlation with inflow. Figure
4.4 shows the estimated components of the historic log prices. The upper plot shows
the estimated seasonal function, while the lower plot shows the deseasonalized log prices
separated into the spike and base process. The estimated parameters of the seasonal
function and the base process are shown in Table 4.1 and 4.2 respectively. Note that the
estimated linear trend has a relatively high coefficient of 0.0003, which corresponds to
a annual trend in absolute spot prices of 11.6 %. This is surprisingly high, and may be
due to the relatively low number of seasons in our sample in combination with particular
low (high) prices in the beginning (end) of the sample period.

Descriptive statistics for the residuals from the OLS regression on the base process
are also given in Table 4.2. The high excess kurtosis indicates fat tails, and the positive
skew of 0.38 shows asymmetry in the distribution of the residuals. In addition, the
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Table 4.1: Regression results for the seasonal component in the spot model. The signifi-
cance of the coefficients is calculated under the assumption of normal distributed residuals,
which is clearly violated as seen by the p-value of the Jarque-Bera normality test (null-
hypothesis is that the residuals are normal distributed). The p-value of the Breusch-Pagan
test with the null-hypothesis of constant variance in the residuals is also shown.

Coefficient Estimate Std. error t-value p-value Significance

β0 2.7080 0.0116 233.12 0.0000 ***

β1 0.0003 0.0000 57.16 0.0000 ***

β2 -0.1125 0.0082 -13.71 0.0000 ***

β3 -0.1158 0.0082 -14.14 0.0000 ***

β4 -0.0127 0.0082 -1.55 0.1217

β5 0.0268 0.0082 3.27 0.0011 **

Adjusted R-squared: 51.2 %, Jarque-Bera: 0.0, Breusch-Pagan: 0.0

Significance codes: 0 (***), 0.001 (**), 0.01 (*), 0.05 (.), 0.1 ( )

Table 4.2: Estimated parameters of the base process, Y1,t, and p-values from Jarque-Bera
normality test (under the null hypothesis of normal distributed residuals) and Breusch-
Pagan heteroskedasticity test (under the null hypothesis of homoskedastic residuals). The
kurtosis shown is actually excess kurtosis.

Coefficient Estimate Std. error t-value p-value Significance

Xt -0.0210 0.0034 -6.23 0.0000 ***

Mean Variance Skewness Kurtosis

ut -0.0001 0.0048 0.3804 1.9606

Adjusted R-squared: 1.0 %, Jarque-Bera: 0.0 , Breusch-Pagan: 0.0

Significance codes: 0 (***), 0.001 (**), 0.01 (*), 0.05 (.), 0.1 ( )
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Jarque-Bera test (see Jarque and Bera [1987]) does reject the null hypothesis of normal
distributed residuals. This suggests that optimally, a distribution different from normal
should be chosen to provide a better fit for the historic data. However, this would com-
plicate the derivation of the expected price, and hence is not desirable. For simplicity,
we assume the base process to be Brownian motion driven.

The descriptive statistics for the spike sizes are given in Table 4.3. The distribution of

Table 4.3: Estimated parameters of the spike process, Y2,t and descriptive statistics and
fitted distribution parameters of the absolute spike sizes. Both negative and positive absolute
spikes sizes are log-normal distributed, with μ and σ as shown. θ2 are estimated found on
the parameters used by Meyer-Brandis and Tankov [2008] and using visual inspection on
both the autocorrelation function and how the spike detection algorithm performs under
different values. The kurtosis shown is actually excess kurtosis.

Mean Variance Skewness Kurtosis μ σ

Di ≥ 0 0.3761 0.0433 2.63 7.5717 -1.0740 0.3982

Di < 0 0.3288 0.0105 1.53 1.8455 -1.1513 0.2672

λ̂ =0.029, θ2 =0.5, P (Di ≥ 0) =0.606

spike sizes are determined by optimally fitting a distribution to the histogram of spike
sizes. In our data, with both positive and negative spikes, we fit a different distribution
for positive and negative jumps. Both spike sizes were fitted to log-normal distributions,
but with different mean and standard deviation. The detected spikes shown in Figure
4.4 show indication of clustering, however for simplicity we still assume a constant spike
intensity λ̂ in our model.

Figure 4.5 shows one simulation of the spot price and its components together with the
historical prices. On overall, the stochastic spot model seems to show the same charac-
teristics as the historical prices. The red line shows the mean reversion level driven by
the deviation from normal for the overall reservoir level. By incorporating the correla-
tion with overall reservoir content, the model manages to recreate periods of historical
high prices not caused by spikes or seasonal variations.

4.4.2 Estimated producer dependent parameters

In the example below we estimate the needed parameters for the power station denoted
by N in our sample. The procedure is the same for all power stations in our sample, see
Table A.1 in the Appendix for estimated producer dependent parameters for the other
stations.

Estimating inflow model

Figure 4.6 shows the historic relative weekly inflow for power station N, with data from
each season representing one gray line. The seasonality function, fitted to the historical
data using non-linear least squares, seems to give a good representation of the mean
inflow. The fitted parameters are given in Table 4.4. An AR process of order one fits
best, as p-values turn out high when using higher orders. The p-value for the Breusch-
Pagan test (see Breusch and Pagan [1979]) on residuals for model 1 suggests the rejection
of the hypothesis of the residuals being homoscedastic. As seen in the empirical data, the
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Figure 4.4: Separation of the components of the log spot price; the upper plot shows the
daily log prices together with the estimated seasonal trend. The plot in the middle shows
the deseasonalized log price with the estimated base process, while the lower plot shows the
spike process.
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variance is clearly dependent on the general level of inflow. This is somewhat accounted
for in model 2, as seen from the higher p-value of 0.052 from the same test. None of
the two models pass the Jarque-Bera test of normality, but implementing alternative
distributions for the error terms is left for further work. Hence model 2 is chosen as the
best representation of the inflow our in model.

Table 4.4: Estimated parameters for the inflow dynamics using weekly data. P-values
from Jarque-Bera normality test (under the null hypothesis of normal distributed residu-
als) and Breusch-Pagan heteroskedasticity test (under the null hypothesis of homoskedastic
residuals).

Coefficient Estimate Std. error t-value p-value Significance

Model 1
yt−1 0.3183 0.0439 7.25 0.0000 ***

Adjusted R-squared: 9.9 %, Jarque-Bera: 0.00 , Breusch-Pagan: 0.000

Model 2
yt−1 0.2896 0.0444 6.53 0.0000 ***

Adjusted R-squared: 8.2 %, Jarque-Bera: 0.00 , Breusch-Pagan: 0.052

Significance codes: 0 (***), 0.001 (**), 0.01 (*), 0.05 (.), 0.1 ( )
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Figure 4.6: Inflow seasonality function fit. The gray lines show historic weekly inflow (one
per season). The average and the fitted seasonality function is given by the red and blue
line, respectively.

Estimating overall reservoir model

The overall reservoir model is estimated using the inflow data for power station N,
together with historic data for overall reservoir level. Figure 4.7 shows the historic
deviation from normal inflow together with the deviation from normal overall reservoir
level. The results of the regression on Equation (4.32) are given in Table 4.5. Again
the tests for heteroskedasticity and normality suggest us to reject the respective null
hypotheses. However, from looking at simulations, like the one shown as a blue line in
Figure 4.7, the model is still deemed acceptable.

Implementing dispatch models

Implementing the dispatch strategies, or more specifically the threshold function method,
is the most time consuming part of the model estimation. While the simple decision rule
is implemented using the average reservoir level from 100 simulation under full informa-
tion (clairvoyance), the threshold function is estimated by using historic inflow and price
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Table 4.5: Estimated parameters of overall reservoir dynamics, and p-values from Jarque-
Bera normality test (under the null hypothesis of normal distributed residuals) and Breusch-
Pagan heteroskedasticity test (under the null hypothesis of homoskedastic residuals).

Coefficient Estimate Std. error t-value p-value Significance

Δroverallt−1 0.9647 0.0085 113.95 0.0000 ***

Δicumt 0.0234 0.0050 4.63 0.0000 ***

Adjusted R-squared: 98.0 %, Jarque-Bera: 0.0 , Breusch-Pagan: 0.0

Significance codes: 0 (***), 0.001 (**), 0.01 (*), 0.05 (.), 0.1 ( )

data. A large number of possible combinations for the four parameters in the function
are tried out (as seen in Table 4.6), resulting in long calculation times. The historic pro-
duction and reservoir level when using the parameters that achieve the highest revenues
are shown in Figure 4.8. The same profiles for the simple decision rule are given as a
reference. The results show that the reservoir level tends to be lower when using thresh-
old function as production strategy, compared to actual historic levels (dotted line). A
probable reason for this is that our revenues calculations do not take into account the
effect of changing turbine head on the amount of energy produced per volume of wa-
ter. For our sample, the average difference in head between upper and lower reservoir
boundary is 9 % of maximum head, which means that the obtained revenues per MWh
is approximately 9 % lower when the reservoir is close to empty compared to when the
reservoir is full. The differences in head between upper and lower reservoir boundary
for all power stations are shown in Figure A.4 in the Appendix. By assuming a constant
energy equivalent, this model obtains the same amount of energy at all reservoir levels.
This dispatch model could be improved by implementing a varying energy equivalent,
depending on the reservoir level, but this is here left for further work. Figure 4.9 shows
the threshold function using the optimal parameters given in Table 4.6.

Table 4.6: Ranges for threshold function parameters, and estimated parameters for power
station N. Note due to computational limitations, larger step size were used in the first
iterations, and reduced iteratively until the desired step size was obtained. Estimated
parameters for all power stations are shown in the Appendix.

αs αt αi αr

Range [0.8, 1.3] [0, 35] [0, 0.4] [0, 8]

Step size 0.05 1 0.05 0.5

N 1.2 25 0.20 3.0
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Figure 4.7: Overall reservoir deviation model estimation. The blue line represents one
simulation based on the estimated parameters for power station N.
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a gray line.
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4.4.3 Performing simulations

Figure 4.10 shows the simulation procedure step by step. In the following walk-through
M is referred to as the number of simulations, and N the number of time steps (here
365 days).

Inflow volumes

Cumulative 
inflow deviation

Overall reservoir 
level deviation

Production 
plan

(Expected) spot prices

Simulate 
spot/forward

Simulate 
overall reservoir 

Simulate 
dispatch

Calculate 
results

2 3 4
Simulate
inflow 

1 5

Figure 4.10: Overview of simulation process

1. Simulate inflow: The model generates M time series, with 52 weeks in each, of
inflow relative to the seasonal average. The relative inflow is bounded below by
zero in each time step. The volumes for each weeks inflow are distributed evenly
over seven days4, giving a step-function with N = 365 time steps. The time series
are multiplied with the seasonal average inflow to obtain absolute figures. In
addition, M simulations for the 20 last weeks in the previous season are simulated
in order to calculate cumulative inflow at the beginning of the season.

2. Simulate overall reservoir deviation: Using the seasonality function and the
M × (N + 20) inflow matrix generated above, the deviation from normal for cu-
mulative inflow is calculated based on the last 20 weeks. A number of M series
for deviation from normal for the overall reservoir are simulated, using estimated
parameters for the specific power station.

3. Simulate spot prices: Using the M ×N matrix with deviation for overall reser-
voir, M spot price series with N time steps are simulated. This function also
returns a M × N matrix for each component; base, spike and seasonality. The
latter are used in the calculation of the average expected spot for the next 60
days.

4. Simulate dispatch: Using the absolute inflow series, spot price series and input
for technical characteristics of the specific power station, the production profile
for each flexibility case is calculated5. The simple decision rule uses an average
reservoir level obtained by separate simulations under full information as reference
level. The threshold function uses the expected spot and forward looking inflow in
each time step to estimate the water value. The production profile and reservoir
level for the run-of-river equivalent, the simple dispatch rule and the threshold
function, are generated by iterating through time step 1 to N . For the case with
limited flexibility and full information, the solution of the LP-problem returns the
corresponding profiles6.

5. Calculate revenues: Each production profile is multiplied with the correspond-
ing spot price series to obtain the revenues. For the case of unlimited flexibility,

4The last week in the season is distributed over 8 days
5There is no production profile for the case with unlimited flexibility, as this is a pure duration curve

analysis
6For the reservoir level boundary conditions for LP-problem we use the average historic reservoir

level at the beginning of each season for the specific power station
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the total amount of inflow is used to determine the revenues through price dura-
tion curves. The estimates for the relative revenues in each case are calculated
by dividing the total revenues (for all M simulations) with the total amount of
inflow. This corresponds to the weighted average with respect to water available.

Figure 4.11 shows an example of the simulation of one season for power station N. The
simulated inflow is shown in the top plot, showing seasonality in both level and variance.
The next plot shows the simulated deviation from normal levels for the overall reservoir
content in Norway, influencing the simulated spot price below. The expected spot (red
line) is then calculated. The last three plots show the results of the dispatch simulation
for the two dispatch models and two other flexibility cases; no flexibility and limited
flexibility with full information. We see that the production under no flexibility (red
line) is linked directly to the inflow pattern, as storage of water is not possible. Not
surprisingly, this flexibility case also results in the highest overflow. Note that the pro-
duction strategy under full information deviates from the dispatch models in the way it
“foresees” the price spike during the end of the season and thus keeps a higher reservoir
level. Still, all three reservoir curves show the typical seasonal shape seen in empirical
data.

We now perform M = 1000 simulations like the one above, and review the conver-
gence of the results. Figure 4.12 shows the same plots as for the single simulation,
but now with aggregated results. The 95 % quantiles are given as dotted lines where
relevant. The simulations are performed per season, neglecting all interdependencies be-
tween seasons. This also implies that the spot price will start at the same value for each
season. Figure 4.13 shows the convergence of the revenues calculated for each flexibility
case (including the two dispatch strategies). We see that for even a relatively small
sample of 1000 simulation, there is a clear convergence in both the revenues and their
seasonal standard deviation. This is a welcoming results, as the simulation algorithm is
rather calculation intensive7.

7The most important bottleneck is the linear optimization problem to be solved for the revenues
under limited flexibility with full information.
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Figure 4.11: Single simulation example. Note that overflow is here given relative to
production capacity. The legend in the bottom figure relates to the last three plots.
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Figure 4.12: Simulation example with M=1000 simulated seasons. Dotted lines represent
95 % quantiles. Note that overflow is here given relative to production capacity. The legend
in the bottom figure relates to the last three plots.
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Chapter 5

Results

5.1 Model performance

The model described in the previous chapter is used to simulate M = 1000 seasons for
each of the power stations in our sample. In order to evaluate the overall performance of
the stochastic model, the results are compared with those obtained from the empirical
data. This is done by calculating the relative revenues in each flexibility case and the
corresponding flexibility values using the flexibility framework presented in Chapter
3. Note that with a perfect model, the results obtained from the simulations should
converge to the revenues obtained in practice. However, due to simplifications in the
inflow and spot dynamics, and with imperfect models for the production strategies, our
model is not a perfect imitation of the dynamics in the real world. Hence we do expect
the simulated results to deviate from the empirical results. The simulation results are
given in Table 5.1, with deviations from empirical results provided in parentheses. Figure
5.1 shows the relative revenues together with the empirical results (shaded bars).
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Figure 5.1: Simulated relative revenues for the different flexibility cases for each power
station compared to empirical results (shaded bars).
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Table 5.1: Simulation results for the different flexibility cases for each power station.
Deviation from empirical results [%] are given in parentheses. Revenues obtained with the
simple decision rule and by using the threshold function are both compared to the actual
revenues from the empirical analysis.

Power
station

πriver πsimple πthreshold πclairvoyant πmax υclairvoyant υsimple υthreshold

[EUR/MWh water] [%] [%] [%]

A 34 (-6) 47 (-3) 51 (6) 55 (-6) 57 (-9) 37 (0) 26 33

B 30 (-27) 47 (-19) 52 (-10) 57 (-16) 57 (-16) 47 (20) 36 42

C 51 (17) 53 (3) 60 (15) 66 (1) 67 (-3) 23 (-32) 5 14

D 47 (6) 53 (13) 59 (26) 62 (5) 63 (-1) 25 (-4) 11 20

E 44 (6) 52 (-5) 60 (9) 65 (2) 65 (1) 33 (-7) 16 26

F 35 (6) 40 (23) 44 (34) 47 (7) 55 (11) 27 (2) 14 21

G 33 (8) 53 (-2) 59 (9) 63 (0) 63 (-1) 47 (-8) 36 43

H 40 (8) 53 (1) 60 (15) 68 (0) 69 (-3) 40 (-10) 24 33

I 29 (-26) 44 (-17) 49 (-8) 54 (-13) 55 (-17) 47 (23) 35 42

J 48 (6) 52 (7) 60 (24) 68 (0) 69 (-6) 29 (-12) 7 20

K 35 (-9) 51 (2) 57 (13) 60 (-1) 61 (-4) 42 (12) 31 38

L 29 (-18) 48 (-14) 52 (-6) 56 (-9) 57 (-9) 49 (12) 40 45

M 29 (-14) 47 (-8) 51 (0) 56 (-7) 56 (-8) 48 (10) 39 44

N 40 (-1) 52 (8) 56 (17) 62 (5) 63 (0) 35 (12) 23 29

Average 37 (-3) 49 (-2) 55 (9) 60 (-3) 61 (-5) 38 (2) 25 (9) 32 (43)
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Figure 5.2: Simulation results for the flexibility value of each power station.

Note that when we now analyze the performance of the stochastic model, we will not
discuss deviations from the actual revenues for πsimple and πthreshold, as these are highly
dependent on the production strategy implemented by the specific power station. This
is left for a separate discussion about the dispatch strategies at the end of this section.

Looking at the relative revenues obtained under no flexibility, πriver, power stations
B, C, I and L stand out with the largest deviations from empirical results. The model
overestimates πriver for power station C by 17 %, while B, I and L obtain significantly
lower relative revenues in the model (between -18 % and - 27 %). From the fact that the
revenues for the run-of-river equivalent are mainly linked to the inflow series, we deduce
that these deviations are most likely caused by unrealistic inflow model dynamics for the
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particular power stations. Further, a bad fit for the inflow model affects the simulated
spot prices through their correlation, enhancing the deviation from empirical results.
However, despite high deviations for several producers, the relative revenues under no
flexibility do not show a bias in any specific direction; seven power stations obtain higher
revenues from the model than in practice, while the opposite is the case for the other
seven. The average deviation from empirical results for πriver is -3 %.

The revenues obtained under limited flexibility with full information (πclairvoyant) and
unlimited flexibility (πmax), also show large deviations from the empirical results for
some power stations. Like before, power station B, I and L stand out with large devi-
ations, and again this is most likely linked to the inflow model not being able to fully
represent the actual dynamics. However, on average the model mimics the real world
dynamics satisfactorily, showing an average deviation of -3 % and -5% for πclairvoyant and
πmax respectively. Further, if we exclude the five power stations with the largest devia-
tions (B, C, F, I and L), the average deviation of each flexibility case, πriver, πclairvoyant

and πmax is 0 %, 0 % and -3 % respectively.

Figure 5.2 shows the simulated flexibility values for the different power stations. Due
to the already mentioned deviations, the flexibility value of several power stations, es-
pecially B, C, and I, deviates from the empirical results. However, if we disregard these
three, the relationship between the power stations’ flexibility value in the clairvoyant
case is in line with the findings from the empirical analysis shown in Figure 3.3 in Chap-
ter 3.

Despite of some significant deviations, most likely caused by a poor fit for the inflow
model, the stochastic model shows good overall performance. The results for the 14
power stations show mainly the same patterns as in the empirical results, indicating
that the impact of factors such as reservoir size, inflow seasonality and production ca-
pacity is satisfactorily captured in the stochastic model.

Before moving on to analyzing the impact of specific factors on revenues, we discuss
the performance of the two different dispatch models implemented to simulate the ac-
tual revenues obtained by the power stations; the simple decision rule with relative
revenues πsimple, and the threshold function with relative revenues πthreshold. When
comparing with actual revenues, we see that the threshold function model overesti-
mates the revenues for nearly all producers, with power station B, I and L being the
exceptions1. This indicates that the assumptions behind this dispatch strategy are not
satisfied in practice. Specifically, the knowledge of the deviation from normal for over-
all reservoir levels 60 days ahead, which is used to calculate the expected spot price,
may be too unrealistic. In addition, the fact that a power station’s energy coefficient
increases with reservoir level (head) is neglected. This way the energy generated per
amount of water (directly influencing revenues) is overestimated for low reservoir levels2.

While the threshold function method overestimates the actual revenues, the revenues
obtained with the simple decision are similar to those obtained in practice for the ma-
jority of the power stations. Hence this method seems to provide a good approximation

1The model underestimates the relative revenues in all flexibility cases for these power stations. As
mentioned above, this is most likely linked to poor inflow model performance

2The average head difference between maximum and minimum reservoir level is 9% of maximum
head for our sample. See Figure A.4 in the Appendix for more details
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of the actual dispatch strategy. This also indicates that producers do in fact use his-
torical reservoir levels as a reference level when planning future dispatch. The simple
decision rule also has clear implementation advantages over the threshold function; it
only requires one estimated factor, the normal reservoir level. The threshold function
needs to be estimated for each power station in a rather calculation intensive process.
When changing underlying characteristics of power stations, such as reservoir size or
production capacity, new sets of parameters need to be estimated, resulting in long
computation times. In the next section, we want to be able to change these factors
to see how they impact the relative revenues in the different flexibility cases. Hence,
only the simple dispatch rule is applicable as an approximation of the actual production
strategy in further analysis.

5.2 The impact of flexibility

The different factors impacting the revenues and flexibility of a hydropower station were
discussed in Chapter 3. Having a complete stochastic model for hydropower stations,
we can now quantify their impact. This is done by reviewing the changes in relative
revenues and flexibility value in each of the flexibility cases when varying the following
impacting factors; relative regulation, degree of inflow seasonality and capacity factor.
Note that relative regulation and capacity factor are varied by changing the reservoir size
and the production capacity respectively, while holding average annual inflow constant.
When running these sensitivities, we need a set of power station parameters to represent
the base case. This power station should be representative for the sample, with close
to average characteristics in terms of reservoir size, inflow volumes and seasonality, and
production capacity. Based on these criteria, power station N is chosen as the base
case. The deviation between empirical and simulated results for this power station are
relatively small, indicating that the model provides realistic results.

Table 5.2 shows the base values and sensitivity ranges for the parameters. In the next
sections, the impact of the different factors is analyzed in isolation (keeping the other
factors constant). Further, we show two-dimensional sensitivity plots and analyze the
impact on revenues and relative flexibility value when changing two factors simultane-
ously. The results below are obtained by simulating 1000 seasons for each scenario.

Table 5.2: Ranges for one-dimensional sensitivities. The degree of seasonality in the inflow
distribution decreases within the range; inflow distribution 1 (power station G) corresponds
to a strong seasonal distributed inflow, while inflow distribution 5 is approximately flat
(power station C).

Base case Range Steps

Relative regulation 0.465 [0.047,0.931] 20

Capacity factor 0.471 [0.09,1.00] 14

Inflow distribution 3 {1,2,3,4,5} 5

5.2.1 Impact of relative regulation

In order to quantify the impact of reservoir size on relative revenues, we run simulations
for 16 different scenarios, for which the results are shown in Figure 5.3. As expected,
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Figure 5.3: The impact of relative regulation on relative revenues (left plot) and flexibility
value (clairvoyant and simple, right plot). The horizontal axis represents relative regulation,
while the gray line marks the base case.

relative regulation has a positive impact on the relative revenues3. However, the degree
of impact clearly decreases; with a relative regulation of approximately 0.5, a further
increase in reservoir size has little to no impact on the upper boundary for revenues,
assuming everything else being equal. For power stations with low regulation, on the
other hand, an increase in storage flexibility could increase potential revenues signifi-
cantly; increasing the relative regulation from 0.2 to 0.5 results in an increase in revenues
of around 10 %, the other factors being equal to the base case.

The value of storage flexibility clearly converges as the relative regulation increases;
in the case of full information, the relative value of storage flexibility converges to 36%,
while converging to 24 % under limited information. Hence, for a power station with
similar production capacity and inflow characteristics as N, having sufficient storage flex-
ibility could account for an increase in revenues of about 50 % beyond the run-of-river
equivalent4.

5.2.2 Impact of inflow seasonality

The impact of inflow seasonality is analyzed by implementing five different seasonality
functions for the inflow model, referred to as inflow case 1 through 5, while keeping the
average total inflow constant. The first inflow function has a strong degree of seasonality,
with around 90 % of the total inflow occurring in the filling season. Moving through the
functions, the degree of seasonality decreases, the last function having approximately
evenly distributed inflow throughout the season. The inflow distribution cases 1 through
5 corresponds to the inflow seasonality functions for power station G, B, N, D and C
respectively.

Figure 5.4 shows that the impact of inflow seasonality on relative revenues decreases
as the inflow becomes more distributed throughout the year; going from inflow function
1 (strong seasonality) to inflow function 2 (medium seasonality), increases potential rev-
enues with 8 %, while there is no gain in revenues by further reducing the seasonality
of the inflow function. Hence, for power stations with similar characteristics as N, with
medium relative regulation and medium capacity factor, the degree of inflow seasonal-

3Note that in the case of no or unlimited flexibility the revenues are independent on relative regulation.
450 % increase beyond the run-of-river revenues corresponds to a flexibility value of 33 %
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ity does not affect the potential revenues significantly. We do however expect different
results for power stations with less storage flexibility, and this is explored further by
conduction two-dimensional sensitivity analyses later in this chapter.

Looking at the relative flexibility values, we see that it decreases as inflow seasonality
decreases. This is as expected; the higher the degree of seasonality, the more valuable
is the ability to store water (mainly driven by the reduction of overflow). With strong
degree of inflow seasonality, the flexibility value is as high as 46 % in the clairvoyant
case. When going from strong seasonality to no seasonality, the flexibility value de-
creases with 23 % points and 29 % points for the clairvoyant case and simple decision
rule respectively. Hence, the degree of inflow seasonality has a large impact on the value
of storage flexibility.
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Figure 5.4: The impact of inflow seasonality on relative revenues (left plot) and flexibility
value (clairvoyant and simple, right plot). The horizontal axis represents the degree of
seasonality, with 1 representing a strong seasonality in the inflow with a large share of the
total inflow occurring at the beginning of the season, and 5 representing an approximately
evenly distributed inflow throughout the season. The gray line marks the base case.

5.2.3 Impact of capacity factor

The impact of the capacity factor on revenues is analyzed using a range of capacity
factors from 0 to 1, equivalent to a production capacity of around 50 % of power station
N’s capacity and up to about 500 %. Note that the relationship between the capacity
factor and the production capacity is non-linear; doubling the production capacity only
reduces the capacity factor with 50 %. Figure 5.5 shows that relative revenues in most
flexibility cases increase linearly with decreasing capacity factor. The only exception is
the simple decision rule case, where the relative revenues, πsimple, converge when the
power station has sufficient capacity to reach the reservoir target level each day5. The
revenues under full information, πclairvoyant, which represent the upper boundary for
the actual revenues obtained with a more comprehensive dispatch strategy, continue
to increases with decreasing capacity factor. This indicates that power stations could
increase their revenues significantly by increasing the production capacity, but only if
the implemented dispatch strategy is complex enough to exploit the gain in production
flexibility. As production capacity increases, the share of time a power station needs
to produce, assuming equal total inflow, is reduced. This increases the importance of
choosing the right periods for when to dispatch the water, and hence implementing a

5The target level will only change slightly when decreasing the capacity factor
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good production scheduling strategy becomes crucial.

The benefit from decreasing the capacity factor does not depend on the current level;
decreasing the capacity factor by 0.1 increases the potential revenues (πclairvoyant) with
approximately 4 %. Hence, all power stations could achieve revenue gains by increasing
their current production capacity. However, due to the inverse relationship between
capacity factor and production capacity, the marginal impact on revenues decreases
when the production capacity increases. Reducing the capacity factor from 0.5 to 0.4, is
equivalent to a 25 % increase in production capacity, while reducing the capacity factor
twice as much, from 0.5 to 0.3, corresponds to a 67 % production capacity increase. For
the average power station in our sample, with a capacity factor of 0.46, an investment in
doubling production capacity could increase revenues with 13 %. This is seen in Figure
5.6, which shows the same results as above, but with production capacity instead of
capacity factor.

The storage flexibility value υclairvoyant, decreases with decreasing capacity factor. In
this case the higher production flexibility (as a result of lower capacity factor), reduces
the importance of storage flexibility. This can be explained as follows: the value of stor-
age flexibility is driven by two main components; the ability to store water for dispatch
at a later point in time (during periods of high prices) and the ability to avoid over-
flow at the time of inflow. Increasing the production capacity, will reduce the overflow
volumes, and hence reduce the need for (value of) storage flexibility. For the simple
decision rule, the relative flexibility value decreases even more when decreasing the ca-
pacity factor, as this strategy fails to benefit from the increase of production flexibility,
while the run-of-river equivalent obviously does.
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Figure 5.5: The impact of the capacity factor on relative revenues (left plot) and flexibility
value (clairvoyant and simple, right plot). The horizontal axis represents capacity factor,
while the gray line marks the base case. Note that a low capacity factor indicates high
production capacity.

5.2.4 Cross-sensitivities

In order to evaluate the impact on relative revenues when changing more factors simu-
latenuously, we perform cross-sensitivity analysis. To avoid long calculation times, the
ranges and step size are adjusted as shown in Table 5.3. Figure 5.7 shows the simulated
relative revenues obtained under limited flexibility, πsimple and πclairvoyant, which are
the lower and upper bound for the revenues that can be obtained in the real world,
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Figure 5.6: The impact of production capacity on relative revenues (left plot) and flexi-
bility value (clairvoyant and simple, right plot). The horizontal axis represents production
capacity relative to the base case (gray line). Note that the distance between data points
increases for increasing production capacity

and the corresponding relative flexibility values. The relative revenues for the two other
flexibility cases are shown in Figure A.3 in the Appendix.

Table 5.3: Ranges for cross-sensitivities. The degree of seasonality for the inflow decreases
within the range; inflow distribution 1 (power station G) corresponds to a strong seasonal
distributed inflow, while inflow distribution 5 is approximately flat (power station C). The
base case for relative regulation is adjusted to 0.4 (from 0.465), while the base case for the
capacity factor is rounded to 0.5 (from 0.471) to better fit with the defined ranges and step
sizes.

Base case Range Steps

Relative regulation 0.4 [0.1,1.0] 4

Capacity factor 0.5 [0.25,1.0] 4

Inflow distribution 3 {1,2,3,4,5} 5

Total number of scenarios: 80

The relative revenues for varying relative regulation and degree of inflow seasonality are
shown in the left perspective plots in Figure 5.7a and 5.7b. We identify a clear depen-
dence; relative regulation has a significantly higher impact on revenues under strong
inflow seasonality (1). This impact declines with decreasing degree of inflow seasonal-
ity. With an approximately flat inflow distribution (5), the revenues are independent of
relative regulation. If a large share of the inflow occurs in the beginning of the season,
sufficient storage flexibility in terms of relative regulation is important to be able to
avoid overflow and achieve higher revenues by being able to chose when to produce. In
this case the increase in relative revenues is as high as 35 % under both limited and
full information (πsimple and πclairvoyant) when increasing the relative regulation from
0.1 to 1.0. For the same reasons, revenues depend highly on the distribution of inflow
when the relative regulation is low, while being independent of this in the opposite case.
From looking at the value of storage flexibility in the leftmost plots in Figures 5.7c and
5.7d, we see that the combination giving the highest flexibility value, is a high degree
of inflow seasonality with high relative regulation. For this combination the relative
flexibility value is between 37 % to 48 %. Hence, having sufficient storage flexibility
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Figure 5.7: Relative revenues and flexibility values (clairvoyant and simple) for different
cases of relative regulation, inflow seasonality, and capacity factor. Note that the scale on
the inflow axis corresponds to the degree of seasonality, with 1 being strong and 5 being
flat.
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could account for around 40-50 % of revenues, given the current capacity factor (0.5).

While the impact of relative regulation is highly dependent on the degree of inflow
seasonality, the effect of changing the capacity factor is not. As shown in the middle
plots of Figure 5.7a and 5.7a, the potential relative revenues increase linearly with de-
creasing capacity factor, independent of the degree of seasonality in inflow. However,
this in not the case for the corresponding flexibility values seen in the middle plots of
Figures 5.7c and 5.7c. The relative value of storage flexibility is more dependent on
the degree of inflow seasonality when the capacity factor is high, than when it is low.
This can be explained by the higher importance of storage flexibility in order to avoid
overflow when the production capacity is low. We also see that with a low seasonality in
inflow (5), the capacity factor have no significant impact on the relative value of storage
flexibility, as the need for high capacity to reduce overflow is reduced.

The right plots in Figures 5.7a and 5.7b show the impact of capacity together with
relative regulation, and also here we see a similar dependency. Relative regulation has
a lower impact on relative revenues πclairvoyant when the capacity factor is low. In this
case the high production capacity reduces the importance of having a large reservoir.
Like mentioned previously, we see that revenues obtained under limited information,
πsimple, are constant when the capacity increases and relative regulation increase above
certain values, as this dispatch strategy fails to exploit the increase in flexibility. We
also see that a low capacity factor (high production capacity) is crucial when having
low relative regulation6; the increase in revenues are as high as 47 % and 65 % when
reducing the capacity factor from 1.0 to 0.25 in the limited information and clairvoyant
case.

To summarize the interdependencies, we see that the impact on revenues and flexibility
values due to changes in inflow distribution and relative regulation is closely linked.
Having a high relative regulation or low inflow seasonality reduces the impact of the
other factor to a minimum. However, with a high degree of inflow seasonality, a high
relative regulation is critical to be able to obtain high revenues. The impact of capacity
factor and relative regulation are also interlinked; when flexibility is high, either in terms
of storage (high relative regulation) or production (low capacity factor), the other factor
is of less importance to the revenues.

5.3 Spot model variations

The underlying spot model is fairly comprehensive, in terms of both incorporating jumps
and inflow correlation. But how much impact does the complexity of the spot model
actually have on the results? In order to answer this question, we rerun the model
above with three different spot models. The multi-factor model defined and discussed
previously, with a seasonal component, a spike process and a mean reverting base pro-
cess depending on inflow, forms the base model. In addition we propose two simplified
models. In the first, the correlation between inflow and spot is removed by setting the
mean reverting level of the base process equal to zero, μ1,t = 0. The second (and most
simple) model is a version where also the separate spikes process is removed, leaving
the spot model to only consist of a seasonal component and a geometric mean reverting

6And given the degree of inflow seasonality of power station N. However, similar results are obtained
for the other inflow scenarios.
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base process. The parameters for the two simplified spot models are estimated using
the same procedure as before, and are show in Table A.3 in the Appendix.

Figure 5.8 shows the average relative revenues for for our sample, with variations of
the spot model. Comparing the relative revenues obtained using the multi-factor model
with all three components (seasonal function, spike process and base process) with and
without correlation with inflow, we see that removing the correlation increases the rel-
ative revenues in all flexibility cases significantly. For the clairvoyant case, this increase
equals 6 %. The increase is in line with the expectations as low (or zero) correlation
increase the possibility for high prices to coincide with high inflow, which increases the
revenues. Using the simple spot model without spikes does not seem to influence rev-
enues significantly, indicating that the modeling of spikes is not important given the
current precision level of our model. However, to rule out potential bias caused by un-
realistic spot dynamics after refining the precision level of the other model components,
we still suggest to include the modeling of spikes in similar models and analyses.

We have previously pointed out some weaknesses in the way we model the inflow of
each power station. As the inflow and spot model are coupled through the correlation
with overall reservoir level, unrealistic inflow dynamics will in turn also influence the
spot model. The importance of a good spot model should therefore be further inves-
tigated, possibly with a different inflow model, as the results above may be influenced
by the poor performance of the inflow model for some power stations. However, as pre-
viously shown, the model does not purely over- or underestimate revenues. Hence, we
can assume that by removing the correlation between inflow and spot on, the potential
revenues are on average overestimated with 6 %.
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Figure 5.8: Sample average relative revenues and relative flexibility value for the three
different spot models.

5.4 Application: Valuation of hydropower assets

The stochastic model provides estimates for expected annual revenues given todays elec-
tricity price dynamics. It gives approximations for both the actual (πsimple, πthreshold)
and the theoretical upper boundary (πclairvoyant) of the relative expected revenues under
different degrees of flexibility. These multiples can serve as a basis for the valuation of
existing hydropower stations with reservoirs. Below we show a very simple example of
the valuation of operating results for power station N.
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The following formula gives an estimate of the net present value (NPV) of the oper-
ating results (before taxes of any kind) for a power station, assuming a long (infinite)
lifetime. The future annual operating results A are discounted using the discount factor
r and the annual revenue growth rate g:

A = πĪtot − C × Pmax (5.1)

V =
A

r − g
(5.2)

Where π is the relative revenue multiple, Ī is average annual inflow, Pmax is the installed
capacity and C are the operating costs relative to installed capacity. Pmax = 90 [MW]
and cf = 47% for power station N. According to NVE [2007], the typical operating costs
for a hydropower station with reservoir are around 1 % of the capital expenditures, or
operating costs C relative to installed capacity of around 12.5 [EUR/kW installed]7.
For power station N, this figure is equivalent to relative costs of around 3 [EUR/MWh
water], which is around 6 % of the estimated actual relative revenues (from the simple
decision rule). Further, NVE [2007] suggests the use of a discount factor r of 6.5 %
when evaluating investments in hydropower in Norway. This figure is used in the ex-
ample, without going into the debate on how to accurately determine the required rate
of return for this type of assets. Note that when using the revenues from the stochastic
model for valuation, the annual trend of spot prices needs to be taken into account.
As previously mentioned, the estimated annual nominal trend of 11.5 % is likely to be
too high in the long run. For simplicity we set the real growth g rate equal to zero
in this example. Using these figures, and the multiples for relative revenues for power
station N from our model, the infinite lifetime value of the operating results ranges
from 279 [EUR million] (simple decision rule) to the upper limit of 336 [EUR million]
(clairvoyant). This suggest an absolute value of storage flexibility ranging from 68 [EUR
million] to 125 [EUR million], when subtracting the value for the run-of-river equivalent.

Note that a valuation based on the expected cash flows from the stochastic model does
not consider potential increases or decreases in prices due to for example new transition
lines to other markets or changes in the cost structure of electricity production in the
future. In other words, the expected revenue flows presented here only represent today’s
marked conditions. This motivates the use of a real option approach when considering
investments in generation assets. For more information, see rland [2007] who uses the
model of Dixit and Pindyck [1994] for an assessment of investments in hydropower in
Norway.

5.5 Main shortcomings of the model

The modeling approach has several shortcomings, which leave room for further improve-
ments. First of all, the implemented inflow model shows clear weaknesses; the residuals
fail to pass the normality tests, which indicates that the proposed model does not fit
sufficiently well to real world dynamics. More importantly, we identify several devia-
tions between simulated and empirical results that to a large degree are explained by
an imperfect inflow model. For further work, we suggests a more detailed study of the
inflow dynamics, and how they can be modeled. As possible improvements, we propose
to consider other distributions for the residuals, and/or to expand the model with a
separate process for time-varying variance. Using a larger dataset could also improve

7We use a exchange rate of 8 [NOK/EUR].
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the model performance. In addition, a larger dataset would allow for an alternative
modeling approach; like done in the EMPS model, the inflow series could be randomly
selected from a large pool of historic series.

The model lacks a sufficient realistic dispatch strategy to be used under limited flexibil-
ity and information, which is capable of exploiting high degree of storage and production
flexibility. The threshold function which is implemented, clearly overestimates the ac-
tual revenues due to two main shortcomings; firstly we assume that the deviation from
normal aggregated reservoir level is known 60 days ahead. Although a slowly varying
reservoir level to a certain degree can justify this assumption, this is an obvious simpli-
fication of the real world. Secondly, neglecting the energy coefficient’s dependency on
the turbine head, favors low reservoir levels. The realism of this dispatch strategy could
be improved by making the energy coefficient (and hence the revenues) dependent on
the current reservoir level by incorporating reservoir level curves (giving reservoir level
as a function volume).

In practice the flexibility of a hydropower station is often restricted by time-varying
constraints on reservoir level and/or dispatch volumes due to environmental reasons.
These restrictions are not accounted for in our model, which leads to an overestimation
of the actual revenues. Hence, we encourage future studies on the value of flexibility of
hydropower stations to take these restriction into account.
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Chapter 6

Conclusion

In this study we quantify the impact of storage flexibility on revenues for hydropower
plants with reservoir. We develop a framework for analysing flexibility, and isolate the
value of storage flexibility by decomposing the revenues into different flexibility cases.

By applying the framework on data for 14 Norwegian hydropower stations, we gain
preliminary insights about the value of storage flexibility. This accounts for on average
22 % of the actual revenues achieved during the sample period (ranging from 0 to 43
%). The empirical analysis also shows that the power stations with the highest storage
flexibility achieve on average 9 % higher relative revenues than the sample average.

Further, this study shows that it is possible to recreate the dynamics of hydropower
stations with a fairly simple stochastic model. This model enables us to quantify the
isolated impact of the three main drivers of revenues; relative regulation, inflow season-
ality and capacity factor. By conducting sensitivity analyses, we show that an increase
in relative regulation increases revenues, but that the effect is dependent on the degree
of inflow seasonality. Given high degree of inflow seasonality, increasing relative reg-
ulation from 0.1 to 1.0 increases the revenue potential with as much as 35 %, while
such an increase has no effect on revenues under low inflow seasonality. These findings
emphasize the importance of storage flexibility for power stations with high degree of
inflow seasonality. Our analysis also illustrates that the marginal gain of increasing the
relative regulation decreases with its the level, which is aligned with the intuition that
increasing storage flexibility only ads value up to a certain point.

The potential revenues increase linearly with decreasing capacity factor. However, due to
the non-linear relationship between capacity factor and production capacity, the impact
on revenues decrease with higher production capacity. For the average power station
in our sample, reducing the capacity factor with 50 % (corresponding to a doubling in
production capacity) increases potential revenues with 13 %. With the increase of pro-
duction capacity, having good dispatch strategies becomes more important. Our simple
decision rule, using normal reservoir levels as a reference, fails to exploit increases in
production flexibility above a fairly low threshold.

We gain some relevant insights from the modeling approach itself. Applying the thresh-
old function strategy of Näsäkkälä and Keppo [2008] will result in high realized revenues
for all power stations in our sample. However, it is possible to question these result; this
model neglects the effect of turbine head on the energy equivalent, and hence fails to
penalize low reservoir levels. Further, we learn that the modeling of the inflow dynamics
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is particularly challenging, mostly due to the time-varying variance.

This study has several practical implications. As reservoir size and inflow seasonal-
ity are generally given by nature, the dynamics of their impact are less important when
considering investments in new infrastructure. However, the importance of reservoir size
and inflow seasonality clearly has to be taken into account when doing a valuation of
existing power stations. By providing revenue estimates depending on these two factors,
the stochastic model can provide a basis for this type of valuation. The impact of pro-
duction capacity on revenues is different, as this can be increased by replacing existing
or adding new generators. The stochastic model quantifies the potential increase in
revenues when increasing capacity, and hence is useful when considering investments in
new or upgraded generators. Providing both an upper and lower boundary for revenues,
this model can also be used to benchmark different dispatch strategies. Further, by
quantifying the standard deviation of yearly revenues, it can be used in risk-assessments
and to review the need for different hedging strategies. However, to better model the
real world dynamics of hydro power stations, this model should be expanded to take
into account additional restrictions faced by operators.

The flexibility framework and stochastic model developed in this study embraces a
broad research field; valuation of hydropower plants, production scheduling under un-
certainty and stochastic modeling of electricity prices and inflow, and the incorporation
of the correlation between these. As this broad perspective limits the possibility of doing
in-depth analysis within each of these fields, we encourage further studies within one or
more of these fields to further develop the presented framework and stochastic model
from this analysis. In addition we hope that the broadness and creative approaches of
this study inspires for more analysis on the storage flexibility of hydropower producers.
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Appendix A

Appendix

A.1 Hard thresholding method

The spike filtering algorithm is based on a method used by Meyer-Brandis and Tankov
[2008]. We will here explain this procedure. First of all, we assume that the spike path
is a deterministic function, g(t)

g(t) =
M∑
i=1

Di1t≥τie
−θ2(t−τi) (A.1)

where M is the number of spikes, Di are the jump sizes and τi are the jump times.
When subtracting this spike series, g(t) from the deseasonalized log price series, we
should achieve the base signal.

sdest = Y1(t) + g(t) (A.2)

sdes(j) = Y1(j) + g(j), j = 1, . . . , N (A.3)

where N is the number of time steps in our daily price series.

Now consider the case where we want to place only one spike. Let X(j) be the se-
ries from which we want to subtract one spike, that is that for this case X(j) is equal
to the initial deseasonalized price path, X(j) = sdes(j). This one spike, with size D∗

and initial jump time τ∗ is placed optimally according to the following function

(D∗, τ∗) = arg inf
D,τ

N∑
j=1

(ΔX(j)−Δg(j))2 (A.4)

where for a function X(j),ΔX(j) is defined as

ΔX(j) = X(j)− e−θ1X(j − 1) (A.5)

= (Y1(j) + g(j))− e−θ1(Y1(j − 1) + g(j − 1)) (A.6)

= ΔY1(j) + Δg(j) (A.7)

ΔX(j) has a high absolute value where a sudden upward or downward change in the
price path occurs and the spike are placed where the absolute difference between ΔX(j)
and Δg(j) can be reduced the most. To account for price variations caused by the base
signal, the decay factor of the base signal e−θ1 is included.
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We have now separated the base signal, Y1(t) from the spike series g(t) containing
one spike, by setting

g(t) = D∗1t≥τ∗e−θ2(t−τ
∗) (A.8)

Y1(t) = sdest − g(t) (A.9)

If we now want to place more spikes, we do the same one more time, but now using

Log spot deseasoned and base process
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Figure A.1: Results from the spike detection algorithm. The upper plot show the daily
deseaonalized log price (gray) separated into the base process (blue) and the spike process
(red). The lower plot show (j) before (gray) and after (blue) the spikes are placed. Note
that the spike series plus the base signal equals the original deseasonalized log price (gray).

the new base signal Y1(t) as the initial price path, X(j) = Y1(j). The spikes found are
removed from the initial base signal, and added to the spike series one by one. Figure
A.1 illustrate this procedure. The upper plot show the daily deseaonalized log price
and the base process, while the middle plot shows the spike process. The lower plot
show ΔX(j) before and after the spikes are placed. We summarize the procedure in the
algorithm below. The spike detection ends when we have reached a predefined desired
variance of the returns in the base signal.

1. Calculate the desired variance of returns in the base signal; σ2
target, as the variance

of the returns in the deseasonalized log prices after removing ε of the highest
absolute returns.

2. Set m = 1, X(j) = sdes(j) and g(j) = 0 for j = 1, . . . , N
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3. Find the spike parameters (m, τm) using formula A.4.

4. Set

g(t) =
m∑
i=1

Di1t≥τie
−θ2(t−τi) (A.10)

5. Set

X(j) = sdes(j)− g(t) (A.11)

6. Calculate the variance of the returns of the base signal after m spikes

σ2
m = var(X(j)−X(j − 1)), j = 2, . . . , N (A.12)

If σ2
m > σ2

target, set m = m+ 1 and go to 3. Else; go to next step.

7. Set M = m and Y1(t) = sdest − g(t). Calculate spike intensity λ = M/N .

As seen we find the spike intensity by dividing number of spikes, M by the total num-
ber of data points. This calculation assumes a constant spike intensity throughout the
season, which we will use in our model. However, it is also possible to calculate a time
dependent spike intensity, for example one during summer and one during winter. Next,
the distribution of spike sizes is determined. We will not go into detail about this, but
rather refer to the general literature about fitting distributions to data.

It follows from equations A.1 and A.5 that we need to know the mean reversion co-
efficient of both the base signal and the spike series, θ1 and θ2 respectively, to perform
this spike filtering. To estimate these, we investigate the autocorrelation function, h(t),
of the deseasonalized log prices. The autocorrelation function are often representable
as a sum of exponentials, and according to our model with two different mean reversion
coefficients a sum of two exponentials:

h(t) = corr(S(t+ τ), S(τ)), τ = 1, . . . , N (A.13)

= ω1e
−θ1t + ω2e

−θ2t (A.14)

where the first exponential corresponds to the mean reverting base signal, and the
second to the faster reverting spike series. Based on the parameters of Meyer-Brandis
and Tankov [2008] for other electricity price series, and using visual inspection on both
the autocorrelation function and how the spike detection algorithm performed under
different values for θ1 and θ2, we found that θ1 = 1

150 and θ2 = 1
2 fits well to our

data. As Meyer-Brandis and Tankov [2008] also point out; the performance of the
algorithm is rather robust to certain values of these parameters. For θ1 ∈ [1/20, 1/200]
and θ1 ∈ [1/8, 1], there is almost no difference in the number of spikes found and the
resulting base signal. Note that the value estimated for θ2 are the actual value that
are used in the spot model, while θ1 are estimated again once the separation of the
components is finished. With θ2 =

1
2 , 60% of the spike remains after one day, while only

5% after six days.

A.2 Additional tables and figures
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Table A.2: Top 10 power producers in Norway, 2006, Source: Norwegian Water Resources
and Energy Directorate (NVE). *indicates owned by Statkraft.

Power producer Mean
annual
production

Domestic
market
share

Nordic
market
share

[TWh] [%] [%]

Statkraft 35.9 30.0 9.4
BKK Produksjon AS 6.9 5.8 1.8
Norsk Hydro ASA 6.9 5.8 1.8
E-CO Vannkraft AS 6.8 5.7 1.8
Lyse Produksjon AS 5.9 4.9 1.5
Agder Energi Produksjon AS 5.6 4.7 1.5
Skagerak Kraft AS 4.0 3.3 1.0
Nord-Trøndelag Elektrisitetsverk FKF 3.3 2.8 0.9
Trondheim Energiverk Kraft AS* 3.2 2.7 0.8
Otra Kraft AS 2.6 2.2 0.7

Total top 10 81.1 67.7 21.1

Total 119.9 100.0 31.2

Table A.3: Parameters of the alternative spot models. Alternative model 1 is a multi-
factor model without correlation with inflow. Alternative model 2 consists of a seasonal
function and a mean reverting base signal driven by a Brownian motion.

θ1 σS S0

Model 1 0.0206 0.0699 3.14
Model 2 0.0438 0.1034 3.16
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Figure A.2: Differences in actual historic relative revenues [EUR/MWh]] between using
hourly and spot prices (dark gray)) and using daily total daily production and daily average
spot prices (light gray)
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Figure A.3: Relative revenues (river and max) for different relative regulations, inflow
seasonalities, and capacity factors. Note that the scale on the inflow axis corresponds to
the degree of seasonality, with 1 being strong and 5 being flat.

0,00

0,25

0,50

0,75

1,00

A B C D E F G H I J K L M N

0

200

400

600

A B C D E F G H I J K L M N

Absolute station head Relative station head

Figure A.4: Left: Absolute power station head with upper and lower reservoir boundary
(dark gray area). Right: Upper and lower reservoir boundaries relative to maximum station
head. Average difference in head between upper and lower reservoir boundary is 9 % of
maximum head.
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