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Abstract

The common practice among Norwegian hydropower producers is to use a deterministic
approach in the bidding into the day-ahead market. However, day-ahead market prices
and water in�ow to the reservoirs are uncertain also within a short time frame. Based
on this fact we propose a stochastic short-term bidding and scheduling model for a price-
taking hydropower producer who participates in the Nordic electricity day-ahead market,
Elspot. Bidding to the spot market and a simpli�ed version of the unit commitment
problem is modeled within the framework of a two-stage linear stochastic model and
solved as a deterministic equivalent. The objective is to maximize the revenues from
sales in the market. To substantiate the model, relevant aspects of the Nordic day-ahead
market, hydropower scheduling, bidding and stochastic programming are illustrated.

A demonstration of the model is presented using data from a Norwegian hydropower
producer. To represent the uncertainty, scenarios for price and in�ow are generated
using a moment-matching scenario generation method. The model is run with sets of
scenarios consisting of respectively 1, 10, 100 and 250 scenarios. The preliminary results
show a slight improvement in the objective value when the model is run with increasing
number of scenarios.
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Chapter 1

Introduction

1.1 Background and Motivation

The Nordic power producers are exposed to a volatile and competitive market when they
are to schedule production. In 2005 about 40% of the total concumption in the Nordic
market were traded at the Nordic day-ahead market and the share is increasing (NVE
2006). Hence, the sales of power into the day-ahead market constitutes a substantial part
of the revenues for the producers. This makes the bidding into the day-ahead market
one of the most important tasks the power producers are faced with.

In the process of planning hydropower production, problems are usually categorized
according to their time horizon. The focus in this paper is on short-term hydropower
scheduling. The most important activities within the short-term scheduling include the
bidding of the production into the electricity spot market a day in advance and the
establishment of a production plan which complies with the day-ahead commitments
from the bidding. In these activities the future price and in�ow are important factors.

Future price and in�ow are stochastic variables in the short-term perspective. Neverthe-
less, hydropower producers today use deterministic models in the short-term scheduling.
Based on this we present a stochastic optimization model for short-term scheduling for
a hydropower producer who only participates in the Nordic electricity spot market. The
objective is to maximize pro�t from sales of power. We use the model presented in
(Fleten & Kristo�ersen 2006) as a starting point.

We have accomplished a case study based on one of Statkraft AS�s hydropower plants.
Our motivation behind the case study is to see if a stochastic model performs better,
i.e. have a higher objective value than the deterministic one. If so, one can argue that
the stochastic model provides better support in the day-ahead bidding. The topology of
the plant is rather complex and simpli�cations is necessary to construct a linear model.
First a deterministic linear model is formulated where we regard the bidding into the
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2 CHAPTER 1. INTRODUCTION

day-ahead market and a simpli�ed version of the unit commitment suited for the case.
The model is then extended into a two-stage stochastic linear model and solved as a
deterministic equivalent. To account for uncertainty, scenarios of price and in�ow are
constructed applying a moment-matching scenario generation method from (Høyland,
Kaut & Wallace 2003). The models were programmed in Xpress Version 1.6.2. and some
results from the demonstration of the model are presented in the paper.

1.2 Structure of the Paper

The structure of the paper is as follows; Chapter 2 is an introduction to the Nordic
power market. Further in chapter 3 the concept of hydropower scheduling is presented. In
chapter 4 we discuss approaches to bidding. Chapter 5 deals with stochastic optimization
and has the purpose of being a study of the topic of stochastic optimization. Finally in
chapter 6 we introduce the case study which is based on one of the hydropower plants
belonging to Statkraft AS. Chapter 7 states a conclusion and suggests some improvements
left for future work.



Chapter 2

The Nordic Electricity Market

2.1 Nord Pool

Nord Pool ASA is the Nordic power exchange. It has developed from being solely a
Norwegian power exchange to be a multinational exchange for electrical power. Nord
Pool provides the population of Norway, Sweden, Denmark and Finland with supply of
electrical power and optimal use of total system resources.

With the liberalization of the Norwegian power market in 1991, the power sector changed
from having monopoly areas under governmental regulation to be a competitive and
market oriented sector. This process later proceeded in the rest of the Nordic region. As
a cause of the liberalization the producers had to change their focus from reliable and
cost-e�cient energy supply to more pro�t oriented and competitive objectives (Fleten,
Wallace & Ziemba 2002). The liberalization of the market led to the need of a market
place where a price could be set. Nord Pool o�ers a market for physical contracts and
a market for �nancial contracts. The market for physical contract is provided by Nord
Pool Spot AS. Nord Pool also o�ers clearing services.

The market for physical contracts, Elspot, is an auction-based day-ahead market where
electrical power contracts are traded for each hour the following day. Elspot provides
an e�ective system for letting supply and demand set the market price, and it gives the
participants the possibility to balance their portfolios of power contracts close to real-
time load. Nevertheless, the time span between the day's Elspot auction and the actual
delivery hour of the concluded contracts is 36 hours at the most. As consumption and
production situations change, a market player may �nd a need for trading during these
36 hours. The Elbas market provides continuous power trading 24 hours a day, up to one
hour prior to delivery. The Elbas market is only available in Eastern Denmark, Finland
and Sweden. Since the purpose of this paper is to present a short-term scheduling model
for a Norwegian hydropower producer, the Elbas market would not be treated further.

3



4 CHAPTER 2. THE NORDIC ELECTRICITY MARKET

There are four types of bids available at Elspot; hourly bids, block bids, �exible hourly
bids and linked block bids. In an hourly bid the participants submit how much they are
willing to buy or sell at a given price for every 24 hour starting at 00.00 the following
day. Flexible hourly bids are only sales bids for one single hour with a �xed price and
volume. When bidding, a lower price limit and a volume is stated. The �exible bid
will be accepted in the hour with the highest price. Block bid is an aggregated bid for
minimum four consecutive hours with a �xed price and volume. Linked block bids consist
of a main block bid and a dependent block bid. If the main block is accepted, then the
dependent block bid is also considered (NordPool 2004).

2.1.1 Bidding Process at Nord Pool

The participants at Elspot submit sales- and purchase bids for every hour of the following
day of operation. The bidding is done under uncertainty since the system price is not
yet known. Because of the uncertainty, the bidding process is a di�cult task. We will
later discuss this topic thoroughly.

All the participants deliver their bids at the latest at 12.00. After the bidding Elspot
calculates the prices by aggregating the sales- and purchase-curves for every hour the fol-
lowing day from the hourly bid curves. The spot prices are determined by the intersection-
point between the resultant sales- and purchase-curves for every 24 hours the following
day (See �gur 2.1). An hourly sales bid is accepted as long as the bid price is equal or
lower than the spot price. The opposite is true for the purchase bids. Sales block bids are
accepted when the average spot price for the block period is equal or lower than the given
block bid price. Again the opposite is true for purchase bids. Dependent linked block
bids are accepted under the same rules as regular block bids, but since linked block bids
are dependent of each other, the main block bid has to be accepted before the dependent
one is considered. Flexibly hourly bids are not given for a speci�c hour, but are accepted
in the hour with the highest spot price given that the bid price is lower. The system
price for a given day is an average over the 24 spot prices within that day.

If there are congestions in the grid, separate area prices will be established. In the
following we will assume that there are no di�erent area prices, hence the spot prices
are the only prices in the whole Nordic area. The calculation of the spot prices are
completed at the latest at 13.30. The spot prices and the belonging volume are then
published. All parties are noti�ed how much volume they are obligated to dispatch. All
transactions are handled at the spot price, and the accepted contracted volume, not the
metered volume, decides the �nancial settlements. If the metered volume di�ers from the
contracted volume, imbalances arise. This will be handled by the short-term balancing
market (NordPool 2006).
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Figure 2.1: Calculation of the spot price

2.2 The Short-term Balancing Market

The special feature of electricity is that it can not be stored in substantial part, and hence
it has to be generated and consumed at the same time. We need a system that handles
the imbalances between load and generation, such that the generation always equals the
load. This is the objective of the short-term balancing market. The transmission system
operators (TSOs) are responsible for this balancing within each country. The TSOs in
the Nordic countries cooperate to focus on the real time balance of the overall Nordic
grid. Statnett is the Norwegian system operator, and is responsible for the regulating
power in Norway.

The participants in the balancing market submit their bids to the transmission system
operator after the Elspot marked has closed, at the latest at 19.30. Balancing bids are
divided in two; bids for upward- and downward regulation. Bids for upward regulation are
bids for increased generation or decreased consumption, where the participants submit
how much they require for increasing generation or decreasing consumption for a speci�ed
volume. Bids for downward regulation signal how much they are willing to pay to decrease
generation or increase consumption.

The TSO sorts each bid according to price for every hour during the day. In case of
upward regulation, there is a power de�cit in the market. The TSO therefore has to
activate the power reserves by informing the participants with the accepted bids from
the balancing market. The accepted bids are chosen according to the ascending price, and
the last call-upon unit sets the price for upward regulation. For downward regulation the
bids are accepted according to descending prices. In addition, spatial aspects are taken
into account. For example, in the case of upward regulation within a area the TSO calls
a local generator to increase generation.
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There are di�erent practices within the Nordic countries regarding how the imbalances are
priced. In Norway there is only one price for every hour in every price area. The �nancial
settlements take place after real time regulation. The participants receive payment for
positive imbalances, and are charged for negative imbalances. Positive imbalance for a
producer is when he has generated more than he was obligated to in contracts at Elspot
or in other physical contracts. A consumer will have positive imbalances when he has
consumed less than the volume in the contracts. The volumes traded in the balancing
market are often of insigni�cant quantity compared to the spot market. Hence, we will
only focus on the bidding in the spot market and not include the balancing market in
the short-term stochastic model presented later.



Chapter 3

Hydropower Scheduling

3.1 The Concept of Water Value

Water is the" fuel" in a hydropower plant. To be able to optimize the production it is
necessary to set a value on the water stored in the reservoirs. Even though water is for
free, it has a value given that it is a scarce resource and one is free to decide whether to
produce today or to store it for later production.

The water value is often referred to as the marginal operating costs of the power plant. In
reality, the water value is a function of the future development of the power market and
the in�ow. It should be noted that it is a complicated connection between the parameters
that a�ect the water value. Load and price are closely linked to one another. A high load
necessarily results in a high price in a competitive market. This again gives an incentive
to discharge a considerable amount of water given that the market price is higher than
the present water value of the reservoir. The discharge level in combination with the
in�ow decides the reservoir level, which again in�uences the water value. For instance if
there is a small amount of water left in the reservoirs, the water will have a high value
since the "fuel" is a scarce resource. In the opposite case, lets say the reservoir is nearly
full, then there is a chance that the water �ows over and becomes worthless since it will
never contribute to any production. In addition to reservoir level, the overall market
situation a�ects the water value. Since all these variables are stochastic, we express the
water value by the expected value of the marginal kWh that is stored in the reservoirs
(Fosso & Gjengedal 2006).

If the purpose is to maximize pro�t, one should produce until the short-term marginal
cost equals the price. This is illustrated in section 4.1. Thus, a producer who participates
in the day-ahead market would like to bid equal to his marginal cost curve. Hydropower
plants in general have a low operating cost, and the only considerably cost is linked to
the discharge of water. Therefore, the marginal cost of operations equals the water value.
This makes the water value an important aspect in the bidding process. In what follows,

7



8 CHAPTER 3. HYDROPOWER SCHEDULING

we will show that the water value equals marginal operational cost when minimizing total
costs over a long time horizon. It should be noted that one may derive the same expression
when maximizing revenues. This is a more suitable approach in a deregulated market,
but since the notion marginal cost is important in short-term production scheduling, cost
minimization will be used to derive the water value.

Let J(l, t) denote the expected total cost from period t until period T , where T is some
remote future date and l is the reservoir level in period t. The costs of changing the
water level l is denoted Λ(l, T ) and is equal to the value of the water in the reservoir
at period t, minus the value of the water in the reservoir at period T . In addition to
this cost, the expected total cost also consists of the sum of all operating cost, L(l, w, i)
within a period i from t to T . The operating cost within a period i is dependent on the
reservoir level l and the discharge of energy, w.

J(l, t) = Λ(l, T ) +
T∑

i=t

L(l, w, i) = L(l, w, t) + J(l, t + 1) (3.1)

Equation (3.1) allude that the expected total costs from period t until T equal the sum
of the operating cost in period t and the expected total costs from period t + 1 until
T . Optimal disposal of the water in period t is achieved when the expected total costs,
J(l, t) are minimized in consideration to the energy disposal, w.

min
w

J = min
w
{L(l, w, t) + J(l, t + 1)} (3.2)

⇒ dJ

dw
= 0 (3.3)

δJ

δw
=

δL

δwt
+

δJ

δlt+1
∗ δlt+1

δwt
=

δL

δwt
+

δJ

δlt+1
∗ (−1) = 0 (3.4)

It should be noted from equation (3.4) that the marginal change in the reservoir level
caused by a marginal change in the energy discharge in the anterior period is equal to
−1.

Optimal strategy for period t can now be derived as

δL

δwt
=

δJ

δlt+1
(3.5)

The left side of the equation (3.5) equals the marginal operating costs. The right side
equals the expected total costs derived regarding to the reservoir level, which per de�ni-
tion is the water value at time t + 1. Thus, the optimal strategy is to produce when the
price is higher than the water value.
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The water value in period t is equal to the water value in period t + 1, given that the
optimal production strategy described above is applied in period t. When calculating
the water value in period t one therefore needs the water value in the subsequent period.
The calculation of water values is done using long-term models. One way to calculate
the water values is to choose the end of the planning horizon T such that it coincides
with a point in time where the water value is known. For instance when the snow melt
is at its highest and �ooding appear, one knows that the water value equals zero. This
result can be used to calculate backward until present period t is reached, for example
using a stochastic dynamic programming model.

3.2 The Hydropower Scheduling Problem

3.2.1 Medium- and Long-term Scheduling

The hydropower production scheduling is because of its complexity, decomposed into
a long-, medium- and short-term problem, each being solved by suitable models and
solution techniques (Flatabø, Fosso, Haugstad & Mo 2002).

The goal of the long-term production planning is to maximize the market value of the
water resources. The long-term production planning seeks to analyse the long-term �uc-
tuations in price and in�ow and by this �nd an optimal strategy for the hydropower
operations in the long run perspective. The modeling of the production is often sim-
pli�ed by aggregating the reservoirs into one equivalent reservoir. Stochastic dynamic
programming can be applied to predict the water values from present time up to a point
in time in the future (Fleten et al. 2002). In this calculation price and in�ow prognoses
provide important input. Output from the long-term planning which among other fac-
tors are the water values derived in equation (3.5), is further used as boundary condition
in the medium-term production planning. The medium-term model has an increasing
detail level and serve as a link between the long-term model and the short-term model
(Fosso, Haugstad & Mo 2006).

SINTEF Energy Research has developed a model for long-term scheduling purpose, the
EMPS model. This model is widely used in the Nordic areas. Within this model the
whole market including all the producers are considered. The EMPS model describes
production, consumption and transmission within the Nordic and adjacent areas. For
each sub area in the market the model gives an indication of the long-term situation of
the water values, reservoir level, generation, sales and purchase of spot power. Important
input in the model are load, thermal generation costs, and initial reservoir level (Flatabø
et al. 2002).
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3.2.2 Short-term Scheduling

Short-term hydropower scheduling primarily deals with the physical operations of the
power plant within a time horizon of a day up to a week, depending on the coupling to the
medium-term model, and with a time resolution of up to one hour (Fleten & Kristo�ersen
2006). The main activities in the short-term scheduling are to make decisions that build
up under the planning of the physical production and can be listed as follows

• The bidding of production into a power exchange one day before actual time, often
referred to as the day-ahead commitments.

• Set up a detailed production plan which meets the terms from the day-ahead bid-
ding.

• The real-time balancing, i.e. the establishment of the bids for the short-term bal-
ancing markets.

Figure 3.1: Time schedule

We present how the procedure of the short-term scheduling can be accomplished accord-
ing to the deadlines at the Nordic power exchange. The �rst task in the short-term
scheduling is to prepare the submitting of bids to the power exchange for the day-ahead
commitments. The bids have to be submitted to the power exchange at 12.00 at the
latest. Next, after the spot price is published around 13.00, one has to establish a pro-
duction plan that complies with the day-ahead commitments. Not all, but some of the
power producers participate in the short-term balancing market. The �nal deadline for
submitting bids to this market is at 19.30.

The day-ahead bidding in the spot market is completed before the bidding in the balanc-
ing market has been accomplished (Fleten & Kristo�ersen 2006). From section 3.1 we
know that it is optimal to bid to the marginal costs of your production for every hour.
As stressed earlier, this is the water value of the reservoirs. In the modeling of the short-
term scheduling it is complicated to derive the water value from equation (3.5), thus
alternative approaches to express the water value may be used. Later in section 6.2.4 an
alternative way to derive an expression of the water value is applied. This approach is
based on a method used in (Fleten & Kristo�ersen 2006).

To sum up, the main tasks in the short-term scheduling can be separated in two; First
is the submitting of bids for the day-ahead production, second is the unit commitment
of production which meet the terms of the day-ahead bidding, i.e. the decision of how to
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distribute the production between the di�erent aggregates. The bidding to the balancing
market will be handled in chapter 4. It should be noted that bidding and unit commit-
ment are closely related to one another, mainly because of the water value. As stressed
earlier, the bids are set according to the water values. The production plan of how much
to produce from each reservoir is determined according to each reservoirs water value.
For example, one will obviously discharge from the reservoirs with the lowest water value
�rst.

Decisions of how to utilize the water resources are based on pro�t maximization of the
expected revenues from power sales. The short-term scheduling problem is rather com-
plex, thus to be able to carry out the bidding and the unit commitment in light of pro�t
maximization, a detailed modeling of the physical system is essential. Since the bidding
and the unit commitment are dependent on another, an optimal model would include
both operations. In chapter 6 we present an optimization model for short-term schedul-
ing which include both the bidding and a simpli�ed version of the unit commitment.
Further in this chapter we will concentrate on only the unit commitment problem. In
chapter 4 the bidding issue will be carefully discussed.

How to Model the Unit Commitment

At this stage in the short-term scheduling the spot price is known and the remaining
task is to make a production plan for the next day which is consistent with the accepted
bids. This task is often referred to as the hydropower unit commitment problem. More
precisely it is that of determining which turbines should be on and the levels at which
to generate in each turbine so as to meet the commitment made in the spot market
(Philpott, Craddock & Waterer 2000).

As stressed in the previous section the short-term scheduling is a rather complex task.
The unit commitment problem requires that the detailing level of the physical system is
high. In a model of the system, all the relevant details which a�ect the production must
be taken into consideration. For example, hydropower plants may have quite complex
topologies with several cascaded reservoirs or power plants in the same river system.
The di�erent reservoirs may have di�erent storage capacity and signi�cant water travel
time. This has the e�ect that the decision in one time interval have strong impact on
what is possible to do in later time steps (Belsnes, Honve & Fosso 2005). In cases where
the reservoirs are linked in series, water release from an upper reservoir leads to water
in�ow in a lower reservoir. See �gure 3.2. In addition, the start and stop costs makes
the decisions of production in one time step dependent on the decisions of the adjacent
hours. The modeling of start and stop costs often requires binary variables expressing
whether each turbine is on or o�. To avoid the computational e�ort by introducing binary
variables one can model the start and stop in an alternative way which is introduced in
section 6.2.5.

Each power plant may include several turbines which has a minimum and maximum
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Figure 3.2: Two reservoirs in a cascade

operating level. The electricity is generated by letting water �ow through a turbine.
Potential energy from the water is changed into electrical energy. The power generated
is a nonlinear function of the �ow rate x and its net head, that is the di�erence between
the headwater elevation eh and the tail water elevation et. See �gure 3.3. The �ow rate is
again a function of the volume of the reservoir y so that the net head can be represented
by some function h(x, y). There is a loss in power in the transfer of water. An e�ciency
function η(h, x) represents the loss of power in the transfer of water �ow to electricity.
In summary, the power generated by a turbine with �ow rate x and headwater volume y
is

g(x, y) = xh(x, y)η(h, x) (3.6)

It is reasonable to make the assumption that h(x, y) does not vary much with y over
the course of a short-term planning horizon, especially in the case where the reservoir is
large. If we let y be a constant then the generation function is only dependent on the
�ow rate x and becomes g(x). The function g(x) is typically a concave function or it can
be approximated by a concave function (Philpott et al. 2000).

Figure 3.3: A typical hydropower station: eh − et is the net head



3.2. THE HYDROPOWER SCHEDULING PROBLEM 13

It is di�cult to consider all aspects of the physical system. For instance, in the case when
a power plant has several owners the modeling is complicated. In addition there are often
legal requirements that have to be considered in the model. Hence, it is a challenge to
develop a model with a high enough detailing level.

Simulation and Optimization - Methods for solving the unit commitment

problem

Providing the utilities with optimal scheduling plans for each generator in the system is
a di�cult task. Existing approaches to unit commitment include both simulation and
optimization. A simulation is based on adjusting manual suggestions until a convincing
plan is found. This approach is very user dependent and hence does not guarantee an
optimal plan. On the contrary, optimization represents a relatively impartial way of
making an optimal unit commitment (Fleten & Kristo�ersen 2006).

Further we will concentrate on the important aspects of an optimization model that
satisfy the need for a high detailing level. Clearly, the objective in such a model should
be either pro�t maximization or cost minimization. In a deregulated market where the
price is set in a market clearing process at a power exchange, pro�t maximization is
reasonable. Moreover, the cost in the objective function is related to the use of water
and the start and stop costs. The constraints constitute the modeling of the physical
system, as described in the previous section.

While price and in�ow are treated as stochastic variables in the long- and medium-term
model, they are often treated as deterministic variables in the short-term scheduling.
This is the praxis in spite of the fact that price and in�ow are subject to uncertainty
also in the short-term perspective, at least in the case where both the bidding and
the unit commitment are included in the same optimization model. If the model only
concentrate on the unit commitment, one assumes that the market price is known in
advance i.e. the bidding has already been done and the market price is set. Nevertheless,
the in�ow is still an uncertain variable in the unit commitment and should be modeled
in a stochastic approach. The reason for the deterministic praxis is that a stochastic
approach is deemed to be computationally demanding because of the required detailing
level. This is especially the case for cascaded reservoir systems (Flatabø et al. 2002).

Examples of Theory and Methodology of Short-term Scheduling in the Lit-

erature

In this section we will look at some approaches of how to model the short-term scheduling
in the literature. A general model formulation of the short-term hydro scheduling is
presented by George, Read and Kerr (George, Read & Kerr 1995). This is a deterministic
modeling approach where integer variables are used to represent the number of turbines
operating at each station along with piecewise linearization of the unit e�ciency curves.
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The objective is to maximize pro�t accrued from generation and the value of end of period
storage of water in the reservoirs, less the costs of failing to meet generation targets and
the start and stop costs. No heuristic is applied to obtain faster solution time and the
model is solved with a standard IP solver.

Hreinsson (Hreinsson 1988) has made a deterministic optimization model with the pur-
pose of �nding the optimal short-term production scheduling of a hydropower system.
More speci�cally, the model optimizes the hourly power production by minimizing losses
in turbines and waterways, while maintaining production to meet load. The optimization
problem is inherently formulated as a nonlinear mixed integer problem, but an algorithm
has been applied to solve the problem in two stages by linear programming. The model
is further simpli�ed by letting the power production and the water resources be treated
separately. In praxis, this means that the production is modeled without considering
any of the variables associated with water or reservoir content. With this simpli�cation
the number of variables is kept to a minimum and the problem can be solved with less
computational e�ort.

As mentioned before, the short-term modeling is often subject to a deterministic treat-
ment in spite of its stochastic parameters. Philpott, Craddock and Waterer (Philpott et
al. 2000) have regarded the uncertainty in the scheduling of daily hydro-electric genera-
tion. With appropriate approximations the problem of determining what turbine units
to commit in each half hour of the day can be formulated as a large mixed-integer linear
programming problem. To be able to solve this stochastic problem they suggest using
an optimization-based heuristic.

SHOP (Short-term Hydro Operation Planning) is an example of a commercial modeling
tool which is developed by SINTEF Energy Research. This is a deterministic linear
programming model adjusted for solving complex hydropower scheduling problems. As
in the modeling approaches introduced above the power plant is modeled at unit level.
Unlike the model of Philpott, Craddock and Waterer SHOP does not regard uncertainty
in the modeling formulation (Flatabø et al. 2002).



Chapter 4

Approaches to Bidding

4.1 Bidding in Practice

At the time of bidding the price is not yet known, thus the bidding is done under uncer-
tainty. To reduce the uncertainty the planning of the bids will normally take place close
to the deadline because then the latest information can be used. For a pro�t maximizing
producer the philosophy behind the bidding should always be to maximize the expected
revenues, i.e. to sell when the prices are high, and to buy when the prices are low. Thus
the important and di�cult task is to �nd out what a "high" and a "low" price is.

From microeconomic theory one knows that a producer who acts as price taker should to
maximize pro�t, produce until his short time marginal cost equals the price (Wangensteen
2005). To see this, let C(w) be the producer's cost function, w the volume produced and
ρ the price set by the market. Then his pro�t π may be formulated as

π = w × ρ− C(w) (4.1)

Pro�t maximizing behavior implies

dπ

dw
= ρ− dC(w)

dw
= 0 (4.2)

which gives

ρ =
dC(w)

dw
(4.3)

Hence, to maximize pro�t the producers would bid equal to their marginal cost curve.
From section 3.1 we know that the marginal costs equal the water values.

When constructing the bids there are several important issues the producer has to con-
sider. For some power producers locked production is an issue, that is power they have

15



16 CHAPTER 4. APPROACHES TO BIDDING

to produce regardless of the price. Examples of this could be wind power or hydropower
from a river plant with no store possibilities. And even if there are store possibilities
in the water chain, there are often legal requirements that state that the water �ow has
to be at least at a given minimum level at all times because of ecological or esthetical
considerations. Since they have to produce this power no matter what, the producers
are willing to sell this power at any price. Thus the operator bids this locked volume to
a price as low as zero, so that he is ensured a knockdown on this volume.

Then one has to consider how to bid the rest of the production. One way of constructing
these bids, which is used in practice, is to bid the water value at the best point of
production and at the maximum point of production for every generator. By doing this,
the producer gets two price-volume points for every generator. The water value used in
the bidding process is usually found from long-term models, but some adjustments may
be done. For example the EMPS model, see section 3.2.1, could be run a few times per
week to get the water values given a long- and medium-term strategy. These weekly
water values would then be used as indicators of how the water value will be within that
given week. Since the market situation and in�ow vary from day to day, the weekly
water values may be modi�ed on daily basis. The calculation of the daily water values
are usually based on experience and analysis. Factors which indirectly in�uence the
decisions are for example the expected weather forecast and the hydrological situation
and the expected gas- and coal-price. The latter is important in the Nordic market since
it consists mainly of hydropower and thermal production.

The decision of how much to bid for every hour is dependent from hour to hour. As
already mentioned in section 3.2.2, the topology of the hydro system and the start and
stop costs cause the production plan to be dependent on the consecutive hours. At
the time when the bidding schemes are constructed, there already exists a scheduling
plan for the remaining hours of the day. This is based on the commitment made in the
spot market the day before. Since this scheduling plan e�ects the system state at the
beginning of the next bidding period, this too as to be considered when constructing the
bids.

From the above discussion we see that in practice the process of making the bids is often
based on experience and the skills of the operator. In the literature we �nd models which
have a more theoretical approach and in the reminder of this chapter we will discuss two
articles which both deal with bidding strategies. We illustrate two di�erent approaches
to the bidding problem. The �rst one (Fleten & Pettersen 2005) addresses the possibility
of willingly bid too high or too low volumes in the day-ahead market to earn a pro�t in
the balancing market. The second one (Wen & David 2001) concerns the start and stop
costs issue.
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4.2 Day-ahead Bidding in View of the Balancing Market

Fleten and Pettersen propose in (Fleten & Pettersen 2005) a stochastic linear program-
ming model for constructing piecewise-linear bidding curves for a price-taking retailer. In
their model they consider both the day-ahead energy market and the balancing market,
and their objective is to minimize the total cost for the retailer from both these markets.
In the following we will apply their model seen from the producer's point of view. To
do this one �rst has to see if all the presumptions made in (Fleten & Pettersen 2005)
also hold for the producer. One important assumption that Fleten and Pettersen do is
that they assume the retailers to be price takers. They argue for this by saying that the
Nordic market consists of many small retailers which none of them hold a substantial
share of market power. Although most of the producers in the Nordic market are con-
siderably larger, we feel that this is an assumption one can accept at least for most of
the producers in the market.

In the balancing market the producers behave di�erently from the retailers. All partici-
pants that have the ability to alter production or consumption signi�cantly on 15 minutes
notice are allowed to place bids in the balancing market. Although this also includes the
retailers, Fleten and Pettersen do exclude this from the model with the argument that
the demand side bidding of the balancing market is still immature. It is common for the
producers to place bids in the balancing market, nevertheless we will as a simpli�cation
disregard this fact.

4.2.1 Day-ahead Bidding in View of the Balancing Market: Producer's

Perspective

As explained earlier the balancing market balances the production and consumption close
to real time. When there is de�cit or surplus of power in a price area, respectively up-
regulation or down-regulation will be done. This is controlled by the system operator.
Because of the way the balancing market is run, up-regulating power are o�ered at a
higher price than the price in the day-ahead market. The opposite is true in hours of
down-regulation. In the following discussion remember that the �nancial settlement in
the day-ahead market is handled according to the contracted volume, not the metered
volume. That is, the producers receive the day-ahead market price for the contracted
volume independent of the actual amount of energy they produce.

In the case of up-regulation consider a producer who generates less than he has committed
himself to in the day-ahead market. The reason for this can for instance be unavailability
in production. Because of his negative imbalance the producer has to pay the balancing
price for the de�cit. Since the market is up-regulated the producer will have to pay a
higher price in the balancing market than he received in the day-ahead market. At the
same time there might be some producers who generate more than committed. The cause
for this may be locked production, i.e. production that has to be produced regardless.
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Examples of this are wind power generation or hydropower generation from a river power
plant. These producers will receive the balancing market price for this extra energy. As
mentioned this price will be higher than the spot price and thus the producer would be
better o� selling power in the balancing market than in the spot market.

Let us now consider the case of down-regulation. A producer who generates less than he
obligated himself to in the day-ahead market will have to compensate for the deviation in
production and pay the balancing market price for this. Nevertheless, this price is lower
than the price he received in the spot market. Hence, the producer in this situation
would have gained. The opposite is true for a producer who generates more than he is
obligated to. He will for his surplus power receive the balancing market price which is
lower than the spot price that he otherwise could have received.

From the above discussion one sees that the producer has to be regulated in the same
direction as the rest of the market to make some extra gain in the balancing market.
That is when the market is up-regulated it is bene�cial for the producer to produce more
than his day-ahead market contract states. The opposite is true in the case of down-
regulation, then it is favorable for the producer to produce less than committed. Thus,
the producer has the possibility to speculate by bidding too low volumes in the spot
market if he expects the market to be up-regulated and to bid too high volumes if he
believes that the market will be down-regulated. Such speculations may be pro�table for
one producer. But since the day-ahead market should re�ect physical supply and load
conditions, this kind of speculation would be unfortunate for the market. Therefore the
TSO monitors such practice and can impose penalties for it.

Let β be the balancing market price and ρ the spot price. From the above discussion we
see that β − ρ > 0 in hours of up-regulation, β − ρ < 0 in hours of down-regulation and
that β − ρ = 0 when no regulation is needed. Then let Id and Ib be the income from the
sales of energy from the day-ahead market and the balancing market, respectively. Thus
the total income from the two markets is

I = Id + Ib (4.4)

Further, let Id and Ib in addition to prices, be expressed by the volume dispatched in the
day-ahead market, y, and the real physical production, ξ.

Id = yρ (4.5)

Ib = (ξ − y)β (4.6)

Combining equation (4.4), (4.5) and (4.6) gives

I = yρ + (ξ − y)β = ξβ + y(ρ− β) = ξβ + yδ (4.7)
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where δ = ρ− β is the di�erence between the spot price and the balancing market price.

The spot price and the balancing market price are exogenous. As mentioned previously,
ξ constitutes the real physical production. The real physical production can be seen as
the sum of the planned production before the bidding to the day-ahead market takes
place and the alteration made in the production plans. This alteration takes place after
the spot price is known, but before the balancing market price in known. In addition
the real physical production includes alteration caused by errors or locked production.
Because of these unexpected incidents the real physical production ξ, is uncertain and
should be treated as a stochastic variable. Since the producer would like to maximize his
revenues, his objective should be to maximize the expected revenues from both markets;

max E[ξ̃β + yδ] (4.8)

So far we have seen that there is a possibility for the producer to speculate if the market
will be up- or down-regulated, and thus bid accordingly too low or too high volumes in
the day-ahead market on purpose. Hence, the real physical production may deviate from
the dispatched production from the spot market either because of speculation or because
of unexpected incidents. This kind of speculation will increase the risk of the producer
considerably. This is also a very unfavorable situation for the system operator, and in
the Norwegian market the system operator Statnett will penalize participants who are
detected in showing this kind of behavior. To include this in the model Fleten and Pet-
tersen include shortfall costs. De�ne the variables w+

1s, w
+
2s, ..., w

+
ms and w−1s, w

−
2s, ..., w

−
ms.

If the producer is up-regulated, i.e. he produces more than his obligation from the day-
ahead market,

∑
m∈M w+

ms = ξ̃s − ys > 0. In the opposite case, if the producer is

down-regulated
∑

m∈M w−ms = ys − ξ̃s > 0. Let T+
m > 0 and T−m > 0 represent the

marginal cost of piece m on the volume deviation risk function for positive and negative
deviations, respectively. Then, by introducing the term

−V
∑

m∈M

(T+
mw+

ms + T−mw−ms) (4.9)

in the objective function one may penalize volume deviations. In equation (4.9) V mea-
sures the producer's aversion to volume deviation. Since the risk will increase with higher
volume deviations it is naturally to let the marginal penalty increase with increasing de-
viations. This would also require the following constraints

∑
m∈M

w+
ms + ys ≥ ξ̃s, ∀s (4.10)

∑
m∈M

w−ms − ys ≥ −ξ̃s, ∀s (4.11)
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0 ≤ w±ms ≤ Wm, ∀m, s (4.12)

To model the bid curve Fleten and Pettersen suggest in (Fleten & Pettersen 2005) an
approximation of the bid curve with a linear model where price points P0, ..., Pn are
�xed in advance. They argue that for each scenario, the spot price ρs will lie between
two certain price points and that this eases the formulation of the relationship between
the bid volume and the dispatched volume. Let i(s) denote the largest line segment i
between Pi and Pi+1 for which Pi+1 > ρs. This means that the volume dispatched ys

will lie on the line segment described by linear interpolation between the price-volume
pairs (Pi(s), xi(s)) and (Pi(s)+1, xi(s)+1). Thus the relationship between the dispatched
volume ys and the bid volume xi can be written as

ys =
(

1− ρs

Pi(s)+1 − Pi(s)
+

Pi(s)
Pi(s)+1 − Pi(s)

)
xi(s)

+
(

ρs

Pi(s)+1 − Pi(s)
+

Pi(s)
Pi(s)+1 − Pi(s)

)
xi(s)+1

(4.13)

To summarize, Fleten and Pettersen propose a model where they discuss the possibility
of constructing bids to the day-ahead marked to maximize the expected pro�t from the
balancing market. The model applied from a producers perspective is as follows

max
∑
s∈S

ps

(
ξ̃sβs + ysδs − V

∑
m∈M

(T+
mw+

ms + T−mw−ms)

)
(4.14)

subject to

ys =
(

1− ρs

Pi(s)+1 − Pi(s)
+

Pi(s)
Pi(s)+1 − Pi(s)

)
xi(s)

+
(

ρs

Pi(s)+1 − Pi(s)
+

Pi(s)
Pi(s)+1 − Pi(s)

)
xi(s)+1

(4.15)

∑
m∈M

w+
ms + ys ≥ ξ̃s, ∀s (4.16)

∑
m∈M

w−ms − ys ≥ −ξ̃s, ∀s (4.17)

0 ≤ w±ms ≤ Wm, ∀m, s (4.18)
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xi ≤ xi+1, ∀i ∈ I (4.19)

xi ≥ 0, ∀i ∈ I (4.20)

For further information we refer the reader to (Fleten & Pettersen 2005).

The disadvantage with this approach is that the volumes in the balancing market are
relatively small compared to the volumes in the day-ahead marked. Hence, for most pro-
ducers are the �gures they may earn or possible lose in the balancing market accordingly
small. Because of this a model which consider the possibility of speculation in the two
markets, may have insigni�cant value for producers. Since participation in the balancing
market provides little pro�t the focus should be on markets which gives greater bene�t,
for instance the spot market.

4.3 Strategic Bidding

Wen and David present in (Wen & David 2001) two di�erent bidding schemes, and
based on this an overall bidding strategy is developed. Their starting point is that they
consider a day-ahead market in which the participants trade and schedule for next day's
delivery. This market is operated by a power exchange (PX), which conducts a series of
24 auctions simultaneously and separately, one for each hour. This formulation of the
market is consistent with the Nordic power market.

Since the PX evaluates the hours independently, a dispatch in one hour do not guarantee
for a dispatch in the adjacent hours. Therefore the producers have to internalize all
involved cost and physical constraints in preparing their bids since the bidding structure
do not take this into account. An example of cost they have to include is the start and
stop costs. For producers with low generation costs, it is not di�cult to build bids to
make sure that their units can be dispatched at each hour. The opposite is true for
producers with relatively high generation costs. It is likely that some of his units will
not be dispatched in one or more hours, and hence it is di�cult to construct bids which
guarantee acceptance.

Wen and David propose two di�erent bidding schemes. The �rst called "maximum
hourly-bene�t bidding strategy" is to bid such as to maximize the bene�t in each hour for
every generator separately based on the expectations to the load and how rival suppliers
will bid. If this strategy do not succeed, i.e. based on the a priori expectations one realize
that a unit will not be dispatched in some hours, then one should follow an alternative
strategy for each of these hours. Wen and David call this strategy the "minimum stable
output bidding strategy" and the objective of this is to guarantee that the unit can be
dispatched at the minimum stable output level. For further information we refer the
reader to (Wen & David 2001).
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The model presented in (Wen & David 2001) is especially suitable for producers with a
marginal cost close to the market price. In the Nordic market, in�ow is the principal
price driver but the marginal cost levels of the thermal plants are also of high signi�cance
(Tjøtta 2006). In periods with considerably in�ow and high reservoir levels the water
value tends to be low. Hence, in such a situation the marginal cost level of the thermal
producers and the load set the price. This is true for all periods where the water value
is lower than the thermal marginal cost and this is the usual situation. If the tendency
is that the water values are high and at the same time the fuel costs of the thermal
plants are low, then periods can arise where the marginal costs of the hydro producers
are higher than the marginal costs of the thermal producers. In such a situation the
hydropower production and the load set the price, and many of the hydropower producers
will therefore have marginal costs close to the market price.

From the discussion above we see that hydropower or thermal power production can
set the price depending on which of them having the highest marginal costs. Although,
the thermal power production usually have the highest generation costs and therefore
are probably most suited for applying such a model that Wen and David propose, we
see that the model in (Wen & David 2001) also can be relevant for hydro producers.
In addition the consideration of start and stop costs are important for a hydropower
producer. Since Wen and David's model re�ect this importance, the use of their model
for a hydro producer can be justi�ed also when the water value is much lower than the
market price.
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Stochastic Programming

5.1 Introduction to Stochastic Programming

5.1.1 Modeling

When investigating a natural system for instance a hydropower plant, one usually makes a
model which is applied to give the decision makers a better understanding and overview
of the system. This is done because the natural system is too complex, di�cult or
expensive to study directly.

The accuracy of the model, i.e. how detailed and how close to the real world the model
is, does not necessarily measure the quality of the model. Instead one has to look at the
purpose of the model to �nd the right degree of detailing level. As we saw in section 3.2
a long-term model in production scheduling will usually be less detailed than a short-
term production scheduling model where more work is done to make the model resemble
the real world. This does not mean that a short-term model is "better", it only shows
that these models serve di�erent purposes. It is therefore important to remember that a
model is never a copy of the real world and that one can never mimic every aspects of a
system (Wallace 1999).

There are di�erent ways to categorize di�erent models. A common procedure is to split
mathematical programming problems into linear programming, nonlinear programming,
networks �ow, integer and combinatorial optimization and �nally stochastic program-
ming. Such classi�cation can be confusing because it indicates that stochastic program-
ming is di�erent from linear programming in the same way as nonlinear programming
is di�erent from linear programming. The truth is that the counterpart of stochastic
programming is deterministic programming, and that we therefore have stochastic linear
programming, stochastic nonlinear programming and so on (Wallace 1999).

We will in the following emphasize on stochastic linear programming, but the reader
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should keep in mind that the stochastic way of thinking could also be used in other
model formulation.

5.1.2 An Example of Stochastic Linear Programming

We will in this section present an example of a linear program which will be extended
to a stochastic linear program. Many real life problems can be expressed as a linear
programming model. Using matrix-vector notation the standard formulation would be

min cT x (5.1)

Subject to

Ax = b (5.2)

x ≥ 0 (5.3)

This kind of formulation is appropriate when the functions involved are fairly linear in
the decisions variables. Next we introduce a very simple stochastic linear programming
example from a hydropower plant. As stressed before, pro�t maximization is more proper
to use in the case of hydropower scheduling in a deregulated market. Nevertheless, we
choose to illustrate an example where the objective is to minimize the production cost and
at the same time cover load. With a simple example of cost minimization in hydropower
scheduling we hope that the reader can more intuitively understand the importance of
stochastic programming. Using the notation from (5.1), this will correspond to that cj

and aj are respectively the water value and the energy equivalent at station j. The load
is represented by b and the decision variable xj gives the water �ow in station j. Notice
that this is a very simpli�ed example. In a linear problem all the parameters, i.e. c, A
and b are assumed known and the problem is to �nd the optimal combination of the
decisions variables x that satis�es the constraints.

Many real life situations deal with uncertainty and depending on the situation this un-
certainty cannot always be ignored by insetting the mean values or some other �xed
estimates of the parameters. Thus, the model needs to re�ect that some of the param-
eters are unknown. Stochastic programming is a framework for modeling optimization
problems that involve uncertainty. The uncertain parameters are characterized by prob-
ability distributions.

Let us consider our example further and assume that the hydropower plant consists of
two reservoirs that are not connected. Our model can then be formulated as

min c1x1 + c2x2 (5.4)
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Subject to:

a1x1 + a2x2 = b (5.5)

x ≥ 0 (5.6)

In our simple example it is for instance unreasonable to assume that the load is known
in advance. Hence, instead of a linear problem we are now faced with a stochastic linear
program.

min c1x1 + c2x2 (5.7)

Subject to

a1x1 + a2x2 = b̃ (5.8)

x ≥ 0 (5.9)

Notice that we in the stochastic linear program have used the notion b̃ to represent the
uncertain load. Since we do not know the realization b of b̃ we can not merely minimize
the objective function, hence the equation (5.7) is not a well de�ned problem. To solve
this problem let us introduce the possibility that there exists a balancing market were
the producer can buy electricity if he do not cover the load our example. Such a market
gives the producer the possibility to cover up his obligations after the uncertain load is
revealed. Hence, the producer �rst has to decide how much to produce, then the load
is revealed. From this it is given how much he has to buy from the market. The costs
due to shortage of production are determined after the observation of the random load
and are generally denoted recourse costs. We assume for simplicity that the price the
producer has to pay in the market is higher than his own production cost. If we let y(b̃)
denote the amount of energy the producer buys in the market and p the price he has to
pay we can formulate our problem

min c1x1 + c2x2 + Eb̃[py(b̃)] (5.10)

Subject to

a1x1 + a2x2 + y(b̃) = b̃ (5.11)

x ≥ 0 (5.12)

When solving this problem we �nd a production plan, i.e. water �ows through the stations
that minimize the sum of our original production costs and the expected recourse costs
which in our case is the cost of buying energy in the market.
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5.2 Mathematical Formulation of Stochastic Programming

5.2.1 General Formulation of the Stochastic Programming Model

In the example above we demonstrated a simple stochastic linear problem in a hydropower
plant. Now, we state a more general formulation of a stochastic programming problem.
This can be viewed as a mathematical programming model with uncertain parameters.
Since the parameters are volatile they are described by distributions ξ̃, in the single-
period case, and by stochastic processes ξ̃t, in the multi-period case. A single-period
stochastic programming model can thus be formulated as

”min”g0(x, ξ̃) (5.13)

subject to

gi(x, ξ̃) ≤ 0 i = 1, ...,m (5.14)

x ∈ X ⊂ Rn

Here, ξ̃ describes the random vector of the volatile parameters. The distribution of this
vector must be independent of the decision vector x. Usually, the stochastic programming
model formulated above can not be solved with continuous distributions. Hence, most
solution methods require discrete distributions of the uncertain parameters. Therefore,
in most practical applications the "true" stochastic process ξ̃t is approximated by a
discrete stochastic process ξ̆t with limited number of outcomes. The discrete stochastic
distribution and the discrete stochastic process have been denoted respectively ξ̆ and ξ̆t

where t ∈ T . The number of outcomes from the discrete distribution or process is limited
by the available computer power.

Given that we are faced with continuous variables in (5.13), we stress that the discrete
distribution is only an approximation of the real continuous distribution of the stochastic
parameters. Hence, we solve only an approximation of (5.13) (Kaut & Wallace 2003).

5.2.2 Deterministic Equivalent

The general stochastic program as shown in equation (5.13) may be formulated as a
deterministic equivalent if the problem can be formulated as a stochastic program with
recourse. That is, the problem should be formulated in such a way that one for each
constraint could provide a recourse activity yi(ξ̃) that after observing the realization ξ of
the stochastic distribution ξ̃, is chosen such as to compensate its constraint's violation.
These recourse activities are assumed to cause an extra cost or a penalty and constitute
the recourse function
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Q(x, ξ) = min
y

m∑
i=1

qiyi(ξ), i = 1, ...,m (5.15)

where qi denotes the cost per unit. Note that the recourse function does not have to be
linear as here.

Hence the total cost of both the �rst stage and the recourse activities can be expressed
as

f0(x, ξ) = g0(x, ξ) + Q(x, ξ) (5.16)

If it is meaningful and acceptable to the decision maker to minimize the expected value
of the total costs, then one could consider the deterministic equivalent to (5.13) instead
of (5.13) itself. The deterministic equivalent would be

min
x∈X

Eξ̃

{
f0(x, ξ̃)

}
= min

x∈X
Eξ̃

{
g0(x, ξ̃) + Q(x, ξ̃)

}
(5.17)

A deterministic equivalent could be applied to multi-stage problems (Kall & Wallace
1994).

5.2.3 Multi-stage Stochastic Programming

The example in section 5.1.2 is denoted a two-stage stochastic linear program with re-
course. Such a problem is characterized by that the decision maker takes some action
under uncertainty in the �rst stage, after which a random event occurs, i.e. the actual
value of ξ gets known. A recourse decision can then be made in the second stage that
compensates for any bad e�ects that might have been experienced as a result of the
�rst-stage decision. First stage decisions are chosen by taking their future e�ects into
account. These future e�ects are measured by the expected value of the recourse costs
(Birge 1997).

A multi-stage problem is an extension of a two-stage problem. Instead of two decisions
to be taken at stages 1 and 2 we are now faced with K sequential decisions, x1, x2, ..., xK ,
to be taken at the subsequent stages τ = 1, 2, ...,K. The term "stages" can, but need
not, be interpreted as "time periods" (Kall & Wallace 1994). In a multi-stage setting the
outcome of the uncertain data is gradually revealed. Between each decision i.e. between
each stage, new information on the uncertain data arrives. That is, one takes successively
a �rst stage decision x1, then after observing the realization of ξ2, one takes a second
stage decision x2. This continues until one reaches stage K.
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5.3 Importance of Scenario Tree in Stochastic Programming

5.3.1 Scenario Tree

At present time we know that the uncertain parameters presented by a continuous prob-
ability distribution have to be made discrete to �t the stochastic programming model.
One way to approximate this probability information is by the use of a so-called scenario
tree. A scenario tree is used to assigning states to nodes and it is a discrete approximation
of a continuous distribution. It consist of nodes n ∈ N and the root node corresponds
to stage 1. The remaining nodes all have a set of immediate successors and a unique
predecessor. For node n the immediate predecessor is denoted n−1 and the probability
that n is the descendant of n−1 i.e. the transition probability, is termed πn/n−1 . The
immediate descendants of node n are N+1(n) and nodes with N+1(n) = ∅, which are
the "ending" nodes or leaves. The path from the root node to n is denoted by path(n)
and each path from the from the root node to a leaf represents a scenario (Fleten &
Kristo�ersen 2006).

5.3.2 Measure of Quality in Scenario Trees

The reason for why scenario trees are applied is to solve a stochastic program. Hence,
the scenario tree should be judged by the quality of the decision it provides. It should
be noted that it is not of importance how well the distribution is approximated, i.e. the
goal is not to search for an optimal discrete distribution in the statistical sense. The
important feature is whether the scenario tree leads to a good decision or not in sense of
the "true" objective solution of the stochastic model (Kaut & Wallace 2003). We look
back at equation (5.13) in section 5.2.1 and further denote the problem as

min
x∈X

F (x; ξ̃t) (5.18)

As mentioned before, we need to approximate the continuous stochastic process in the
problem into a discrete distribution, i.e. make the scenarios. Hence,

min
x∈X

F (x; ξ̆t) (5.19)

Now, the optimal solution of the scenario-based problem is denoted as

x̆∗ = argminxF (x; ξ̆t) (5.20)
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The error that occurs when we make an approximation of a continuous stochastic process
into a discrete stochastic process is given by the parameter ef (ξ̃t, ξ̆t). The error of

approximating a stochastic process ξ̃t by a discretization ξ̆t for a given stochastic problem
(5.18), is de�ned as the di�erence between the value of the true objective function at the
optimal solutions of the true and the approximated problem (Kaut & Wallace 2003).

ef (ξ̃t, ξ̆t) = F (argminxF (x; ξ̆t); ξ̃t)− F (argminxF (X; ξ̃t); ξ̃t)

= F (x̆∗; ξ̃t)−min
x

F (x; ξ̃t)
(5.21)

The error-term ef (ξ̃t, ξ̆t) is di�cult to calculate in practical problems. Therefore, instead
of �nding the optimal scenario generation method based on a minimization of the error-
term, one can make an evaluation of a given scenario generation method based on certain
quality requirements. According to Kaut and Wallace in (Kaut & Wallace 2003), there
are at least two important properties that should be satis�ed for a scenario generation
method in order to be quali�ed for a given stochastic model. The �rst requirement is
stability; if several scenario trees are generated with the same input and the optimization
problem is solved with these trees, one should get the same optimal value of the objective
function. The second requirement is that the scenario tree should not introduce any bias
compared to the true solution.

Stability requirement

This requirement is rather easy to test. Several scenario trees are generated by discretiza-
tion of a given stochastic process. Further, the stochastic programming problem is solved
for each tree. If the stability requirement is satis�ed, we should get approximately the
same optimal values of the objective function for every solution of the di�erent scenario
trees.

There are two di�erent tests of the stability; the in-sample stability and the out-of-sample
stability.

In-sample stability:

min
x

F (x; ξ̆tk) ≈ min
x

F (x; ξ̆tl), k, l ∈ 1, ...,K (5.22)

Out-of-sample stability:

F (argminxF (x; ξ̆tk; ξ̃t) ≈ F (argminxF (x; ξ̆tl; ξ̃t)) (5.23)

By in-sample stability, we mean that the stability is only tested on behalf of the scenario-
based optimization problem. In the out-of-sample stability, we have to evaluate the "true"
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objective function F (x; ξ̃t). The latter method necessitate that we have a full knowledge
of the distribution of ξ̃y. If we have out-of-sample stability the real performance of the
solution xk

∗ is stable. More concretely, the solution does not depend on which scenario
tree ξ̆t that is chosen. The in-sample solutions indicate how good a solution is. However,
if we have an out-of-sample stability and an in-sample instability, the solution may be
good but we do not know exactly how good. The other way around, if we have an in-
sample stability and an out-of-sample instability it is more dangerous since the solution
we get depends on which scenario tree that is applied. The out-of-sample stability can
be tested by a Monte-Carlo-like simulation method given that the distribution of the
stochastic process is known. If historical data is used in the scenario generation, back-
testing can be used. For further reading on backtesting we refer the reader to (Wallace
1999). Another approach is to use a scenario generation method that we assume to be
stable as a reference scenario tree, and evaluate the solution xk on the tree and compare
it with the solution of the method that is to be tested.

It can be expected that in most practical applications either both stabilities occur or none
of them. By this one can conclude that the in-stability test is su�cient to state whether
or not the scenario generation method ful�lls the requirement of stability. However, if
feasible, the out-of-sample stability should be tested as an assurance.

Testing for bias

Another important requirement of the scenario generation method is that the method
applied should not introduce any bias into the solution of the objective function. The
solution of the scenario-based problem x̆∗, should almost be an optimal solution of the
original problem. Hence,

F (x̆∗; ξ̃t) = F (argminxF (x; ξ̆t); ξ̃t) ≈ min
x

F (x; ξ̃t) (5.24)

Testing of this property is in most practical problems impossible, since it requires that
the optimization problem with the "true" continuous process is solved. If we were able
to solve that, then we would not need the scenario trees in the �rst place. Nevertheless,
in some cases an approximate test can be done. One option is to build a "reference"
scenario tree and use it as a representation of the true stochastic process. This is of
course only an approximation of the true stochastic process. In general, the reference
tree should be as big as possible on the condition that we still can solve the optimization
problem. To produce such a tree, we need a method that is guaranteed to be unbiased.
A natural consequence of this is that we can not use the method we want to test.
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5.4 Scenario Generation

5.4.1 Introduction

In section 5.3 we saw that stochastic programs need to be solved with discrete distri-
butions. The process of creating scenario trees is called scenario generation. When
generating scenarios we are faced with at least two issues. For the stochastic process to
be solvable, the number of scenarios must be small enough. On the other side, there must
be enough scenarios to represent the underlying distribution satisfactorily. In addition,
as mentioned in section 5.3.2 a scenario generation method should provide scenario trees
that satisfy the stability requirement and not show any bias.

In the case of power production scheduling, the scenarios could for instance describe
the behavior of the day-ahead market prices and the in�ow. In literature one can see
examples of scenarios for this based on time series analysis (Fleten & Kristo�ersen 2006).
Time series models are models where one attempts to predict stochastic variables using
only information contained in their own past values and possibly current and past values
of an error term. Given a set of observed data, the models capture the empirically
relevant characteristics of the data and describe it (Brooks 2004). From these models
scenarios for the variables can be generated. One well known time series model that can
be used is the ARMA model developed by Box and Jenkins (Box & Jenkins 1976). If
such a model is applied, one will let the multivariate stochastic process of the prices and
the in�ow constitute a time series characterized by seasonal changes, periodic cycles and
stochastic variation. But since the ARMA model is not that suited to take into account
such e�ects as sudden changes caused by heavily rainfall and the tendency that the
weather conditions stays the same over a time period, other scenario generation methods
can be more appropriate (Fleten & Kristo�ersen 2006).

There are many di�erent scenario generation methods, but we will in the rest of this
chapter only focus on the scenario generation method we have applied in our case study.

5.4.2 A Heuristic for Moment-matching Scenario Generation

Høyland, Kaut and Wallace propose in (Høyland et al. 2003) an algorithm that produces
a discrete joint distribution consistent with speci�ed values of the �rst four marginal
moments and correlations. The algorithm will in the rest of the text be referred to as
the HKW algorithm.

The HKW algorithm is a moment matching scenario generation method. Such a method
do not require that one knows the distribution functions of the marginals, only that one
can describe the marginals by their moments, i.e. the mean, variance, skewness, kurtosis
etc. In addition one speci�es the correlation matrix and depending on the algorithm,
other statistical properties. From the statistical data a moment matching algorithm will
construct a discrete distribution satisfying those properties (Kaut & Wallace 2003). Since
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a moment matching scenario generation method does not require a distribution function,
it is well suited if one only has data.

When applying the HKW algorithm the user speci�es the �rst four moments for every
marginal distribution, the correlation between the marginals and how many scenarios
the algorithm should generate. The HKW algorithm works as follows; one marginal
distribution is generated at a time based on the target moments the user has speci�ed.
This is done for all marginals and the marginal distributions are all generated with the
same number of realizations. The probability of the i'th realization is the same for each
marginal distribution. The HKW algorithm then creates the joint distribution by putting
the marginal distributions together. The i'th scenario, that is, the i'th realization of the
joint distribution is created by using the i'th realization from each marginal distribution,
and given the corresponding probability. Then various transformations are applied in
an iterative loop to reach the target moments and correlations. For further information
about the HKW algorithm we refer the reader to (Høyland et al. 2003).

5.5 Value of Stochastic Programming

5.5.1 Introduction

So far, we have introduced the concept of stochastic programming and emphasized the
importance of keeping the uncertain variables stochastic in the modeling of the problem.
This is done without much concern about whether or not this is worthwhile to do. In
section 5.1.1 we stressed that the art of modeling is to describe the important aspects of a
problem and drop the unimportant ones. Although randomness is present in a problem,
it may turn out to be unimportant in the modeling of the problem (Kall & Wallace 1994).
Next, we will evaluate the importance of randomness.

5.5.2 Comparing the Deterministic and Stochastic Objective Values

Stochastic programming models have the reputation of being computationally di�cult to
solve (Birge 1997). The question is; can we replace a stochastic model with a deterministic
approach?

The focus in this section is not whether or not we have the right or best model. We
are more concerned about how important the uncertainty is in a given model. The
most straightforward way to check if randomness is important or not in a given model
is to compare the optimal value of the stochastic model with the corresponding optimal
value of the deterministic model. The comparison can be done by replacing all random
variables in the stochastic model by their means, and with that the problem can be tested
in the deterministic case.
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When we are to compare the optimal objective values in both the stochastic and deter-
ministic cases, one should be aware that what we are observing is composed of several
elements. One important aspect is that while the deterministic solution has one decision
for each time period, the stochastic solution "lives" on the scenario tree. As explained in
section 5.2.3 the information in the stochastic model may be revealed in several stages,
in which the modeler is able to make decisions to compensate for the new information.
In the deterministic case, no dynamic is integrated in the modeling process. Although
the modeling problem has several time periods, all decisions are made here and now, i.e.
at the beginning of the time horizon. Therefore decisions that have elements of option
in them will not be of any use in a deterministic model.

As stated above, the stochastic and deterministic way of modeling are fundamentally
di�erent from each other. Even if these two models conclude with about the same
optimal objective value, one does not know if it is wise to work with a stochastic model.
These models are simply too di�erent, and with that di�cult to compare (Kall & Wallace
1994).

5.5.3 The Value of the Stochastic Solution - VSS

Despite of the reluctance of comparing the optimal objective values of the stochastic and
deterministic models, we present a way of measuring the value of the stochastic solution
based on a comparison between those two. This is based on the work of (Birge 1997)
and (Wallace 1999).

Let the deterministic version of a given optimization problem be called the mean value
solution. Here, all random variables are replaced by their expected values. The expected
performance of this is called the expected objective of the mean value solution - EMV .
The stochastic version on the other hand is respectively called the stochastic solution and
the expected objective value of the stochastic solution - ESS. Further, the de�nition of
the value of the stochastic solution can be stated as the di�erence between the expected
objective value of the stochastic solution and of the mean value solution

V SS = ESS − EMV (5.25)

Equation (5.25) measures the expected increase in value obtained from solving the
stochastic solution of the problem instead of the deterministic one. A low V SS indi-
cates that one should reconsider if it is worthwhile to apply the stochastic model. A
clear disadvantage with this method is that we need to know the stochastic solution in
advance to be able to �nd V SS. If we request V SS for the purpose to �nd out whether
or not it is worthwhile to formulate the stochastic solution in the �rst place, the method
is meaningless (Wallace 1999).
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5.5.4 The Expected Value of Perfect Information - EVPI

Here, we look at the aspect when we have perfect information of the variables in a
stochastic problem. This would only be possible if we have the possibility to wait and
see what the uncertain variables turn out to be and then make a recourse action based
on this information. With this opportunity, the expected objective value is called the
wait-and-see solution - EWS. The modeling problem is now reduced to a deterministic
one. Finally, we can express the expected value of perfect information - EV PI as the
di�erence between the expected objective value of the wait-and-see solution and the
stochastic solution

EV PI = EWS − ESS (5.26)

The EV PI gives a measure of the maximum amount a decision maker would be ready
to pay in return for complete and accurate information about the future (Birge 1997).



Chapter 6

Case Study

6.1 Introduction

We have accomplished a case study on a large hydropower producer in Norway with the
purpose to make a stochastic optimization model for bidding and short-term scheduling
�tted for this case. The model is based on the work by Stein-Erik Fleten and Trine
Kristo�ersen in (Fleten & Kristo�ersen 2006).

From theory in previous chapters we know that price and in�ow are subject to uncertainty
also in a short-term perspective. Since the practice among the Norwegian hydropower
producers today is to use a deterministic model as a tool in short-term scheduling, it
is interesting to investigate whether a stochastic model increases pro�t compared to a
deterministic model.

The practice for the producers is to submit the bids for the next day production before
12.00 each day, i.e. the time frame for constructing bids is short. Thus, a condition for
a short-term optimization model is that it requires a short computational time. The
bidding is often based upon personal skills and experiences. An optimization model
provides a tool which solve the problem of bidding in a structured way. Furthermore, the
more details taken into consideration, the more complicated is the optimization model
and a longer solution time is required. The detailing level is a trade-o� between accuracy
of information and computational time.

Often the bidding and the unit commitment problems are handled separately in short-
term scheduling. In the model presented next we have included both the bidding and a
simpli�ed version of the unit commitment in the same optimization model. This again
may reduce time used in the scheduling process.

The aim of our model is to obtain the optimal bidding strategy in terms of expected
sales and production pro�t. In other words, we want the model to compute how much to
bid for every hour in the day-ahead market. In addition, we want the model to handle

35



36 CHAPTER 6. CASE STUDY

a simpli�ed version of the unit commitment in the same operation. From chapter 5 we
know that this problem can be handled as a two-stage stochastic problem, and solved
as a deterministic equivalent. In the �rst stage the spot price is not yet known and
the bidding is computed. In the second stage we anticipate that the spot price and the
accepted volume are known and the unit commitment is modeled. The recourse cost
arises because of the deviation between the bidden volume and the accepted volume.

Modeling is restricted to a linear programming model (LP-model). In the following
section we �rst present the case and then we present a deterministic approach to the
model, i.e. price and in�ow are known. After this we introduce a stochastic approach
to the model where price and in�ow are stochastic variables. Finally the computational
results from both the models are presented. From theory in chapter 5 we have learned
that a stochastic approach provides a more realistic description of the problem given
that uncertain parameters exists. We want to see if a stochastic model of the short-
term scheduling problem provides a better expected production pro�t compared to a
deterministic modeling approach.

6.1.1 The Case

The case consists of a large Norwegian hydropower plant with several reservoirs, rivers
and tunnels linked together with �ve power stations. From �gure 6.1 one can see the
complex structure of the hydropower plant.

In our model we have simpli�ed the power plant to consist of three reservoirs with
respectively three underlying stations. For simplicity, new names are given the stations
and reservoirs. Blåsjø is further denoted as reservoir 1. Saurdal is the underlying station
and is denoted as station 1. The reservoirs above station Kvilldal are aggregated and
denoted as reservoir 2. Kvilldal is named station 2. The last reservoir is Suldalsvatnet and
the water from this �ows into station Hylen. In the model they are respectively denoted
as reservoir 3 and station 3. Finally, we can model the power plant as three reservoirs in
a cascade with a station underneath each of the reservoirs. This is illustrated in �gure
6.2.

Assumptions

Although, the power plant is owned by several producers we have chosen to model it as
if there was only one owner. In addition the producer is anticipated to be a price taker.
The Norwegian electricity market is generally assumed to be competitive. Variations in
in�ow, temperatures and other fundamental factors explain observed price movements
well and market power problems are minor (Johnsen, Verma & Wolfram 1999).

Furthermore, the only market which the producer participates in is the spot market.
Thus, other markets such as the �nancial market and the balancing market are not
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Figure 6.1: Scematic outline of the hydropower plant

regarded in the model. Again we want to stress that the volume in the balancing market
is of such a small amount and we have therefore chosen not to model the bidding into
the balancing market although this is connected to the short-term scheduling.

6.2 Deterministic Model Formulation

6.2.1 Choice of Time Horizon

The participants at Elspot submit bids for all hours of the next day. Since our model
should be used as a tool in the process of constructing bids we choose to use a time
horizon of 24 hours. The time horizon is divided into hourly time intervals and denoted
T = 1, ..., 24.

6.2.2 Modeling the Bidding into Nord Pool

As mentioned in section 2.1.1 there are several types of bids available at Nord Pool. In
our model formulation we have included hourly bids and block bids, since these are the
most common ones. Hourly bids are bids for a particular hour, and block bids are bids
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Figure 6.2: Model of the power plant

for minimum four consecutive hours. Thus, the total number of blocks within 24 hours
is B = 231.

Each bid consists of a price and a corresponding volume. The problem of selecting both
bid prices and bid volumes is nonlinear. Based on the work of (Fleten & Pettersen 2005)
we avoid these nonlinearities by �xing prices in advance so that only volumes have to
be selected. Let pi, i ∈ I denote the possible bid prices where I = 1, ..., 64. This range
is selected because Nord Pool permits the participants to submit maximum 64 price-
volume points for each hour. The price points are �xed by choosing equidistant price
points which include the possible outcome of the market price. The corresponding bid
volumes to pi are represented by xi,t for hourly bids and xi,b for block bids. Here it is
assumed that i ∈ I, t ∈ T and b ∈ B.

The volume dispatched from hourly bids is denoted yt and is determined by the point
on the bidding curve that corresponds to the spot price, ρt. Since the price points are
�xed in advance, the relationship between the bid volume and the dispatched volume
can be found by a linear interpolation between the price-volume points (pi, xi,t). Now
the bidding curve can be expressed as

yt =
ρt − pi−1

pi − pi−1
xi,t +

pi − ρt

pi − pi−1
xi−1,t, if pi−1 ≤ ρt < pi (6.1)

It is natural for a sales bidding curve to be increasing, i.e.

xi,t ≤ xi+1,t, ∀i ∈ I, t ∈ T (6.2)

It should be noted that this constraint may in principle be omitted because Nord Pool
does not require such a bidding structure.
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Figure 6.3: Bidding curve of time interval t ∈ T

The so-called mean price condition determines whether a block bid is accepted or not.
The price of the block bid must be equal or greater to the average spot price for the hours
of the block in order that the block is accepted. From this, one sees that the relation
between the volume bid xi,b and the volume accepted yb for block bids can be expressed
as

yb =
∑

i:pj≤ρ̄b

xi,b, ∀b ∈ B (6.3)

where

ρ̄b =
1
|b|
∑
t∈b

ρt, ∀b ∈ B (6.4)

Since all transactions are handled at the spot price the revenues from the sales of the
hourly accepted bids and block accepted bids accumulate to∑

t∈T

ρtyt +
∑
b∈B

ρ̄byb (6.5)

6.2.3 Modeling the Power Stations

To model the power production we index the three reservoirs in our case study J =
{1, 2, 3}. Every station consists of several generators, but because the generators at each
station are identical we choose to aggregate the generators to one at each station. Hence,
we have a simpli�ed version of the unit commitment. The power generation level from
station j at time t is denoted wj,t and the corresponding discharge of water is denoted
vj,t. Two of the generators at station 1 can also be used as pumps. These will pump
water from reservoir 2 up to reservoir 1. We denote the power used to pump the water
�ow νt from reservoir 2 up to reservoir 1 as ωt.

The water storage level lj,t has to be within its restrictions and we therefore need a
variable which keep track of it. If we let the in�ow to the reservoirs and the amount of
spilled water from the reservoirs be denoted δj,t and rj,t respectively, we see from the
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discussion above that the water storage level at reservoir 1 at time t can be expressed as

l1,t = l1,t−1 − v1,t − r1,t + δ1,t + νt, ∀t ∈ T (6.6)

That is, the water storage level at time t is equal to the storage level at time t−1, minus
the water discharged and spilled and plus the natural in�ow and the water pumped up
from reservoir 2.

Since the reservoirs are cascaded the water �ow from an upper reservoir a�ects the water
stored in the underlying reservoirs. This must be allowed for in the expression for the
water storage level at reservoir 2 and 3. Since the reservoirs and stations are connected
through water gates were water always exists, we do not account for time delays between
the upper and lower reservoirs.

For reservoir 2 the water storage level at time t can be formulated as

l2,t = l2,t−1 − v2,t + v1,t − r2,t + δ2,t − νt, ∀t ∈ T (6.7)

Analogous for reservoir 3

l3,t = l3,t−1 − v3,t + v2,t − r3,t + δ3,t, ∀t ∈ T (6.8)

In addition, at time t = 0 the water storage level is given as lj,0.

All the variables must be within their borders. Thus,

lmin,j ≤ lj,t ≤ lmax,j , ∀j ∈ J, t ∈ T (6.9)

wmin,j ≤ wj,t ≤ wmax,j , ∀j ∈ J, t ∈ T (6.10)

vmin,j ≤ vj,t ≤ vmax,j , ∀j ∈ J, t ∈ T (6.11)

As mentioned in section 3.2.2, the power generated is a function of the water discharge and
the net water head of the power station. Whereas the headwater elevation is a function of
the reservoir storage level, the tailwater elevation is a function of the discharge (Fleten &
Kristo�ersen 2006). Because of our short time horizon we assume that the net water head
does not vary much, and hence we assume that the power generated is only a function
of the water discharged from the reservoir.

The nonlinear relationship between the water �ow, vj,t and the power generation may be
approximated by a concave function. Since we want to have a linear model we describe
the concave fuction as a piecewise linear function with 4 linesegments. That is, we
have q = {1, ..., 5} discharge-generation points, (v̂j,q, ŵj,q) for every station. The points
represent best-points of di�erent sets of turbines at each station. These points were
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found from measurements of the station e�ciency. The piecewise linear expression can
be stated as

wj,t = ŵj,q +
vj,t − v̂j,q

v̂j,q+1 − v̂j,q
× (ŵj,q+1 − ŵj,q), if v̂j,q ≤ vj,t ≤ v̂j,q+1 (6.12)

The problem when solving equation (6.12) is that one do not know the value of the
decision variable vj,t and thus to not know which two points to interpolate between. But
because of the concave form this can be solved by replacing (6.12) with

wj,t ≤ ŵj,q +
vj,t − v̂j,q

v̂j,q+1 − v̂j,q
× (ŵj,q+1 − ŵj,q), ∀q ∈ Q, t ∈ T, j ∈ J (6.13)

wj,t contributes positively in the objective function and will thus be chosen as high as pos-
sible. Since the relationship between wj,t and vj,t is a concave function the optimization
model will itself �nd the right line segment. In �gure 6.4, 6.5 and 6.6 the relationship
between the generation and the water discharge is shown for station 1, station 2 and
station 3, respectively. It should be noted that it is always the lowest line that consti-
tutes the binding constraint, and these line segments form a piecewise linearized concave
function.

Figure 6.4: Power generation function of station 1

Figure 6.5: Power generation function of station 2
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Figure 6.6: Power generation function of station 3

For simplicity is the relationship between the energy consumption of the pump, ωt,
and the corresponding water �ow from reservoir 2 up to reservoir 1, νt, modeled as
independent of the consumption level. That is

ωt = αpumpνt, ∀t ∈ T (6.14)

where αpump is a constant which says how much energy per cubic meter of water is being
used.

Since we assume that the producer sells all the power in the day-ahead market and do
not participate in other markets, the total net generation from the stations equals the
accepted volumes from the bidding process. That is, we have the constraint

∑
j∈J

wj,t − ωt = yt +
∑

b∈B:t∈b

yb, ∀t ∈ T (6.15)

6.2.4 Modeling the Water Value

As mentioned in section 4.1, the practice is to make a roughly calculation of the water
value in the long- and medium-term production scheduling models, and modify them for
the short-term scheduling. Hence, the water values are known to the producer when he
is to plan the production in the short-term perspective. Since the focus of our work is on
short-term scheduling, we have not put much work into calculating very realistic water
values. We have chosen to let the water value be a function only of reservoir levels.

Water Value as a Function of Reservoir Level

When the water level is at its lower boundary, i.e. the reservoir is nearly empty, the water
value will be at its highest level. Similar, when the reservoir is full the water value is
zero because any new in�ow will be disposed o� immediately. From this we can describe
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Figure 6.7: Water value as function of the reservoir level

the water value for each reservoir as a linear decreasing function of the reservoir level
(Fleten 2006). See �gure 6.7.

We have chosen the parameters αj to denote the energy coe�cient for every reservoir
j. This has a measurement unit of [MWh/m3]. After the water has �own through the
underlying station, it �ows further into the next underlying reservoir and contributes to
new power production. Therefore, water in the upper reservoir has an energy coe�cient
that equals the sum of every energy coe�cient from underlying reservoirs in addition to
its own.

By multiplying αj for a given reservoir j with an average of future and forward prices
denoted by F , we get the maximum water value, λj,max with denomination [e/m3]. The
water has the value λj,max when the water level is at its lowest boundary. In a situation
where the reservoir is nearly empty the probability that the water will be spilled is very
low, hence the water is safely stored in the reservoir and can be disposed o� at any time
in the future. Thus, the water value of the nearly empty reservoir can be approximated
by an average of prices of futures and prices of forward contracts (Fleten 2006).

In the Nordic market where the hydropower production stands for a great deal of the total
power production, the prices are a�ected by the water values. Since the water values are
a�ected by the in�ow, one can assume that if a great deal of the hydropower producers
are located in the same geographical region they are faced with nearly the same in�ow,
i.e the water values of the di�erent hydropower producers "move" in the same directions.
Furthermore, if a great deal of the hydropower producers are faced with pretty equal
water values one can expect the market prices to be a�ected by this by a great deal.
Then it is reasonable that in the case of an empty reservoir, the other producers are
also nearly empty, and the market price is high. Based on the argument above one can
argue that the re�ected water value when the reservoir is at its lower boundary should
be higher than the average of futures and forward prices.

Reservoir 1 is signi�cantly larger than reservoir 2 and 3. Thus, it takes longer time to
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empty this reservoir compared to the other two. Therefore it makes sense to choose
future and forward contracts with a longer time horizon to calculate the water value for
reservoirs 1`s lower boundary. The data material of futures and forward contracts we have
used shows that there is little di�erence in the prices along the time horizon. Therefore,
it is a reasonable approximation to use the same future/forward-prices as foundation to
quantify the λj,max for all the three reservoirs. Another aspect which can be discussed is
whether reservoir 1 should have a constant total water value on a daily basis perspective.
This is a rational expectation since this reservoir is signi�cantly larger than the other
two. Nevertheless, we have chosen to let the water value vary within the short-term
interval which our model operates in. By this, we keep the notations simple and the
model is general in the sense that it easier can be applied by other power producer as
well.

The maximum water value can now be described as,

λj,max = F × αj (6.16)

Now that we have explained the background for the choice of maximum water value for
a given reservoir, we can express the linear water value function as

λj(l) = λj,max − λj,max

(lmax − lmin)
l (6.17)

Total Water Value

The total water value function is the integrated of the water value function expressed
in equation (6.17). This will be a concave function of the reservoir level. Now we have
a connection between reservoir level and total water value. The total water value is
denoted as Λj(l) and is de�ned as the integrated of λj(l).

Λj(l) =
∫

λj(l)dl = λjmaxl − λjmax

2(lmax − lmin)
l2 + C (6.18)

The term C in equation (6.18) is expected to be zero. This follows from the fact that
when the water level is at its lowest boundary we regard the total water value to be zero.
This is a consequence of the fact that the producer is not able to produce at this water
level because of legal or physical restrictions.

A suitable strategy would be to discharge from the reservoir with the lowest water value
given that the reservoir underlying the power station is not exceeded by the in�ow from
the production. We have considered the over�ow problem by letting the upper reservoir
contain water with a higher value. This forces the lower reservoir to discharge �rst and the
over�ow problem is reduced to a certain level. From the introduction of this section we
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know that the total water value is a function of the water level in the underlying reservoirs.
Hence, the total water values of reservoir 1, 2 and 3 are respectively Λ1(l1, l2, l3), Λ2(l2, l3)
and Λ3(l3). It must be noticed that this is a simpli�cation of reality.

As we know from previous chapters, water value is the marginal cost in the hydropower
production. Hence, we want to minimize the consumption of water during the time
horizon. The di�erence between the total water value at the end and at the beginning
of the period is denoted as the total expense of water during the period. This expense
is subtracted from the pro�t in the objective function and is mathematically explained
under

∑
j∈J

Λj(lj0)− Λj(ljT ) (6.19)

Figure 6.8: Total water value function of reservoir 1

Figure 6.9: Total water value function of reservoir 2

We have to �t the concave total water value function to our linear problem. This is
done by a piecewise linearization. Figures 6.8, 6.9 and 6.10 illustrate the total water
value as a function of reservoir level by a piecewise linearization based on a few discrete
points. The slopes of every point is lined up, such that if we follow the underside of
the curve we see that the resulting curve has a concave shape. Because of the way the
objective function is formulated we want to maximize the total water value at the end



46 CHAPTER 6. CASE STUDY

Figure 6.10: Total water value function of reservoir 3

of the time period. By using a constraint which forces the program to choose the slope
with the lowest value, we are ensured that the lowest slope is always prevailing. Finally,
we describe the concave water value function as a piecewise linear function with 4 line
segments. Thus, we have k = {1, ...5} points for the relationship between the total water
value at the end of the period, Λj(ljT ), and the water level, ljT , at the end of the period.

Λj(ljT ) ≤ Λ̂k,j +
Λ̂k+1,j − Λ̂k,j

l̂k+1,j − l̂k,j

× (lj,T − l̂k,j), ∀k ∈ K, j ∈ J (6.20)

6.2.5 Modeling of Start and Stop Costs

An essential factor in unit commitment decisions is the start and stop costs. This is
particularly true for thermal plants, but also for hydro plants start/stop costs are relevant.
These costs should in a hydro system re�ect the fact that whenever there is a start or stop
in the production from a unit, water would be lost. In addition altering the production
causes unnecessary exhaustion of the plant, increases the risks of component failure and
requires more work from the operator. Since these e�ects of start and stops are hard
to measure, assigning a value to the start and stop cost is a di�cult task and the costs
are usually an estimate. Thus, the important feature in the optimization modeling is to
have a model that punishes start and stop in such a way that one avoids getting a result
where you stop and then one time period later start the same generator.

Typically start/stop costs are modeled using binary variables saying if the unit is op-
erating or not. Then, when the binary variable changes value, a cost can be imposed.
Introducing binary variables in our model causes that we have to solve a mixed integer
problem. This is a more complex problem to solve than a model which has a convex linear
structure. Thus, if it is possible to avoid integer requirements of the decision variables
this would be an advantage. Solving a convex linear problem instead of a mixed integer
problem reduces the calculation time and makes it possible to solve a problem with more
decision variables and more constraints.
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In our model we use the approximated formulation used by Weber in (Weber 2004) to
describe start and stop costs. When using this approximation one avoids binary decision
variables by de�ning an additional decision variable, wonline

j,t which represents the capacity

currently online at station j at time step t. Within this model, wonline
j,t forms an arti�cial

upper bound to the power output and multiplied with the quotient of maximum and
minimum output it also forms a lower bound to the power output.

wj,t ≤ wonline
j,t ≤ wmax, ∀j ∈ J, t ∈ T (6.21)

(
wmin

wmax

)
× wonline

j,t ≤ wj,t, ∀j ∈ J, t ∈ T (6.22)

If the capacity online is increasing over time, that is if wonline
j,t > wonline

j,t−1 , start-up costs
arise. Thus, the start-up cost function can be de�ned in the following way:

Cstart
(
wonline

j,t , wonline
j,t−1

)
=

{
cstart
j (wj,t − wj,t−1) if wonline

j,t > wonline
j,t−1

0 else
(6.23)

On the other and if the capacity online is decreasing over time, i.e. wonline
j,t < wonline

j,t−1 ,
stop costs arise.

Cstop
(
wonline

j,t , wonline
j,t−1

)
=

{
cstop
j (wj,t−1 − wj,t) if wonline

j,t < wonline
j,t−1

0 else
(6.24)

Since wonline
j,t and wonline

j,t−1 both are decision variables, equation (6.23) and (6.24) are
di�cult to solve. To cope with this problem we have instead of equation (6.23) and
(6.24) used the following equations which states the same

Cstart
j,t ≥ cstart

j (wj,t − wj,t−1) , ∀j ∈ J, t ∈ T (6.25)

Cstart
j,t ≥ 0, ∀j ∈ J, t ∈ T (6.26)

Cstop
j,t ≥ cstop

j (wj,t−1 − wj,t) , ∀j ∈ J, t ∈ T (6.27)

Cstop
j,t ≥ 0, ∀j ∈ J, t ∈ T (6.28)

The start and stop function contributes negatively in the object function. Minimizing
Cstart

j,t and Cstop
j,t requires that the capacity online should be stable for each unit over
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time. Since the capacity online variable is linked to the power generation through its
restrictions, the model will strive to make as little altering as possible in the power
generation from each unit. Thus, in this formulation one does not punish start and stops
directly in the traditionally way, but rather says that all altering in the capacity online
causes a cost. This formulation can be justi�ed by the fact that altering the production
has some of the same negative consequences as start and stops i.e. raising costs of having
more people at work, changing parts earlier than else needed and so on.

The e�ciency of a station is given by a nonlinear function. For a hydro system, this
implies that more water is used to generate the same amount of electricity when the
generator is operating at low load compared to when it operates at the best point.
Because of this, one wants to avoid that the stations are always kept online. This is
taken account for in the relationship between the power output and the water �ow.

As mentioned earlier the costs assigned to each start and stop are in a traditionally model
just estimates. We have in our model used estimates from EBL (Norwegian Electricity
Industry Association). These estimates gives the cost for one start and one stop and are
based on the cost of extra work, cost caused by errors when starting/stopping and costs
of equipments, maintenances and reinvestments. Since a start not necessary has to be
followed by a stop, at least not in a short time frame, we have chosen to divide the start
and stop cost in two. Errors when starting occur more frequently than when stopping,
therefore the start cost is given a weigh of 55 % and the stop cost a weight of 45% .
Since these values are merely an approximation of how starts and stops contribute to of
extra costs, we have in our model also used these same �gures to assign a value to cstart

j

and cstop
j . This is an approximation since cstart

j and cstop
j in our model re�ects the cost

of altering generation, instead of the direct costs of start and stop.

6.2.6 Objective Function

Finally, the objective function can be expressed;

max
∑
b∈B

∑
t∈T

(ρtyt + ρbyb)−
∑
j∈J

(Λj(lj0)− Λj(ljT ))−
∑
j∈J

∑
t∈T

(Cstart
j,t + Cstop

j,t ) (6.29)

Equation (6.29) expresses that the revenues are results of the sales of power from both
accepted block bids and accepted hourly bids in the day-ahead market. The costs are
presented by the usage of water during the time period and the start and stop costs. As
mentioned earlier the program aim at maximizing the total value of water at the end of
the time period, T . This can easily be seen in the objective function.
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6.3 The Stochastic Programming Model

The model described in the last section does not re�ect the fact that both day-ahead
prices and water in�ow are uncertain. To regard the uncertainty we apply a discrete
probability distribution of the uncertain data of price and in�ow. One way to approx-
imate the continuous distributions into a discrete distribution is to use a scenario tree
as described in section 5.3.1. The total number of scenarios is denoted by S. Further-
more, each scenario is denoted by s with a corresponding probability πs. Finally, we can
introduce the two-stage stochastic programming model as a deterministic equivalent

max
∑
s∈S

πs

∑
t∈T

∑
b∈B

(ρt,syt,s + ρb,syb,s)−
∑
j∈J

(Λj(lj0,s)− Λj(ljT,s))−
∑
j∈J

∑
t∈T

(Cstart
j,t,s + Cstop

j,t,s )


(6.30)

subject to

Λj,s,T (lj) ≤ Λ̂k,j +
Λ̂k+1,j − Λ̂k,j

l̂k+1,j − l̂k,j

× (lj,s,T − l̂k,j), ∀j ∈ J, k ∈ K, s ∈ S (6.31)

yt,s =
ρt,s − pi−1

pi − pi−1
xi,t +

pi − ρt

pi − pi−1
xi−1,t, ∀i ∈ I, t ∈ T, s ∈ S (6.32)

wj,t,s ≤ ŵj,q +
vj,t,s − v̂j,q

v̂j,q+1 − v̂j,q
× (ŵj,q+1 − ŵj,q), ∀q ∈ Q, t ∈ T, j ∈ J, s ∈ S (6.33)

Cstart
j,t,s ≥ cstart

j (wj,t,s − wj,t−1,s) , ∀j ∈ J, t ∈ T, s ∈ S (6.34)

Cstop
j,t,s ≥ cstop

j (wj,t−1,s − wj,t,s) , ∀j ∈ J, t ∈ T, s ∈ S (6.35)

∑
j∈J

wj,t,s − ωt,s = yt,s +
∑

b∈B:t∈b

yb,s, ∀t ∈ T, s ∈ S (6.36)

l1,t,s = l1,t−1 − v1,t,s − r1,t,s + δ1,t,s + νt,s, ∀t ∈ T, s ∈ S (6.37)

l2,t,s = l2,t−1 − v2,t,s + v1,t,s − r2,t,s + δ2,t,s − νt,s, ∀t ∈ T, s ∈ S (6.38)
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l3,t,s = l3,t−1 − v3,t,s + v2,t,s − r3,t,s + δ3,t,s, ∀t ∈ T, s ∈ S (6.39)

xi,t ≤ xi+1,t, ∀i ∈ I, t ∈ T (6.40)

ωt = αpumpνt, ∀t ∈ T (6.41)

lmin,j ≤ lj,t,s ≤ lmax,j , ∀j ∈ J, t ∈ T, s ∈ S (6.42)

wmin,j ≤ wj,t,s ≤ wmax,j , ∀j ∈ J, t ∈ T, s ∈ S (6.43)

vmin,j ≤ vj,t,s ≤ vmax,j , ∀j ∈ J, t ∈ T, s ∈ S (6.44)

wj,t,s ≤ wonline
j,t,s ≤ wmax, ∀j ∈ J, t ∈ T, s ∈ S (6.45)

(
wmin

wmax

)
× wonline

j,t,s ≤ wj,t,s, ∀j ∈ J, t ∈ T, s ∈ S (6.46)

Cstart
j,t,s ≥ 0, ∀j ∈ J, t ∈ T, s ∈ S (6.47)

Cstop
j,t,s ≥ 0, ∀j ∈ J, t ∈ T, s ∈ S (6.48)

6.4 Scenario Generation

6.4.1 Application of the HKW Algorithm

We choose to use the HKW algorithm for scenario generation. For further information
about the HKW algorithm see section 5.4.2 or (Høyland et al. 2003). In our optimization
model of the bidding process the day-ahead market price and the in�ow to the two
lower situated reservoirs are stochastic variables. In�ow to reservoir 1 is anticipated to
be deterministic because of reservoir 1�s magnitude. Since we want to construct a price
pro�le for every scenario, we generate scenarios for price and for price standard deviation.
In addition we generate scenarios for the in�ow to reservoir 2 and 3.
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The HKW algorithm requires that the users specify the �rst four moments of every
variable and the correlation between them. The estimators for these data are collected
from a historical data set which consists of the spot price in the price area NO1 and
in�ow to reservoir 2 and 3 for every hour in 2005. First, we calculate the average price
within each day. The same is done with the in�ows to the two reservoirs in question. To
avoid that the algorithm generates scenarios with negative in�ow or price all the data is
transformed using the natural logarithm. From these four datasets with 365 data each,
the input to the algorithm is computed. The input data is summarized in table 6.1 and
6.2.

Price Standard deviation In�ow reservoir 2 In�ow reservoir 3

Mean 3,3628 0,3444 3,1990 4,5867

Variance 0,0183 0,4138 0,5607 0,0478

Skewness -0,7035 0,3234 -0,7742 -0,2186

Kurtosis 3,2035 3,7888 3,4875 3,2017

Table 6.1: Input data: First four moments

Price Standard deviation In�ow reservoir 2 In�ow reservoir 3

Price 1,0000 0,0118 0,2502 0,0411

St. deviation 0,0118 1,0000 0,1457 0,1400

In�ow res. 2 0,2502 0,1457 1,0000 0,6358

In�ow res. 3 0,0411 0,1400 0,6358 1,0000

Table 6.2: Input data: Correlation matrix

The output from the HKW algorithm is a prede�ned number of scenarios each with a
given probability. We obtain values for price, standard deviation of price and in�ow for
reservoir 2 and 3 within each scenario. Since the input data were transformed using the
natural logarithm, the output data have to be transformed back using Euler's number.

6.4.2 Construction of Price Pro�les

The issue is to create price pro�les connected to each scenario. To catch the variations
during the day, we need to base our di�erent pro�les on a standard pro�le which is made
from all the price data of all the hours during 2005. The standard pro�le should re�ect
the variations over a "typical" day, i.e. show that the prices tend to have a peak in the
morning hours and then again a peak in the evening. This comes from the natural hourly
�uctuations in the load. We choose to use the median price instead of the average price,
since the standard pro�le based on the median has a "smoother" curve than the one
based on the average price. See �gure 6.11.

The standard pro�le based on the median is calculated by �rst �nding the median price
of each hour. From these 24 medians called µt, a mean µ̄ is calculated which then is
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subtracted from each median so that the curve �uctuates around zero. By dividing with
the standard deviation of the 24 medians we get a standard deviation equal to one. Let
the standard pro�le be denoted by Ωt and the standard deviation of the 24 medians be
σµ, then we see that

Ωt =
µt − µ̄

σµ
, t = 1, ..., 24 (6.49)

A pro�le for each scenario is constructed by multiplying the standard pro�le Ωt with each
scenario`s standard deviation σs. Then the price ρs belonging to the scenario is added.
If we let ρt,s be the price pro�le for scenario s we see that

ρt,s = Ωt × σs + ρs, t = 1, ..., 24 (6.50)

and we get price pro�les belonging to each scenario s ∈ S.

Figure 6.11: Standard pro�le based on median and average

Our in�ow-data material shows very little variation from hour to hour within a day.
Hence, we assume the in�ow to be constant for every hour within a day.

6.4.3 Some Results from the Scenario Generation

The number of scenarios within each set generated was either 10, 100 or 250. In this
section we will present some results from the scenario generation of a set consisting of 10
scenarios.

Scenarios for the day-ahead market price pro�le is presented in �gure 6.12. Each curve
constitutes a price pro�le in a scenario. Likewise, the scenarios of in�ow in reservoir 2
and reservoir 3 are illustrated in �gure 6.13 and 6.14 respectively. Each line represents
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Mean Std.dev Min. Max.

Prices [e/MWh] 28,87 1,75 21,61 33,88

In�ow reservoir 1 [m3/s] 39,00 - 39,00 39,00

In�ow reservoir 2 [m3/s] 28,11 14,52 6,76 58,24

In�ow reservoir 3 [m3/s] 98,28 4,92 88,92 107,27

Table 6.3: Descriptive statistics of selected set of scenarios

a scenario of in�ow which is assumed to be constant during the day. Our dataset shows
that the magnitude of in�ow to reservoir 3 is in general higher than the in�ow to reservoir
2. This is also re�ected in the scenarios in �gure 6.13 and 6.14. Notice that reservoir 1
has deterministic in�ow and is included in table 6.3 only for consistency. The in�ow to
reservoir 1 is set to be the mean value of the in�ow to reservoir 1 in our dataset.

Figure 6.12: Hourly day-ahead market price scenarios

Figure 6.13: Hourly water in�ow scenarios, reservoir 2



54 CHAPTER 6. CASE STUDY

Figure 6.14: Hourly water in�ow scenarios, reservoir 3

6.5 Computational Results

We have applied both the deterministic and the stochastic programming model to the
case. The deterministic model runs with the average of the �ve sets of the 10-scenarios,
while the stochastic model is tested for 10, 100 and 250 scenarios respectively. The
optimization tool applied is Xpress Version 1.6.2. on a Pentium 4 2.4 GHz processor with
256 MB RAM.

6.5.1 Initial Conditions

We have chosen to let the initial conditions for the reservoir levels be 50% of maximum
level. The initial value of wonline

j,t=0 is set to maximum production for each reservoir. See
appendix A for more information on input data in the model.

6.5.2 General Results

Table 6.4 sum up the computational results when we have applied di�erent numbers of
scenarios. An interesting information from the table is that the objective value from the
deterministic solution (1 scenario) is consequently lower than the objective values in the
stochastic solutions. This can also be con�rmed by taking a glance at tables 6.5, 6.6,
6.7 and 6.8. This might indicate that the stochastic model performs better than the
deterministic model in general. In addition, the objective value increases with increasing
number of scenarios. A reason for this might be that the discrete distribution of the
stochastic parameters becomes a better approximation of the real continuous distribution
with more scenarios. The computational solution time increases with increasing scenarios.
This is an unavoidable disadvantage when the number of scenarios and hence the number
of variables increases.
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Scenario Variables Constraints Objective value [e] Solution time [sec]

1 10538 2548 572301 0,02

10 18688 11872 572404 2,6

100 91915 105112 572386 86

250 215102 260512 572560 741,52

Table 6.4: Computational results

In section 6.5.3 one sees that it is optimal to produce at maximum capacity in both
scenarios in almost all hours. It should be noted that the model �nd it optimal to
produce at maximum capacity for almost all hours in most of the scenarios, independent
of which set of scenarios applied. This might indicate that the water values are set too
low or that the costs of altering production, i.e. the approximated start and stop costs
are set too high.

6.5.3 Results from a Selected Set of Scenarios

We have chosen a set of 10 scenarios to illustrate some more results. If the reader look
back at �gure 6.12, the bold line represents scenario 1 and is the scenario with the lowest
variance. The dotted line represents scenario 4 which has the greatest variance. Figure
6.15 and 6.16 illustrate how the optimal production progresses during a day when the
market price does not �uctuate remarkably, i.e. scenario 1 is prevailing, and when it is
volatile as in scenario 4.

Figure 6.15: Accepted volume, scenario 1

Figure 6.15 states that in scenario 1 the optimal action is to produce at maximum
capacity for all the hours during the day. We �nd this reasonable because the spot price
is held steady higher than the water value for all the hours. In �gure 6.16 one sees that
in scenario 4 one does not want to produce at maximum capacity for all the hours. This
is also consistent with how the hourly prices �uctuate as illustrated in �gure 6.12. When
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Figure 6.16: Accepted volume, scenario 4

the price moves down as in hour 3, 4 and 5, it is obviously not optimal to produce at
maximum capacity.

Figure 6.17: Bid volume hour 3

To illustrate the shape of the bidding curve an example hour is chosen. Figure 6.17 shows
the optimal bid curve for hour 3 when the model is run with the 10 scenario set. The bid
curve is constructed by aggregating the hourly bids for hour 3 and the block bids which
apply hour 3. The �gure shows that the model �nds it optimal to bid approximately
1900 MW at a price as low as zero. This high volume indicates that we probably have
set the water values too low. In the model we have not restricted the bid volume and
as a consequence one sees that the total bid volume exceeds the maximum generation
capacity.

6.5.4 Stability Test

To test for stability �ve sets of scenarios are made for respectively the 10, 100 and
250 scenario-case. We have carried out the in-stability test described in section 5.3.2.
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From the same section we know that if the in-stability test is satisfactorily the out-
of-sample stability is also most likely satisfactorily. To test for the in-stability, several
scenarios must be generated with the same input data. It is also important that only one
scenario generation method is applied. Then the model is run for each of the "equal"
scenarios. The in-stability is found satisfactorily if the results from the model do not
di�er signi�cantly from each other.

We have carried out the test by generating �ve times a set of the deterministic approach,
�ve times a set of the 10-scenarios, �ve times a set of the 100-scenarios and �ve times
a set of the 250-scenarios. Further each sample was used as input data in the model.
The results from the model are represented in table 6.5, 6.6, 6.7 and 6.8. The maximum
percentual deviation from the mean is for all sets below 0,005%. We �nd that the results
within each scenario-set are su�ciently equal, and hence the scenario generation method
is stable.

Set of scenarios Objective value, [e] Solution time [sek]
1 572299 0,0

2 572302 0,1

3 572317 0,0

4 572288 0,0

5 572297 0,0

mean 572301 0,02

Table 6.5: Computational results: Deterministic

Set of scenarios Objective value, [e] Solution time [sek]
1 572409 3,1

2 572414 2,4

3 572421 3,0

4 572389 2,0

5 572388 2,5

mean 572404 2,6

Table 6.6: Computational results: 10 scenarios

Value of Stochastic Solution - VSS

To �nd the value of the stochastic solution (VSS) the deterministic solution is compared
to the stochastic solution. The value of the stochastic solution measures the e�ect of
including stochastic variables into the bidding problem rather than simply using the ex-
pected values of the variables. In the deterministic case we give the stochastic parameters
prede�ned values which equal the averages of the scenarios, i.e. the expected values of
price and in�ow. The objective value of the deterministic model is referred to as the
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Set of scenarios Objective value, [e] Solution time [sek]
1 572391 87,1

2 572382 81,6

3 572365 73,3

4 572392 86,4

5 572402 101,6

mean 572386 86

Table 6.7: Computational results: 100 scenarios

Set of scenarios Objective value, [e] Solution time [sek]
1 572560 388,4

2 572584 1328,1

3 572551 1178,8

4 572559 354,5

5 572545 457,8

mean 572560 741,5

Table 6.8: Computational results: 250 scenarios

expected mean value (EMV). Averages of �ve di�erent runs of the stochastic model are
referred to as the expected value of the stochastic solution (ESS). In table 6.9 the results
are listed for the di�erent sets of scenarios. The results indicate that there is a slight
positive increase in value by applying a stochastic model instead of a deterministic one.
The percentual increase is below 1%. Nevertheless, if this model is run every day of the
year the total value of applying the model during the year may become signi�cant.

Number of scenarios ESS EMV VSS

10 572404e 572301e 104e
100 572386e 572260e 126e
250 572560e 572259e 301e

Table 6.9: Value of stochastic solution (VSS)

Another way to test the value of the stochastic model is to test it against the situation
where we have perfect information. This would only be possible if we had the opportunity
to wait until the next days spot prices are published and run the deterministic model
with this perfect information and then compare it to the result of our stochastic model.

Block bids reduce the e�ect of the uncertainty in price by making an "aggregating" bid for
several consecutive hours, and the average spot price of those hours decide whether the
block bid is accepted or not. By this, one assure oneself against the hourly �uctuations in
price. Hence, one expects that block bids are more applied in stochastic models. Figure
6.18 shows the accepted bids when the model is run with the average of the selected set
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of scenarios. From a comparison between �gure 6.18 and �gure 6.15 and 6.16 one sees
that block bids are less used in the deterministic case.

Figure 6.18: Accepted volume deterministic case

At last we want to emphasize the fact that we do obtain a bidding curve that we know
is optimal under uncertainty. As long as we know that the price and in�ow also are
uncertain in the short-term perspective, it is valuable to apply a stochastic programming
model in the short-term hydropower scheduling.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have presented a short-term scheduling model for a hydropower station which regard
the uncertainty in the price and in�ow in the short-term perspective.

Our results show that there is a slight improvement in the objective value when the
stochastic model is applied instead of the deterministic one. Even though, the percentual
increase is rather low one should keep in mind that the day-ahead bidding is done every
day. Hence, the accumulated increase in pro�t may become signi�cant over the year.
Stochastic models are often criticized for being computational demanding. The stochastic
model presented has a satisfactory solution time, even with 250 scenarios.

It should be noted that the results are preliminary and future work is required to validate
the results. We will in this section present some areas were future research could be done.

7.2 Improving the Scenarios

The scenario generation is an important part of making the stochastic model. The quality
of the stochastic model is linked to the quality of the scenarios. This follows from the
fact that the scenarios provide information to the model of how the stochastic variables
vary. If the scenarios are of bad quality, then the stochastic model is necessarily of bad
quality too.

Therefore, part of the future work should consist of improving the construction of sce-
narios. One should carry out more comprehensive testing for stability in the scenarios
including testing for di�erent scenario generation methods. A well known problem in
making the in�ow scenarios is that the in�ow is autocorrelated in time. Hence, it is
preferable to account for this when choosing scenario generation method. An alternative
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way of scenario generation is to base the scenarios on predictions of price and in�ow
instead of historical data as in the HKW-algorithm. The producers often make their
own prognoses of price and in�ow which can be utilized in the scenario generation. In
addition to the predictions one should also take into account extreme situations which
can be weighted with lower probabilities than the other scenarios.

Our results show that the objective value increases with the number of scenarios. From
this it is obvious that it is interesting to generate larger sets of scenarios. In addition, the
approximation of the continuous "real world" stochastic distribution becomes better the
more discrete points in the discrete distribution, i.e. the more scenarios included in the
set. With an increasing number of scenarios it is also interesting to see if the objective
value �nally converges toward a certain value. This indicates how many scenarios that is
needed in the set. Furthermore, constructing better standard pro�les by either making
them more speci�c to a certain day/season or by letting more stochastic variables describe
them is left to future work.

7.3 Improving the model

It is clearly an advantage if the model is programmed more generic. This would make it
easy to adjust the model to other hydropower plants. A higher detailing level will describe
the physical system better. In our model formulation we do not consider the generation
at unit level only at station level. Since we have chosen best-points combination of the
turbines to construct the station generation curves, the model �nds a too good solution.
This would be avoided if one modeled each unit explicitly. In addition it would be
interesting to compare our linear model with a mixed integer model. The latter model
would have binary variables representing if the units are in operation or not, hence use
the standard formulation of start and stop costs.

The modeling of the water values should be improved in further work. The most appro-
priate would be to use water values from the long- and medium-term scheduling models
as input in the short-term model. In addition, a longer time horizon can be chosen to
include the coupling to medium-term models. In such a case it would probably be proper
to use a multi-stage stochastic model. The time horizon could also be extended by in-
cluding the hours before the bidding, then one would take into account the fact that no
short-term scheduling plan is independent from day to day.

In our model we have �xed the price points by choosing equidistant price points which
include the possible outcome of the market price. Another way this could have been done
is to have equiprobable price points. Hence, the probability of being dispatched on any
of the I − 1 line segments is the same.
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7.4 Validation of the Model

Comparing the model against the regular practice of short-term scheduling is left to
future work. That is to run the model over a period and compare the objective values
against the real pro�t earned from bidding in the spot market during the same period.
It is only through such a validation that one can throughly reveal whether a stochastic
model performs better than common deterministic practice. The EVPI-test could also
be accomplished in this setting.

The model can also be run for special designed scenarios to test how the model behaves
in "extreme" situations. By this one would get an anticipation if the model acts rational,
since one in "extreme" situations intuitively knows how the model optimally would act.
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Appendix A

Input Data - Case Study

Reservoir Initial reservoir level [m3] wonline
j,t=0 [MW ]

1 1761500000 640

2 138185000 1240

3 29150000 160

Table A.1: Input data: Initial conditions in the model

Res. min. capacity [MW] max. capacity [MW] start cost [e] stop cost [e] F [e]
1 100 640 206,25 168,8 35

2 200 1240 309,4 253,0 35

3 55 160 151,25 123,8 35

Table A.2: Data input

For more input data to the model, see the enclosed CD-ROM.
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Appendix B

CD-ROM

The contents in the enclosed CD-ROM is:

• Xpress codes

• Input data to Xpress

• Input data to HKW algorithm

• Output data from HKW algorithm, �ve sets of 10 scenarios

• Output data from HKW algorithm, �ve sets of 100 scenarios

• Output data from HKW algorithm, �ve sets of 250 scenarios

• The standard pro�le
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Xpress Programming Codes
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model "stochastic short-term scheduling" 
uses "mmxprs", "mmodbc"; !gain access to the Xpress-Optimizer solver 
 
declarations 
        S=10 !number of scenarios 
        T=24 !number of hours 
        B: integer !number of block 
        I=64 !number of price-steps 
        J=3 !number of reservoirs 
        L=5 ! number of line-points 
        P=6 !number of efficiency-points 
        O=2 !efficieny-points range 
         
        time_24 = 1..T 
        scenario = 1..S 
        reservoir = 1..J 
        block_data =1..3 
        price =1..I 
        line_points = 1..L 
        v_points = 1..P 
        factor=1..O 
        
end-declarations 
 
B:= sum(t in time_24)t-24-23-22 
 
declarations 
        block = 1..B 
        blocks:array(block_data,block)of integer  
         !1.row:start,2.row:stop,3.row: #hours 
        a:integer  
        q:integer  
         
        prob: array(scenario)of real !probability of each scenario to occur 
        price_steps: array(price)of real !price-steps 
       spotprice_h: array(time_24,scenario)of real !hourly spotprice from the scenarios 
        spotprice_b: array(block,scenario)of real !block-prices made from hourly spot prices 
          
         
        alpha: array(reservoir)of real !energy coefficient 
        start_cost: array(reservoir)of real  
        stopp_cost: array (reservoir)of real  
          
 
        vmin: array(reservoir)of real !minimum level of water flow into a station 
        vmax: array(reservoir)of real !maximum level of water flow into a station 
        wmin: array(reservoir)of real !minimum level of generation  
        wmax: array(reservoir)of real !maximum level of generation 
        lmin: array(reservoir)of real !minimum level of reservoir 
        lmax: array(reservoir)of real !maximum level of reservoir 
         
        l_start: array(reservoir)of real !initial level at reservoirs 
        value_start: array(reservoir)of real !initial value of water 
        online_initiell: array(reservoir)of real !initial value of online-variable 
         
        v_point1: array(v_points,factor)of real !waterflow points station 1 
        v_point2: array(v_points,factor)of real! waterflow points station 2 
        v_point3:array(v_points,factor)of real !waterflow points station 3 
 
        inflow:array(reservoir,scenario)of real !inflow 



        tau: array(reservoir)of integer !time delay 
 
        water_level: array(line_points,reservoir)of real !reservoir level to determine value of water 
        value_water: array(line_points, reservoir)of real !value of water 
        water_value_empty: array(reservoir)of real !maximum water value  
        F: real ! future average price [euro] 
        k: real  
         
        pump_min: real !pumps at station 1 
  pump_max: real  
  pump_alpha:real 
  end-declarations 
 
!Initialization from Excel 
!Here one has to adjust of number of scenarios 
initialisations from "mmodbc.odbc:input data Xpress.xls" 
[lmin,lmax,wmin,wmax,alpha,start_cost,stopp_cost,tau,l_start,vmin,vmax,online_initiell]as "ResRange" 
 
price_steps as "priceStepRange" 
pump_min as "pumpRangeMin" 
pump_max as "pumpRangeMax" 
pump_alpha as "pumpAlphaRange" 
 
v_point1 as "v1Range" 
v_point2 as "v2Range" 
v_point3 as "v3Range" 
F as "FRange" 
 
!deterministic 
!inflow as "DetInflowRange" 
!spotprice_h as "DetSpotRange" 
!prob as "DetProbRange" 
 
!10 scenarioer 
inflow as "inflowRange" 
spotprice_h as "spotPriceRange" 
prob as "probRange" 
 
!100 scenarioer 
!inflow as "inflowRange100" 
!spotprice_h as "spotRange100" 
!prob as "probRange100" 
 
!250 scenarioer 
!inflow as "inflowRange250" 
!spotprice_h as "spotRange250" 
!prob as "probRange250" 
end-initialisations 
 
 
!Initializations of blocks 
a:=1 
q:=4 
forall(b in block)do 
  blocks(1,b):=a 
  blocks(2,b):=q 
         q:=q+1 
 if q=25 then 
         a:=a+1 
         q:=a+3 



 end-if 
   blocks(3,b):= blocks(2,b)-blocks(1,b)+1 
 end-do 
  
!Initializations of block spot price 
forall(b in block, s in scenario)do  
        spotprice_b(b,s):=(1/blocks(3,b))*sum(t in time_24|t<=blocks(2,b)and blocks(1,b)<=t)spotprice_h(t,s) 
end-do 
 
!Initializing maximum water value  
forall(j in reservoir) 
water_value_empty(j):= F*sum (i in j..J)alpha(i) 
 
 
!Initializing the water levels to dermine water values 
forall(j in reservoir)do 
        k:=0 
        forall(lp in line_points)do 
                water_level(lp,j):= k*lmax(j) 
                k:=k + 1/(L-1) 
        end-do 
end-do 
 
!Intializing the different values of the water 
forall(lp in line_points, j in reservoir) 
        value_water(lp,j):= water_value_empty(j)*water_level(lp,j)- 
                                                ((water_value_empty(j)*water_level(lp,j)*water_level(lp,j))/(2*(lmax(j)-lmin(j)))) 
                                                 
!Initalizing value of the water in start 
forall(j in reservoir,s in scenario) 
        forall(lp in line_points|lp<L)do 
        if (water_level(lp,j)<=l_start(j) and l_start(j)<water_level(lp+1,j))then 
                value_start(j):= ((l_start(j)- water_level(lp,j))*(value_water(lp+1,j)-value_water(lp,j)))/ 
                                        (water_level(lp+1,j)-water_level(lp,j))+ value_water(lp,j) 
        end-if 
        end-do 
 
 
         
declarations !of decision variables 
 
        z: array(scenario)of mpvar !used in formulation of objective function 
        x_h: array(price,time_24)of mpvar !hourly bid 
        y_h: array(time_24,scenario)of mpvar !accepted hourly bid 
        x_b: array(price,block)of mpvar !block bid 
        y_b: array(block,scenario)of mpvar !accepted block bid 
 
        v: array(reservoir,time_24,scenario)of mpvar !water flow 
        w: array(reservoir,time_24,scenario)of mpvar !generation 
         
        online: array(reservoir, time_24, scenario)of mpvar !online variable to determine start/stop costs 
        start: array(reservoir, time_24, scenario)of mpvar !start costs 
        stopp: array(reservoir, time_24, scenario)of mpvar !stop costs 
         
        l: array(reservoir, time_24,scenario)of mpvar !reservoir level 
        value_end: array(reservoir,scenario)of mpvar !value of the water at end of period 
        r: array(reservoir,time_24,scenario)of mpvar !amount of spill 
         
        pump: array(time_24,scenario)of mpvar !energy used in pump 
        pump_flow: array(time_24,scenario)of mpvar !water flow from pump 



         
         
end-declarations 
 
!OBJECTIVE FUNCTION 
profit:= sum(s in scenario)(prob(s)*z(s)) 
 
!CONSTRAINTS 
forall(s in scenario) 
        z(s)=((sum(t in time_24)spotprice_h(t,s)*y_h(t,s))+ !revenues hourly bids 
                (sum(b in block)spotprice_b(b,s)*blocks(3,b)*y_b(b,s))+ !revenues block bids 
                (sum(j in reservoir)value_end(j,s))- !total value of water at end 
                (sum(j in reservoir)value_start(j))- ! total value of water at start 
                (sum(j in reservoir,t in time_24)start(j,t,s))-!app. start costs 
                (sum(j in reservoir,t in time_24)stopp(j,t,s)))!app. stop costs 
                 
 
!the value of the water in the end if the end-level is between 1 and 2 
forall(s in scenario,j in reservoir) 
value_end(j,s)<=((l(j,T,s)- water_level(1,j))*(value_water(2,j)-value_water(1,j)))/ 
                                        (water_level(2,j)-water_level(1,j))+ value_water(1,j) 
 
!the value of the water in the end if the end-level is between 2 and 3         
forall(s in scenario,j in reservoir) 
value_end(j,s)<=((l(j,T,s)- water_level(2,j))*(value_water(3,j)-value_water(2,j)))/ 
                                        (water_level(3,j)-water_level(2,j))+ value_water(2,j) 
                                         
!the value of the water in the end if the end-level is between 3 and 4 
forall(s in scenario,j in reservoir) 
value_end(j,s)<=((l(j,T,s)- water_level(3,j))*(value_water(4,j)-value_water(3,j)))/ 
                                        (water_level(4,j)-water_level(3,j))+ value_water(3,j) 
                                         
!the value of the water in the end if the end-level is between 4 and 5 
forall(s in scenario,j in reservoir) 
value_end(j,s)<=((l(j,T,s)- water_level(4,j))*(value_water(5,j)-value_water(4,j)))/ 
                                        (water_level(5,j)-water_level(4,j))+ value_water(4,j) 
 
 
!Relationship between accepted volume and bid volume 
 forall(t in time_24,s in scenario, i in 1..I-1|  
        price_steps(i) <= spotprice_h(t,s) and price_steps(i+1) > spotprice_h(t,s))!) 
         
 y_h(t,s)<=((spotprice_h(t,s)-price_steps(i))/(price_steps(i+1)-price_steps(i)))*x_h(i+1,t)+ 
                         ((price_steps(i+1)-spotprice_h(t,s))/(price_steps(i+1)-price_steps(i)))*x_h(i,t) 
   
  forall(b in block, s in scenario) 
  y_b(b,s)= sum(i in price|price_steps(i)<=spotprice_b(b,s))x_b(i,b) 
   
 
!Realation between generation and water flow at station 1 
 forall(j in reservoir,t in time_24,s in scenario|j=1) 
 w(j,t,s)<=v_point1(1,1)+((v(j,t,s)-v_point1(1,2))/(v_point1(2,2)-v_point1(1,2)))*(v_point1(2,1)-v_point1(1,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=1) 
 w(j,t,s)<=v_point1(2,1)+((v(j,t,s)-v_point1(2,2))/(v_point1(3,2)-v_point1(2,2)))*(v_point1(3,1)-v_point1(2,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=1) 
 w(j,t,s)<=v_point1(3,1)+((v(j,t,s)-v_point1(3,2))/(v_point1(4,2)-v_point1(3,2)))*(v_point1(4,1)-v_point1(3,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=1) 



 w(j,t,s)<=v_point1(4,1)+((v(j,t,s)-v_point1(4,2))/(v_point1(5,2)-v_point1(4,2)))*(v_point1(5,1)-v_point1(4,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=1) 
 w(j,t,s)<=v_point1(5,1)+((v(j,t,s)-v_point1(5,2))/(v_point1(6,2)-v_point1(5,2)))*(v_point1(6,1)-v_point1(5,1)) 
  
  
 
 !Realation between generation and water flow at station 2 
 forall(j in reservoir,t in time_24,s in scenario|j=2) 
 w(j,t,s)<=v_point2(1,1)+((v(j,t,s)-v_point2(1,2))/(v_point2(2,2)-v_point2(1,2)))*(v_point2(2,1)-v_point2(1,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=2) 
 w(j,t,s)<=v_point2(2,1)+((v(j,t,s)-v_point2(2,2))/(v_point2(3,2)-v_point2(2,2)))*(v_point2(3,1)-v_point2(2,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=2) 
 w(j,t,s)<=v_point2(3,1)+((v(j,t,s)-v_point2(3,2))/(v_point2(4,2)-v_point2(3,2)))*(v_point2(4,1)-v_point2(3,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=2) 
 w(j,t,s)<=v_point2(4,1)+((v(j,t,s)-v_point2(4,2))/(v_point2(5,2)-v_point2(4,2)))*(v_point2(5,1)-v_point2(4,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=2) 
 w(j,t,s)<=v_point2(5,1)+((v(j,t,s)-v_point2(5,2))/(v_point2(6,2)-v_point2(5,2)))*(v_point2(6,1)-v_point2(5,1)) 
  
 
  
!Realation between generation and water flow at station 3 
 forall(j in reservoir,t in time_24,s in scenario|j=3) 
 w(j,t,s)<=v_point3(1,1)+((v(j,t,s)-v_point3(1,2))/(v_point3(2,2)-v_point3(1,2)))*(v_point3(2,1)-v_point3(1,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=3) 
 w(j,t,s)<=v_point3(2,1)+((v(j,t,s)-v_point3(2,2))/(v_point3(3,2)-v_point3(2,2)))*(v_point3(3,1)-v_point3(2,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=3) 
 w(j,t,s)<=v_point3(3,1)+((v(j,t,s)-v_point3(3,2))/(v_point3(4,2)-v_point3(3,2)))*(v_point3(4,1)-v_point3(3,1)) 
  
 forall(j in reservoir,t in time_24,s in scenario|j=3) 
 w(j,t,s)<=v_point3(4,1)+((v(j,t,s)-v_point3(4,2))/(v_point3(5,2)-v_point3(4,2)))*(v_point3(5,1)-v_point3(4,1)) 
 
 forall(j in reservoir,t in time_24,s in scenario|j=3) 
 w(j,t,s)<=v_point3(5,1)+((v(j,t,s)-v_point3(5,2))/(v_point3(6,2)-v_point3(5,2)))*(v_point3(6,1)-v_point3(5,1)) 
  
  
 
!Increacing bid curve 
forall(t in time_24,i in 1..(I-1))   
        x_h(i,t)<=x_h(i+1,t)  
 
!online constraints 
forall(j in reservoir, t in time_24, s in scenario)         
        online(j,t,s)<=wmax(j) 
forall(j in reservoir, t in time_24, s in scenario)         
        w(j,t,s)<=online(j,t,s) 
forall(j in reservoir, t in time_24, s in scenario)         
        (wmin(j)/wmax(j))*online(j,t,s)<=w(j,t,s) 
         
         
!start/stop costs 
forall(j in reservoir, t in time_24, s in scenario)         
        start(j,t,s)>=0 
         



forall(j in reservoir, t in time_24, s in scenario|t=1) 
        start(j,t,s)>=start_cost(j)*(online(j,t,s)-online_initiell(j))         
 
forall(j in reservoir, t in time_24, s in scenario|t<T) 
        start(j,t+1,s)>=start_cost(j)*(online(j,t+1,s)-online(j,t,s)) 
         
forall(j in reservoir, t in time_24, s in scenario) 
        stopp(j,t,s)>=0         
         
forall(j in reservoir, t in time_24, s in scenario|t=1) 
        stopp(j,t,s)>=stopp_cost(j)*(online_initiell(j)-online(j,t,s))         
 
forall(j in reservoir, t in time_24, s in scenario|t<T) 
        stopp(j,t+1,s)>=stopp_cost(j)*(online(j,t,s)-online(j,t+1,s)) 
 
 
!generation equals accepted volume 
forall(t in time_24,s in scenario)     
        sum(j in reservoir)w(j,t,s)-pump(t,s)=y_h(t,s)+ 
                        sum(b in block|t<=blocks(2,b)and blocks(1,b)<=t)y_b(b,s) 
                         
 
!water flow within its restrictions          
forall(j in reservoir, t in time_24,s in scenario)  
vmin(j)<=v(j,t,s) 
 
forall(j in reservoir, t in time_24,s in scenario) 
v(j,t,s)>=vmax(j) 
 
!generation within its restrictions  
forall(j in reservoir, t in time_24, s in scenario) 
wmin(j)<=w(j,t,s)  
         
forall(j in reservoir, t in time_24, s in scenario) 
wmax(j)>=w(j,t,s)  
 
!reservoir within its restrictions  
forall(j in reservoir,t in time_24,s in scenario) 
lmin(j)<=l(j,t,s) 
 
forall(j in reservoir,t in time_24,s in scenario) 
lmax(j)>=l(j,t,s) 
 
!waterlevel balance at reservoir 1 
forall(j in reservoir,t in time_24,s in scenario|j=1 and t=1) 
l(j,t,s)-l_start(j)+v(j,t,s)+r(j,t,s)=inflow(j,s)+ pump_flow(t,s) 
 
forall(j in reservoir, t in time_24,s in scenario|j=1 and t>1) 
l(j,t,s)-l(j,t-1,s)+v(j,t,s)+r(j,t,s)=inflow(j,s)+ pump_flow(t,s) 
 
!waterlevel balance at reservoir 2 
forall(j in reservoir, t in time_24, s in scenario|j=2 and t=1 and t>tau(j)) 
l(j,t,s)-l_start(j)+v(j,t,s)+ r(j,t,s)=v(j-1,t-tau(j),s)+inflow(j,s)- pump_flow(t,s) 
 
forall(j in reservoir, t in time_24, s in scenario|j=2 and t>1 and t>tau(j)) 
l(j,t,s)-l(j,t-1,s)+v(j,t,s)+ r(j,t,s)=v(j-1,t-tau(j),s)+inflow(j,s)-pump_flow(t,s) 
 
forall(j in reservoir, t in time_24, s in scenario|j=2 and t=1 and t<=tau(j)) 
l(j,t,s)-l_start(j)+v(j,t,s)+ r(j,t,s)=inflow(j,s)-pump_flow(t,s) 
 



forall(j in reservoir, t in time_24, s in scenario|j=2 and t>1 and t<=tau(j)) 
l(j,t,s)-l(j,t-1,s)+v(j,t,s)+ r(j,t,s)=inflow(j,s)- pump_flow(t,s) 
 
!waterlevel balance at reservoir 3 
forall(j in reservoir, t in time_24, s in scenario|j=3 and t=1 and t>tau(j)) 
l(j,t,s)-l_start(j)+v(j,t,s)+ r(j,t,s)=v(j-1,t-tau(j),s)+inflow(j,s) 
 
forall(j in reservoir, t in time_24, s in scenario|j=3 and t>1 and t>tau(j)) 
l(j,t,s)-l(j,t-1,s)+v(j,t,s)+ r(j,t,s)=v(j-1,t-tau(j),s)+inflow(j,s) 
 
forall(j in reservoir, t in time_24, s in scenario|j=3 and t=1 and t<=tau(j)) 
l(j,t,s)-l_start(j)+v(j,t,s)+ r(j,t,s)=inflow(j,s) 
 
forall(j in reservoir, t in time_24, s in scenario|j=3 and t>1 and t<=tau(j)) 
l(j,t,s)-l(j,t-1,s)+v(j,t,s)+ r(j,t,s)=inflow(j,s) 
 
 
!Relation between energy used to pump and water flow 
forall(t in time_24,s in scenario) 
pump(t,s)=pump_alpha*pump_flow(t,s) 
 
 
!maximize profit 
maximize(profit) 
 
!print out 
writeln ("Profit: ", getobjval) 
writeln("") 
 
forall(i in price, t in time_24) 
 if getsol(x_h(i,t))>0 then 
  writeln ("Hourly bid at hour " ,t, " : ",getsol(x_h(i,t)),"MW at pricepoint ", i) 
 end-if 
writeln("") 
 
forall(t in time_24, s in scenario) 
 if getsol(y_h(t,s))>0 then 
  writeln ("Accepted volume: ",getsol(y_h(t,s)),"MW at hour ",t," in scenario ",s) 
 end-if 
writeln("") 
 
 
forall(i in price, b in block) 
 if getsol(x_b(i,b))>0 then 
  writeln ("Blockbid " ,b, " :",getsol(x_b(i,b)),"MW at pricepoint ", i) 
 end-if 
writeln("") 
 
forall(b in block, s in scenario) 
 if getsol(y_b(b,s))>0 then 
  writeln ("Accepted volume: ",getsol(y_b(b,s)),"MW as block ",b," in scenario ",s) 
 end-if 
 
 
end-model 
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