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Abstract

Empirical studies of hydropower production scheduling are rare. In this thesis we discuss
hydropower scheduling from an economical point of view and emphasize why information
from the forward market can be used in the scheduling. Based upon this we develop
several hypotheses regarding qualitative aspects of the scheduling decision and test these
empirically using linear regression. The main focus is to investigate the factors that drive
the generation schedules.

Prior to the analysis, we gather and present data relevant to the production decision
from thirteen Norwegian hydropower producers. In addition, relevant data from Nord
Pool is presented. The time span of the data is from 2000 to 2006 and has a resolution
of one week. The hypotheses are divided in a general hypothesis and speci�c hypotheses.
The general hypothesis states that the production decision is dependent on in�ow, spot
and forward prices, seasonal variation and lag of production. Dynamic panel models are
estimated using GMM. The best model is selected by the out-of-sample R2 criteria and
has an out-of-sample R2 equal to 88,56%. The general hypothesis is accepted.

Further we present and test eight speci�c hypotheses related to situations regarding reser-
voir contents, characteristics of the producers and market conditions. These hypotheses
are tested applying the best models from the general hypothesis testing. Results show
that a positive deviation from expected reservoir content results in increased production.
A critical high or low reservoir content makes the producer less dependent on prices.
Moreover, a critical high reservoir level makes production more sensitive to in�ow. We
reject the hypothesis that an extremely high spot price results in an increased production.
Further, we conclude with that an extreme increase in variance in spot prices reduces pro-
duction. Likewise, it is tested whether an extreme increase in variance in in�ow reduces
production. The testing rejects this hypothesis. Further we reject the hypotheses that
state that producers with a low relative regulation or a low relative time of production
are di�erently a�ected by price and in�ow in the scheduling. Neither is the hypothesis
stating that there has been a maturation in the producers willingness to let the forward
price a�ect the production decision accepted.

Most of the results from the hypotheses testing presented in this thesis are in accordance
with theory. With this analysis one better understands the dynamics of the hydropower
scheduling problem.
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Chapter 1

Introduction

1.1 Background and Motivation

Hydropower producers with storage possibilities face a di�cult task when scheduling
production in a liberalized market. The problem is a dynamic one because water used in
production today may alternatively be used tomorrow. In addition, the high number of
units involved and the stochastic nature of key variables like in�ow and price complicate
the scheduling problem. Traditionally the scheduling of the power system has been
an engineering task and this is re�ected in literature within the �eld. Little focus has
been on the scheduling problem from an economic point of view. (Edwards 2003) and
(Førsund 2007) are among few exceptions. In this thesis we discuss the economic aspects
of hydropower scheduling.

As mentioned, the emphasis within this �eld has been from an engineering point of view
and much research is aimed at how producers should optimally schedule production.
However, practice is not always in accordance with theory. Moreover, the Norwegian me-
dia tend to speculate around motives and strategies behind the hydropower production,
in particular in times with high electricity prices. It is therefore of interest to reveal how
the hydropower producers actually act by carrying out an empirical analysis.

In this thesis we present an empirical analysis where we investigate which factors drive
hydropower production. More speci�c, we test how production is determined by in�ow,
spot and forward prices, seasonal variation and lag of production. In addition we exam-
ine how producers respond to speci�c situations regarding reservoir content, producer
characteristics and market conditions. Data input for the analysis is gathered from thir-
teen adequate Norwegian hydropower producers and from Nord Pool. The purpose of
the empirical analysis is not to present the best possible generation model that can be
used as a decision-support tool, but rather to reveal and discuss qualitative aspects of
the scheduling problem.

1



2 CHAPTER 1. INTRODUCTION

Deregulated electricity markets are young and empirical electricity market studies are
rare. A study has been accomplished on demand, generation and price by (Johnsen
2001). However, this study does not apply cross-sectional data from di�erent producers,
but rather looks at the joint determination of electricity generation. To our knowledge no
other empirical studies based on hydropower producer panel data have been published.
This may be caused by the lack of data material since some producers tend to be unwilling
to give away data for research.

1.2 Structure of the Thesis

The structure of the thesis is as follows; Chapter 2 is an introduction to the Nordic power
market. Further, in chapter 3 the concept of hydropower scheduling from an economic
point of view is presented. In chapter 4 we discuss how the information from the forward
market can be applied in hydropower scheduling. Based on theory in previous chapters,
we present our hypotheses in chapter 5. Data from hydropower producers and Nord Pool
is presented in chapter 6. The di�erent models based on the hypotheses are formulated
in chapter 7. Further, in chapter 8 and chapter 9, the models are applied to testing of
the general hypothesis and speci�c hypotheses, respectively. Finally in chapter 10 we
present some general comments and results regarding the analysis. Chapter 11 states a
conclusion and suggests some improvements left for future work.



Chapter 2

The Nordic Power Market

2.1 Nord Pool

Nord Pool ASA is the Nordic power exchange. It has developed from being solely a
Norwegian power exchange to be a multinational exchange for electrical power which
serves Denmark, Finland, Sweden and Norway. In addition to being an exchange, Nord
Pool also publishes important market information such as total reservoir content in the
Nordic countries and outages for maintenance and repair.

2.1.1 Elspot

The market for physical contracts, Elspot, is an auction-based day-ahead market where
electrical power contracts are traded for each hour the following day. Elspot gives the
participants the possibility to balance their portfolios of power contracts close to real-
time load. Participation at Elspot is voluntary and about 40% of the Nordic consumption
is traded at Elspot (NVE 2006b).

The participants at Elspot submit sales- and purchase bids for every hour of the following
day and from these bids the spot price for every hour is calculated. The calculation is
done without considerations to congestions in the grid. When such congestions exist
separate area prices are established. The system price is the average of the 24 spot prices
within a day (Nord Pool 2006b).

2.1.2 Eltermin

Eltermin is the �nancial market organized by Nord Pool where futures and forward
contracts are traded. The participants take part at Eltermin to meet di�erent needs.
Producers, retailers and end-users use the products as risk management tools, while

3



4 CHAPTER 2. THE NORDIC POWER MARKET

speculators pro�t from volatility in the market and contribute to transparency and e�-
ciency. The system price established at Elspot constitutes the reference price.

In chapter 4, the forward market and how forward contracts can be used in hydropower
scheduling will be discussed thoroughly.

2.2 Characteristics of the Nordic Power Market

Electricity is an essential good in a modern society and its special features makes it a
unique commodity. In this section we will look at some characteristics of electricity and
the Nordic power market.

2.2.1 Non-storability: Balance in Supply and Demand

Since electricity can not be stored, at least not in signi�cant quantities, the electricity
market must be in instant balance regarding generation and consumption. This fact
a�ect how the power market has to be designed.

For most commodities there is a simultaneous balance between supply and demand. The
balance is created by the prices which the producers and consumers observe and adapt
to. In the power market the price mechanism can not work fast enough to balance
generation and consumption in real time. One practical consequence is that electricity
pricing always has to be either ahead of real time or after real time (Wangensteen 2007).
For instance, generally a spot market is a market place where goods are traded and
delivered immediately. But in contrast to other commodities or �nancial markets, the
price at the Nordic electrical spot market is set the day before delivery. Hence, the
electricity spot market is in reality a day-ahead market.

2.2.2 Hydropower Dominance

The Nordic power market, particularly the Norwegian part, is hydropower dominated. In
Norway almost 99% of electricity generation comes from hydropower, and in the whole
of the Nordic region hydropower constitutes over 50% of the power production (Nordel
2006). Due to Norway's almost total reliance on hydropower the yearly variations in
generation can be high.

As mentioned previously, electricity cannot be stored. But in a hydropower system one
has the possibility to store the water. In this case the electricity is stored as water
in the reservoirs. Norway has a reservoir capacity of about 84 TWh which roughly
constitute 70% of yearly generation in Norway (NVE 2006a). This gives the producers
some degree of �exibility and the possibility to schedule generation to the periods with
the highest prices. Hence, the producers can control parts of their generation on a short
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notice. Notice that the retailers who buy in the market and deliver electricity to the
consumers do not have this opportunity. Hence, it could be argued that the buyer side
of the marked has a higher need for risk management tools such as forward contracts.
This kind of market asymmetry may in�uence the forward price and this is discussed in
section 4.3.

2.2.3 Seasonal Variations

The consumption of electricity in the Nordic countries is distinguished by seasonal vari-
ation, mainly due to a high degree of electrical heating. Low temperature and short
day-length lead to higher consumption in the winter than in the summer (Johnsen 2001).

Limitations in reservoir capacities and variation in precipitation also contribute to price
variations between seasons. Since most of the in�ow comes during late spring and sum-
mer when the snow in the mountains melts, the reservoir capacity is sometimes not
su�cient. The limited storage capacity makes it impossible to transfer enough water
into the winter season which normally faces high demand and low in�ow. Hence, the
plants must produce at high level during summertime in order to avoid costly spill from
over�ow in the reservoirs (Fleten & Lemming 2003).

2.3 Competitive Markets

In a perfectly competitive market the participants' optimal action will lead to maximum
economic e�ciency (Schotter 2001). In this case maximum economic e�ciency means
social optimal management of the water over time. According to (Schotter 2001) there
are some conditions that have to be ful�lled in order to obtain a perfectly competitive
market:

• There are many market participants, each of which has an insubstantial share of
the market.

• There is free entry into the market.

• There is a homogeneous product.

• There is perfect factor mobility.

• There is perfect information in the sense that all participants in the market are
fully informed about its price and about its pro�t opportunities.

Clearly, the notion perfectly competitive market is a theoretical one and all the above
requirements would never be fully ful�lled.

E�ective competition in the spot market is important from several perspectives, directly
for cost e�ciency, transaction costs and the potentially large distributional e�ects of
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market power, indirectly for its impact on related �nancial markets (Hjalmarsson 2000).
A well developed wholesale market with su�cient liquidity is required to produce reliable
price signals to the �nancial markets. Since the spot price constitutes the reference price
for the �nancial products, it is important that the spot price is "fair".

2.3.1 Is the Nordic Power Market Competitive?

The intention behind the liberalization of the Nordic power market was the belief that
increased competition would raise industry e�ciency to the bene�t of the consumers
(Amundsen & Bergman 2006). Hence, the power market was designed to imitate a per-
fectly competitive market. For instance, to give all market participants equal information
as simultaneously as possible, important market information is made available at Nord
Pool's homepage. At an early stage in the liberalization process, information about
reservoir levels was kept con�dential by each producer. This created an asymmetric in-
formation situation in the sense that large producers with several reservoirs had more
information than small ones. In addition, producers in general had more information
than the consumer side. This asymmetry of information was harmful for the market,
and information about the total reservoir content is now made public at a regular basis
(Wangensteen 2007).

From time to time, especially at times with high prices, the Norwegian media argue that
the Nordic power market does not contribute to economic e�ciency. Particularly, the
issue about market power by major producers has been discussed. The largest Norwegian
producer, Statkraft, accounts for some 30% of the total Norwegian power generation, but
most of the producers are small with market shares of 5% to 6% or lower (von der Fehr,
Amundsen & Bergman 2005). In a hydropower dominated market like the Norwegian,
market power is exercised by releasing the water from reservoirs in a way that is not
socially optimal. Since the decision whether to produce or to store the water largely
depends on expectations about the future development, an outside observer cannot easily
judge whether a given reduction of production re�ects exercise of market power or just
conservative expectations (Førsund & Hoel 2004).

Despite these di�culties, several studies on market power in the Nordic power market
show that there is little misuse of market power and that the Nordic power market is in
general competitive. See for instance (Amundsen & Bergman 2006), (Johnsen, Verma &
Wolfram 1999), (Halseth 1998) or (Hjalmarsson 2000). Hence, the spot price re�ects the
short-term marginal costs of production and all producers act as price takers.



Chapter 3

The Hydropower Scheduling

Problem

3.1 Hydropower Plants

In general, there are three types of hydropower arrangments; impoundment facilities,
diversion facilities and pumped storage facilities. Since the producer has the possibility
to store the water for later release, impoundment facilities represent perhaps the most
�exible arrangement (Edwards 2003). The focus in this paper will be on impoundment
systems. Hydropower plants may have quite complex topologies with several cascaded
reservoirs or power stations in the same river system. In this thesis we will focus on
stations which have only one reservoir and no hydraulically coupling to other stations.
Hence, when the term hydropower station is used, it is assumed to be a hydropower
station with only one reservoir connected to it.

3.2 Hydropower Generation

The process of generating hydroelectric power is quite simple and involves converting
the kinetic energy in the moving water into mechanical energy created by the turbines.
Then in turn the turbines spin a generator rotor which produces electrical energy. Since
water is the initial source of this electricity, we refer to the electricity generated by this
process as hydropower.

The power generated at the hydropower station is a nonlinear function of the release of
water r and the station's net head, that is the di�erence between the headwater elevation
and the tail water elevation. The release of water is in turn a function of the volume of
the reservoir R so that the net head can be represented by some function h(r, R). An
e�ciency function η(h, r) represents the loss of power in the transfer of water release to

7



8 CHAPTER 3. THE HYDROPOWER SCHEDULING PROBLEM

electricity. In summary, the power generated by a turbine with release r and reservoir
volume R is

p = g(r, R) = r × h(r, R)× η(h, r) (3.1)

Depending on the size of the reservoir and the time horizon, it is sometimes reasonable
to make the assumption that h(r, R) does not vary much with R. Then the generation
function (3.1) is only dependent on the �ow rate r and becomes g(r). The function g(r)
is typically a concave function or it can be approximated by a concave function (Philpott,
Craddock & Waterer 2000). To simplify further, one may use the energy coe�cient, i.e.
how many kWh of electricity one m3 of water produces for some �xed values of r and R.
These �xed values are usually the average volume of the reservoir and the release of water
which gives the highest production e�ciency. Hence, the energy coe�cient will re�ect
the topology and the embodied technology at the station. The relationship between the
power generated in period t, pt, and the �ow of water rt reduces to

pt = α× rt (3.2)

where α is the energy coe�cient with denomination kWh/m3. In many cases this ap-
proximation will be su�cient and in the basic model presented next this will be used.

3.3 A Basic Hydropower Model

The key economic question in hydropower production is the time pattern of the use
of water in the reservoir, given the production capacity for each time period. With
enough storage capacity the water can be used today or alternatively be used tomorrow.
The analysis of hydropower is therefore essentially a dynamic one. The objective of
the hydropower scheduling problem is to �nd an optimal management of the the hydro
system over time (Førsund 2007).

For a pro�t maximizing producer participating in a spot market with deterministic prices
πt, the following basic model can be stated

max
T∑

t=1

πtpt (3.3)

subject to
Rt ≤ Rt−1 + wt − pt, t ∈ T (3.4)

Rt ≤ Rmax, t ∈ T (3.5)

pt ≤ pmax, t ∈ T (3.6)

Rt, pt ≥ 0, t ∈ T (3.7)

where the electricity production, pt, and the reservoir �lling, Rt, are the decision vari-
ables. The deterministic in�ow is denoted wt and the �rst constraint describes the
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reservoir dynamic. For notational ease it is assumed that all units are expressed in kWh.
Hence, the water variables originally measured in m3 of water are converted into energy
units using the energy coe�cient α. The second and third constraint tells us that the
reservoir �lling and the production have to be equal or below its maximum values.

In our basic model we have not regarded uncertainty, although it is clear that the future
in�ow and future price have to be treated as stochastic parameters. Since the scope
of this section is only to give an introduction to how the producers think when they
schedule production, uncertainty is omitted. In a more comprehensive and realistic model
stochasticity should be included.

3.3.1 Qualitative Characteristics of the Optimal Solution

The optimization problem presented above is a discrete time dynamic programming prob-
lem. Due to the complexity of the hydropower scheduling problem special solution pro-
cedures have been developed and it is common practice to decompose the problem into
a long-, medium- and short-term problem, each being solved by suitable models and so-
lution techniques (Fosso, Haugstad & Mo 2002). In this section the objective will be to
use the Kuhn-Tucker conditions to discuss some qualitative characteristics of the optimal
solution. We therefore have to derive the necessary �rst order conditions based on the
Lagrangian for the problem (3.3) to (3.7) which are

∂L

∂pt
= πt − λt − ρt ≤ 0 (= 0 for pt > 0) (3.8)

∂L

∂Rt
= −λt + λt+1 − γt ≤ 0 (= 0 for Rt > 0) (3.9)

λt ≥ 0 (= 0 for Rt < Rt−1 + wt − pt) (3.10)

γt ≥ 0 (= 0 for Rt < Rmax) (3.11)

ρt ≥ 0 (= 0 for pt < pmax) (3.12)

From the conditions one sees that there are some events that are crucial for the hy-
dropower scheduling problem; the reservoir running empty, the reservoir running full
and the production being bound by the production capacity limit. These three situa-
tions will be discussed in turn, but �rst an important concept in hydropower scheduling,
the water value, is introduced.

The shadow price of the stored water, λt, is referred to as the water value. When
evaluated at an optimal solution, the water value illustrates the change in value of the
objective function when there is a marginal change in the constraint. The water value
for period t, λt, expresses the alternative value of using water in the next period t + 1.
How a hydropower producer can derive the water values is discussed later in section 3.5.
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Given that the production is not bound by the upper capacity i.e. ρ = 0, under which
circumstances will the producer choose to produce electricity? The answer to this ques-
tion can be found from condition (3.8) which under the assumption can be restated as
the two following equations.

πt < λt ⇔ pt = 0 (3.13)

πt = λt ⇔ pt > 0 (3.14)

From equation (3.13) one sees that the producer will not supply any energy if his water
value is higher than the market price. In the periods he produces a positive amount, i.e.
equation (3.14) is prevailing, the market price will equal the water value.

On the other hand, if the production constraint is binding i.e. ρ > 0, condition (3.8) tells
us that

πt − ρt = λt (3.15)

This means that the water value is lower than the market price. The producer is forced
to use less water than he wants, resulting in a forced accumulation of water or a smaller
drawdown than wanted. The opportunity cost of water is therefore lower than the market
price.

If one assumes that there are no threat of neither scarcity of water or over�ow i.e. γt = 0,
the second condition (3.9) states

λt = λt+1 (3.16)

Thus, the water values are equal in the consecutive time periods. When over�ow threat-
ens, i.e. γt > 0, the water value will be adjusted downwards for that period compared with
the next period. To see this, consider condition (3.9) again which under the assumptions
is

λt = λt+1 − γt (3.17)

The producer is willing to sell at a lower price now to prevent over�ow, contra selling
at a higher price in a later period. But to the right price he may sell in an even earlier
period and prevent an over�ow situation happening.

The conclusion is that the producer will strive to sell all his energy in the period with the
highest price, but may be prevented from doing so by the production capacity constraint
and by the threat of over�ow due to the reservoir constraint. The problematic period of
scarcity in Norway is during late April weeks. From August to November it is normal
to let the reservoirs be �lled up again to meet the winter demand, so in this period the
problem is to manage without over�ow. But probably the most acute problems from a
management point of view, arise at the end of the drawdown of the winter period and the
�lling up again during snow melting. In a few weeks the situation may change quickly
from short-term scarcity to threat of future over�ow (Førsund 2007).
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3.3.2 Choice of Time Horizon

As mentioned in section 3.3.1, it is common to decompose the hydropower scheduling
problem into a long-, medium- and short-term model. These models are closely linked
and the output from one model serves as input to a model with shorter timer horizon.
The choice of time horizon, T , in the long-term model is an important one since it decides
how many future time periods the producer includes in his strategy.

One factor that can be used to determine the time horizon is the so called relative
regulation, Υ, of the reservoir.

Υ =
Rmax −Rmin

w
(3.18)

where Rmax and Rmin are the upper and lower bound on the reservoir level and w is
the expected annual in�ow. Roughly speaking, the relative regulation states how many
years it takes to �ll the reservoir given average annual in�ow and no generation (Fosso
& Gjengedal 2006a).

A well regulated reservoir will have a high relative regulation which means that decisions
regarding water release may a�ect the state of the reservoir far into the future. Due to
this, when scheduling hydropower from a well regulated reservoir one needs to consider a
planning horizon of several years. On the other hand, if the relative regulation is low, one
can manage with a shorter time horizon. This is because with a low relative regulation
there is a high probability that regardless of the state of the reservoir, water will be
spilled at a certain point of time, T . Since spilled water will have a water value equal to
zero and add no value to the producer, it is not necessary to consider a planning horizon
beyond T .

3.4 In�ow and the Hydrologic Balance

Due to the Nordic power market's dependence on hydropower the reservoir content and
the in�ow to the reservoirs are factors one expect to in�uence the market and the elec-
tricity production. In�ow, snowfall and temperature are stochastic variables, and the
producers update their information regarding these variables regularly (Johnsen 2001).

Since water can be lost through over�ow, it is important to estimate the future in�ow
which has to be considered as a stochastic variable. In Norway one has long series of
historical observed in�ow from a large amount of metering locations, and hence one has
a good opportunity to estimate the future in�ow. The risk of over�ow is particularly
considerable after the snow melt in the spring. This risk can be reduced if the producer
has knowledge of the snow reservoir. Then the future in�ow will consist of a known
part, the melted snow, and an unknown part, the future precipitation minus possible
evaporation (Fosso & Gjengedal 2006a). Due to this many producers not only keep track
on the water reservoir content and the in�ow, but the snow reservoirs are also measured.
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The Norwegian Water Resources and Energy Directorate (NVE) collects data from al-
most 600 metering locations in rivers all over the country which measure the water level
continuously. This information is recorded in the national database Hydra II and is used
as the foundation in their calculation of power and �ood forecasts (NVE 2005). NVE
in cooperation with Nord Pool also publishes water reservoir statistics. The statistics
contains information about the percentage �lling in the whole of Norway. The statistics
are published on a weekly basis and gives the producers important information of the
hydrologic balance in Norway.

3.5 The Concept of Water Values

In section 3.3 we saw that the water values play a crucial role in the hydropower schedul-
ing problem. In this section the water values are further discussed and a more formal
derivation is presented.

To be able to schedule production optimally it is necessary to set a value on the water
stored in the reservoirs. Even though water is for free, it has a value given that it is
a scarce resource and one is free to decide whether to produce today or to store it for
later production. This opportunity cost is often referred to as the water value. The
water value is traditionally derived with a minimize operational cost expression. But in
a liberalized market it is more reasonable to maximize the value of the production, that
is to maximize the discounted present value of the pro�ts. Since a hydropower station
generally is assumed to have no production cost this can be seen as to maximize the
discounted present value of the revenues. What follows is based upon (Winnem 2006).

Let π̃t be the uncertain price and p(R, r) the generated amount of electricity as a function
of the reservoir level R and the release of water r. The present value of the expected
production can then be stated as

PV0 = max
Rt,rt

E

[ ∞∑
t=0

π̃tp(Rt, rt)
(1 + ρ)t

]
(3.19)

where ρ is the appropriate discounting rate.

Given that the current period is t, equation (3.19) could obviously be formulated as

PVt = max
Rt,rt

{
E [π̃tw(Rt, rt)] +

E [Vt+1]
(1 + ρ)

}
(3.20)

where we have split the expression into a term for the expected revenues in the current
period and one term for the expected value of the production in the next period.

Given that one knows the price in the current period t, (3.20) reduces to

PVt = max
Rt,rt

{
E [πtw(Rt, rt)] + µVt+1

}
(3.21)
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where µVt+1 is the discounted present value of production in the next period which is
a function of all the future uncertain parameters, i.e. price, π̃ and in�ow w̃. Formally
expressed

µVt+1 =
E [Vt+1(π̃t, w̃t)]

1 + ρ
(3.22)

Since the producer wants to maximize the present value of production, optimal produc-
tion strategy is found when one di�erentiate (3.21) with respect to the water release.

d
(
πtp(Rt, rt) + µVt+1

)
drt

=
∂ (πp(Rt, rt))

∂rt
+

∂µVt+1

∂Rt+1

∂Rt+1

∂rt
(3.23)

The marginal change in the reservoir level caused by a marginal change in the energy
discharge in the anterior period is equal to -1, hence to ful�ll the �rst order optimality
the condition above rearranges to

πt
∂ (p(Rt, rt))

∂rt
=

∂µVt+1

∂Rt+1
(3.24)

Equation (3.24) states that in order to maximize the value of the production, the producer
should produce such that the marginal change of the discounted expected future value
equals the marginal revenues from producing immediately. The right side of equation
(3.24), the marginal change of the discounted expected future value, constitutes the water
value.

The derivation shown does not account for physical restrictions which we know from
section 3.3 are important. If the reservoir is over�own, the water will have no value.
To account for such a situation one can de�ne the water value as the Lagrange multi-
plier associated with the water balance, i.e. the restrictions on the reservoir. From this
discussion we can de�ne the water value as

λt =

{
∂µVt+1

∂Rt+1
, When spilling can be avoided

0, When spilling can not be avoided
(3.25)

This is equivalent with our de�nition of the water value in section 3.3 and the conclusion
is the same. The producer should increase the release of water as long as the marginal
revenue which in short-term equals the price, is larger than the water value.

3.5.1 Water Values Calculation

In section 3.3.2 it was discussed that if the end of the planning horizon T is chosen
properly the water values at T could easily be derived. If the water values are known
at the T , the water values can be derived by calculating backwards in time using the
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following strategy: Given none binding restrictions and optimal production strategy the
water value in t equals the water value in period t+1. This is identical to what equation
(3.16) expresses. The problem is complicated by the fact that optimal strategy assumes
that prices and in�ow are known and it is therefore important to have accurate price
and in�ow forecasts which the producers base their calculation of the water values on.
Since the water value at a given time is directly linked to a certain reservoir level, the
calculation of the water values also imply that an optimal reservoir strategy is derived.
Hence, based on the water values and the expectations of prices and in�ow which is
embedded in the water values, the producers have an optimal reservoir path from t to T .

3.6 Future Spot Prices

A forecast of future market prices is needed in order to estimate the water values, and
hence the optimal production strategy. Forecasting the future development of prices and
other uncertain factors such as in�ow from now up to several months or years into the
future is important for trading and risk management. Short-term forecasting of prices,
loads and in�ows is important for short-term production scheduling (Wallace & Fleten
2003).

These forecasts must include not only an estimate of the expected price, but also a
description of the distribution. According to (Wangensteen 2007) there are three di�erent
approaches to the forecasting problem:

• One can use prices from the future/forward market.

• One can use observed prices in the past and make forecasts based on trends and
patterns in these historical observations.

• One can use a bottom-up model, which is a fundamental model that describes the
price formation.

Among Norwegian producers it is customary to use a bottom-up model, but it is also
common to adjust the forecasts from the model with information from the forward market
(Gjelsvik 2006). In the next chapter we will discuss how the �nancial market can be used
in the scheduling of production and it will be argued that this procedure is suitable.



Chapter 4

Electricity Forward Markets

4.1 Pricing of Electricity Forwards

In this chapter we will discuss what the electricity forward price represents. Because of
limited storage of electricity, the forward contracts cannot be priced using the standard
arbitrage arguments involving cost-of-carry relationships (Fleten & Lemming 2003). Ac-
cording to (McDonald 2003) and (Fleten 2007), the electricity forward prices are best
explained by regarding it in conjunction with the expected future spot price and the
market risk.

PVt =
Et(ST )

(1 + ρ)(T−t)
=

Ft,T

(1 + r)(T−t)
(4.1)

Equation (4.1) shows the link between the expected spot price, Et(ST ), at a future point
in time T , and a forward price, Ft,T , with maturity at time T . The present value PVt

gives the value of receiving a unit of electricity at a future point in time T . The present
value of both the expected spot price and the forward price equals each other given that
the respective discount rates are correct. The expected spot price must be discounted
by the risk adjusted interest rate, ρ, and the forward price must be discounted by the
risk-free interest rate, r.

4.1.1 Price Discovery

The forward price of a �nancial asset can be expressed as; Ft,T = S0(1 + r)T−t. Forward
prices on stocks is largely redundant in the sense that it re�ects information about the
current stock price and interest rate because of the standard arbitrage argument used
in the pricing of �nancial forwards. With electricity forwards, we know from equation
(4.1) that we can express the forward price by the expected future spot price Et(ST ),

15
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the risk adjusted interest rate ρ, and the risk-free rate r. Both the expected future spot
price and the risk adjusted interest rate are di�cult to estimate. Hence, unlike �nancial
forward prices which can be expressed with known quantities, electricity forward prices
cannot easily be calculated. This illustrates that the electricity forward prices can only
be revealed through the forward market. The electricity forward market provide price
discovery because it reveals the forward price which cannot be calculated (McDonald
2003).

4.2 The Nordic Electricity Forward Market

The price volatility is high in the Scandinavian electricity market compared to other pure
thermal systems (Botterud, Bhattacharyya & Ilic 2002). Investigation of risk related to
prices in the Norwegian spot market for electricity indicates that about 65% of the
variation in observed prices can be explained by the in�uence of seasonal factors.

The Nord Pools derivatives market has been designed to serve as a risk management
tool for participants in the market who wants to hedge their future pro�t. At the same
time, the market tries to attract speculators who want to pro�t from the volatile elec-
tricity prices in order to increase the liquidity in the market as explained in section
2.1.2. Hedgers may be producers and consumers of the commodity who enter into future
positions to reduce risk associated with future price movements of the electricity. For
example, a producer might enter into a short position to reduce risk associated with a
future fall in electricity price, and a consumer might take an opposite long position to
guard against a possible increase in price.

Whereas hedgers want to avoid an exposure to adverse movements in the price of an
asset, speculators want to take a position in the market. Either they are betting that
the price will go up or they are betting that it will go down (Hull 2003). International
hedge funds, banks and other �nancial speculators are among this speculation group,
but also producers and industry have trading desks that essentially manage speculative
portfolio's.

4.2.1 Features of the Nordic Electricity Forward Curve

(Fleten, Tomasgard & Wallace 2001) are of the opinion that the main component in the
pricing of forward contracts in the Nordic market are the market participants expectations
of the future system prices. The forward curve captures the risk adjusted expected value
of the future spot price. This is in accordance with equation (4.1) which expresses the
relationship between the forward price and the expected spot price and the market risk.
A common risk factor is weather conditions and in�ow. The power producers regard risk
as a negative factor, which make them risk averse decision makers who are willing to pay
to reduce risk.



4.3. SCHEDULING USING INFORMATION FROM THE FORWARD MARKET 17

(Lucia & Schwartz 2002) conclude that seasonal systematic pattern throughout the year
is of crucial importance in explaining the shape of the forward curve. Further they state
that the seasonal component of the system price is incorporated by market participants
in their valuation process of the forward price, and hence, is an important explanation
for the shape of the forward curve. The shape of the forward curve displays one peak and
one valley per year, in total accordance with the behavior of the system price. Hence,
the market makes good expectations to the future spot price.

4.3 Scheduling using Information from the Forward Market

The purpose of the forward electricity market is to provide hedge against the volatile
prices in the spot market in addition to attracting speculators to increase liquidity. Now
we will look at how the forward market also can be be used as a tool for production
scheduling.

Hydropower producers with storage possibilities have the ability and the motive to plan
production ahead in time. They can bene�t from the volatile electricity prices and use
their production �exibility to produce at maximum level when prices are high and save
the water when prices are low. The production scheduling problem described in chapter 3
can be summarized as follow; Given that you have a price forecast of future spot prices,
establish a production plan that maximizes pro�t considering all relevant constraints
(Fosso & Gjengedal 2006b). In general, the producers want to make a strategy so that
the present value of future production is maximized, as explained in chapter 3.

4.3.1 Market Value Maximization vs. Pro�t Maximization

In (Fleten 2000) it is claimed that there are two possible objectives for the producer; one
is to maximize pro�t while the other one maximizes the market value. The di�erence
between the two is that when maximizing pro�t one will make use of a forecast of expected
pro�t based on expected future spot prices, while the maximization of market value is
done by using information which lies in the future/forward prices. Using the forward
prices to �nd the value of future production is also known as the certainty-equivalent
method. Forward prices can be denoted as certainty equivalents because they are the
minimum �xed price at which you would agree today to sell your future commodity
(Brealey, Myers & Allen 2006).

Both methods are consistent with maximizing the present value of future sales of a
commodity. For simplicity, we divide equation (4.1) in two for the reader to easily
understand the di�erence between the two methods of production scheduling;

PVt =
Et(ST )

(1 + ρ)(T−t)
(4.2)
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PVt =
Ft,T

(1 + r)(T−t)
(4.3)

Equation (4.2) refers to the pro�t maximization method and equation (4.3) refers to
the market value maximization method. It is important to notice that the two methods
should provide the same present value as long as proper discount factors are applied.

Forward prices are settled in advance of delivery. Keep in mind that forward curves are
not forecasts of spot price in the future. The clearing price of forwards are the result
of demand and supply, which in turn are determined by the individual characteristics of
the market players. In fact, the main motivation for participants to engage in forward
contracts is that of risk aversion. Hence, the market risk is already embedded in the
forward prices and no risk adjustment to the value is needed to cover the risk from spot
price uncertainty. In general, future cash �ows that are certain such as a signed forward
contract should be discounted at a risk-free interest rate, r (Bierman & Smidt 1993).

The expected future spot prices must be discounted with a risk adjusted interest rate. By
not adjusting for the market risk, one is left with prices that would occur in the electricity
market if all market participants were risk neutral and price-taking. If one assumes that
the participants in the electricity market is risk averse, the price forecasts from expected
spot price models are not consistent with how the market value the electricity, i.e. the
forecasts of expected spot prices are not congruent with the forward prices.

Risk adjusted interest rate and market risk premium

An important quantity is the market risk premium, Πt,T . This is de�ned as the di�erence,
calculated at time t, between the forward price Ft,T , at time t with delivery at T , and
the expected spot price at a future time T (McDonald 2003).

Πt,T = Et(ST )− Ft,T (4.4)

Forward prices which are certain at any point in time will generally be di�erent from
the expected spot prices which are uncertain. This gives a risk premium, Πt,T . Several
studies such as (Bodie & Roskansky 1980) �nd empirical evidence that supports a theory
of a positive risk premium in several commodity markets. (Fama & French 1987) also �nd
evidence of a positive risk premium. However, their result is not strong enough to resolve
the long-standing controversy about the existence of nonzero expected premiums. A risk
premium results in that one must use risk-adjusted discount rates, ρ, on the expected
spot prices so that they are �nancially equivalent to the forward prices. Hence, if there
is a positive risk premium, ρ must be larger than the risk-free rate r which is used to
discount forward prices. With a negative risk premium, ρ must be less than the risk-free
rate r.



4.3. SCHEDULING USING INFORMATION FROM THE FORWARD MARKET 19

In general, it is di�cult to measure the market risk. The market price of risk can be seen
as a drift adjustment in the dynamics of an asset to re�ect how investors are compensated
for bearing risk when holding the commodity or asset. Comprehensive analysis of the
price structure is needed to express the market risk. See (Benth, Cartea & Kiesel 2006)
for an example.

One of the peculiarities of commodities markets is that the market risk may be either
positive or negative depending on the time horizon considered (Benth et al. 2006). The
market risk is also dependent on how risk averse the market participants are and whether
there is market power or not. If there exists market power, either the consumer side or
the producer side is more eager to hedge and this will a�ect the forward prices and the
risk level in the market.

Market risk and market risk premium in the Nordic electricity market

The risk premiums are hard to deduce for a complex commodity such as electricity. They
often di�er depending on the volatility of the products. For example, winter forwards
and summer forwards are distinct products that will have di�erent volatilities and corre-
sponding risk premiums (Niemeyer 2000). Hence, the risk-adjusted discount rate, ρ, will
vary depending on which season the expected spot prices are in.

(Botterud et al. 2002) are of the opinion that a risk premium arise in the electricity
forward market if either the number of participants on the supply side di�ers substantially
from the number of participants on the demand side, or if the degree of risk averseness
varies considerably between the two sides. Because of the store-ability on the producer
side in the hydro-dominated Nordic electricity market, the generators can take advantage
of the �uctuation in price by adjusting their generation. Therefore, it is not necessary
for the producers to �x the price in the forward market for all planned future generation.
The situation is di�erent on the consumer side where the participants have adjusted
demand according to price. Hence, it makes sense that the consumers participates in
the forward market to make sure that the expected future demand will be covered, given
that the participants on the demand side are risk averse. If the di�erence in �exibility
on the demand and supply side leads to an excess demand for forward contracts, the
forward price would exceed the expected future spot price and the risk premium, Πt,T in
equation (4.4) will turn out to be negative. (Botterud et al. 2002) carried out a study of
Nord Pool's futures market in 1997. Empirical evidence supports the theory of a negative
risk premium. In the case of a negative risk premium in equation (4.4), the risk-adjusted
interest rate, ρ, must be less than the risk-free rate r.
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4.3.2 How do Norwegian Hydropower Producers cope with Production

Scheduling?

Traditionally, the Norwegian electricity generators have based their production plans on
expected future spot prices and pro�t maximization. The expected spot prices, Et(ST ),
are often provided by bottom-up models such as the EMPS-model. The main drawback
with the bottom-up models is that they cannot estimate or capture the risk premium or
the risk adjusted rate determined by the market forces (Fleten & Lemming 2003). As
pointed out in previous sections, it is di�cult to adjust the interest rate for the market
risk. Hence, ρ is often set to equal zero which gives an incorrect present value calculation.
A better approximation would be to discount with the risk-free rate, r. Still, the market
risk is not adjusted for and the present value would be incorrect.

4.3.3 Discussion of Approach used in Production Scheduling

There are big di�erences in the two approaches to �nd the present value of future sales
of electricity. It is resource demanding to make a forecast of expected future spot prices.
The bottom-up models which are tools for calculating expected spot prices are only
models of the reality. A model can never be better than its' weakest point. Bottom-up
models used in the Nordic market were created before the liberalization of the market.
Hence, they are created to work well in a di�erent environment than the today situation
(Fleten & Lemming 2003). After the expected spot prices are estimated, the work of
�nding proper value of the market risk remains. As mentioned earlier, this is a di�cult
task.

Given that there exists a competitive and e�cient market place, the obvious choice would
be to use the information already existing in the market, namely the forward prices. The
production planner saves time and money by discounting forward prices with the relevant
time horizon, with the risk-free rate. One does not need to estimate the future spot prices,
and one does not need to worry about the appropriate discount rate to adjust for risk.
This is consistent with �nancial theory which says that one should always look �rst at
the market value of an asset when pricing an asset or commodity. Seen from an investors
point of view, the market value de�nes the pro�tability (Brealey et al. 2006).

On the other hand, forward products listed by Nord Pool di�er not only in terms of
time to maturity but also in terms of the length of the delivery period. This means that
at any point in time the decision maker has only a partial picture of the forward price
curve available for analysis. This may be a downside of the use of the forward curve
in production scheduling. Nevertheless, one can assume that the easiest way to provide
information of the expected future spot prices is to look at the forward prices in the
market.
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Framework of Hypotheses

5.1 General Hypothesis

The objective in this chapter is to develop hypotheses regarding hydropower scheduling
based on the theory in chapter 3 and 4. The main focus is to capture which factors in�u-
ence the scheduling decisions of a hydropower producer. In later chapters the hypotheses
will be tested empirically.

5.1.1 Prices

As explained in section 3.3 a pro�t maximizing producer participating in the spot market
has the objective to maximize pro�t of future production of electricity. Hence, the market
prices are important factors in the hydropower scheduling problem. Maximizing pro�t
of future production is to produce and sell electricity when the spot prices are high. As
mentioned earlier the spot price is stochastic and hence the producer needs information
of future spot prices in addition to the spot price of today in order to plan production
ahead in time. A reasonable line of action will be to produce if the spot price today is
high compared to the forecast of the price at a future point in time. A simple way to
provide information of future spot prices is to use information from the future/forward
market as explained in section 4.3. The price of a selected forward product with delivery
at a future point in time provides information of how the market value a MWh electricity
at that particular future point in time. Hence, spot price relative to forward price might
a�ect the hydropower scheduling decision.

The spot price relative to the forward price has a positive impact on the production

decision.
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5.1.2 In�ow

Water from in�ow is the "fuel" in the hydropower production. From the Kuhn-Tucker
conditions of the optimal scheduling solution in section 3.3 we know that the production
decision is directly linked to the reservoir �lling. In�ow to the reservoir is consequently
a factor which in�uences the production scheduling. The �lling level of the reservoir
a�ects the water value which in turn a�ects the production scheduling. In general, the
higher the reservoir �lling, the lower is the water value. If the water value is lower than
the spot price it is wise to increase production. From this we can anticipate a positive
relationship between the in�ow and the production decision.

The in�ow has a positive impact on the production decision.

Although it is obvious that there is a strong connection between reservoir level and the
production decision, we choose not to formulate this in the general hypothesis because
reservoir level is a direct cause of production and in�ow. In addition reservoir level in
itself can be interpreted as a production decision. For example, a low reservoir level is a
direct consequence of a high level of production.

5.1.3 Seasonal Variations

In the Norwegian hydropower system in�ow is dependent on seasonal variation over
the year. Because of the cold climate, in�ow mainly occur during spring, summer and
autumn. During the winter snow reservoir can be measured and provides information of
the magnitude of in�ow from melted snow which occur at spring time.

One can assume that it is preferable for the producer to never empty the reservoirs. By
keeping the reservoir fairly �lled the producer is more �exible to produce whenever the
prices are high. In addition, the producers are often obligated by the authority to keep
a certain minimum reservoir level. A third reason for keeping the reservoir �lled is that
the energy coe�cient is a function of the head of water. More MWh can be produced
per m3, the higher head of water.

We anticipate that the producers �ll up their reservoirs during seasons when the in�ow
is large and save some of it for production during seasons when the in�ow is low. Hence,
the producers act di�erently to in�ow dependent on which season they are in at the
moment. During the �lling season the production decision is less a�ected by the in�ow
since it is not a scarce resource. During the drawdown season in�ow is a scarce resource
and the production is highly a�ected by in�ow. Hence, high in�ow during the drawdown
season results in increased production, but high in�ow during the �lling season does not
increase production by the same magnitude.

Before the deregulation the producers were obligated to cover a certain demand and it was
more important to spread the reservoir content over the year to be able to meet demand.
The demand was also regional dependent. In Norway, the demand of electricity is higher
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during the winter which gave even more incentive to save water for production during the
dry winter season. Many producers still use scheduling tools which are developed before
the deregulation and with that plan production similar to what was optimal before the
deregulation. This gives even more incentive to believe that production decisions are
seasonal dependent.

Seasonal variation a�ects how the production decision is dependent on the in�ow.

5.1.4 Lag of Production

There are certain external factors that a�ect the production scheduling over a period
of time. For example extreme weather situations, gas- and coal prices which are not
captured by the spot prices or the political situation. Also internal factors such as start-
and stop costs, break-downs, maintenance or a shift in management a�ect production
over periods of time. In general, it is hard to get an overall impression of all the external
and internal factors that a�ect production for a certain time lag. If it is likely that such
factors a�ect production over a period of time, the only way to capture such e�ects is to
look at last weeks production level. For example, if a generator breaks down and a�ect
this weeks production, then it is likely that next weeks production is a�ected as well.

Lag of production a�ects this weeks production.

5.1.5 Formulation of General Hypothesis

From the discussion above one can sum up with that it is fair to anticipate that a high
spot price has a positive impact on todays' production while a high forward price results
in a lower production. High in�ow results in a high production. Production is less
dependent on in�ow during �lling seasons than during drawdown seasons. Production
is positively dependent on last week's production. Hence, we can formulate our general
hypothesis;

The hydropower production scheduling problem is dependent on prices, in�ow, seasonal

variations and lag of production.

5.2 Speci�c Hypotheses

In the previous section we de�ned a general hypothesis regarding which factors that a�ect
the hydropower production. We are also interested in testing more speci�c features of
how the producers plan production and act in di�erent situations. To do this we develop
more speci�c hypotheses regarding production scheduling.
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5.2.1 Reservoir Level and Production Scheduling

The general hypothesis does not include reservoir as a variable. Although reservoir level
can be interpreted as a consequence of the production decision in itself, we want to
study how well the producers stick to their scheduled production by indirectly using the
reservoir level as remedy.

The producers have made production schedules for periods at a time to maximize sales of
production and manage the reservoirs at the best possible way. Based on the calculated
water values they have a schedule for optimal production. This also includes a schedule
for the reservoir level ahead in time. A high positive deviation from expected reservoir
level indicates that they should produce more if they want to be on schedule.

Hypothesis 1: A positive deviation from expected reservoir results in an increase in

production.

From section 3.3 we know that it is crucial for the hydropower scheduling when the
reservoir is running empty and when it is running full. This problem is even more
critical during periods when it is unexpected to have an empty or full reservoir. As
mentioned in section 3.3 the Norwegian hydropower producers have due to the natural
variations of in�ow estimated with empty reservoirs in late April weeks and full reservoirs
in November. These expectations are of course depending on geographical location of
the power station. At every other time of the year whenever extreme reservoir levels
occur, it is reasonable to anticipate that the market price is subordinate for the decision
making of the production. The main priority is to avoid overstepping the restrictions
of the reservoir. Hence, the producer is willing to sell at a lower price now to prevent
over�ow, contra selling at higher price in a later period. By formulating a hypothesis for
further testing we expect the production to be less dependent on both the spot price and
a future expectation of the spot price.

Hypothesis 2: When the reservoir is nearly full or nearly empty price is subordinate in

the decision-making process of the production.

It is also interesting how the producer deals with in�ow in situations where the reservoir
is nearly full. A reasonable expectation is that in�ow makes the producer more eager
to produce in situations where the reservoir is almost full compared to situations with
normal reservoir level. As with the �rst hypothesis, we expect this to be true only during
parts of the year when the producers do not expect to be threaten by over�ow.

Hypothesis 3: When the reservoir is nearly full the production decision is more dependent

on in�ow than otherwise.

5.2.2 Extreme Prices and Production Scheduling

In the general hypothesis we anticipate a linear relationship between the price and the
production. One can discuss whether the relationship is linear for all magnitudes of
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prices. We want to test whether there is a jump in production when prices are extremely
high.

Hypothesis 4: When spot prices are extremely high we expect a jump in production.

5.2.3 Volatile Prices and In�ow and Production Scheduling

Volatile prices and in�ow increase the real option value of the water in the reservoirs.
Hence, the water value increases by increased price and in�ow volatility. When the water
value exceeds the spot price the optimal production decision is to not produce as seen
in equation (3.13) in section 3.3. By this one can assume that an increase in price and
in�ow volatility results in a decrease in production.

Hypothesis 5: Increased variance in prices and in�ow results in a decrease in production.

5.2.4 Relative Regulation and Relative Time of Production

The relative regulation is mentioned in section 3.3.2 as a factor that a�ects the planning
horizon of the production. A low relative regulation indicates that the reservoir can only
store water for a short time period into the future at a time. Hence, the producer only
has the ability to schedule production for a short time horizon at a time. Thus, given a
low relative regulation the forward prices do not have a great impact on the production
decision of today.

Hypothesis 6: Producers with a low relative regulation will be less a�ected by the forward

prices.

The relative time of production states how long time it takes to produce electricity from
all the yearly in�ow given that the station run at maximum capacity. We let Γ denote
the relative time of production, w is the expected annual in�ow and C is the installed
capacity of the power station.

Γ =
w

C
(5.1)

Producers with a low relative time of production have a reduced risk of over�ow. This
gives a producer with a low relative time of production a higher �exibility compared
to other producers caring a high relative time of production. The �exibility provides a
possibility to produce in accordance with the market movements. Thus, one can expect
that producers with a low relative time of production are more a�ected by prices but less
by in�ow.

Hypothesis 7: Producers with a low relative time of production are more a�ected by

prices and less a�ected by in�ow in the production decision.
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5.2.5 Forward Prices and Production Scheduling

The forward volume traded at Nord Pool has increased since it �rst was introduced in
1993 and until today. The traded volume decreased between 2002 and 2003, but rose
again after this (Nord Pool 2006a). The number of transactions of �nancial contracts
was at its highest in 2006 compared to earlier years and rose by 13,4% from the year
before (Statnett 2006). From this it is clear that there has been an increasing interest
in the �nancial market. The more market transactions, the more e�cient is the market
expected to be. This might have a�ected the producers to rely more on the market and
use the forward prices as forecasts of expected future spot prices.

Hypothesis 8: There has been a maturation during the years in the hydropower producers

willingness to let the forward price a�ect the production decision.



Chapter 6

Data Description

6.1 Assumptions and Selection Criteria

The empirical analysis presented in this paper are mainly based on data collected from
thirteen Norwegian hydropower producers. Based on the following assumptions, some
criteria regarding the producers taking part in the analysis were decided in advance.

• All the producers are price takers. This is discussed in section 2.3.1 and it is a con-
sequence of our assumption that the Nordic power market is su�cient competitive.

• None of the producers have bilateral contracts that obligate them to deliver power
to a contracted price. Hence, we assume that all power produced is sold at Elspot.
This assumption can be justi�ed by the fact that if the producers have these con-
tracts they may purchase the contracted volume at the spot market. Due to this,
the scheduling problem does not change.

To comply with the assumption that the producers act as price takers we disregard
the largest producers in Norway such as Statkraft and Hydro. The producers should
participate in the Nordic electricity market, hence industrial companies that produce for
own consumption are not of interest. Since producers with reservoirs are more �exible to
schedule production, we disregard river plants. In addition, to keep the focus on external
factors the power stations should not have water connections to other stations that a�ect
the production considerably. The chosen hydro producers ful�ll these requirements and
as illustrated in Figure 6.1 the hydropower stations are situated all over the country to
give a best possible representation of a Norwegian hydropower producer.

6.1.1 Descriptive Data of the Hydropower Stations

Although the power stations meet the criteria mentioned above, they are all di�erent
in respect to production capacity, reservoir size and other physical conditions. This is

27
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clearly seen from Table 6.1 where some descriptive data is presented.

Table 6.1: Descriptive data from the thirteen hydropower plants. Some notion require clari�ca-
tion; In�ow is the expected yearly in�ow, relative regulation is de�ned as reservoir size divided
by annual expected in�ow (see section 3.3.2) and relative production time is de�ned as annual
expected in�ow divided by capacity (see section 5.2.4). Here the relative production time is
denoted as the percentage of a year.

Rated Energy Reservoir Annual Relative Relative time
Capacity Coe�cient Size In�ow Regulation of Production

1 128 MW 1,16 kWh/m3 228,1 GWh 641,2 GWh/yr. 0,356 yr. 57,2 %
2 120 MW 1,32 kWh/m3 624,4 GWh 380,8 GWh/yr. 1,640 yr. 36,2 %
3 30 MW 1,15 kWh/m3 47,1 GWh 106,6 GWh/yr. 0,442 yr. 40,5 %
4 40 MW 1,27 kWh/m3 51,8 GWh 139,9 GWh/yr. 0,370 yr. 39,9 %
5 28 MW 0,67 kWh/m3 118,9 GWh 87,8 GWh/yr. 1,350 yr. 35,8 %
6 23 MW 0,16 kWh/m3 14,0 GWh 153,0 GWh/yr. 0,092 yr. 76,0 %
7 68 MW 1,25 kWh/m3 255 GWh 272,3 GWh/yr. 0,937 yr. 45,7 %
8 167 MW 1,09 kWh/m3 272,5 GWh 414,4 GWh/yr. 0,642 yr. 28,3 %
9 210 MW 1,46 kWh/m3 1270 GWh 1250,5 GWh/yr. 1,015 yr. 68,0 %
10 62,1 MW 1,50 kWh/m3 142 GWh 231,8 GWh/yr. 0,613 yr. 42,6 %
11 41 MW 0,95 kWh/m3 42,6 GWh 81,3 GWh/yr. 0,953 yr. 22,6%
12 29 MW 0,91 kWh/m3 12,4 GWh 147,2 GWh/yr. 0,084 yr. 57,9%
13 140 MW 1,36 KWh/m3 380,8 GWh 662,9 GWh/yr. 0,574 yr. 54,0 %

6.2 Producer Panel Data

The data has a time solution of one week and a time horizon spanning from week 5 in
2000 until week 52 in 2006. This is a total of 361 time periods, hence 2004 is assumed
to have 53 weeks while the other years have 52 weeks. The weekly data bring a lot of
information about the short-term adjustments in the market and the long time horizon
shows the long-term structures. Since the data from the di�erent producers have the
same time horizon, our data set is a balanced panel data set.

The producer data includes historical time series regarding production, reservoir level
and in�ow. Some of the producers do not directly measure in�ow, but calculate it using
alteration in reservoir level, production and spill. Nevertheless, the data provides the
information the individual producer has available.

The data from the thirteen producers was gathered through electronic correspondence.
We have as much as possible avoided to alter the time series we received. In some of
the in�ow time series a few data were negative. Since this is clearly unrealistic and
caused by error in measurements or calculation, these �gures were set equal to zero. A
transformation of the reservoir level data with denomination Mm3 to MWh using the
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average energy equivalent was for some producers required. In addition, some of the data
we received was on hourly or daily basis. It was necessary to aggregate the data such
that it has the form MWh/week or MWh.

6.2.1 Production Data

In Figure 6.2 the relative production, i.e. the weekly production divided by the maximum
weekly production, for every producer is plotted against time. From the quite chaotic
�gure one sees that the relative production varies considerably. A tendency of a periodical
trend can be noticed.

Quite often the data shows none production over the week. This may be the result of
at least two situations; the producer �nds it unfavorable to generate or the production
stop is caused by maintenance or a breakdown. Unfortunately, information concerning
planned and unplanned production stops is not available for the analysis.

Descriptive statistics for the production data is presented in Table 6.2 and from there
one can notice that the maximum observed values are high. Actually, for most of the
producers the maximum value is higher than the theoretical maximum based on the rated
capacity presented in Table 6.1. This indicates that within a short period of time the
producer has the possibility to producer more than the rated capacity. From the table
one may also notice that the only producer who does not have minimum production of
zero is producer 9.

Table 6.2: Descriptive statistics for production data. All data are in terms of MWh/week. ADF
is the Augmented-Dickey-Fuller test value which have a critical value of -2,87 at a 5% sign. level
in this testing.

Mean Minimum Maximum Std. Deviation ADF
Producer 1 11058,72 0 21829,10 5899,87 -7,583
Producer 2 7754,59 0 18959,00 7198,81 -4,441
Producer 3 1697,31 0 5096,63 1642,10 -3,820
Producer 4 2447,82 0 5582,13 1610,47 -5,333
Producer 5 1734,37 0 4789,00 1807,73 -3,949
Producer 6 2141,32 0 3674,00 1039,14 -6,539
Producer 7 5327,13 0 11464,30 4771,38 -4,132
Producer 8 7963,45 0 26344,00 7059,42 -6,086
Producer 9 23834,78 1984,60 36651,30 10130,35 -4,744
Producer 10 4662,45 0 10652,70 3090,06 -6,465
Producer 11 1447,67 0 6576,30 1669,48 -7,242
Producer 12 2616,00 0 4686,00 1343,21 -6,769
Producer 13 11862,88 0 26286,15 7176,20 -6,380
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Figure 6.2: Relative production for all producers from week 5 in 2000 until week 52 in 2006. The
�gure is quite messy, but the purpose of presenting it is to illustrate that the relative production
varies considerably over time and between producers.
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6.2.2 Reservoir Data

Figure 6.3 illustrates the relative reservoir content, i.e. reservoir content as a share of the
maximum reservoir capacity. A clear periodical variation can be seen. Since many of
the reservoirs are emptied once a year, it may be argued that the producers only need a
scheduling horizon until these dates. This agrees with the fact that all of the producers
in our sample have a rather low relative regulation.

If there are more than one reservoir connected to the power stations, we have aggregated
the reservoirs to one equivalent reservoir. This was done for producer 1, 4 and 13 and may
cause that the �exibility of the producers seems greater than it really is. An additional
weakness of the data is the lack of snow reservoir data. Descriptive statistics for the
reservoir data are presented in Table 6.3.

Figure 6.3: Reservoir content for all producers from week 5 in 2000 until week 52 in 2006.

6.2.3 In�ow Data

The expected yearly in�ow for the hydropower plants in our sample are very dissimilar.
To be able to say something general about the variation in in�ow over the sample period,
the relative in�ow is calculated. Relative in�ow is illustrated in Figure 6.4 and is de�ned
as weekly in�ow divided by the expected yearly in�ow. The calculation of expected
yearly in�ow is presented in Appendix D.3.
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Table 6.3: Descriptive statistics reservoir data. All data are in terms of MWh. ADF is the
Augmented-Dickey-Fuller test value which have a critical value of -2,87 at a 5% sign. level in
this testing.

Mean Minimum Maximum Std. Deviation ADF
Producer 1 135517,08 557,76 208346,60 58218,85 -1,923
Producer 2 412735,88 183561,84 612497,16 109436,06 -1,334
Producer 3 25229,33 300,00 46900,00 12264,39 -1,180
Producer 4 28829,16 1616,74 51720,75 13620,42 -1,537
Producer 5 63145,45 0 119112,60 31007,76 -0,7387
Producer 6 8338,29 1241,76 13822,70 2897,50 -3,172
Producer 7 141293,56 50,00 253800,00 81100,69 -1,368
Producer 8 171572,58 5380,01 276220,65 87366,87 -1,570
Producer 9 433929,22 37500,00 786100,00 173833,97 -1,212
Producer 10 67641,27 100,00 135200,00 46670,28 -1,346
Producer 11 23490,98 399,91 41955,77 11203,10 -1,550
Producer 12 7358,68 0 12266,40 2620,86 -3,786
Producer 13 236639,39 15616,60 388839,39 114488,91 -1,328

As expected it seems like there are some seasonal variations over the year but it is di�cult
to see if there are variations between the years, hence if any of the years are "wetter"
than the others. It appears to be large di�erences of the spread of in�ow during the
year. Some of the producers have evenly spread in�ow, while others have periods with
extremely high or low in�ow. This is also evident from Table 6.4 where descriptive
statistics for the in�ow data is presented.

6.3 Price Data

All data concerning prices are obtained from the Nord Pool's FTP server �les.

6.3.1 Spot Prices

The spot prices used in the analysis are weekly system prices denominated in Euro/MWh.
These prices are weekly averages of the hourly system prices and are calculated and
published by Nord Pool. In the �rst row of Table 6.5 descriptive statistics of the spot
price are presented. When using the weekly average system price one loses the price
variation within the day and between the days. This reduces the variance and may be
the reason why the standard deviation of the spot price is quite similar to those of the
forward prices.

In Figure 6.5 the development of the spot price in the sample period is shown. The
winter 2002/2003 and the late summer of 2006 stand out as periods with particular high
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Figure 6.4: Relative in�ow for all producers during the sample period

Table 6.4: Descriptive statistics in�ow data. All data are in terms of MWh/week. ADF is the
Augmented-Dickey-Fuller test value which have a critical value of -2,87 at a 5% sign. level in
this testing.

Mean Minimum Maximum Std. Deviation ADF
Producer 1 11638,63 0 63125,10 12375,56 -8,820
Producer 2 7312,65 0 50556,00 9151,31 -6,058
Producer 3 1743,28 0 6860,34 1437,45 -11,25
Producer 4 2709,79 0 12063,05 2318,80 -8,951
Producer 5 1872,45 0 24083,89 2193,93 -12,98
Producer 6 2967,86 0 22342,42 3250,55 -8,376
Producer 7 5575,83 0 43000,00 7542,10 -6,666
Producer 8 8413,89 0 77892,03 11601,80 -7,876
Producer 9 24149,50 0 118600,00 22266,42 -9,825
Producer 10 4795,54 0 32790,00 6077,11 -6,456
Producer 11 1577,18 0 12780,18 1785,31 -11,73
Producer 12 2784,34 0 36409,64 3762,68 -9,312
Producer 13 13779,56 0 209859,60 27271,23 -7,281
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prices, which one may expect will a�ect the analysis. There seems to be no particular
seasonal trend in the spot price. This is probably due to the relative short time period.

Table 6.5: Descriptive statistics for spot prices, forward week, forward season and forward year
prices. All prices are in terms of Euro/MWh. ADF is the Augmented-Dickey-Fuller test value
which have a critical value of -2,87 at a 5% sign. level in this testing.

Mean Minimum Maximum Std. Deviation ADF
Spot Price 29,63 4,78 103,65 14,01 -2,928

Forward Week 30,44 5,70 114,56 14,89 -3,446
Forward Season 31,16 10,48 83,25 13,56 -2,890
Forward Year 28,54 15,57 57,80 9,73 -2,025

6.3.2 Forward Prices

The �nancial market at Nord Pool, Eltermin, has gone through considerably changes
in our sample period. There has been a gradually introduction of new products and
at the same time products have been phased out. In 2000 all products were listed in
Norwegian kroner (NOK) and the product list was based upon a seasonal division of the
year. The new products introduced are based upon the calender year and is listed in
Euro. Hence, through the sample period seasonal and block products have been replaced
with quarterly and monthly products and the prevailing currency has changed.

Based on the fact that the producers in the sample have a quite short relative regulation
products with a time to maturity less than a year were considered. Secondly it is favorable
to select di�erent products with a spread in time to maturity. Therefore three di�erent
forward products were considered initially; a weekly forward with delivery next week, a
seasonal forward with delivery next season and a yearly forward with delivery next year.
Because of the changes in the product list at Nord Pool the seasonal forward product
had to be constructed. The seasonal forward product consists of the seasonal product
with delivery next season until week 40 in 2005 and from this week it consists of the
quarterly product with delivery next quarter. The forward week and the forward year
product have not gone through any changes in the sample period.

Forward products are traded continuously during a trading day, but for consistency with
the other data, "weekly" forward prices is required. The closing prices at Wednesday
which is at least likely to be a non-trading day, is selected to represent weekly closing
prices. To allow for the change in currency we use historical yearly average currency spot
rates published by Norges Bank (the central bank of Norway).
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Figure 6.5: Spot and selected forward price development from week 5 in 2000 until week 52 in
2006.
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6.4 Total Reservoir Content in the Market

Data regarding the total reservoir content in the market is obtained from Nord Pool and
it is shown in Figure 6.6. Total reservoir content equals the aggregated reservoir contents
of those reservoirs in Norway and Sweden that are recorded by Nord Pool.

In (Bruøygard & Larsen 2003) the authors found that the correlation between the devi-
ation from expected reservoir level and the system price was -0,74. This indicates that a
total reservoir level that deviates negatively from the normal level increases the prices.

Figure 6.6: Aggregated reservoir content in the market. The di�erence between the solid-drawn
and the dotted line is the deviation from expected reservoir level.

6.5 Stationarity Test

A Dickey-Fuller test has been conducted for all the time series. With a 5% signi�cance
level the critical value is -2,87. The production and in�ow series as well as the spot, the
forward week and forward season price series are all stationary. The forward year price
series and the reservoir time series are non-stationary. However, the �rst di�erence of
the time series are all stationary with a 5% signi�cance level.

Stationarity is an important property for the empirical analysis presented in later chap-
ters. Due to this, the non-stationary forward year variable is disregarded. This is a
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simpli�cation that could be justi�ed by the fact that most of the producers in our sam-
ple have a shorter scheduling horizon than one year. The other non-stationary variables
are employed further but to allow for the testing, only as �rst di�erences.

The results of the test for the production, reservoir, in�ow and prices are reported in
Table 6.2, 6.3, 6.4 and 6.5 respectively. For results of the stationary tests on the other
variables, see Appendix B.1

6.6 Correlation between Variables

A high correlation in absolute value between variables indicates collinearity, i.e. a linear
relationship among the variables. The result of collinearity among independent variables
in a regression model is biased estimators. To avoid collinearity a rule of thumb, is to
not include two variables with at correlation coe�cient higher than 0,8 or 0,9 in abso-
lute value in the same regression model (Hill, Gri�ths & Judge 2001). In Table 6.6 the
correlation matrix for the stationary variables is presented. All variables are presented
thoroughly in next chapter. The highest correlation is found between the prices. Partic-
ularly the correlation between S and FW and S

F and ( S
F )2 with a correlation coe�cient

of respectively 0,9755 and 0,9847 are very high. In Table B.2 the correlation matrix for
the di�erenced variables are shown. Two problematic high correlation coe�cients should
be noted, the correlation between ∆w and ∆w−E[w] equal to 0,9439 and the correlation
between ∆( S

F ) and ∆( S
F )2 at 0,9675. These results are regarded for later in chapter 7

where di�erent formulations of models are discussed.

Table 6.6: Correlation coe�cient between all stationary variables. Production and in�ow are
denoted with p and w, respectively. Spot, forward season and forward week are denoted S, FS
and FW . The variables will be discussed thoroughly later. The problematic high correlation
between S and FS and S

F and ( S
F )2 should be noted.

p w wt+1 w − E[w] S FW FS S
F ( S

F )2

p 1
w 0,3133 1

wt+1 0,2900 0,7559 1
w − E[w] 0,1139 0,7029 0,4017 1

S -0,0196 -0,1444 -0,1273 -0,1266 1
FW -0,0194 -0,1412 -0,1297 -0,1205 0,9755 1
FS -0,1033 -0,0440 -0,0421 -0,0976 0,8368 0,8568 1
S
F 0,1509 -0,2417 -0,2063 -0,1163 0,3429 0,2340 -0,1258 1

( S
F )2 0,1452 -0,2183 -0,1848 -0,0957 0,3402 0,2277 -0,1460 0,9847 1



Chapter 7

Mathematical Formulation of

Models

7.1 Introduction

In chapter 5 the framework of the hypotheses was presented. In order to test the general
hypothesis empirically, we present several models with di�erent formulations of the de-
pendent and independent variables. All the models have in common that they describe
hydropower generation.

7.2 Dependent Variables

7.2.1 Production, p

The simplest way to formulate the dependent variable is as production, p. Then all
producer speci�c variables are expressed in MWh. The drawback with this formulation
is that producer speci�c e�ects become evident.

To cope with the undesirable producer speci�c e�ects we add a producer speci�c produc-
tion capacity dummy, Dcap, as an intercept along with the constant. This is simply done
by dividing all the producers into groups with respectively "high production capacity"
and "low production capacity". Producer 1,2,8,9 and 13 have a remarkably higher in-
stalled capacity than the other producers. See Table 6.1. It is reasonable to believe that
producers with a high capacity compared to the other producers are able to produce at
a higher level than the others.

The capacity dummy equals one for producers with a large production capacity, and
zero for producers with a small capacity. By this, the model is adjusted for the proper

39
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production level for each producer;

We let Dcap denote the capacity dummy which is producer dependent

Dcap =

{
1 if the station has a large installed capacity

0 else
(7.1)

Notice that the dummy is producer dependent and should be indexed according to pro-
ducers. For notational ease we skip indexes on all dummies introduced in this and in
later chapters.

7.2.2 Relative Production, p
pmax

Another way to avoid some of the producer speci�c e�ects is to formulate the dependent
variable as production relative to production capacity, p

pmax
. Instead of adding a capacity

dummy as an independent variable in the model we use the actual capacity to adjust
for producer speci�c e�ects in the dependent variable. This method is less rough than
adding an intercept dummy. Hence, the producer speci�c e�ects are better taken care
of. When the dependent variable is formulated as relative production it makes sense to
also formulate the producer speci�c independent variables as relative numbers. The only
producer speci�c independent variable de�ned in the general hypothesis in chapter 5 is
in�ow. All the formulations of the in�ow variable introduced later are given relative to
expected yearly in�ow, w, when the dependent variable is relative production.

7.2.3 Deviation from Expected Reservoir Level, R− E[R]

From chapter 3 we know that the main focus in scheduling production is to decide how
much to produce at every point in time and simultaneously make sure that the reservoir
level is within its restrictions. These two decision variables are closely linked and it may
be argued that the management of the reservoir and the production scheduling amount
to largely the same issue. The link has already been formulated in hypothesis 1 in section
5.2.1.

The expected reservoir level expresses the producers anticipations of the in�ow and how
to optimally manage the water in order to avoid over�ow or scarcity. Depending on the
time of the year the expected reservoir level for each producer varies. If the producers
choose to deviate from the expected reservoir it is probably because of the circumstances
i.e. prices and in�ow make it favorable. Hence, the deviation from the expected reservoir,
R − E[R], may be seen as an indirect measure of production. A high deviation from
the expected reservoir indicates a low production. An advantage of using deviation
from expected reservoir level as a dependent variable instead of production or relative
production is that one may expect less noise due to maintenance or breakdowns. The
calculation of expected reservoir curves is fully explained in Appendix D.1.
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From the stationarity tests in 6.5 we know that the time series of deviation from expected
reservoir level is non-stationary. However, the di�erenced time series of deviation from
expected in�ow is stationary. In the models with deviation from expected reservoir
level as dependent variable we have chosen to let all the independent variables also be
di�erenced. This is to simplify the interpretation of the model. A model with both
di�erenced and not di�erenced variables may be harder to interpret.

7.3 Independent Variables

As with the dependent variable, the independent variables can also be formulated in
di�erent ways. We present three alternatives to formulate price and three alternatives to
formulate in�ow.

7.3.1 Price

Spot, S and Forward Season, FS

In the general hypothesis we want to see how the production is a�ected by the spot price
and forward prices. One way to handle this is to include both the spot price and one
or several forward products. From the stationarity and correlation analysis in section
6.5 one knows that forward year is non-stationary and cannot be included in the model.
Further one sees that forward week is highly correlated with spot price and forward
season. Hence, some choices have to be made regarding which prices to include in the
model. It is necessary to include spot price since we want to test how the price of today
compared to some future price a�ects production. The average of the selected producers'
relative regulation is approximately eight months, which suits the time horizon of forward
season. In addition, forward season with delivery the next season is the most frequently
traded forward product (SKM 2007). Hence, we �nd it suitable to include forward season,
FS in the model in addition to spot price, S.

Spot Relative to the Average of Forwards, S
F

An alternative to including spot and forward separately in the model is to include spot
price relative to the average of forward prices, S

F
. By introducing spot relative to the

average of forward prices one captures the dynamics of the prices in the market. One can
argue that producers are not interested in the spot price and the forward price separately
but in relation with another. When the producers decide whether to produce today or
to save water for future production, they want to consider the spot price in relation to
the forward prices. Even though the spot price is high and indicates that there should
be a high production, as long as the forward prices are high as well it might hinder a
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high production. The average forward price is an average of forward week and forward
season.

Square of Spot relative to Forward, ( S
F

)2

A third way, is to anticipate that there is a polynomial relationship between spot relative
to forwards and the production, ( S

F
)2. The larger gap between spot and forward, the

more in�uenced is production.

7.3.2 In�ow

In�ow, w

The most intuitive way to include in�ow, w, in the model is at level i.e in MWh. Producer
speci�c e�ects are conspicuous since in�ow is dependent on geographical location and the
hydrological situation at the power plant. In models where the dependent variable is p

pmax

we introduce in�ow relative to expected in�ow, w
w , in order to avoid producer speci�c

e�ects in the relative models.

Deviation from Expected In�ow, w − E[w]

As described in section 3.4 most Norwegian power producers have quite good forecasts
based on long time series of historical in�ow. Hence, one can assume that the producers
have knowledge of expected future in�ow in their minds when they schedule production
so that expectation of in�ow is already embedded in their plans. Because of this one
can argue that it is the deviation from expected in�ow, w−E[w], rather than the in�ow
alone that has a positive impact on production. To estimate the expected in�ow the
average in�ow for each week over the years for each producer is calculated. For further
details of the calculation, see Appendix D.3.

Lead of In�ow, wt+1

Another approach is to assume that the producers cannot respond to in�ow on the very
same day as the production decision is carried into e�ect. It is rather the anticipation of
next week's in�ow that a�ect production today. Our data set does not include forecasts
of in�ow. However, if one can assume that the hydropower producers have very good
in�ow forecasts for the next week, one can use the actual in�ow data of the next week
as "expected in�ow" that is available to the producer one week in advance. In practice
one introduces the lead of next week`s in�ow, wt+1, into the model.
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7.3.3 Other Independent Variables

Filling- and Drawdown Seasonal Dummy, Ds

The seasonal e�ect is included by a dummy which states whether the production takes
place during the drawdown season or during the �lling season, Ds.

Ds =

{
1 in week 18 - 39

0 in week 40 - 17
(7.2)

As expressed in section 5.1.3 one expects that seasonal variations has an e�ect on how
the producer is a�ected by in�ow in the production decision. One expects a high in�ow
to increase production less during �lling seasons. Hence, the dummy is included as a
slope dummy in combination with in�ow, i.e. Ds × w. If the in�ow variable has the
form; "deviation from expected in�ow", the seasonal variation is already regarded for
by subtracting the expected in�ow. Here we choose to include the seasonal dummy as
an intercept for the purpose to still be able to separate between �lling- and drawdown
season. Although in�ow is taken care of, we expect the production to be lower in the
�lling season because in�ow a�ects production less.

Lag of Production, pt−1

Earlier production a�ect the production today as stated in the general hypothesis in
5.1.4. To test this relationship we have included last weeks production, pt−1, to be
an independent variable in the regression models. For the relative production model we
naturally get ( p

pmax)i,t−1 and for the deviation from expected reservoir; ∆(R−E[R])i,t−1.

7.4 Model Formulations

All the di�erent designs of the dependent and independent variables constitutes di�erent
linear regression models that are tested in later chapters. We �nd all the di�erent model
formulations logical and consistent with theory in earlier chapters.

7.4.1 Dependent Variable: Production

Deviation from Expected In�ow

pi,t = α + β1Ds + β2(w − E[w])i,t + β3(
S

F
)i,t + β4pi,t−1 + εi,t (7.3)
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pi,t = α + β1Ds + β2(w − E[w])i,t + β3(
S

F
)2i,t + β4yi,t−1 + εi,t (7.4)

pi,t = α + β1Ds + β2(w − E[w])i,t + β3Si,t + β4FSi,t + β5yt−1 + εi,t (7.5)

In�ow

pi,t = α + β1Dcap + β2wi,t + β3Dswi,t + β4(
S

F
)i,t + β5pi,t−1 + εi,t (7.6)

pi,t = α + β1Dcap + β2wi,t + β3Dswi,t + β4(
S

F
)2i,t + β5pi,t−1 + εi,t (7.7)

pi,t = α + β1Dcap + β2wi,t + β3Dswi,t + β4Si,t + β5FSi,t + β6pi,t−1 + εi,t (7.8)

Lead of In�ow

pi,t = α + β1Dcap + β2wi,t+1 + β3Dswi,t+1 + β4(
S

F
)i,t + β5pi,t−1 + εi,t (7.9)

pi,t = α + β1Dcap + β2wi,t+1 + β3Dswi,t+1 + β4(
S

F
)2i,t + β5pi,t−1 + εi,t (7.10)

pi,t = α + β1Dcap + β2wi,t+1 + β3Dswi,t+1 + β4Si,t + β5FSi,t + β6pi,t−1 + εi,t (7.11)

7.4.2 Dependent Variable: Relative Production

Deviation from Expected In�ow

(
p

pmax
)i,t = α + β1Ds + β2(

w − E[w]
E[w]

)i,t + β3(
S

F
)i,t + β4(

p

pmax
)i,t−1 + εi,t (7.12)

(
p

pmax
)i,t = α + β1Ds + β2(

w − E[w]
E[w]

)i,t + β3(
S

F
)2i,t + β4(

p

pmax
)i,t−1 + εi,t (7.13)

(
p

pmax
)i,t = α + β1Ds + β2(

w − E[w]
E[w]

)i,t + β3Si,t + β4FSi,t + β5(
p

pmax
)i,t−1 + εi,t (7.14)
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In�ow

(
p

pmax
)i,t = α + β1Ds + β2(

w

w
)i,t + β3Ds(

w

w
)i,t + β4(

S

F
)i,t + β5pi,t−1 + εi,t (7.15)

(
p

pmax
)i,t = α + β1Ds + β2(

w

w
)i,t + β3Ds(

w

w
)i,t + β4(

S

F
)2i,t + β5pi,t−1 + εi,t (7.16)

(
p

pmax
)i,t = α + β1Ds + β2(

w

w
)i,t + β3Ds(

w

w
)i,t + β4Si,t + β5FSi,t + β6pi,t−1 + εi,t (7.17)

Lead of In�ow

(
p

pmax
)i,t = α + β1Ds + β2(

w

w
)i,t+1 + β3Ds(

w

w
)i,t+1 + β4(

S

F
)i,t + β5pi,t−1 + εi,t (7.18)

(
p

pmax
)i,t = α + β1Ds + β2(

w

w
)i,t+1 + β3Ds(

w

w
)i,t+1 + β4(

S

F
)2i,t + β5pi,t−1 + εi,t (7.19)

(
p

pmax
)i,t = α+β1Ds+β2(

w

w
)i,t+1+β3Ds(

w

w
)i,t+1+β4Si,t+β5FSi,t+β6pi,t−1+εi,t (7.20)

7.4.3 Dependent Variable: Deviation from Expected Reservoir

Deviation from Expected In�ow

∆(R−E[R])i,t = β1Ds+β2∆(w−E[w])i,t+β3∆(
S

F
)i,t+β4∆(R−E[R])i,t−1+εi,t (7.21)

∆(R− E[R])i,t = β1Ds + β2∆(w − E[w])i,t + β2∆(
S

F
)2i,t + β3Ds∆(w − E[w])i,t

+ β4∆(R− E[R])i,t−1 + εi,t

(7.22)

∆(R− E[R])i,t = β1Ds + β2∆(w − E[w])i,t + β2∆Si,t + β3∆FSi,t

+ β4Ds∆(w − E[w])i,t + β5∆(R− E[R])i,t−1 + εi,t
(7.23)
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In�ow

∆(R− E[R])i,t = β1∆wi,t + β2Dswi,t + β3∆(
S

F
)i,t + β4∆(R− E[R])i,t−1 + εi,t (7.24)

∆(R− E[R])i,t = β1∆wi,t + β2Dswi,t + β3∆(
S

F
)2i,t + β4∆(R− E[R])i,t−1 + εi,t (7.25)

∆(R− E[R])i,t = β1∆wi,t + β2Dswi,t + β3∆Si,t + β4∆FSi,t

+ β5∆(R− E[R])i,t−1 + εi,t
(7.26)

Lead of In�ow

∆(R−E[R])i,t = β1∆wi,t+1 +β2Dswi,t+1 +β3∆(
S

F
)i,t +β4∆(R−E[R])i,t−1 +εi,t (7.27)

∆(R−E[R])i,t = β1∆wi,t+1 +β2Dswi,t+1 +β3∆(
S

F
)2i,t +β4∆(R−E[R])i,t−1 +εi,t (7.28)

∆(R− E[R])i,t = β1∆wi,t+1 + β2Dswi,t+1 + β3∆Si,t + β4∆FSi,t

+ β5∆(R− E[R])i,t−1 + εi,t
(7.29)

7.5 Data Snooping

Trying many variables in a regression without basing the selection of the candidate
variables on an economic theory is known as "data mining" or "data snooping". The
result in such cases is that the true signi�cance level will be considerably greater than
the nominal signi�cance level assumed (Brooks 2002).

We have kept our models simple to avoid the charge that we have tested a wide variety
of models. There might be other alternative formulations of the variables for instances
logarithmic transformation of the prices and lag of independent variables. However, since
the best models are going to be used in testing of further hypotheses such transformations
would complicate the interpretation of the results. We want to remain the reader that
the purpose with this thesis is not to �nd the "best model", but to �nd a model that is
well suited to test qualitative aspects of the scheduling decisions. Due to that, we limit
the analysis to the 27 models presented.
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Some initial testing was required to avoid testing too many models. For example we
tested for lag of the dependent variable initially to �nd out whether it was necessary to
include lag as a variable at all. It is meaningless to test all combinations of variables
unless they are logically consistent together in a model. Therefore we have avoided
using software methods such as stepwise regression which mechanically search through
all possible combinations of models without evaluating the logical composition of the
variables.

Data snooping is a common problem in empirical research. The phenomenon is especially
a problem in the analysis of time-series data, as typically only a single history measuring a
given phenomenon is available for analysis (White 2000). One way to avoid data snooping
is to cross validate the data. Then one tests the forecast performance of the model in an
out-of-sample data set. The idea is essentially that a proportion of the data is not used
in the model estimation, but is retained for model testing. A relationship observed in
the estimation period that is solely a result of data snooping, and is therefore spurious,
is very unlikely to be repeated in the out-of-sample testing. Therefore, models that are
the product of data snooping are likely to �t poorly and give very inaccurate forecasts
for the out-of-sample period (Brooks 2002). Out-of-sample testing will be accomplished
in section 8.3 where the results of the general hypothesis are presented.

7.5.1 Testing Hypotheses Suggested by the Data

By de�ning variables based on theory of hydropower and the forward market and not
de�ning hypotheses based on trends in the data set, we hope to avoid the problem of data
snooping. Both the general and speci�c hypotheses are tested with evidence that were
not used in constructing the hypotheses. This is because every data set must contain
some chance patterns which are not present in the population under study. Studying the
data sample and search for evidence which are formulated as hypotheses is spurious and
must be avoided. When testing a data set on which the hypothesis is known to be true,
the data set is by de�nition not a representative data set, and any resulting signi�cance
levels are meaningless.



Chapter 8

General Hypothesis Testing

8.1 Estimation Method

8.1.1 Dynamic Panel Data

As mentioned in section 6.2 the data gathered is on the form of balanced panel data. The
use of panel data provides less collinearity among the variables, more degrees of freedom
and more e�ciency. In general, panel data is better able to identify and measure e�ects
that is not detectable in pure cross-section or pure time-series data (Baltagi 2005).

The models presented in section 7.4 are due to the lagged dependent variable, dynamic
panel models. The models do not include dummies for each producer or each time periods,
and must therefore be characterized as dynamic random e�ects models (See Appendix
A.5). Since the objective of the analysis is to investigate how Norwegian hydropower
producers schedule production, i.e. we want to make inferences about the population
of Norwegian hydropower producers, a random e�ects models is suited (Baltagi 2005).
Notice that quite strict criteria are applied in the selection of the producers. Therefore,
inference may only be made to other hydropower producers that ful�ll these assumptions.

Data with both a cross-section and time-series dimension does not usually display the
properties that standard econometric techniques require. Although care has been taken
in the choice of which producers to include in the sample, they are of varying size and
other physical conditions. As a result, one may expect that the producers exhibit di�erent
variation. Hence, they will probably not ful�ll the homoskedasticity assumption. White's
test for heteroskedasticity is presented in section 10.2.

48
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8.1.2 Generalized Method of Moments Estimator

Models have to be estimated by methods that handle the problems a�icting them. The
GMM estimator is suited for dynamic model estimation. The method does not require
the usual assumptions that the variables are independent and identically distributed and
that the error components are homoskedasctic and non-autocorrelated. The assumptions
required that are relevant for this analysis, are stationarity and non-collinearity. The
results of the stationary test and the collinearity test are presented in section 6.5 and
section 6.6, respectively. When allowing for these results the GMM estimator is suited
for our analysis. In Appendix A.2 more information regarding GMM is provided.

Based on the above discussion, to estimate the regression models 1-step GMM estimator
using dynamic panel data and robust standard errors implemented in OxPack 3.1 PcGive
is applied.

8.2 Cross-validation of Models

In order to �nd which of the alternative model formulations in section 7.4 that best pre-
dicts the production decision and to avoid data snooping, the models are cross-validated.
Partitioning the sample of data into subsets makes it possible to consider how well the
model predicts response values from data that were not used in building the candidate
models (Walpole, Myers, Myers & Ye 2002). The estimation of the models is performed
on the in-sample data, while the out-of-sample data is retained for subsequent use in
con�rming and validating the initial analysis.

The data set in our analysis is a panel data set. It is therefore possible to cross-validate
either over time or individuals. Since it is reasonable to expect larger di�erences between
individuals than over time, cross-validation over time has been chosen. The full sample
data is divided in two; an in-sample and an out-of-sample period. The in-sample period
consists of 257 time periods and lasts from week 5 in 2000 until week 53 in 2004. The
out-of-sample period is from week 1 in 2005 until week 52 in 2006, a total of 104 time
periods. Hence, the in-sample is a larger sample and therefore the main sample in our
analysis. The disadvantage with a cross-validation over time is that historical events that
occur only in one of the sample period may disturb the analysis.

Using the de�nition presented in (Campbell & Thompson 2007), the out-of-sample R2 is
calculated and used as a criteria to select between the alternative models.

R2
OS = 1−

∑T
t=1(pt − p̂t)2∑T
t=1(pt − pt)2

(8.1)

where p̂t is the predictive production in the out-of-sample period using the estimates
obtained from the regression on the in-sample data. The pt denotes the weekly average
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production calculated from the in-sample data. The out-of-sample R2 for the relative
production models and the deviation from expected reservoir models are calculated sim-
ilarly.

8.3 Discussion of Results from the Model Estimation

8.3.1 In-sample Estimation

The results of the estimation of the nine production models are presented in Figure C.1
in Appendix C.1. For these models, all variables have signi�cant t-statistics and signs
that are consistent with our general hypothesis presented in chapter 5. A high installed
capacity leads to an increase in production. The in�ow and the lead of in�ow in�uence the
production positively and during the �lling season this impact is less, but still positive.
The estimated coe�cient of the deviation from the expected in�ow variable is positive
and the estimations of the models including these variables indicate that the production
is lower during the �lling season than else. Likewise, the signs of the price coe�cients
are as anticipated; a high spot price increases production, while a high forward season
price decreases production. In absolute value, the coe�cient of the forward is higher than
that of spot which indicates that a marginal increase of the forward price reduces the
production more than a marginal increase in the spot price increases production. Spot
relative to forward and the square of spot relative to forward have a positive coe�cients
which is also in accordance with our expectations. In addition, the lagged dependent
variable is signi�cant with a positive coe�cient for all production models.

Three of the estimated production models have an insigni�cant constant, but since our
general hypothesis does not require a non-zero constant these models are still included
in the out-of-sample validation. For the models with spot relative to forward and the
square of spot relative to forward, some of the estimated constants are negative. Since
production cannot be negative this implies that these models are invalid for some values
of the independent variables, for instance if all independent variables equals zero. This
is a limitation of the models.

The in-sample R2 for all production models are above 87%. Model (7.6) has the highest
in-sample R2 of 87,37%. In Figure 8.1 the residuls, i.e. the di�erence between the actual
and the �tted production for model (7.6) are plotted. As expected, the residual plot
illustrates that the producers have di�erent variation in regression disturbance. More-
over, it indicates that the error components in the model are heteroscedastic. For further
discussion of heteroskedacity in the model, see section 10.2.

The results of the estimation of the relative production models are presented in Figure
C.2 and the results are quite similar to those of the production models. The coe�cients
of the variables have the expected sign as discussed above, and all have signi�cant t-
statistics. The estimated constant in model (7.16) and (7.18) do not have signi�cant
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Figure 8.1: Residual plot for model 7.6

t-statistics, but since a non-zero constant is not required by the general hypothesis, this
does not a�ect the out-of-sample validation. Model (7.17) has the highest in-sample R2

among the relative production models.

In Figure C.3 results of the in-sample estimation of the deviation from expected reservoir
models are shown. The results from the estimation of these models are less satisfactorily
then for the other models discussed above. Only two of the deviation from expected
reservoir models; model (7.24) and (7.25) ful�ll the requirement of logical and signi�cant
coe�cients. In the models including spot and forward season prices, the coe�cient
belonging to the forward price has the wrong sign compared to what is expected. The
other models that are excluded from the out-of-sample validation have insigni�cant t-
statistics. The highest in-sample R2 among the accepted models is achieved by model
(7.24).

8.3.2 Out-of-sample Validation

Out-of-sample R2 is calculated for the candidate models that ful�ll the in-sample require-
ments of logical and signi�cant coe�cients. The results are listed in the last columns of
Figure C.1, C.2 and C.3. Clearly, the production models with an out-of-sample R2 at
approximately 88% perform much better than the relative production and deviation from
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expected reservoir models with an out-of-sample R2 of about 69% and 53%, respectively.
Although the production models have one more variable than the two other model classes
because of the capacity dummy, it is clear that the production models better predict the
out-of-sample values.

The very highest out-of-sample R2 is equal to 88,56% and is achived by model (7.6).
Model (7.7) and (7.8) follow close behind with an out-of-sample R2 equal to 88,549%
and 88,547%. Hence, based on the out-of-sample R2 model (7.6) is the best model of
those 27 presented, and will therefore be used in the speci�c hypotheses testing. Figure
8.2 illustrates the predicted production for the out-of-sample period using model (7.6)
from the in-sample data. In the same �gure the actual production in the out-of-sample
period is plotted and one notices that the �t is quite good.

Figure 8.2: Actual production and predicted production using model (7.6) for the out-of-sample
period.

8.3.3 Results of the General Hypothesis

From the discussion above we state that model (7.6) is the best model based on the
out-of-sample R2 criteria. Since this model ful�lls our anticipations from the general
hypothesis, we can conclude that the hypothesis is accepted. Below, model (7.6) is
presented with its estimated coe�cients.
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pi,t = −1045, 25 + 913, 35Dcap + 0, 07wi,t − 0, 05Dswi,t + 1361, 90(
S

F
)i,t + 0, 87pi,t−1

The general hypothesis states that in�ow has a positive impact on production and that
this impact is less during the �lling season. During the drawdown season the model
estimates that an increase in in�ow of 1 MWh/week increases production with 0,07
MWh/week. Moreover, in the �lling season the marginal increase is 0,02 MWh/week.
Further, the general hypothesis state that spot relative to forward is positively a�ecting
production. Production is dependent of spot relative to forward multiplied with a factor
of 1361,9 MWh/week. Hence, if the current spot price is higher than the forward price,
the rise in production is higher than 1361,9 MWh/week. This is a result deserving
notice since it indicates that the forward market provides information applicable in the
production scheduling. Given that these results are valid for other forward products
as well, the forward curve can replace price forecasts based upon resource-demanding
bottom-up models as discussed in chapter 4.

The lag of production is important in the estimated model. We see that this week's
production can be explained by 87% of last weeks production. This �nding is consistent
with the general hypothesis. Finally, given that the producer has a high installed capacity,
the production level rises with 913,35 MWh.

The constant is negative, which is unexpected and a limitation of the model. However,
only in 23 of the 3328 weeks in the in-sample period and 2 of the 1339 weeks of the out-
of-sample period, the production is respectively estimated and predicted to be negative.

Some of the hypotheses presented in chapter 5 require that spot and forward prices are
modeled explicitly. Due to this we will test the price related hypotheses with model (7.8),
which is the best model including S and FS separately. Model (7.8) is given with its
estimated coe�cients below and we see that it supports the general hypothesis.

pi,t = 389, 94 + 926, 45Dcap + 0, 07wi,t− 0, 06Dswi,t + 23, 57Si,t− 27, 62FSi,t + 0, 87pi,t−1

Again, notice that FS has the anticipated negative coe�cient. Hence, the forward season
product provides information of whether to save the water for production next season
or not. This decision is not solely based on the forward season price but in combination
with the spot price. In this model the spot price and the forward season are modeled
separately unlike in model (7.6). Nevertheless, the negative sign of the forward coe�cient
and the positive sign of the spot coe�cient support that a spot price has a positive impact
on present production while the forward price a�ects present production negatively.

The out-of-sample R2 of model (7.8) is slightly lower than that of model (7.6). Neverthe-
less, both models are assumed to perform well due to the high out-of-sample R2 and are
suitable for further hypotheses testing. The in-sample residual plot and the out-of-sample
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predicted production plot for model (7.8) are presented in Appendix C.2. As with model
(7.6) the residual plot strongly indicates heteroskedasticity and the predicted production
for the out-of-sample period �ts the actual production well.



Chapter 9

Speci�c Hypotheses Testing

9.1 Introduction

We require a valid model for hydropower production as a foundation for the testing of
the speci�c hypotheses. The speci�c hypotheses are mostly aimed at speci�c conditions
of the variables. Hence, we have to create new variables that capture the qualitative
aspects of the hypotheses. More speci�cly, we create dummy variables that are included
in the model from the general hypothesis testing. The purpose behind the inclusion of
dummies is not to improve the overall model, but to test the speci�c hypotheses.

Standard procedure in econometric hypothesis testing is to �nd out if the variable of inter-
est, i.e. the dummy variable, has a signi�cant t-statistics (See Appendix A.3.4). For the
usual t-test to be valid the homoskedasticity assumption must hold (Wooldridge 2003).
To allow for this, we have used robust standard errors which correct for heteroskedasticity
in the estimation.

In 8.3.3 we argued that model (7.6) and model (7.8) were selected for testing of the
speci�c hypotheses. Depending on which hypothesis is tested, the adequate model of the
two is applied. For example, hypotheses which directly aim at how producers respond
to di�erent prices require model (7.8) which contain spot and forward prices separately,
while model (7.6) is for the other hypotheses. All the hypotheses are tested on both
in-sample and out-of-sample data separately. The out-of-sample testing is not required
in the hypothesis testing. Still the same, we test the hypotheses using out-of-sample as
well to assure against over�tting. As with testing of the general hypothesis, the speci�c
hypotheses is tested by applying 1-step GMM estimator using dynamic panel data and
robust standard errors implemented in OxPack 3.1 PcGive.

55
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9.2 Hypothesis 1

The hypothesis states that deviation from expected reservoir results in an increase in
production. One can argue that it would make sense to include reservoir as an indepen-
dent variable to test the hypothesis. Unfortunately, this is not an option since the time
series of reservoir is non-stationary (see section 6.5). The testing procedure is to add
a dummy intercept for each producer with a positive deviation from expected reservoir,
Ddev. By adding the dummy as an intercept one tests whether the production rises to a
higher level as a consequence of a positive deviation from expected reservoir.

We let Ddev be;

Ddev =

{
1 if the deviation from reservoir is positive

0 else
(9.1)

By applying this dummy we can only test how the producer act to the scenario when the
reservoir is above the expected level contra when it is not. Model (7.6) is applied in the
testing of the hypothesis.

Model (7.6) including the intercept dummy, Ddev;

pi,t = α + β1Dcap + β2Ddev + β3wi,t + β4Dswi,t + β5(
S

F
)i,t + β6pi,t−1 + εi,t (9.2)

The null hypothesis states that the intercept dummy is not signi�cant given that the
other independent variables are included in model (9.2);

H0 : β2 = 0, H1 : β2 > 0 (9.3)

Since Ddev is the only variable to be tested in the model, it is su�cient to check whether
the t-probability of Ddev is signi�cant given the other independent variables.

9.2.1 Results Hypothesis 1

The results from in-sample and out-of-sample testing are respectively listed in Table 9.1
and Table 9.2. What is interesting is the coe�cient and t-probability of Ddev. The null
hypothesis is rejected at a 5% signi�cance level. Hence, we accept the hypothesis that
deviation from expected reservoir is a�ecting the production. The chance of committing
a type I error by rejecting the null hypothesis is approximately zero, see Appendix A.3.1.
Further we notice that the coe�cient of Ddev has a positive sign which is in according with
the hypothesis; A positive deviation from expected reservoir increases production. In the
in-sample data testing, a positive deviation from expected reservoir increases production
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with 386,90 MWh which is an increase of about 6 % of the average production. In the
out-of-sample testing a positive deviation from expected reservoir increases production
with 632,03 MWh which correspond to a 10 % increase of the average production. The
producers reluctance to deviate from expected reservoir level might also indicate that the
production is restricted by concession laws regarding reservoir levels. Due to estetic and
environmental reasons, these restrictions state that the producer has to keep the water
level within a certain range during speci�c periods of the year.

For both samples, the t-statistics prove that all independent variables are signi�cant.
Hence, the model is still valid. There has been a slight increase in in-sample R2 due to
the inclusion of the new variable. A R2 of 87,43% implies that the overall model is a
good �t.

Table 9.1: Results hypothesis 1 from in-sample data

α Dcap Ddev wi,t Dswi,t ( S
F

)i,t pi,t−1 R2

coef. -1462,38 933,92 386,90 0,0667 -0,0525 1616,30 0,8651 0,8743
t-prob. 0,001 0,000 0,000 0,000 0,001 0,000 0,000

Table 9.2: Results hypothesis 1 from out-of-sample data

α Dcap Ddev wi,t Dswi,t ( S
F

)i,t pi,t−1 R2

coef. -4685,82 819,25 632,03 0,0882 -0,0520 4768,27 0,8705 0,8976
t-prob. 0,001 0,000 0,000 0,000 0,033 0,001 0,000

9.3 Hypothesis 2

The hypothesis states that when the reservoir is nearly full or nearly empty the market
price is subordinate in the decision-making process of the production. We want to test
how the producer act to prices at di�erent reservoir levels in situations where it is not
expected to have nearly full or nearly empty reservoir levels. It is reasonable to apply
model (7.8) to test the hypothesis. To test how the producers act with respect to prices
when the reservoir is at unexpectedly high and low levels we have added a dummy to
present these situations. First one has to exclude the weeks of the year when it is expected
to have a high or low reservoir �lling. Although all the producers are expecting a low
reservoir level during spring and a high reservoir level during late autumn, it is di�cult
to generalize. Hence, each producer experiences high and low �lling level at di�erent
points in time. For each producer we have anticipated three weeks during spring and
three weeks during autumn that are expected to have respectively low and high reservoir
�lling. These weeks are the expected minimum and maximum reservoir level ± 1 week.
See Appendix D.2 for more information.



58 CHAPTER 9. SPECIFIC HYPOTHESES TESTING

We let Dres represent when the reservoir is at minimum 90% or maximum 10% �lling
level;

Dres =

{
1 if the reservoir is at minimum 90% or maximum 10% �lling level

0 else
(9.4)

To test how these extreme situations a�ect the prices the dummy is multiplied with
respectively the spot price and the forward price to form slope dummies. A slope dummy
operates by changing the slope of the regression line, but leaves the intercept unchanged.
The dummies are added to model (7.8) to be able to test the hypothesis as expressed in
equation (9.5);

pi,t = α+β1Dcap+β2wi,t+β3Dswi,t+β4Si,t+β5DresSi,t+β6FSi,t+β7DresFSi,t+β8yi,t−1+εi,t

(9.5)

The null hypothesis states that the variables DresSi,t and DresFSi,t do not a�ect pro-
duction given that the other variables are included in model 9.5;

H0 : β5 = β7 = 0, H1 : β5 < 0 and β7 > 0 (9.6)

The null hypothesis contains more than one variable and therefore the f -statistic is
required to test this hypothesis, (see Appendix A.3.5);

fobs =
SSR(β5, β7|β1, β2, β3, β4, β6)/2

SSE/(N − k)
∼ F [2, (N − k)] (9.7)

9.3.1 Results Hypothesis 2

The fobs-statistic equals 4,02 for the in-sample testing which is larger than the critical
value of F [2,∞] which equals 3,00 at a 5 % signi�cance level. Hence, the null hypothesis
is rejected on the in-sample testing. The p-value is approximately 0,0196 which states the
probability of commiting a type I error. The fobs-statistic for the out-of-sample testing
equals 2,93 and the critical value is still 3,00 as for the in-sample testing. Hence, the
null hypothesis is not rejected based on the out-of-sample data. Since the in-sample
testing is superior to the out-of-sample testing, and the fact that the hypothesis is on the
verge of being signi�cant also in the out-of-sample testing, the hypothesis is doubtfully
accepted. Nevertheless, to verify this conclusion the hypothesis should be tested on
another sample. Table (9.3) and Table (9.4) below provides information of the coe�cients
and t-probabilities of the models respectively for the in-sample testing and the out-of-
sample testing. The signs of the coe�cients in both models are in accordance with the
hypothesis that prices are less important to the hydropower producers when the reservoirs



9.4. HYPOTHESIS 3 59

are nearly full or empty. Both the coe�cients of the spot price and the forward price are
reduced in absolute value when the reservoir is at an unexpected high or low �lling level.

All the variables have signi�cant t-statistics and when the model is tested using the in-
sample data, R2 equals 87,40%. Hence, the tested dummies contribute with an increase
in R2 of 0,03%.

Table 9.3: Results hypothesis 2 from in-sample data

α Dcap wi,t Dswi,t Si,t DresSi,t FSi,t DresFSi,t pi,t−1 R2

coef. 404,71 918,86 0,0693 -0,0563 26,96 -54,61 -30,48 44,28 0,8666 0,8740
t-prob. 0,002 0,000 0,000 0,001 0,000 0,003 0,000 0,027 0,000

Table 9.4: Results hypothesis 2 from out-of-sample data

α Dcap wi,t Dswi,t Si,t DresSi,t FSi,t DresFSi,t pi,t−1 R2

coef. 688,17 745,14 0,0904 -0,0541 74,15 -126,49 -79,21 114,93 0,8705 0,8970
t-prob. 0,006 0,000 0,000 0,031 0,001 0,002 0,001 0,002 0,000

9.4 Hypothesis 3

Here, we want to test whether the production decision is more dependent on in�ow than
otherwise in situations where the reservoir is nearly full. This hypothesis does not involve
the prices so we choose to test it on model (7.6). Likewise hypothesis 2, we only test
the hypothesis on data when the producer does not expect the reservoir to have a high
�lling level. The dummy is constructed as in hypothesis 2. The only di�erence is to not
add data when the reservoir has a low �lling level;

We let Dhigh,res represent when the reservoir is at minimum 90% �lling level;

Dhigh,res =

{
1 if the reservoir is at minimum 90% �lling level

0 else
(9.8)

The hypothesis aim at testing how the producers respond to in�ow. Hence, the dummy
is included as a slope dummy by multiplying it with in�ow. Model (7.6) including the
slope dummy is given below

pi,t = α + β1Dcap + β2wi,t + β3Dswi,t + β4Dhigh,reswi,t + β5(
S

F
)i,t + β6pi,t−1 + εi,t (9.9)

The null hypothesis is to test the signi�cance of the included slope dummy given the
other independent variables in model (9.9);
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H0 : β4 = 0, H1 : β4 > 0 (9.10)

9.4.1 Results Hypothesis 3

The t-probabilities of Dhigh,reswi,t in Table 9.5 and Table 9.6 show that the hypothesis is
signi�cant at a 5 % signi�cance level for both the in-sample data and the out-of-sample
data. The probability of rejecting the null hypothesis when it is actually true is 0,045 for
the in-sample testing. This is close to the critical signi�cance level of 0,05. The p-value
for the out-of-sample testing is approximately zero. In addition one sees that the positive
signs of the coe�cients of the variables Dhigh,reswi,t are consistent with the hypothesis
that the producer wants to increase production with an unexpected increase in in�ow.

The overall model has a R2 equal to 87,37% when using the in-sample data. This is
an increase of 0,007% from the R2 without the dummy. Since including a new variable
usually improves R2, this increase is marginal.

Table 9.5: Results hypothesis 3 from in-sample data

α Dcap wi,t Dswi,t Dhigh,reswi,t ( S
F

)i,t pi,t−1 R2

coef. -1074,33 911,20 0,0685 -0,0549 0,0160 1390,78 0,8669 0,8737
t-prob. 0,002 0,000 0,000 0,001 0,045 0,000 0,000

Table 9.6: Results hypothesis 3 from out-of-sample data

α Dcap wi,t Dswi,t Dhigh,reswi,t ( S
F

)i,t pi,t−1 R2

coef. -4226,71 602,73 0,0865 0,1205 0,1205 4622,03 0,8794 0,8976
t-prob. 0,002 0,002 0,000 0,000 0,000 0,002 0,000

9.5 Hypothesis 4

Hypothesis 4 states that when spot prices are extremely high we expect a jump in pro-
duction. To test whether there is an increase in production caused by high spot prices
we include an intercept dummy to declare when extremely high spot prices occur. It is
not an easy task to de�ne a high spot price. To avoid testing hypothesis suggested by
the data we do not study the spot curve in the sample period to �nd patterns that might
only be typically for this sample period. Instead we sort the data in descending order
and de�ne the 5 % highest prices as "exremely high prices".

We let Dspot represent the 5 % highest spot prices;

Dspot =

{
1 if the spot price is among the 5% highest

0 else
(9.11)
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The hypothesis is tested on model (7.8) with the dummy intercept included. This model
is better suited than model (7.6) since the hypothesis is price related;

pi,t = α+β1Dcap +β2Dspot +β3wi,t +β4Dswi,t +β5Si,t +β6FSi,t +β7yi,t−1 + εi,t (9.12)

The null hypothesis is to test the signi�cance of the high price intercept dummy given
that the other independent variables in model (9.12) are included in the model;

H0 : β2 = 0, H1 : β2 > 0 (9.13)

9.5.1 Results Hypothesis 4

From Tables 9.7 and 9.8 one sees that the t-probability of the extreme price dummy is
signi�cant at 5 % signi�cance level for the in-sample data testing but not for the out-
of-sample data testing. Although the hypothesis is signi�cant for the in-sample testing,
the negative sign of the coe�cient is not consistent with the hypotehsis that high prices
increases production. Instead the result tells us that there is a decrease in production
caused by extremely high spot prices. Hence, the null hypothesis is not rejected and one
cannot conclude that extremely high spot prices results in an increase in production from
this test. The overall model using the in-sample data has a R2 equal to 87,38%. All the
other variables are signi�cant, although the hypothesis is rejected.

However, it is interesting to investigate the reason for the rejection of the hypothesis.
From theory in chapter 5 one knows that the objective of the hydropower producers is
to maximize income from sales of power which undoubtedly mean to produce and sell as
much as possible to a high price. The result from the testing of hypothesis 1 shows that
the producers want to produce in accordance with a desired or expected reservoir level.
Given that there is a positive deviation from expected reservoir the production increases
in order to reach for the desired reservoir level. With knowledge of this, it is interesting to
�nd out how the producer's reservoir level is situated when the extremely high spot prices
occur. Firstly, we take a look at the aggregated reservoir level in Norway and Sweden
which is available at Nord Pool`s FTP server. During times of extremely high spot prices
the aggregated reservoir level is well situated below the expected reservoir level for this
time of the year. Hence, it seems like that the aggregated reservoir level is re�ected in the
prices. A more comprehensive check for the producers in the sample proves that eleven
out of thirteen producers had a reservoir level below their expected reservoir level at that
time of the year. Hence, when the reservoirs are below the expected reservoir level for a
given time of the year, the producers are unwilling to increase production even though
extreme high spot prices occur. Another reason for the aversion of increased production
might be that there is a delay in detecting when high prices occur because spot prices
are volatile. This leads us to the testing of the hypothesis which deals with uncertainty
in prices and production decision.
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Table 9.7: Results hypothesis 4 from in-sample data

α Dcap Dspot wi,t Dswi,t Si,t FSi,t pi,t−1 R2

coef. 286,15 920,54 -474,34 0,0689 -0,0554 30,36 -29,56 0,8674 0,8738
t-prob. 0,015 0,000 0,021 0,000 0,001 0,000 0,000 0,000

Table 9.8: Results hypothesis 4 from out-of-sample data

α Dcap Dspot wi,t Dswi,t Si,t FSi,t pi,t−1 R2

coef. 703,68 793,50 -79,76 0,0898 -0,0560 59,24 -65,64 0,8710 0,8966
t-prob. 0,012 0,000 0,769 0,000 0,038 0,003 0,001 0,000

9.6 Hypothesis 5a

Here we test whether increased volatility in spot price results in a decrease in production.
Unlike hypothesis 2 were both spot price and forward price related e�ects were tested in
the same hypothesis using an f -test, we want to test the speci�c e�ect of respectively the
spot price and the forward price in this hypothesis. Hence, we have to test the increased
volatility of spot price and forward price separately in two hypotheses, 5a and 5b.

The spot prices are stochastic and the hydropower producer is familiar with this. The
purpose with this hypothesis is to test how the producers react to an extreme increase
in volatility of spot prices. To test this we select the spot prices with an extremely high
volatility and make dummies for these prices. Again it is a problem to de�ne what is
extremely volatile prices. The variance for each week in the time series is calculated from
the present week including the two previous weeks. The spot prices are available on a
daily basis which makes it possible to calculate the variance based on 21 data points in
total. The variance data is sorted in descending order and the 5 % highest variances
are de�ned as "extremely high variances". An intercept dummy for these spot prices is
made;

We let Dvar,S represent the 5 % most volatile spot prices;

Dvar,S =

{
1 if the spot price is among the 5% with highest volatility

0 else
(9.14)

Model (7.8) is used for the testing since the hypothesis is price related;

pi,t = α+β1Dcap +β2Dvar,S +β3wi,t +β4Dswi,t +β5Si,t +β6FSi,t +β7yi,t−1 + εi,t (9.15)

The null hypothesis is to test the signi�cance of the high volatility intercept dummy
given that the other independent variables in model (9.15) are included in the model;



9.7. HYPOTHESIS 5 B 63

H0 : β2 = 0, H1 : β2 < 0 (9.16)

9.6.1 Results Hypothesis 5a

The t-probabilities of Dvar,S in Table 9.9 and Table 9.10 show signi�cance at 5% level in
both the in-sample testing and the out-of-sample testing. Hence, the null hypothesis is
rejected with a probability of 0,006 in the in-sample data and 0,007 in the out-of-sample
data of committing a type I error. The negative signs of the coe�cients of Dvar,S shows
that the production decreases when the spot price volatility is exremely high. This is
consistent with the hypothesis. In addition, there as been a slight increase in R2 and the
other variables are still signi�cant.

The testing of hypothesis 4 provided unexpected results indicating that extremely high
spot prices leads to a decrease in production. Inspired by the testing result of hypothesis
5a we check if extremely high spot prices occur at the same time as the spot prices are
very volatile. In seven out of thirteen cases the spot price is both extremely high and
volatile at the same time. This might indicate that even though spot prices are extremely
high the producer is reluctant to produce because the spot prices are very volatile at the
same time.

Table 9.9: Results hypothesis 5a from in-sample data

α Dcap Dvar,S wi,t Dswi,t Si,t FSi,t pi,t−1 R2

coef. 325,41 918,96 -475,65 0,0694 -0,0560 29,91 -30,56 0,8675 0,8738
t-prob. 0,008 0,000 0,006 0,000 0,001 0,000 0,000 0,000

Table 9.10: Results hypothesis 5a from out-of-sample data

α Dcap Dvar,S wi,t Dswi,t Si,t FSi,t pi,t−1 R2

coef. 552,82 785,23 -807,82 0,0903 -0,0538 62,38 -64,07 0,8700 0,8970
t-prob. 0,036 0,000 0,007 0,000 0,046 0,002 0,001 0,000

9.7 Hypothesis 5 b

This part of hypothesis 5 tests whether increased volatility in forward price results in
a decrease in production. As with spot prices, forward prices are also stochastic. The
purpose with this hypothesis is to test how the producers react to increased volatility
in forward prices. The volatility of forward prices is calculated the same way as for
spot prices as they also are available on a daily basis. The variance data is sorted in
descending order and the 5 % highest variances are de�ned as "extremely high variances".
An intercept dummy for these forward prices is made.
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We let Dvar,FS represent the 5 % most volatile forward season prices;

Dvar,FS =

{
1 if the forward price is among the 5% with highest volatility

0 else
(9.17)

Model (7.8) is applied for the testing since the hypothesis is price related;

pi,t = α+β1Dcap+β2Dvar,FS +β3wi,t+β4Dswi,t+β5Si,t+β6FSi,t+β7yi,t−1+εi,t (9.18)

The null hypothesis is to test the signi�cance of the high volatility intercept dummy
given that the other independent variables in model (9.18) are included in the model;

H0 : β2 = 0, H1 : β2 < 0 (9.19)

9.7.1 Results Hypothesis 5b

The t-probability of Dvar,FS in the in-sample testing in Table 9.11 shows insigni�cance
at a 5% level. The out-of-sample testing in Table 9.12 shows signi�cance. Since the
in-sample is superior to the out-of-sample, the null hypothesis is not rejected at a 5%
level. However, it is interesting to test the hypothesis on a larger sample to validate the
result. In the in-sample testing the R2 has not increased by including the dummy.

Table 9.11: Results hypothesis 5b from in-sample data

α Dcap Dvar,FS wi,t Dswi,t Si,t FSi,t pi,t−1 R2

coef. 381,26 925,85 -33,80 0,0692 -0,0561 23,89 -27,54 0,8671 0,8737
t-prob. 0,003 0,000 0,852 0,000 0,001 0,000 0,000 0,000

Table 9.12: Results hypothesis 5b from out-of-sample data

α Dcap Dvar,FS wi,t Dswi,t Si,t FSi,t pi,t−1 R2

coef. 620,47 790,16 -705,64 0,0905 -0,0542 62,95 -66,26 0,8696 0,8969
t-prob. 0,012 0,000 0,013 0,000 0,045 0,002 0,001 0,000

9.8 Hypothesis 5c

The third part of hypothesis 5 is related to extreme increase in variance of in�ow. We
test whether an increased volatility in in�ow results in a decrease in production. As with
spot price, in�ow is also stochastic. In�ow data is only available on a weekly basis, hence
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the in�ow variance is calculated over a longer time period than the spot price variance.
The variance for each week is calculated from data from the present week including eleven
weeks into the past. The variance data is sorted in descending order and the 5% highest
in�ow variances are de�ned as "exremely high in�ow variances." An intercept dummy
for these variances is made;

We let Dvar,w represent the weeks with the 5 % most volatile in�ows;

Dvar,w =

{
1 if the in�ow is among the 5% with highest volatility

0 else
(9.20)

Model (7.6) is applied in the testing since this hypothesis is not price related;

pi,t = α + β1Dcap + β2Dvar,w + β3wi,t + β4Dswi,t + β5(
S

F
)i,t + β6pi,t−1 + εi,t (9.21)

The null hypothesis is that the in�ow volatility intercept dummy is not signi�cant given
that the other independent variables in model (9.21) are included;

H0 : β2 = 0, H1 : β2 < 0 (9.22)

9.8.1 Results Hypothesis 5c

The t-probabilities of Dvar,w on both the in-sample testing and the out-of-sample testing
shows that the null hypothesis is not rejected on a 5% signi�cance level. Hence, we
cannot conclude that a high increase in variance in in�ow results in less production. The
R2 has also decreased by including Dvar,w in the model. The reason for this might be
that the reservoir function as a bu�er that smooths out high variance in in�ow. Thus,
our results indicate that the producers is more a�ected by variation in prices than of
variation in in�ow.

Table 9.13: Results hypothesis 5c from in-sample data

α Dcap Dvar,inflow wi,t Dswi,t ( S
F

)i,t pi,t−1 R2

coef. -1042,89 903,73 -1,40e-07 0,0706 -0,0530 1371,36 0,8646 0,8689
t-prob. 0,001 0,000 0,252 0,000 0,001 0,000 0,000

9.9 Hypothesis 6

Hypothesis 6 states that producers with a low relative regulation will be less a�ected by
the forward prices. For the testing of the hypothesis, all the producers are categorized
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Table 9.14: Results hypothesis 5c from out-of-sample data

α Dcap Dvar,w wi,t Dswi,t ( S
F

)i,t pi,t−1 R2

coef. -3616,68 606,28 2,9925e-07 0,0946 -0,0572 4059,26 0,8666 0,8825
t-prob. 0,011 0,002 0,622 0,000 0,050 0,007 0,000

according to their relative regulation. In Table 6.1 the relative regulation for all the
producers are listed. Producer 6 and 12 have a low relative regulation compared to
the other producers and are selected to present "low relative regulation" in the data
sample. What is interesting is how the low relative regulation a�ects how the producer is
in�uenced by the forward price in the production decision. Hence, we construct a slope
dummy that state the relationship between low relative regulation and the forward price.
Firstly, the dummy for low relative regulation is de�ned.

We let Dlow,reg represent if the producer has a low relative regulation;

Dlow,reg =

{
1 if the producer is among the ones with a low relative regulation

0 else

(9.23)

Model (7.8) is applied in the testing since this hypothesis is price related;

pi,t = α + β1Dcap + β2wi,t + β3Dswi,t + β4Si,t + β5FSi,t + β6Dlow,regFSi,t + β7yi,t−1 + εi,t

(9.24)

The null hypothesis states that the slope dummy for low relative regulation is not sig-
ni�cant in model (9.24) given that the other independent variables are included;

H0 : β6 = 0, H1 : β6 < 0 (9.25)

9.9.1 Results Hypothesis 6

The t-probabilities of Dlow,regFSi,t shows that the null hypothesis is not rejected at
a 5% signi�cance level on both in-sample and out-of-sample testing. Hence, we cannot
conclude that a low relative regulation makes the producer less dependent on the forward
price in the decision process of the production scheduling. This may be due to our choice
of forward product. In addition, the R2 has not changed impling that the dummy does
not contribute to the �t of the model.
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Table 9.15: Results hypothesis 6 from in-sample data

α Dcap wi,t Dswi,t Si,t FSi,t Dlow,regFSi,t pi,t−1 R2

coef. 395,27 395,27 0,0693 -0,0562 23,57 -27,31 -2,05 0,8670 0,8737
t-prob. 0,002 0,000 0,000 0,001 0,000 0,000 0,518 0,000

Table 9.16: Results hypothesis 6 from out-of-sample data

α Dcap wi,t Dswi,t Si,t FSi,t Dlow,regFSi,t pi,t−1 R2

coef. 728,88 792,77 0,0898 -0,0562 58,14 -65,30 -0,0806 0,8711 0,8966
t-prob. 0,005 0,000 0,000 0,034 0,002 0,001 0,955 0,000

9.10 Hypothesis 7a

Hypothesis 7 is related to relative time of production, which is a characteristic of pro-
ducers. The �rst part of the hypothesis states that producers with a low relative time of
production are more a�ected by prices in the production decision. The producers with
a low relative time of production is selected to be producers who distinctly have a lower
relative time of production than the other producers. In our sample, producer 8 and 11
ful�ll these requirements. A slope dummy is made to test whether the dependence of
spot and forward prices change when the producer has a low relative time of production.

We let DΓ represent producers with a low relative time of production;

DΓ =

{
1 if the producer is among the ones with a low relative time of production

0 else

(9.26)

Model (7.8) is applied in the testing since this hypothesis is price related.

pi,t = α+β1Dcap+β2wi,t+β3Dswi,t+β4Si,t+β5DΓSi,t+β6FSi,t+β7DΓFSi,t+β8yi,t−1+εi,t

(9.27)

We want to test how the interaction of spot price and the forward price a�ect production.
The null hypothesis states that the added slope coe�cients, DΓSi,t and DΓFSi,t, is not
signi�cant in the model given that the other variables are included;

H0 : β5 = β7 = 0, H1 : β5 > 0 and β7 > 0 (9.28)

The null hypothesis contains more than one variable and therefore the f -statistic is
required to test this hypothesis.
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fobs =
SSR(β5, β7|β1, β2, β3, β4, β6)/2

SSE/(N − k)
∼ F [2, (N − k)] (9.29)

9.10.1 Results of Hypothesis 7a

The fobs-statistic of the in-sample testing equals 0,4270 which is lower than the critical
value of F [2,∞] which equals 3,00 at a 5% signi�cance level. The out-of-sample fobs-
statistic equals 0,1631 and is also lower than the critical value of 3,00. In addition, the
t-probabilities of DΓSi,t and DΓFSi,t in Tables 9.17 and 9.18 show that the coe�cients
are both insigni�cant. Hence, the null hypothesis is not rejected on a 5% signi�cance
level allthough the R2 shows a slight increase by including the dummy.

Table 9.17: Results hypothesis 7a from in-sample data

α Dcap wi,t Dswi,t Si,t DΓSi,t FSi,t DΓFSi,t pi,t−1 R2

coef. 401,88 990,20 0,0691 -0,0568 21,64 13,50 -24,28 -24,79 0,8633 0,8740
t-prob. 0,002 0,000 0,000 0,000 0,000 0,492 0,000 0,281 0,000

Table 9.18: Results hypothesis 7a from out-of-sample data

α Dcap wi,t Dswi,t Si,t DΓSi,t FSi,t DΓFSi,t pi,t−1 R2

coef. 821,62 885,52 0,0893 -0,0573 59,60 -406,52 -67,28 -0,0986 0,8662 0,8968
t-prob. 0,010 0,000 0,000 0,034 0,002 0,202 0,001 0,990 0,000

9.11 Hypothesis 7b

The second part of hypothesis 7 states that producers with a low relative time of produc-
tion are less a�ected by in�ow in the production decision. To test whether this is true,
one combines the dummy for low relative production with in�ow to form a slope dummy.
Model (7.6) is applied in the testing since the hypothesis is not related to price.

pi,t = α + β1Dcap + β2wi,t + β3Dswi,t + β4(
S

F
)i,t + β5DΓwi,t + β6pi,t−1 + εi,t (9.30)

The null hypothesis states that the slope dummy for low relative time of production is
not signi�cant in model (9.30) given that the other independent variables are included
in the model;

H0 : β5 = 0, H1 : β5 < 0 (9.31)
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9.11.1 Results of Hypothesis 7b

The t-probabilities show insigni�cance of DΓwi,t in the in-sample testing in Table 9.19 and
signi�cance in the out-of-sample testing in Table 9.20. Hence, the null hypothesis is not
rejected at 5% level. The R2 does not change by inclusion of the dummy. Nevertheless,
further testing on another sample is required to validate the hypothesis.

Table 9.19: Results hypothesis 7b from in-sample-sample data

α Dcap wi,t Dswi,t ( S
F

)i,t DΓwi,t pi,t−1 R2

coef. -1041,19 946,85 0,0707 -0,0551 1363,80 -0,0145 0,8648 0,8737
t-prob. 0,002 0,000 0,000 0,001 0,000 0,072 0,000

Table 9.20: Results hypothesis 7b from out-of-sample data

α Dcap wi,t Dswi,t ( S
F

)i,t DΓwi,t pi,t−1 R2

coef. -3599,6 819,01 0,0904 -0,0534 4012,72 -0,0445 0,8722 0,8966
t-prob. 0,004 0,000 0,000 0,041 0,002 0,008 0,000

9.12 Hypothesis 8

The last hypothesis tests whether there has been a maturation during the years in the
hydropower producers willingness to let the forward price a�ect the production decision.
To test this hypothesis the in-sample period is divided in two. The �rst 2,5 years are
denoted "early period" and the second 2,5 years are denoted "late period". A dummy
for the second half of the in-sample period is de�ned as Dlate to create a slope dummy
with the forward prices;

Dlate, =

{
1 late period

0 else
(9.32)

Model (7.6) is applied in the testing since this hypothesis is related to the forward price.
A slope dummy consisting of Dlate multiplied with forward season is included in the
model;

pi,t = α+β1Dcap+β2wi,t+β3Dswi,t+β4Si,t+β5FSi,t+β6DlateFSi,t+β7yi,t−1+εi,t (9.33)

The null hypothesis states that the slope dummy for late forward prices is not signi�cant
in model (9.33) given that the other independent variables are included in the model;
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H0 : β6 = 0, H1 : β6 > 0 (9.34)

9.12.1 Results Hypothesis 8

The t-probability of the slope dummy, DlateFSi,t, shows that the null hypothesis is not
rejected on a 5% signi�cance level for the in-sample testing. The out-of-sample data is
not applied in the testing of the hypothesis since it belongs to another time period than
the time period of interest in the hypothesis. This is a common problem when cross-
validating models of time-series data, see section 8.2. Nevertheless, the in-sample testing
shows that one cannot conlude that there has been an increased willingness among the
hydropower producers to use information in the forward market. In addition, the R2

does not change when including DlateFSi,t in the model. The reason for the rejection of
the hypothesis might be that the in-sample period is to short.

Table 9.21: Results hypothesis 8 from in-sample data

α Dcap wi,t Dswi,t Si,t FSi,t DlateFSi,t pi,t−1 R2

coef. 510,64 927,04 0,0691 -0,0559 22,80 -34,55 4,92 0,8668 0,8737
t-prob. 0,007 0,000 0,000 0,001 0,000 0,001 0,255 0,000
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Discussion of Applied Methods

10.1 Shortcomings with the Data

In panel data analysis it is of importance to have enough individuals for the regression
results to be valid (Ya�ee 2003). With thirteen producers, our analysis would stand
stronger if the data set consisted of more cross-sectional individuals. Due to the poola-
bility assumption (see section 10.3), the regression would also improve if the producers
in the sample were more alike. This could be achieved by imposing even stricter assump-
tions criteria in the selection of the producers. However, by imposing stricter selection
criteria one may not get a large enough sample.

There are some shortcomings with the gathered data set which may have in�uenced
the analysis. Data regarding maintenance and snow reservoir are two variables already
mentioned that could have contributed to better understanding on how hydropower pro-
ducers schedule production. With maintenance data available, production stops caused
by maintenance could have been excluded from the analysis. If snow reservoir data was
available we would have a more proper picture of the water resource situation the pro-
ducer act according to. Weather and temperature data could have contributed in the
analysis similarly. The producer's in�ow forecast is also an interesting variable to in-
clude in the regression. In general, introducing more independent variables may explain
the scheduling decision better. However, it is a trade-o� between accuracy and keeping
the models simple. A higher resolution time would also enhance the accuracy since this
would imply more data.

Time dependent restriction due to esthetical or environmental reasons are important in
the scheduling of generation (SKM 2007). Unfortunately, data regarding other restriction
than maximum and minimum production capacity and reservoir level were not available.

The time span considered include very di�erent market situations. In 2000 the hy-
dropower production in Norway was at a historical high level with a production of 142
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TWh, while in 2003 the electricity production from hydropower was only 106 TWh due
to extremely low in�ow (NVE 2006c). The low supply of power caused very high prices in
the same period. These peculiar circumstances are unfavorable for the analysis because
we might draw inference based on data a�ected by very special incidents.

10.2 Testing for Heteroskedasticity: White's test

White's test for heteroskedasticity (see Appendix A.4.2) is conducted for the two models
used in the hypotheses testings; model (7.6) and (7.8). For model (7.6) the square of
the residuals were regressed against 18 variables, while for model (7.8) 25 non-redundant
squares and cross-products of the original dependent variables were used. The results of
the White's tests are summarized in Table 10.1 and since the observed χ2 value for both
models are higher than the critical χ2 values the null hypothesis of homoskedasticity is
rejected.

Hence, our assumption of heteroskedastic regression errors made in section 8.1.1 are
veri�ed. It is therefore reasonable to say that our choice of GMM as regression estimator
seems proper.

Table 10.1: Results of the White's test conducted for model (7.6) and (7.8). In the right column
χ2

0,05 presents the critical value of acceptance of the test.

R2 auxiliary regression χ2
obs χ2

0,05

Model (7.6) 0,1698 565,12 28,869
Model (7.8) 0,1811 602,76 37,652

10.3 Test of Poolability: Chow test

In the estimation of the models it is assumed that the parameters i.e. the β's are the
same across producers and over time. Due to this, it is natural to check if the data can be
pooled together. In the case of the thirteen power producers it is natural to expect larger
di�erences between the individuals than over the time periods. Hence, a poolability test
over individuals is therefore conducted.

(Baltagi 2005) suggests using the Chow test to test if it is reasonable to pool the data.
The poolability test is taken under the assumption of ε ∼ N(0, s2INT ). Hence, that
the error components are homoskedastic. Although, the White's test accomplished in
section 10.2 shows that the error components from model (7.6) and (7.8) do not ful�ll
this assumption the test is still undertaken and used as a basis of discussion.

The Chow test (see Appendix A.5.4) is conducted for a revised version of the two models
used in the hypothesis testing. To be able to accomplish the testing the producer speci�c
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dummy, Dcap, was removed. The results are listed in Table 10.2.

Table 10.2: The results of the poolability tests. An Fobs greater than the critical value results
in rejection of the null hypothesis that the data is poolable.

Fobs Critical F value
Revised model (7.6) 4,57 1,320
Revised model (7.8) 4,04 1,295

We see that the Chow test for poolability of cross-section data is rejected at a 5 %
signi�cance level for both the models. Hence, by applying a restricted i.e. a pooled
regression model, bias may be introduced into the regression result. However, (Toro-
Vizcarrondo & Wallace 1968) discuss that "if one is willing to accept some bias in trade
for a reduction in variance, then even if the restriction is not true one might still prefer
the restricted model." One of the motives behind pooling of cross-sections is to widen
the database in order to get better and more reliable estimates of the parameters of
the regression model. Although the Chow test of poolability is rejected, one might
still pool the data to reduce variance in the data. Since the objective of this paper
is to �nd out what drives production sheduling for Norwegian hydropower producers in
general, pooling of the data is a necessary consequence. If more strict assumption criterias
were applied in the selection of producers as discussed in section 10.1, the poolability
assumption may have been ful�lled.
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Conclusion

In this master thesis we present data from thirteen adequate Norwegian hydropower
producers. The data gathered is relevant to the production scheduling problem and is
applied in testing of the hypotheses which are proposed based on theory of hydropower
schdeuling and electricity forward markets.

Our �ndings show that hydropower production is dependent on in�ow, spot- and forward
prices, seasonal variation and lag of production. This is consistent with our general hy-
pothesis. Based on our knowledge of the hydropower industry, it is common to construct
price forecasts based on bottom-up analysis. Due to this, perhaps our most interesting
result is the signi�cance of the forward price in production. This indicates that forward
prices are adequate as input in the production scheduling. Hence, the information from
the forward market can be used in the scheduling instead of conducting price forecasts
from the prevailing bottom-up models. However, since only weekly and seasonal forward
products are considered in our regression, further research should try to avoid the corre-
lation problem and include other products to capture the dynamics of the forward curve.
The purpose behind such an analysis would be to con�rm our results.

Other interesting results are that a positive deviation from expected reservoir results
in increased production. This indicates that producers �nd it favorable to keep the
reservoir level close to expectations based on earlier years. This might also indicate that
local restrictions which are not included in the available data material a�ect production
strongly. When the reservoir is unexpectedly nearly empty or nearly full, the prices
a�ect production less than otherwise. When the reservoir is unexpectedly nearly full,
the production decision is more dependent on in�ow than normal. Hence, when the
reservoir is nearly bound by its restrictions, the production scheduling is more a�ected
by the physical factors such as in�ow, while price is subordinate. Further, the analysis
reveals that extremely high spot prices do not give a rise in production as anticipated.
Increasing variance in the spot price gives a lower production. By further investigation we
see that during time-periods when prices were high they were also very volatile. Hence,
producers are rational and defer to produce because of the volatility. Increasing variance
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in in�ow does not decrease production. This was not expected prior to the analysis.
However, it can be explained by the reservoir functioning as a bu�er for volatile in�ow.
Producers with a low relative regulation were assumed to be less dependent on the forward
price in the production decision. This hypothesis is rejected. Likewise, it was assumed
that producers with a low relative time of production are �exible and should be more
dependent on prices and less dependent on in�ow. Testing did not give any acceptance
of this hypothesis either. Further we expected that there has been a maturation during
the years in the hydropower producers willingness to let the forward price a�ect the
production decision. This hypothesis is also rejected. A longer time horizon in the data
might give the wanted results.

The empirical analysis shed light on how the scheduling is performed and it provides
important information about how the producers act in speci�c situations. The results
of most of the hypotheses testings indicate that hydropower scheduling is performed in
accordance with theory. The usefulness of the empirical analysis is to better understand
the dynamics of the scheduling problem.

The conclusion of an empirical analysis is strengthened by testing the hypotheses us-
ing other sets of data. Hence, testing our hypotheses on data from other producers is
suggested for further research.
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Appendix A

Statistical Concepts

A.1 Linear Regression

The concept of linear regression analysis deals with �nding the best relationship be-
tween the dependent variable, Y , and the independent variables, xi, and quantifying
the strength of that relationship. In simple linear regression we have only one indepen-
dent variable, x, in multiple linear regression we have n independent variables, xi, where
i = 1, .., n. A multiple regression structure might be

Y = α + β1x1 + β2x2 + ε (A.1)

The parameters α and β are unknown and must be estimated from the data. One
can never observe the actual ε values in practice and thus one can never draw the true
regression line but only an estimate of the true regression line. The estimated or �tted
regression line is given by

ŷ = α̂ + β̂1x1 + β̂2x2 (A.2)

One important concept in regression analysis is the residuals. The residuals are errors in
the �t of the model; ei = yi − ŷi, i = 1, .., n. If the size of the residuals is large, then the
model is clearly not good.

A.1.1 SSE, SSR, SST

The total sum of squares, SST , is the total sum of squares of the dependent variable, y.
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Figure A.1: Residuals as vertical deviations. The dots are the actual observations, and the
dotted lines are the deviations from the actual observations and the �tted line, ŷ.

SST =
n∑

i=1

(yi − y)2 (A.3)

The regression sum of squares, SSR, re�ects the amount of variation in the y-values
explained by the regression model

SSR =
n∑

i=1

(ŷi − y)2 (A.4)

The residual sum of squares of the errors about the regression line are denoted by SSE
and re�ects variation about the regression line.

SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi)2 (A.5)

Finally, SST can be divided into two components, SSR and SSE respectively;

SST = SSR + SSE (A.6)

A.1.2 R-squared

R2 is a measure of the proportion of variability explained by the �tted regression model.
This can be calculated from the total sum of squares SST and the error sum of squares
SSE. The SSE value is the variation due to error or variation unexplained by the
regression model. The variation which is explained by the regression is SSR = SST −



SSE. The expression for R2 can be derived as; R2 = 1− SSE
SST . The higher the value of

R2, the more variance is explained by the regression model, i.e. the better is the model
(Walpole et al. 2002).

A.2 GMM

The basic idea of GMM is to obtain estimates of parameters of statistical models. Let yt

denote the dependent variable and X a K × T matrix of the K independent variables.
The model speci�ed for the dependent variable implies certain expectations, for example

E[yt] = E[βX] (A.7)

The models in section 7.4 �t into this framework. The most natural way to check this
expectation is to examine sample averages, i.e. to calculate

1
T

T∑
t=1

yt and
1
T

T∑
t=1

(βX) (A.8)

GMM estimates the parameters, i.e. β, by making the sample averages in equation (A.8)
as close to each other as possible. GMM then works out a distribution theory for the
estimates and suggests that we evaluate the model by looking at how close the sample
averages of the dependent and "weighted" independent variables are to each other. This
is equivalent to looking at the production errors. GMM gives a statistical test of the
hypothesis that the underlying population means are in fact zero (Cochrane 2005).

A.3 Hypotheses Testing

Hypothesis testing is a statistical inference procedure which is based on constructing a
statistic from a sample that will enable the analyst to decide whether or not the data
in the sample would have been generated by a hypothesized population. In general
one makes a statement of the hypothesis in form of a "null" hypothesis or maintained
hypothesis, and an "alternative" hypothesis. Respectively denoted H0 and H1. The
sample data indicates whether the null hypothesis should be rejected or not. The classical
or Neyman-Pearson methodology involves partitioning the sample space into two regions.
If the sample data fall in the critical region, then the null hypothesis is rejected; if they
fall in the acceptance region, then it is not (Greene 2000).

A.3.1 Type I error

The testing of the hypothesis lead to a rejection of the null hypothesis when it is actually
true.



A.3.2 Type II error

The testing of the hypothesis fail to reject the null hypothesis when it is false.

A.3.3 p-value

The probability of committing a type I error is often denoted the p-value. A p-value is the
lowest level of signi�cance at which the observed value of the test statistic is signi�cant.
If we observe a value t of a random variable T used as a test statistic, then the p-value
of t is the probability that T will assume a value as or more unfavorable to the null
hypothesis as the observed value t. The p-value can be used to reject or not reject the
null hypothesis. For example, if we go through with a test with 5% signi�cance level,
then we would reject the null hypothesis if the p-value is lower than 0,05. Traditionally
one does not want the type I error to be greater than 0,05 or 0,01. We have chosen the
signi�cance level of 0,05 for the testing of our hypotheses.

A.3.4 Testing on single variables: t-statistics

The t-statistics is a test whether the means of two normally distributed populations are
equal. This test is often used to decide whether a single regression coe�cients is signi�-
cant in a model. One tests the di�erence between the mean of the estimated regression
coe�cient and the "true" regression coe�cient, divided by the standard deviation. A
common test is whether a regression coe�cient β is signi�cantly di�erent from zero. The
test statistic is can then be expressed as

t =
β̂i − βi

SE(β̂i)
(A.9)

The null hypothesis then formulates;

H0 : βi = 0, H1 : βi < 0 (A.10)

Since β̂i = 0, the test statistics in A.9 collapses to

t =
β̂i

SE(β̂i)
(A.11)

This is standard output in most computer programs and the belonging p-value can easily
show whether the coe�cient is signi�cantly di�erent from zero or not (Greene 2000).



A.3.5 Testing on subsets of variables: f-statistics

The f -test is often used in testing of hypotheses when it is of interest to test more than
one coe�cient simultaneously. For instance, one want to test the signi�cance of β1 and β2

simultaneously in a regression model estimated from N data and with k variables. The
f -test statistic for testing multiple hypotheses about the coe�cient estimates is given by

f =
[SSR(β1, β2|β3, β4, ..., βk)]/2

SSE/(N − k)
=

[SSR− SSR(β3, β4, ..., βk)]/2
SSE/(N − k)

(A.12)

Note that two regression models are tested; one containing all the regression coe�cients
and one containing all but the two variables which is tested (β1 and β2) (Walpole et al.
2002). The �rst model is often referred to as the "restricted model" and the second is
referred to as the "unrestricted model" and (Brooks 2002). The p-value of the f -statistics
determines if the hypotheses are rejected or not.

A.4 Assumptions and Requirements for Regression Vari-
ables

A.4.1 Stationary Time Series

The usual property of a regression using the time-series data is dependent on the as-
sumption that the time-series variables are stationary stochastic processes. A time series
yt is stationary if the criteria below is true for all variables

E(yt) = µ (A.13)

var(yt) = σ2 (A.14)

cov(yt, yt−s) = γs (A.15)

where equation (A.15) implies that the covariance depends on s, not t.

Series which can be made stationary by taking the �rst di�erence are said to be integrated
of order 1, and denoted I(1). In general, if series must be di�erenced d times to be made
stationary it is denoted I(d). The consequences of nonstationarity can be quite severe,
leading to estimators, test statistics and predictors that are unreliable. Many of variables
studied in macroeconomics and �nance are nonstationary time series and it is therefore
import to test for stationarity (Hill et al. 2001).



Tests for Stationarity : the Dickey-Fuller Tests

The stationarity of a time series can be tested using the Dickey-Fuller (DF) test.

Assuming that yt follows

yt = α0 + ρyt−1 + υt (A.16)

yt is stationary if |ρ| < 1. Thus we can test for nonstationarity by testing the null
hypothesis that ρ = 1. The test is put into a convenient form by subtracting yt−1 from
both sides of (A.16) to obtain

yt − yt−1 = α0 + ρyt−1 − yt−1 + υt (A.17)

∆yt = (ρ− 1)yt−1 + υt (A.18)

∆yt = γyt−1 + υt (A.19)

Then the hypothesis can be formulated as

H0 : ρ = 1 ↔ H0 : γ = 0 (A.20)

H0 : ρ < 1 ↔ H0 : γ < 1 (A.21)

To test the hypothesis we estimate (A.17) and examine the t-statistics. But if the null
hypothesis is true yt follows a random walk, hence the t-statistics no longer has a t-
distribution. Consequently one has to compare the statistics with specially constructed
critical values.

The augmented Dickey-Fuller (ADF) test derives from the DF test by adding lagged
di�erences. The general modi�ed model for the ADF(s) is

∆yt = α0 + γyt−1 +
s∑

i=1

γ∆yi−1 + υt (A.22)

A.4.2 Heteroscedasticity

Heteroscedasticity is when the variance of the error term are not constant across observa-
tions. That is; var(ei) 6= σ2. When applying the least squares estimator one important
assumption is that the error term has constant variance across all the observation, i.e.
the model is homoskedasticic. In the case of heteroscedasticity the least square estima-
tor is still a linear and unbiased estimator, but it is no longer the best linear unbiased
estimator. When the error term is heteroskedastic, the standard errors computed for the
least squares estimator are incorrect. This implies that other estimators than the least
squares estimators should be applied. GMM is a proper estimator to be applied in case
of heteroskedasticity (Hill et al. 2001).



Test for Heteroskedasticity: White's test

White's test proposed in (White 1980) tests for the presence of heteroskedasticity due to
one or more of the independent variables. The test is based on an auxiliary regression of
the squared residuals i.e. e2

i,t on all squares and cross-products of the original regressors.
Redundant variables like squares of dummy variables are left out.

Under the null hypothesis of homoskedasticity is

N ×R2 ∼ χ2
df (A.23)

where N is the sample size, R2 is from the auxiliary regression and the degrees of freedom
for the χ2 equals the number of regressors in the auxiliary regression. If the observed
χ2 value is higher than the critical χ2 value the null hypothesis of homoskedasticity is
rejected. Then the model has heteroskedastic regression errors.

A.4.3 Collinearity

Collinearity refers to any linear relationship among explanatory variables in a regression
model. In case of collinearity, there is no guarantee that the data will be "rich in informa-
tion", nor that it will be possible to isolate the parameters of interest. The consequences
of collinearity is that the estimator is not de�ned, i.e. one cannot obtain estimates of β
using standard estimators such as least squares and GMM. A rule of thumb is that a cor-
relation coe�cient between two explanatory variables greater than 0,8 or 0,9 in absolute
value indicates a collinear relationship which is potentially harmful (Hill et al. 2001).

A.5 Panel Data

The term "panel data" refers to data sets where we have data on several individuals
over several time periods. A panel data regression di�ers from a regular time-series or
cross-section regression in that it has a double subscript on its variables

Yit = α + XT
itβ + uit i = 1, ..., N ; t = 1, ..., T (A.24)

where i denoting �rms, individuals, countries, etc. and t denoting time. The i therefore
denotes the cross-section dimension whereas t denotes the time-series dimension.

A.5.1 The Fixed E�ect Model

This type of panel data model is an appropriate speci�cation if we are looking at a speci�c
set of N �rms and our inference is restricted to the behavior of these set of �rms. For



instance if we look at all the countries in the EU or all the states in America (Baltagi
2005). The �xed e�ect model is a type of panel models that have constant slopes but
intercepts that di�er according to the cross-sectional unit or time. This is because there
are signi�cant individual or temporal e�ects respectively. This implies that a dummy for
each individual or time period is added in the model (Ya�ee 2003).

A.5.2 The Random E�ects Model

The random e�ect model is an appropriate speci�cation if we are drawing N individuals
randomly from a large population. The individual e�ect is characterized as random
and inference pertains to the population from which the sample was drawn. Unlike the
�xed e�ect model, this model allows for random intercepts in addition to random slopes.
Hence, no intercept dummies that di�ers according to cross-sectional units or time are
added in the model (Ya�ee 2003).

A.5.3 Dynamic Panel Models

In a dynamic panel model, a lagged dependent variable is introduced to either �xed e�ects
or random e�ects models. By introducing a lag of the dependent variable one assumes
that the number of temporal observations is greater than the number of regressions in
the model (Ya�ee 2003).

A.5.4 Test for Poolability: Chow Test

The Chow test is an econometric test of whether the coe�cients in di�erent linear regres-
sion models with di�erent data are equal. One tests the validity of the null hypothesis
that individual e�ects can be neglected. Imposing the restriction in the null hypothesis
regardless of whether it is true or false will reduce the variance of the pooled estimator.
If the restriction is false, bias may be introduced (Baltagi 2005).

The unrestricted model expresses that we have a regression equation yi for each generator,
hence the individual e�ects are taken into account

yi = Ziδi + ui, i = 1, .., N (A.25)

where y′i = (yi1, ..., yiT ), Zi = [lT , Xi] and Xi is T ×K, δ is 1× (K +1) and ui is T ×1. It
is important to notice that the δi's are di�erent for every generator equation. We want
to test the hypothesis H0 : δi = δ for all i, so that under H0 we can write the restricted
model given in equation (A.25) as

y = Zδ + u i = 1, .., N (A.26)



where Z ′ = (Z ′1, Z
′
2, ..., Z

′
N ) and u′ = (u′1, u

′
2, ..., u

′
N ). In the restricted model, all the

producer speci�c data is pooled together

Now, the Chow test can be expressed by a f -test on the di�erence in residual sum of
squares of the unrestricted and the restricted model

URSS= unrestricted residual sum of squares
RRSS= restricted residual sum of squares obtained by imposing the restrictions of the
hypothesis

f =
(RRSS − URSS)/r

URSS/(n− k − 1)
(A.27)

r is the number of restrictions imposed by the hypothesis, n is the total number of
observations in the restricted model and k is the number of regressors in the restricted
model. If the f -test is signi�cant the restricted model is applicable (Maddala 2001).



Appendix B

Stationarity and Correlation Tests

B.1 Further Results from the Stationarity Tests

A Dickey-Fuller test has been conducted for all the variables. For the variables that are
non-stationary, the �rst di�erences of the variables are tested as well. The results of the
tests that are not reported in the thesis are reported in Table B.1.

Table B.1: ADF values from the stationarity test for Deviation from expected in�ow, Deviation
from expected reservoir, �rst di�erences of Deviation from expected reservoir and �rst di�erences
of Reservoir for all producers. The critical value is -2,870 at a 5% signi�cance levels. Hence, the
Deviation from expected in�ow time series is stationary for all producers as well as the di�erenced
time series. Deviation from expected reservoir is non-stationary for all producers.

Producer i wi − E[wi] R1 − E[Ri] ∆(R1 − E[Ri]) ∆Ri

1 -12,54 -2,870 -14,68 -9,955
2 -12,87 -2,081 -10,87 -4,679
3 -12,47 -2,085 -13,50 -8,252
4 -10,39 -3,009 -14,82 -9,623
5 -16,41 -1,078 -12,62 -6,533
6 -9,000 -3,374 -15,72 -14,19
7 -11,26 -2,714 -11,76 -5,174
8 -11,30 -2,564 -12,24 -6,612
9 -12,09 -1,197 -11,20 -8,430
10 -14,28 -2,829 -13,77 -6,556
11 -6,994 -1,859 -11,60 -9,680
12 -14,38 -3,686 -16,18 -16,14
13 -3,654 -2,379 -10,95 -4,928
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Appendix C

Models Estimated from General

Hypothesis Testing

C.1 Coe�cients and Statistics for Estimated Models

In Figure C.1, C.2 and C.3 are the estimated coe�cients and the belonging t-probability
of respectively the production, relative production and deviation from expected reservoir
models presented. The �gures are shown in the three next pages and for all �gures
the following applies; insigni�cant t-probabilities are marked with red, in the second
column from the right is the in-sample R2 presented and the last column reports the
out-of-sample R2.
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C.2 Residual and Predicted Production Plots for model (7.8)

Figure C.4: Residual plot for model (7.8). Due to the clear variation in the size of the residuals
between the producers the plot indicates that the error components are heteroskedastic.



Figure C.5: Actual production and predicted production using model (7.8) for the out-of-sample
period. The �t seems quite good which is also substantiated by the high out-of-sample R2 =
88,549%.



Appendix D

Various Calculations

D.1 Estimating Deviation from Expected Reservoir

Figure D.1: The estimated expected reservoir levels

To estimate the expected reservoir curve a normal reservoir curve over the year is calcu-
lated for each producer based on the average reservoir level of each week. The estimated
expected reservoir curves are illustrated in Figure D.1. For some of the producers, for
instance producer 5, 7, 8 and 10, the normal curve is a smooth curve with the properties
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one expects i.e. a peak in the autumn and a valley in the spring. On the other hand,
from Figure D.1 one sees that the normal curves for for instance producer 6 and 11, are
jagged and do not at all resemble the expected aggregated reservoir which is shown with
the dotted line.

The weekly average reservoir levels are calculated using the available data. For most of
the producers this means only seven years of data, but for some producers longer time
series were procured. Since quite few years are used, the error done when using the
sample mean x as an estimate of the expected reservoir level µ is investigated.

Assuming that the weekly reservoir level for each producer is normal distributed 1, we
can be (1 − α)100% con�dent that the error when x is used as an estimate of µ, will
not exceed tα/2

s√
n
where tα/2 is the t-value with υ = n− 1 degrees of freedom from the

Student's t-distribution and s is the standard deviation.

Using a 0, 05 level of signi�cance an error for every producer and week is calculated.

ei,t = tα/2,υ
si,t√

n
, i = 1...13, t = 1...52 (D.1)

Table D.1: Minimum and maximum percentage error over the week for each producer when
using the sample mean as the expected reservoir level

Producer No. of years tα/2,υ Minimum error Maximum error
1 7 2,447 2,99% 77,08%
2 7 2,447 7,23% 18,59%
3 8 2,365 8,79 % 53,81%
4 7 2,447 6,81% 44,76%
5 47 2,015 5,31% 17,95%
6 7 2,447 9,79% 67,76%
7 7 2,447 5,55% 127,83%
8 17 2,120 3,14% 39,38%
9 7 2,447 18,43% 66,76%
10 23 2,074 2,82% 50,77%
11 7 2,447 8,34% 84,51%
12 22 2,080 6,55% 27,66%
13 16 2,131 4,53% 41,04%

In Table D.1 the minimum and maximum errors over the weeks for each producer are
presented. To be able to compare the minimum and maximum errors better, the per-
centage error of the belonging mean xi,t are shown. For producer 1 the best week, i.e.
the week with the minimum error, has an error of 2,99%. This means that we can be

1For bell-shaped distributions of the random variables X1, X2,..., Xn the use of the t-distribution for
con�dence intervals is likely to be quite good even if the normal distribution assumption is not ful�lled
(Walpole et al. 2002).



95% con�dent that the expected reservoir level lies within the interval x1,t±0, 0299×x1,t

for the best week t for producer 1. As seen from the table, the errors for some of the
producers are considerably high. This indicates that the average weekly reservoir level is
not a very good estimate of the expected reservoir level for a given week, at least not for
the producers where only 7 years of data is available. With more years of data available,
the errors tend to be less and one may expect that the producers have better forecasts for
expected reservoir level to base their scheduling on. Nevertheless, with the data material
gathered these are the only estimates based on merely the producer data set that could
be calculated. In Figure D.2 the relative deviation from the expected reservoir, i.e. the
deviation divided by the expected reservoir is shown.

Figure D.2: Relative deviation from estimated expected reservoir

An alternative procedure on how to estimate expected reservoir curves is presented next.
Both the procedures have their advantages and disadvantages. Since the method de-
scribed in this section best consider the producer speci�c characteristics, this method is
chosen.



Table D.2: Week of the year when the reservoir is at its expected minimum and maximum level.
The values are used to develop dummies in hypothesis 1 and 3.

Producer week with min. reservoir week with max. reservoir
Producer 1 16 29
Producer 2 18 41
Producer 3 16 46
Producer 4 15 36
Producer 5 18 44
Producer 6 13 50
Producer 7 18 42
Producer 8 16 41
Producer 9 16 47
Producer 10 19 47
Producer 11 16 40
Producer 12 17 42
Producer 13 16 32

D.2 Estimating Deviation from Expected Reservoir - An
Alternative Procedure

The normal reservoir curves calculated as described above have some weaknesses. Due
to this, an alternative procedure using the normal reservoir level for the whole market
is computed. In Figure D.1 the dotted line shows the normal level for the aggregated
total reservoir in Norway and Sweden. This curve is much smoother than the producer
speci�c curves and may be regarded as a good estimate of the expected total reservoir
level.

Since the weekly averages are not so good estimates of the expected level we want to
improve the normal reservoir curves based on the data of the aggregated reservoir. Hence,
the goal is to use the normal level for the aggregated reservoir to smooth out the producer
speci�c curves and at the same time keep some of the producers dependent characteristics.

To accomplish this, we �rst standardize the aggregated reservoir curve denoted by Y =
[y1, y2, ..., y52]. The mean Ȳ and the standard deviation σY from Y are calculated. Let
the standard curve be expressed as

ωt =
yt − Ȳ

σY
, t = 1, ..., 52 (D.2)

Hence, the standard curve Ω = [ω1, ω2, ..., ω52] �uctuates around 0 and has a standard
deviation equal to 1.

From Figure D.1 one sees that the normal curves for each producer �uctuate around
di�erent levels and that some producers seem to have greater variations in reservoir level.



In order that the new normal curves Zi, should have these producers speci�c properties
as well, the average, X̄i, and the standard deviation, σXi , of the normal curves for each
producer Xi are calculated. Using the standard curve, Ω, a new normal reservoir curve
for each producer is calculated

zi,t = ωt × σXi + X̄i, i = 1...13, t = 1...52 (D.3)

Figure D.3: The normal reservoir levels based on the normal aggregated reservoir curve

In Figure D.3 the normal reservoir curves based on the normal aggregated reservoir curve
are shown. When constructing these curves some of the values turned out to be slightly
negative. Since this is clearly unrealistic the �gures are set to zero. One sees that the
normal reservoir curves for the di�erent producers have the same shape as the normal
aggregated reservoir curve, but at the same time have kept some of its properties shown
in �gure D.1.

D.3 Estimating Deviation from Expected In�ow

The estimated expected in�ow over the year for each producer is presented in Figure D.4.
The averages are calculated from the data available and following the procedure presented
in section D.1 the errors done when using the sample average as the expected in�ow are
calculated and shown in Table D.3. For some of the producers for instance producer 9,



Figure D.4: Estimated expected in�ow over the year

the expected in�ow curve in Figure D.4 is jagged and do not show the properties one
expects. This is probably due to that too few years have been used when calculating the
weekly averages and this is seen from Table D.3.



Table D.3: Minimum and maximum percentage error over the week for each producer when
using the sample mean as the expected in�ow

Producer No. of years tα/2,υ Minimum error Maximum error
1 76 1,995 8,25% 45,00%
2 23 2,074 11,97% 60,95%
3 8 2,365 16,09% 123,43%
4 44 2,018 9,92% 44,45%
5 98 1,988 7,69% 46,97%
6 7 2,447 22,16% 115,00 %
7 76 1,995 7,45% 29,73%
8 17 2,120 19,39 % 145,25%
9 7 2,447 29,43% 260,18%
10 24 2,068 12,85% 97,30%
11 76 1,995 12,84% 38,65%
12 22 2,080 12,32% 118,90 %
13 77 1,995 9,56% 21,39%
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