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Abstract

In this master thesis, an e�cient and �exible model for pricing and hedging swing con-
tracts, in an incomplete market, is presented. The model supports an hourly withdrawal
strategy and includes all available future and forward contracts in the market. The model
is a two stage stochastic optimization model, constructed to price and hedge simultane-
ously. It uses exogenous spot prices and swap contracts, and the scope is limited for one
kind of swing contracts; �exible load contracts.

The model is a good foundation to develop into a multi stage stochastic model. The
models �exibility makes it possible to use a time resolution of blocks of hours, in order
to value and hedge other swing contracts, and use di�erent price models for the spot
and swap prices. A block resolution of small number of hours is preferred, compared to
an hourly resolution, due to a large decrease in computation time at the expense of a
minimal loss of value. However, a daily or larger resolution of the withdrawal schedule
and spot price will drastically reduce the value of the optimization.

Because of the incompleteness in the electricity market, the market player's risk aversion
will in�uence the hedging and withdrawal strategy, and therefore also the value of the
contract. We look at several volume risk functions and a CVaR pro�t risk function,
and we optimize a �exible load contract by creating a static hedge. A utility function
minimizing the pro�t risk, results in a better reduction of downside risk in an optimization
compared to a hedge created by a volume risk aversion model.
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Chapter 1

Introduction

Due to the many di�erent contracts existing in the Nordic electricity market, risk man-
agement is an important aspect for market players. Since the deregulation of the Nordic
power market, the need for methods to minimize risk has increased and therefore sev-
eral tools and methods have been developed, both for the standardized contracts traded
through Nord Pool and the contracts traded over the counter. To value equity derivatives
the model presented by Black & Scholes(1973) is used, and Black(1976) developed a val-
uation formula for commodities. By reason of the unique characteristics of the electricity
spot price, there is to date no consensus in a valuation model for electricity derivatives
in the literature or in the industry.

An important group of contracts traded over the counter are swing contracts. A swing
contract is a contract which gives the buyer the right to purchase electricity at a �xed price
within a period of time. The buyer can choose when to purchase the electricity within
a set of restrictions written in the contract. The degree of possibility to swing the load
during the contract period is known as the �exibility of the contract. By increasing the
�exibility, the value of the contract is augmented, but the valuation and exercise schemes
are made more di�cult. Swing contracts, also known as virtual power plants (VPP), are
di�cult to manage owing to the multiple exercise decisions. Regarding the valuation,
there are thousands of di�erent combinations1 to exercise these types of contracts; and
the most optimal strategy for exercising might change when including risk management.
Due to the large number of di�erent swing contracts, we will look at one speci�c type
of contract. The objective of this master thesis is to develop a model for pricing and
hedging of a �exible load contract. A �exible load contract is a type of swing contract
traded over the counter.

This master thesis is motivated by the work done by Mo & Gjelsvik(2002). They devel-
oped a model that optimizes the withdrawal from a �exible load contract and hedged the
contract based on pro�t risk. The aforementioned model is a development of a model

1Number of combinations depend on the length and �exibility of the contract
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CHAPTER 1. INTRODUCTION 2

Mo, Gjelsvik & Grunt(2001) proposed for scheduling and contract management in a
hydrothermal system.

The model presented in this thesis will make use of �exible load contracts with the dura-
tion of one month and six months, with di�erent types of constraints. The contracts will
be hedged against all available forwards and futures. Furthermore, the time resolution
will be both hourly and in blocks of 6 hours. The reason for partitioning time resolution
is the computation time of the model, and we will compare the results from the two
resolutions. Moreover our model will hedge against volume risk or conditional value at
risk of low pro�t.

Keppo(2002) claims in his paper that hedging swing contracts is possible. This makes
it possible to value a swing option as long as there exists an option market. The main
problem with this method is the time resolution. We have to assume that the forward
market has an equal or higher resolution than the �exible load contract in order for this
to work. Lund & Ollmar(2003) use an hourly resolution, in their complex stochastic
optimization problem, to formulate and then manage the �exible load contract numeri-
cally. Their results indicate that their model performed better than some market players.
Bjerksund, Myksvoll & Stensland(2006) on the other hand look at two simple strategies
to manage a �exible load contract; the �rst is a deterministic strategy and the second is
a stochastic strategy. They compare their results with the result from a more complex
dynamic approach and the comparison shows that their models perform better than the
alternatives on average. But their assumption about a frictionless market with no risk
premium violates the characteristics of an incomplete market and they use constructed
hourly forward prices. Haarbrücker & Kuhn (2006) use a multistage stochastic program
to value swing options by aggregation of decision stages, discretization of the probability
space, and reparameterization of the decision space.

As we do not assume the market to be complete, we encounter challenges as the non-
existent possibility of a perfect hedging portfolio by market traded instruments. Partic-
ularly the volume risk is not traded in the electricity markets. Oum, Oren & Deng(2005)
look at volumetric hedging in electricity procurement for load serving entities and reach
a hedging strategy, with the use of a utility function, that can be implemented through
a portfolio of call and put options. On the other hand Keppo, Meng & Sullivan(2006)
introduce a �ctitious risky asset to the market and by that they can use methods of a
complete market to optimize the utility.

Some of the main conclusions from this thesis are the importance of re�ecting the hourly
variation in spot prices when valuing a �exible load contract. For a monthly �exible load
contract with a maximum withdrawal in 400 hours, the loss in value can be as much as
12.63 NOK/MWh for an optimization with daily resolution of spot prices and withdrawal,
compared to hourly resolution. We also show the importance of modeling a good utility
function, due to the incompleteness of the electricity market. The formulation of the
utility function, a�ects the decision for both withdrawal and hedging, which lead to
valuation and risk management of a �exible load contract.
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The rest of this thesis is organized as follows: Chapter two describes some basic theory
and stylized e�ects of electricity prices. In chapter three we will describe the model for
pricing and hedging. Modeling of uncertainty in the electricity market is then described
in chapter four. Data estimations and contract speci�cation are shown in chapter �ve
and chapter six deals with the results from di�erent cases where the model is applied.
Concluding remarks and the need for further work are addressed in chapter seven and
eight.



Chapter 2

Theory

Valuation of electricity derivatives1 cannot simply rely on models developed for �nancial
or other commodity markets. That is because of the unique characteristics of the spot
price. We will brie�y present the stylized e�ects of electricity prices in this chapter. We
will also take a look at the basic theory needed for pricing and hedging a �exible load
contract.

2.1 E�ects and characteristics of an electricity market

The electricity price is a�ected by di�erent factors, both directly and indirectly; rain,
temperature and fuel prices are important factors since they a�ect both supply and de-
mand. Other important factors are seasonality, mean reversion, price spikes and extreme
volatility (Knittel & Roberts, 2001).

Seasonality is an important aspect in the electricity market. The variations appear over
the course of the day, week and year. Accordingly, Lucia & Schwartz(2002) argue that
seasonality is one of the most important aspects in the shape of the forward curve. Knittel
& Roberts (2001) shows, through empirical studies of the Californian electricity market,
that there are strong deterministic cycles within the daily, weekly and yearly e�ects.

Di�erent from most other commodities markets, the electricity market is extremely
volatile. In the period between 1993 and 1999, the volatility of the Nordic spot elec-
tricity market was estimated to 189% (Lucia & Schwartz, 2002). It was also proven that
the volatility of the spot price was non stationary. Other factors in�uencing the volatility
are seasonality and demand. The volatility is higher during periods of high demand and
vice versa (Knittel & Roberts, 2001).

Lund & Ollmar(2003) analyze the Nordic electricity market and �nd that price spikes
or fast mean reversion, due to abnormal load conditions, will have a strong in�uence

1A derivative is a �nancial instrument that is derived from an underlying asset's value. Instead of
trading the speci�c asset, the market players agree on exchanging money, assets or some other value at
a future date, based on the price of the underlying asset

4



CHAPTER 2. THEORY 5

Figure 2.1: Seasonality graph from Nord Pool with average value in EUR for 2001-2006

on the spot price process. Still, the Nordic market usually has a slow mean reversion
because of the hydro plant production (Lund & Ollmar, 2003). The non-storability of
electricity is one of the most important reasons for the spiky nature of the spot price.
The price spikes and extreme volatility in the market also lead to a non-normal and fat
tailed distribution of returns for the spot price. Figure 2.2 shows a typical curvature
for a fat tailed distribution. Usually, there is a positive skewness in the spot price as
well, which means that there is a higher probability of extreme high prices compared to
extremely low prices in the electricity market.

Figure 2.2: Quantile-Quantile-plot of the log-returns of the Nord Pool spot prices from
01.01.2001-31.12.2006 against N(0,1).

2.2 The structure of Nord Pool

The Nordic electricity market is divided into one physical and one �nancial market. The
physical market handles the physical contracts for the next 24 hours and the market
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delegate present price and supply/demand for each of the hours. The �nancial market
consists of di�erent types of standardized future and forward contracts and some stan-
dardized European options. The future contracts are traded for days and weeks, and the
forwards contracts are traded for months, quarters and years. The main di�erence be-
tween a future and a forward contract is that the future is handled with mark-to-market2

and the forward are calculated at the last day of the contract. All of the futures, forwards
and European options are standardized contracts(Nord Pool, 2007).

Table 2.1: Future and forward contracts traded at Nord Pool in May 2007
Type Duration Contracts available in the market

Future day 4 - 9

Future week 6

Forward month 6

Forward quarter 10

Forward year 5

Benth & Koekebakker(2005) refer to future and forward contracts as swaps. This ref-
erence is used because future and forward contracts re�ect an exchange between �xed
contract price and �oating spot prices. Accordingly, we will adopt this concept in this
thesis.

There is also an Over-The-Counter(OTC) market in the Nordic electricity exchange.
Most OTC contracts are not standardized and can often be of exotic3 nature. Some of
the most common contracts are Contracts for Di�erence (CfD) and swing contracts4.
The liquidity in the OTC market is often thin and this might result in higher risks. For
standardized contracts in the OTC market, clearing service is provided by Nord Pool.
For other contracts the counterparties themselves must take the �nancial counterparty
risk.

One type of a swing contract is called �exible load contract5. A �exible load contract can
be compared to a hydro power plant without in�ow of water, and that must be depleted
within a given time frame. This is also known as a Virtual Power Plant (VPP). The
buyer of a �exible load contract pays a �xed price for every MWh of withdrawal. The
buyer can choose to withdraw power at any hour during the contract period as long as
it is within some prede�ned limits. At contract formation, the exact number of MW
available in the lifetime of the contract, and the maximum and minimum withdrawal in
one hour, are determined. This arrangement sets the contract limits. The hours chosen
for withdrawal must be set at least the day before exercising.

2Mark-to-market means recording the spot price on a daily basis, in order to calculate pro�ts/losses
against the contract price

3An exotic option is a derivative which has features making it more complex than commonly traded
products

4See Unger(2002) for more details on di�erent types of OTC contracts
5These contracts are also referred to as load factor contracts or FLC
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2.3 Hedging

Hedging is, in this context, de�ned as an action which reduces the risk of loss, possibly
at the expense of potential pro�t. There are several ways of hedging; two of the most
common are replicating a portfolio and delta hedging. A replicating hedge is to take
an identical, but opposite, position and compare it to the position you already have. In
delta hedging, the delta for a position with value c is given by:

∆ =
δc

δS
(2.1)

Delta hedging is a �rst order Taylor-approximation to the value of the asset. By taking an
opposite position in the approximated commodity, it is possible to hedge the commodity.
It is also possible to improve this hedge by doing a higher order hedge.6(McDonald, 2006)

Because of the complexity of most electricity contracts, it is only possible to replicate
small parts of the di�erent contracts in the electricity market. This makes a replicating
portfolio unsuitable for complex electricity contracts. There are also some problems
with using delta hedge in the electricity market. One of them is the non-storability of
electricity. You cannot hold an amount of electricity to make the derivatives locally
immune against each other. Another problem is to obtain the price of the derivatives.
This is because of the unique characteristics of the spot price.(Unger, 2002)

2.4 An incomplete market

Incompleteness is another factor which makes the electricity market even more complex.
The reasons for an incompleteness of a market can vary. Stochastic volatility and mixed
jump-di�usion price process for an asset (Fedotov & Mihkailov, 1998) are two examples.
Another example is the limited available contracts to the possible states for the com-
modity. This means that it is not possible to hedge a single hour, day or week which is
su�ciently far into the future.

A �exible load contract has exercise decisions for each hour during the period of the
contract, but hourly forwards or futures for �nancial trading do not exist. As a result,
there are not enough contracts to cover all the hours, and therefore we have an incomplete
market for this contract.

A complete market is one requirement that has to be ful�lled in order for a unique
equivalent martingale measure to exist. This martingale measure is often referred to
as the risk neutral probability measure7, with which a pricing formula can be derived

6For more details about replicating a portfolio, delta hedging and other hedging methods, see Mc-
Donald(2006)

7Martingale measure or risk neutral probability measure is often referred to as Q in the literature.
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without taking the di�erent traders utility functions in to discussion(Constantinides,
Jackwerth & Perrakis, 2005).

When the market is incomplete, several di�erent probability measures exist which lead
to di�erent prices on a given derivative. The probability measure will depend on the
risk attitude of the traders, and this attitude will vary among the di�erent traders.
The risk attitude is one factor in the process to derive a risk premium, which also will
vary from trader to trader. For each of the risk premiums it will be a risk neutral
probability measure. Because of this it will be hard to value something under the risk
neutral probability measure. Consequently you have to use the true probability measure8

to derive a pricing formula in an incomplete market. The true probability measure will
often vary because the traders consider the probabilities and consequences of the possible
outcomes di�erently(Constantinides et al, 2005)).

Based on the aforementioned, we know that only one unique risk neutral probability
measure does not exist, but several non-unique ones in an incomplete market, and there-
fore we cannot �nd an arbitrage-free price for the asset. The non-uniqueness means that
it is relevant to use the utility functions of the di�erent traders to derive an acceptable
pricing formula.

8The true probability measure is often referred to as P in the literature.



Chapter 3

The Model

In this chapter we introduce a two stage stochastic model which is constructed to price
and hedge a �exible load contract simultaneously. This model is motivated by Mo &
Gjelsvik's paper from 2002, where they propose a stochastic multi stage optimization
model for simultaneous withdrawal from a �exible load contract and �nancial hedging.
They �nd that a simultaneous optimization reduces the uncertainty of the pro�t of a
portfolio(which includes a �exible load contract) and that the risk aversion of the contract
holder does not a�ect the withdrawal strategy measurably, as long as the transaction costs
are small.

Mo & Gjelsvik's(2002) proposed model has weekly resolutions for both the spot price
and the available swaps in the model. With identical resolution on both spot and swap
prices, the optimization is done in a complete market which is not realistic. Another
drawback with their model is that with weekly spot prices, the model ignores the daily
and hourly variations during the week, and therefore gives an imprecise illustration of
the spot market.

We propose a model that has hourly resolution on the spot price and includes all available
swap contracts in the market. This result in a more realistic withdrawal schedule and
hedging compared to Mo & Gjelsvik(2002). The drawback with hourly resolution on the
spot price is computation time due to expansion of dimensions for long lasting �exible
load contracts. Our model can be adjusted for blocks of hours in order to reduce the
dimension. In order to model hedging decisions, several versions of volume risk aversion
models, and a risk aversion model to reduce low pro�t scenarios, are introduced.

There are some disadvantages to a two stage stochastic model compared to a multi stage
stochastic model1. In a two stage stochastic model, the �rst stage is to optimize the
problem based on the expectation of the future. The second stage is to optimize when
the outcome of the future is know, through di�erent scenarios. In a multi stage stochastic
model, new information is gradually available through time. With new information, the

1See chapter 8 for one method for deriving spot and swap prices for a multi stage model.

9



CHAPTER 3. THE MODEL 10

expectations of the future may change creating new decisions(Dyer & Stougie, 2005). On
the ground of the previous, our two-stage model will only create a realistic static hedge.
The proposed model in this chapter establishes a good foundation to build a multi stage
stochastic model, which will lead to realistic discrete dynamic hedging decisions.

3.1 A �exible load contract model

We consider a �exible load contract that lasts for a given number of days or months. To
model the maximization of the contract value, we de�ne the following quantities:

s Index for scenario
i Hourly index for exercising/withdrawal
I Last day in the exercising period
P�c Price per MW exercised from the FLC (NOK/MWh)
Qmin Minimum hourly withdrawal from the FLC (MWh)
Qmax Maximum hourly withdrawal from the FLC (MWh)
Qsum Total withdrawal from the FLC, in hours (MWh)
Sp(i,s) Spot price for hour i, for scenario s (NOK/MWh)

q(i,s) Amount of MW withdrawn from the FLC at hour i, for scenario s (MWh)

The optimal exercising schedule for a �exible load contract, without using the market, is
given by a maximization of pro�t. The total optimization problem is calculated for each
scenario.

Max W = E

[ I∑
i=1

(
Sp(i,s) − Pflc

)
q(i,s)

]
(3.1)

The �exibility of the �exible load contract is determined through the minimum and
maximum withdrawal for each hour, and the total withdrawal in the lifetime of the
contract. These properties are modeled with the following restrictions:

q(i,s) ≥ Qmin for all i and s

q(i,s) ≤ Qmax for all i and s

I∑
i=1

q(i,s) = Qsum for all s

(3.2)

A �exible load contract is only �exible if the total withdrawal, Qsum, is less thanQmax∗I
and larger than Qmin ∗ I.
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3.2 Market model

To reduce the uncertainty of the pro�t of the �exible load contract, we model the swap
market in order to set up a simultaneous optimization of the withdrawal schedule, and the
�nancial hedging.2 The �nancial swap contracts available in the market are of unequal
lengths and are overlapping, which makes a multi stage modeling of the market more
complex. Even though our model is only capable of making a realistic static hedge, we
model the market with the possibility to make a discrete dynamic hedge. Multiple trading
points are modeled by reason of a possible development from a two stage stochastic model
into a multi stage stochastic model.

In order to simultaneously optimize the �exible load contract and make a �nancial hedge
with all available contracts in the market, we use these de�nitions:

t Index for trading dates
T Last trading day
k Index for number of available contracts in the market for the existing

period
K Last contract
l Index for contracts of di�erent lengths
L Total number of di�erent contract lengths in the market
Ct Transaction cost per traded MW (NOK/MWh)
M(k,l) Number of hours in the contract k of length l (h)

Fs(t,k,l,s) Selling price for contract k of length l, at trading time t for

scenario s (NOK/MWh)
Fk(t,k,l,s) Buying price for contract k of length l, at trading time t for

scenario s (NOK/MWh)
vs(t,k,l,s) Amount of MW sold of contract k of length l, at trading time t for

scenario s (MW)
vk(t,k,l,s) Amount of MW bought of contract k of length l, at trading time t for

scenario s (MW)

Since the spot price has an hourly resolution, a realistic representation of the market has
contracts that are expressed in resolutions as multiples of the hourly spot price. Figure
3.1 illustrates the basic idea of the setup of our model. It displays a simple market
with a total of I available hours (i) from which to withdraw, two di�erent swap contract
lengths(l), where each contract (k) of length l = 1 covers half of the available period,
whereas there is one contract of length l = 2 that covers the whole period. The setup
displays T = 4 possible trading points (t) where the model gives the option to buy or
sell swap contracts in the market.

2By including other derivatives correlated with the electricity price, for instance weather derivatives,
one may create an even better hedge(Mount, 2002), but this is beyond the purpose of this thesis.
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Figure 3.1: Index description for the market modeling

With di�erent resolutions for the expected spot price, Sp(i,s), and the swap contracts in
the market, Fs(t,k,l,s) and Fk(t,k,l,s), the respective hourly spot prices have to be matched
with each contract of di�erent lengths that include the respective hour. For every swap
contract you sell in the market at the price Fs, the pro�t of the contract is the agreed
swap contract price minus the spot price for the contract period. By selling a swap
contract for the period the buyer withdraws from a �exible load contract, the buyer
reduces the risk of low prices on the hours the buyer expects too withdraw. However
the buyer gains a risk of high prices for the hours that are not withdrawn. In order to
model the option to buy a swap contract, the price of a swap contract, Fs, is multiplied
with the number of hours in the contract M(k,l)

3. The sum is then subtracted with the
spot price, Sp, for all hours within the contract. The total value of the contract is then
multiplied with the volume sold (vs) of the contract. Equation 3.3 shows the model for
selling all possible contracts available at the market:

+
L∑

l=1

K∑
k=1

T∑
t=1


Fs(t,k,l,s) ∗M(k,l) −

∑k
m=1 M(m,l)∑

i=1+
∑k−1

m=1 M(m,l)

Sp(i,s)

 ∗ vs(t,k,l,s)

 (3.3)

With the same method, we model the purchase function for the objective function in our
two stage stochastic model:

−
L∑

l=1

K∑
k=1

T∑
t=1


Fk(t,k,l,s) ∗M(k,l) −

∑k
m=1 M(m,l)∑

i=1+
∑k−1

m=1 M(m,l)

Sp((i,s)

 ∗ vk(t,k,l,s)

 (3.4)

Depending on the volume for withdrawal for one hour(Qmax) in the �exible load contract,
the decision variables vs and vk are either integer or continuous. Swap contracts in the

3The value of M(k,l) changes for swap contracts with a duration of a month or more. For example is
the value of M equal to 31 ∗ 24 = 744 for a January contract while it is 28 ∗ 24 = 672 for the February
contract
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market are only traded in volumes of 1 MW, so a correct modeling of vs and vk is to
model them as integer variables. However, if Qmax is signi�cantly large, the integer
assumption can be relaxed. With continuous variables, the value of the market model in
the optimization will be equal or better than with integer variables. The relaxation will
also decrease the computation time of the optimization problem4.

In order for the signs before both 3.3 and 3.4 to be valid, both vs and vk must be larger
or equal to zero. This is modeled:

vs(t,k,l,s), vk(t,k,l,s) ≥ 0 for all t, k, l and s (3.5)

The displayed model for swap contracts in the market, models contracts that may not be
tradeable in all the trading points by reason of the market incompleteness. At Nord Pool
there are for instance only six weekly and six monthly contracts available for trading at
one point. These unavailable contracts are not modeled.

In the electricity market there are transaction costs for every MWh traded. At Nord
Pool the trading fee for a swap contract is 0.0035 e /MWh(Nord Pool, 2007). Table 3.15

displays the total value of the transaction cost for di�erent contract lengths.

Table 3.1: Transaction cost for 1 MW traded swap contracts at Nord Pool
Contract hours Price EUR Price NOK

Week 168 0.59 4.82
Month 744 2.60 21.35
Quarter 2184 7.64 62.68
Year 8760 30.66 251.41

Compared to the spot price of 1 MWh, the transaction cost for one transaction is very
small, however with an active hedging policy the cost may become signi�cant in the
optimization. The value of all transactions is modeled by multiplying the total volume of
bought and sold swap contracts in the market with the constant transaction cost value
Ct. The contribution to the objective function becomes:

−Ct ∗
L∑

l=1

T∑
t=1

K∑
k=1

(
vs(t,k,l,s) + vk(t,k,l,s)

)
∗M(k,l) (3.6)

3.3 Block pro�le

The model presented in chapter 3.1 and 3.2 uses hourly resolution on the decision variable
q(i,s), and the spot price Sp(i,s). Since all other resolutions in the model are daily or larger,

4See Rardin(1998) for theory about integer versus continuous variables
5In Table 3.1, the exchange rate between EUR and NOK is 8.2 NOK/e
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the model supports block pro�les of identical lengths with resolution smaller or equal to
a day. The value of the optimization must then be multiplied with the number of hours
in a block. The value of the optimization will for instance be multiplied with 6, if the
hourly resolution is combined in 4 blocks of 6 hours.

By arranging the daily hours in blocks, the optimization takes less time at the expense
of a less exact value. The value of the loss is investigated in 6.2. The reduction of
computation time is a result of the reduction of dimensions.

3.4 Modeling risk aversion

As a consequence of the incompleteness of the electricity market, traders' utility function
must be modeled to value and hedge a �exible load contract. Modeling the utility function
for the whole market will make the hedging decisions the most realistic, but the total
markets utility function is unknown. Even the utility function of one player can be
impossible to determine.(Varma, 1989). We will in our modeling of risk aversion address
the utility functions for one trader, not for the complete market.

The main purpose of our risk modeling is to construct a proper hedge in the market either
by reducing the volume risk(quantity risk) or limit the possible pro�t losses(pro�t risk).
Li & Flynn(2004) show that in most deregulated electricity markets, including Nord
Pool, demand is the most important factor a�ecting the spot price for electricity. The
correlation between demand and price for Nord Pool is 0.53, signifying that high demand
will increase the spot price and vice versa. For a �exible load contract with physical
load, the uncertainty of the demand quantity creates a risk that cannot be completely
explained by price risk(Oum et al, 2005). By reducing the volume of the �exible load
contract exposed to changes in spot price, the contract holder reduces the e�ect of low
pro�t scenarios. We will compare the e�ect of reducing the risk of volume exposed with
a model to reduce pro�t risk.

The swap contracts at Nord Pool range from daily contracts too year long contracts. Each
of the di�erent contract lengths lasts an exact number of days. In order to model the
total volume traded with swap contracts for each day, we de�ne the following quantities:

d Index for number of days the �exible load contract lasts
D Last day of the �exible load contract
Bl Number of hours the day is divided in (h)
H(l,d) Reference matrix for matching day d with the correct contract of length l

vsday(d,s) Total volume sold of swap contracts for day d (MW)

vkday(d,s) Total volume bought of swap contracts for day d (MW)

Each matrix, H(l,d), shows which contract of length l that corresponds to a speci�c day.
An exempli�cation of this is the daily and weekly values in H(l,d):
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Daily contracts H(1,d) = [1 2 3 4 5 6 7 8 9 10 .... ]

Weekly contracts H(2,d) = [1 1 1 1 1 1 1 2 2 2 ...... ]

The total volume that are sold or bought of swap contracts for day d are modeled with
the restrictions:

vkday(d,s) =
L∑

l=1

T∑
t=1

vs(t,H(l,d),l,s) for all d

vkday(d,s) =
L∑

l=1

T∑
t=1

vk(t,H(l,d),l,s) for all d

(3.7)

To evaluate the hedging, pro�t, and calculation time of the risk aversion in the model,
we propose three functions, case 2 through 4, that model a minimization of the volume
risk. In case 5 we model a pro�t risk with conditional value at risk. The cases we will
test are:

Case 1:

As a reference we create a risk neutral case, which means the withdrawal schedule is
optimized independently from the swap market. In order for us do this, no extra function
is added to the model.

Case 2:

We propose a quadratic utility function to reduce the exposure risk. The model penalizes
every MWh that are exposed to changes in the spot price. If either withdrawal from the
�exible load contract are not hedged, or the hedging with swap contracts result in a
hedge in periods where you do not withdraw, the model penalizes. The risk aversion
function becomes:

−λ

D∑
d=1

Bl
(
vkday(d,s) − vsday(d,s)

)
+

d∗Bl∑
i=1+(d−1)∗Bl

q(i,s)

2

∗
d∗Bl∑

i=1+(d−1)∗Bl

Sp(i,s)


(3.8)

By multiplying each contract period with the spot price, you get a more volatility adjusted
model. According to Knittel & Roberts(2001) the volatility rises with higher spot prices.
Rise in volatility gives a bigger chance for lower prices than expected and a risk averse
player will have more reason to hedge. The λ is an adjustment factor to value the risk
aversion function. Table 3.4 shows the value of the risk aversion function with λ = 1 and
λ = 0.001, when the exercised hours from a �exible load contract is not hedged, and the
average spot price is 150 NOK. A large value of λ will increase the impact of the risk
aversion.
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Table 3.2: Value of risk aversion function for non-hedged hours with di�erent values for
the adjustment factor λ in a quadratic volume risk aversion function

Hours exercised 1 6 12 18 24

Value; λ = 1 3 600 129 600 518 400 1 166 400 2 073 600

Value; λ = 0.001 3.6 129.6 518.4 1166.4 2073.6

Case 3:

This function is a simple on/o� hedging function. It states that you will hedge in the
market if, and only if, the sum of withdrawal from the �exible load contract within a day
is above a certain level or percentage. This is done with the following restrictions:

d∗Bl∑
i=1+(d−1)∗Bl

q(i,s) − Plevel ∗Bl ≤ (vsday(d,s) − vkday(d,s)) ∗Bl for all d

d∗Bl∑
i=1+(d−1)∗Bl

q(i,s) + Plevel ∗Bl ≥ (vsday(d,s) − vkday(d,s)) ∗Bl for all d

(3.9)

where:

Plevel Percentage level for when to hedge in the market

The linearity of the utility function makes the computation time fall drastically com-
pared to the quadratic function in case 2. With a hedging level(Plevel) at 50 percent, a
withdrawal less than 50 percent has the risk of a low price scenario for the hours exer-
cised, while a withdrawal over the Plevel has the risk of a high price scenario for hours
not exercised.

Case 4:

If, in one hour, the �exible load contract has a maximum withdrawal per hour larger than
1 MW, the function in case 3 may be expanded to include several levels or boundaries in
order to get a more realistic hedging sequence. Say you can withdraw 2 MW per hour
from the �exible load contract in the model, the model hedges 1 MW when the exercised
hours from �exible load contract passes boundary 1(Plevel1) and 2 MW when it passes
boundary 2(Plevel2). In order to include this �exibility in the model, we need to include
some additional quantities:

Plevel1 First hedging barrier
Plevel2 Second hedging barrier
vs1(d,s) First barrier variable, binary variable

vs2(d,s) Second barrier variable, binary variable
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Similar to case 3, the hedging decisions are included in the model by adding restrictions.
For each level there are both a ≤ and a ≥ function to model the on/o� functionality.
The total hedging decision for each day is then matched with the total value of bought
and sold swap contracts.

d∗Bl∑
1+(d−1)∗Bl

q(i,s) − Plevel1 ∗Bl ≤ vs1(d,s) ∗Bl for all d

d∗Bl∑
1+(d−1)∗Bl

q(i,s) + Plevel1 ∗Bl ≥ vs1(d,s) ∗Bl for all d

d∗Bl∑
1+(d−1)∗Bl

q(i,s) − Plevel2 ∗Bl ≤ vs2(d,s) ∗Bl for all d

d∗Bl∑
1+(d−1)∗Bl

q(i,s) + Plevel2 ∗Bl ≥ vs2(d,s) ∗Bl for all d

vs1(d,s) + vs2(d,s) = vsday(d,s) − vkday(d,s) for all d

(3.10)

Case 5:

In order to compare the volume risk functions, we construct a pro�t risk function by using
the Conditional Value-at-Risk(CVaR) methodology. CVaR is a linear model to minimize
the possible loss of a scenario optimization. The proposed model adds the daily losses
and test them towards an acceptable level of total loss.6 In order to model CVaR in our
maximization set-up, the objective function stays the same, while restrictions are added.
CVaR modeling creates a necessity for the following de�nitions:

z(d,s) loss value for day d in the contract period

α Value of lowest optimal Value-at-Risk
β Con�dence level for value at risk
C Acceptable level of total loss

The restrictions included are:

6See Unger(2002) for theory about CVaR and modeling CVaR in electricity markets
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z(d,s) ≥ −
[ d∗Bl∑

i=1+(d−1)Bl

(Sp(i,s) − Pflc) ∗ q(i,s)

+
L∑

l=1

T∑
t=1

(
vs(t,H(l,d),l,s) ∗ (Fs(t,H(l,d),l,s) ∗Bl −

d∗Bl∑
i=1+(d−1)Bl

Sp(i,s))

−vk(t,H(l,d),l,s) ∗ (Fk(t,H(l,d),l,s) ∗Bl −
d∗Bl∑

i=1+(d−1)Bl

Sp(i,s))
)

−Ct ∗Bl(vkday(d,s) + vkday(d,s))
]
− α for all d

(3.11)

z(d,s) ≥ 0 for all d (3.12)

Restriction 3.11 and 3.12 de�ne z(d,s) equal to MAX[0, Possible loss for day d] for all
days in the �exible load contract period. The total value of the daily losses is then tested
versus a total acceptable level of loss, hence giving the minimization of CVaR.

α +
1

(1− β) ∗D

D∑
d=1

z(d,s) ≤ C (3.13)

The value of C,α and β are de�ned by the traders utility function.

3.5 Complete model

Combining the equations shown in chapter 3.1 and 3.2, the complete objective function
that are computed for every scenario s, becomes:

Max W = E

[ I∑
i=1

(
(Sp(i,s) − Pflc)q(i,s)

)

+
L∑

l=1

K∑
k=1

T∑
t=1


Fs(t,k,l,s) ∗M(k,l) −

∑k
m=1 M(m,l)∑

i=1+
∑k−1

m=1 M(m,l)

Sp(i,s)

 ∗ vs(t,k,l,s)


−

L∑
l=1

K∑
k=1

T∑
t=1


Fk(t,k,l,s) ∗M(k,l) −

∑k
m=1 M(m,l)∑

i=1+
∑k−1

m=1 M(m,l)

Sp(i,s)

 ∗ vk(t,k,l,s)


−Ct ∗

L∑
l=1

T∑
t=1

K∑
k=1

(
vs(t,k,l,s) + vk(t,k,l,s)

)
∗M(k,l) + φ

]

(3.14)
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Here φ is zero for case 1, 3, 4 and 5 but equal equation 3.8 for case 2. For all cases the
value of the �exible load contract is equal to equation 3.14 with φ = 0. The restrictions
in the model are the following:

q(i,s) ≥ Qmin for all i and s

q(i,s) ≤ Qmax for all i and s

I∑
i=1

q(i,s) = Qsum for all s

vs(t,k,l), vk(t,k,l,s) ≥ 0 for all t, k, l and s

(3.15)

For case 1 and 2, no restrictions are added. For case 3 and 4, equations 3.9 or 3.10 are
added respectively as restrictions. For case 5 with CVaR minimization equations 3.11,
3.12, and 3.13 are included.

The model is run for each scenario in the total optimization of the �exible load contract.
With the use of block pro�les, the number of hours in a block is multiplied with the total
value of the objective function. The model assumes that the players are price takers and
therefore cannot manipulate the prices in the spot market to the players own advantage7.

7See Overbye, Weber & Patten (2001) for theory about market power in the electricity market



Chapter 4

Modeling the uncertainty in the

electricity market

The proposed model for a FLC-optimization shown in chapter 3 uses exogenous spot
prices and swap contracts. The complexity of the electricity market, as mentioned in
chapter 2, makes the modeling of future uncertainty in the market important to the
market players.

Most of the existing literature focuses on developing realistic spot price models, where you
can derive swap price dynamics through arbitrage theory based on the time evolution of
a stochastic spot price model. Of more recent work, Geman & Roncoroni(2006) suggest a
stochastic mean reverting jump process, and successfully �t the model to several markets.
Furthermore Schindlmayr(2005) propose a stochastic regime-switching model, and adjust
it to the European Energy Exchange. For references to other articles and models on this
subject, see Kluge(2006) or the introduction in Benth & Koekebakker(2005).

Even though the predicted spot and swap prices are important to the price and out-
come of the FLC-optimization model, the demonstration and evaluation of our proposed
model only need data that represent a typical electricity market. Nord Pool, the Nordic
power market, is the oldest and most extensively researched power market. Lucia &
Schwartz(2002) present a simple one factor model for spot, future and forward prices
that incorporate a seasonal pattern, which is adequate for our purpose.

The spot price is estimated with the Lucia & Schwartz(2002) logarithmic one factor
model with a simple sinusoidal function to capture the seasonal pattern1.

Ln(Pt) = α + β ∗Dt + γ cos((t + τ)
2π

365
) + Yt

where

Yt = φYt−1 + ut

(4.1)

1Equation 38 in Lucia & Schwartz, 2002

20



CHAPTER 4. MODELING THE UNCERTAINTY IN THE ELECTRICITYMARKET21

Here Pt is the daily spot price at time t. α, β, γ, and τ are constant parameters, and the
cosine function captures the seasonal pattern in the electricity market. Yt is a discrete
stochastic process, where ut are i.i.d.2 normal random variables with mean zero and
variance σ2.

Based on the results from the spot price simulation, the future/forward price for day T
at time 0 is estimated with Lucia & Schwartz(2002)3.

F0(P0, T ) = exp[f(T ) + (lnP0 − f(0))exp−κT + α(1− exp−κT +
σ2

4κ
(1− exp−2κT )] (4.2)

Equation 4.2 is not optimal for representing Nord Pool, but is adequate for our purpose.
The future/forward price model estimates the daily swap price. In order to calculate
the price of the forward or future contract, Lucia & Schwartz(2002) use the arithmetic
average of the daily contract prices, denoted F0(P0 : T1, T2) where P0 is the spot price
at t=0. T1 and T2 represent the number of days till the beginning and the end of the
contract period, respectively. It states: 4

F0(P0 : T1, T2) =
1

T2 − T1

T2∑
T=T1

F0(P0, T ) (4.3)

Our proposed FLC-optimization model uses hourly spot prices or small blocks of hours
to determine which hours to exercise in the contract. Equation 4.3 estimates the daily
prices and we therefore need to adjust and expand the data with a pro�le for the daily
variation in spot prices. Using historic spot data from Nord Pool in 2006, we acquire a
daily pro�le by averaging every hour of the day, and show the percentage change that
every hour has got from the daily average. For the block hours we de�ne a series of 4
blocks with 6 hours. Figure 4.1 shows the average percentage change from the daily mean
for both the hourly pro�le and the block pro�le, where daily mean is given by 100%.

Figure 4.1: Average daily pro�le from Nord Pool in 2006

2i.i.d is short for independent and identically distributed
3Equation 23, Lucia & Schwartz, 2002
4Equation 41, Lucia & Schwartz, 2002



Chapter 5

Contract speci�cation and data

estimations

The proposed cases in chapter 3 will in chapter 6 be analyzed for �exible load contracts
of di�erent lengths; a month, and half a year. For simplicity, the contract agreement,
scenario simulation, and the creation of a static hedge will be set 8 weeks in advance for
the half year contract, and 2 weeks in advance for the month long contract. The monthly
contract will last from 1st of January 2007 to the 31th of January 2007, while the half
year contract from January 2007 till June 2007.

By reason of the model being a two stage stochastic model, rather than a multi period
stochastic model, trading in the market will be modeled only at contract agreement.
For the monthly optimization, there are 5 weekly swap contracts along with a swap
for January in the model. The half year optimization has 6 monthly contracts. The
transaction cost for trading in the market is set equal to Nord Pools trading fees for
swap contracts, which are 0.0287 NOK1.

Applying the simple one factor model(4.1) with parameters Lucia & Schwartz(2002) esti-
mated from Nord Pools system price from 1993 - 1999, one hundred spot price scenarios
are generated. Figure 5.1 displays the distribution of 100 scenarios for the period 2
weeks before 1st of January till the beginning February. Similarly, one set of a hundred
simulations are generated for half a year. Figure 5.2 shows the spread of the spot price
simulations used in the optimization for the 6 month long �exible load contract2. Even
though 100 scenarios result in a limited preciseness of the valuation, it is still adequate
for our test of the model. Chapter 5.1 shows the stability of our model with di�erent
number of scenarios.

The modeled spot price ignores holidays, weekends and the transition between summer
and winter time. A modeled smoothness between the dates will make the hourly prices

1Calculated from the trading fee of 0.0035 Euro (Nord Pool, 2007), with an exchange rate at 8.2
NOK/EUR

2Both 5.1 and 5.2 displays the scenarios before they are adjusted with an hourly pro�le

22
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Figure 5.1: Spot price distribution of 100 scenarios for the monthly contract optimization

Figure 5.2: Spot price distribution of 100 scenarios for the half year contract optimization

more realistic, but it is not important for the demonstration and evaluation of our FLC-
optimization model.

The forward contracts corresponding to each contract are calculated using equation 4.3,
which has parameters from the Nord Pools system price from 1993 - 1999. Figure 5.3
displays the available contracts for the one month �exible load contract optimization. In
the optimization the di�erence between buying and selling price is ignored. Nord Pool's
weekly and monthly swaps are traded with a bid-ask spread, ranging from 0.05e up to
2e . Since our model only supports a realistic static hedge, the spread has small e�ect
on the trading decisions.

Both of the two contract lengths are optimized with two di�erent set of �exibilities.
Year long �exible load contracts with maximum withdrawal of 3000 or 5000 hours were
common in Norway before the deregulation of the power market. These contracts have
a �exibility of respectively 65.7 % and 42.9 %. For a similar �exibility of a monthly
contract with 31 days, we optimize contracts with 250 and 400 hours. For the 6 months
contract we optimize contracts with 1500 and 2500 hours to withdraw. The maximum
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Figure 5.3: Month long and weekly swap contracts available for January

withdrawal per hour is set at 50 MW, whereas the minimum is set equal to 0 MW. Table
5.1 displays the di�erent contract speci�cations that we analyze.

Table 5.1: Speci�cations for modeled �exible load contracts
Length Total withdrawal Max hourly withdrawal Contract price per MWh

1 Month 250 hours 50 MWh 184.22 NOK

1 Month 400 hours 50 MWh 182.41 NOK

6 Months 1500 hours 50 MWh 171.89 NOK

6 Months 2500 hours 50 MWh 159.31 NOK

The proposed model supports block pro�les of the exercising schedule up to a daily block.
In order to test which e�ect blocks of hours has on the value of the �exible load contract
compared to hourly pro�les, we analyze four blocks of six hours. The �rst block starts
at the �rst hour of the day. Figure 4.1 displays the block pro�le and the hourly pro�le
tested.

For each computation, we are interested in the value of the contract, and the hedging
decisions. In order to compare and analyze the accumulated pro�t for the di�erent cases,
the value of risk aversion is not included. We are also interested in the withdrawal
schedule for each case, due to the hedging in the market. For practical use of the models,
the computation times are important and they are analyzed accordingly.

5.1 Model Validation

The stability of the proposed model is tested by optimizing a 500 MWh �exible load
contract with maximum of 2 MW withdrawal per hour with di�erent numbers of non-
identical scenarios. Figure 5.4 and 5.5 displays the average value of the �exible load
contract with 50, 100, 250, 500, 1000, and 10000 scenarios for an optimization of case 1
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and case 3 with a static hedge, respectively. The value for one MWh is set equal to the
value for a monthly contract with 500 hours displayed in table 5.1.

Figure 5.4: Average value of case 1 with multiple scenarios

Figure 5.5: Average value of case 3 with multiple scenarios

Figure 5.4 and 5.5 show the average value for each optimization, with the number of
scenarios on a logarithmic scale. The value of the simulation converges towards an exact
value for each case.



Chapter 6

Results

In this chapter we will look at results from the two stage stochastic optimization model
from chapter 3, and analyze how the value of the optimization is altered through the
di�erent hedging strategies described by case 2 - 5. For each case the optimal strategy
and value have been simulated with the use of 100 di�erent price scenarios. Downside
risk and upside potential will be compared for each static hedging strategy. Withdrawal
strategy and computation times are tested for each case. All results for each case will
be compared to the risk neutral optimization in case 1. Our model supports both hourly
and block pro�les, and the impact of block pro�ling will be tested for both value and
computation times.

6.1 Monthly contract

A monthly �exible load contract for January is tested with two �exibilities. A 400 hours
contract that has a �exibility in the withdrawal of 46.2 percent1 and a 250 hours contract
that has 66.4 percent �exibility. Comments on the withdrawal schedule are made after
the pro�t results from both contracts.

6.1.1 50 MW 400 hours contract

Case 1 is the risk neutral case and is used as a reference case. With a 400 hours �exible
load contract with maximum withdrawal of 50 MW per hour2, the maximum value is
almost 2.4 MNOK. The minimum value for case 1 is -1.6 MNOK. The break even value,
which describes the percentage of the scenarios that are below 0 pro�t, is 57%. The
average optimization value of all scenarios is 45 700 NOK. Table 6.1 displays the main
results for all cases analyzed and Figure 6.1 displays the accumulated pro�t for each case.

The quadratic risk aversion from case 2 sets up a static hedge where 31 MW are hedged
in week one, then 30 MW, 29 MW, 23 MW, and 0 MW are hedged respectively in the

1The �exibility is calculated by (1 - 400/744) = 46.2%
2Also referred to as a 50 MW 400 hours contract or 400 hours 50 MW contract
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following weeks. The January swap is not bought. This static hedge cuts the downside
risk with 92.4 percent to -125 012 NOK. The static hedge gives a 36% chance of a non
pro�t scenario. The upside potential is drastically lowered to only 263 647 NOK, but
this reduction of 89% is smaller than the reduction in the downside risk. The average
value for the optimization is just over 31 000 NOK.

Case 3 is an on/o�-hedge. The on/o�-hedge demands a full hedge of 50 MW in a swap
contract if the withdrawal within a contract period is 50% or higher. The optimization
with case 3 results in a static hedge, at contract agreement, of 50 MW for week 1, 2,
and 3, and zero for the last two weeks and the January swap. Compared to the risk
neutral case, the reduction in downside risk is 81.66%, and pro�t is generated for 80%
of the scenarios. The average value of the optimization is increased to almost 147 000
NOK, which is over three times as much as the risk neutral case. The maximum upside
potential is 890 000 NOK.

Case 3 is developed further in case 4 and has two limits of hedging(25% and 60%), which
each demands independently a hedge of 25 MW. By optimizing a 400 hours �exible
load contract, a static hedge is created, identical to case 3. Since the demand of 60%
withdrawal within a contract period is stricter than the demand of 50%(which is the
demand of case 3), the contract value of case 4 is smaller than the contract value of case
3. After a static hedge is created, case 3 has more freedom to choose hours than case 4.
This explains why case 4 is smaller than case 3 in all scenarios.

Pro�t risk is in case 5 modeled through CVaR. The CVaR calculates possible loss for
each day, and tests this value towards a total acceptable loss. For case 5, 50 MW of
swaps are bought for week 2 and 3. 19 MW are bought for week 4, creating the static
hedge. The minimum value for a scenario is -89 120 NOK, which is a reduction of 94.5
percent compared to case 1. The break even is reached at 21 percent and the maximum
is 863 902 NOK.

Table 6.1: Value in NOK for a 50 MW 400 hours 1 month �exible load contract with a
static hedge

Minimum value Maximum value Break even Average value

Case 1 -1 640 611 2 396 188 57% 45 000

Case 2 -125 012 263 647 36% 31 270

Case 3 -300 851 890 451 20% 146 946

Case 4 -302 751 744 089 20% 127 531

Case 5 -89 120 863 902 21% 148 834

As Figure 6.1 shows, a static hedge of the �exible load contract will reduce the downside
risk at the expense of upside potential. Of the three volume risk aversion models, case 2
reduces the downside risk almost 3 times more than case 3 and 4. The reason is that the
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Figure 6.1: Accumulated pro�t for a 50 MW 400 hours monthly �exible load contract
with a static hedge and hourly resolution

static hedge created by case 2, hedges a volume almost exact to the total withdrawal of
the �exible load contract, whereas case 3 and 4 for this contract overhedges.

Compared to the volume risk aversion function, case 5 with CVaR reduces the downside
risk slightly more than case 2. However, the upside potential is reduced for case 2 with
89% compared to case 1, the pro�t potential in case 5 is only reduced with 63.95%. The
reason for the upside potential being over 3 times higher in case 5 compared to case 2 is
the lack of withdrawal �exibility in case 2. Whereas case 5 seeks pro�t, case 2 penalizes
the optimization, but only if the withdrawal is not scheduled where the model has created
a static hedge.

6.1.2 50 MW 250 hours contract

A 250 hours monthly �exible load contract has a withdrawal �exibility of 66.4 percent.
Table 6.2 and Figure 6.2 illustrate, respectively, the main values from the optimization
and the accumulated pro�t. Since non of the cases in the 400 hours optimization bought
the swap for January, the January swap is not modeled for this 250 hours optimization.

Table 6.2: Value in NOK for a 50 MW 250 hours 1 month �exible load contract with a
static hedge

Minimum value Maximum value Break even Average value

Case 1 -989 903 1 601 970 50% 124 089

Case 2 - 79 051 279 372 18% 54 229

Case 3 -382 352 915 433 43% 97 164

Case 4 -199 547 785 016 14% 164 483

Case 5 - 58 979 562 979 14% 160 117
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Figure 6.2: Accumulated pro�t for a 50 MW 250 hours monthly �exible load contract
with a static hedge and hourly resolution

The risk neutral case 1 has a possible loss of almost 1 MNOK and a 50 percent chance
of loss. For case 2, a static hedge is created by 23 MW for week 1 and 21 MW, 15 MW,
11 MW, and 0 MW for the following 4 weeks. The downside risk is reduced with 92%
compared to the risk neutral case, at a cost of an 82.6% loss in possible pro�t.

The on/o� hedging barrier in case 3, displays a lack of �exibility in the hedging decisions,
that reduces the optimality of the hedge. The static hedge created by case 3 is 50 MW
for week 1; no other swap contracts are bought. Even though the static hedge created
by case 3 reduces the downside risk compared to the risk neutral case, the possible loss
of case 3 is over four times the loss of case 2. Case 4 has with its two barriers a more
attuned hedge compared to case 3. This results in a 47.8 percent reduction of downside
risk compared to case 3, but the risk is over 2.5 times the risk of case 2.

The CVaR pro�t risk optimization in case 5 establishes a static hedge with 50 MW for
week 3 and 24 MW for week 4. The downside risk is reduced with 94 percent compared to
the risk neutral case 1. The downside risk reduction is slightly better than the volumetric
risk function of case 2, however, similar to the 400 hours �exible load contract, the upside
potential is signi�cantly better for the optimization of case 5 than for the optimization
of case 2.

6.1.3 Withdrawal strategy

Mo & Gjelsvik(2002) state that the withdrawal of the �exible load contract is not a�ected
by the risk aversion. They model a complete market with both weekly resolution on both
spot and forward prices. Our model, with higher resolution on the spot prices compared
to the available swap contract, shows that the withdrawal is a�ected by the modeled risk
aversion for the monthly contracts. Table 6.3 displays the withdrawal strategy of the
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400 hours �exible load contract, and Table 6.4 indicates the results for the 250 hours
contract.

Table 6.3: Average withdrawal strategy for a 50 MW 400 hours 1 month �exible load
contract with a static hedge

Week 1 Week 2 Week 3 Week 4 Week 5

Case 1 23.09 % 24.56 % 22.84 % 21.24 % 8.27 %

Case 2 27.31 % 26.45 % 25.63 % 20.60 % 0.02 %

Case 3 27.09 % 26.82 % 24.75 % 14.2 % 7.15 %

Case 4 25.79 % 28.15 % 26.10 % 9.76 % 10.21 %

Case 5 24.53 % 25.53 % 20.26 % 20.80 % 8.98 %

Table 6.4: Average withdrawal strategy for a 50 MW 250 hours 1 month �exible load
contract with a static hedge

Week 1 Week 2 Week 3 Week 4 Week 5

Case 1 25.79 % 28.15 % 26.10 % 9.76 % 10.21 %

Case 2 32.38 % 29.68 % 21.64 % 16.27 % 0.03 %

Case 3 47.28 % 15.91 % 14.25 % 14.22 % 8.34 %

Case 4 24.53 % 25.43 % 20.26 % 20.80 % 8.77 %

Case 5 27.60 % 27.96 % 24.91 % 10.76 % 8.77 %

For all cases of a 50 MW 400 hours contract, the withdrawal schedule is slightly altered.
The volume risk models either penalize(case 2) or limits the withdrawal restricting the
exercising �exibility(case 3 and 4). The CVaR pro�t risk model barely alters the with-
drawal schedule to a higher withdrawal in the �rst two weeks.

The withdrawal strategy for case 2, 3, and 4 of the 50 MW 250 hours �exible load contract
is greatly in�uenced by the volume risk aversion. The extra �exibility in the 250 hours
�exible load contract compared to the 400 hours contract, results in a larger di�erence in
withdrawal strategy by reason of the restrictions or penalties in the volumetric hedging
strategy. The di�erence between case 5 and case 1, compared to the di�erence between
the quantity risk cases(2, 3, and 4) and case 1, is smaller, but the pro�t risk model in
case 5 is in�uenced by the hedging decisions.

The results from the withdrawal strategy of case 5 show that, with a modeling of the
market incompleteness and a static hedge, the most pro�table strategy might not be
identical for pro�t risk optimization and risk neutral optimization.

6.2 Hourly versus block resolution

By optimizing the 50 MW 400 hours �exible load contract with our simple block pro�le
of six hours displayed in 4.1, the hedging decisions are not changed for any of the 4 risk
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aversion cases. The average reduction in value is calculated to 0.35 NOK/MWh. The
value is identical to the transaction cost at Nord Pool for one MWh. For a 50 MW 400
hours �exible load contract, the total average value reduction is 6 924 NOK.

A block pro�le with 6 hours in each block, signi�cantly reduces the computation time
with at least 75% for the static hedge computation. This reduction in computation time
is important for a trader's possibility to utilize an optimization model for valuation of a
derivate.

Table 6.5: Computation time and average value for a month long 50 MW 400 hours
�exible load contract with hourly and block pro�le

Average value Computation time
Hour Block NOK/MWh Hour Block % change

Case 2 31269 27 687 -0.179 124.6 s 3.4 97.3 %

Case 3 146 945 138 019 -0.446 12.8 s 2.4 s 81.3 %

Case 4 127 531 119 013 -0.426 22.2 s 3.8 s 82.9 %

Case 5 148 834 142 163 -0.333 35.6 s 8.9 s 75.0 %

Even though the value of computation times displayed in Table 6.53 are small, a multi
period stochastic model have additional decision variables to calculate, resulting in longer
computation times. Arranging the hourly pro�le in small blocks of hours will, as a
consequence, drastically reduce the computation time without a signi�cant loss in value.

An optimization where the resolution of the spot price is 1 day(blocks of 24 hours), the
loss in value of an optimization for case 1 is 14.44 NOK/MWh for a 250 hour �exible load
contract and 12.63 NOK/MWh for a 400 hour contract. By this reason, a daily pro�le
divided into blocks will give a better value of the optimization compared with a daily
or larger resolution of the spot price. However, estimating the optimal block resolution
based on value and computation time is beyond the purpose of this paper.

6.3 6 months contract

In the valuation of a six month long �exible load contract, ranging from January till June,
the block pro�le of six hours displayed in Figure 4.1 is used in the optimization. The
swap contracts in the market are modeled through six monthly contracts. Accumulated
value and a static hedge are created for both a 2500 hours(42.4% �exibility) and a 1500
hours(65.5% �exibility) with a maximum hourly withdrawal of 50 MW.

3All test are run with a P4 2,4GHz with 4 GB ram computer on aWin-XP platform. The programming
code for Xpress IVE might not be the most e�cient.
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6.3.1 50 MW 2500 hours

The optimization of a 2500 hours �exible load contract with maximum withdrawal of 50
MW, results in a downside risk for the risk neutral case of 8.68 MNOK. Table 6.6 and
Figure 6.3 illustrates the optimization for all �ve cases evaluated.

Figure 6.3: Accumulated pro�t for a 50 MW 2500 hours six month long �exible load
contract with a static hedge and block resolution

Table 6.6: Value in NOK for a 50MW 2500 hours 6 month �exible load contract with a
static hedge

Minimum value Maximum value Break even Average value

Case 1 -8 682 765 10 491 977 43% 124 089

Case 2 -92 577 536 125 18% 107 460

Case 3 -840 465 3 444 824 33% 541 630

Case 4 -2 919 807 2 272 278 51% -135 297

Case 5 -276 701 3 406 661 14% 657 572

The static hedge created by case 2, hedges 50 MW for January and February, 49 MW
for March and 24 MW for April. For May and June, no swaps are bought. The static
hedge reduces the possible losses with 98.9% compared to case 1, at the cost of a reduced
pro�t potential of 94.5%.

Similar to the monthly contracts of case 3 and 4, the static hedge created by case 3
and 4 for the half year contract, results in an overhedge for months with high expected
withdrawal and underhedge for months with little expected withdrawal. This results,
compared to case 2, in a hedge that is not optimal. The downside reduction of risk is
90.3% and 66.4% for case 3 and 4, respectively. Compared to the risk reduction of 98.9%
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for case 2, the downside risk reduction of case 3 and 4 are low and comes as a result of
the poor static hedge.

Case 5, with a CVaR pro�t risk modeling, creates a static hedge with 50 MW for the
�rst two months, 28 MW for March, then 24 MW, 19 MW and 0 MW for the last three
months, respectively. The downside risk is reduced with 96.8% compared to the risk
neutral optimization. The upside potential is, similar to the optimization of a monthly
contract, far better than the possible gains optimized for case 2.

6.3.2 50 MW 1500 hours

The 50 MW 1500 hours �exible load contract has a possible loss of 5.34 MNOK for case
1. The results from case 1 and the four other cases evaluated, are given in Table 6.7 and
Figure 6.4.

Figure 6.4: Accumulated pro�t for a 50 MW 2500 hours six month long �exible load
contract with a static hedge and block resolution

Table 6.7: Value in NOK for a 50 MW 1500 hours 6 month �exible load contract with a
static hedge

Minimum value Maximum value Break even Average value

Case 1 -5 338 915 7 795 034 38% 1 019 506

Case 2 -47 609 493 974 5% 161 925

Case 3 -2 163 547 3 285 921 29% 580 518

Case 4 -1 363 359 3 268 206 32% 414 920

Case 5 -84 662 3 916 554 1% 822 306

The quadratic volume risk aversion modeled with case 2, reduces the downside risk with
99.1%. This is accomplished through a hedge with swap contracts of 50 MW in January,
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43 MW in February and 15 MW in March. For case 3 and 4, a poor static hedge results
in a possible downside of -2.16 MNOK and -1.63 MNOK respectively.

Case 5 reduces the possible loss with 98.4% to 84 662 NOK compared to Case 1. However
the reduction is slightly less than the reduction of case 2, but the upside potential is,
similar to the three previously analyzed contracts for case 5, far better than the potential
of case 2. The static hedge created by case 5 is 50 MW, 29 MW and 25 MW, respectively,
for the three �rst months.

6.3.3 Withdrawal strategy

As for the monthly contracts, the withdrawal strategy is altered from the risk neutral
case 1 to the volume risk aversion cases of case 2, 3, and 4. Table 6.8 and 6.9 display
the withdrawal strategy for the 1500 hours and the 2500 hours contract respectively.
The alteration of the withdrawal in the volumetric risk cases is(similar to the monthly
contracts), due to the restrictions in withdrawal the static hedge creates.

Table 6.8: Average withdrawal strategy for a 50 MW 2500 hours 6 months �exible load
contract with a static hedge

January February March April May June

Case 1 26.93 % 23.07 % 22.10 % 13.14 % 8.39 % 6.36 %

Case 2 29.76 % 26.88 % 29.22 % 13.91 % 0.12 % 0.11 %

Case 3 27.96 % 24.36 % 24.33 % 10.62 % 7.35 % 5.47 %

Case 4 21.92 % 19.40 % 21.23 % 19.01 % 13.43 % 5.01 %

Case 5 26.93 % 23.07 % 22.10 % 13.14 % 8.39 % 6.36 %

Table 6.9: Average withdrawal strategy for a 50 MW 1500 hours 6 months �exible load
contract with a static hedge

January February March April May June

Case 1 38.60 % 29.54 % 15.91 % 7.49 % 5.17 % 3.30 %

Case 2 49.55 % 38.49 % 11.90 % 0.03 % 0.02 % 0.01 %

Case 3 37.98 % 27.70 % 26.56 % 4.07 % 2.37 % 1.32 %

Case 4 34.19 % 29.34 % 23.42 % 5.61 % 4.43 % 3.01 %

Case 5 38.60 % 29.54 % 15.91 % 7.49 % 5.17 % 3.30 %

The CVaR pro�t risk model in Case 5, has an exact withdrawal schedule similar to
risk neutral optimization. This result is di�erent from the withdrawal strategy of the
monthly contract. The monthly contract has di�erent withdrawal strategies, because the
static hedge created by the model. Whereas the static hedge for both half year contracts
resemble the hedge from case 2, the case 5 hedge for the monthly contracts are more
di�erent. This results in the alternation of the withdrawal strategy for monthly case 5
optimizations.
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6.4 Discussion

The best withdrawal strategy is reached by modeling the pro�t risk aversion. From a
static hedging perspective, pro�t risk modeling does not alter the withdrawal strategy
compared to a risk neutral strategy, if the static hedge is a good hedge. In volume risk
modeling, the restrictions or penalties will limit the model to exercise the most pro�table
hours.

For a static hedge, the ability to create the best possible hedge, is extremely important.
In our modeling, the quadratic volume hedge creates the best hedge, while the CVaR
model, of case 5, has more freedom in the exercising strategy, and therefore picks the
best hours based on the hedge. From the perspective of a static hedge, a CVaR risk
reduction based on the hedge created by the quadratic volume risk of case 2, will in our
modeling create the best results.

In the linear integer function of volume risk aversion(based on the method of case 3),
additional barriers must be included in order to give a good hedge. The inclusion of more
barriers, will however result in a slower model. In the interest of pro�t and computation
times, there are no grounds for a further development of this method of valuating �exible
load contracts.

For the half year optimization, the seasonal �uctuations modeled, results in spot and
swap prices in the �rst two months being far higher than the of the last two months.
As a result, the reduction in downside risk for the optimization is better than the of the
monthly contract, where the weekly di�erences are less pronounced.

Comparing the �exibility of the contracts, the 400 hours monthly contract and the 2500
hours half year contract have a higher value of break even compared to the 250 hours
monthly contract and the 1500 hours half year contract. This indicates that extra �exibil-
ity in a �exible load contract results in a higher probability of pro�t. However, if one com-
pares the �exibility to real option theory, additional �exibility may cost more(Trigiorgis,
1996). Higher �exibility in a �exible load contract might result in a larger risk premium.
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Conclusion

We propose a two stage stochastic optimization model, in order to simultaneously valuate
and hedge a �exible load contracts in an incomplete electricity market. The model
includes all available swap contracts in the market and supports hourly resolutions for the
withdrawal strategy and spot market. The aforementioned, which results in a complete
presentation of the market, leads to good and realistic withdrawal and hedging decisions.
On the basis of withdrawal schedule and hedging decisions, the value of a �exible load
contract can be derived with the traders utility function.

We test our model with hourly resolution and a block resolution of six hours. We show
that a block resolution with a small number of multiple hours drastically reduce the
computation time, without a signi�cant loss in value of the optimization compared to
the hourly resolution. However, a daily or larger resolution of the spot price will result
in an extreme reduction of the value of the optimization. The loss in value arises because
the daily average spot price ignores the hourly variation in spot prices.

Risk aversion is modeled through utility functions for both volume risk and pro�t risk.
The best static hedge is created with a utility function, which minimize the volume
exposed of the expected withdrawal schedule. However, based on a static hedge, a utility
function minimizing pro�t risk creates the best withdrawal schedules. This illustrates
the importance of modeling a good risk aversion for reduction of the downside risk in a
�exible load contract.

Our results indicate that a �exible load contract with higher �exibility increases the
chance for higher pro�t. This may result in a higher risk premium. However, our results
are not conclusive.

36
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Further work

The model presented in this thesis is only capable of optimizing a static hedge for a
�exible load contract. The reason for the inability to create a realistic dynamic hedge, is
the limitations of a two stage stochastic optimization model. By evolving the model to a
multi stage stochastic optimization model, a discrete dynamic hedge can be created for
the contract. This method will probably give more realistic results and the potential pro�t
might increase. With a multi stage stochastic optimization the stochastic movement
of the electricity price will be modeled better. The uncertainty modeling is therefore
improved with a multi stage stochastic optimization. One way to solve this challenge is
by using a discrete Markov chain.

A discrete Markov chain has N number of states for each time step and each of these
states has transition probabilities which lead the next state. This method is used by
Mo et al.(2001) in the price model they present. Vogstad(2004) also makes use of this
method, but instead of grouping the spot price scenarios into N bins, with as equal bin
width as possible for each time period, he minimizes the area di�erences between the
bins. This method gives a better representation of the distribution of the data.

Another possible adjustment to the model is the spot and swap price modeling. By
changing to a more complex price model, more of the characteristics of the electricity
price will be captured, giving more realistic prices for the spot and swap markets. An
adjustment in the spot and swap price modeling will have an e�ect on the hedging
sequences.

The hedging strategy of a small maximum withdrawal per hour(10 MW or less), produce
the problem of integer variables for the computation. Since swap contracts only are
available in an integer multiple of 1 MW, optimizing the best hedge might therfore result
in large computation times. Further research may be assigned to the problem of integer
variables for small �exible load contracts.

From the 12th of June 2007 Nord Pool includes peak contracts to complement their prod-
uct range. This inclusion reduces the incompleteness of the market. If peak contracts are

37
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included in our modeling, better pricing and hedging decisions may be derived. Another
small development of the model presented in this thesis is to include discounted cash
�ow.

Asian options can also reduce the risk of a �exible load contract, but they are rarely
traded in the electricity market and have low liquidity. If the liquidity of asian options
rises, the e�ects of risk management with asian options should be studied on a �exible
load contract.

Further, it is important to consider the buyers and sellers perspective, and determine a
reasonable and mutual utility function for all the market players. Based on the previous,
risk premium can be derived for the contracts in the market and get an approximately
correct price for the �exible load contracts.
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