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Abstract 
 

The current thesis represents an effort to develop an efficient and flexible framework for 

medium to long term hedging and production scheduling of hydroelectric generation in 

deregulated markets. The hydroelectric scheduling problem is a highly dynamic, stochastic 

problem, with future price and inflow representing the main uncertainties. A price taking 

producer is assumed, and the scope is limited to a single reservoir, single station system. 

 

The production scheduling problem is analysed in an option pricing context, and it is shown 

how the generation asset can be interpreted as a complex derivative on the spot electricity 

price. Viewing the generation asset as an option to produce electricity, a framework for 

hedging price risk is presented, assuming negligible transaction costs. The framework is based 

on calculating hedge signals by finite difference methods. 

 

Price and inflow uncertainty is modelled seperately as stochastic processes. Two price models 

are estimated. The Schwartz (1997) mean reverting spot model is estimated and calibrated to 

the Nord Pool term structure. The residuals from estimation show large excess kurtosis. The 

second price model is a Bjerksund et al. (2000) type forward curve model. The model is 

estimated by calibration to the term structure of swaps and implied volatilities of at the money 

options. A thorough time series analysis of inflow data is undertaken in order to investigate 

inflow behaviour. It is found that Box-Cox transformation and deseasonalization produces a 

stationary underlying series, which can be modelled as a low order ARMA process. As 

expected the inflows are strongly autocorrelated However, the residuals from the estimation 

show excess kurtosis and positive skewness. 

 

In order to solve the production scheduling problem and calculate hedges a multi stage 

stochastic algorithm, based on the least-squares Monte Carlo technique is proposed. The 

algorithm has been implemented for testing in Matlab and results are compared to a 

deterministic model. The Elkem Energi Siso AS system is used a test case. Results are 

somewhat disappointing, leaving hypotheses regarding expected hedges unanswered. 

However, under the Schwartz model the objective value is relatively close to the upper bound 

of the deterministic model. A discussion of reasons for failure is provided, and possible 

solutions are proposed. 
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1 Introduction 
 
After the deregulation of the Nordic electricity market during the 1990’s there has been a need 

to consider price risk when scheduling hydroelectric generation. The power market is proving 

highly volatile, but also offers access to financial products that can be used for risk 

management purposes. However, the producer also faces a considerable volume risk in the 

form of uncertain future inflows. Following, it is not obvious what market transactions to 

undertake to minimize the variance of future cash flows. In order to set up efficient and 

consistent hedges the producer is in need of production scheduling tools, which explicitly 

accounts for both price and inflow uncertainty. The current thesis seeks to develop medium to 

long term methods aiding the producer in making the right hedging decisions. 

 

As a preparation for the current study a project work (Pedersen & Winnem, 2005) was carried 

out during the autumn, 2005. This thesis is independent of the project, but further develops 

the concepts. As with the project, the current work is connected to Elkem Energi Handel AS 

(Elkem). The Elkem Energi Siso AS (Siso) hydroelectric plant is used as a test case. Siso is a 

single reservoir, single station plant, which also defines the scope of the thesis. 

 

In connection with the thesis relevant literature has been studied. Concerning algorithm 

development Longstaff & Schwartz (2001) and Glasserman (2004) are extensively used. For 

programming formulations Wallace & Fleten (2003) provides an excellent overview, 

regarding the hydroelectric production scheduling problem. For modelling of price processes 

Schwartz (1997) and Bjerksund et al. (2000) are used. The text of Brockwell & Davis (2002) 

provides the foundation for the modelling of inflows. 

 

The thesis is organized as follows. Chapter 2 introduces basic concepts of hydroelectric 

production scheduling. The power market is treated in chapter 3. Chapter 4 interprets the 

generation asset in a financial context, and chapter 5 develops a financially based risk 

management framework. Mathematical programming formulations are provided in chapter 6, 

along with a proposed solution algorithm. Chapter 7 includes estimation of price processes 

and a time series analysis of inflow data. Chapter 8 discusses implementation issues. Results, 

which are discussed in chapter 10, are presented in chapter 9. Chapter 11 concludes and 

suggests a possible extension of the current thesis. 



 2

2 The Hydroelectric Production Scheduling Problem1 
 
Prior to deregulation the goal of scheduling was to meet demand at minimum cost. In a 

deregulated market the objective is different; the producer2 should seek to maximize the 

expected market value of the generation asset (Fleten & Wallace, 2003). According to 

financial theory and the law of one price maximization of market value implies that one must 

schedule in accordance with market prices. Participants with limited accumulated production 

capacity will generally not influence the market price, and can hence treat price as an 

exogenous variable. For the remainder of the thesis the preceding statements are fundamental 

and are therefore stated as the following explicit assumptions: 

 

Assumption 2.1 

The goal of production scheduling is to maximize the expected market value of the 

generation asset. 

 

Assumption 2.2 

The proprietor of the generation asset does not posses power to influence the market 

price of electricity. 

 

Facing uncertain future inflow and a volatile market the producer must in principle, 

continuously determine the instantaneous release, and thereby the generated output that 

maximizes the market value of the asset. In practice the bidding into the Nordic market 

happens on a one day ahead basis. In this respect the scheduler only needs to update the 

production plan every 24 hours. 

 

The main challenge in scheduling hydroelectric generation is clearly the management of the 

water reservoir. In order to achieve optimal management one must explicitly account for both 

price risk and volume risk, in the form of volatile electricity prices and uncertain future inflow 

respectively. Physical relations and restrictions add to the complexity of the problem. 

Combined with the need to construct a schedule with fine resolution the dimensionality is of 

such magnitude that there is a need to decompose the problem. The following sections seek to 

                                                 
1 Hereafter abbreviated as HPSP. 
2 Throughout the thesis the term producer will be used in the meaning of hydroelectric producer. 
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establish the basic concepts of hydroelectric production scheduling, with regard to physical, 

economical and decomposition principles. 

 

2.1 Physical Principles 
 

The concepts of hydroelectric generation are quite simple. Basically water at a higher 

elevation is released through a turbine, which in turn drives a generator to produce power. The 

concept is illustrated in Figure 2.1, and a more detailed view of a possible turbine-generator 

setup is provided in Figure 2.2. 

 

 
Figure 2.1: Schematic of hydroelectric plant 

 

 
Figure 2.2: Possible turbine-generator setup3 

 
For scheduling purposes there is a need to know how the power output depends on physical 

variables. For medium and long term scheduling it is often assumed that the generated amount 

of power is proportional to the release (Näsäkkälä & Keppo, 2005). In the real world the 

situation is more complex, as the output depends non-linearly on the release and the water 

head. Also the maximum release will not be independent of the head, but decrease as the 

reservoir level decreases. 

 

For the Siso reservoir an empirical production function is in use. A specification of the 

functional form is provided in Appendix 1. The function is plotted in Figure 2.3, the non-

linearities clearly visible. 

 

                                                 
3 The picture shows a so called Kaplan turbine. 



 4

 
Figure 2.3: Siso Production Function 

 
 

2.2 Economical principles 
 

Intuitively the producer must balance the benefits from producing immediately against the 

value of storing water for later generation. The water thus has an opportunity cost. This 

opportunity cost is often referred to as the water value, of which the understanding is essential 

to the analysis of HPSP. In order to formalize the concept of water value let us introduce the 

following notation for some key quantities and variables: 

 

t  Index of period 

tV  Period t expected value of production 

tq  Period t release 

tm  Reservoir level at the beginning of period t 
( , )w m q  Generated amount of electricity as a function of reservoir level and release 

tΠ  Period t  stochastic electricity price 

tπ  Period t  realized electricity price 

tΨ  Period t  stochastic inflow 

tψ  Period t  realized inflow 
r  Appropriate hurdle rate 
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The value of the production can now be formulated as 

 

 
( ),

( , )max
1t t

i i i
t i tq m i t

w m qV E
r

∞

−
=

⎡ ⎤Π
= ⎢ ⎥
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∑ . (2.1) 

 

As formally stated the value of the production is the sum of the discounted production 

revenues. It should be noted that all costs are neglected. (2.1) can obviously also be 

formulated recursively as 

 

 [ ] [ ]1

,
max ( , )

1
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Given that the current period is t and assuming that the outcome for the price in period t is 

known (2.2) reduces to 
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To establish a criterion for the optimal production strategy (2.3) is differentiated with respect 

to the release: 

 

( ) ( ) 1

1

1

1
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t
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t t t V t t t
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According to the water balance4 the derivative of the reservoir level with respect to the release 

must equal minus one. In order to fulfil the first order optimality conditions we obtain the 

following control criterion: 

 

 1

1

( , )
+

+

∂ ∂
=
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tV t t

t
t t

w m q
m q
μ

π . (2.4) 

                                                 
4 See Section 6.1 
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Economically equation (2.4) signifies that the producer, in any given period, should produce 

such that the marginal change of the discounted expected future value equals the marginal 

revenues from producing immediately. The variable 
1 1/

tV tmμ
+ +∂ ∂  is what is often referred to 

as the marginal water value. For the remainder the marginal water value will be referred to 

merely as the water value. When referring to the total discounted expected future value the 

term future value will be used. 

 

The preceding analysis does not account for the physical restrictions on the system. In 

practice there will be restrictions on both the release and the reservoir. If the reservoir is full 

and the immediate inflow is larger than the production capacity, water will be spilled. In this 

case the system restrictions yield the above derivation of the control criterion invalid. In an 

optimization sense one can alternatively define the water value as the Lagrange multiplier 

associated with the water balance. Clearly the Lagrange multiplier must equal zero in this 

situation. This signifies the important insight that the opportunity cost of water decreases as 

we move towards the upper bound on the reservoir level, as a consequence of increased risk 

of spilling. Another special case arises when the price in one period is of such a magnitude 

that it is optimal to increase the release to the upper bound, even if there is no risk of spilling. 

(2.2) will in this case generally not be satisfied as an equality. Following the preceding 

discussion a more general form of the control criterion can be formulated. Let us first define 

the water value as 

 

1

1

, When spilling can be avoided

0, When spilling can not be avoided

tV

t tm
μ

ξ
+

+

∂⎧
⎪= ∂⎨
⎪
⎩

 

 

The control criterion can now be stated more generally as: 

 

max
. .
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∂
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In words the producer should increase the release as long as the marginal revenue is larger 

than the water value. Hence, if the water value can be determined, the production schedule 

can be constructed with relative ease. Note however that the preceding analysis considers the 

first order optimality condition only. In the case of a nonlinear production function the 

situation will generally be more complex. 

 

2.3 Decomposition principles 
 

When managing a well regulated reservoir it is necessary to consider planning horizons of 

several years. A useful quantity for comparing different systems with respect to regulation is 

the relative regulation, R: 

max minM MR −
=

Ψ
 

Mmax and Mmin are respectively the upper and lower bound on the reservoir level and Ψ  is the 

average annual inflow. According to A. Gjelsvik The higher the relative regulation the longer 

the planning horizon needs to be (counselling appointment, October, 2005). The reason is that 

with a high relative regulation dispositions may affect the state of the reservoir far into the 

future. On the opposite if the relative regulation is such that it is highly probable that the 

reservoir will be spilling at a certain time5, *T , regardless of the prior state, it is not necessary 

to consider planning horizons beyond *T . The water value will in the period prior to *T  equal 

zero regardless of the reservoir level, which is a sufficient boundary condition. 

 

Hydroelectric generation assets are often complex systems of numerous linked reservoirs, 

several stations and a host of restrictions that are more or less difficult to model. At the same 

time the producer must make bids into the market with hourly resolution. In combination with 

production decisions influencing up to several years into the future, the computational 

complexity is great at least. Because of the dimensionality of the problem it is common, and 

necessary, to decompose HPSP into two or three coupled sub problems in a hierarchical 

fashion (Flatabø et al, 2002). Table 2.1 lists approximate horizons, typical resolutions and 

associated solution methods. 

                                                 
5 In the Nordic system typically in spring during the snow melt. 
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Horizon Resolution Solution Methods 
Long Term 
1-5 Years Week Aggregation of reservoirs and systems. 

Stochastic optimization and simulation based methods. 

Medium Term 
3-18 Months Week Multi reservoir scenario based deterministic methods, or 

aggregation of reservoirs and stochastic optimization. 

Short Term 
1-2 Weeks Hour Multi reservoir deterministic optimization. 

 

Table 2.1: HPSP Hierarchy 

 
The long term analysis seeks to capture long term fluctuations in price and inflow. It is 

customary to make simplifications such as aggregation of several reservoirs and stations into 

one hypothetical reservoir and one station. Output from the long term analysis is used as a 

boundary condition in the medium term analysis. The medium term analysis serves merely as 

a link, increasing the detail level, between the long term and short term models. (Flatabø et 

al., 2002). In the near future the price and inflow is often assumed deterministically known. 

The short term model should be sufficiently detailed to yield feasible schedules with 

resolution of an hour or shorter. The short term schedule is usually simulated to ensure that 

restrictions not included in the model are not violated. 

 

2.3.1 Coupling Methods 
 

Appropriate boundary conditions are essential to obtain a credible schedule and consistency 

between the different models. Different solutions to coupling the levels in the scheduling 

hierarchy are listed in Table 2.2. 

 

The time of year for linking the models is also important. The uncertainty in the boundary 

condition may be quite different in different seasons. As an example the long term and 

medium term models are usually linked in spring or autumn when the reservoir is expected to 

culminate. 
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Link Issues 

Reservoir Level 

The end reservoir is specified. This is an easy to implement solution 
in deterministic models, but may prove inflexible. Regarding 
stochastic models it generally will be hard to specify an end 
reservoir, since the reservoir level itself is a stochastic variable. 

Penalty Function 
The objective is punished if a target reservoir is missed. Might be an 
adequate solution for simple systems, but it may be difficult to 
specify a sensible penalty function in multi reservoir systems. 

Water Value 

The models are linked by specifying the water value function as a 
boundary condition. Increases the flexibility in optimization and 
might make it easier to gain consistency between models with 
different level of detail. 

 

Table 2.2: Coupling Methods 

 

2.4 Existing Commercial HPSP Tools 
 

In the Norwegian system the SINTEF developed models EMPS and EOPS are extensively 

used for long and medium term scheduling. In the EMPS model the electricity price is 

internalized (i.e. the price is an output from the model) and hence can not be expected to be in 

accordance with market prices. EMPS is a model of the entire system and is used for price 

forecasting and system analysis as well as for production scheduling by large market 

participants. Most smaller producers use the EOPS model for local scheduling, which treat the 

electricity price as an external variable. Finally SHOP is another SINTEF developed tool 

intended for short term scheduling. 
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3 The Nordic Power Market 
 

Over some years after deregulation, electricity contracts started to trade OTC and the 

electricity exchange Nord Pool was established. During the period 1996 to 1999 the Swedish, 

Finnish and Danish markets were also deregulated. Today Nord Pool remains the largest 

trading place for electricity contracts in the Nordic countries, and the Nordic model is often 

looked to in developing power markets (Haug, 2006). In addition to providing a market place 

for both physical and financial delivery Nord Pool also provides clearing services for OTC 

trades. It should be noted that the bilateral markets are substantial6. In the following the main 

focus will nevertheless be exchange traded contracts. 

 

3.1 The Physical Market 
 
For physical delivery of power there exists both a non-mandatory day ahead market, Elspot, 

run by Nord Pool and a regulating market for real time balancing of supply and demand. The 

responsibility of ensuring system balance lies with the system operator7, Nord Pool merely 

provides a market place for trading of electricity contracts.  

 

Every day participants at Elspot submit bids, in the form of a bid curve, for each of the 24 

hours of the following day. When all bids are submitted aggregate bid curves for the supply 

and demand side are created. The intersections of the 24 curve pairs determine the cleared 

system prices for the following day. In absence of transmission constraints the system price 

would equal the realized spot price. The introduction of transmission constraints leads to 

different area prices within the system. In the following we will frequently be referring to the 

hourly prices and their daily averages as the spot price. The term is somewhat misleading as 

the contracts are in fact swaps for short time periods. 

 

The system operator ensures security of supply through market mechanisms. Quite similar to 

the bidding process in the day-ahead market the participants submit price-volume bids for 

upward or downward regulation in the regulating market. When regulating units are needed 

the price is set at the highest of the bids from the units called upon. 
                                                 
6 In 2004, 757 TWh were turned over at the exchange and 1207 TWh were cleared OTC by Nord Pool alone. 
(Source: nordpool.no, 2006) 
7 In Norway the system operator is Statnett. 



 11

 

3.2 Spot Price Behaviour 
 

Electricity price time series exhibit several unique characteristics compared to other financial 

time series. To understand the differences one must look to the fundamentals of the 

commodity and to the fundamentals of the price formation process. Arguably the single most 

important fundamental factor to distinguish the electricity price is the non-storability of 

power. Electricity is a flow commodity which must be generated and consumed continuously; 

there is no economical way for a consumer (or arbitrageur) to buy and hold the commodity. 

 

Due to the relative youth of the deregulated power markets the historical data is limited. Still a 

few studies, such as Lucia & Schwartz (2002) and Eydeland & Wolyniec (2003) have 

investigated electricity price behaviour. According to Lucia & Schwartz (2002) aspects that 

have been discovered in various studies include seasonality, spikes, mean reversion, non-

stationary volatility and resulting fat tails in the distribution of returns. 

 

3.2.1 Seasonality 
 

Perhaps the most important consequence of the non-storability of power is the existence of a 

seasonal pattern in electricity prices. Due to low temperatures, demand is in Scandinavia 

typically larger during the winter months as heating to a large extent is based on electricity. 

The system can become quite strained, and costly gas fired power is frequently price setting. 

Also there is much less inflow to hydro-electric units during the winter, leading to even 

tighter supply in the hydro dominated system. In spring the amount of inflow to the reservoirs 

usually increase dramatically forcing water values down, and at the same time demand drop 

as temperatures rise towards summer. The seasonality in the system price can be seen in 

Figure 3.1. Clewlow & Strickland (2000) deem seasonal variations in the Nordic power 

market to be significant. 
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Figure 3.1: Seasonality in the weekly average system price 

 

There is not only variation over the year, but also within the week and within the day (Lucia 

& Schwartz, 2002). Typically the price is lower during the weekend, and there are also peak 

hours in the morning and afternoon. 

 

3.2.2 Spikes 
 

Figure 3.2 is a plot of the average daily system price and the corresponding log returns in 

2005. It is evident that large, discontinuous price moves are frequent. Often the jumps in the 

price take the form of a spike. The behaviour is common in power markets in general 

(Eydeland & Wolyniec, 2003). 
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Figure 3.2: Daily system price 2005 

 

Eydeland & Wolyniec (2003) explain the frequent spikes in electricity prices by the limited 

quantity of production capacity at different marginal cost levels. There is indeed a clear 

difference in the marginal cost of power plants fired by gas, coal and oil. In the Nordic 
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market, the marginal cost of hydroelectric generation is not merely determined by the actual 

cost of producing, but also by the water values, adding to the complexity. 

 

3.2.3 Mean Reversion 
 

In commodity price modelling, mean reversion is often assumed. Mean reversion basically 

signifies that prices tend to revert towards some expectation. According to Eydeland & 

Wolyniec (2003) applying a naive model to estimate mean reversion in power prices will in 

most cases give significant results, but might well be caused by the presence of spikes and 

stochastic volatility. Fundamentally one can still argue that mean reversion should be present 

over long time horizons. The fundamental idea being that in an equilibrium setting relatively 

high prices will attract high cost producers, putting a downward pressure on prices, and 

conversely low prices will force some producers out of the market, putting an upward 

pressure on prices (Schwartz, 1997). 

 

3.2.4 Non-Stationary Volatility and a Resulting Fat Tailed Distribution 
 

Lucia & Schwartz (2002) find positive skewness, strong excess kurtosis and evidence of non-

stationary volatility in Nord Pool spot price returns. In other words the returns are not well 

represented by a normal distribution. In all the spot price returns show extremely fat tails 

compared to standard financial time series. Combined with spikes and mean reversion the 

spot price is inherently difficult to model. 

 

3.3 The Financial Market 
 

A number of different financial future, forward and option contracts trade at Nord Pool. The 

financial forward contracts do not have physical delivery, but are settled against the realized 

system price. The options have forwards as underlying and expire before delivery of the 

underlying contract. In addition to futures, forwards and options there are also contracts on 

the difference between area prices and the system price, so called contracts for difference. 
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3.3.1 Term structure of swap contracts 
 

The contracts referred to as futures, forwards and options are in reality future swaps, forward 

swaps and options. The forward swap is settled by marking to market during the delivery 

period; the daily payoff is the forward price less the daily average system price. In other 

words a long position in a forward swap effectively exchanges a floating price against a fixed 

price. The distinction between future swaps and forward swaps is that the future swaps have 

daily mark-to-market settlement from the day they are entered. Future swaps are traded for 

days and weeks, and forward swaps are traded for months, quarters and years. For simplicity 

we will treat future swaps as forward swaps and merely refer to both as swaps. A graphical 

example of the term structure of swaps is provided in Figure 3.3. 

 

 
Figure 3.3: Term structure of forward swaps April 20, 2006 

 

As is clearly seen the specific term structure exhibits seasonality. According to Lucia & 

Schwartz (2002) the seasonality in spot prices is indeed included by market participants in the 

valuation of swaps. Haug (2006) argues that mean reversion effects in the spot price should 

also be included in the valuation of swap contracts in an efficient market. In all swap returns 

are more comparable to other financial time series than the spot returns. That being said Lucia 

& Schwarz (2002) find evidence of strong excess kurtosis and also positive skewness in 

historical swap returns, as is also reported by Benth and Koekebakker (2005). 
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3.3.3 Spot-Swap Relation 
 

Assuming complete markets and no arbitrage opportunities the price of a forward contract on 

a financial asset will satisfy the equation 

 

 ( )
0(0, ) −= fr d tf t s e , (3.1) 

 

where f(0,t) is the forward price of a contract with delivery at time t, s0 is the underlying spot 

price and d is an equivalent dividend payout rate. For commodities d might include 

convenience yield and storage costs. Assuming a forward market for electricity the relation 

(3.1) is not directly applicable. The reason is that electricity can not be stored and hence the 

arbitrage arguments underlying the relation are not valid. Still it is possible to infer 

information about the future electricity price from the forward market. The relation 

 

 [ ] ((0, ) − )= Π fr t
tf t E e α , (3.2) 

 

where −fr α  is a risk premium holds also in electricity markets (McDonald, 2003). (3.2) 

signifies that the forward price of electricity delivered at time t is the expected spot price at 

time t discounted by a risk adjusted rate. The observed swap prices are thus best interpreted as 

a weighted sum of the expected spot price during the delivery period. 

 

3.3.2 Term Structure of Volatility 
 

Only European options on quarterly and yearly swaps are traded at Nord Pool, and the current 

volumes trading on the exchange are quite low8. The exchange traded volumes are however 

misleading regarding liquidity as options frequently are traded in the OTC market, and the 

producer typically can get quotes from brokers. The prices of traded options can give an 

indication of the markets expectation of future volatility. This information might be useful for 

the producer, considering the option like features of the generation asset9. 

 

                                                 
8In fact most days no options trade on Nord Pool, but a small number of OTC trades cleared by Nord Pool are 
reported. 
9 See Chapter 4 for a discussion of the option characteristics of the hydroelectric plant. 
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Haug (2006) argues that the Black 76 option pricing formula might be used for pricing power 

options, pointing to stock returns showing higher kurtosis than Nord Pool swap returns. The 

Samuelson effect, which means decreasing volatility of contracts with increasing time to 

maturity, is frequently observed in empirical studies of energy price data (Eydeland & 

Wolyniec, 2003). According to Benth & Koekebakker (2005) the Samuelson effect is 

extremely pronounced in the electricity market. One can hence not expect the Black 76 

formula to yield realistic prices using the same volatility for different maturities, but it can be 

used in analyzing the term structure of implied volatility. 

 

 

 

4 Interpreting the Generation Asset as a Derivative 
 

From a financial perspective the combination of price uncertainty and flexibility suggests a 

real option approach to the production scheduling problem. Especially since a relatively liquid 

market for power contracts exists, one may be tempted to adapt option pricing techniques for 

valuation and risk management of hydroelectric generation. This section will seek to develop 

the intuition behind a real option approach to HPSP and explain how the generation asset may 

be viewed as a complex derivative on the spot price. Also issues that weigh against the use of 

standard financial tools will be elaborated. Recent contributions to the analysis of HPSP using 

financial methods include Barz & Tseng (2002), Davison et al. (2004) and Näsäkkälä & 

Keppo (2005). Eydeland & Wolyniec (2003) discuss real option valuation of a variety of 

energy assets. For a treatment of real option valuation in general the reader is referred to Dixit 

& Pindyck (1994) or Trigeorgis (1996). 

 

4.1 The Reservoir as a Source of Added Value 
 

Consider a run-of-river power plant and an otherwise equal plant with storage capacity. In an 

optimization sense the water balance constraint is less strict for a plant with a reservoir. Since 

enforcing tighter constraints on the solution never can yield an increase in objective value, the 

run-of-river plant can never be worth more than the plant with storage. From a financial 

perspective the run-of-river plant does not yield any optionality regarding the production 



 17

schedule10. In other words there is not room for practicing active management. In the case of 

available storage the producer has the option to postpone production; there is increased 

flexibility compared to the run-of-river plant. Considering two otherwise equal projects where 

one of the projects has an embedded option, the project with the embedded option will have a 

greater value. Thus the plant with storage is more valuable than the run-of-river plant. Under 

the assumption that the producer maximizes the market value, the decision not to produce is 

equivalent to optimally exercising the option to postpone (or reduce) production. 

 

4.2 Analogy to Gas Storage 
 

As has been discussed power prices exhibit seasonality, since the commodity can not easily be 

stored. Essentially a reservoir proves a mean to store electricity. In this respect the resrevoir 

effectively gives the producer the possibility to undertake arbitrage in time, by taking 

advantage of the seasonal spreads in the financial market. Eydeland & Wolyniec (2003) 

develop a method for hedging and valuation of gas storage based on replicating the asset as a 

static portfolio of American spread options. They further claim the same method can be used 

with modifications in valuation of hydroelectric assets. In the Nordic power market American 

spread options are not traded. Since we do not observe such prices applying some modified 

version of the Eydeland & Wolyniec (2003) method would be difficult and computationally 

expensive. Some insights can nevertheless be gained. Assume that the movements of 

electricity swap contract prices reflect the movement of the expected spot electricity price. If a 

hydroelectric generation asset can be viewed as a complex portfolio of spread options on the 

spot electricity price the volatility and correlation between swap contracts should influence 

the value and optimal production schedule. Hence the producer should consider not only swap 

contract prices when scheduling, but also prices of options on swaps and the correlation of 

swap prices. 

                                                 
10 The statement ignores the option to actively manage the timing and frequency of revisions. 
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4.3 Analogy to the Spark Spread Option 
 

Quite stylized, ignoring physical restrictions, a gas fired power plant can be represented as a 

spread option with payoff 

 max ,0el gas gasη⎡ ⎤Π − Π⎣ ⎦ , (4.1) 
 

where gasη  is the efficiency of the gas fired power plant (Eydeland & Wolyniec, 2003). 

 

Davison et al. (2004) consider production scheduling of a single reservoir hydroelectric plant 

in continuous time. The operating objective is 

 

0

max ( , )
T

rt

q
E e w m q dt−⎡ ⎤

Π⎢ ⎥
⎣ ⎦
∫ � . 

 

In a quite general universe with regard to price and inflow processes Davison et al. (2004) 

derive the following criterion for the optimal production strategy 

 

 max ( , ) ∂⎡ ⎤Π −⎢ ⎥∂⎣ ⎦�
� � �

q

Vw m q q
m

, (4.2) 

 
where q�  and w�  denote the instantaneous release and instantaneous power output 

respectively. Interpreting (4.2) in the light of the spark spread payoff the water value can be 

viewed as the unit fuel cost. The large difference between (4.1) and (4.2) is that in the latter 

case both the water value (fuel price) and the marginal output depend on the production rate. 

Even if the marginal output is constant the water value still will not generally be constant in 

release. In the spark spread case we observe market prices for gas; in hydroelectric scheduling 

we can not look only to the market to determine the water value. 
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4.4 Challenges in Applying Financial Methods to HPSP 
 

Since the producer can choose the timing of storage and production HPSP has, in an option 

pricing context, American features. In a discrete setting the problem may be viewed as 

Bermudan. Further since immediate production decisions will affect future water values, and 

since inflow is uncertain HPSP is an inherently path dependent problem. Inflow uncertainty is 

probably what most weighs against naively applying financial methods to the problem. Since 

the market for inflow risk is non-existing it is difficult to robustly apply risk neutral pricing11. 

Also physical restrictions and relations are significant and can not be overlooked. 

 

On the bright side most existing solutions for HPSP involve some sort of price simulation and 

the theory of real option valuation is continuously developed. Financial models are also 

becoming increasingly suited to describe electricity market prices. Applying insights from the 

field of finance may thus help in producing better planning and hedging decisions, as long as 

the temptation to make oversimplifying assumptions is overcome. 

 

 

 

5 Hedging Hydroelectric Generation 
 

As electricity prices are proving highly volatile risk management is a wide spread concern. 

Both standard exchange traded contracts and more exotic OTC contracts are currently used 

for hedging. There is however not an established standard or framework on how to undertake 

transactions in the market to reduce risk. In the following the hedging problem is analysed in 

the light of financial theory. 

 

The Black & Scholes (1973) option pricing theory is based on the assumption that it is 

possible to continuously trade the underlying asset in order to eliminate all risk. In practice 

one can only trade discretely of course, but the theory still is extensively used. Along the lines 

of Black & Scholes, real asset hedging is undertaken by trying to identify a portfolio of 

                                                 
11 See section 5.1 for a discussion of market price of inflow risk and incomplete markets. 
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financial contracts replicating the asset cash flows. The real asset hedge then consists of a 

negative position in the replicating portfolio.  

 

Assuming complete markets production planning and contract risk management can be 

separated (Fleten & Wallace, 2003). Thus in complete markets the production plan may give 

signals to risk management, but risk management should not affect the production plan. Under 

less strict assumptions Fleten & Wallace (2003) still argue that there may be benefits from 

separation of planning and hedging, and it is that path that is pursued here. For the further 

analysis the following assumption is made: 

 

Assumption 5.1 

The financial electricity market is sufficiently liquid to neglect transaction costs. 

 

Assumption 5.1 may be criticized on the basis of considerable bid-ask spreads and transaction 

fees in the Nordic power market. Large producers are on the other hand often involved in 

trading activities. Some are even market makers enjoying lower fees. For such players the 

overall transaction costs will be lower, making the assumption more reasonable. What really 

determines the validity of the assumption is the stability of the hedges; if the hedges are 

relatively stable, minor bid-ask spreads should not greatly affect the solution. In the literature 

models integrating production scheduling and contract management, in the case of significant 

transaction, costs are proposed by Mo et al. (2001) and Fleten et al. (2002). 

 

5.1 Implications of an Incomplete Market 
 

The electricity market can not be viewed as complete in the sense that the producer can hedge 

all price risk. Considering medium to long term production scheduling a resolution of one 

week is customary. Since weekly contracts only exist for the first 5-6 weeks price risk can not 

be eliminated far into the future. Also the realized area price generally is not perfectly 

correlated with the system price, implying that even if a continuous forward curve was traded 

all price risk could not be hedged12. Still price risk can be hedged quite well compared to 

inflow risk. 

 

                                                 
12 Contracts for difference are not available for all price areas. 
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In the hydro dominated Nordic system the hydrological balance affects power prices (Fleten 

et al., 2002). When the total system inflow turns out to be less than expected the prices tend to 

go up, and opposite the prices tend to go down when the total inflow is large. As water 

shortage often is regional (Fleten et al., 2002) one can expect a dependence relationship 

between local inflow and the hydrological balance. A negatively correlated dependence 

relationship between inflow and price provides the hydroelectric producer with a natural 

hedge. If the inflow falls short the producer can expect to be compensated by higher prices 

and vice versa. One can however not expect this dependence relationship to totally eliminate 

inflow risk. Since there does not exist a market for inflow risk there will always be some basis 

risk that can not be hedged. The residual inflow risk is a volume risk; the producer does not 

know for certain the future amount of potential energy in the reservoir. If the producer does 

not account for this risk when making hedging decisions, the resulting volatility of cash flows 

can not generally be expected to decrease. Fleten & Wallace (2003) illustrate the problem 

with a simple example, where selling the expected production forward increases the variance 

of cash flows. 

 

As was explained in section 4 holding a hydroelectric generation asset can be interpreted as a 

complex derivative position on the underlying spot price. One can not expect the payoffs from 

such a position to be symmetrical. Classical discounting techniques can therefore not be 

applied in a consistent way13. Since all sources of risk can not be fully hedged risk neutral 

pricing can not be bluntly applied either. In such a situation Eydeland & Wolyniec (2003) 

suggest adjusting the drift of the price process with the market price of the residual risk. 

 

Let α be expected return, σ volatility and rf the risk free interest rate. The Sharpe ratio , λ, can 

be understood as the price of risk per volatility unit and is defined as 

 

frα
λ

σ
−

= . 

 

                                                 
13 See Chapter 11 in McDonald (2003). 
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The capital asset pricing model (see for instance Brealey & Myers, 2003) can be used to find 

the risk premium for a portfolio consisting of pure hydroelectric producers as 

 

( )hydro f hydro market fr rα β α− = − , 

 

where αhydro is the expected return on the portfolio of hydroelectric stocks, αmarket is the 

expected return on the market as a whole and βhydro is the beta of the hydroelectric portfolio.  

Further the Sharpe ratio of two assets equally correlated with the market will in absence of 

arbitrage opportunities be identical (McDonald, 2003). Assume that the risk premium of 

stocks on hydroelectric producers mainly is caused by inflow risk. Further assume that the 

market value of the production of the company in question is equally correlated with the 

market as the portfolio of hydroelectric producers. The premium for the inflow risk, αinflow, of 

the company in question will then equal 

 

 ( )σ
α − = α −

σ
production

inflow f hydro f
hydro

r r , (5.1) 

 
where σproduction is the volatility of the market value of the production. σproduction is of course 

not easily observable, but (5.1) does give some intuition. With a qualified guess of the ratio 

/production hydroσ σ  (5.1) can at least prove a starting point for pinning down a realistic risk 

premium. A serious objection is that hardly any pure hydroelectric generation stocks are 

exchange traded in Norway. Most companies are either publicly owned or have extensive 

activities beyond hydroelectric generation. As a last resort Eydeland & Wolyniec (2003) 

propose one might plainly use the corporate risk premium. Since one ultimately is not 

interested in pricing non-existent markets the approach may suffice, even if it is not 

theoretically elegant. 

 

5.2 Calculating Sensitivities by Finite Difference Methods 
 

For hedging purposes the generation asset will be viewed as an option to produce power. 

Following standard financial procedures (see for instance McDonald, 2003) the sensitivities 

of the asset value to the underlying uncertainties will yield signals to which hedging 

transactions should be undertaken in the market. 
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Let the dynamics of a hypothetical forward curve, f, be driven by a single source of risk with 

volatility σ, i.e. assume that only parallel shifts in the forward curve occur. Further let the 

resolution of f be equal to the scheduling resolution, for instance one week for medium term 

planning, and assume that the forward price converges to the spot price. Also let f be arbitrage 

free with respect to the corresponding swap term structure dynamics. Express the time 0 

expected market value of the period t uncertain discounted cash flows from the production as 

( )0, 0, , ,t tC C f= σ x , where x is a relevant vector of variables. We will in the following be 

concerned with the sensitivities 

 

delta:  0,
0,

t
t

C
f

∂
Δ =

∂
, 

gamma: 
2

0,
0, 2

t
t

C
f

∂
Γ =

∂
 and 

vega:  0,
0,

t
t

C
vega

∂
=

∂σ
. 

 

Following Glasserman (2004) suppose we have some simulation based mechanism for 

estimating 0,tC  by solving HPSP for a set of S price-inflow scenarios. Further assume that we 

can individually vary the variables of 0,tC . Delta, gamma and vega can then be estimated by 

the finite difference estimators 

 

( ) ( )0, 0,
0, 0,

, ,ˆ
2

t t
t t

C f h C f h
h

σ σΔ Δ

Δ

+ , − − ,
Δ ≈ Δ =

x x
, 

( ) ( ) ( )0 0 0
0 0 2

, 2 , ,ˆ
t t t

t t C f h C f C f h
h

σ σ σΓ Γ

Γ

+ , − , + − ,
Γ ≈ Γ =

x x x
 and 

n ( ) ( )0, 0,
0, 0,

, , , ,
2

t vega t vega
t t

vega

C f h C f h
vega vega

h
σ σ+ − −

≈ =
x x

 (Glasserman, 2004). 

 

Glasserman (2004) also provides methods for reducing bias and variance of the estimators 

with regard to the magnitude of ( )⋅h  relative to S. In the case of HPSP the methods seem quite 
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intractable however. The magnitude of ( )⋅h  and N must therefore probably be determined by a 

combination of qualified guessing and simulation experiments. 

 

5.3 Delta Hedging Hydroelectric Generation 
 

Assume that 0,
ˆ

tΔ  has been determined for all scheduling periods. For simplicity consider only 

a single period τ and assume that a traded swap with price 0, 0,F fτ τ=  covers the period 

exactly. 0,
ˆ

τΔ  then signifies the number of swaps to short in order to hedge the price risk in 

period τ14. Let the value of the portfolio of swaps and future production in period τ at time t be 

denoted by ,tV τ . Suppose tΔ  time passes and the forward curve shifts by a small amount. The 

change in the value of the portfolio will then be 

 

( ) ( )0, ,
0, , 0, , 0, , 0, , 0, ,

0, ,

ˆ 0t t
t t t t t t t

t

C C
V V C C F F C C F F

F F
τ

τ τ τ τ τ τ τ τ τ
τ τ

Δ
Δ Δ 0, Δ Δ Δ

Δ

−
− = − − Δ − ≈ − − − =

−
. 

 

As can be seen the producer is effectively hedged against price risk in period τ. Note also that 

the hedging strategy is dynamic; the producer must recalculate delta and adjust the position 

accordingly on a regular basis. 

 

In the real world the forward curve dynamics are not well approximated by a one factor 

model. Models with more sources of risk should therefore be used, especially for risk 

management purposes (Bjerksund & Stensland, 2000). Clewlow & Strickland (2000) discuss 

finite difference methods for delta hedging when the forward curve is driven by multiple 

sources of risk, the extension being relatively simple. 

 

5.4 Hedging with swaps: Hypotheses 
 

The producer has a natural long position in future spot power. It is therefore expected that the 

resulting hedge will be a short position in swaps. Assuming that there is a natural negative 

dependence relationship between price and inflow the producer is partially naturally hedged. 

                                                 
14 Notice that the unit of delta is MWh as [C0,t] = € and [f] = € / MWh. 
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It is therefore suspected that the delta should be less than the expected production, [ ]tE w . 

The above contemplations are formulated as Hypothesis 1 below. 

 

Hypothesis 1 

a. 0t tΔ ≥ ∀  

b. [ ] 0− Δ > ∀t tE w t  

 

If the scheduling resolution is less than the length of the delivery period of the available hedge 

products it seems reasonable that the optimal hedge position should be less than the expected 

cumulative production in the delivery period15. Moreover since delivery periods of traded 

swaps increase with time to delivery the hedge position should be adjusted accordingly. The 

resolution problem should however not affect the delta directly since we are assuming an 

underlying continuous forward curve, but rather the way delta is used to create a hedging 

strategy. Considering scheduling periods that are shorter than the available hedge product the 

producer can merely minimize the price risk. If, say two scheduling periods are only covered 

by a single two-period hedge product, the producer will be overhedging one period and 

underhedging the other. 

 

5.5 Including Options in Hedging: Hypotheses 
 

As explained in section 0 the reservoir yields an option to postpone production. If the 

volatility of the electricity price increases it can be expected that the value of the option to 

postpone will increase: 

 

 Hypothesis 2 

 0tvega t≥ ∀  

 

                                                 
15 As long as the expected production is not constant in the period. 
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Option values are generally nonlinear in the price of the underlying. Since a generation asset 

has option characteristics we can not expect the value of the production to be linear in swap 

prices either: 

 

 Hypothesis 3 

 tΓ  is not generally equal to zero. 

 

Assuming hypotheses 2 and 3 hold it is reasonable to believe that options can be used 

fruitfully in hedging. If one is able to reduce gamma and vega, hedges will be more stable 

(McDonald, 2003). The reason is that the hedge will be a better approximation of the value 

function. Hence a last hypothesis is proposed: 

 

 Hypothesis 4 

 Incorporating options in hedging will yield more stable hedges. 

 

5.6 A Conceptual Hedging Framework 
 

Based on the discussion so far a step by step framework for hedging price risk is proposed 

below. The proposed framework implies a dynamic hedging strategy. Thus stability of hedges 

must decide how often the portfolio needs to be rebalanced. 

 

1. Estimate a realistic price process that conditions on available market information. 

2. Estimate the market price of risk, and adjust the price process accordingly. 

3. Solve the production planning problem to identify the optimal production schedule. 

4. Calculate sensitivities by finite difference methods. 

5. Calculate sensitivities of the set of available hedge products (swaps and options). 

6. Calculate the optimal hedge positions in the least squares sense. 

7. Scrutinize the resulting hedge positions and hedge away, if the results are sensible. 

 

Steps 1 and 3 are treated more carefully in section 7.1 and chapter 6 respectively. Step 5 is 

dependant on the chosen price model, which should match market prices. Regarding step 6 we 

can not expect to eliminate price risk with the available hedge instruments, it must instead be 

minimized in some fashion. Clewlow & Strickland (2000) propose ordinary unconstrained 
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least squares procedures when hedging energy derivatives. One might consider other 

approaches, for example restricting the number of instruments. If options are included, one 

can for instance first minimze gamma and vega and secondly use swaps to reduce delta. Step 

7 should not be underestimated. One must always bear in mind that the generation asset can 

not be replicated perfectly with financial instruments. A hedging model for hydroelectric 

generation should be viewed as a decision support tool, not the truth. 

 

5.7 Hedging To Modify the Company’s Risk Exposure 
 

Risk management of hydroelectric generation may be interpreted in a wider context than just 

minimizing electricity price risk. The fundamentals of the power market make the power price 

highly dependant on a number of factors such as the gas, coal and CO2 price, all of which are 

traded in financial markets. If one is able to robustly model the dependence of the power price 

on the underlying factors it should be possible to identify possible hedge positions relative to 

the underlying drivers. If the producer say, is uncomfortable with CO2 prices it might be 

possible to reduce the exposure to CO2 risk and at the same time keep exposure to other 

sources of risk. Hedging hydroelectric generation can in this wider sense be viewed as 

modifying the risks to better suit the capabilities of the company. 

 

 

 

6 HPSP Solution Framework 
 

In order to identify the optimal production strategy and the resulting hedge positions a 

framework for solving HPSP is needed. In the following subsections the problem is 

formulated mathematically and a solution algorithm is proposed. The attention is restricted to 

medium to long term scheduling of a well regulated, single reservoir, single station system. 

For an extensive treatment of programming formulations the reader is referred to Fleten & 

Wallace (2003). 
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6.1 Deterministic HPSP formulation 
 

In the case of perfect knowledge of future inflow and price development production 

scheduling is reduced to a deterministic optimization problem. In the case of a linear 

production function the problem is easily solved as a linear program. As the production 

function in reality depends non-linearly on both the water head and the flow rate, a realistic 

model does not present convexity. Consequently even the deterministic problem is non-trivial. 

Following is a mathematical formulation of the deterministic HPSP. 

 

Set 

Ρ  The set of scheduling periods. { }0,1,...,T=Ρ  

 

Index 
t Index for period 

 

Data 
πt Electricity price in period t 

ψt Inflow in period t 

Mmax Upper bound on the reservoir level 

Mmin Lower bound on the reservoir level 

M0 Initial reservoir 

MT+1 End reservoir 

Qmax Upper bound on the release 

r One period interest rate 

 

Variables 
V0 Present value of production 

mt Initial reservoir in period t 

lt Spill in period t 

pt Generated electricity in period t 

qt Released volume in period t 
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Objective 

(1) 0 , , 0

max
(1 )t t t

T
t

ttq m l t

V p
r

π
=

=
+∑  

 

Constraints 

(2) ( , )t t tp w m q t= ∀ ∈Ρ  

(3) 1t t t t tm m q l tψ+ − + + = ∀ ∈Ρ  

(4) 0 0m M=  

(5) 1 1T Tm M+ +=  

(6) min maxtM m M t≤ ≤ ∀ ∈Ρ  

(7) maxtq Q t≤ ∀ ∈Ρ  

(8) , 0t tq l t≥ ∀ ∈Ρ  

 

The objective function, (1), is the sum of the discounted production revenues in each period. 

Equation (2) yields the generated amount of power as a function of the reservoir level and the 

release. Constraint (3) is the water balance, which states that the amount of stored water 

transferred from one period to the next must equal the initial reservoir in the preceding period 

plus the net inflow in the preceding period. Constraints (4) and (5) are restrictions on the 

initial and the end reservoir respectively. The significance of constraint (5) is that without it 

an optimal solution will seek to empty the reservoir towards the end of the planning horizon, 

which is often not optimal in a wider perspective. The upper and lower bounds on the 

reservoir level are formulated in constraint (6). Constraint (7) restricts the maximum release 

and finally (8) is the non-negativity constraint on the release and the spill. Note that 

production costs are not included in the objective. The assumption is that costs are too small 

too affect the solution. According to Nilsson & Sjelvgren (1997) costs related to start-ups are 

mainly caused by wear, but the authors point to loss of water also being a problem. Nilsson & 

Sjelvgren (1997) claim that costs can be important in short term scheduling. In medium and 

long term scheduling, with a weekly resolution, costs are likely to be rather small compared to 

production revenues. 
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6.1.1 Extensions and Variations of the Deterministic Formulation 
 

There are some obvious extensions to the above model that are easily incorporated into the 

formulation. For one it is often necessary to include a strictly positive lower bound on the 

release due to environmental or other reasons. Planned revisions or environmental regulations 

might necessitate time varying upper and lower bounds on the release and reservoir variables. 

Due to technical and safety reasons there will sometimes be constraints on the ramp rates and 

on the rate of change of the reservoir level. Ramp constraints can be formulated as 

 

1
+

+ − ≤t t xx x D  and 1
−

+− ≤t t xx x D , 

 

where x is the variable in question, +
xD  is the maximum allowed increase and −

xD  is the 

maximum allowed decrease. From a technical point of view the upper bound on the release 

should also be restricted by a function of the reservoir level. 

 

Perhaps the most obvious variation of the model is to omit the constraint on the end reservoir. 

To avoid emptying the reservoir one might instead define a function for the value of the end 

reservoir or penalize deviations from a target reservoir. 

 

6.1.2 Applications of the Deterministic Model 
 

In the case that future prices and inflows are deterministically known a solution to the 

program will yield the optimal production strategy and the correct value. In the real world the 

future is uncertain, and one might want to apply the model to expected inflow and expected 

price. The most realistic application of the deterministic model is in combination with some 

kind of Monte Carlo simulation of the price and inflow processes. The problem might then be 

solved for a set of joint price-inflow scenarios to yield the expected value of the production, 

by averaging over the solutions. The optimal value, 0
uV , will then be an upper bound to the 

true value (Näsäkkälä & Keppo, 2005), since the deterministic solution is effectively 

conditioning on unknown information: 

 

0 0 ,u
t tV V t= Π Ψ ∀ ∈Ρ . 
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It should be noted that even though this approach yields an upper bound for the total value, it 

is not really possible to infer much about the true, optimal production strategy. According to 

O. B. Fosso blindly following the expected production plan proposed by the deterministic 

solution is generally not recommended (lecture, October, 2005). Fleten & Wallace (2003) 

argue that deterministic solutions underestimate the risk of spilling water and do not see any 

value in waiting with releasing water, in order to learn more about the future. Concerning risk 

management applications one should exercise great care in interpreting results from a 

deterministic model. If one chooses to analyse HPSP in a financial context it is obvious that 

setting up hedges based on a deterministic model is, at best, theoretically unfounded. The 

upper bound might however be used in the evaluation of the performance of other models, the 

idea being that a realistic (stochastic) model yielding values close to the upper bound is better 

than one yielding values further from the bound. 

 

6.2 Stochastic HPSP formulation 
 

Following the discussion of the importance of explicitly incorporating price and inflow 

uncertainty, a stochastic programming formulation is provided. Price and inflow are now 

stochastic variables, and the program is formulated recursively. 

 

Objective 

(1) 1

, ,
max

1t t t

t
t t tq m l

VV E p t
r

+⎡ ⎤= Π + ∀ ∈⎢ ⎥+⎣ ⎦
Ρ  

 

Constraints 

(2) ( , )t t tp w m q t= ∀ ∈Ρ  

(3) 1t t t t tm m q l t+ − + + = Ψ ∀ ∈Ρ  

(4) 0 0m M=  

(5) 
1 1( , , )

TV T T T Tg mμ π ψ
+ +=  

(7) min maxtM m M t≤ ≤ ∀ ∈Ρ  

(8) maxtq Q t≤ ∀ ∈Ρ  

(9) , 0t tq l t≥ ∀ ∈Ρ  
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The objective (1) is identical to equation (2.2), apart from the introduction of the spill variable 

as an argument. The constraint on the end reservoir in the deterministic formulation is 

replaced with constraint (5), giving the conditional discounted value of the end reservoir as a 

function of the terminal price, inflow and end reservoir. Note that the functional form of gT 

implies the assumption that the period T price and inflow exhibit all information of the price 

and inflow history. The remaining constraints correspond to the constraints in the 

deterministic formulation. A solution to the stochastic formulation will yield the optimal 

production schedule and the true value of the production. 

 

6.3 Stochastic Solution Algorithm 
 

In order to solve the stochastic programming formulation a multistage stochastic algorithm is 

called for. The application to medium to long term scheduling and hedging imply several 

requirements of the solution algorithm: 

 

– Inflow and price uncertainty must be part of the state space. 

– The solution method must prove means for calculating hedge signals. 

– Since end effects can be pronounced in the case of a well regulated system, the 

solution algorithm must be able to handle a relatively long analysis horizon. 

– For obtaining realistic hedges there is a need for a time resolution of not less than a 

week; a solution that has constant expected production for long time periods might be 

in conflict with market incentives. 

– Implementation and maintenance of the system should be within reach for the 

practitioner. 

– Electricity price processes are not yet fully understood. As a consequence a method 

where the price description can be replaced with relative ease would be particularly 

sought after. 

– The problem must be solvable within reasonable time. 

 

In the literature different solution approaches have been suggested. Standard stochastic 

dynamic programming (SDP) techniques are frequent. SDP is based on representing the 

uncertainty on trees or as a Markov chain. The tree representation leads to dimensionality 

problems when considering problems with a large number of stages. Stochastic dual dynamic 
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programming (SDDP) (Pereira (1989), Pereira et al. (1999)) has received much attention by 

SINTEF Energy Research. According to S.E. Fleten however “SDDP is best suited for 

problems with uncertainty in the right hand side only, in our case inflow, and not in the 

objective, in our case price” (e-mail correspondence, June 9, 2006). Zhang & Ponnambalam 

(2006) develop the Fletcher-Ponnambalam model (Fletcher & Ponnambalam, 1998) 

accounting for price uncertainty. The model avoids scenario generation altogether, which 

could mean reduced computing times. However, the price description used is highly 

unrealistic and results remain inconclusive. Davison et al. (2004) consider a single reservoir 

system and derive nonlinear partial-integro-differential equations based on real options theory 

for valuation and the optimal operating strategy. The equations are solved via sophisticated 

numerical methods for short term scheduling problems. Näsäkkälä & Keppo (2005) suggests 

an approach based on specifying a parameterized production threshold function. The method 

shows promising results applied to a Norwegian system. 

 

Of the methods proposed in the literature Näsäkkälä & Keppo (2005) seems to be closest to 

satisfying the aforementioned requirements. What poses the greatest challenge is identifying 

the parameters of the threshold function. Näsäkkälä & Keppo (2005) reports that 150 different 

parameter combinations were chosen from a larger set of parameters based on qualitative 

judgement and simulations. Further extensive simulation was undertaken to identify the final 

parameters. Maintenance of the model may thus prove a challenge. Relative to the 

aforementioned requirements, the existing algorithms that have been identified are either quite 

complicated, pose difficult implementation issues or have infeasible computing time. 

 

6.4 Least-Squares Monte Carlo Algorithm 
 

Inspired by advances in pricing of American options by simulation, originating from 

Longstaff & Schwartz (2001), a HPSP solution algorithm based on least-square Monte Carlo 

(LSM) techniques has been developed. LSM is closely related to what is referred to as the 

stochastic mesh. Intuitively the LSM method is quite simple, but the relation to the stochastic 

mesh is important as a theoretical basis for the approach. 
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6.4.1 Estimating Continuation Values by Regression 
 
Figure 6.1 show the principles of a stochastic mesh. Solid lines represent independently drawn 

scenarios, and dashed lines represent a possibility to move from one scenario to another. Let 

,s tn  denote the node defined by the intersection of scenario s and period t. Since the scenarios 

are generated independently the appropriate weight to assign to the transition from an 

arbitrary node ,i tn  to a following node , 1+j tn  is not obvious. Glasserman (2004) discuss 

general conditions on the mesh and how the distribution of the generating process can be used 

to determine the transition weights. The calculation is generally non-trivial as the transition 

densities may be unknown or fail to exist (Glasserman, 2004). The main drawback of the 

stochastic mesh is obvious. The determination of weights is likely to be difficult and time 

consuming. Considering realistic price-inflow dynamics the calculation might even turn out to 

be infeasible. 

 

 
Figure 6.1: Stochastic Mesh 

 

In practice the goal is not however to calculate transition weights. Glasserman (2004) discuss 

applications of the technique to evaluate continuation values of American style options. 

Concerning HPSP, the expected future value of the reservoir as a function of the state 

variables is needed, in order to identify the optimal operating strategy. The LSM method uses 

least-squares regression to estimate continuation values for American style options. 

According to Glasserman (2004) the regression leads to an implicit choice of weights in the 

stochastic mesh. In other words one can avoid calculation of weights altogether by using 

regression estimators as an approximation to the continuation value. Longstaff & Schwartz 

(2001) apply the LSM approach to value American style, path dependent options in 

multifactor settings and obtain accurate approximations. In later years the LSM approach has 

been extended to real option problems by Gamba (2002). Thanawalla (2005) apply LSM to 

s 

t 
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value swing options and claim that the methodology has relevance to physical assets that 

derive their value from cash flows resulting from flexible supply. The choice to extend LSM 

to HPSP is thus based on the apparent flexibility of the approach. 

 

6.4.2 Description of the LSM Algorithm 
 

The current section will explain the LSM algorithm. For a detailed pseudo code the reader is 

referred to Appendix 2. In the algorithm the intraperiod price and inflow is assumed revealed 

at the beginning of each period. The assumption implies that at the beginning of period t the 

end reservoir in the period, mt+1, reduces to a deterministic variable. 

 

The concepts of the algorithm are quite simple and somewhat similar to traditionally used 

SDP, the main exception being that independent parallel scenarios are used instead of trees or 

restrictive Markov chains. Inputs to the algorithm are a set of joint price-inflow scenarios, a 

specification of the function for the value of the end reservoir16 and a discrete set of reservoir 

levels. The set of reservoir levels should approximate the continuous set of all possible 

reservoir levels. The algorithm has two main parts. The first part works recursively to produce 

an approximated function for the conditional expected future value in every period. Secondly 

the conditional expectations are used in stepwise forward simulation to construct the 

production paths. The operating strategy is found as the expectation over the resulting paths. 

 

Part 1: Recursion 
 

Beginning in the last period, T, the one stage problem is solved for all possible combinations 

of scenarios and possible reservoir levels defined by the discrete set. Since the value of the 

end reservoir is specified by a predetermined function the optimal values, conditioned on the 

initial reservoir in the period, are found. A hypothetical reservoir development in an arbitrary 

scenario is shown in Figure 6.2. 

 

                                                 
16 The function gT in the stochastic programming formulation. 
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Figure 6.2: Possible one stage reservoir development 

 

For each discrete initial reservoir level a function for the conditional expected value17 in T-1 

is estimated by regressing the corresponding optimal values on a set of basis functions of the 

state variables, price and inflow, in the previous period. To create a scenario specific future 

value function in T-1 all regression functions are evaluated with the particular realizations of 

price and inflow. The scenario specific future value function is approximated as a linear 

interpolation between the resulting values. When all scenario specific future value functions 

are created the one stage sub problem in period T-1 can be solved in the same manner, 

utilizing the scenario specific future value function. The procedure is repeated until all future 

value functions are estimated. 

 

Note that the defining values of the interpolation functions need not be stored for the whole 

process. Merely the coefficients of the regression functions need to be stored, as they are used 

in creating the scenario specific future value functions. 

 

End Part 1 
 

Part 2: Stepwise Forward Optimization 
 

To eliminate possible regression bias new scenarios are drawn. Starting in the first period, in 

the current reservoir, the scenario specific future value functions are used in solving the one 

stage problems. If the future value functions have not been stored the necessary part of the 

function can be created through the regression functions. In the case of a well regulated 

system it is often only possible to release a small part of the available water during one 

period, and hence only a small part of the scenario specific future value function is needed. 

After determining the optimal strategy in the first period the uncertainty in the next period is 

                                                 
17 Conditional on ending in a specific reservoir. 

mT mT+1 

Mmax 

Mmin 
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revealed. The next subproblem can then be solved while enforcing the water balance as a link 

to the previous period. When all sub problems in all scenarios are solved, the operating 

strategy is found as the expectation over all paths. 

 

End Part 2 
 

In the case that Tg  is a concave function with respect to the reservoir value and also assuming 

a linear production function, the future value functions should be concave. This follows from 

the fact that an increased future reservoir level must at least yield the same expected value of 

future production, but at the same time increase the risk of spilling. The scenario specific 

future value function should thereby look something like Figure 6.3. The shape of the 

resulting future value functions should hence be able to convey some information about the 

stability of the regressions. 

 

 
Figure 6.3: Reasonable shape of future value function 

 

6.4.3 Basis functions 
 

According to Longstaff & Schwartz (2001) numerical results indicate that simple powers of 

the state variables give accurate results in determining the optimal exercise strategy for 

American style options. For the application to HPSP it is therefore chosen to use the basis 

functions π , 2π , 3π , ψ , 2ψ , 3ψ  and πψ  as well as a constant. Longstaff & Schwartz 

(2001) also suggest a number of other possible basis functions such as Laguerre polynomials, 

Jacobi polynomials and trigonometric series. 

 

mt 

Future value
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7 Representation of Uncertainty 
 

The proposed LSM algorithm necessitates a mechanism to create synthetic price and inflow 

series. In previous sections arguments for a fundamental dependence of price on inflow have 

been advanced. Estimation of a joint price-inflow distribution would therefore be preferable. 

Considering the non-stationary and complex features of price and inflow processes, 

estimating a joint distribution would require extensive studies. Probably one would need to 

introduce additional explanatory variables and apply advanced statistical methodology to 

achieve satisfactory results. Considering the limited time frame of the current work, price and 

inflow processes are estimated separately. However, the models should allow for correlation 

in order to investigate the qualitative influence on operating strategy and hedges. 

 

7.1 Price model 
 

Commodity price processes have been extensively studied, with electricity price processes 

receiving increased attention in later years. Three main approaches can be distinguished in the 

literature. Obviously the modelling of spot prices, along with the derivation of pricing 

formulas for derivative contracts, has received attention. Among others, Schwartz (1997) is an 

important contribution in this area. On the other hand the Heath-Jarrow-Morton (HJM) 

approach (Heath et al., 1992) of modelling the entire forward curve has also been studied for 

modelling energy prices. Bjerksund & Stensland (2000) and Benth & Koekebakker (2005) 

develop term structure models with a basis in the Nordic electricity market. Clewlow & 

Strickland (2000) and Eydeland & Wolyniec (2003) provide good overviews of both the spot 

modelling approach and the term structure approach. Common to both the spot modelling 

approach and the HJM approach is that models based on Brownian motion tend to have 

problems fitting the data18. Finally Eydeland & Wolyniec (2003) suggests a modelling 

approach combining fundamental models and fuel price models with calibration to electricity 

market prices. The approach is labelled hybrid modelling. 

 

                                                 
18 The problem is more pronounced for spot prices than for swap prices. 
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7.1.2 Considerations When Choosing a Price Model 
 

Hydroelectric scheduling is affected not only by the short term dynamics of the spot price, but 

also by the long term dynamics of the forward curve. Especially when considering a system 

with high relative regulation, the state and dynamics of the long end of the forward curve may 

influence heavily on the immediate production decision. As a hydroelectric system may be 

considered a derivative directly on the spot price, one might be tempted to model the spot 

electricity price only. For hedging purposes it is not possible to use the spot, as it can not be 

stored. Thus, there is a need for a model that conditions on current market information. A 

good model for hydroelectric scheduling could possibly be a combination of a term structure 

model and a spot model. In other words a term structure model with a joint spot model on the 

short end, allowing for short term spikes in the spot price. Obviously the development of a 

realistic price model would be quite a study in itself, considering the deviations from standard 

assumptions pointed out in chapter 3. Some quite simplifying assumptions with regard to the 

price process are hence made. 

 

7.1.3 Choice of Price Model 
 

In order to incorporate market information there is a need for the price model to match quoted 

market prices of swap contracts and preferably also the prices of traded options. In this 

respect it seems natural to choose a HJM model. On the other hand Benth & Koekebakker 

(2005) point out several problematic issues regarding the HJM approach in modelling spot 

electricity prices, one of the most important being that swap prices do not in general converge 

to the spot price. Pure spot models on the other hand often require extensive calibration to 

match market prices, which would be impractical in simulation of hedges. Also the price 

model chosen should allow for correlation with the inflow model, to facilitate testing of 

possible effects of price inflow dependence on hedges and production strategy. 

 

Following the preceding discussion it is chosen to implement a one factor term structure 

model, as well as a one factor spot model calibrated to the term structure. The difference 

between the spot model and the term structure model being that the latter can better be 

calibrated to match the implied volatilities of quoted options. The spot model chosen is the 
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Schwartz (1997) one factor mean reverting model, and the chosen term structure model is of 

the Bjerksund et al. (2000) type. 

 

7.1.4 Schwartz One Factor Model 
 

The Schwartz (1997) one factor mean reverting model is defined by the stochastic differential 

equation 

 

 ( )( ) ( ) ln ( ) ( )
( )
Π

= − Π +
Π

d t t t dt dZ t
t

κ θ σ , (7.1) 

 
where dZ(t) is a standard Browninan motion, κ is the mean reversion rate, θ(t) is a time 

varying mean and σ is the standard deviation of the Brownian motion. In simulation and 

parameter estimation of (7.1) it is convenient to do the transformation 

 

 ( ) ln ( )t tΧ = Π . 

 
Applying Itô’s formula yields 

 

 ( )ˆ ˆ( ) ( ) ( ) ( ), ( ) ( )
2

2

Χ = − Χ + = −d t t t dt dZ t t t σκ θ σ θ θ
κ

. (7.2) 

 
The simulation of (7.1) may be accomplished by discretizing (7.2) as 

 

( )ˆ
t t t tt tκ θ σΔΧ = − Χ Δ + Δ Ζ , 

 
where tΖ  is a standard normal variate. Clewlow & Strickland (2000) point to the fact that the 

deterministic drift is a function of the price, and as a consequence the discretization is only 

correct in the limit ( )t d tΔΧ → Χ . The time steps should for this reason be chosen small 

relative to the mean reversion rate. Schwartz (1997) shows that the model can be calibrated to 

the term structure of forward contracts by letting 

 

 ( )21 ln (0, )θ ln (0, ) 1
4

t
t

d f t f t e
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κ κ

2
−= + + − , 



 41

 

where (0, )f t  denotes the current forward price for a contract with maturity at time t. 

Calibrating the process in this fashion will yield a risk neutral spot price process with regard 

to forward prices. However, the volatility structure of the model will not generally correspond 

with market price of options. According to Clewlow & Strickland (2000) the Schwartz model 

is equivalent to a one factor lognormal forward curve model with volatility structure 

( , ) t st s e κσ σ − ( − )= , where ( , )t sσ  is the volatility of a forward contract at time t with delivery 

at time s. 

 

7.1.5 Estimation of Schwartz Model Parameters 
 

As we do not observe forward prices for electricity there is a need to create a forward curve 

from observed swap prices to calibrate the model. This issue is treated in section 7.2. Further 

Schwartz (1997) suggests using Kalman filtering techniques to estimate the parameters κ and 

σ. Though more crude, the parameters are in this case estimated by a simple least squares 

procedure. Specifically the estimation procedure is based on the fact that when observations 

of the process (7.2) are regularly spaced, the joint density is the same as the joint density of 

the AR(1) process 

 

 ( ) ( ) ( )21ˆ1 1 , 0,
2n n n n

e
e B e B N

κ
κ κ

σ
θ ε ε

κ

2 −
− −

⎛ ⎞−
⎜ ⎟− Υ = − +
⎜ ⎟
⎝ ⎠

∼ , (7.3) 

 

where B denotes the back shift operator (Brockell & Davis, 2002). 

 

Utilizing the discretization (7.3), the parameters κ, σ, and ˆnμ  were simultaneously estimated 

by minimizing the mean square of the prediction errors. Weekly system prices, obtained from 

Nord Pool, for the period 1995-2005 were used in estimation. Descriptive statistics of the 

prices and log returns are provided in Appendix 3. The minimization was undertaken using 

the Solver Add-in in Microsoft® Excel 2003. As the solver is not particularly robust towards 

local minima starting values were carefully chosen. The logarithm of the weekly, historical 

mean was used as a starting value for n̂θ , and starting values for κ  and σ  were found by a 

linear regression procedure. 
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The final, annualized parameter estimates are provided below. 

 

ˆ 1.8835κ =  

σ̂ = 0.2387  

 

An augmented Dickey-Fuller test was undertaken to test for a unit root. The value of the 

statistic was -3.22, implying that the null hypothesis of a unit root is rejected at level .05 (see 

Brockwell & Davis, 2003). A regression plot resulting from the Dickey-Fuller test, and 

descriptive statistics of the residuals are provided in Appendix 3. Following the discussion in 

section 3.2 it should not come as a surprise that the model fit is not very good. The excess 

kurtosis of the residuals is of such magnitude that the lognormal model does not prove a 

decent fit to the data. 

 

7.1.7 Bjerksund et al. One Factor Term Structure Model 
 

Bjerksund et al. (2000) adapt the Black 76 model to describe swap dynamics, and provide 

analytical pricing formulas for European options. The current section is based on the work of 

the aforementioned authors. 

 

Let ( , )f t s  be the price at time t for a forward contract with delivery over an infinitesimal 

delivery period at time s, and let ,t sσ( )  be the volatility of ( , )f t s . Assuming lognormal 

forward prices, Bjerksund et al. (2000) propose the following general model for the forward 

dynamics 

 

 ( , ) ( , ) ( )
( , )

= σ
df t s t s dZ t
f t s

. (7.4) 

 

The forward price at a future time u is then given by 

 

 21( , ) ( , )exp ( , ) ( ) ,
2

⎛ ⎞
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∫ ∫
u u

t t

f u s f t s v s dZ v v s dv . (7.5) 
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Assuming that the forward price converges to the spot price, the future spot price is given by 

letting u s→  in (7.5), i.e. ( , )f t t t= Π( ) . Since we do not observe prices of options on 

forwards we need an associated swap model in order to calibrate (7.4) to observed option 

prices. Following arbitrage arguments the price of a swap, 1 2( ; , )F t T T , at time t with delivery 

in the period T1 to T2 must be 
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2
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−

−

= ω ω =∫
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(Benth & Koekebakker, 2005). 

 

Bjerksund et al. (2000) approximate the swap dynamics as 
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Benth & Koekebakker (2005) derive an expression for the true swap dynamics, and discuss 

the implications of the approximation (7.6). In the following it is assumed that the 

approximation will suffice for our purposes. To calibrate the swap model to traded options let 

the Black 76 volatility be denoted by σB76 and let the time to expiration be denoted by τ. 

Following Bjerksund et al. (2000) 

 

 1 2
76 76 1 2

1 2

( ; , ) 1( , , ) ln
( ; , )

⎡ ⎤τ
σ = σ τ − − − = ⎢ ⎥ τ −⎣ ⎦

B B t
F T Tt T t T t Var
F t T T t

, where (7.8) 

 ( )2
1 2( ; , )

τ

= Σ∫t
t

Var s T T ds . (7.9) 

 

Assuming a parameterized form of , , ;t s t sσ( ) = σ( )x  one can through the relations (7.7), (7.8) 

and (7.9) calibrate the parameters x  in order to match observed option prices. 
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7.1.8 Calibration of Volatility to Market Prices 
 

There is not an established industry standard in the sense of the best volatility function. There 

are some effects the volatility function should be able to capture however. First of all there is 

the pronounced Samuelson effect. Also volatility tends to level off at a nonzero level for long 

maturity contracts. Here the function (7.10), proposed by Rebonato (1999), is assumed. 

 

 ( )( ) ( )( )( , ) expσ = + − − − +t s a b s t c s t d  (7.10) 

 

Often it is observed that the Black 76 implied volatility for the second option contract to 

mature actually is higher than for the first contract to mature. An example is provided in 

Figure 7.1. (7.10) can also capture this feature. 
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Figur 7.1: Black 76 implied volatility of at the money option contracts 20 April, 2006  

 

The estimation of the parameters , x , was undertaken by minimizing the mean square error of 

the prices predicted by the model. The regression was conducted in Matlab® and the prices 

used were closing prices for at the money call options on 20 April, 2006. It is assumed that 

the observed prices represent the markets expectation of volatility on the specific date. 

Regression results are provided in Table 7.1. The resulting volatility function is plotted in 

Figure 7.1, along with the volatility structure implied by the estimated Schwartz model. 

 

Product Price Model Price  Parameters 
ENOC53Q3-06 3.31 3.37  a 0.2510 
ENOC57Q4-06 5.34 5.22  b 0.7774 
ENOC50YR-07 4.80 4.87  c 1.8017 
ENOC48YR-08 5.64 5.61  d 0.0990 

 
Table 7.1: Regression results 
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Figure 7.1: Forward volatility function 

 

7.1.9 Discussion 
 
The Rebonato volatility function does give a decent picture of the at the money volatility, 

implied by the traded options. In general one should expect the parameters to be quite 

unstable, since only four different delivery period option contracts currently trade at 

Nordpool. Estimation based on historical volatility would generally be far more robust, but 

might not represent the current market price of volatility. Further, because of the non-

Gaussian behaviour of swap returns, one can not expect the forward curve model to price 

options with relatively high or low strikes correct. The estimated volatility of the Schwartz 

model is clearly below market expectations. Compared to the Schwartz model it can be 

expected that the Bjerksund et al. model will perform relatively well. With that said, referring 

to 5.3, a multifactor forward curve model would be preferable in real life hedging 

applications. 

 

7.2 Constructing a Smooth Forward Curve 
 

In order to implement the above described price models there is need to construct a 

continuous forward curve from observed swap price data. The approach of Ollmar (2003) has 

been chosen in the current case. For a different approach see for instance Fleten & Lemming 

(2003). Ollmar’s approach is based on the fitting of a fifth order polynomial spline to the 

observed swap prices. The resulting curve can easily be integrated to produce swap prices 

with arbitrary delivery periods. Following is a short description of the method and a 

presentation of the results obtained from an application to Nord Pool price data. 
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Let (0, ; )i if t y , where yi are the polynomial coefficients, denote the smooth curve piece 

corresponding to the swap price 1(0, , )i iF T T + . Assume we observe N non-overlapping, 

adjacent swap contracts. To find the parameters of the spline solve the minimization problem: 
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The objective, (1), represents the maximum smoothness criterion by minimization of the 

change in the first derivative along the curve. Constraints (2), (3) and (4) ensure that the curve 

is continuous and differentiable in the second order sense. The fifth constraint forces the 

spline to level out at the end of the horizon. The last constraint ensures that there are no 

arbitrage opportunities between the smoothed curve and the original term structure. Ollmar 

(2003) shows how the problem can be solved as a system of linear equations, and also extends 

the model to include bid-offer spreads. 

 

When contracts with long delivery periods are included, the resulting smooth curve will not 

necessarily exhibit the expected seasonal characteristics. Ollmar (2003) proposes to include a 

prior function in the optimization to adjust for seasonal variations. The adjustment is 

undertaken by subtracting the integral of the adjustment function over the respective delivery 

period from all swap prices before the optimization, and adding the prior function to the 

spline after the optimization. In Figure 7.2 the result from an application of the method is 

shown. The figure illustrates how the resulting seasonal variation is quite unrealistic for the 

contract for the year 2009 when we do not include a prior function. 
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The prior function included for the correction of this problem is the simple sinusoidal function 

 

( )2cosa t bπ⎛ ⎞−⎜ ⎟365⎝ ⎠
, 

 

where a and b are constants and t is measured in days. The specific choice of a and b is done 

to give a peak in mid January and an amplitude of € 10. In real applications one should strive 

to find good prior functions. Both Ollmar (2003) and Fleten & Lemming (2003) suggest using 

the results from bottom up models. 

 

 
Figure 7.2: Smoothed term structure of closing prices on 20 April, 2006 

 

7.3 Time Series Analysis of Inflow Data 
 

In connection with the current work a time series analysis of the Siso reservoir inflow series 

has been undertaken. Tools used in the analysis include the statistical computing environment 

R and the Matlab® toolboxes Econometrics Toolbox (LeSage, 2005) and the UCSD GARCH 

Toolbox (Sheppard, 2005). 

 

River flow time series are in the literature analyzed using a host of different models. The 

current text will not attempt to give an overview, but rather restrict attention to fairly basic 

approaches. Despite the fact that hydrological time series are intrinsically continuous only 

discrete autoregressive moving average (ARMA) type models will be considered. In some 

cases hydrological time series exhibit the Hurst effect (Hurst, 1951), which is long range 

dependence in the time series. The main explanations for the Hurst phenomenon are either 
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that the time series exhibits long term memory or that the mean of the series changes with 

time (Montanari, Rosso & Taqqu, 1997). To analyze long range dependence fractionally 

integrated ARMA (FARIMA) models are applicable (Brockwell & Davis, 2002). 

 

7.3.1 Definitions and terminology 
 

{ }nΨ  is an ARMA(p,q) process if { }nΨ  is stationary and satisfy the general equation 

 

1 1 1 1... ...n n p n p n n q n qφ φ θ θ− − − −Ψ − Ψ − − Ψ = Ζ + Ζ + + Ζ , 

 

where nΖ  is white noise and the polynomials ( )11 ... p
pz zφ φ− − −  and ( )11 ... q

qz zθ θ+ + +  

have no common factors. (Brockwell & Davis, 2002) 

 

An ARMA classical decomposition model is defined by n n nsΧ = + Υ , where nΥ  is an 

ARMA process and sn is a seasonal component. 

 

7.3.2 The Inflow Data Set 
 

Weekly accumulated inflow data from the period 1960-2005 was obtained for the analysis. 

The inflow has been measured using the weekly measurements of the reservoir level as a 

proxy. The time series is plotted in Figure 7.3. 
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Figure 7.3: Siso inflow time series 
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The time series clearly exhibits strong seasonality with a distinct peak in the melting period 

and small values in winter. A closer inspection of the series reveals that the melting period 

arrives in different weeks from year to year resulting in one or a few weeks of extreme 

inflows. Figure 7.4 illustrates the seasonal component as the average weekly inflow (black) 

and a fitted sum of five harmonics (red). 
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Figure 7.4: Seasonel component of Siso inflow time series 

 

From Figure 7.3 we further see that some observation values are in fact negative. Small 

negative values could be caused by evaporation, but some are of such magnitude that 

evaporation does not seem to give an adequate explanation. A more plausible explanation is 

that measurement errors in one week have lead to negative values in a later week. This is 

indeed the case as extreme weather conditions and equipment failure has lead to a need for 

estimating inflow from time to time. Unfortunately information about which values are 

estimated is unavailable. Also the visual inspection reveals that in the years 1973-1979 

measurements were conducted only every fourth week with the weekly inflow reported as the 

monthly mean. In all the quality of the data is questionable. Further descriptive statistics of 

the data set are provided in Table 1 and Table 2 in Appendix 4. 

 

7.3.4 Filtering of the Data 
 

Concerning the negative observation values a simple filtering procedure was applied to leave 

only strictly positive values. It was assumed that a negative value was due to measurement 

error in the previous week, and the negative observation value, nψ  and the preceding 

observation 1nψ −  was replaced such that the following equations were satisfied: 

 



 50

*
* 1 1(1)

2
n n

n
ψ ψψ + −+

=  and 

1
* *

1 1
1

(2) n n n n i
i

ψ ψ ψ ψ− + −
=−

+ + = ∑ . 

 

Star denotes a replacement value, and 1nψ +  denotes the observation following the negative 

value. Equation (1) forces nψ  to be a linear interpolation between the neighboring values, and 

equation (2) preserves the amount of cumulative inflow. The procedure was applied 

iteratively until every value of the time series was strictly positive. A plot of the filtered 

approximation is provided in Figure 1 in Appendix 4. Note that this filtering procedure is 

unfounded theoretically, and it is difficult to say how well the approximated series resembles 

the true process. At least the sample autocorrelation functions (SACF) of the filtered and 

unfiltered series (plotted in Figures 2 and 3 in Appendix 4) are nearly identical. 

 

With regard to the years where only monthly measurements were made, it was decided to do a 

preliminary analysis of a truncated series with data from the years 1980-2005 only. 

Unfortunately such a limited data set is not sufficient to do a robust analysis of a possible 

Hurst effect (Montanari, Rosso & Taqqu, 1997). Still, the existence of a Hurst effect is 

fundamentally plausible. The Siso reservoir receives a great deal of its inflow from 

surrounding glaciers. Since Norwegian glaciers tend to shrink and grow over time (see for 

instance Feaney & Sweeney (2005)) one might have reason to suspect that the mean inflow 

show some dependence on this phenomenon. 

 

7.3.5 Measures to Produce an Underlying Stationary Time Series 
 

As expected the sample ACF suggested a seasonal pattern with period 52. Differencing did 

however not produce a stationary time series. An investigation of the variance structure of the 

time series by applying a moving window strongly suggested seasonal variance, as can be 

seen in Figure 7.5. 
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Figure 7.5: Average 10 week moving window sample variance 

 

A Box-Cox transformation was applied in an effort to stabilize the variance of the series. The 

Box-Cox transformation is defined by 

 

( )( ) 1 , 0, 0n n nf λ
λ λ λ−1Ψ = Ψ − Ψ ≥ > . 

 

The optimal value for λ was found to be 0.1241. For simplicity define ( )n nfλΥ ≡ Ψ  The 

transformed series was differenced at lag 52. Plots of the SACF and the sample partial 

autocorrelation function (SPACF) of the transformed, differenced series are provided in 

Figures 4 and 5 in Appendix 4. Both plots indicate that the series still exhibits periodicity. 

Further differencing did not produce stationarity. 

 

A classical decomposition model (of the form n n nsΥ = + Χ ) was also investigated. The 

seasonal component (Figure 7.6) was modelled as a sum of five harmonics fitted to the 

sample average of the Box-Cox transformed series. The resulting SACF and SPACF (Figures 

6 and 7, Appendix 4) of the underlying series decay quickly indicating stationarity. 
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Figure 7.6: Seasonal component of Box-Cox transformed series 
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7.3.6 Parameter Estimation 
 

Preliminary analyses suggested to investigate further an AR(1) model or a low order ARMA 

process in modelling Xn. The estimation procedure undertaken is based on maximization of 

the Gaussian log likelihood of the ARMA process. According to Brockwell & Davis (2002) 

using the Gaussian likelihood for parameter estimation and model selection is well founded 

even if the noise is not Gaussian. Table 7.2 displays the log likelihood and the Akaike 

information criterion (AIC) for different choices of p and q. 

 

(p,q) Log Likelihood AIC 
(1,0) -1756.58 3519.15 
(1,1) -1756.57 3521.15 
(1,2) -1756.11 3522.22 
(1,3) -1752.44 3516.88 
(1,4) -1747.69 3509.37 
(2,1) -1756.58 3523.15 
(2,2) -1755.88 3523.15 
(2,3) -1748.34 3510.68 
(2,4) -1747.68 3511.37 
(3,1) -1756.10 3524.21 
(3,2) -1753.58 3521.15 
(3,3) -1753.73 3523.45 
(3,4) -1747.68 3513.37 

 
Table 7.2: Log likelihood and AIC of fitted ARMA models 

 

According to theory the model with the smallest AIC value should be chosen (Brockwell & 

Davis, 2002). Further it seems sensible to consider the magnitude of the standard error (SE) of 

the parameter estimates to the value of the estimated parameters, especially considering the 

quality of the data. Table 7.3 lists parameter estimates and standard errors of the five most 

promising models. 
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(p,q)  1̂φ  2̂φ  3̂φ  1̂θ  2̂θ  3̂θ  4̂θ  2σ  
Estimate 0.644 - - - - - - 

(1,0) 
SE 0.021 - - - - - - 

0.787

Estimate 0.899 - - -0.278 -0.165 -0.177 - 
(1,3) 

SE 0.044 - - 0.056 0.046 0.038 - 
0.782

Estimate 0.939 - - -0.306 -0.179 -0.176 -0.087 
(1,4) 

SE 0.0251 - - 0.037 0.033 0.031 0.028 
0.777

Estimate 1.289 -0.326 - -0.657 -0.071 -0.118 - 
(2,3) 

Se 0.114 0.101 - 0.114 0.046 0.044 - 
0.777

Estimate 0.895 0.048 -0.007 -0.262 -0.199 -0.182 -0.094 
(3,4) 

SE 0.435 0.542 0.172 0.434 0.288 0.072 0.072 
0.777

 
Table 7.3: Parameter estimates 

 

As can be seen from the table the estimated parameters of the ARMA(3,4) model have large 

standard errors. In fact the AR(1) model performs quite well based on its AIC value and the 

low variance of the parameter estimate. Both the ARMA(1,4) and the ARMA(2,3) model 

have one parameter that has a relatively large standard error compared to the parameter. 

Finally the ARMA(1,3) model performs quite well with respect to the AIC value and has 

parameter estimates with relatively low standard errors. Also the parameters of the 

ARMA(1,3) model are quite close to the parameters of the ARMA(1,4). 

 

7.3.7 Model Residuals 
 

Plots of the SACF up to lag 104 for the residuals from the estimation of the AR(1) model and 

the ARMA(1,3) model are provided in Figures 8 and 9 in appendix 4. Less than five values 

fall outside the 1.96 / number of observations  boundary for the ARMA(1,3), which is 

acceptable (Brockwell & Davis, 2002). For the AR(1) model the situation is less clear as six 

autocorrelation values fall outside the bounds. Concerning the normality hypothesis the 

situation is far worse.  
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Higher order sample descriptive statistics of the residuals are provided below 

 

 Skewness Excess Kurtosis 

AR(1) 0.885 1.51 

ARMA(1,3) 0.887 1.45 

 

 

The UCSD GARCH toolbox was used to perform a Lilliefors and a Shapiro-Francia test, both 

of which opposed the normality hypothesis.  

 

7.3.8 Discussion 
 

As the quality of the underlying data seems to be quite poor the application of advanced 

models does not seem well founded. It appears that a low order ARMA model can represent 

the transformed and deseasonalized Siso inflow time series quite well, even an AR(1) model 

might be sufficient for hydroelectric scheduling purposes. The large value of 1φ  for the AR(1) 

signifies the important insight that weekly inflows are strongly autocorrelated; inflows in one 

week strongly influence the outcome of inflows in the following week, which is reasonable. 

 

Finally, several weaknesses in the analysis should be noted. First of all the elimination of 

negative values was undertaken in a crude way, possibly changing the characteristics of the 

time series. The deseasonalization could have been more sophisticated. Also better testing of 

the residuals should have been undertaken, especially with respect to whiteness and possible 

hetereoscedasticity. 

 

7.4 Correlation of Residuals 
 

As pointed out one should really make assumptions about a joint distribution in order to 

analyse price-inflow dependence. There will be no attempt to estimate a multivariate 

distribution, but rather an ad hoc investigation to scratch the surface regarding possible 

correlation. What is interesting is how the noise terms of the processes are correlated. Let 

price,iε  and inflow,iε  respectively denote the residuals from estimation of the Schwartz model and 
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residuals from estimation of the AR(1) inflow model. Further, since spot prices were only 

obtained for the period 1995-2005, let 0i =  denote week 1, 1995, and let i N= denote week 

52, 2005. The sample correlation is calculated by 

 

( )( )
( )

N

i 1ˆ( , )
N 1

price,i price inflow,i inflow

price,i inflow,i
price inflows s

=

ε − ε ε − ε
ρ ε ε =

−

∑
, 

 

where ε  denotes the sample mean and s denotes the sample standard deviation19. The 

resulting overall correlation of the residuals was ˆ 0.16ρ = − . A 30-week centered, moving 

window was also applied to investigate the stability of the correlation. The result can be 

viewed in Figure 7.7, where the black line is the estimated local correlation and the red line is 

ρ̂ . 
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Figure 7.7: 30 day moving window correlation of residuals 

 

It is emphasized that the results must not be given too much weight. Since correlation only is 

an appropriate measure of dependence for the elliptical family of joint distributions (Eydeland 

& Wolyniec, 2003) the results may not really be applicable at all, considering the deviations 

from normality of both sets of residuals. The purpose of the results will merely be to serve as 

a reference point for investigating the effect of price-inflow dependence on the operating 

strategy. 

 

                                                 
19 Sample in the meaning the sample of residuals. 
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8 Implementation Issues 
 
The proposed LSM-algorithm, along with the estimated price models, has been implemented 

in Matlab®. Time issues did not allow any of the estimated inflow models to be implemented 

for use in the LSM algorithm20. However, an inflow model estimated by Elkem has been 

implemented, also in Matlab®. The Elkem inflow model is based on the arithmetic Ornstein-

Uhlenbeck process, but has deterministic, seasonally varying mean and variance. Appendix 5 

provides details about the model. Matlab code is provided on the CD accompanying the 

thesis. 

 

To allow for an easy comparison with the deterministic model the value of the end reservoir 

was set equal to zero. The solution should then seek to empty the reservoir towards the end of 

the planning horizon, regardless of solution methodology. Hence the comparison of the LSM 

model value with the upper bound should be unbiased. Further a linear production function 

was assumed, allowing the deterministic formulation to be solved as a linear program. The 

assumption of a linear production function also implies that the single period sub problems, in 

the LSM algorithm, can be solved by a simple line search, without any risk of ending up in a 

local maximum21. The solver for the single stage problem had to be specifically developed for 

the application. 

 

The market price of residual risk was assumed equal to zero, making discounting at the risk 

free rate possible. The risk free rate was assumed constant and approximately equal to the 

yield on Norwegian government bonds. Correlation between the price and inflow processes 

was introduced by Cholesky factorization. 

 

8.1 Theoretical Computing Time 
 

Let K be the number of discrete reservoirs in the LSM recursion, S the number of scenarios 

and T the number of scheduling periods. Since the LSM-algorithm works on parallel, 

independently drawn scenarios, the computing time is linear in T. The linearity makes a 

scheduling resolution of one week possible for relatively long analysis horizons. The number 

                                                 
20 Challenges in estimation lead to the results not being available until the end of the work. 
21 At least as long as the regression procedure is stable and results in a concave future value function. 
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of LSM single stage sub problems, N, that must be solved is the number of problems in the 

backward recursion plus the number of problems in the forward simulation: 

( )1N KST ST K ST= + = + . Hence the solution time should increase linearly for an increase 

in either of K, S or T. 

 

9 Results 
 

Preliminary testing of the proposed LSM algorithm has been undertaken. Due to somewhat 

disappointing and unreliable results extensive documentation is not provided. The instability 

of the algorithm did not allow for accurate sensitivities to be estimated, and hence hedges 

have not been calculated. For the same reasons correlation issues could not be addressed 

either. Following is a presentation of scheduling results obtained with the Schwartz spot 

model (Section 9.1) and the Bjerksund et al. forward curve model (Section 9.2). Both models 

were calibrated to the Nord Pool term structure on 20 April, 2006. The volatility function used 

in the forward curve model is the function estimated in section 7.1.8. The initial inflow was 

set to the historical weekly mean. Table 9.1 lists additional model inputs. 

 

 

Model input Value 

Start date 21 April, 2006 

End date 20 May, 2009 

Number of periods (T) 162 

Initial Reservoir (M0) 50 % 

Number of scenarios (S) 5000 

Number of reservoirs (K) 30 

Annualized discounting rate (rf) 3.5% 

Correlation ( ρ̂ ) -0.16 

 
Table 9.1: Model data and parameters used in Case 1 and Case 2 
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9.1 Case 1: Schwartz Spot Model 
 

The objective values from the LSM model and the deterministic model along with the relative 

difference are provided below. 

Total value LSM model:  0 =120.14 M€LSMV  

Total value deterministic model: 0 =123.83 M€DETV  

Relative difference in value:  0 0

0

3.07%
DET LSM

LSM
V V

V
−

=  

The following two graphs seek to illustrate the reservoir management strategy (Figure 9.1) 

and the release strategy (Figure 9.2). In Figure 9.1 the expected development of the reservoir 

is plotted along with reservoir bounds and percentiles for the LSM solution. Notice that the 

LSM expected reservoir for the better part of the period is below the deterministic expected 

reservoir. Considering Figure 9.2, the LSM model clearly yields the more aggressive strategy, 

alternating between relatively high and low expected releases. 
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Figure 9.1: Case 1 reservoir management strategy 
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Figure 9.2: Case 1 release strategy 

 



 59

In Figure 9.3 the joint behaviour of the different variables in the LSM solution is illustrated by 

a plot of the development of the expectations. For ease of exposition the expectations have 

been standardized. As can be seen the solution saves water to periods where the expected 

price is high. Also the solution starts producing more in spring in order to accommodate 

possible large inflows. 
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Figure 9.3: Case 1 joint behaviour of variables 

 

9.2 Case 2: Bjerksund et al. Forward Curve Model 
 

The objective values from the LSM model and the deterministic model along with the relative 

difference are provided below. 

Total value LSM model:  0 =119.93 M€LSMV  

Total value deterministic model: 0 =130.68 M€DETV  

Relative difference in value:  0 0

0

8.96%
DET LSM

LSM
V V

V
−

=  

Notice that the LSM model yields a lower value in Case 2 than in Case 1. For the 

deterministic model the opposite is the case. Figure 9.4 compares the operating strategies 

resulting from the LSM model and the deterministic model. The aggressiveness of the LSM 

solution is the most striking feature, yielding a strategy for a large part alternating between 

close to zero and the upper bound. 
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Figure 9.4: Case 2 release strategy 

 

9.3 Convergence 
 

Ad toc tests were run to investigate the convergence of the algorithm with regard to the 

number of scenarios and the number of discrete reservoirs in the backward recursion. Equally 

spaced reservoirs were used, and tests were only run with the Schwartz price model. 

 

The total value changed less than 1 % when increasing the number of reservoirs beyond 30. 

Increasing the number of scenarios from 5000 to 10000 also changed the objective value by 

less than 1 %. The expected release in individual weeks converged slower. It was not possible 

to determine the number of scenarios required to calculate sensitivities and analyse correlation 

issues in reasonable computing time. Table 9.2 lists solving times with 30K = , 162T =  with 

different choices for S on a 3.2 GHz, 504 MB RAM computer. 

 

Number of Scenarios (S) Number of Sub Problems (N) Solving Time [Seconds] 

100 55.02 10×  9.47  

1000 65.02 10×  721  

5000 72.51 10×  36.84 10×  

10000 75.02 10×  46.38 10×  
 

Table 9.2: Solving time 
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9.4 Future Value Functions 
 

Referring to the discussion towards the end of 6.4, concerning the expected shape of the 

future value functions, plots are provided in Appendix 6. The plots are for a random selection 

of scenarios resulting from the application of the LSM model with input as in Case 1 above. 

The provided plots are generally qualitatively representative, also under the forward curve 

model. As can be seen the future value functions are quite linear for low reservoir values, but 

exhibit concavity as the reservoir level approaches the upper bound. Notice also the difference 

between the future value functions in July (Figure 1) and in late October (Figure 2). 

 

10 Discussion 
 

Under the Schwartz price model the LSM algorithm produces somewhat realistic results. The 

resulting objective value is relatively close to the upper bound. Also the operating strategy 

seems realistic from a qualitative point of view, considering the price incentives and the 

expected inflow pattern. On the other hand the strategy is quite aggressive, suggesting 

maximum production for the first couple of weeks. A priori one would expect the operating 

strategy suggested by a stochastic model to see more value in postponing production, relative 

to a deterministic solution. Especially since there is no apparent risk of spilling the production 

strategy in the first weeks is probably too aggressive. 

 

Under the forward curve model the LSM algorithm does not produce a trustworthy operating 

strategy. The objective value is relatively far from the upper bound. Further, the upper bound 

is larger under the forward curve model, but the LSM objective value is lower than under the 

Schwartz model. As the forward curve model has larger variance than the Schwartz model, 

one should expect the option to postpone production to be worth more under the forward 

curve model. The LSM algorithm does not seem to be able to capture this value. A single 

positive feature of the solution under the forward curve model is that the solution at least 

allocates the water to the peaks of the initial forward curve. 

 

Remember that the regression is equivalent to choosing implicit transition weights in the 

stochastic mesh. The most plausible explanation for the failure of the LSM algorithm is thus 

that the approximation through the regression is simply not good enough. The implicit 
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weights are probably off target, leading to poor approximations of the future value functions. 

There is a possibility that increasing the number, or choosing a different type, of basis 

functions can relieve the instability. 

 

Assuming that the algorithm will work with the proper basis functions, a serious drawback of 

the proposed algorithm is still that it is difficult to calculate hedge sensitivities in reasonable 

time. As the expected operating strategy converges slower than the objective value, one must 

solve for a large number of scenarios in order to calculate finite difference hedge signals. It 

must be noted that the Matlab code involves numerous for and while loops. Looping is well 

known to be slow in Matlab®, and vectorization is recommended, when possible. 

Optimization of the code may thus reduce computing time drastically. Also, the unexpected 

non-linear increase in computing time is probably due to memory issues. Reprogramming the 

algorithm, specifically addressing the memory issue, in a lower level language can further 

lead to a veritable decrease in computing time. Quasi Monte Carlo or variance reduction 

techniques can further help in reducing the number of required scenarios. 

 

Finally, the future value functions seem to exhibit a qualitatively, reasonable shape. The fact 

that the future value functions are quite linear at low reservoir levels indicates that the 

regressions at least are able to estimate future prices consistently. Further the concavity at 

high reservoir levels show that the algorithm is able to comprehend the risk of spilling. 

Naturally the concavity of the future value functions is more pronounced in summer than in 

late autumn. In summer, the risk of spilling increases dramatically at high reservoir levels, 

while in late autumn the risk of spilling is minimal. 

 
 
 

11 Conclusion and Suggestions for Further Work 
 
The proposed LSM algorithm does not produce stable, credible results. As a consequence the 

hypotheses regarding expected hedge signals remain unanswered, and the effect of price-

inflow correlation on the operating strategy and hedges, can not be quantitatively addressed. 

The failure of the algorithm is most likely due to the regressions not being able to provide an 

adequate approximation of the future value functions. On the bright side, the results indicate 

that the LSM approach is not totally off track. With appropriate basis functions the LSM 
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algorithm can possibly yield stable results, closely approximating the optimal strategy. If so, 

the LSM approach will yield an easy to implement, efficient and flexible stochastic algorithm. 

 

The most obvious extension to the current thesis is to further investigate the LSM approach, 

using different basis functions. To find better basis functions analyses should be undertaken in 

order to get an understanding of the shape and behaviour of the future value function. 

Statistical measures can be used in order to compare different basis functions with regard to 

closeness of fit. Regarding operating strategy, it is recommended to compare an improved 

LSM algorithm with an established stochastic algorithm, since merely comparing with the 

deterministic solution only conveys information about closeness to the upper bound of the 

objective value. 
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Appendix 2: LSM Algorithm Pseudo Code 
 

The main part of the algorithm, Part B and Part C below, take scenarios as inputs. The 

scenarios consist of joint price and inflow scenarios where s
tπ  and s

tψ  denote the realized 

price and inflow in period t in scenario s. Let further πt and ψt be the vector of prices and the 

vector of inflows in period t. 

 

Part B in the algorithm also takes a discrete ordered set of possible reservoirs as an input. The 

set should be a good approximation of the continuous set of all possible reservoir levels. Let 

an element of the set of discrete reservoir levels be denoted by xk, where index k is defined as 

below. 

 

Indexes 

 

t: Period 

s: Scenario 

k: Reservoir level 

 

Quantities 

 

T: The last scheduling period (The initial period is defined to be period 0) 

S: The number of scenarios 

K: The number of elements in the set of discrete reservoirs 

 

Notation for the future value functions 

 

Express the approximate function for the expected value of the end reservoir as 

1 1 1 1( , , ) ,T T T T T T T Tg g m E Vπ ψ+ + + +≡ ≈ Π Ψ⎡ ⎤⎣ ⎦  
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For all t = 1...T-1 and all s = 1...S let 

1 1( ) ,s s
t t t t t t t tg g m E V π ψ+ += ≈ Π = Ψ =⎡ ⎤⎣ ⎦  and 

1 1( , ) , ,k k
t t t t t t t t kh h E V m xπ ψ + += ≈ Π Ψ =⎡ ⎤⎣ ⎦ , 

 

where k
tg  is a piecewise linear approximation to the expected future value function in period t 

in scenario s. 

 

Part A: Simulation 
 
Simulate S price and inflow scenarios to produce all πt and ψt for Part B. 
 
Part B: Estimation of water value functions 
 

Lock
Go to

t T=
Step1

Step2
 

 

s
t

1 1 1

, 1

,

1

min max

min 1 max

If    
For 1...

( ; , )
End for

End if
For   1...

For 1...
Solve :

max ( , )
1

. .

0
End f

s
t

s s s
t T t t t t t

s
s k s s t

t t k t
q l

s s s s
t k t t t

s
t
s
t

s
t

t T
s S

g g m

s S
k K

gV w x q
r

s t
m x q l

Q q Q

M m M

l

π π ψ ψ

π

ψ

+ + +

+

+

+

=
=

= = =

=
=

⎡ ⎤
= +⎢ ⎥+⎣ ⎦

= − − +

≤ ≤

≤ ≤

≥

Step2

or
Storeall objective function values in previousloopas the vector .

End for
Go to

k
tV

Step 3
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1

For 1...
Regress on a set of basis functionsof price ( )and inflow ( ) to produce the 

function ( , ).
End for

For   1...
Estimate  as a piecewise linear function by interpolating between th

k
t t t
k
t t t

s
t

k K

h

s S
g

π ψ

−

=

=

V π ψ

Step3

e values

produced by evaluating ( , ) for 1...  .
End for

Go to 

i s s
t t th i Kπ ψ =

Step 4

 

 

Lock   -1
If   0

Else

End if

Go to 

Go to 

t t
t

=
>

Step 4

Step2

PartC

 

 
Part C: Simulation 
 
Simulate S price and inflow scenarios to produce all πt and ψt for Part C. 
 
Part D: Production Scheduling 
 

0 0

For 1...
Lock 

End for
Go to 

s

s S
m M

=

=

Step 1

Step 2
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1

,

1

min max

min 1 max

For 1...
Solve

max ( , )
1

. .

0
End for
Go to 

s s
t t

s
s s t

t t t t
q l

s s s s s
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s
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s
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s S

gV w m q
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s t
m m q l
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M m M

l

+

+

+
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⎡ ⎤
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≤ ≤

≤ ≤

≥

Step2

Step3

 

 

If  
Lock 1

Else

End if

Go to 

Go to 

t T
t t

<
= +

Step3

Step2

Part D

 

 
Part D: Valuation 
 

( )0,

0, 0,
0

0 0,
0

For 1...
For 0...

( , )
1

End for
1

End for

End 

s s s
s t t t

t t
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i
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s S

w m qC
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V C

=
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=
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Appendix 3: Spot Price Descriptive Statistics and 
Regression Plot 

 
 
 

Statistic Prices Log Returns Residuals 
Mean 181.25 0.00 0.00 
Median 165.51 0.00 0.00 
Standard Deviation 84.76 0.13 0.12 
Sample Variance 7183.48 0.02 0.01 
Excess Kurtosis 7.45 5.16 4.28 
Skewness 1.69 0.21 0.01 
Range 714.21 1.30 1.21 
Minimum 37.50 -0.59 -0.58 
Maximum 751.72 0.71 0.63 
Observations 571.00 570.00 570.00 
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Regression plot from Dickey-Fuller test 
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Appendix 6: Plots of Future Value Functions 
 

 
Figure 1: Future value functions week 44, 2007 (29 October – 4 November) 

 
 

 
Figure 2: Future value functions week 28, 2007 (9 July – 15 July) 
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