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Abstract

With an increasing number of ancillary services and energy markets, the decision making process
for a power producer is becoming more complex. In this report a stochastic dynamic model is
developed to find the optimal bid in the primary reserve market for a thermal, CCGT, power
producer who coordinates bidding in the primary reserve market and day-ahead market. The
reserve market in question is modeled with a pay-as-bid auction and limited competition, while
the day ahead market is modeled with a uniform price auction and is seen as competitive.
The report concludes that it is profitable for the modeled power plant to participate in both
markets. A sensitivity analysis with respect to characteristics of the power plant and prices in
both markets, indicate that the results are sensitive to changes.
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Nomenclature

Sets

H Set of settlements in the day-ahead market within a day
I Set of generating units within the producers portfolio
T Set of stages, days, in the bidding period
TD Set of stages with day-ahead bidding , TD⊆T
Π Set of policies

Indices

h Settlement hour
i Generator
t Stage
π Policy

Parameters

cSi Start-up cost for generator i ∈ I
p̂R Relevant market price of capacity in the primary reserve market
p̂E Efficiency market price of capacity in the primary reserve market
p̂M Market price of capacity in the primary reserve market
p̂EM Difference between efficiency and market price of capacity in the primary reserve market
p̂Dth Price of electricity in hour h ∈ H of stage stage t ∈ TD in the day-ahead market
p̂Dt Vector with t ∈ TD elements in which each element is given by p̂Dth for h ∈ H
Qmaxi Maximum production level of generator i ∈ I
Qmini Minimum production level of generator i ∈ I
QPmax Maximum bid in the primary reserve market
QPmin Lowest bid in the primary reserve market
Rupi Maximum ramp-up rate of generator i ∈ I
Rdowni Maximum ramp-down rate of generator i ∈ I
T oni Minimum number of time periods generator i ∈ I must remain on

T offi Minimum number of time periods generator i ∈ I must remain off
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Variables

at Decision made in stage t ∈ T
qPtot Total capacity bid in the primary reserve market in stage t=1
qPthi Primary reserve capacity reserved on unit i ∈ I for h ∈ H of stage t ∈ TD
qPt Vector with t ∈ TD elements in which each element is given by qPthi for h ∈ H and i ∈ I
qDthi Energy bid into the day-ahead market to be delivered by unit i ∈ I for h ∈ H of stage t ∈ TD
qDt Vector with t ∈ TD elements in which each element is given by qDthi for h ∈ H and i ∈ I
pP Price of capacity bid in the primary reserve market for t = 1
uthi 1 if generator i ∈ I is turned on from an off-state in hour h ∈ H of stage

t ∈ TD, 0 otherwise
ythi 1 if generator i ∈ I is on in hour h ∈ H of stage t ∈ TD, 0 otherwise

Functions

ci(·) Cost function of generator i ∈ I
Ct(·) Contribution function in stage t ∈ T
f p̂

R

(·) Probability density function of the relevant market price in the
primary reserve market in stage t = 1

f p̂
E

(·) Probability density function of the efficiency price in the primary reserve
market in stage t = 1

f p̂
ME

(·) Probability density function of the difference between the efficiency and the
marginal price in the primary reserve market in stage t = 1

PA(·) Probability of acceptance of a bid in the primary reserve market in stage t = 1
SM (·) State transition function
Vt(·) Value function in stage t ∈ T
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1 Introduction

Availability of electricity is central for modern society and security of supply is dependent on
a continuous balance between electricity consumption and generation. In the past years, al-
most all areas within the European Network of Transmission System Operators for Electricity
(ENTSO-E) have experienced an increasing number of frequency deviations, and an increase in
the amplitude and duration of the deviations [1]. These patterns are most prominent at the
change of hour in the morning and evening due to an increased power supply during these pe-
riods of the day. Frequency deviations are also the result of critical stochastic events such as
outages of power plants and loads. The increased amount of reserves needed to counteract the
deviations at the change of hour necessarily reduces the available reserves in case of stochastic
events. The result is a tighter reserve limit and a risk of insufficient availability of reserves in
the case of an outage.

Demand for reserves is also expected to grow in the years to come, due to a closer connected
European power system and a larger share of non-flexible renewable, intermittent energy. The
intermittent, renewable resources are characterized as being non-dispatchable, hence the generat-
ing units cannot be regulated in order to match changes in demand. Consequently, the remainder
of the generation capacity has to complement the variability of the non-flexible resources [2].
This challenges, and will continue to change, the way power markets are operated.

Several markets have been established in order to ensure system security and keep the system
in balance. In European power markets, the different ancillary services and energy markets
are cleared in sequence. All markets provide revenue for power producers, but the amount
bid in one market reduces the possible amount that can be bid in other markets. Hence, the
bidding decisions are interdependent and the decision problem becomes increasingly complex.
Coordinating the multimarket bidding decisions can increase the possible revenue of the power
producers.

This report considers the unit commitment problem of a thermal power producer in Switzerland
whose objective is to maximize profit by bidding into both the primary reserve market and
the day-ahead market, taking uncertain prices into account. The problem is solved by using
stochastic dynamic programming. The day-ahead market and the primary reserve market are
cleared in a uniform price auction and a pay-as-bid auction respectively. The report concludes
that there is potential to increase profits by coordinating bidding in the primary reserve market
and the day-ahead market.

To our knowledge, no other work has analysed coordinated multimarket bidding within the
Swiss primary reserve market and day-ahead market, and no other work uses stochastic dy-
namic programming to model multimarket bidding in these markets. The report contributes
to the literature by assessing the value of optimal multimarket bidding in the primary reserve
market and the day-ahead market. Moreover, the model can serve as a decision support tool for
producers bidding in the primary reserve market.

In Section 2 relevant literature on bidding in the primary reserve market and day-ahead market
is discussed. Section 3 introduces the Swiss power market and the operation of thermal power
plants. The stochastic dynamic problem of coordinated bidding in the primary reserve market
and the day-ahead market is presented in Section 4. Modeling of the pay-as-bid auction in the
primary reserve market as well as an analysis of historical primary reserve prices are presented
in Section 5. In Section 6 the methodology of scenario generation for uncertain historical prices
in the day-ahead market is presented. In Section 7 the model is tested with anonymized and
slightly modified data from a continental European thermal power producer. The case study
investigates bidding in the primary reserve market and day-ahead market during a 12 day bidding
period from 2015-02-03 to 2015-02-14. The week of delivery is from 2015-02-09 to 2015-02-15.
The section further discusses sensitivity of the results. Section 8 presents the conclusion and
discusses future work on coordinated bidding in the primary reserve market and the day-ahead
market.
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2 Literature

The changing market environment has lead to extensive research on building models for decision
and analysis support that are consistent with the new market context [3]. In [3] three major
trends are identified within the area; optimization models, equilibrium models and simulation
models. Optimization models are models that consider a single supplier, whose objective is to
maximize profit given either exogenous prices, or prices as a function of the producers decisions.
Several models and solution procedures within this area have been proposed, some of which will
be presented in the following.

Optimal bidding in the day-ahead market is modeled in many papers, and a review can be found
in [4]. Bidding within the day-ahead market often consists of integrating optimal bidding with
unit commitment. In [5] a model is developed to build optimal bidding strategies for a Nordic
hydro producer taking the unit commitment decision and uncertainty into account. Other models
discussing unit commitment are [6] and [7]. The unit commitment problem in [6] is formulated
in a real time market setting, while [7] takes unit commitment constraints into account when
using real options in valuation of power plants. A model for profit maximisation in a reserve
market with pay-as-bid pricing rules is described in [8].

Since deregulation, an increasing number of markets have been established and market partic-
ipants are becoming more aware of the opportunities seen within these markets [9]. In [9] the
effects of committing several levels of regulation obligations in different regulation markets are
investigated seen from a hydropower producer’s perspective. Some of these markets are modeled
with pay-as-bid auctions.

In [10] evolutionary programming is used to maximize profit for a supplier with several genera-
tors, taking both the deregulated day-ahead market and the reserve market into account. In [11]
a genetic algorithm is proposed to be used in order to solve the coordinated bidding problem in
situations with different start-stop conditions. Stochastic dynamic programming is used in [12]
to schedule production in a hydroelectric system for a price-taking producer bidding energy and
capacity in the day ahead market and primary reserve market, respectively. In [8] bidding in a
competitive day-ahead market with uniform price auction and a reserve market with a pay-as-bid
auction, in which the bidder has the opportunity to behave strategically, is considered.

In contrast to [10] and [11], [8] does not consider the bidding information of rival bidders to be
known, leading to an approach in which the probability distribution of the market price is used to
model the behaviour of the other bidders. The problem is furthermore solved analytically. Both
[9] and [12] consider optimal multimarket bidding for a hydropower producer. The Swiss market
is analyzed and prices are treated as deterministic parameters in [9]. In [12] the Norwegian
market is analyzed and prices are treated as exogenous, stochastic variables in a stochastic
dynamic problem.
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3 Electricity markets in Switzerland

In this section, the structure of the Swiss power market is presented with a focus on the primary
reserve market and the day-ahead market. Characteristics of a gas-fired thermal power plant
are also discussed.

3.1 The liberalized Swiss power market

The Swiss power market became liberalized in 2008 when the Electricity Supply Act came into
force. The act included the establishment of an independent regulator and an independent system
operator, the Swiss Federal Office of Energy, SFOE, and Swissgrid respectively. Regulated third-
party access to the grid and freedom to choose supplier was included in the liberalization process
[13]. In the first phase only participants with production or consumption above 100 MWh were
included in the liberalization. However, full market opening was realized in 2014.

To keep a secure supply of electricity in Switzerland, electricity is traded in multiple markets.
The goal is that markets further away from operating time settle the majority of demand, while
markets closer to operating time take care of the smaller deviations [14]. An overview of the
Swiss electricity market is given in Table 3.1.

Table 3.1: Electricity markets in Switzerland [15], [16]
Market Place Physical trade Financial trade Time frame

EPEX spot Day-ahead auction - 24 hours
Intraday auction - 1 hour

Regelleistung Primary reserves - 1 week

Swissgrid (TSO) Primary reserves - 1 week
Secondary reserves - 1 week
Tertiary reserves - 4 hours and 1 week

EEX - Futures > 6 years
- Options > 6 years

EPEX spot operates both the day-ahead auction and the intraday auction in several European
countries, including Switzerland. Most of the electricity on EPEX spot is traded in the day-
ahead auction. The intraday market offers an opportunity for the market participants to change
their production schedules closer to real time. Both the day-ahead market and intraday market
are open to cross-border trading between France, Germany, the Netherlands and Switzerland. A
common European electricity market coupled with the PCR algorithm is also in the process of
being implemented across Europe. The algorithm will be used to allocate capacity across borders
in Europe and by this provide fair and transparent determination of day-ahead prices. This will
ensure overall maximization of welfare and an increase in the transparency of computation of
prices and flows [17].

In order to keep the system in balance and to ensure security of supply, the TSO has access
to ancillary services, including frequency control, reactive power for voltage regulation, and
black start capabilities [18]. The required amounts of ancillary services in Switzerland is set
by the Union for Co-ordination of Transmission of Electricity (UCTE), and follow ENTSO-E
requirements. Frequency control mechanisms can be divided into primary, secondary and tertiary
reserves, as presented in Table 3.2. Primary reserves are activated automatically when the system
experiences frequency deviations of±200 mHz from the set standard of 50 Hz. Secondary reserves
will be activated if the primary reserves are not able to handle the deviations, or it takes over in
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order to free primary reserves capacity. If needed, tertiary reserves can be manually activated
within 15 minutes [19].

Table 3.2: Control reserves in Switzerland
Reserve Activation time How Supply

Primary reserves Immediately Automatically +/- 90 MW

Secondary reserves 30s Automatically Varies

Tertiary reserves 15 min Manually Varies

The European Power Exchange operates a derivative market where market participants can
purchase futures and options in order to hedge against risks of price changes [16]. Maturities of
months, quarters and years are offered, and the underlying price of the derivatives is the system
price.

Electricity production in Switzerland is dominated by hydro power and nuclear energy. In 2014
hydropower plants contributed about 55% to overall electricity production, nuclear power plants
contributed with about 41%, thermal power plants with about 3% and other renewable energy
sources contributed with about 1% of overall electricity production [20].

3.2 Day-ahead market

Trading in the day-ahead market takes place until gate closure at 12:00 the day before delivery.
Electricity is traded in hourly time intervals and the price and volume for each hour are settled
by the intersection between the aggregated supply and demand curve. The auction for day-
ahead energy is a uniform price auction, meaning that every producer whose bid are accepted
receive the same price per MWh accepted. The prices bid on EPEX Spot must lie between -500
e/MWh and 3000 e/MWh. Historical day-ahead prices from 2007 to 2015 are presented in
Figure 3.1

Market participants can bid energy in the day-ahead market as standalone bids, where volume
and price for each hour are specified independently from hour to hour, or as different types of
block bids. There are different block orders ranging from standard block orders to user defined
block orders and smart blocks. A standard block order is an order for a set time interval, e.g
Night from 1am-6am. The market participants also have the option to bid for a set of linked
hours of their own choice. Smart blocks consist of linked block orders or exclusive block orders.
A linked block order is an order with a linked execution constraint, meaning that all bids in the
block have to be accepted in order for the block to be executed. An exclusive block order is a
set of block orders where a maximum of one of the block orders can be executed [19].

3.3 Primary reserve market

Imbalance between supply and demand will cause the frequency in the power grid to deviate from
its setpoint value of 50 Hz. This will affect the behaviour of electrical equipment and can in the
worst case lead to system breakdown [1]. Primary reserves are activated automatically within
seconds when a deviation of ±200 mHz from the setpoint value arises in the system. Primary
reserves can be provided by different types of power plants, including thermal and hydroelectric
power plants, responsive loads and storage able to change output in a short period.

Primary reserves are purchased by the TSO to ensure secure operation of the power system. In
Switzerland the demand for primary reserves is 71MW. Swissgrid procures 25 MW of this demand
through the open tender process in the common primary reserve market where German, Austrian,
Dutch and Swiss producers participate. Participating countries must provide a minimum of 90
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Figure 3.1: Average monthly day-ahead prices in Switzerland EPEX Spot, January 2007-October
2015 [21]

MW, but a maximum of 30% of its own demand for primary reserves. If 30% of a country’s
demand is less than 90MW, the country’s suppliers must in total supply 90MW. For Switzerland
this results in a total supply of 90MW. The remaining demand for primary reserves is covered
by other requests for tender issued by Swissgrid [15]. In this report, only participation in
the common market is considered. There is no obligation for producers to participate in the
market.

Producers who wish to participate in the market must enter into a framework agreement with
Swissgrid following a prequalification where the technical and operational status of their gener-
ators are assessed [15]. The generators are tested with a frequency deviation of ±200 mHz, and
the power deviation 30 seconds later is measured. The aims of the tests is to find the deadband
and droop of the generating unit. The droop determines how fast a unit can regulate its pro-
duction up or down under frequency deviations. The droop, denoted D, is given as the ratio
between the relative frequency change and the relative power change, as stated in Equation (1).
The relative frequency change is given by the size of the frequency deviation with full activation
of the primary reserves compared to the nominal frequency in the power system. The relative
power change is given by the primary reserve capacity the unit has bid into the market. Hence, a
higher droop setting means that the unit reacts less strongly to frequency deviations [22].

D =

∆f
fnom
∆P
Pnom

100% (1)

Primary reserve bidding takes place before 15:00 every Tuesday. The tendering period extends
from Monday 00:00 until Sunday 24:00. The total volume of primary control power must be
available without interruption in this period. Allowed bids run in increments of 1 MW starting
at 1 MW. An upper limit on the tendering is individual for each supplier and is decided in the
prequalification described above. The primary reserve capacity is based on a supplier’s portfolio
of power plants and there is no link between a specific generator and the primary reserve bid.
Hence, a supplier can freely distribute the capacity over the portfolio of its generators, allowing
the reserve capacity available at a single generator to vary within the delivery week. The TSO
must be informed of which generators that are available, so that it is clear that the contracted
reserves are available within the portfolio of the supplier [23].

The auction for primary reserves takes the form of a pay-as-bid auction where suppliers whose
offers are accepted receive the price quoted. The suppliers only receive a capacity price for
reserved capacity, hence producers are not remunerated for energy delivered [24]. The incentive
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of the supplier will in such an auction be to bid as close to the clearing price, the price of the
maximum bid accepted in the auction, as possible [25].

The price of primary reserves vary throughout the year. In Figure 3.2, the average price for pri-
mary reserves in Switzerland from July 2012 until November 2015 are illustrated. The efficiency
price is the lowest bid in the market and the marginal price is given by the highest accepted bid
in the market.

Figure 3.2: Weekly primary reserves prices, marginal price (blue) and efficiency price (green),
2011-06-27 to 2015-11-01 [26]

3.4 Thermal generators

In a thermal generator, energy from different sources is converted to electricity in high-pressure
turbines. The choice of fuel, which can be either renewable or non-renewable, largely impacts
the functioning, as well as the cost, of the thermal power plant. In this report, a thermal CCGT
power plant consisting of a gas and steam turbine is taken into account, and is thus the focus of
this section.

Gas-fired power plants can be divided into two sub-groups; combustion turbines and steam
turbines. The technology of combustion turbines are based on the principle of expanding warm
gas, while a steam turbine is based on expansion of steam. A steam turbine is characterized
by being more efficient but less flexible than a combustion turbine. A combustion and steam
turbine can also be combined in a combined cycle power plant (CCGT). By using waste heat
from the gas combustion process to produce steam in a heat recovery steam generator, the two
technologies together increase the efficiency of the plant [27]. A combustion turbine can be said
to generally have an efficiency of 36-38%, a steam turbine an efficiency of 42-45% and a CCGT
plant an efficiency of 55-58% [28]. Moreover, the emissions from a CCGT plant are lower and
the plant is more flexible than a conventional thermal plant. An example of the topology of a
CCGT plant is given in Figure 3.3.

Thermal power plants are designed and operated differently and the costs of each unit are
unique. Characteristics of their operation are however similar. These characteristics restrict the
operation of the power plant and affect both the efficiency and costs of generation.

A thermal power plant is characterized by a minimum and maximum rated capacity. Below the
minimum level, a plant’s operation is characterized by instability due to insufficient temperature
and excessive emissions. Hence, optimal production lies above the minimum rated capacity and
below the maximum rated capacity. Furthermore, a thermal power plant is characterized by
having limited flexibility. This leads to restrictions on dispatch and unit commitment, meaning
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Figure 3.3: Illustration of plant topology, CCGT [29]

that there are restrictions on the possibility of changing the output of the generator and on
changing the status of the generator by turning it on or off. The limited flexibility of the power
plant is a consequence of thermal stress associated with cycling. During cycling, the boiler, steam
lines, turbine, and auxiliary components experience large thermal and pressure stresses, which
cause damage to the equipment [30]. Ramping rates, start-up and shut-down time and minimum
up- and down-time are often used in order to model this limited flexibility. The ramping rate
restricts the possibility to change generation. Start-up time represents the time it takes for
a power plant to start-up and reach a stable state of operation. The status of the generator
determines the time it takes for the power plant to start-up. Consequently, starting the power
plant after the plant has completely cooled down requires more time than a warm or hot start.
Minimum up- and down-time are used in order to take the economic limits of operations into
account. These constraints should not be viewed as hard physical constraints, but as economic
limits [27].

Thermal stress leads to higher operation and maintenance costs. There are costs associated both
with ramping and start-up. Start-up costs can be broken down into direct costs, depreciated
costs and lost profit [31]. The direct costs include fuel cost and cost of additional manpower
due to an increased need to supervise the process. Depreciated costs include costs related to an
increased need for maintenance and a shortening of the unit’s life due to thermal stresses. Lost
profits during start-up should also be taken into account.

Producers participating in the market for primary reserves need to take the above-mentioned
characteristics into account when planning their bid. Operation when delivering primary re-
serves requires continuous changes in output. This increases the thermal stress on the plant
and consequently the operation and maintenance costs. Units supplying primary reserves must
furthermore be running in order to deliver primary reserves immediately when needed. Running
on partial load reduces the efficiency of production and consequently increases the marginal cost
[30].

The technical ramping rates mentioned above do not necessarily restrict the amount of primary
reserves a thermal power plant can deliver. In the short term, gas-fired power plants are able
to provide additional energy very quickly by releasing thermal energy stored in the generation
process [27]. The amount of primary reserves a thermal power plant can deliver is given by the
droop setting of the plant as discussed in Section 3.3. Primary reserves from thermal power plants
can be delivered mainly in two ways; high pressure control valve dethrottling and condensate
flow stoppage [32].
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4 Problem formulation: Stochastic dynamic programming

The objective of the thermal power producer is to maximize profit when bidding in the day-ahead
market and the primary reserve market. Bidding in the two markets is done sequentially. The
primary reserve market is settled before bidding in the day-ahead market takes place. Hence,
the capacity to be delivered in the primary reserve market restricts the bidding decisions that
can be made in the day-ahead market.

The problem is a type of unit commitment problem. In a deregulated market the unit commit-
ment problem consists of deciding on the amount to dispatch from every generating unit with
the objective to maximise profit. This problem also includes decisions on when to start-up and
shut-down the generating unit [6]. Unit commitment depends on the market rules and the phys-
ical and economical restrictions on the operation of thermal power plants as discussed in Section
3. Constraints on ramping, production limits and run-times are therefore taken into account.
This requires binary variables the use of, which means that the unit commitment problem is a
mixed integer problem.

Different solution techniques have historically been used in order to solve the unit commitment
problem. A bibliographical survey covering unit commitment can be found in [33]. The survey
furthermore gives an overview of solution methods for unit commitment problems. The methods
range from theoretically complicated methods to simple rule-of thumb methods. Examples of
methods are mixed-integer linear programming, Lagrangean relaxation, heuristics and dynamic
programming. In this report, stochastic dynamic programming is used to solve the unit commit-
ment problem taking both the primary reserve and day-ahead market into account. By using
dynamic programming the multistage decision problem of the producer is solved by indepen-
dently solving a sequence of simpler sub-problems. Advantages of dynamic programming are
that the method can be used to solve many types of problems of varying sizes, and that the
method can be modified in order to take problem-specific characteristics into account. On the
contrary, the method makes it difficult to include constraints across stages, an issue dicussed in
both [6] and [33]. This is further discussed in Section 7.1.

4.1 Assumptions

It is assumed that the producer operates a portfolio of thermal generators which may be of the
same type. All generators have an availability of 100%, meaning that there is no probability of
failure and there are no risks associated with not being able to deliver contracted capacity or
energy.

The producer participates only in the day-ahead market and the primary reserve market. De-
mand in the primary reserve market is low compared to what a producer might deliver and the
market is seen as having limited liquidity. One reason for this is that not all generators are ca-
pable of providing regulation reserves due to operational practice or lack of necessary equipment
to follow the regulation signals [34]. This reduces the number of participants in the auction for
primary reserves and the producer is consequently modeled with the possibility to affect prices
in the primary reserve market. The market for day-ahead energy is on the contrary seen as deep,
with no possibility to affect marginal prices. Hence, the producer is modeled as a price taker in
the day-ahead market. The model takes only hourly bids in the day-ahead market into account,
and block bids and linked hourly bids are left out.

It is assumed that the producer is risk neutral and seeks to maximize expected profit. Profit is
considered only for the given period, and conditions before and after this period are not taken
into account. This means that the optimization problem is not constrained by previous or later
bidding decisions. Final electricity prices are exogenous information that first become known
after bidding decisions are taken.
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4.2 Stage, state and decisions

The stochastic dynamic problem is solved sequentially moving through the stages of the problem.
A stage is defined as a day when a producer makes a bid for delivery of primary reserve capacity
or day-ahead energy. The state is denoted by an index t=1,...,|T |, in which T is the set of all
stages. The stages in which day-ahead energy is bid are denoted by TD ⊆ T . The reserved
capacity resulting from the bidding decision in the primary reserve market in stage t = 1 will
affect production for a period of one week. According to the market rules, the available primary
reserve capacity must be the same in every hour in every stage of the period. In the day-ahead
market, the bidding decisions and settlements occur on two different schedules, every day versus
every hour respectively. Bidding in the day-ahead market takes place at t=2,...,|T | and the
respective settlements are made for each hour the following day. The hourly settlements will be
denoted by index h=1,...|H| , in which H is the set of settlements within a day. The bidding
process is illustrated in Figure 4.1.

Figure 4.1: Illustration of the bidding decision and stages

In each stage, the state of the system is defined by a state vector St = (p̂R, p̂Dt , q
P
t , q

D
t ) ∈ S in

which S is the state space, the collection of all states. The state is given by the price of capacity,
p̂R, and the price in the day-ahead market, p̂Dt . The state variable p̂Dt is a vector of |H| elements
in which each element h corresponds to p̂Dth. The state is furthemore given by the states of the
thermal generators, including the amount of capacity delivered, qPt , and the amount of day-ahead
energy, qDt , they supply.The state variables qPt and qDt are two dimensional vectors of |I| rows
and |H| columns in which each element i, h corresponds to qPthi and qDthi respectively.

The decision to be made in the first stage is the amount and price of capacity the producer is
to bid in the primary reserve market for a given week. The decision variables are denoted by
qPtot and pP respectively. This is decided by calculating the value of having all generators i ∈ I
reserve capacity qPthi and deliver electricity qDthi for all h ∈ H in all stages t ∈ TD. The aim is
to decide the amount qP to bid in the primary reserve market in order to maximize expected
profit. The values given to qPthi and qDthi in the optimal decision are decided under uncertainty.
These values are given by the policy of the optimal solution, but should be reevaluated when
there is no or less uncertainty. The decisions in every state will, when needed, be denoted by at
which is defined as given in Equation (2).

at =

{
{pp, qPtot} t = 1

pDt ∀t ∈ TD
(2)

4.3 Objective function

The objective is, as previously mentioned, to maximize total profit for the thermal power pro-
ducer bidding in the day-ahead market and the primary reserve market assuming random prices.
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In the following, the objective function will be presented and its components will be discussed.

The contribution function for the problem is given by

Ct(at|St) =


PA(p̂R > pP ; qPtot)p

P qPtot t = 1

∑
i∈I

∑
h∈H

[qDthip̂
D
th − ci(qDthi)− cSi uthi] ∀t ∈ TD

(3)

Giving an objective function

max
π∈Π

E[
∑
t∈T

Ct(at|St)] (4)

For most problems, solving this equation is computationally intractable. The objective function
can however be expressed recursively by using the standard form of the Bellmann equation.
For stochastic dynamic problems the expectation form of the Bellmann equation is often used
[35], and will be used here as well. In this formulation, the sum over probabilities is given by
expectation as stated in Equation (5).

Vt(St) =


max
qPtot

(Ct(p
P , qPtot|St) + E{Vt+1(St+1)|St}) t = 1

max
qDt

(Ct(q
D
t |St) + E{Vt+1(St+1)|St}) ∀t ∈ TD

(5)

The formulation often includes a discount factor but due to the short time horizon of the problem
it will not be taken into account in this report. The value of being in stage t is given by the value
function Vt(St). A value must be given to V|T |+1 to solve the problem. In this case V|T |+1 = 0,
since it is assumed that the current bidding period does not affect the next one.

The contribution function Ct(at|St) is state dependent and the expected value of the next stage
E{Vt+1(St+1)|St} is dependent on the state transition to St+1. The state transition function,
SM (St, at), in a stochastic dynamic program is given by the current state, the decision made
in the current state, and the outcome of the random parameters of the problem [35] and is
described for this problem by Equation (6).

St+1 =

{
SM (St, p

P , qPtot, p̂
R) t = 1

SM (St, q
D
t , p̂

D
t ) t ∈ TD

(6)

To apply this model, the uncertain prices must be independent from stages before the immedi-
ately preceding stage for all t, meaning that pDt is independent from previous prices except from
the price pDt−1 in the stage before. Thus, the price has to fulfill the Markov Property.

The cost of day-ahead energy is given by a cost function dependent on delivered energy. There
are no explicit costs associated with bidding and reserving capacity in the primary reserve mar-
ket. The cost of bidding in the primary reserve market is the opportunity cost of not being able
to bid the reserved capacity in the day-ahead market. Increased level of operation and main-
tenance (O&M) costs associated with delivering primary reserves, as discussed in Section 3.4,
are not taken into account due to the time frame of the model and are thus the same whether
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or not primary reserves are delivered. Such costs could be taken into account in a study of the
long-term costs and benefits of participating in reserve markets.

The generation cost function is often modeled as a quadratic function of the output [7]. It can
however be modeled as a piecewise linear function to allow for the use of linear programming
methods. There are several different methods proposed in the literature for linearizing functions.
Using the most common method, the cost function for unit i can be linearized as described by
(7)-(10) [36].

The breakpoints of the cost function ci(q
D
thi) are defined as Bik and lie in the interval [0, Qmaxi ].

The set of breakpoints is denoted by Mi for generator i, and the weight that is put on breakpoint
Bik in hour h of stage t is denoted by tthik.

l(ci(q
D
thi)) =

∑
k∈Mi

ci(Bik)tthik ∀t ∈ TD, h ∈ H, i ∈ I (7)

qDthi =
∑
k∈Mi

Biktthik ∀t ∈ TD, h ∈ H, i ∈ I (8)

∑
k∈Mi

tthik = 1 ∀t ∈ TD, h ∈ H, i ∈ I (9)

tthik ≥ 0 ∀t ∈ TD, h ∈ H, i ∈ I, k ∈Mi (10)

Only two adjacent tthik can be larger than 0. This is taken care of by the problem formulation
itself, due to the maximization of revenue in the objective function. Revenue is maximized when
the cost is minimized, thus two adjacent breakpoints will be the optimal solution since the cost
function is convex.

The generator cannot generate electricity immediately after starting up. An idle thermal gen-
erator will need a specified time to start-up. The start-up costs are given by the term CSi uthi,
where uthi is equal to 1 when generator i is turned on.

4.4 Constraints

A producer whose bid in the primary reserve market has been accepted is obligated to supply
qPtot at all times within the bidding period. This means that the available primary reserves from
all units in the portfolio has to be equal to qPtot for all hours within each stage as described by
(11).

∑
i∈I

qPthi = qPtot ∀t ∈ TD, h ∈ H (11)

Each generator has a minimum and maximum rated capacity. This has to be taken into ac-
count when bidding into both the primary reserve market and the day-ahead market. A unit
providing primary reserves must be on, and it must have the ability to both decrease and in-
crease production by the amount of capacity the generator has reserved in the primary reserve
market.

qDthi + qPthi ≤ Qmaxi ythi ∀t ∈ TD, h ∈ H, i ∈ I (12)

qDthi − qPthi ≥ Qmini ythi ∀t ∈ TD, h ∈ H, i ∈ I (13)
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Constraint (12) states that the maximum energy bid in the day-ahead market and the primary
reserve market every hour in every stage has to be less than the maximum capacity of the thermal
generator. The same is governed by constraint (13) with respect to the minimum capacity of
the generator.

In order to change the generated power of a thermal power plant, thermal and mechanical inertia
in the system have to be overcome [37]. As explained, there are consequently ramping constraints
associated with the operation of the thermal generator.

qDthi − qDt(h−1)i ≤ R
up
i + (Qmini −Rupi )(1− yt(h−1)i) ∀t ∈ TD, h ∈ H \ {1}, i ∈ I (14)

qDt1i − qD(t−1)24i ≤ R
up
i + (Qmini −Rupi )(1− y(t−1)24i) ∀t ∈ TD \ {2}, i ∈ I (15)

qDt(h−1)i − q
D
thi ≤ Rdowni + (Qmini −Rdowni )(1− ythi) ∀t ∈ TD, h ∈ H \ {1}, i ∈ I (16)

qD(t−1)24i − q
D
t1i ≤ Rdowni + (Qmini −Rdowni )(1− yt1i) ∀t ∈ TD \ {1}, i ∈ I (17)

Constraints (14) and (16) take care of ramping restrictions within the stage, while (15) and (17)
handle these restrictions across stages. The ramping restrictions are only defined for production
within the minimum and maximum production levels given by constraints (12) and (13). The
reason for this is that when the maximum ramping rates are smaller than minimum production,
(12) and (13) restrain the model from ramping production down below Qmini to turn a unit off,
or up to Qmini when it is turned on. This is solved by constraining a unit i to not produce when
generation falls below Qmini . In reality a unit would gradually ramp down to or up from zero
production. The costs incurred in this process can be included in the start-up costs.

The dynamic programming algorithm cannot handle ramping restrictions across stages in a
straightforward manner. This can be taken care of by discretizing the production variables [7].
Note however that this will increase the state space of the problem and moreover increase the
computational burden [37].

Costs arise when units are turned on/off and this is handled by constraints (18)-(20). These
costs arise when a unit shifts from an off-state to an on-state, and uthi = 1. Constraint (18)
models this for units that are turned on within a stage and (19) takes care of the constraints
between stages. The generator is assumed to be in the same on/off state in the first hour in the
first stage as it was in the last hour the day before, which is given by (20).

ythi − yt(h−1)i ≤ uthi ∀t ∈ TD, h ∈ H \ {1}, i ∈ I (18)

yt1i − y(t−1)24i ≤ ut1i ∀t ∈ TD \ {2}, i ∈ I (19)

u11i = 0 ∀i ∈ I (20)

The generating units have to be on/off for a given time when turned on and off. This is modeled
with minimum up- and downtime constraints specifying the time the unit has to be on/off,
following [6].

ythi − yt(h−1)i ≤ ytki ∀t ∈ TD, i ∈ I, h ∈ H \ {1, |H| − T oni + 2, ..., |H|},
k = h+ 1, ..., h+ T oni − 1

(21)

yt1i − y(t−1)24i ≤ ytki ∀t ∈ TD \ {2}, i ∈ I, k = 2, .., T oni − 1 (22)
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ythi − yt(h−1)i ≤ y(t+1)ki ∀t ∈ TD \ {|T |}, i ∈ I, h = |H| − T oni + 2, ..., |H|,
k = 1, ..., T oni − |H|+ h− 1

(23)

yt(h−1)i − ythi ≤ 1− ytki ∀t ∈ TD, i ∈ I, h ∈ H \ {1, |H| − T offi + 2, ..., |H|},

k = h+ 1, ..., h+ T offi − 1
(24)

y(t−1)24i − yt1i ≤ 1− ytki ∀t ∈ TD \ {2}, i ∈ I, k = 2, .., T offi − 1 (25)

yt(h−1)i − ythi ≤ 1− y(t+1)ki ∀t ∈ TD \ {|T |}, i ∈ I, h = |H| − T offi + 2, ..., |H|,

k = 1, ..., T offi − |H|+ h− 1
(26)

Constraints (21)-(23) handle the minimum up-time, and (24)-(26) handle the minimum down-
time of the units. Constraint (21) models the minimum up-time within stages, while (22) models
the minimum up-time between the first hour in the current stage and the last hour in the stage
before. Constraint (23) models the minimum up-time between the current stage and the next
stage. (24)-(26) are similar; (24) is the within-stage down-time constraint while (25) and (26)
take care of the special conditions between stages.

pP ≥ 0 (27)

qPtot ≥ 0 (28)

qPthi ≥ 0 ∀t ∈ TD, i ∈ I, h ∈ H (29)

qDthi ≥ 0 ∀t ∈ TD, i ∈ I, h ∈ H (30)

uthi ∈ {0, 1} ∀t ∈ TD, i ∈ I, h ∈ H (31)

ythi ∈ {0, 1} ∀t ∈ TD, i ∈ I, h ∈ H (32)

Constraints (27)-(32) handle the domain restrictions of the variables.
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5 Primary reserves pay-as-bid auction

Studies of pay-as-bid auctions in electricity markets have used different approaches. In [38] a
method that uses a combination of particle swarm optimization and simulated annealing is used
in order to predict bidding strategies of other suppliers in a setting of incomplete information.
In [39], [40] and [41] uniform and discriminatory (pay-as-bid) pricing rules are compared. In
[40] a model-based approach is used in order to model the pay-as-bid auction and in [41] a
combination of game theory and auction theory is used. In this report, the approach in [25] and
[8] is used.

In this section, the theory behind modeling the reserve market pay-as-bid auction as described in
[25] and [8] is explained, and a Gaussian-mixture model and an Erlang distribution are fitted to
the historical primary reserve prices in Switzerland. Distribution fitting and testing is conducted
in the statistical software R applying the maximum likelihood method. Historical prices of
primary reserve are from [26].

5.1 Pay-as-bid modeling

The price that is received for an accepted bid in a pay-as-bid auction is the bid quoted. This
means that a bidder should bid as close to the marginal price as possible. The marginal price
is the price of the highest accepted bid. To find the optimal bid, the probability of acceptance
given by PA(p̂M > pP ) needs to be taken into account. This is the probability that the quoted
price of the bid pP is lower than the marginal price p̂M .

In a market with perfect competition the marginal price will not be affected by the size of
the capacity, qPtot, bid by a single bidder. However, in a market where bidders possess market
power their bid can influence the price. In Switzerland the pay-as-bid market can be said to
have limited liquidity. As explained in Section 3.3, a producer must be prequalified before he
can participate in the primary reserve market. Not all units have the technical or operational
possibility to fullfill these requirements. The cost of prequalification furthermore vary from case
to case [24]. These factors create barriers for some producers to enter into the primary reserve
market, and can explain the low number of participants in the auction for primary reserves. This
indicates that it can be reasonable to take into account bidders possibility to affect the market
prices. The marginal price resulting from the price and capacity bid, is denoted the relevant
market price and is given by p̂R.

The probability of acceptance, considering that a bid is accepted only, and entirely, if the relevant

market price is higher than the bidding price is given by Equation (33), where f p̂
R

(pP ; qPtot) is
the probability density function of the relevant market price given by (34). The density function,

f p̂
R

(p; qPtot), of the relevant market price is found by applying a single-sided convolution of the

probability density function of the efficiency price, f p̂
E

(p), and the probability density function

of the difference between marginal and efficiency price ,f p̂
ME

(p). The efficiency price is the
lowest price bid in the auction.

PA(p̂R > pP ; qPtot) = 1−
∫ pP

−∞
f p̂

R

(p; qPtot)dp (33)

f p̂
R

(pP ; qPtot) =

∫ ∞
0

f p̂
E

(pP − k(qPtot)u)f p̂
ME

(u) du (34)

The term k(qPtot) ∈ [0, 1] in Equation (33) is the linear index of the merit order given by Equation
(35). QPmax and QPmin represent the size of the primary reserve market, QPmax being the
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maximum amount of MW bid into the market and QPmin being the minimum amount of MW
in the market. In Switzerland these are 90 MW and 1 MW respectively. Hence, the linear index
represent the inverse of the market share of the producer.

k(qPtot) =
QPmax − qPtot

QPmax −QPmin
(35)

Using the probability of acceptance the price and capacity that maximizes expected profit of
bidding in the primary reserve market as stated in the contribution function, given by Equation
(3), can be found. The effect of the suppliers possibility to affect the market price in subsequent
periods is not considered.

Using this approach and considering the assumption of risk neutrality of the producer, a single
bid is sufficient for optimized bidding. It is not necessary to submit a discrete supply curve as
is often proposed. A bid will only be accepted if it is advantageous to the procurer and if it
displaces the offers of the competing bidders. Bidding more than one would result in displacing
another bid on the bidder’s own supply curve.

The derivation of (33)-(35) follows from [25] and [8] and can be found in the appendix.

5.2 Probability distributions of primary reserve prices in Switzerland

Figure 5.2 illustrates the historical prices in the primary reserve market in the period 2011-06-
27 to 2015-11-01. The marginal and efficiency price are seen to follow each other closely, but
the marginal price exhibit more price spikes than the efficiency price. Both the marginal and
efficiency prices vary with the season; prices fall during late winter/early spring before they
increase towards the summer and autumn.

The case study in Section 7 investigates bidding in the primary reserve market and the efficiency
market during a 12 day bidding period from 2015-02-03 to 2015-02-14 Due to the small amount
of available data relevant for the bidding week of the second week of February, all data available
from the period 2011-06-27 to 2015-11-01 are used in the analysis of primary reserve prices. The
component model of time series, states that a time-series of prices can be decomposed into four
components; a seasonal component (S), a cyclic component (C), a trend component (T) and
an irregular component (I). Hence using all available historical data, mean that the data have
to be adjusted. Cycling and trend have not been taken into account, but the data have been
seasonally adjusted. As seen in Figure 5.1, the two time series are highly cross-correlated. In
order to keep the correlation between the two time series, only the efficiency price has been
seasonally adjusted. The difference between the marginal price and efficiency price is therefore
assumed to be represented by the original distribution. The seasonal adjustment is done by
multiplicative monthly adjustment by dividing the weekly value of the primary reserves time
series with the corresponding monthly seasonal index. The monthly seasonal index represents
the normal, typically observed values within the given season and is found by dividing the average
monthly primary reserve prices on the overall average for the year. The seasonally adjusted time
series, adjusted to February price level, are illustrated in Figure 5.3. Price characteristics of
both the original and seasonally adjusted time series are given in Table 5.1.
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Figure 5.1: Cross correlation between the efficiency and marginal price, 2011-06-27 to 2015-11-01

Figure 5.2: Weekly historical primary reserves prices, marginal price (blue) and efficiency price
(green), 2011-06-27 to 2015-11-01. [26]

Figure 5.3: Weekly seasonally adjusted primary reserves prices, marginal price (blue) and effi-
ciency price (green), 2011-06-27 to 2015-11-01 [26]

By further analysing the historical price data in the primary reserve market, the distribution
of p̂E and p̂ME that are used in order to find the distribution of the relevant market price are
estimated. Histograms of the seasonal adjusted time series are given in Figure 5.4. The difference
between the marginal and efficiency price is positively skewed to the right and can be modeled
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Table 5.1: Price characteristics of historical and seasonally adjusted data
Price Mean Median Min Max

Marginal price 3651 3463 2052 9253

Efficiency price 3060 2888 1925 4995

Marginal price* 3578 3328 2314 9210

Efficiency price* 2987 2859 1805 4995

by a log-normal or gamma distribution. The distribution of the efficiency price is seen to consist
of two modes with two distinct spikes. Hence, a multimodal normal probability density functions
with two modes can be seen to fit the data. If the distributions are to be integrated analytically,
the choice of probability density functions representing the efficiency price and the difference
between the marginal and efficiency price is limited. In [8], this is taken care of by modeling
efficiency prices with a Gaussian-mixture model with two modes and the difference between the
marginal and efficiency price with an Erlang distribution. The Erlang distribution is a variant
of the gamma distribution with integer shape. The shape parameter of the Erlang distribution
in [8] is two, facilitating analytical integration of the convolution. These distributions are seen
fit the data of the Swiss market well, and are consequently used to model the efficiency price
and the difference between the efficiency and marginal price in the Swiss market.

Figure 5.4: Log-transformed, seasonal adjusted primary reserves prices, marginal price (blue)
and efficiency price (green), 2011-06-27 to 2015-11-01

The probability density function of the multimodal normal probability distribution is given by
Equation (36) and the probability density function of the Erlang distribution is given by Equation
(37). The probability distributions are fit to the historical data of the efficiency price and the
difference between the marginal and efficiency price respectively. The resulting characteristics
of the fitted distributions are given in Table 5.2 and 5.3. Histograms of the historical data with
the approximated distributions are illustrated in Figure 5.5.

fE(p) =
∑
m∈M

λi
1

σ
√

2π
e−

(p−µ)2

2σ2 (36)

f∆ME(p) =
p

b2
e−

p
b (37)
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Table 5.2: Multimodal normal distribution
Mode Mean SD Lambda Log-lik

Mode 1 2665.75 234.43 0.48 -1730.504

Mode 2 3286.90 577.30 0.52 -1730.504

Table 5.3: Erlang distribution
Mode Shape Scale Log-lik

Erlang distribution 2 295.60 -1711.825

Figure 5.5: Probability density functions, efficiency price (left) and difference between marginal
and efficiency price (right)

6 Day-ahead price scenario generation

Forecasting electricity prices has become a more prominent task after deregulation due to the
risks associated with volatile prices. Volatility, often correlated with price level, is one on of the
key features often observed within electricity markets. Other features observed within electricity
markets are seasonal patterns, periodicity, price spikes, mean reversion and long-term non-
stationarity [42]. Seasonal patterns and periodicity are closely connected to variations in demand.
Price spikes with following mean reversion is often observed due to e.g stochastic events such as
power plant outages with following recovery. Due to uncertainty in the long term, prices seem
to follow a non-stationary model in the long-term, meaning that the statistical properties of the
time series are non-constant over time. In the short term prices are however seen to be stationary.
Different forecasting methods reflecting these characteristics have been proposed in the literature.
The methods can be divided in three main groups; game based models, simulation based models
and time series models [43]. Time series models uses historical behaviour of electricity prices in
order to forecasts future price development, and is used in order to model day-ahead prices in
this report.

Prices in a stochastic dynamic program are required to follow, and hence to be modeled, as
Markov processes. This means that p̂Dt only depends on p̂Dt−1. This limits the possible models
that can be used in modeling and forecasting day-ahead prices. The first order autogregres-
sive model, AR(1), is consistent with the Markov Property and is used to model and forecast
day-ahead prices within the Swiss market. A scenario generating procedure based on optimal
discretization by the use of nested distance is thereafter applied in order to discretize the distri-
bution of prices. Price modeling is conducted in the statistical software R applying the maximum
likelihood method. Historical day-ahead prices are from [21].
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6.1 Day-ahead price modeling

The average day-ahead price is given in Figure 6.1. From the figure, it can be seen that day-
ahead prices before 2010/2011 were significantly higher than prices following 2011/2012. The
reasons for this can be the recent deregulation and the economic recession following the financial
crisis. Due to this, only prices from 2011 have been considered relevant in analysing, modeling
and forecasting electricity day-ahead prices.

Figure 6.1: Average monthly day ahead prices in Switzerland EPEX Spot, January 2007-October
2015 [21]

Modeling day-ahead prices, historical values during six weeks of January/February in the period
2011-2015 have been taken into account. The historical prices and their characteristics are
illustrated in Figure 6.4 and in Table 6.1 respectively. By using historical data for January only,
only data most relevant for the chosen period is taken into account and hence no seasonal or
cyclic adjustment is needed. Trend adjustment is neither conducted, but could be included in a
future study. Taking only separate weeks into account however means that the months have to
be treated as separate time series. Since the hourly prices for the next day are revealed at the
same time, the hourly day ahead prices are not characterized as a time series. Hourly prices are
in fact a panel of 24 cross-sectional hours that vary from day to day [44]. Thus the time series
of the day-ahead prices are modeled on a daily basis.

Figure 6.2: Daily prices January/Febuary, 2011-2015
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Table 6.1: Price characteristics, January/February 2011-2015
Date Mean Median Min Max

2015-01-05 to 2015-02-15 47.39 47.29 30.98 62.99

2014-01-06 to 2014-02-16 49.37 51.00 22.08 59.65

2013-01-07 to 2013-02-17 56.58 56.46 41.93 72.18

2012-01-01 to 2012-02-12 66.24 61.09 27.04 155.30

2011-01-03 to 2011-02-13 59.13 60.98 36.45 67.40

The AR(1) model is given by Equation (38), where εt is i.i.d white noise with 0 mean, E(εt) = 0,
and a finite variance. E(ε2t ) = σ2. The model assumes no correlation within the time series,
(εt.εs) = 0. The time series has to be stationary in order to use this model, and testing the
separate time series with the Augmented Dickey-Fuller test indicate stationarity.

yt = c+ φ1yt−1 + εt (38)

A common convention in the literature is to model prices in electricity markets as log-prices. A
log transformation is applied in order to attain a more stable variance. Moreover, if prices had
been negative, it would constrain the price to be positive. Day-ahead prices are consequently
transformed to log-prices before the parameters of the AR(1) model are estimated. The pa-
rameters of the AR(1) model fitted to historical log-data for six weeks in January/February in
2011-2015 are given in Table 6.2. Note that the model for 2015 is based on historical prices for
only the four weeks of January up until the Tuesday the week before delivery. This is due to
the analysis focusing on bidding into the Primary reserve market and day-ahead market for the
the second week of February, 2015-02-09 to 2015-02-15. The quality of the model is estimated
by the log-likelihood values and t-values. Estimation of t-values and p-values indicate that the
significance of the parameters are high, rejecting the null-hypothesis that the coefficient have no
effect. The plot of the ACF of the residuals in Figure 6.3 furthermore illustrates the randomness
of white noise of the fitted distributions. Note that the ACF plot in R always plot the 0-lag
value as 1.

Table 6.2: AR(1) model, January/February 2011-20155
Date Param. Estimate Std. error Log-lik t-value p-value

2015-01-05 to 2015-02-03* φ1 0.4148 0.1764 23.54 2.35 0.0263
c 3.8185 0.0339 23.54 112.64 0.0001

2014-01-06 to 2014-02-16 φ1 0.3474 0.1612 10.13 2.16 0.0370
c 3.8718 0.0448 10.13 86.42 0.0001

2013-01-07 to 2013-02-17 φ1 0.6879 0.1158 46.40 5.94 0.0001
c 4.0165 0.0380 46.40 105.70 0.0001

2012-01-01 to 2012-02-12 φ1 0.8803 0.0684 12.14 12.90 0.0001
c 4.0660 0.1993 12.14 20.40 0.0001

2011-01-03 to 2011-02-13 φ1 0.5517 0.1259 35.42 4.38 0.0001
c 4.0747 0.0347 35.42 117.4 0.0001

As seen from table 6.2, the parameters of the price paths vary some from year to year. The mean
value of φi is 0.5764 and the mean value of c is 3.9695. The parameters of the AR(1) model for
2015 can be seen to lie not far from the mean values of the parameters. Moreover, they lie in an
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Figure 6.3: ACF plot of residuals from AR(1) model

interval between the values of the parameters from previous years. The price path for 2015 can
also be seen from Figure 6.4 to follow the price paths from previous years, except from the last
days of February 2012. Due to this and also the fact that the historical prices used to estimate
the 2015 AR(1) model are closer in time to the bidding week, the forecast for the bidding week
is based on the historical 2015 AR(1) model.

Bidding into the primary reserve market takes place Tuesday the week before the week of delivery,
and hence prices for 12 consecutive days following the bidding day are forecasted. 5000 individual
price paths are simulated by the AR(1) model for 2015 and Figure 6.4 illustrates 25 of the
simulated price paths.

Figure 6.4: Simulated prices, 2015-02-03 to 2015-02-14
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6.2 Multinomial lattice

A stochastic dynamic program cannot, except in a few cases, be solved with a continuous dis-
tribution. The stochastic variables consequently have to be discretized in a discrete distribution
with a limited set of outcomes. One of the main challenges of scenario generation, is the trade-off
between a good approximation of the continuous distribution, and the dimension and the com-
plexity of the model. The solution of the stochastic dynamic program will be an approximation
of the real phenomena and the quality of the scenario generation algorithm largely affects the
results of the stochastic problem.

The stochastic dynamic problem in this report is solved on a multinomial lattice. This is a
structure that models the stochastic dynamics of the problem and the evolution of information.
There is a finite number of outcomes of the price at each stage, all with a given probability of
occurrence. A lattice is similar to a scenario tree, but considers identical children for all nodes
at the same stage [45]. The result is that the number of variables does not grow exponentially
as it does in a scenario tree. The number of possible paths in the lattice is however large. An
illustration of the lattice is given in Figure 6.5.

Figure 6.5: Illustration of lattice

There are several methods for generating scenario trees and lattices. An overview can be found
in [46]. The best method will secure a low computational complexity and a high approximation
quality. The scenario generation method chosen in this paper is based on the concept of nested
distance and the work of Pflug and Pichler in [45], [47] and [48]. The method is a non-parametric,
optimal discretization method. A high level of approximation quality is secured through the use
of nested distances, which is a generalization of the Wasserstein distance for stochastic two-stage
problems [47].

The goal of the model is to minimize the distance between the approximated stochastic process
and the real process. For a two-stage problem this can be described by Inequality (39) where L
is a Lipschitz constant of the cumulative distribution function and d(ξ̃T , ξt) is the Wasserstein
distance. The Wasserstein distance is used for optimal discretization of the stochastic process
due to its nice relations to the distance of the objective function [48]. The goal of the scenario
generating algorithm is to minimize the Wasserstein distance.

ef (ξ̃T , ξt) ≤ 2sup
x

[F (x; ξt)− F (x; ξ̃T ] ≤ 2Ld(ξ̃T , ξt) (39)

Complete data series generated from the AR(1) model described in Section 6.1 are used as input
to the lattice. A Matlab script developed by Pichler is thereafter used in order to generate
the lattice given in Figure 6.7 [49]. The script calculates the resulting distance of the scenario
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generation procedure to be 6.4157. The aim of the scenario generating procedure is to minimize
this distance. The algorithm for nested distance will be optimal given infinitely many input-
scenarios. Having only 5000 scenarios as input consequently affect the result of the procedure.
A larger stepsize used in finding the optimal clusters, i.e pricespoints, between each scenario
reduces the distance, but gives an uneven scenario tree with outliers. Hence, there is a trade-off
between minimizing the distance and obtaining an even tree which approximates the real values
in a good way.

The number of states per stage is chosen as input to the scenario-generating algorithm. The
number of states per stage affects the resulting shape of the lattice and the nested distance. The
approximation of the solution space should be small enough to allow for an efficient numerical
solution but also secure a small approximation error. Having more states decreases the distance
and contributes to creating a more even tree. However, the time taken to solve a problem on a
scenario lattice increases with the number of states. Due to each bidding-day in the day-ahead
market being similar, the number of states in each stage is chosen to be the same.

Figure 6.6: Generated lattice with forecasted day-ahead prices to be used in the stochastic
dynamic program [49]

There are other methods which can be used in order to generate scenario trees and lattices based
on historical data, e.g moment matching or quantile regression. In order to assess the quality of
the scenario generating method described above, and used in this report, 5000 random samples
from the lattice were sampled with replacement and compared to the data simulated from the
historical AR(1) model. The mean value and the 10th, 30th, 60th and 90th percentile of the
random sampled values from the lattice and values generated from the AR(1) model are given in
Figure 6.7. As can be seen from the two graphs, the lattice provides values giving approximately
the same mean value but with a more varying price level in the percentiles between each stage.
The histograms in 6.7 illustrate the outcomes in the last stage for both sampled values from the
scenario lattice and from values generated by the AR(1) model. The bin size in the histogram
is chosen to be 10 e/MWh since the lattice provides 10 possible price outcomes in each stage.
Given the results from this analysis, the scenario generating procedure based on nested distance
is seen to satisfactorily represent the day-ahead prices modeled by the AR(1) model.
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Figure 6.7: Percentiles and histogram of historical values in last stage, AR(1) values (above)
and 5000 random samples (below)

The lattice provides daily electricity prices and their corresponding probability. In order to find
the contribution in each stage, hourly prices are needed. By using multiplicative adjustment
with factors calculated from the historical prices for each day within the analysed period, hourly
prices can be found. The hourly factors are found similarly to the monthly adjustment factors
in 5.2. However, average hourly prices divided by the overall daily average is used instead of
respectively average monthly values and yearly values. Calculated hourly factors for each day
within the bidding week are illustrated in Figure 6.8.

Figure 6.8: Hourly factors, Monday-Sunday
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7 Case study

A case study has been conducted to evaluate the model presented. Simplifications that have
been made are described below. In the study the optimal bid of a power producer bidding into
the Swiss primary reserve market and day-ahead market during a 12 day period from 2015-02-03
until 2015-02-14 is found. The week of delivery is from 2015-02-09 to 2015-02-15.

7.1 Implementation

In the implementation, a power producer with only one generator is considered. Hence, the
subscript i, used in the model formulation in Section 4, is not considered in the description of
the implementation. Minimum up- and down-time are not included in the implementation due
to large increases in the state space if they are included. As discussed in Section 3.4, these
constraints are seen as economical constraints and do not represent strict technical restrictions.
A high start-up cost is however taken into account in order to reflect the cost of starting up and
avoid production with short start-stop periods.

The problem is solved using backward induction, treating each stage as a separate subproblem.
As the decision made in the first stage restricts the possible bidding decisions in all the remaining
stages, the problem is solved for every possible bidding decision in t = 1. The model is run with
a scenario lattice generated with 5000 scenarios and 10 states per stage as described in Section
6. The lattice represents the development of day-ahead prices for 12 days following bidding into
the primary reserve market. Bidding in the day-ahead market takes place only during the last
seven days represented by the lattice, but the lattice needs to represent prices for all 12 days and
their corresponding probability of occurrence in order to find the transition probabilities from
the first to the second stage.

Given the bidding rules presented in Section 3.3 the possible capacities to bid in the primary
reserve market run in increments of 1 MW from 0 MW to 90 MW, and the producer must have
the same capacity available for the whole bidding week. The model is therefore implemented
with 90 iterations through the scenario lattice with the value of qPtot running in increments of 1
MW between each iteration. The parametric value of qPtot is denoted by QPtot. This is similar
to restricting the transition between two states to only be allowed if qPtot is the same in both
states.

Ramping constraints for each hour within each stage are considered by each subproblem as
described by Constraints (14) and (16). Handling the ramping restrictions described by Con-
straints (15) and (17) is however difficult since they run between stages. To incorporate these
constraints, qDth would have to be discretized. This would increase the state space and the com-
putational burden considerably. The proposed approach in this report is to predefine an allowed
production interval for qD(t−1)24 and qDt1 in which the ramping restrictions are not violated. The
interval is found by solving a small optimization problem with an the objective function as given
by (40) for all t ∈ TD \ {2} with respect to Constraints (41) and (42). The objective is to find
the production level, z, that maximizes the profit given price, P avg, and cost of production,
C(z). The price, P avg, is the average of the expected prices in the first hour of the current day,
t, and the last hour the previous day, t − 1. Constraints (41) and (42) restrict the production
level to lie in the interval between Qmax − QPtot and Qmin + QPtot when the unit is delivering
primary reserves. When the unit is not delivering primary reserves, the constraints restricts the
production level to lie between Qmax and Qmin or to be 0. The parameters of the problem are
the same as in the main stochastic dynamic problem. The parameter V cap is specific for this
problem, and is 1 if QPtot is larger than 0, meaning that the unit has reserved capacity in the
primary reserve market, and 0 otherwise. The problem is solved separately for all t ∈ TD \ {2}
and the results are stored in an array where each element z in the array corresponds to the day
t they were solved for. These parameters are denoted zt and are used in the subproblem.
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max P avgz − C(z) (40)

st.

z ≤ (Qmax −QPtot)y (41)

z ≥ (Qmin +QPtot)V
cap + (Qmin +QPtot)(y − V cap) (42)

z ≥ 0 (43)

The resulting production restrictions for qD(t−1)24 and qDt1 in the stochastic dynamic optimization

problem is given by Constraints (44) and (45). These are added to the problem described in
Section 4. Because the production in the last hour one day is restricted to be in the same interval
as the first hour the next day, no start-up costs occur in the first hour of any day.

zt −
Rdown

2
≤ qD(t−1)24 ≤ zt +

Rup

2
∀t ∈ TD \ {2} (44)

zt −
Rdown

2
≤ qDt1 ≤ zt +

Rup

2
∀t ∈ TD \ {2} (45)

While moving backward through the stages, the value function is iteratively updated by finding
the optimal policy and corresponding contribution function. The optimal policy of each state
is the optimal bidding decision given the available information in that state. For every value
of the bidding capacity, qPtot, the expected profit for the period considered is calculated. The
contribution in the primary reserve market in the first stage, t = 1, is calculated by Equation
(3). The optimal policy in the first stage is the decision that maximizes the expected value, as
given by Equation (5). A high-level pseudocode of the implementation is given below.

Algorithm 1: The implemented problem

input : Distribution of historical primary reserve prices, scenario lattice for day-ahead prices
output: Optimal policy for t=1
Initialize Policy array
Initialize Contribution array
Initialize Value array

for qPtot ← 0 to QPmax do
Find production intervals for the first and last hour for every day of the week as given by
(40)–(45)
Set V|T |+1 to 0
for t← |T | to 1 do

for state← 1 to nStatesPerStage do
if t=1 then

Find the optimal policy by solving th subproblem given by (3), (5), (33)–(35)
and (27)–(28) and store it in the Policy array

else
Find the optimal policy by solving the subproblem given by (3), (5)–(14),
(16),(18)–(20) and (29)–(32) and store it in the Policy array

Calculate the contribution of the optimal policy using (3) and store it in the
Contribution array
Calculate the expected value of the optimal policy using (5) and store it in the
Value array

Find the optimal policy by finding the maximum expected value in the Value array
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7.2 Technical data of the CCGT power plant

The model has been tested with operational cost data for a CCGT plant received from Powel
[29]. The data is anonymized and slightly modified data from a continental European power
producer. The implemented model takes only the cost, production limits and ramping rates
of the CCGT system into account. As a simplification the size of the plant is measured by
the maximum and minimum production levels of the gas-unit. Table 7.1 displays the relevant
technical data of the unit.

Table 7.1: Technical data of the generating unit
Qmax Qmin Rup Rdown

[MW] [MW] [MW/min] [MW/min]

292.09 74 24.33 11.23

The costs of running the CCGT plant can be broken into start-up costs, fuel costs, O&M costs
and costs of CO2. Fuel costs for the modeled CCGT plant are adjusted values from the gas
turbine fuel consumption received from Powel so that the efficiency of the plant mirrors the
efficiency of a CCGT plant. The part-load efficiencies of the CCGT plant are measured at the
same levels of production as given in the data received from Powel, and the maximum efficiency
of the plant is assumed to be 60%. The energy of natural gas used in calculating the cost curve
is 40MJ/Sm3 [50].

Table 7.2: Efficiency of the generating unit
Generation [MW] 77 100 160 270

Efficiency [%] 48 51 55 58

The cost function is dependent on the consumption and price of gas. The price of gas is a
stochastic, varying parameter, but due to the short time frame of the period concidered, un-
certainty and variability in the gas price are not taken into account. This can also be justified
by the possibility to enter into long-term contracts with gas suppliers. Terms of long-term gas
contracts are not found to be publicly available, hence the day-ahead price of gas is taken into
account. An average day-ahead market settlement price for natural gas of 23.07 e/MWh for
the relevant bidding period starting at 2015-02-03 is used. This value is reported by [51]. A rate
of pollution of 0.34 tCO2/MWh used in order to calculate the cost of CO2 are estimated by
[52]. A cost of 10 e/tCO2 is furthermore used as an average price of CO2 estimated from the
ETS market. O&M costs are also taken into account

Table 7.3: Costs of the generating unit
Parameters of the fuel cost function

cS cCO2 cO&M c b a
[e] [e/Mwh] [e/MWh] [e/MWh] [e/MWh] [e/MWh2]

6 000 3.4 2 1 130 28 0.010

7.3 Results

The optimization problem has been implemented in MATLAB R2015a (Version 8.5) and Mosel/
Xpress MP. The implementation is written by the authors with inspiration from the MDP toolbox
available in Matlab. Matlab handles the recursive value iterations, while each subproblem is
solved in Xpress MP. All tests have been run on a 64-bit Windows 7 PCs with 3.40 GHz Intel
Core i7-3770 CPUs (4 cores) and 16 GB RAM. The solution time of the problem is 277.93
seconds.
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This section presents the results from running the original case as well as results from a sensitivity
analysis which has been conducted with the purpose to investigate how the optimal decision
in the primary reserve market is affected when chosen parameters of the model are changed.
Sensitivity with respect to costs, technical restrictions and prices of primary reserves have been
investigated.

The optimal solution of the original case is given in Table 7.4. The deviation given in the
table is the percentage difference in expected profit from bidding the optimal amount of primary
reserves in the primary reserve market compared to participating only in the day-ahead market.
Participation in the day-ahead market only is given by qPtot = 0. The deviation represents the
value of bidding in the primary reserve market; a higher percentage difference in expected profit
between the two markets indicates a higher percentage change in profit by participating in the
primary reserve market. Figure 7.1 shows the expected profit of delivering 0–90 MW in the
primary reserve market. Bidding the optimal amount of 67 MW is the maximum value on the
curve. The optimal solution indicates that it is beneficiary for the CCGT plant to bid a large
amount of capacity in the primary reserve market.

Table 7.4: Optimal solution
Expected profit qPtot pP Expected Profit, Deviation
[e] [MW ] [e/MW ] qtotP = 0[e] [%]

653 672 67 2 514 632 005 3.4

Figure 7.1: Profit from bidding 1–90 MW in the primary reserve market

Table 7.5-7.8 present the results from the sensitivity analysis. In each analysis one parameter is
changed, either by a percentage change with respect to the original parameter or by changing
the parameter by an absolute value. The results presented in table 7.4 are referred to as the
base case in the sensitivity analysis.

The costs of running thermal power plants differ from unit to unit. The cost function used in the
base case represents the cost of a CCGT plant with a high efficiency compared to other types of
thermal generators. It is therefore interesting to see how the bidding decision changes when the
the cost of generation is higher or lower. Such an analysis will hence indicate what type of unit
that is profitable to use to deliver primary reserve capacity. The sensitivity with respect to cost
is tested by changing only the fixed cost parameter, con, of the quadratic cost function. This is
the same as shifting the graph vertically. The results are given in table 7.5.
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Table 7.5: Sensitivity with respect to costs, con
Percentage change in con[%]

−40 −30 −20 −10 − +10 +20 +30 +40

qPtot [MW] 45 51 56 62 - 70 74 78 81

pP [e/MW] 2 612 2 586 2 564 2 537 - 2 500 2 481 2 462 2 447
Expected Profit [e] 714 028 697 500 682 450 667 889 - 639 774 626 156 612 806 599 593

Expected Profit, qtotP = 0[e] 704 142 685 871 667 864 649 920 - 614 125 596 310 578 584 560 920

Deviation [%] 1.4 1.7 2.2 2.8 - 4.2 5.0 5.9 6.9

One of the technical restrictions governing the operation of thermal power plants are ramping
restrictions. The ramping rate is furthermore one of the parameters reflecting the level of
flexibility of a thermal power plant. Sensitivity with respect to ramping rates is given in Table
7.6. Maximum ramp-up and ramp-down rates are changed such that they are on the same level,
and seven different levels of Rup and Rdown are analyzed.

Table 7.6: Sensitivity with respect to ramping rates
Ramping rates, equal values of Rup and Rdown[MW/min]

10 15 20 25 30 35 40

q
P
tot [MW]

70 67 64 60 58 56 51

PP [e/MW] 2 500 2 514 2 528 2 546 2 555 2 564 2 586
Expected Profit [e] 651 633 653 860 655 692 657 093 658 222 659 114 659 747

Expected Profit, qtotP = 0 [e] 627 625 631 098 634 101 636 761 639 229 641 501 643 649

Deviation [%] 3.8 3.6 3.4 3.2 3.0 2.7 2.5

The primary reserve market has been analyzed as a market with low liquidity and corresponding
possibility for market participants to affect primary reserve prices. If more participants enter the
market, prices may drop and profitability in the market decrease. Another scenario is for prices
to increase when the need for ancillary services increases due to a larger amount of intermittent,
renewable energy in the power system. It is therefore interesting to investigate how the optimal
decision is affected when prices in the primary reserve market are changed. The sensitivity with
respect to the primary reserve prices is investigated by changing the expected revenue of the
optimal bid in the primary reserve market. The results are given in Table 7.7

Table 7.7: Sensitivity with respect to primary reserve prices
Change in expected revenue in the primary reserve market [%]

−20 −15 −10 − +10 +15 +20 +25

q
P
tot [MW]

0 29 45 - 81 85 89 90

PP [e/MW] 0 2 276 2 350 - 2 692 2 791 2 888 3 002
Expected Profit [e] 632 005 634 493 639 359 - 672 093 682 234 692 749 703550

Expected Profit, qtotP = 0 [e] 632 005 632 005 632 005 - 632 005 632 005 632 005 632 005

Deviation [%] 0 0.4 1.2 - 6.3 7.9 9.6 11.3

The sensitivity of primary reserve prices illustrates how the bidding decision changes when the
difference between day-ahead prices and primary reserve prices change. Sensitivity with respect
to day-ahead prices is also interesting to take into account in such an analysis. The sensitivity
is analyzed by changing the overall price level in the primary reserve market, i.e changing the
level of prices in the scenario lattice. The results are given in table 7.8.

Table 7.8: Sensitivity with respect to day-ahead prices
Change in day-ahead prices [%]

−40 −35 −30 −20 −10 − +5 +10

q
P
tot [MW]

0 90 90 90 90 - 25 0

PP [e/MW] 0 2 402 2 402 2 402 2 402 - 2 694 0
Expected Profit [e] 16 357 62 284 141 366 305 283 475 175 - 759 631 883 944

Expected Profit, qtotP = 0 [e] 16 357 38 052 75 884 188 726 382 099 - 757 154 883 944

Deviation [%] 0 63.7 86.3 61.7 24.4 - 0.3 0
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7.4 Discussion

The results of the coordinated bidding model indicate that the opportunity cost of reserving 67
MW of capacity in the primary reserve market is lower than the expected profit received from
selling the capacity in the day-ahead market. Hence, the value of participation in the primary
reserve market is high.

In the implementation there are no constraints on the amount of primary reserves a unit can
deliver, but a producer owning only one generator would be constrained by droop restrictions
in the generator. The optimal solution found can however be viewed as an estimation of a
solution for a producer owning several similar generators. For a producer owning generators
with different operating constraints, optimizing for each generator separately can be viewed as
an approximation of the value of bidding the combined capacity into the market. A producer
who owns several generating units can however vary the amount of primary reserve capacity
that is provided by each generating unit during the week, as long as the total amount delivered
is constant. Hence, the flexibility of having several generating units available has a value which
is not included if optimizing for each unit separately. If there are restrictions on the amount
of capacity a single unit can reserve, the optimal bid can be found from Figure 7.1. Figure 7.1
shows the expected profit of delivering 1 to 90 MW in the primary reserve market, and it can
be seen that for a producer with an upper limit on supply lower than 67 MW it will be optimal
to bid the upper limit.

The developed model can be compared with an existing bidding model in order to assess the value
of the model developed. Information regarding current bidding practices for a power producer in
Switzerland has been received from [29]. The current procedure builds on comparison between
three deterministic scenarios, with different commitments in the primary reserve market, and a
base case of no commitment. The costs of delivering 1 MW more of primary reserves is equal
to the lost profit in the day-ahead market from delivering this incremental amount of primary
reserve capacity. This cost is used to build a bidding curve which is manually adjusted in order
to get a smooth curve with increasing price for increasing volume. The way producers manually
adjust their bids in order to get a smooth curve is information unknown to the authors. The
exact value of the model developed in this report compared to the current bidding practice is
consequently unknown. However, the procedure described indicates that the practice today is
to bid an amount given by the break even price of delivering primary reserves and adjusting the
bid with a manually set value. If the manually adjusted value is assumed to be zero, the value of
the bidding model in this report is given by the difference in profit between bidding the optimal
amount of primary reserve capacity and bidding only in the day-ahead market. This can be seen
as an optimistic estimate of the value of the model developed.

The results from the sensitivity analysis show that the bidding decision in the primary reserve
market is sensitive to changes in input parameters. The analysis with respect to costs shows,
as expected, that the overall profit is higher when costs are lower. The amount bid in the
primary reserve market is however lower with lower costs, indicating that the increase in profit
stems mainly from bidding in the day-ahead market. With lower production costs, the value
of delivering energy in the day-ahead market is higher and the opportunity cost of production
is therefore also higher. This explains why it is optimal to deliver less capacity in the primary
reserve market. The opposite is true when costs are higher; the optimal amount of capacity bid
in the primary reserve market increases when costs increase. When con is increased, the amount
bid in the primary reserve market moves towards 90 MW. However, when costs get sufficiently
high, the costs of being on become higher than the expected profit of delivering primary reserve
capacity and day-ahead energy. The optimal bid in the primary reserve market will then be 0 and
the unit will be turned off when prices are low. This analysis indicates that the optimal decision
largely depends on the operating costs of the generator and that the benefits from bidding in
the primary reserve market differ between units.

The ramping rates of the CCGT unit are parameters representing the level of flexibility of the
power plant. The results from the sensitivity analysis in which the ramping rates vary, indicate

30



that higher ramping rates give an increase in the overall expected profit. The optimal capacity
to bid in the primary reserve market and the deviation between the expected profit in the
coordinated bidding model and in the solution taking only the day-ahead market into account,
are however lower. This indicates that the value of flexibility is higher in the day-ahead market
than in the primary reserve market. Units with higher ramping rates can vary their production
more, and the production can consequently be better adjusted to changing prices in the day-
ahead market. The profitability in the day-ahead market is therefore higher, and the alternative
cost of primary reserve capacity, which is the only cost of delivering primary reserves in this
model, is correspondingly higher. Due to an increased level of intermittent renewable energy,
there is a large focus on developing more flexible thermal power plants with shorter start-up
time and ramping rates.

There are factors, that the model does not take into account, which could further affect the value
of delivering primary reserve capacity. The model developed assumes 100 % availability and does
not take into account the possibility of not being able to deliver primary reserve capacity. If such
risks and associated non-delivery costs were taken into account, the value of supplying primary
reserves would be smaller. Such effects in combination with an increased ramping rate would
mean that the value of participating in the primary reserve market would be lower than given
in the sensitivity analysis.

If more producers enter into the primary reserve market, the market will become more liquid
and prices can be expected to fall to a competitive level. This effect is investigated in sensitivity
of primary reserve prices in Table 7.7. The profit in the day-ahead market without bidding
capacity in the primary reserve market is naturally the same. The amount bid in the primary
reserve market is however lower when prices decrease. At a level of 20 % lower costs, profit in
the primary reserve market is not high enough to cover the opportunity cost of the reserved
capacity in the day-ahead market.

The AR(1) model used to estimate day-ahead prices takes only historical day-ahead prices into
account. The lattice consequently does not consider any correlation between primary reserve
prices and day-ahead prices. Figure 7.2 illustrates the cross-correlation between day-ahead prices
and marginal and efficiency price in the primary reserve market. The figure shows negative
correlation between the time series, indicating that prices in the day-ahead market and primary
reserve market tend to move in opposite directions. The figure furthermore indicates that the
correlation is strongest for no displacement of the curves. When prices are low, fewer generators
will be spinning and fewer generators are consequently able to supply primary reserve capacity
and prices in the primary reserve market are higher. Because negative correlation between
prices is not taken into account, the results from the sensitivity analysis with respect to day-
ahead prices show that more primary reserve capacity should be bid at a lower price when prices
in the day-ahead market fall. This is contrary to the price development seen in the market and
is hence a weakness of the model developed.

It can be seen that it is no longer profitable to deliver primary reserves when day-ahead prices
fall by 40%. The model will only find it optimal to bid capacity in the primary reserve market
if the opportunity cost of delivering energy in the day-ahead market is lower than the expected
value of delivering primary reserves. However, when the optimal solution given by the model is
zero, capacity can be bid at a price level covering the costs associated with keeping the generator
running. In this case, other methods, such as the one discussed earlier in this section, can be
used in order to decide the bid.
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Figure 7.2: Correlation between efficiency prices and weekly average day-ahead prices (left) and
marginal prices and weekly average day-ahead prices (right), 06.01.2014 - 28.12.2014

8 Conclusion and future work

This report investigates the use of stochastic dynamic programming on a sequential bidding
problem for a thermal power producer bidding capacity in the primary reserve market and
energy in the day-ahead market. The stochastic problem is solved on a multinomial lattice
developed with prices forecasts for day-ahead prices in Switzerland. The pay-as-bid auction is
modeled based on historical primary reserve prices. Uncertainty in the primary reserve prices
affect the optimal bid of the thermal power producer in the pay-as-bid auction.

A case study is conducted in order to assess the value of coordinated bidding in the two sequential
markets. It has been found that there are large potential profits of coordinating bidding in the
primary reserve market and the day-ahead market. The potential profits however depend on
the characteristics of the generator, and it has been found that lower costs and higher ramping
rates imply a lower amount bid in the primary reserve market. Technological advances will
hence affect the optimal bid in the primary reserve market. The results are sensitive to input
parameters, indicating that it is important for a producer to estimate the parameters well in
order to bid optimally in the pay-as-bid auction. The analysis of sensitivity with respect to
prices, indicate that possible changes in prices will affect the bidding decision.

The bidding problem has been analyzed by using stochastic dynamic programming. The method
is a well known method used for solving unit commitment problems, but has not, to the authors’
knowledge, been used when taking coordinated bidding in the primary reserve market and the
day-ahead market into account. Multi-market optimization problems have historically often been
modelled as stochastic programming problems, with the problem that an increasing number of
stages leads to an exponential increase in problem size. Using stochastic dynamic programming
and representing the prices by a scenario lattice, have contributed to limit the problem size and
solution-time of the problem.

A challenge with using stochastic dynamic programming is to implement constraints across
stages. The proposed method in this report, which involves finding an interval of optimal
production for the last and first hour of two consecutive days in which ramping restrictions
will not be violated, facilitate the use of dynamic programming without increasing the state
space. This method however restricts the production to lie within an interval and hence reduces
the solution space for the first and last hour each day. The implication is lower flexibility of
production during these hours. Another drawback of the stochastic dynamic solution method is
that prices must fulfill the Markov property. There is extensive research on price modeling of
electricity prices, and other price models could be beneficial to take into account if the method
had not been restricted to fulfill the Markov property.
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8.1 Future work

The implemented model does not take the possibility of owning several different generating units,
with different technical restrictions and costs, into account. Owning different generating units is
a source of flexibility when delivering ancillary services. In order to determine the value of this
flexibility, a more comprehensive model taking several generating units into account should be
implemented and tested.

In the implementation of the model, constraints regarding ramping were simplified. An approach
using stochastic programming would allow these constraints to be more easily implemented.
However, a problem with stochastic programming is that solution times often are high due to
exponential growth of scenario trees. Methods to reduce solution times of stochastic programs
exist and it is suggested to explore such methods for this problem in future research.

Analysis has showed that the model can be improved by taking correlation of prices in the
primary reserve market and the day-ahead market into account. Such an analysis should be
combined with an analysis of parity between primary reserve prices and day-ahead prices. Parity
between prices in the day-ahead market and the primary reserve market describe the level of
equality between the prices, and may affect the results of the model.

Only coordinated bidding in the primary reserve market and day-ahead market is taken into
account. However, it is believed that there are synergy effects of delivering capacity in several
reserve markets. In order to assess the value of coordinated bidding in more markets, suggested
future work is to extend the model developed to include other markets in addition to the two
markets considered.
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Appendix A. Pay-as-bid auction

The derivation of the expected profit from bidding in the primary reserve market presented here
is taken from [8] and [25].

The market price is assumed to be a stochastic variable χ following a density function fχ(p) :
R 7→ R+ with the probability distribution Fχ(p) : R 7→ [0, 1]. For a bidding capacity qPtot the
probability of acceptance is:

PA(χ > pP ) = 1− Fχ(pP ) = 1−
∫ pP

−∞
fχ(p) dp (46)

It is assumed that only one bidder behaves strategically, and that the behaviour of other bidders
can be summarized in a probability distribution of the market price. There will not be a uniform
price and therefore no single probability distribution of the market price is readily available.
However, in a multi-unit pay-as-bid auction the market price can be between the efficiency and
the marginal offer. The efficiency offer and the marginal offer is the less and most expensive
offer accepted, respectively. Their values are unknown before the auction is held. The respective

prices are defined to be the efficiency price p̂E , with density function f p̂
E

(p), and the marginal

price p̂M , with density function f p̂
M

(p).

The density function of the distribution of the efficiency price can for instance be found through
historic time series. Because of the always holding inequality p̂E ≤ p̂M , the density function of the
marginal price cannot be estimated independently of the efficiency price. Therefore the density

function of the difference between the marginal price and the efficiency price f p̂
ME

(p) must be
calculated. Now, a convolution of these two distributions can be applied to find the distribution
of the marginal price. Because the distribution of the difference between the marginal and the
efficiency price is defined for positive values only, a single sided convolution can be applied:

f p̂
M

(p) =

∫ ∞
0

f p̂
E

(p− u)f p̂
ME

(u) du (47)

Due to the assumption of a non-competitive primary reserve market, the bidding capacity must
be taken into account to find the relevant market price p̂R ∈ [p̂E , p̂M ]. Assuming a linear approx-
imation between the efficiency and marginal price, the relevant market price is as follows:

p̂R = (p̂P − p̂E)k(qPtot) + p̂E (48)

With k(qPtot) ∈ [0, 1] as the index of the merit order:

k(qPtot) =
QPmax − qPtot

QPmax −QPmin
(49)

Extending (47) by taking the bidding capacity into account results in the density function of the
relevant market price that depends both on the price and capacity bid:

f p̂
R

(pP ; qPtot) =

∫ ∞
0

f p̂
E

(pP − k(qPtot)u)f p̂
ME

(u) du (50)
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Following Equation (46), the probability of acceptance, considering that a bid is accepted only
and entirely if the relevant market price is higher than the bidding price, may generally be
calculated using the primitive of the distribution of the relevant market price in Equation (50)
by:

PA(p̂R > pP ; qPtot) = 1−
∫ pP

−∞
f p̂

R

(p; qPtot) dp (51)

The expected profit PiR is given as:

max
pP

E[Π] = PA(p̂R > pP ; qPtot)q
P
tot(p

P − cP ) (52)

In which cP is the cost of delivering the primary reserves.

Figure 8.1: Pay-as-bid modeling [25]
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