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Abstract

In this paper, an optimization-based model of the Nordic power market is de-
veloped. The objective of the proposed method is to minimize the total gener-
ation cost, and the model is formulated as a deterministic linear program. The
dual values for the power balance constraints can be seen as the power price,
and these power prices are forecasted in each of the Nordic countries for a two-
year horizon. The model successfully allocates the different generating units
and transmission lines according to the demand, minimizing the total system
cost during the planning horizon.

An important issue discussed in this paper is how to handle reservoirs in a
long-term perspective for a hydrothermal system. In the proposed method, the
reservoirs are aggregated in the respective countries in addition to the inflows
being treated as deterministic parameters. This is a modeling oversimplifica-
tion, and the results indicate that the power prices are very sensitive to a change
in inflow-scenario. Other approaches to long-term hydrothermal scheduling
where there is stochasticity involved are studied, and it is suggested that such
an approach will better suit reality.
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1 Introduction

Operations research (OR) is currently used actively in power generation schedul-
ing, and it is important that these tools are continuously improved. As comput-
ers are getting better and power systems are expanding, there is much to gain by
using advanced optimization software to aid the decision-making process. The
main focus of this paper is long-term hydrothermal scheduling (LTHS), with an
emphasis on the treatment of hydropower. The objective of the LTHS is to de-
termine a generation schedule which minimizes the expected generation costs
along the planning period. Because there is a limited amount of water available
stored in reservoirs, the optimal operation is very complex. A system with a
given load and an endogenous price is considered, and the aim is to capture
the main properties of electricity prices through the model. While the Nordic
power system is the target area for investigation in this paper, the results are
universally applicable, especially in other hydro-dominated systems.

1.1 The power system

In order to better understand the scheduling problem, it is important to grasp
how a hydrothermal power system works. Electricity is generated and con-
sumed continuously and simultaneously, and the role of the transmission sys-
tem is to connect the location where the power is generated to substations lo-
cated near consumers.

1.1.1 Supply

There are many forms of electricity generation, and they can be categorized into
nuclear, thermal and renewable sources. Thermal sources run on fossil fuels
such as coal and gas, and CO2 is released in the generation process. Renewable
sources include hydro-, solar-, wind- and wave-power, and is characterized by
that the sources for it will never run out. These energy sources build the supply
curve according to their marginal costs, and in optimal system operation, the
demand is always covered with the cheapest possible combination of genera-
tors.
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1.1.2 Demand

Demand for power fluctuates during each 24-hour period and during each year.
Since electricity is used for heating in most Scandinavian homes, the demand
for electricity is temperature dependent, and at its highest during the winter
months. The demand can be predicted in the short-term with a very high ac-
curacy according to daily load curves and forecasts. In the long-term however,
there is a greater uncertainty about the load, and the load is usually divided
into elastic and inelastic demand.

1.1.3 Deregulation

A trend in power markets show a move from regulated markets toward deregu-
lated markets. In a deregulated market there is a separation between the poten-
tially competitive functions of generation and retail from the natural monopoly
functions of transmission and distribution. Introduction of a deregulated mar-
ket in the Nordics came in the beginning of the 90s, and there is now com-
petition between the different power producers. The objective of the power
production scheduling has therefore gone from a cost minimization to a profit
maximization objective. In a liberalized market there is no effect of these differ-
ent objectives, because they result in the same production plans. A liberalized
market requires that a large number of buyers can buy from a large number of
suppliers or producers. Nord Pool is the Nordic power exchange and selects the
bids so that welfare is maximized (Wangensteen, 2007). Figure 1 shows a map
of the Nordic region with the physical transmission lines and the price areas
used by Nord Pool.

1.2 Generation planning

The task of planning the power generation is complicated by the presence of
uncertainties. In the future very little is known for sure, and there is uncer-
tainty associated with many factors, the most important being; inflows, power
prices, consumption, fuel costs and CO2 prices. In Norway most of the elec-
tricity generation comes from hydropower, but because of the connections to
the continent, a hydrothermal system must be modeled. Seen from a socio-
economic point of view, the objective of optimal operation of such a system
is to determine a strategy which, for each stage in the planning period, given
the system state, produces generation targets for each plant that will minimize
the expected value of generation costs. These costs consists of fuel costs for
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Figure 1: Picture of the Nordic power market with connections to Europe
(Source: Nord Pool)

thermal units, purchase costs from neighboring systems, plus the penalties for
failure of load supply. Everything ranging from generation, transmission and
reservoir levels must be decided, and the ideal solution would be one single op-
timization process, taking into account everything and resulting in the optimal
solution. However, due to the span in space and time, this is impossible to do
with the required level of detail. The result is that the scheduling is divided into
three stages; long-, medium-, and short-term.

From the long-term scheduling, a price forecast for the next 1-5 years is found.
Although the time horizon can be much longer, up to 20-30 years, the definition
of LTHS in this report is 1-5 years. The inputs into the model is everything from
generation capacities in the different areas to demand forecasts. The areas used
can be the same as the Nord Pool areas, or they could be even more detailed
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and based on river systems and bottlenecks. The main goal of the long-term
scheduling is to find out how the water resource should be used during the
whole period, and for hydro-producers this serves as strategic management.
This is important to find out since there is only a limited amount of water, and
this amount available is not known exactly due to uncertain inflows. Examples
of models used for this purpose includes ECON BID and the EMPS model. In
these models, the Nordic system is divided into a number of areas, and the
reservoirs in each area is aggregated. The uncertainty of inflow is taken into
account.

The seasonal scheduling serves as a link between the long-term and the short-
term scheduling. The time horizon ranges from 3 - 18 months, and the model
uses a simplified representation of uncertainty, and can even be deterministic.
The main goal is to optimize the use of water within the period, while the end
of the modeling period values must match with the corresponding long-term
values. These values are can be either water values or reservoir levels, depend-
ing on how the models are coupled. The seasonal scheduling includes a more
detailed representation of the system, and water values for the individual reser-
voirs are calculated. Water values are explained further in Section 3.2.1

In the short-term scheduling, a deterministic model is used where inflow and
and prices are assumed known. A detailed description of the system is used,
and a unit commitment problem is solved where the number and type of gen-
erators in use are decided.

1.3 Hydropower as an energy source

The combination of very high mountains and large plains in the Nordics make
perfect conditions for reservoir-building. Collecting millions of tons of water
in huge dams provides a means for controlling both the timing and the scale of
hydro-generation. Many of the large reservoirs in Norway are situated in places
where precipitation falls as snow during the winter, and this means low inflow
into the reservoirs during winter. A snow reservoir builds up in the mountains,
and when this starts to melt in spring, the inflow into the reservoirs is high. The
melting season can continue well into the summer months.

Reservoirs provide a means for storing energy, and from an operations research
point of view there are many decisions that must be made so that the reservoir
is used in an optimal way depending on what goals one is pursuing. Reservoirs
can be modeled mathematically and a set of assumptions, constraints, objectives
and decision variables are specified. There are many factors which complicate
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the operational decisions of a hydro-plant owner, and the model should strive
to include these factors. The most important complications are given in this
section.

For hydro plants, a discharge capacity in m3/s and an energy equivalent e in
kWh/m3 is usually specified (Doorman, 2009):

e =
1

3.6× 106 ·γgHη [kWh/m3] (1.1)

where

γ : water density [kg/m3]
g : gravity acceleration [m/s2]
H : plant head [m]
η : plant efficiency

In reality, the efficiency of the plant η will depend on the discharge and the
plant head. This results in a nonlinear relation between turbine discharge and
power output. In the EMPS model, this is represented by a piecewise linear
curve. In other models, a linear relationship is assumed in order to simplify
the model. When reservoirs are aggregated and one large reservoir is modeled,
assumptions of constant efficiency is usually accepted. However in short-term
scheduling, this nonlinearity has a larger effect due to larger variations in head,
and should be taken into account for the plant efficiency η.

Reservoirs are usually hydraulically coupled with other reservoirs, and large
river systems should be modeled. If aggregation is used in the model, disaggre-
gation methods are applied in order to get a feasible solution. Heuristics can be
used for this purpose, although optimality can not be guaranteed.

1.4 Structure of this report

In the next section relevant literature is presented. Section 3 gives an overview
of the approaches developed for long-term hydrothermal scheduling. The meth-
ods presented are deterministic and stochastic, and the strengths and weak-
nesses of each mettod is discussed. In Section 4, an example of a deterministic
linear program is described. This model and the results are then analyzed and
evaluated in Section 5, and the final conclusions and future work are given in
Section 6.
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2 Related work

In this section, related work regarding reservoir handling and hydrothermal
scheduling is reviewed. Yeh (1985) classified the methods available for opti-
mal reservoir handling at the time into four categories; linear programming
(LP), dynamic programming, nonlinear optimization and simulation. Several
of these methods can be combined in different ways, but few models deal si-
multaneously with all the aspects of the scheduling problem such as multiple
periods, multiple reservoirs and stochastic inflows.

2.1 The development of stochastic solution methods

One common simplification is to use a deterministic model by replacing stochas-
tic components by their expected values as in Soares and Carneiro (1991). It was
implied early on by Massé (1946), and later argued by Gjelsvik (1982), that de-
terministic models are not well suited for the planning problem as they are not
flexible enough. Stochastic dynamic programming and dynamic programming
has been used in the scheduling problem for a long time, an early reference be-
ing Buras (1963). Yakowitz (1982) reviews the evolution of these models, and
of these papers Turgeon (1980) is of particular importance. It aims to develop
a method that deals with multi-reservoir systems by breaking up the original
problem into a series of subproblems that are solved by dynamic programing.
Egeland et al. (1982) is another example where decomposition methods are used
to solve the multi-reservoir problem. In Gjelsvik et al. (1992) some stochastic
methods are reviewed together with some important applications. A more re-
cent review of dynamic programming applied to reservoir operation is given
in Nandalal and Bogárdi (2007). In Wolfgang et al. (2009) an application of
stochastic dynamic programming called the water value method is explained
in relation to the EMPS model. The reservoirs are aggregated and heuristics
are used in the de-aggregation procedure. Early investigations into the wa-
ter value approach can be found in Stage and Larsson (1961) and in Lindqvist
(1962).

2.2 Dimensionality reduction approaches

Because the dimensionality of stochastic dynamic programming can quickly get
very large due to the curse of dimensionality, it has limited use for real-world
problems. Birge (1985) develops decomposition and partitioning methods that
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are able to handle multidimensional problems, and these methods are further
developed and applied to the generation scheduling problem by Pereira and
Pinto (1985). This method is called stochastic dynamic dual programming, and
was successfully applied to a 37-reservoir system, although larger systems have
been solved more recently. Ferrero et al. (1998) aims at reducing the dimen-
sionality of dynamic programming by limiting the time period to a two-stage
algorithm that can handle multiple reservoirs.

2.3 Methods for the deregulated market

Yu et al. (1998) proposes a method that maximizes profit for hydroelectric plants
in a deregulated system. The method breaks down the long-term problem into
monthly based mid-term problems without using an exact cost function. Mar-
ket power of producers in a deregulated market is discussed in Scott and Read
(1996), where a multistage programming algorithm is employed called the dual
dynamic programming. Their focus is in the New Zealand market where there
are relative few suppliers, and each sub-problem is solved using a Cournot
duopoly model. An evaluation of the efficiency of the Nordic market is per-
formed by Halseth (1999), where a special case of supply curve equilibrium is
used to describe possible strategies for suppliers.
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3 Approaches to reservoir management

Reservoirs used for power generation should be managed in such a way that
is optimal, and as discussed in the introduction, an optimal solution is one that
minimizes operational costs of generation. Each single company must decide
on how much water should be stored and how much should be released for
generation in all periods. There are many factors that makes this a very difficult
task (Soares and Carneiro, 1991):

• Long horizon of analysis (usually 2-3 years, but in reality to infinity)

• Stochastic nature of water inflows and load

• Operational inter-dependence between hydro plants in the same cascade

• Nonlinearity of thermal costs and hydro generation function.

In order to make the LTHS problem easier to solve, many simplifications can
be done. Deterministic models assume that future inflows and demands are
known along the planning period. Inflows can for example be replaced by
their expected values. Linear Programming (LP) models linearize the nonlin-
ear cost functions and hydro generation functions. In LP-models, the reservoirs
are measured in MWh, and each unit of water has an energy equivalent value.
Constant marginal cost is assumed for the thermal generators. Another simplifi-
cation that is done in order to avoid the hydraulic coupling between reservoirs,
is to aggregate the reservoirs into one large reservoir in each area. A simple
deterministic, one-area, LP-model is given here for reference:

minW = ∑
t∈T

[
∑

g∈G
Cgtxgt

]
subject to:

∑
g∈G

xigt = Dt ∀t ∈ T (3.1)

yt+1 − yt + xhydro,t ≤ It ∀t ∈ T (3.2)

yMin ≤ yt ≤ yMax ∀t ∈ T (3.3)

∑
g∈G

xgt ≤ GCg ∀g ∈ G, ∀t ∈ T (3.4)
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Here, t is the index for the time period, and T is the set of all time periods.
The set of generators in the area is denoted G with index g. Cgt is the cost
associated with generation, and xgt gives the generation. The objective is to
minimize costs in all periods. Constraint (3.1) states that supply must equal
demand Dt in all time periods, also known as the power balance constraint.
(3.2) gives the relationship of the reservoir levels yt, the generation, and inflow
It, this is known as the water balance constraint. Constraints (3.3) and (3.4) gives
the reservoir level and generation capacities.

Obviously this model is a major simplification of reality. However it shows
some of the challenges associated with LTHS, and this will be taken as a point of
origin when explaining different solution procedures, and also when expanding
the model into a Nordic model in Section 4.

3.1 Dynamic programming

Dynamic programming (DP) is a solution procedure that can be used to solve
many structured optimization problems (Lundgren et al., 2010). It follows from
Bellmans Principle of Optimality:

An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first deci-
sion. (Bellman, 1957)

For deterministic problems, this can be put into the following equation form
called the Bellman backward relationship:

Vt(St) = min
xt

{
Ct(St, xt) + Vt+1(St+1)

}
(3.5)

where St+1 is the state we transition into if we are currently in state St and take
action xt. Vt+1 is the accumulated suboptimal costs for all the stages following
t + 1, and Ct(St, xt) is the cost of the decision xt given state St at stage t. Vt+1 is
also referred to as the future cost function or the cost-to-go function.

The LTHS problem separates easily into time stages, where the decision taken
in one stage affects the decisions you can make in future stages. DP is therefore
very well suited for solving reservoir operational problems. Another advan-
tage with DP is that it handles nonlinearities in both constraints and objective
function, and as discussed before, the LTHS is nonlinear of nature.
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The elements of dynamic programming, together with the implications for op-
timal reservoir handling, are as follows (Powell, 2007):

The state variable This captures all the information we need to make a
decision, as well as the information we need to describe how the system
evolves over time. In our case the state variable is the reservoir level,
St = yt. In the multiple reservoir case this will be a vector containing all
the reservoir levels, St = (y1t, ..., ynt), where n is the number of
reservoirs.

The decision variable Decisions represent how we control the process. In the
case of LTHS the decision in each stage is how much water to release
from the reservoir for power generation, xhydro,t. It also involves deciding
how much thermal power to produce.

Exogenous information This is data that first becomes known each time
period, which in our case is the inflow into each reservoir, It.

The transition function This function determines how the system evolves
from the state St to the state St+1 given the decisions that was made at
time t and the new information that arrived between t and t + 1. This is
the physical relationship between the reservoir level in t + 1 and t, which
is equation (3.2) above.

The contribution function This determines the costs incurred or the rewards
received during each time interval, ie. the cost of producing x amount of
energy in period t.

The objective function Here we formally state the problem of minimizing the
cost over a specified time period. The minimization is subjected to
constraints in storage volume and release.

The solution process starts at the final stage T where the cost VT(ST) is sup-
posed to be known. In this way, it is possible to work backwards and find the
optimal decisions at every stage and state. Decision tables providing optimal
water discharge and operational costs for each possible discrete state of the sys-
tem are given by this procedure. By using Bellman’s principle and working
backwards in time using the fact that the optimal decisions are known in the
future states, the number of decision variables are radically reduced.

In DP, the states must be discretized. That means that at each stage the reser-
voir levels are evaluated across a range of possible levels. The problem becomes
more realistic the more reservoir levels one operates with. However the prob-
lem also becomes very large, especially when the state variable is a vector (in
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the multiple-reservoir case). This is known as the "curse of dimensionality" and
prohibits large problems from being solved using DP.

3.2 Stochastic dynamic programming

Uncertainty is an important factor in reservoir management. There is uncer-
tainty in all the factors discussed in Section 1.2, but our focus here will be on
stochastic nature of inflow. In Stochastic dynamic programming (SDP), the
present decision is optimized with this uncertainty taken into account. A prob-
ability distribution of possible inflow scenarios is considered in each stage, and
a multi-stage stochastic optimization is performed for each possible outcome.
The SDP optimization process derives the optimal operating strategy from Bell-
man’s backward recursive relationship (given here for a single reservoir optimal
operation) (Nandalal and Bogárdi, 2007):

Vt(St) = min
xt

{
Ct(St, xt) + E{Vt+1(St+1)}

}
(3.6)

The objective is to minimize the expected sum of costs over the whole time
period. The difference between SDP and DP is that SDP takes stochasticity into
account.

3.2.1 The water value method

The water value method is a special version of SDP, and can be used to solve
the LTHS problem (Wolfgang et al., 2009). The more water that is used for gen-
eration in the present period reduces the availability of water in the future. The
value of using water in the present period must therefore be balanced against
the possibility of using that water in the future. The value of the water is a
function of future development depending on load, inflow and market prices.
The "water value", which is actually the expected marginal value of the energy
stored in the reservoir, is calculated at each decision stage. These are calculated
recursively, starting at the end of the period. Some starting values for the last
time period, T, must be used in order to be able to calculate the water values in
time period T − 1. These are usually estimated. The more water the reservoir
has, the less the value of the water will be. The water values at stage T − 1 is
then found by finding the optimal operation of the reservoir considering the
inflow probabilities and the water values in period T. One can calculate the
water values recursively, and in the end a table with water values at all stages
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and reservoir levels has been found. These can then be used to help to find the
optimal decisions in the current stage.

Both DP and SDP have the disadvantage of having to discretize all the future
states. The expected cost is calculated at each possible state, and this in turn
causes the problem to grow exponentially in size when more variables and
states are added. Although they handle nonlinearities very well, the curse of
dimensionality limits their use. Aggregation of reservoirs is a method used to
lower the number of variables needed, but the dimensionality of the problem is
still very large. The use of SDP is usually limited to handling only a handful of
reservoirs. (Gjelsvik et al., 1992)

3.3 Approximate dynamic programming

Approximate dynamic programming (ADP) is similar to DP, but instead of the
backward recursive relationship, the solution procedure steps forward through
time. In DP, the solution requires that we loop over all possible states, exactly
computing the value function which we then use to produce optimal decisions.
In ADP, the future value function is not known, and hence it cannot use the
algorithm for DP. The value function is instead approximated in an iterative
manner for all possible states. In each iteration only some of the value functions
are updated.

Moving forward in time, the exogenous information is estimated in each stage,
and a sample path is followed. In the LTHS problem this sample path represents
a unique sequence of inflows, and these can be estimated by using the proba-
blitity distribution together with a Monte Carlo simulation.

Once we have the approximated value functions V̄t(St) and the sample path,
optimal decisions can be taken moving forward through the sample path. After
each iteration a new sample path is made, and the approximated value func-
tions in iteration n, are improved by using to the following equation:

v̂n
t = min

xt∈χn
t

{
Ct(Sn

t , xt) + γ ∑
ω̂∈Ω̂n

t+1

pt+1(ω̂)V̄n−1
t+1 (St+1)

}
(3.7)

The improved approximated value function, V̄n
t , is then computed by using a

weighting between v̂n
t and V̄n−1

t , known as "smoothing". This equation is simi-
lar to the backward recursive equation of DP, but the expected value function is
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replaced by its approximation V̄n−1
t+1 (St+1) that was found in the previous itera-

tion. χn
t is the feasible region for the decisions xt, Ω̂n

t+1 are all the possible sets of
outcomes in the inflow, while pt+1(ω̂) is the probability of outcome ω̂ ∈ Ω̂n

t+1.
γ ≤ 1 is a discount factor.

In ADP, there is no need to loop over all possible states, and there is also no re-
quirement that the inflow scenarios are independent from the previous period.
However there are a few downsides with ADP that has to be dealt with; We
only update the values of states we visit, but the states we have not visited gets
the same value as in the last iteration. This can eventually cause these states to
look uninviting even though they can produce better value functions. There is
still a need to find the set of possible inflows, and the states of the system needs
to be discretized.

3.4 Stochastic dual dynamic programming

Stochastic Dual Dynamic Programming (SDDP) is a very powerful method to
solve the hydrothermal problem without the need for discretization of future
states. It is described in Pereira and Pinto (1991), and it is able to handle multi-
reservoir systems. SDDP is based on approximation of the expected cost-to-go
function of SDP by piecewise linear functions. These piecewise functions are
obtained from the dual values of the optimization problem.

We first study a two-stage, one-reservoir deterministic example. This is equiva-
lent to a Benders decomposition algorithm (Benders, 1962), which can be stated
as follows:

min
x,y

w = f (x) + cT y (3.8)

s.t. Ay + Bx ≥ I (3.9)

This problem can be regarded as a general form of the reservoir optimization
problem where x is the discharge decision taken here and now, and cT y is the
future cost function at reservoir level y. The constraint (3.9) is a general form
of the water balance constraint (3.2). The other constraints are left out here
for simplicity. For a given discharge decision x̄, the second stage problem will
be:
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minα = cT y (3.10)
s.t. Ay ≥ I − Bx̄ (3.11)

And the first-stage optimization problem is:

min w = f (x) +α(x) (3.12)

By taking the dual of the second-stage problem we get a maximization prob-
lem:

max π(I − Bx̄) (3.13)
s.t. ATπ ≤ c (3.14)

If we knew all the extreme points of the constraint set ATπ ≤ c, the objective
value of (3.13) is the same as that of (3.10). However this would be computa-
tionally demanding, so instead an approximation of the future cost function is
found. For an initial set of n trial decisions {x1, .., xn} we can calculate the set of
associated dual values {π1, ..., πn }. The approximated future cost is then found
as:

min α̂(x) = α (3.15)
s.t. α ≥ π i(I − Bx̄) ∀i = 1, ..., n (3.16)

The value for α̂(x) can then be substituted into the first-stage objective function
(3.12), to minimize w as a function only of x. This will be a lower bound for the
future cost-function, and an upper bound can be found by evaluating (3.8) for
x̄. The idea behind SDDP is that for each trial decision x, α̂(x) will improve
in value, i.e, the lower bound will increase. This implies that the future cost
function can be evaluated without the need for discretization of x. Each new
constraint π i(I − Bx̄) can be seen as a linear approximation of the future cost
function. In the multi-reservoir case, a set of π ik are found in each iteration,
where k is the number of reservoirs. These represent the cost-to-go functions
for each reservoir as a set of hyperplanes. The hyperplane approximations are
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built iteratively, to give increasing accuracy. By choosing the initial discharge
decisions with care, we can quickly get a very good representation of the future
cost-to-go function. In this way, the many-dimensional water value tables used
in SDP are avoided.

Extensions to this model are used to represent the multistage, stochastic prob-
lems. For the multistage problem with T time periods, the algorithm runs it-
eratively forwards and backwards through all the time periods. In the forward
run, the optimization problem is solved with a set of trial decisions x̄t−1 for
every stage t. In the backward run, additional hyperplanes are constructed in
the previous stage by using multipliers found in the current stage. To extend
the problem into the stochastic one, we assume that the inflow vector It is dis-
cretized into m scenarios {It j, j = 1, ..., m}. The idea is then to determine "good"
trial decisions at each stage. Ideally the forward and backward iteration is run
for every combination of scenarios It j, but more realistically, a Monte Carlo sim-
ulation is carried out.
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4 Mathematical formulation

An outline of a deterministic LP model that can be used to solve the LTHS is
given in this section. It is an extension of the model outlined in the start of Sec-
tion 3, and the goal of the model is to forecast the spot price in each country of
the Nordic region. The countries consists of Norway (NO), Sweden (SE), Fin-
land (FI) and Denmark (DK). The outside world has been modeled according to
their power prices, and the most important countries to model is the exchange
with Germany (GE), Poland (PO) and the Netherlands (NL). The data used in
the model together with sources are given in Section 4.4, while the mathematical
model is given in Section 4.5.

4.1 Sets and indices

A : set of areas, indexed by i :
T : set of time periods, indexed by t :
L : set of transmission lines, indexed by l :
F : set of fuel types, indexed by f :
G : set of generator types, indexed by g :
K : set of generator categories, indexed by k :
J : set of outside regions, indexed by j :
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4.2 Parameters

α : curtailment cost (constant)
γ : losses in the lines in percent
Cgt : running cost of generator type g in time period t (€/MWh)
Dit : firm demand in area i in period t
TCl : transmission capacity of flow in line l (MWh/h)
GCki : capacity of generator type k in area i (MW)
CHPt : CHP generation in time period t (MWh/h)
Iit : inflow in area i in period t (MWh/h)
yMax

i : reservoir maximum in area i
yMin

i : reservoir maximum in area i
yStart

i : start reservoir level in area i
yEnd

i : end reservoir level in area i
ToAl : gives the area/region that line l goes to
FrAl : gives the area/region that line l goes from
PPjt : power prices in outside region j in time period t
PFf t : fuel prices of fuel type f in time period t
PCt : price of CO2-quota in time period t
N f : carbon content in fueltype f
E f : energy content in fueltype f
Vg : variable operating cost of generator type g t
ηg : efficiency of generator g
Gcatg : gives the generator category of generator type g

4.3 Variables

xigt : generation of generator type g in area i in time period t
yit : reservoir level in area i in beginning of time period t
zit : curtailment in area i in period t
blt : cross border flow in transmission line l period t

17



4.4 Data

The granularity of the model is hourly, and the time horizon is two years. Data
for the model is from the years 2008 and 2009, and these are the years to be
forecasted. The data that is too large to present here can be found in the file
"data.xls".

4.4.1 Generation capacities

Generation capacities are assumed to be constant for the whole of the modeling
period. Capacities are given for hydro, nuclear, thermal and gas turbines in each
area. The category "thermal" consists of a few generator types that are grouped
into one category. The capacities can be seen in Table 1, and the data is from
Nordel.

Table 1: Generation capacities

NO SE FI DK
Hydro 29474 16195 3097 0
Nuclear 0 8938 2646 0
Thermal 0 2271 2935 784
Gasturbine 699 1607 840 412

Wind generation is stochastic and is left out of the model due to lack of hourly
data. The curtailment cost is constant and equal to 1000 €/MWh.

4.4.2 CHP generation

Combined heat and power (CHP) units can produce both heat and electrical
power, and is divided into Industry and District generation. The power gener-
ation depends on both fuel prices and outside temperature. As a simplification,
CHP is modeled as a fixed generation profile, i.e. one that is not optimized on
the basis of prices. The data is from Finnish Energy Industry, Svensk Energi
and Energinet, and is the combined production from CHP Industry and CHP
District. The hourly production is simulated from the weekly generation.
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4.4.3 Generation costs

The following equation was used to calculate the running cost of the generator
types in all time periods:

Cgt =
PFf t

E fηg
+ Vg +

PCtN f

ηg
(4.1)

The cost of generation depends on the cost of the fuel used, the variable cost of
production, and the CO2 quota prices. The efficiency of a generator type is also
relevant for generation costs, and a table containing important characteristics
for the different generator types can be found in Table 2. The fuel types used in
the model are coal and gas, and the hourly fuel prices are derived from weekly
average prices. While the data for the gas prices are from Nord Pool Gas, the
coal prices are from Vattenfall. Oil prices have minimal effect on the generation
costs as there are few generators running on oil in the Nordics. Therefore oil
prices are not included in this model. The CO2 quota prices only change once
daily, but in the model they are specified hourly. The quota prices are also from
Vattenfall. Data for carbon and energy content for each fuel type is presented in
Table 3. The data in Tables 2 and 3 are from Econ Pöyry.

Table 2: Generator information

Generator type Category Fuel type Efficiency Variable Cost
[€/MWh]

CoalCondensing Thermal Coal 42 % 1.5
CoalExtraction Thermal Coal 41 % 1.5
GasExtraction Thermal Gas 39 % 1.5
CCGT Thermal Gas 54 % 0.8
GasTurbine Gasturbine Gas 38 % 0.8
Hydro Hydro Water 100 % 0
Nuclear Nuclear Uranium 100 % 15

Table 3: Fuel characteristics

Fuel type Carbon content Energy content
[ton/MWh] [MWh/ton]

Coal 0.34 7.17
Gas 0.20 13.33
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4.4.4 Demand

The hourly demand in each area is found from the aggregated demand together
with the daily demand distribution between the areas. The demand distribution
is assumed constant throughout the day, hence we can calculate the hourly de-
mand in each area. The daily consumption data is from Nord Pool, and the total
hourly demand is from Vattenfall.

Figure 2: Aggregated demand in the Nordics

In Figure 2, it can be seen how the demand for power fluctuates during the year,
and there are also major daily variations.

4.4.5 Transmission capacities

Transmission capacities between regions are found by aggregating area-capacities
to a country level. The transmission capacities are modeled as constant through-
out the entire period, and they can be seen in Table 4. The data is from Econ
Pöyry. Losses are assumed to be 1% of the transmitted amount.
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Table 4: Transmission capacities

From area To area Capacity [MW]
NO SE 3550
NO DK 950
NO FI 100
SE NO 3900
SE DK 1980
SE FI 2050
DK NO 950
DK SE 2440
FI NO 100
FI SE 1650
NO NL 700
SE GE 600
SE PO 600
DK GE 2085
GE SE 600
GE DK 1550
NL NO 700
PO SE 600

4.4.6 Reservoir data

The reservoir capacities in GWh are aggregated for each area as if there was
one large reservoir in each country. The starting level in each country is given,
and the final reservoir level is not allowed to be smaller than a certain amount.
The data is given in Table 5, and is from NVE, Svensk Energi and Finnish en-
vironment inst. The minimum reservoir level in all periods is 1000 GWh in all
countries.

Table 5: Reservoir data [GWh]

Norway Sweden Finland
Reservoir capacity 81888 33758 5530
Start value 60901 23587 4113
End value 55342 19636 3155
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4.4.7 Inflow

Hourly inflow into the reservoirs in MWh/h in each area is derived using weekly
accumulated values and assuming constant inflow each week. The aggregated
inflow data is from Vattenfall, while the disaggregated values are from Nord
Pool Spot. The inflows can be seen in Figure 3, and it can be seen that the in-
flows are highest during the spring and summer months. The inflow in 2008
was higher than the inflow in 2009.

Figure 3: Inflows in respective areas

4.4.8 Outside region power prices

A daily profile of power prices in the outside areas together with weekly aver-
age power prices are used to simulate the hourly prices. The daily distribution
of prices is from Econ Pöyry, and the weekly averages are from the Power Ex-
changes in the respective outside regions. Where the weekly averages were not
available, the monthly average was used. All prices are in €/MWh.
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4.5 Mathematical model

minW = ∑
t∈T

[
∑
i∈A

∑
g∈G

Cgtxigt (4.2a)

+ ∑
i∈A
αzit (4.2b)

+ ∑
j∈J

(
∑

l∈L|ToAl= j
PPjtblt − ∑

l∈L|FrAl= j
PPjtblt

)]
(4.2c)

subject to

∑
g∈G

xigt + zit + ∑
l∈L|ToAl=i

blt − ∑
l∈L|FrAl=i

blt = Dit − CHPt (4.3)

∀i ∈ A, ∀t ∈ T

yi,1 = yStart
i (4.4)

∀i ∈ A

yi,t+1 − yit + xi,hydro,t ≤ Iit (4.5)
∀i ∈ A, ∀t ∈ T

yMin
i ≤ yit ≤ yMax

i (4.6)
∀i ∈ A, ∀t ∈ T

yi,nT ≥ yEnd
i (4.7)

∀i ∈ A

∑
g∈G|Gcatg=k

xigt ≤ GCki (4.8)

∀i ∈ A, ∀k ∈ K, ∀t ∈ T

blt ≤ TCl (4.9)
∀l ∈ L, t ∈ T
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4.6 Discussion of the model

4.6.1 Objective function

The objective is to minimize total cost in all areas and time periods, and these
consists of generation cost (4.2a) and curtailment costs (4.2b). In addition there
is the possibility to trade power with the outside regions. This is represented in
the objective function as a negative cost when selling and a positive cost when
buying as seen in the part (4.2c).

4.6.2 Constraints

Constraint number (4.3) is the power balance constraint, making sure the de-
mand is covered in all areas and time periods. The demand is either covered
by their own generation, by import/export, or by demand curtailment. The zit
functions as a slack variable, and an alternative to having such a slack variable
with a high cost is to change the equality sign with a greater than or equal
to sign. Then the problem would be infeasible if the system was unable to
cover the demand, so the current formulation provides a greater flexibility. Con-
straints (4.4), (4.6) and (4.7) are reservoir constraints on the minimum and max-
imum level of water and the start and end values. (4.5) is the reservoir balance
constraint giving the link between inflow, hydro generation and the reservoir
levels. A spill variable could have been used here to give equality, but it is not
necessary in this formulation as we have a maximum reservoir level. (4.8) gives
the capacity constraint of each generator category in each period and area, while
(4.9) gives the transmission capacity constraint for each line in all periods.

4.7 Number of variables and constraints

If all the variables are created, the number of variables would be:

|A| × |G| × |T|+ |A| × |T|+ |A| × |T|+ |L| × |T|

And the number of constraints:

|A| × |T|+ |A|+ |A| × |T|+ |A| × |T|+ |A|+ |A| × |K| × |T|+ |L| × |T|
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With |T| =17544 time periods, |G| =7 generator types, |A| =4 areas and |L| =18
transmission lines, the number of variables is 947 373 and the number of con-
straints are 807 024. However we know that some of the variables will not take
any values so we can choose not to create these variables. For example there are
no reservoirs in Denmark, to the yit-variables for denmark do not need to be
created. In XpressMP, this is done by creating the variables dynamically as we
need them. By doing this, the number of variables is reduced to 877 197. This is
still a large number of variables, and the solution time is 270 seconds.

By having an hourly resolution in the model the number of variables is very
large. In a deterministic model it is solvable, but in stochastic models the num-
ber of variables created would be very large. It is therefore common to have
a larger time resolution for stochastic models, for example weekly or monthly.
The challenge is then to secure load capacity for peak load. This is done by us-
ing a load curve that shows the distribution of power consumption during the
time period.

4.8 Implementation

The solver package used is XpressMP and the implementation is written in the
MOSEL language. The optimizer solves the model with the data presented in
Section 4.4 with regards to the constraints and objective presented in Section
4.5. The MOSEL-code is attached in Appendix A.
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5 Results

Results from running the model is given in this section together with some
analysis of these results. In Section 5.1, power prices, water values and reser-
voir levels are discussed. In Section 5.2, a glimpse of what is happening in a
given time period is analyzed, while in Section 5.3 other inflow scenarios are
discussed.

5.1 Prices and costs

In optimization, the dual value of the constraint is called the shadow price.
This is the marginal cost of strengthening the constraint, or the marginal utility
of relaxing the constraint. These are studied here in order to better understand
the results of the model.

5.1.1 Power balance

The dual value of the power balance constraint (4.3) is the marginal cost of con-
suming one more unit of power, and this can be seen as the power price in
€/MWh. The power prices are shown in Figure 4.

5.1.2 Water balance

The dual values of the water balance constraint (4.5) can be seen as the marginal
value of having one more unit of water available. According to the theory pre-
sented in 3.2.1, this is known as the water value and is the marginal cost of using
water. The water values can be seen in Figure 5. Because the objective function
decreases as the constraint is relaxed, the sign is negative. The reservoir levels
are shown in Figure 6. Although the reservoirs never reach the maximum level
in any of the areas during the scheduling period, they all reach the minimum
reservoir level around the same time. This time is around the beginning of April
2009, and if we compare these results with the inflow data in Figure 3 we can
see that it is at this time in 2009 that the melting season starts.
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(a) (b)

(c) (d)

Figure 4: Power prices
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(a) (b)

(c)

Figure 5: Water values
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(a) (b)

(c)

Figure 6: Reservoir levels
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5.1.3 Analysis

The optimal generation is found by the optimizer using a merit order list. This
includes ranking the available generation units according to their marginal cost,
and engaging them in that order until demand is covered or their capacities are
met. The power price in the outside regions can be seen as a marginal cost, and
is ranked by the optimizer in the same way as a generator with the transmission
capacity as the limit. The price of the most expensive generation unit or outside
region price sets the dual value of the power balance constraint which can be
seen as the power price. The water values are used as the marginal cost of
hydropower.

By comparing the power prices in Figure 4 and the water values in Figure 5 in
the three hydro-producing countries, we can see a strong connection. Especially
in Norway, the power prices and the water values are exactly the same (but
with opposite sign). This means that it is always the water value that governs
the power price in Norway. By comparing this to the generation capacities in
Table 1, we see that most of the generation capacity is from hydropower in
Norway. In Sweden and Finland there are more fluctuations, but we can still see
a strong connection. The water values are major price-drivers, but at times there
are other units in these areas determining the power price. For Denmark, the
price fluctuates during the whole scheduling period. They do not have hydro-
power, but they have strong transmission capacity from Norway, Sweden and
Germany. So the price in Denmark is more vulnerable to changes to the German
power prices than the water values in Norway and Sweden.

The minimum reservoir levels of 1000 GWh are reached in the beginning of
April in 2009. So in the model, it is optimal to empty the reservoirs as much
as possible right before the melting season starts in 2009. At the same time the
water values in Norway and Sweden drop, and hence the power prices drop.
This can be explained in relation to the model being deterministic. Because
inflow values are perfectly predictable, the optimizer chooses to decrease the
value of the water right at the beginning of the melting season when the water
is at the minimum level. In reality, because of the stochastic nature of inflows,
the water value is inversely proportional to the reservoir level. This points to a
major flaw in using deterministic values.

It can also be noted that there is never any gap between the production and
the consumption. There is always enough power to satisfy demand, and the
gap cost of 1000 €/MWh is never used. The highest power prices are seen in
Denmark during December 2008, and the powe price reaches more than 300
€/MWh. However because we have left out wind power completely, these
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prices would not be reached in reality.

5.2 Analysis of a single time period

To better understand the model, we study a single time period to see what is
going on. The period chosen is period 10 000, and this corresponds to the hour
4pm-5pm on the 20th of February 2009.

The generation costs are seen in Table 6, while the actual generation is seen in
Table 7. From Table 8, we see that in all the three hydro-producing countries,
it is the water value that sets the power price in this particular time period.
The power prices in outside areas are seen in Table 9, and from this we can
see that it is the German power price that sets the Danish power price in this
hour. This price is slightly higher than in the rest of the Nordic region. In
each area, only the units which are below the power price are set into use, and
by comparing to their respective capacities from Table 1 we can see that the
Nuclear and CoalCondensing units are producing on max capacity. Ofcourse
the 0 €/MWh for hydro generation is misleading, as the water value is actually
the marginal cost.

Table 6: Generation costs

Generator type Cost [€/MWh]
Hydro 0.0
Nuclear 15.0
CoalCondensing 28.2
CoalExtraction 28.8
GasExtraction 47.4
CCGT 34.0
GasTurbine 48.0
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Table 7: Generation by type (average hourly production)

Generator type Area Generation [MW]
Hydro NO 20139
Hydro SE 8735
Hydro FI 2324
Nuclear SE 8938
Nuclear FI 2646
CoalCondensing SE 2271
CoalCondensing FI 2935
CoalCondensing DK 784

Table 8: Shadow prices

NO SE FI DK
Dual costs 41.4 41.9 42.3 43.6

Water values -41.4 -41.9 -42.3

Table 9: Outside power prices [€/MWh]

GE NL PO
43.6 42.7 39.3
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From Table 10, we see which transmission lines are in use and the amount trans-
ferred in these lines. We see that the power flow in the transmission lines are at
their maximum values when we compare to the capacities in Table 4 in all the
transmission lines except for in the line from Denmark to Germany. This line is
shown in italic text and is not transmitting at the limit.

Table 10: Border flow

From area To area Border flow [MW]
NO DK 950
NO FI 100
SE DK 1980
NO NL 700
SE GE 600
DK GE 160
PO SE 600

It is typical in linear programming that variables are at their limits, so it is not
surprising to see that this is the case for the border flow and generation vari-
ables.

5.3 Other inflow scenarios

To investigate the effect that the inflow has on the output, two other inflow
scenarios are run in the model; one where the inflow is 25% higher than in the
original case for all time periods, and one where the inflow is 25% lower. The
results on the power prices are shown in Figure 7 (high inflow) and in Figure 8
(low inflow).
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(a) (b)

(c) (d)

Figure 7: Power prices in case of high inflow
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(a) (b)

(c) (d)

Figure 8: Power prices in case of low inflow
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From these figures we see that the power prices are very much affected by the
inflow levels. The objective function value has not been discussed earlier be-
cause it has little relevance in this model. The factors that we are interested in
are the dual values of the constraints and the values of the variables. However
it was noted that the objective value (that is, the total cost of the system oper-
ation) increased by more than 100 % in the low inflow scenario. In the high
inflow case, the objective function value decreased by more than 100%.
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6 Conclusion and further work

6.1 Conclusion

This paper has analyzed the optimal operation of a hydrothermal power sys-
tem. The particular area of study has been the Nordic power system, and this is
characterized by a large amount of hydropower. The handling of reservoirs is
therefore of great interest, and different approaches to reservoir-handling have
been studied and evaluated. A linear deterministic single-reservoir model was
formulated and implemented in XpressMP. The model successfully allocated
the different generating units and transmission according to the demand in each
period, minimizing the total system cost during the planning horizon. Power
prices for the Nordic countries together with reservoir levels were forecasted on
an hourly resolution for a two-year period. Three inflow scenarios were tested
in the model, and the results from running the deterministic model on the dif-
ferent inflow scenarios showed the major influence that inflow scenario has on
the power price. According to the results, reservoirs are completely emptied to
the minimum level just before the second inflow season starts.

The above conclusions address the issue that deterministic representation of
stochastic factors will not give a reliable result. Only if the expected scenario
turns out to materialize, can the model guarantee optimality. The chance for
this is minimal, and a stochastic modeling approach should be preferred.

6.2 Further work

In this section, improvements to the model are suggested.

6.2.1 Improving the deterministic model

A list of issues that should be considered for further development of the model
is given here:

• In the model, it is assumed that all generators are available at all times
during the planning period. In reality however, this is not the case as
generators need to be disconnected from the system due to maintenance.
This can be both planned maintenance or a fault forcing them to shut
down.
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• Shutting down and starting up generators does not come without a cost
as implicitly implied in the model, and the start-up costs for the different
generators should be included in the model.

• Windpower generation is left out completely of the model, and as seen in
the results, this has major implications on the forecasted power price in
Denmark.

• Transmission losses should be proportional to the power transferred, not
a constant percentage as is used in the model.

• Exchange with Estonia and Russia is left out of the model.

The improvements listed above are all possible to implement into the model
without much difficulties. Another weakness of the model that is not simple to
improve, is the use of aggregated reservoirs for each country. Localized spillage
can occur that is not captured by the model. Also, with the minimum reservoir
level of 1000 GWh, many smaller reservoirs would run dry. The way to improve
this in the model would be to use smaller price areas based on river systems
instead of countries. There is much data that must be collected if the areas used
were to change, but the same MOSEL-code can in principle be used.

6.2.2 Stochastic programming

The results from running the model with different inflow scenarios implied that
deterministic inflows represent a serious flaw in the model. If the proposed
generation plan was used in reality, there would be a high risk of shortage
and spillage because the risks for these are not represented in the model. A
model that handles uncertainty should be preferred, with the most important
uncertainty being the inflow. Relevant models are presented in Section 3, and a
large task with implementing a stochastic model is to get different inflow sce-
narios.
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