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Abstract

The steady increase in the short-term trading of electricity through power
markets has made the investigation of appropriate bidding strategies rele-
vant. The object of this report is to compare price-dependent and price-
independent bidding strategies. This is done through three case studies
where the two bidding strategies are evaluated under different conditions
based on German-Austrian price data from EPEX SPOT. The results indi-
cate that in some circumstances where the power producers have sufficient
generation capacity to avoid infeasible solutions, power producers are able
to utilize the value of flexible bidding. For power producers without this
flexibility, price-independent bids are likely to give better results.
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Chapter 1

Nomenclature

Indexes

s index of price scenarios
t index of time steps
i index of price points
j index of thermal units
l index of unit start up types

Sets

S set of scenarios
T set of time steps for the planning period
TB set of time steps for the planning period, subset of T
T− planning horizon extended to the past
I set of price points
J set of thermal units
L set of unit start up types L = {h, w, c}

where h=hot, w=warm, c=cold
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Parameters

ρs
t t ∈ T , s ∈ S realized price at time step t in scenario s

pi i ∈ I bidding price at price point i
πs s ∈ S probability of scenario s
cj j ∈ J marginal cost of in unit j
C l

j j ∈ J , l ∈ L start up cost of start up type l in unit j

Cj j ∈ J commitment cost unit j per hour
RLj j ∈ J ramping limit in unit j
UTj j ∈ J minimum up time in unit j
DTj j ∈ J minimum down time in unit j

Pj j ∈ J maximum output of unit j
Pj j ∈ J minimum output of unit j

T l
j j ∈ J , l ∈ L number of time steps specifying start up

type l in unit j
Tmax number of time steps in the planning hori-

zon T
R penalty for using the balance market

Variables

xit i ∈ I, t ∈ TB volume bid at price point i in time step
t

ys
t t ∈ T , s ∈ S volume committed at time step t in sce-

nario s
zs
jt j ∈ J , t ∈ T , s ∈ S volume produced in unit j at time step

t in scenario s
+qs

t t ∈ T , s ∈ S volume sold in the balancing market at
time step t in scenario s

−qs
t t ∈ T , s ∈ S volume bought in the balancing market

at time step t in scenario s
us

jt j ∈ J , t ∈ T−, s ∈ S binary variable that is equal to 1 if unit
j
runs at time step t in scenario s

vs
jt j ∈ J , t ∈ T−, s ∈ S binary variable that is equal to 1 if unit

j
shuts down at time step t in scenario s

ws
jt j ∈ J , t ∈ T−, s ∈ S binary variable that is equal to 1 if unit

j is started in time step t in scenario s
wls

jt l ∈ L, j ∈ J , t ∈ T−, s ∈ S binary variable that is equal to 1 if a
type l start up is initiated in time step
t in unit j

14



δs
t t ∈ T , s ∈ S binary variable that is equal to 1 if pro-

ducer uses the balancing market
Cprod(zs

jt, u
s
jt, w

ls
jt) aggregated variable costs

Cbalance(+qs
t ,
− qs

t ) cost of using the balance market

15
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Chapter 2

Introduction

Power producers that wish to take part in an electricity spot-market must
develop appropriate bidding strategies. The problem of finding optimal bid-
ding decisions relies on the success in different areas such as market model-
ing, production planning and bid generation. For thermal power producers
who are restricted by temporal constraints in the power generation the bid-
ding process is even more complex. Price-independent bids are promoted
as a way to reduce the risk of unpredicted market events that might leave
the power producer unable to fulfill the market obligation [17]. However,
these bids are inflexible and incapable of responding to price signals from
the market. Price-dependent bidding, on the other hand, has the poten-
tial to better react to unforeseen market events, but might leave the power
producer unable to fulfill the market commitment through self-scheduling.

This report will try to analyze the differences between price-dependent and
price-independent bidding through three different case studies based on the
German-Austrian spot-market. Two stochastic optimization models are pre-
sented in chapter 3. These modelse can be used to generate price-dependent
and price-independet bids. In chapter 4 a forecasting and scenario genera-
tion method is introduced. The value of the two bidding strategies is assessed
through three case studies in chapter 5. A discussion on the findings is found
in chapter 6 followed by a conclusion in chapter 7.

2.1 Metric for value of price-dependent bidding

The authors have no knowledge of previous research on the difference in the
value for price-dependent and price-independent bidding in the spot market
for thermal power producers. This report proposes a new metric to structure
the further study of this problem.

17



Taking ideas from the concept of the Value of the Stochastic Solution (VSS)
[1] a similar Value of Price-Dependent Bidding (VPDB) is proposed to re-
flect the value of including the flexibility of price-dependent bidding into
the bidding model. VPDB is the optimal objective value of the price-
dependent bidding problem subtracting the optimal objective value of the
price-independent bidding problem. To be able to evaluate the value of
price-dependent bidding between different models, a relative value of price-
dependent bidding is defined as the VPDB divided by the optimal objective
value of price-independent bidding problem.

Table 2.1: Definition of Value of Price-Dependent Bidding (VPDB) and
Relative Value of Price-Dependent Bidding RVPDB

V PDB =f(x∗PD) − f(x∗PI) (2.1)

RV PDB =
V PDB

f(x∗PI)
100% (2.2)

2.2 Literature

The purpose of this report is the study of two different bidding strategies that
has been discussed in the literature, but not compared. A short presentation
of the literature in this field follows:

The deregulation of the power market has led to a new reality for power pro-
ducers with competition and market pressure. Before the deregulation there
was a central dispatch that solved a Security Constrained Unit Commitment
(SCUC) to reduce the socio-economic cost. After deregulation each producer
has to solve its own Price-Based Unit Commitment Problem (PBUC). The
similarities and differences between the PBUC and SCUC are discussed by
Yamin in [31].

The PBUC can take multiple forms depending on the market structure that
the power producer faces. In [27, 23, 28] the power producer is assumed to
be a price-taker and has no influence over the market clearing price. An
appropriate forecasting tool is used to estimate the hourly electricity prices
for the next day, and the PBUC is solved based on the price expectation. The
PBUC has also been used where the power producer holds market power.
One example is [6] which presents a formulation where the power producers
can influence the market price through a quota scheme.

18



The thermal unit commitment problem is a mixed integer problem (MIP)
that has been an active research topic for decades. Several solution tech-
niques have been proposed such as heuristics, dynamic programming, mixed-
integer linear programming, Lagrangean relaxation, simulated annealing and
evolution-inspired approaches. A literature survey in the field of the unit
commitment problem is done in [20].

The PBUC is used to find the optimal unit commitment given a price signal,
and it is an important component in models that find bidding strategies for
power producers. In the papers [4, 22, 17] bids are developed using the
solution of the PBUC. In [4] bidding curves are derived from the statistical
properties of the price estimator. Bids are specified such that the optimal
quantity lies within a confidence interval of the price estimator. In [17] the
deterministic problem is solved a number of times for different offsets in price
to obtain bidding curves for a range of prices. A multistage scenario tree is
developed in [22] and the solution to the deterministic equivalent problem
is used as bidding curves.

The operation of an electricity market requires power producers to submit
bids before actual production to settle market clearing prices and quantities.
A more detailed description of the role of power exchanges can be found in
[25, 29]. This procedure can be modeled as a two-stage problem where opti-
mal bids are determined in the first stage on the basis of unit commitment
in the second stage. The PBUC can thus be extended to a stochastic model
where the first stage decision is done under uncertainty [28].

In [19] the spot market is explicitly modeled as a two-stage stochastic prob-
lem where own bids are decided in the first stage, and the realized spot
price is a function of own and realized bids of other power producers in
the second stage. This approach requires knowledge of competitors bidding
functions and cost structure and can only be used where this information is
available. A two-stage formulation that assumes the power producer to be a
price-taker is found in [10, 9]. Second stage production decisions are related
to first stage bidding decisions through a coupling constraint. By fixing a
set of price points, [9] is able to obtain a linear problem that can be solved
with standard MIP solvers.

There are a number of physical and economical limitations on thermal power
plants. The level of detail which these constraints have been modeled varies
among different papers. The general problem formulation can be found
in [20]. Paper [27] extends this formulation to include different operating
states of the generators and start up types.
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Chapter 3

Optimization model

3.1 The bidding problem

Power producers participating in an electricity spot-market may submit
different types of bids. Two of these are: Price-independent and price-
dependent bids. Price-independent bids consists of one volume for each hour
and will be accepted regardless of the price in the market. Price-dependent
bids consist of a set of price-volume pairs which makes up a bidding curve
for each hour. The bidders are allowed to submit bids up until 12 hours
before operation day. After the auction deadline, the bids submitted both
by power producers and consumers are aggregated and the system price and
commitment in each time period is reported to the participants.

To participate in these markets, thermal power producers need to schedule
production and submit bids ahead of time. The resulting problem is there-
fore a two stage stochastic problem. The value of including the stochasticity
of the problem into the model when solving stochastic problems is reported
in the literature [13, 24]. These programs produce robust solutions that have
the potential of higher returns when recourse decisions are present.

In the following section two models are presented. In section 3.2 the Profit-
Based Unit Commitment Problem is formulated as a two-stage price-dependent
bidding problem and in section 3.3 the Profit-Based Unit Commitment Prob-
lem is formulated as a two-stage price-independent bidding problem.

3.2 Price-dependent bidding problem

The objective function (3.1) maximizes the power producers profit, where
profits equal the committed volume of electricity at the realized electricity

21



price minus the corresponding operating costs and the cost for use of the
balancing market.

max =
S∑

s=1

πs

{
T∑

t=1

ρs
ty

s
t − Cprod(zs

jt, u
s
jt, w

ls
jt) − Cbalance(+qs

t ,
− qs

t )

}
(3.1)

3.2.1 Operating cost

The operating costs (3.2) consist of the marginal production cost, the com-
mitment cost, and the start-up cost for the different start-up types. See
section 3.2.5 for details on different start-up types.

Cprod(zs
jt, u

s
jt, w

ls
jt) =

T∑
t=1

J∑
j=1

cjz
s
jt +

T∑
t=1

J∑
j=1

Cju
s
jt +

L∑
l=1

T∑
t=1

J∑
j=1

C l
jw

ls
jt s ∈ S

(3.2)

3.2.2 Bidding curves

The bidding curves are piece-wise linear convex functions where price-volume
pairs determines each line piece. The problem of finding both prices and
quantities results in a non-linear problem. To avoid non-linearities the same
approach as in [10] has been used where price points (pi) are fixed and the
problem is solved for quantity variables (xit). The interpolation between
the price-volume points and the realized price in each scenario (ρs

t ) gives the
producers committed volume (ys

t ) (3.3).

ys
t =



ρs
t−p1

p2−p1
x2t + p2−ρs

t
p2−p1

x1t if p1 ≤ ρs
t < p2

...
ρs

t−pi−1

pi−pi−1
xit + pi−ρs

t
pi−pi−1

xi−1t if pi−1 ≤ ρs
t < pi

...
ρs

t−pI−1

pI−pI−1
xIt + pI−ρs

t
pI−pI−1

xI−1t if pI−1 ≤ ρs
t < pI

(3.3)

As required by the EPEX SPOT Operational Rules, Article 1.5.1 [26] the
bid has to be monotonous. This implies that with increasing prices the
volume has to equal or exceed the previous bid volume (3.4).

xit ≤ xi+1,t i ∈ I, t ∈ T (3.4)

By fixing the set of price points as in [10], bidding decisions might have to
be made for prices that are not within the set of realized prices (ρs

t ) for the
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respective time step. To reduce the risk of infeasible commitments quantity
variables for price points outside the range of realized prices for each hour
is set equal the quantities assigned to the last price point with information
(3.5) (3.6).

xi+1,t = xit |max(ρs
t ) < pi i ∈ I, t ∈ T (3.5)

xi,t = xi+1,t |min(ρs
t ) > pi i ∈ I, t ∈ T (3.6)

3.2.3 Balancing market

The model includes the use of a balancing market to satisfy second stage re-
strictions. The balancing market is modeled as a penalty function (3.9) and
upper limits on the sales and purchases in the balancing market (3.7) (3.8).
To promote feasible first stage decisions, both the sale and purchase in the
balancing market is related to a penalty. The penalty is a fixed deviation
from the electricity price (R).

+qs
t ≤ δs

t

∑
j∈J

Pj s ∈ S, t ∈ T (3.7)

−qs
t ≤ (1 − δs

t )
∑
j∈J

Pj s ∈ S, t ∈ T (3.8)

Cbalance(+qs
t ,
− qs

t ) = (ρs
t + R)−qs

t − (ρs
t −R)+qs

t s ∈ S, t ∈ T (3.9)

3.2.4 Thermal constraints

Thermal power plants have technical constraints that couples the production
in different time periods together. The formulation in [27] is used to describe
these technical constraints. The maximum and minimum output of power
for each unit is restricted in (3.10) and (3.11).

zs
jt ≤ Pju

s
jt s ∈ S, t ∈ T, j ∈ J (3.10)

zs
jt ≥ Pju

s
jt s ∈ S, t ∈ T, j ∈ J (3.11)

The maximum change in production in one unit from one time step to the
next is limited by the ramp-up (3.12) and ramp-down (3.13) restrictions.

zs
jt ≤ zs

jt−1 + RLj s ∈ S, t ∈ T, j ∈ J (3.12)

zs
jt ≥ zs

jt−1 −RLj s ∈ S, t ∈ T, j ∈ J (3.13)
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The limitation on minimum up and down time is enforced by (3.14) and
(3.15).

t∑
τ=t−UTj+1

ws
jτ ≤ us

jt s ∈ S, t ∈ T, j ∈ J, where τ ∈ T− (3.14)

t∑
τ=t−DTj+1

vs
jτ ≤ 1 − us

jt s ∈ S, t ∈ T, j ∈ J, where τ ∈ T− (3.15)

3.2.5 Logical constraints

Equation (3.16) ensures that production, commitment and use of the bal-
ancing market are in balance.∑

j∈J

zs
jt = yt

s − q+s
t + q−s

t s ∈ S, t ∈ T (3.16)

In (3.17) the start variable (ws
jt) will be forced to 1 if a unit runs in one

time step (us
jt = 1) and is off in the previous time step (us

jt = 0). The stop
variable (vs

jt) will in the same manner be forced to 1 if the opposite is true.
If there is no change in the unit commitment the start and stop variables
will not be affected. Equation (3.18) specifies that a unit cannot start and
stop in the same time period.

ws
jt − vs

jt = us
jt − us

jt−1 s ∈ S, t ∈ T, j ∈ J (3.17)

ws
jt + vs

jt ≤ 1 s ∈ S, t ∈ T, j ∈ J (3.18)

The cost of a start-up increases with the time the plant has been shut down.
This is modeled with different start-up types: hot, warm and cold. To assign
the correct start-up type to the start-up variable, a time interval is specified
that determines each start-up type (3.19) [27]. The start-up variable is
further limited in (3.20) by the fact that there can only be one start-up type
in any time period on any generator.

wls
jt ≤

t−T l
j∑

τ=t−T
l
j+1

vs
jt s ∈ S, t ∈ T, j ∈ J, l ∈ L, where τ ∈ T− (3.19)

ws
jt =

∑
l∈L

wls
jt s ∈ S, t ∈ T, j ∈ J (3.20)
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3.2.6 Initialization constraints

The state of the system at the start of the planning period influences the
bidding problem. Instead of a predefined initial state the starting conditions
are model by a wrap around formulation similar to what is done in [21].
For the production (zs

jt) and commitment (us
jt) variables this is done by

connecting the initial period (t = 0) to the last period (t = Tmax) (3.21)
,(3.22).

zs
j,0 = zs

j,Tmax
s ∈ S, j ∈ J (3.21)

us
j,0 = us

j,Tmax
s ∈ S, j ∈ J (3.22)

For the start (vs
jt) and stop variables (ws

jt) a larger time frame is needed
to determine the start-up type and the minimum up-time and down-time
(3.14), (3.15). This if formulated in equations (3.23), (3.24).

vs
j,t−Tmax

= vs
j,t s ∈ S, t ∈ T, j ∈ J (3.23)

ws
j,t−Tmax

= ws
j,t s ∈ S, t ∈ T, j ∈ J (3.24)

3.3 Price-independent bidding problem

The price-independent bidding problem is a stochastic two-stage problem
similar to the price-dependent bidding problem. In the price-dependent
model price points were used to give volumes at different prices. In the for-
mulation of the price-independent model, price points are not needed since
the bid only consists of one volume per hour. The whole set I can therefore
be left out of the model. The bid variable will thus only be dependent on
time step t. The omission of price points leaves restrictions (3.3), (3.4), (3.5)
and (3.6) redundant. However, to keep the coupling between the volume bid
(xt) for each hour and the sales variable (ys

t ), equation (3.25) is needed.

xt = ys
t t ∈ T, s ∈ S (3.25)
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Chapter 4

Scenario generation

Box and Jenkins introduced the application of ARIMA models to the study
of time series [2] which have been extensively used to model electricity price
behavior [5, 9]. In this chapter the process of finding an ARMA model to
be used for electricity price forecasting is presented.

4.1 ARMA time series analysis

The ARMA process consists of both autoregressive (AR) and moving average
(MA) components and is defined as:

yt = c +
p∑

i=1

φiyt−i +
q∑

i=1

θiεt−i + εt (4.1)

The φi correspond to the parameters for the AR terms, where p is the order
of the AR part. The θi are the parameters corresponding to the MA terms,
where q is the order of the MA part. c is a constant and (εt) are the error
terms of the stochastic process. The assumptions of the ARMA process
on the error terms are; zero mean (4.2), constant variance (4.3), and zero
correlation (4.4).

E(εt) = 0 (4.2)

E(ε2) = σ2 (4.3)
E(εtεs) = 0, s 6= t (4.4)

A methodology for determining an appropriate ARMA model to use for
price forecasting is proposed based on Box and Jenkins methodology. The
methodology consists of the five steps outlined in Table 4.1.
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Table 4.1: The Box and Jenkins methodology
1. A class of models is formulated
2. A subset of models is identified
3. Parameter estimation
4. Statistical hypothesis testing to validate the model. If the model is

validated go to Step 5, else proceed to Step 2.
5. Forecasting

4.1.1 Class of models

This step concerns the identification of a general class of models based on
the inspection of the main characteristics of the hourly prices. The hourly
electricity prices in the German-Austrian spot market presents high fre-
quency, non-constant mean and variance, and multiple seasonality (daily
and weekly). The proposed general ARMA formulation is the following:

φ(B)pt = θ(B)εt (4.5)

B is the backshift operator.

The ARMA formulation (4.5) is sufficiently general to include the main
features of the price data.

4.1.2 Subset of ARMA models

In order to make the underlying process stationary a log transformation of
the data was performed. A trial model (4.6) was formed based both on data
analysis of the auto correlation and partial autocorrelation plots of the price
data.

(1 − φ1B
1 − φ2B

2−φ3B
3 − φ4B

4 − φ5B
5 − φ24B

24 − φ168B
168)yt

= (1 − θ24B
24 − θ168B

168)εt (4.6)

4.1.3 Parameter estimation

Good estimators of the parameters in the model can be obtained by assuming
the data is of a stationary time series. The parameters are estimated by using
statistical software that performs a maximum likelihood estimation of the
parameters. Due to limitations in the available software, it was not possible
to include seasonality beyond the 24 hour period. An algorithm that extends
the functionality to multiple seasons is proposed in [7], but implementing
and testing this algorithm was outside the scope of this report.
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4.1.4 Model evaluation

In this step, statistical hypothesis testing was performed to validate the
model assumptions. This included tests on the significance of the parame-
ters of the model, the assumptions in equation (4.4) was tested through the
Ljung-Box statistic, and analysis of the autocorrelation and partial autocor-
relation functions for the relevant lags. A Breusch-Pagan test was performed
to test the assumption in equation (4.3) of constant variance in the residuals.

The assumption that the errors form a white noise process that is normally
distributed is not supported in this analysis. As with [3] the results support
the rejection of electricity price changes as normally distributed. This has
implications for the forecasting procedure discussed in the next section.

Although autoregressive lags of up to four time steps were identified as statis-
tically significant in the model evaluations, an Akaike Information Criterion
test showed that adding lags beyond the two first terms did not significantly
improve the model. This was also supported through only incremental im-
provements in the R2 value as more lags were added.

4.1.5 Forecasting

As a result of the previous steps a final model (4.7) for the German-Austrian
electricity market was found.

(1 − φ1B
1 − φ2B

2 − φ24B
24) log(yt − α) = (1 − θ24B

24)εt (4.7)

The model is a simple model compared to [5, 11], but sufficient to be able to
perform initial tests on the value of price dependent bidding. The final model
can be used to forecast prices into the future. The estimated parameters of
this model can be seen in Table 4.2.

Table 4.2: Estimated parameters for the ARMA price model
φ1B

1 φ2B
2 φ24B

24 θ24B
24 α

1,0454 -0,1391 0,9927 -0,9042 5,2312
s.e. 0,0122 0,0122 0,0017 0,0072 0,0344
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4.2 Numerical results

In the empirical analysis the proposed ARMA model was applied to the
German-Austrian electricity data. The data set consisted of price data from
1 January 2013 to 1 October 2013. To evaluate the performance of the
suggested price model an in-sample analysis was conducted. As in [5, 11]
an in-sample analysis based on the last week of every month in the 8 month
data set was performed. The mean week error (MWE) is compared to the
standard deviation of the error terms of the forecasting model ŝR. The ŝR is
used as an estimate of the true variance of the error terms (σ2) and describes
the variance of what is still unexplaiend after fitting the model.

Table 4.3: Mean weakly error in the forecast for last seven days in the month.
Month MWE (%) ŝR

February 19.3 % 7.5099
March 19.5 % 8.7618
April 21.4 % 8.1139
May 25.2 % 6.3729
June 30.9 % 6.2934
July 22.4 % 5.8796
August 23.9 % 6.5052
September -887.1 % 9.8229

As with [5, 11], it is found that the proposed ARMA model performs poorly
under high volatility , and inable to give predictions in the week of extreme
volatility in September (Figures 4.2, 4.2 and Table 4.4]. Combining the
forecasting tool with our scenario generation approach it was possible to
obtain simulations of the German-Austrian market.

Table 4.4: Mean daily error in the forecast for the last last seven days of
February and September 2013

Day 1 2 3 4 5 6 7
February 8.02 % 19.3 % 28.5 % 19.5 % 22.6 % 25.1 % 12.1 %

September 32.5 % 28.7 % 23.4 % 19.7 % 24.5 % 6358.0 % 18.8 %
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Figure 4.1: Forecasting error for the last seven days of February 2013.
Solid line is forecasted value, dotted line is the real value
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Figure 4.2: Forecasting error for the last seven days of September 2013.
Solid line is forecasted value, dotted line is the real value
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The forecasted prices for Wednesday 2 October 2013 and next six days were
measured against the realized prices of the same week to analyze the out-of
sample performance (Figure 4.2 and Table 4.5].
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Figure 4.3: Forecasting error for the 2-8 October 2013
Solid line is forecasted value, dotted line is the real value

Table 4.5: Mean daily error for 2-8 October 2013

Day 1 2 3 4 5 6 7
Mean daily error 24.1 % 1527.9 % 29.5 % 20.7 % 32.8 % 20.3 % 16.7 %

4.2.1 Exogenous variables

Additional exogenous variables could have improved the modeling effort.
Especially the time-dependent influx of solar power in the day-time could
have explained more of the variation in the price data. Since this correlation
is largely time-dependent, some of this variation is compensated for by a
sampling approach discussed in the next section. The significance of different
weekdays, more specifically Saturday, Sunday and Monday could have been
included.
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4.3 Scenario generation

A stochastic optimization model needs a finite and discrete representation
of the stochastic variables to be used as input into the model. When dis-
crete distributions of the stochastic variables are obtained, these needs to be
linked appropriately to reflect the decision stages and periods in the plan-
ning horizon. The resulting representation is a scenario tree that defines
the information structure of the problem. There have been different meth-
ods proposed to derive this discrete distribution, and the construction of a
scenario tree. There is a short overview in [15] which also presents two im-
portant properties that a scenario generating method should satisfy. In the
next sections a scenario generation approach is presented and the stability
of the approach is evaluated

4.3.1 Method

The information structure of the bidding problem is illustrated in Figure 4.4.
Initial bidding decisions are made in the first step, and subsequent recourse
production decisions are made in the second step based on the realization of
the market prices in the day-ahead market. The modeling effort in chapter 4
resulted in an ARMA model that can be used for price forecasting. This
stochastic process was used to forecast prices for the week starting 2nd of
October 2013 in the German-Austrian electricity market. As the error terms
of the ARMA model were not normally distributed, the simulations were
based on the residuals from the price model. These residuals were grouped
into independent samples for each hour and when predictions were made,
random draws from these samples were performed.

Figure 4.4: The information structure of the bidding problem

4.3.2 Scenario reduction and convergence

To be able to sufficiently describe the stochastic variables and at the same
time obtain a workable set of scenarios, a large set of scenarios were gen-
erated and then reduced through a scenario reduction algorithm. 5000 sce-
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narios were generated and the scenario reduction algorithm proposed in [12]
(SCENRED 2.1) based on forward selection was used to reduce this set of
scenarios. The algorithm is designed to reduce the set while minimizing
the probability distance between the distributions. The relative probability
distance increases as the set of 5000 scenarios is reduced to smaller sets of
scenarios (Figure 4.5). An overview of scenario reduction and the forward
selection algorithm is given in [8]. In the analysis of the reduced set of sce-
narios it was found that the algorithm modified the tails of the distribution
by reducing the number of extreme values.
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Figure 4.5: Relative probability distance in scenario reduction of 5000 sce-
narios
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4.3.3 Stability

The stability of the scenario generation method is the ability of the method
to produce scenario trees that give similar optimal solutions [15]. To be
able to evaluate the stability of the proposed scenario generation method
the convergence of the model to the scenarios was analyzed similar to [22].
Figure 4.6 shows the convergence of the scenario generation method.
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Figure 4.6: Stability of the price model with increasing number of scenarios
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Chapter 5

Case study

The differences between price-dependent bidding and price-independent bid-
ding is analyzed in three cases. The first case uses scenarios generated from
the price- proposed in 4 as input into the optimization models. In the second
case bids are generated using historical data from EPEX SPOT as input. To
see the impact of higher average prices and more unites committed, the third
case shifts the historical data up by 15 EUR/MWh. It has been the hypoth-
esis of the authors that the value of price-dependent bidding should increase
with increased flexibility as the price-dependent bids are flexible where the
price-independent bids are not. In all three cases an out-of-sample analy-
sis was performed to compare the two bidding strategies. In order to better
evaluate the bidding curves in each case, the solution of the unit commitment
problem is presented first. In this section general considerations are made
regarding the solution of the unit commitment problem for each scenario.

Throughout the case study the planning horizon is set to one week (168
hours) and the bidding horizon is set to 24 hours. In all cases the bid is
for Wednesday the 2 October 2013 (chapter 4). The optimization model de-
scribed in chapter 3 requires predefined price points for the price-dependent
model. These points were selected on the basis of the input scenarios using
the same methodology as in [18]. The number of price points were selected
to ensure stable results in all cases.
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5.1 Portfolio of generators

In the case studies the analysis is based on a portfolio of generators with
characteristics as in Table 1. These are the same generators used in the
case study in [27]. They consist of two lignite-based units, two combined
cycle gas turbines (CCGT) and one open cycle gas turbine (OCGT). The
different cost structure and technical constraints in the portfolio of gener-
ators makes a good starting point for the analysis of price-dependent and
price-independent bidding.

Table 5.1: Generator costs [27]
Unit Type MargCost Run Time Start Cost [EUR]

[EUR/MWh] Cost[EUR/h] Hot Warm Cold
1 lignite 29 1894 46600 64007 87217
2 lignite 31 1644 58165 79892 108862
3 CCGT 55 3367 16012 24832 42472
4 CCGT 55 3839 19766 30476 51896
5 OCGT 85 965 2568 2568 2568

Table 5.2: Generator thermal properties [27]

Unit Power: [MW] MaxRamp Time from stop to: Minimum time: [h]
Max Min [MW/min] Warm [h] Cold [h] Start-Stop Stop-Start

1 274 160 2 5 12 8 4
2 342 180 2 5 12 8 4
3 378 200 24 5 12 4 3
4 476 250 24 5 12 4 3
5 152 63 8 5 12 1 1

5.2 Case 1: Forecasted data

The optimization model is run using 75 scenarios generated from the price
model. This number of scenarios was shown in chapter 3 to ensure stability
and convergence of the optimization model. The variability of the prices
can be seen to follow a band around the forecasted price. This is similar to
[22]. The sampling approach discussed in chapter 4 resulted in a number of
time steps where price changes included extreme values, this can be seen in
Figure 5.1.
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Figure 5.1: 75 scenarios generated from the price model used as input in the
case 1

5.2.1 Unit commitment problem

The low price level in the German-Austrian market leaves the higher cost
generators, unit 3-5, inactive as the price level cannot justify the operation
of these generators. Thus the unit commitment problem reduces to the com-
mitment problem of two generators, unit 1 and unit 2. In the solution both
units are committed throughout the whole bidding period, for every scenario
in both the price-dependent model and the price-independent model. In one
scenario the price-dependent model is able to utilize the flexibility in unit 5
to exploit a price peak as illustrated in Figure 5.2.

5.2.2 Bidding strategies

The bidding curves from the price-dependent model (Figure5.4 ) reflects
the low variation in the prices from the price model. In a number of time
steps only a single bid is made, and it is only for time steps with extreme
values that bidding decisions are made for a larger variation of prices. The
expectation of low prices in the early hours of the 2nd of October results
in the minimum capacity bid for unit 1 and unit 2 in the price-independent
model (Figure 5.3).
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Figure 5.2: Example of production dispatch in the price-dependent model
for one specific scenario where a price peak is exploited
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Figure 5.3: Bidding curves from the price-independent model in case 1
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Figure 5.4: Bidding curves from the price-dependent model in case 1

5.2.3 Value of price-dependent bidding
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Figure 5.5: 7 consecutive weeks of price data starting from 2nd of October
2013 used for out-of-sample analysis

The bidding curves generated from the two optimization models weere tested
in an out-of-sample test. Seven consecutive weeks of data from EPEX SPOT
starting October 2nd (Figure 5.5) were used as input. The test was per-
formed by fixing the bidding decisions, and running the optimization models
with the new scenario set. Table 5.3 and Table 5.4 shows the result from this
analysis. The tables illustrate the value of price-dependent bidding where
the price-dependent bids performs better than the price-independent bids
for all scenarios.
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Table 5.3: Profit, VPDB and RVPDB with seven out-of-sample scenarios
for fixed bidding decisions from both optimization models, with penalty of
0.5 EUR/MWh for the use of the balancing market

Scenario Price-dep. bidding Price-indep. bidding VPDB RVPBD

1 27233,4 26746,3 487,1 1,82 %
2 250750 250650 100 0.04 %
3 214453 214283 170 0.08 %
4 -6627.24 -7131 503.76 7.06 %
5 -6727.06 -7131 403.94 5.66 %
6 -30379 -30871 492 1.59 %
7 173380 173284 96 0.06 %

Mean 88869.01 88547.2 321,83 2 %

Table 5.4: Profit, VPDB and RVPDB with seven out-of-sample scenarios
for fixed bidding decisions from both optimization models, with penalty of
10 EUR/MWh for the use of the balancing market

Scenario Price-dep. bidding Price-indep. bidding VPDB RVPBD

1 24837 22418 2419 10.79 %
2 250485 250249 236 0.09 %
3 214411 214186 225 0.11 %
4 -26357.5 -34538.3 8180,8 23.69 %
5 47114,1 44579.1 2535 5.69 %
6 -33089,9 -41717.1 8627,2 20.68 %
7 173244 172962 282 0.16 %

Mean 92949.1 89734.1 3215 8.74 %

5.3 Case 2: Historical data

The low variation in prices from the price model resulted in bidding curves
that did not accurately reflect the high volatility in the German-Austrian
market. In this section, historical data is used to be able to generate bids
that span a larger variation of prices. The new bids were generated using
38 weeks of price data from EPEX SPOT (Figure 5.6).
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Figure 5.6: 38 weeks of historical data from EPEX SPOT for the German-
Austrian market used as input in case 2 and in a shifted variant in case 3.
The weeks start on a Wednesday.

5.3.1 Unit commitment problem

To find solutions in reasonable time, restrictions (3.19) and (3.20) in chapter
3 were relaxed to simplify the problem. The resulting problem corresponds
to the general thermal unit commitment with one start-up type instead of
the extended formulation proposed by [27]. The price level in the mar-
ket is still too low to activate more of the portfolio. For both the price-
dependent and the price-independent model only unit 1 and unit 2 is com-
mitted. However, the increased price variation leaves the price-dependent
unit commitment significantly different from the price-independent as the
price-dependent model can exploit the flexibility in price-dependent bids.
The price-dependent model turns off generator 1 for a number of scenarios
in the hours between 20-24 and the early hours of 1-3 (Figure 5.7), and
turn of both generators in one scenario (Figure 5.8). The price-independent
model still leaves both generators committed throughout the whole bidding
period.
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Figure 5.7: Example of production dispatch with price-dependent bidding
for one specific scenario
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Figure 5.8: Example of production dispatch with price-dependent bidding
for one specific scenario

5.3.2 Bidding strategies

The bidding curves from the price-dependent model shows a more varied
structure where bids are made for a much larger variation of prices for all
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time steps. These bids should therefore be more robust against unexpected
price scenarios. The bidding curves are reflective of the unit commitment
decisions where units 1 and 2 are turned off in a number of scenarios. These
unit commitment decisions corresponds with zero bids for a number of price
points and times steps as seen in Figure 5.10. The variation of bids however
is still all within the production range of unit 1 and 2 as the price level is
still too low to activate more of the portfolio.
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Figure 5.9: Bidding curves from the price-independent model in case 2
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Figure 5.10: Bidding curves from the price-dependent model in case 2
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5.3.3 Value of price-dependent bidding

The bids generated were tested against the same seven weeks used in case
1 in an out-of-sample test. The results in Table 5.5 and Table ?? show that
when bids are generated for a large range of prices in all time steps the
price-dependent bids outperform the price-independent model significantly,
and increasing with the penalty level of the balancing market.

Table 5.5: Profit, VPDB and RVPDB with seven out-of-sample scenarios
for fixed bidding decisions from both optimization models, with penalty of
0.5 EUR/MWh for the use of the balancing market

Scenario Price-dep. bidding Price-indep. bidding VPDB RVPBD

1 244326 244257 69 0.03 %
2 178385 178239 146 0.08 %
3 -6349.61 -6623 273,39 4.13 %
4 -5981.94 -6623 641,06 9.68 %
5 42119.4 41833.5 285,9 0.68 %
6 198635 198574 61 0.03 %
7 246137 245460 677 0.28 %

Mean 128181.6 127873.9 307.6 2.13 %

Table 5.6: Profit, VPDB and RVPDB with seven out-of-sample scenarios
for fixed bidding decisions from both optimization models, with penalty of
10 EUR/MWh for the use of the balancing market

Scenario Price-dep. bidding Price-indep. bidding VPDB RVPBD

1 243421 243620 -199 -0.08 %
2 177496 176539 957 0.54 %
3 39187.8 35045,2 4142,6 11.82 %
4 -4030.29 -10345.2 6314.91 61.04 %
5 41230.5 39263 1967.5 5.01 %
6 198188 198404 -216 -0.11 %
7 245489 238424 7065 2.96 %

Mean 134426.0 131564.3 2861.7 11.60 %
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5.4 Case 3: Historical data with artificial high
prices

A market with artificial high prices was designed to be able to activate more
of the generator portfolio and shed more light on the value of price-dependent
bidding. As more generators are committed, the power producer will be able
to utilize a larger ramping range and increased flexibility in production. To
build on the results from case 2, the prices in the scenarios was shifted by
an amount of 15 EUR/MWh to achieve a higher mean electricity price and
make the prospects of using the higher cost generators more attractive.

5.4.1 Unit commitment problem

As more generators can potentially start and stop, this problem is exten-
sively more complex than the two problems previously described. It was
not possible to solve the optimization model in sufficient time. Running the
proposed optimization model in section 3 produced 12 solution. By includ-
ing the two cuts specified below (5.1) (5.2) it was possible to obtain a better
bound with a mip-gap < 1%. The cuts specify that units 3 and 4 will only
be used if units 1 and 2 are already committed. This is given by the cost
structure of the portfolio and was supported in the results from the two
previous cases. The subsequent section is based on the best solution found
in the price-dependent optimization model and the optimal solution from
the price-independent model.

2 ∗ us
3t = us

1t + us
2t s ∈ S, t ∈ T (5.1)

2 ∗ us
4t = us

1t + us
2t s ∈ S, t ∈ T (5.2)

Generators 1 and 2 are always on both in the price-dependent and the price-
independent model for all scenarios and time steps. Figure 5.12 shows that
the price-dependent model activates the whole portfolio, starting and shut-
ting down both generator 4 and generator 5. In Figure 5.11 the power
producer is able to use the ramping range for all the generators to reduce
production in time step 9 and satisfy the minimum run time restrictions.

5.4.2 Bidding strategies

The bidding strategies are shown in Figure 5.13 and Figure 5.14. The greater
variation in the price-dependent bidding curves reflects the increased flexi-
bility in the portfolio. This increased flexibility should ultimately make the
price-dependent bids more valuable than in the previous case. The high
volatility in prices leaves the price-independent model unable to justify the
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Figure 5.11: Example of production dispatch with price-dependent bidding
for one specific scenario

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Generator 5 Generator 4 Generator 3 Generator 2 Generator 1

Hour

P
ow

er
 [M

W
]

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00

Figure 5.12: Example of production dispatch with price-dependent bidding
for one specific scenario
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commitment of more than unit 1 and unit 2. For these two units the maxi-
mum capacity bid is submitted for all time steps.
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Figure 5.13: Bidding curves from the price-independent model in case 3
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Figure 5.14: Bidding curves from the price-dependent model in case 3
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5.4.3 Value of price-dependent bidding

The bids generated were tested through an out-of sample analysis using the
same seven weeks as previously, but shifting the prices accordingly. The
results did not confirm the assumption that the increased flexibility would
increase the value of price-dependent bidding. As [17] has stated, price-
dependent bids that are based on a number of committed units might leave
the power producer unable to satisfy the market commitment or be left with
an unprofitable market commitment. This results in the extensive use of the
balancing market to obtain feasible solutions, or reduce the loss of subop-
timal unit commitments. The results from the simulations show that the
price-dependent model uses the balancing market to a much larger extent
than the price-independent model. In this high priced market, the price-
independent model is also able to reduce the losses of price-independent bid-
ding by selling electricity in the balancing market for prices above marginal
cost. Thus, the cost structure of this portfolio and the presence of a liquid
balancing market reduces the differences between the two bidding strategies
and makes the price-independent bids a preferable choice as seen in Table
5.7 and Table 5.8.

Table 5.7: Profit, VPDB and RVPDB with seven out-of-sample scenarios
for fixed bidding decisions from both optimization models, with penalty of
0.5 EUR/MWh for the use of the balancing market

Scenario Price-dep. bidding Price-indep. bidding VPDB RVPBD

1 610501 611692 -1191 -0.19 %
2 431365 432230 -865 -0.20 %
3 221501 224080 -2579 -1.15 %
4 140123 140613 -490 -0.35 %
5 253196 254726 -1530 -0.60 %
6 494980 496626 -1646 -0.33 %
7 492085 493231 -1146 -0.23 %

Mean 377678.7 379028.3 -1349.6 -.44 %
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Table 5.8: Profit, VPDB and RVPDB with seven out-of-sample scenarios
for fixed bidding decisions from both optimization models, with penalty of
10 EUR/MWh for the use of the balancing market

Scenario Price-dep. bidding Price-indep. bidding VPDB RVPBD

1 474194 496166 -21972 -4.43 %
2 373763 388205 -14442 -3.72 %
3 176931 224080 -47149 -21.04 %
4 118015 229711 -111696 -48.62 %
5 225786 254726 -28940 -11.36 %
6 385685 418607 -32922 -7.86 %
7 438890 468798 -29908 -6.38 %

Mean 313323.4 354327.6 -41004.1 -14.77 %
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Chapter 6

Discussion

It is the flexibility in providing multiple bids for each time step that differ-
entiates the price-dependent and price-independent bidding strategies. In
a world of perfect information, price-dependent bids would always outper-
form price-independent bids by having the flexibility of specifying bids for
multiple price outcomes. The price-dependent bids relax the requirement
that only one bid can be made for each time step as is the case with price-
independent bids. However, when the assumption of perfect information
does not hold, these results are not necessarily valid since thermal produc-
tion dispatch is coupled in time. Unforeseen market events might leave the
optimal unit commitment unprofitable or infeasible. The advantage of price-
independent bidding in an uncertain world is the certainty that regardless
of market outcomes the market commitment will always result in a feasible
dispatch.

The object of this report has been to analyze the trade-off between flexible
solutions and increased market risk by analyzing the two bidding strategies
through three case studies. In these cases the flexibility in the problem
was increased and the results from the two bidding strategies reviewed.
The findings from these cases show that in a high-volatility market flexible
bidding decisions are valuable as the power producer is able to reduce losses
in the event of unexpected price drops and increase profits in the event of
unexpected price peaks. However, they only contribute where the capacity of
the system is sufficiently large. This is the situation in case 2 where bids are
made on the basis of the commitment of two units. As most of the bids are
based on the commitment of these two units, the power producer does not
face the risk of a market commitment that would violate ramping restrictions
and minimum run time and minimum down time restrictions. Thus, the
power producer is able to obtain flexibility without introducing market risk.
In case 3 a larger part of the portfolio of generators were activated and
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bids were generated based on a much larger variety of committed units.
The results being, a potentially higher reward in flexible bidding decisions,
but a larger risk in unwanted market commitments. The results from the
case study show that in these circumstances the value of price-independent
bidding is greater than the value of price-dependent bidding.

It is not just the market volatility and flexibility in the problem that influ-
ences the value of price-dependent bidding. The quality and accuracy of the
price predictions and the scenario generation method ultimately determine
the value of price-dependent bids. The low variation in the prices from the
ARMA model generated bids that did not sufficiently take into account the
variation in the market. Hence, these bids produced lower returns in the
spot marked compared to bids that were generated using historical data.
ARMA models have been shown to poorly predict prices in markets of high
volatility [5]. Even with a decent price forecasting tool it might be necessary
to include highly unlikely extreme scenarios to obtain bidding decisions for
these events. It is in these extreme scenarios that price-dependent bidding
has the most value (see Table 5.6).

In this report, the balancing market was modeled as a penalty function
where both sales and purchases were penalized. This was done to avoid
planned imbalances as part of the bidding decisions. The penalty was set as
a fixed deviation from the realized market price, and the bidding decisions
sensitivity to this penalty was analyzed. This is a simplified formulation of
the use of a balancing market. In [22] both the spot market, the balanc-
ing market and the reserve market is explicitly described in a multistage
problem. These problem extensions could have provided additional insights
into the optimal bidding strategies. The dependency between the balancing
market and the optimal bidding strategies is not a simple linear relation.
As the penalty increases the optimal bidding strategy may change as seen
in Tables 5.5 and 5.6. The influence of the balancing market might signif-
icantly impact the optimal bidding decisions as it is the access to a liquid
balancing market that ensures the fulfillment of the market commitments.

The characteristics of the generators will influence the flexibility and thus
the value of price-dependent bidding. The case-studies show that units
with long up-time and down-time restrictions are likely to run constantly.
Flexible units can have a more diverse dispatch pattern given that the prices
are high enough to justify their commitment. For power producers with a
high proportion of flexible units price-dependent bidding might be more
relevant.
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Chapter 7

Conclusion

The bidding problem is complex and a variety of factors influence the opti-
mal choice of bidding strategies. The nature of the balancing market, the
quality of the forecasting tool and the market structure has been identified
as factors that affect the optimal bidding strategy. Without an appropri-
ate price forecasting tool the value of price-dependent bidding is reduced
as the bids are constructed based on inadequate or incomplete information.
This leaves price-dependent bids vulnerable to market events the forecasting
tool is not able to predict. The implication is that thermal power producer
should only consider price-dependent bidding when they are confident in
their forecasting.

Using historical price data it was possible to generate price-dependent bids
that more accurately incorporate the price variation. These bids outperform
the price-independent bids as the power producer is able to reduce losses in
low price scenarios and increase profits in high price scenarios. The drop
in mean electricity prices in the German-Austrian market has increased the
chances of prices falling below marginal costs of generators and low price
scenarios might make it optimal to turn off generators rather than leave
them running through the whole bidding period. Thermal power producers
trading on EPEX SPOT might reduce losses and increase profits by incorpo-
rating some of the ideas presented in this paper to construct price-dependent
bids.

The value of price-dependent bidding was assumed to increase with in-
creased flexibility in production. However, with a larger number of units
committed the risk of infeasibility increases significantly. This is because a
high variation in prices might result in large differences in production dis-
patch from one hour to the next. To compensate for infeasible solutions
the power produces use the balancing market extensively. The results indi-
cate that the risk of infeasible solutions outweigh the potential gains from
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price-dependent bidding. In these circumstances power producers should
utilize price-independent bidding strategies to obtain the highest profits in
the spot-market.

Through three case studies the authors have quantified and examined the
value of price-dependent and price-independent bidding in the spot market.
Both price-dependent and price-independent strategies have been discussed
in the literature, but the two strategies have not been compared directly in
case studies. The findings of this project indicate that there is still reason
to believe that both strategies are relevant for thermal power producers.
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[18] Nils Löhndorf, David Wozabal, and Stefan Minner. Optimizing trading
decisions for hydro storage systems using approximate dual dynamic
programming. Operations Research, 61(4):810–823, 2013.
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