


APP NDIX A 

Basic Mathematical Tools 
.. 

This appendix covers some basic mathematics that are used in econometric analysis. 
We summarize various properties of the ummation op~rator, sttffiy properties of 

linear and certain nonlinear equations, and eview proportions and percentages. We also 
present some special functions that often arise in applied econometrics, including 
quadratic functions and the natural logarithm. The first four sections require only basic 
algebra skills. Section A.5 contains a brief review of differential calculus; although a 
knowledge of calculus is not necessary to understand most of the text, it is used in some 
end-of-chapter appendices and in several of the more advanced chapters in Part 3. 

A.1 The Summation Operator 
and Descriptive Statistics 

The summation operator is a useful shorthand for manipulating expressions involving 
the sums of many numbers, and it plays a key role in statistics and econometric analysis. 
If {x;: i = 1, . .. ,n} denotes a sequence of n numbers, then we write the sum of these 
numbers as 

n 

~X;= x1 + x2 + ... + X11 • 

j m J 

(A.1) 

With this definition, the summation operator is easily shown to have the following 
properties: 

PROPERTY SUM.1: For any constant c, 

n 

~ C = llC. 
/= I 

(A.2) 
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PROPERTY SUM.2: For any constant c, 

n 11 

L CX; = CLX;. (A.3) 
i=l i=l 

PROPERTY SUM.3: If {(x;,y;): i = 1,2, ... ,11) is a set of n pairs of numbers, and a and b 
are constants, then 

II II II 

L (ax; + by;) == a L X; + b L Y;- (A.4) 
i=l i=l i=l 

It is also important to be aware of some things that cannot be done with the summa­
tion operator. Let { (x;,)';): i = 1 ,2, . . . , n} again be a set of n pairs of numbers with 
Y; * 0 for each i. Then, 

~ (x;fy;) * (~x;)/(~Y;)· 
1=l r=l 1=l 

In other words, the sum of the ratios is not the ratio of the sums. In the n == 2 case, llie 
application of familiar elementary algebra also reveals this lack of equality: x/y1 + xiJ2 * (x1 + x2)/(y1 + y2). Similarly, the sum of the squares is not the square of llie 

""" ~""" )2 sum: """i=l xl * """i=l X; , except in special cases. That these two quantities are not gen-
erally equal is ea iest to see when n == 2: xy + x~ * (x1 + x2) 2 = x1 + 2x1x2 + x~. 

Given n numbers {x;: i == 1, ... , n}, we compute their average or mean by adding them 
up and dividing by n: 

n 

i ==(lin) LX;. (A.5) 
•=I 

When the X; are a sample of data on a particular variable (such as years of education), w 
often call this the sample average (or sample mean) to emphasize that it is computed from 
a particular set of data. The sample average is an example of a descriptive statistic; in 
this case, the statistic describes the central tendency of the set of points X;. 

There are some basic properties about averages that are important to understand. First, 
suppose we take each observation on x and subtract off the average: d; = X; - i (the "d" 
here stands for deviation from the average). Then, the sum of these deviations is always zero: 

tl II 1l II IJ 

L d; == L (x; - .X) == L X; - L i == L X; - ni == n.X - ni == 0. 
i~ l i=l i=l i=l i=l 

We summarize this as 

n 

L (X;- .X)= 0. (A.6) 
i=l 
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A simple numerical example shows how this works. Suppose n = 5 and x 1 = 6, x2 = 1, 
x3 = -2, x4 = 0, and x5 = 5. Then, i = 2, and the demeaned sample is {4,-1,-4,-2,3}. 
Adding these gives zero, which is just what equation (A.6) says. 

In our treatment of regression analysis in Chapter 2, we need to know some additional 
algebraic facts involving deviations from sample averages. An important one is that the 
sum of squared deviations is the sum of the squared xi minus n times the square of x: 

II 11 

L (x;- i)2 = L xl- n(x)2• (A.7) 
i= l i=l 

This can be shown using basic properties of the summation operator: 

II II 

L (x; - xf = L (xf - 2x;x + x2) 
i=l i=l 

n 11 

= L xf - 2x L x; + n(x)Z 
i=l i= l 

II II 

= L xl - 2n(x) 2 + n(x) 2 = L xl - n(x)2• 
i=l i=l 

Given a data set on two variables, { (xi,yi): i = 1 ,2, ... , n}, it can also be shown that 

11 n 

L (x; - x)(Y; - .Y) = L x;(Y; - .Y) 
i=l i=l 

11 n 
(A.8) 

= L (x; - i)Y; = L X;Y; - n(x·y); 
i=l i=l 

this is a generalization of equation (A.7). (There, Y; = X; for all i.) 
The average is the measure of central tendency that we will focus on in most of this 

text. However, it is sometimes informative to use the median (or sample median) to 
describe the central value. To obtain the median of then numbers {x1, ... ,x

11
}, we first 

order the values of the xi from smallest to largest. Then, if n is odd, the sample median is 
the middle number of the ordered observations. For example, given the numbers 
{ -4,8,2,0,21, -10,18}, the median value is 2 (because the ordered sequence is 
{ -10, -4,0,2,8, 18,21 } ). If we change the largest number in this list, 21, to twice its value, 
42, the median is still 2. By contrast, the sample average would increase from 5 to 8, a 
sizable change. Generally, the median is less sensitive than the average to changes in the 
extreme values (large or small) in a list of numbers. This is why "median incomes" or 
"median housing values" are often reported, rather than averages, when summarizing 
income or housing values in a city or county. 

If n is even, there is no unique way to define the median because there are two numbers 
at the center. Usually, the median is defined to be the average of the two middle values 
(again, after ordering the numbers from smallest to largest). Using this rule, the median 
for the set of numbers { 4,12,2,6} would be (4 + 6)/2 = 5. 
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A.2 Properties of Linear Functions 

Linear functions play an important role in econometrics because they are simple to inter­
pret and manipulate. If x and y are two variables related by 

(A.9) 

then we say that y is a linear function of x, and {30 and {31 are two parameters (numbers) 
describing this relationship. The intercept is {30, and the slope is {31• 

The defining feature of a linear function is that the change in y is always {31 times the 
change in x: 

(A.10) 

where ~ denotes "change." In other words, the marginal effect of x on y is constant and 
equal to {31• 

EXAMPLE A.1 

(Linear Housing Expenditure Function) 

Suppose that the relationship between monthly housing expenditure and monthly income is 

housing= 164 + .27 income. (A.11) 

Then, for each additional dollar of income, 27 cents is spent on housing . If family income 
increases by $200, then housing expenditure increases by (.27)200 = $54. This function is 
graphed in Figure A.1. 

According to equation (A.11 ), a family with no income spends $164 on housing, which of 
course cannot be literally true. For low levels of income, this linear function would not descnbe 
the relationship between housing and income very well, which is why we will eventually have 
to use other types of functions to describe such relationships. 

In (A.11), the marginal propensity to consume (MPC) housing out of income is .27. Th1s IS 

different from the average propensity to consume (APC), which is 

housing 
. = 164/income + .27. 
mcome 

The APC is not constant, it is always larger than the MPC, and it gets closer to the MPC as 
income increases. 

Linear functions are easily defined for more than two variables. Suppose that Y is 
related to two variables, x1 and x2, in the general form 

(A.12) 
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housing 

1,514 

164 

fiGURe /\.1 

5,000 

1::. housing = .27 
t:. income 
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income 

It is rather difficult to envision this function because its graph is three-dimensional. 
Nevertheless, {30 is still the intercept (the value of y when x 1 = 0 and x2 = 0), and {31 
and {32 measure particular slopes. From (A.l2), the change in y, for given changes in x 1 

and x2, is 

If x2 does not change, that is, ~x2 = 0, then we have 

so that {3 1 is the slope of the relationship in the direction of x1: 

Because it measures how y changes with x 1, holding x2 fixed, {31 is often called the par­
tial effect of x 1 on y. Because the partial effect involves holding other factors fixed, it is 
closely linked to the notion of ceteris paribus. The parameter {32 has a similar interpre­
tation: {32 == ~yl~x1 if ~x1 = 0, so that {32 is the partial effect of x1 on y. 
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(Demand for Compact Discs) 

For college students, suppose that the monthly quantity demanded of compact discs is related 
to the price of compact discs and monthly discretionary income by 

quantity= 120 - 9.8 price+ .03 income, 

where price is dollars per disc and income is measured in dollars. The demand curve is the 
relationship between quantity and price, holding income (and other factors) fixed. This is 
graphed in two dimensions in Figure A.2 at an income level of $900. The slope of the 
demand curve, -9.8, is the partial effect of price on quantity: holding income fixed, if the 
price of compact discs increases by one dollar, then the quantity demanded falls by 9.8. (We 
abstract from the fact that COs can only be purchased in discrete units.) An increase in 
income simply shifts the demand curve up (changes the intercept), but the slope remains 
the same. 

FIGURE A.2 
Graph of quantity= 120 - 9.8 price + .03 income, with income fixed at $900. 

quantity 
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6 quantity == _9.8 
6 price 

/ 
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A.3 Proportions and Percentages 

Proportions and percentages play such an important role in applied economics that it is 
necessary to become very comfortable in working with them. Many quantities reported in 
the popular press are in the form of percentages; a few examples are interest rates, unem­
ployment rates, and high school graduation rates. 

An important skill is being able to convert proportions to percentages and vice versa. 
A percentage is easily obtained by multiplying a proportion by 100. For example, if 
the proportion of adults in a county with a high school degree is .82, then we say that 
82% (82 percent) of adults have a high school degree. Another way to think of percent­
ages and proportions is that a proportion is the decimal form of a percentage. For exam­
ple, if the marginal tax rate for a family earning $30,000 per year is reported as 28%, 
then the proportion of the next dollar of income that is paid in income taxes is .28 (or 
28 cents). 

When using percentages, we often need to convert them to decimal form. For exam­
ple, if a state sales tax is 6% and $200 is spent on a taxable item, then the sales tax paid 
is 200(.06) = 12 dollars. If the annual return on a certificate of deposit (CD) is 7.6% and 
we invest $3,000 in such a CD at the beginning of the year, then our interest income is 
3,000(.076) = 228 dollars. As much as we would like it, the interest income is not obtained 
by multiplying 3,000 by 7.6. 

We must be wary of proportions that are sometimes incorrectly reported as percent­
ages in the popular media. If we read, "The percentage of high school students who drink 
alcohol is .57," we know that this really means 57% (not just over one-half of a percent, 
as the statement literally implies). College volleyball fans are probably familiar with press 
clips containing statements such as "Her hitting percentage was .372." This really means 
that her hitting percentage was 37 .2%. 

In econometrics, we are often interested in measuring the changes in various quanti­
ties. Let x denote some variable, such as an individual's income, the number of crimes 
committed in a community, or the profits of a firm. Let x0 and x 1 denote two values for x : 

x0 is the initial value, and x 1 is the subsequent value. For example, x0 could be the annual 
income of an individual in 1994 and x 1 the income of the same individual in 1995. The 
proportionate change in x in moving from x0 to x 1, sometimes called the relative change, 
is simply 

(A.14) 

assuming, of course, that x0 =F 0. In other words, to get the proportionate change, we sim­
ply divide the change in x by its initial value. This is a way of standardizing the change 
so that it is free of units. For example, if an individual's income goes from $30,000 per 
year to $36,000 per year, then the proportionate change is 6,000/30,000 = .20. 

It is more common to state changes in terms of percentages. The percentage change 
in x in going from x0 to x1 is simply 100 times the proportionate change: 

o/odx = l00(6.x/x0); (A.15) 
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the notation "%ax" is read as "the percentage change in x." For example, when income 
goes from $30,000 to $33,750, income has increased by 12.5%; to get this, we simply 
multiply the proportionate change, .125, by 100. 

Again, we must be on guard for proportionate changes that are reported as percentage 
changes. In the previous example, for instance, reporting the percentage change in income 
as .125 is incorrect and could lead to confusion. 

When we look at changes in things like dollar amounts or population, there is no 
ambiguity about what is meant by a percentage change. By contrast, interpreting percent­
age change calculations can be tricky when the variable of interest is itself a percentage, 
something that happens often in economics and other social sciences. To illustrate, let x 
denote the percentage of adults in a particular city having a college education. Suppose 
the initial value is x0 = 24 (24% have a college education), and the new value is x1 = 30. 
We can compute two quantities to describe how the percentage of college-educated people 
has changed. The first is the change in X, ax. In this case, ax = xl - Xo = 6: the per­
centage of people with a college education has increased by six percentage points. On the 
other hand, we can compute the percentage change in x using equation (A.l5): %ax = 
100[(30 - 24)/24] = 25. 

In this example, the percentage point change and the percentage change are very 
different. The percentage point change is just the change in the percentages. The 
percentage change is the change relative to the initial value. Generally, we must pay close 
attention to which number is being computed. The careful researcher makes this distinc­
tion perfectly clear; unfortunately, in the popular press as well as in academic research, 
the type of reported change is often unclear. 

EXAMPLE A.3 

(Michigan Sales Tax Increase) 

In March 1994, Michigan voters approved a sales tax increase from 4% to 6%. In political 
advertisements, supporters of the measure referred to this as a two percentage point increase, 
or an increase of two cents on the dollar. Opponents to the tax increase called it a 50% 
increase in the sales tax rate. Both claims are correct; they are simply different ways of mea­
suring the increase in the sales tax. Naturally, each group reported the measure that made its 
position most favorable . 

For a variable such as salary, it makes no sense to talk of a "percentage point change 
in salary" because salary is not measured as a percentage. We can describe a change in 
salary either in dollar or percentage terms. 

A.4 Some Special Functions and Their Properties 

In Section A.2, we reviewed the basic properties of linear functions. We already indicated 
one important feature of functions like y = {30 + {3 1x: a one-unit change in x results in the 
same change in y, regardless of the initial value of x. As we noted earlier, this is the same. 
as saying the marginal effect of x on y is constant, something that is not realistic for many 
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economic relationships. For example, the important economic notion of diminishing mar­
ginal retums is not consistent with a linear relationship. 

In order to model a variety of economic phenomena, we need to study several non­
linear functions. A nonlinear function is characterized by the fact that the change in y for 
a given change in x depends on the starting value of x. Certain nonlinear functions appear 
frequently in empirical economics, so it is important to know how to interpret them. A 
complete understanding of nonlinear functions takes us into the realm of calculus. Here, 
we simply summarize the most significant aspects of the functions, leaving the details of 
some derivations for Section A.5. 

Quadratic Functions 

One simple way to capture diminishing returns is to add a quadratic term to a linear rela­
tionship. Consider the equation 

(A.16) 

where {30, {31, and {32 are parameters. When {31 > 0 and {32 < 0, the relationship between 
y and x has the parabolic shape given in Figure A.3, where {30 = 6, {3 1 = 8, and {32 = -2. 

When {31 > 0 and {32 < 0, it can be shown (using calculus in the next section) that the 
maximum of the function occurs at the point 

(A.17) 

For example, if y = 6 + 8x - 2x2 (so {31 = 8 and {32 = -2), then the largest value of y 
occurs at x* = 8/4 = 2, and this value is 6 + 8(2) - 2(2)2 = 14 (see Figure A.3). 

The fact that equation (A.l6) implies a diminishing marginal effect of x on y is eas­
ily seen from its graph. Suppose we start at a low value of x and then increase x by some 
amount, say, c. This has a larger effect on y than if we start at a higher value of x and increase 
x by the same amount c. In fact, once x > x*, an increase in x actually decreases y. 

The statement that x has a diminishing marginal effect on y is the same as saying that 
the slope of the function in Figure A.3 decreases as x increases. Although this is clear from 
looking at the graph, we usually want to quantify how quickly the slope is changing. An 
application of calculus gives the approximate slope of the quadratic function as 

(A.18) 

for "small" changes in x. [The right-hand side of equation (A.l8) is the derivative of the 
function in equation (A.l6) with respect to x.] Another way to write this is 

Lly = ({31 + 2{3-z;x)Llx for "small" Llx. (A.19) 

To see how well this approximation works, consider again the function y = 6 + 8x- 2x2. 

Then, according to equation (A.19), Lly = (8 - 4x)Llx. Now, suppose we start at x = 1 
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FIGURJA.3 
Graph of y = 6 + Bx - lxl. 
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and change x by ~x = .1. Using (A.19), ~y = (8- 4)(.1) = .4. Of course, we can com­
pute the change exactly by finding the values of y when x = 1 and x = 1.1: y0 = 6 i' 8(1) 
- 2(1)2 = 12 and y1 = 6 + 8(1.1) - 2(1.1)2 = 12.38, so the exact change in y is .38. 
The approximation is pretty close in this case. 

Now, suppose we start at x = I but change x by a larger amount: ~x = .5. Then~ the 
approximation gives ~y = 4(.5) = 2. The exact change is determined by finding the l1lli 
ference in y when x = 1 and x = 1.5. The former value of y was 12, and the latter value 
is 6 + 8(1.5) - 2(1.5)2 = 13.5, so the actual change is 1.5 (not 2). The approximation ~s 
worse in this case because the change in x is larger. 

For many applications, equation (A.19) can be used to compute the approximate mar­
ginal effect of x on y for any initial value of x and small changes. And, we can always 
compute the exact change if necessary. 

A.4 

(A Quadratic Wage Function) 

Suppose the relationship between hourly wages and years in the workforce (exf!.er) is 
given by 
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wage= 5.25 + .48 exper- .008 expd2• (A.20) 

This function has the same general shape as the one in Figure A.3. Using equation (A.17), 
exper has a positive effect on wage up to the turning point, exper* = .481[2(.008)] = 30. The 
first year of experience is worth approximately .48, or 48 cents [see (A.19) with x = 0, ~x = 1]. 
Each additional year of experience increases wage by less than the previous year-reflecting 
a diminishing marginal return to experience. At 30 years, an additional year of experience 
would actually lower the wage. This is not very realistic, but it is one of the consequences of 
using a quadratic function to capture a diminishing marginal effect: at some point, the func­
tion must reach a maximum and curve downward. For practical purposes, the point at which 
this happens is often large enough to be inconsequential, but not always. 

The graph of the quadratic function in (A.l6) has aU-shape if {31 < 0 and {31 > 0, in 
which case there is an increasing marginal return. The minimum of the function is at the 
point - {3/(2{31). 

The Natural Logarithm 

The nonlinear function that plays the most important role in econometric analysis is the 
natural logarithm. In this text, we denote the natural logarithm, which we often refer to 
simply as the log function, as 

y = log(x). (A.21) 

You might remember learning different symbols for the natural log; ln(x) or log.(x) are 
the most common. These different notations are useful when logarithms with several dif­
ferent bases are being used. For our purposes, only the natural logarithm is important, and 
so log(x) denotes the natural logarithm throughout this text. This corresponds to the nota­
tional usage in many statistical packages, although some use ln(x) [and most calculators 
use ln(x)]. Economists use both log(x) and ln(x), which is useful to know when you are 
reading papers in applied economics. 

The function y = log(x) is defined only for x > 0, and it is plotted in Figure A.4. It is 
not very important to know how the values of log(x) are obtained. For our purposes, the 
function can be thought of as a black box: we can plug in any x > 0 and obtain log(x) 
from a calculator or a computer. 

Several things are apparent from Figure A.4. First, when y = log(x), the relationship 
between y and x displays diminishing marginal returns . One important difference between 
the log and the quadratic function in Figure A.3 is that when y = log(x), the effect of x 
on y never becomes negative: the slope of the function gets closer and closer to zero as x 
gets large, but the slope never quite reaches zero and certainly never becomes negative. 

The following are also apparent from Figure A.4: 

log(x) < 0 for 0 < x < 1 

log(l) = 0 

log(x) > 0 for x > l. 
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riGI!JRJ: A.4 
Graph of y = log(x). 
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In particular, log(x) can be positive or negative. Some useful algebraic facts about the log 
fu~oo~ -

log(x1·x2) = log(x1) + log(x2), x1, x2 > 0 

log(xtfx2) = log(x1) - log(x2), x1, x2 > 0 

log(xc) = clog(x), x > 0, c any number. 

Occasionally, we will need to rely on these properties. 
The logarithm can be used for various approximations that arise in econometric appli­

cations. First, log(l + x) = x for x = 0. You can try this with x = .02, .1, and .5 to see 
how the quality of the approximation deteriorates as x gets larger. Even more useful is the 
fact that the difference in logs can be used to approximate proportionate changes. Let~ 
and x1 be positive values. Then, it can be shown (using calculus) that 

(A.22) 

for small changes in x. If we multiply equation (A.22) by 100 and write Lllog(x) = log(x1) 

- log(x0), then 

lOO·Lllog(x) = %Llx (A.23') 

for small changes in x. The meaning of "small" depends on the context, and we will 
encounter several examples throughout this text. 
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Why should we approximate the percentage change using (A.23) when the exact per­
centage change is so easy to compute? Momentarily, we will see why the approximation 
in (A.23) is useful in econometrics. First, let us see how good the approximation is in two 
examples. 

First, suppose x0 = 40 and x1 = 41. Then, the percentage change in x in moving from 
x0 to x1 is 2.5%, using 100(x1 - x0)/x0• Now, log(41) - log(40) = .0247 to four decimal 
places, which when multiplied by 100 is very close to 2.5. The approximation works pretty 
well. Now, consider a much bigger change: x0 = 40 and x 1 = 60. The exact percentage 
change is 50%. However, log(60) - log(40) = .4055, so the approximation gives 40.55%, 
which is much farther off. 

Why is the approximation in (A.23) useful if it is only satisfactory for small changes? 
To build up to the answer, we first define the elasticity of y with respect to x as 

(A.24) 

In other words, the elasticity of y with respect to x is the percentage change in y when x 
increases by 1%. This notion should be familiar from introductory economics. 

If y is a linear function of x, y = {30 + {31x, then the elasticity is 

(A.25) 

which clearly depends on the value of x. (This is a generalization of the well-known result 
from basic demand theory: the elasticity is not constant along a straight-line demand curve.) 

Elasticities are of critical importance in many areas of applied economics, not just in 
demand theory. It is convenient in many situations to have constant elasticity models, and 
the log function allows us to specify such models. If we use the approximation in (A.23) 
for both x andy, then the elasticity is approximately equal to Lllog(y)/Lllog(x). Thus, a 
constant elasticity model is approximated by the equation 

log(y) = {30 + {31log(x), (A.26) 

and {31 is the elasticity of y with respect to x (assuming that x, y > 0). 

(Constant Elasticity Demand Function) 

If q is quantity demanded and p is price and these variables are related by 

log(q) = 4.7 - 1.25 log(p), 

then the price elasticity of demand is -1 .25 . Roughly, a 1% increase in price leads to a 1.25% 
fall in the quantity demanded. 
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For our purposes, the fact that {31 in (A.26) is only close to the elasticity is not impor­
tant. In fact, when the elasticity is defined using calculus-as in Section A.5-the 
definition is exact. For the purposes of econometric analysis, (A.26) defines a constant 
elasticity model. Such models play a large role in empirical economics. 

Other possibilities for using the log function often arise in empirical work. Suppose 
that y > 0 and 

(A.27) 

Then, Lllog(y) = {31Llx , so lOO·Lllog(y) = (l00·{31)Llx. It follows that, when y and x are 
related by equation (A.27), 

~XAMPLE A.6 

(Logarithmic Wage Equation) 

Suppose that hourly wage and years of education are related by 

log( wage) = 2. 78 + .094 educ. 

Then, using equation (A.28), 

%Llwage = 100(.094) Lleduc = 9.4 Lleduc. 

It follows that one more year of education increases hourly wage by about 9.4%. 

(A.28) 

Generally, the quantity %Lly! Llx is called the semi-elasticity of y with respect to x . The 
semi-elasticity is the percentage change in y when x increases by one unit. What we have 
just shown is that, in model (A.27), the semi-elasticity is constant and equal to 1 00· {31• 

In Example A.6, we can conveniently summarize the relationship between wages and 
education by saying that one more year of education-starting from any amount of 
education-increases the wage by about 9.4%. This is why such models play an impor­
tant role in economics. 

Another relationship of some interest in applied economics is 

y = {30 + {31log(x), (A.29) 

where x > 0. How can we interpret this equation? If we take the change in y, we get 
Lly = {31Lllog(x), which can be rewritten as Lly = ({3/lOO)[lOO·Lllog(x)]. Thus, using tlie 
approximation in (A.23), we have 

Lly = (f3/100)(%Llx). (A.30) 

In other words, {3/100 is the unit change in y when x increases by 1%. 
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EXAMPLE A.7 

(Labor Supply Function) 

Assume that the labor supply of a worker can be described by 

hours = 33 + 45.1 log(wage), 

where wage is hourly wage and hours is hours worked per week. Then, from (A.30), 

tl.hours = (45.1/100)(%/lwage) = .451 o/otl.wage. 

In other words, a 1% increase in wage increases the weekly hours worked by about .45, or 
slightly less than one-half hour. If the wage increases by 10%, then t..hours = .451(10) = 
4.51, or about four and one-half hours. We would not want to use this approximation for 
much larger percentage changes in wages . 

The Exponential Function •I 

·' 
Before leaving this section, we need to discuss a special function that is related to the log-. 
As motivation, consider equation (A.27) . There, log(y) is a linear function of x. But how .: 
do we find y itself as a function of x? The answer is given by the exponential function. ;. 

We will write the exponential function as y = exp(x), which is graphed in Figure A.5~ 
From Figure A.5, we see that exp(x) is defined for any value of x and is always greater · , 

FIGUREA.S 
Graph of y = exp(x). 

y 

0 X 

\ 
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than zero. Sometimes, the exponential function is written as y = ex, but we will not use 
this notation. Two important values of the exponential function are exp(O) = 1 and 
exp(l) = 2.7183 (to four decimal places). 

The exponential function is the inverse of the log function in the following sense: 
log[exp(x)] = x for all x, and exp[log(x)] = x for x > 0. In other words, the log "undoes" 
the exponential, and vice versa. (This is why the exponential function is sometimes called 
the anti-log function.) In particular, note that log(y) = {30 + f3 1x is equivalent to 

If {31 > 0, the relationship between x and y has the same shape as in Figure A.5. Thus, if 
log(y) = {30 + f31x with {31 > 0, then x ha~ an increasing marginal effect on y. In Exam­
ple A.6, this means that another year of education leads to a larger change in wage ilian 
the previous year of education. 

Two useful facts about the exponential function are exp(x1 + x2) = exp(x1)exp(x2) ana 
exp[c·log(x)] = xc. 

A.S Differential Calculus 

In the previous section, we asserted several approximations that have foundations in cal­
culus. Let y = f(x) for some function f. Then, for small changes in x, 

df 
Ay= -·Ax 

dx ' 
(A.31) 

where df/dx is the derivative of the function f, evaluated at the initial point x0. We also 
write the derivative as dy/dx. 

For example, if y = log(x), then dyldx = llx. Using (A.31), with dyldx evaluated at 
x0, we have Ay = (llx0)Ax, or Alog(x) = Axlx0, which is the approximation given 
in (A.22). 

In applying econometrics, it helps to recall the derivatives of a handful of functions 
because we use the derivative to define the slope of a function at a given point. We can 
then use (A.31) to find the approximate change in y for small changes in x. In the linear 
case, the derivative is simply the slope of the line, as we would hope: if y = {30 + {3 1x, 
then dyldx = {3 1• 

If y = xc, then dyldx = cxc-l. The derivative of a sum of two functions is the sum of 
the derivatives: d[f(x) + g(x)]ldx = df(x)ldx + dg(x)ldx. The derivative of a constant times 
any function is that same constant times the derivative of the function: d[cf(x)]ldx = 
c[df(x)ldx] . These simple rules allow us to find derivatives of more complicated functions. 
Other rules, such as the product, quotient, and chain rules, will be familiar to those who 
have taken calculus, but we will not review those here. 
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Some functions that are often used in economics, along with their derivatives, are 

y = {30 + {3 1x + {32x2; dy/dx = {3 1 + 2{32x 

Y = {30 + {3/x; dy/dx = - {3 1/(x2) 

Y = f3o + {31 Yx; dyldx = (f3/2)x- 112 

y = {30 + {3 1log(x); dyldx = {3/x 

y = exp({30 + {31x); dy/dx = {31exp({30 + {31x). 

If {30 = 0 and {31 = 1 in this last expression, we get dyldx = exp(x), when y = exp(x). 
In Section A.4, we noted that equation (A.26) defines a constant elasticity model when 

calculus is used. The calculus definition of elasticity is dy · ~. It can be shown using 
dx y 

properties of logs and exponentials that, when (A.26) holds, dy ·~ = {31• 
dx y 

When y is a function of multiple variables, the notion of a partial derivative becomes 
important. Suppose that 

(A.32) 

Then, there are two partial derivatives, one with respect to x 1 and one with respect to x2• 

The partial derivative of y with respect to x 1, denoted here by aay, is just the usual x, 
derivative of (A.32) with respect to x1, where x2 is treated as a constant. Similarly, 

:~2 is just the derivative of (A.32) with respect to x2, holding x1 fixed. 

Partial derivatives are useful for much the same reason as ordinary derivatives. We 
can approximate the change in y as 

f:l.y = Bay · f:l.x1, holding Xz fixed. x, (A.33) 

Thus, calculus allows us to define partial effects in nonlinear models just as we could in 
linear models. In fact, if 

then 

These can be recognized as the partial effects defined in Section A.2. 
A more complicated example is 

(A.34) 
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Now, the derivative of (A.34), with respect to x 1 (treating x2 as a constant), is simply 

aay = 4 + 2x, + 7x2; x, 

note how this depends on x1 and x2. The derivative of (A.34), with respect to x2, is ~ = 
-3 + 7x1, so this depends only on x 1• ax2 

(Wage Function with Interaction) 

A function relating wages to years of education and experience is 

wage= 3.10 + .41 educ + .19 exper- .004 exper2 
+ .007 educ·exper. 

The partial effect of exper on wage is the partial derivative of (A.35): 

a wage 
aexper = .19 - .008 exper + .007 educ. 

(A.35) 

This is the approximate change in wage due to increasing experience by one year. Notice that 
this partial effect depends on the initial level of exper and educ. For example, for a worker 
who is starting with educ = 12 and exper = 5, the next year of experience increases wage 
by about .19 - .008(5) + .007(12) = .234, or 23.4 cents per hour. The exact change can 
be calculated by computing (A.35) at exper = 5, educ = 12 and at exper = 6, educ = ~ 2, 
and then taking the difference. This turns out to be .23, which is very close to the 
approximation. 

Differential calculus plays an important role in minimizing and maximizing functions 
of one or more variables. If f(x 1,x2, ••• ,xk) is a differentiable function of k variables, then 
a necessary condition for xf, xi, ... , 4 to either minimize or maximize f over all possible 
values of xj is 

at -a (xj,xf, ... ,4) = 0, j = 1,2, ... ,k. 
xj 

(A.36) 

In other words, all of the partial derivatives off must be zero when they are evaluated at 
the xh*. These are called the first order conditions for minimizing or maximizing a func­
tion. Practically, we hope to solve equation (A.36) for the x/:'. Then, we can use other cri­
teria to determine whether we have minimized or maximized the function. We will not 
need those here. (See Sydsaeter and Hammond [1995] for a discussion of multivariab1e 
calculus and its use in optimizing functions.) 



Appendix A Basic Mathematical Tools 725 

SUMMARY 

The math tools reviewed here are crucial for understanding regression analysis and the 
probability and statistics that are covered in Appendices B and C. The material on non­
linear functions-especially quadratic, logarithmic, and exponential functions-is critical 
for understanding modem applied economic research. The level of comprehension 
required of these functions does not include a deep knowledge of calculus, although cal­
culus is needed for certain derivations. 

Average 
Ceteris Paribus 
Constant Elasticity Model 
Derivative 
Descriptive Statistic 
Diminishing Marginal 

Effect 
Elasticity 
Exponential Function 

KEY TERMS 

Intercept 
Linear Function 
Log Function 
Marginal Effect 
Median 
Natural Logarithm 
Nonlinear Function 
Partial Derivative 
Partial Effect 

PROBLEMS 

Percentage Change 
Percentage Point Change 
Proportionate Change 
Relative Change 
Semi-Elasticity 
Slope 
Summation Operator 

A.l The following table contains monthly housing expenditures for 10 families. 

Monthly Housing 
Family Expenditures 

(Dollars) 

1 300 

2 440 

3 350 

4 1,100 

5 640 

6 480 

7 450 

(continued) 



726 Appendix A Basic Mathematical Tools 

Monthly Housing 
Family Expenditures 

(Dollars) 

8 700 

9 670 

10 530 

(i) Find the average monthly housing expenditure. 
(ii) Find the median monthly housing expenditure. 
(iii) If monthly housing expenditures were measured in hundreds of dollars, 

rather than in dollars, what would be the average and median expenditures? 
(iv) Suppose that family number 8 increases its monthly housing expenditure 

to $900 dollars, but the expenditures of all other families remain the same. 
Compute the average and median housing expenditures. 

A.2 Suppose the following equation describes the relationship between the average num­
ber of classes missed during a semester (missed) and the distance from school (distance, 
measured in miles): 

missed = 3 + 0.2 distance. 

(i) Sketch this line, being sure to label the axes. How do you interpret the 
intercept in this equation? 

(ii) What is the average number of classes missed for someone who lives five 
miles away? 

(iii) What is the difference in the average number of classes missed for some-
one who lives 10 miles away and someone who lives 20 miles away? 

A.3 In Example A.2, quantity of compact discs was related to price and income by quan­
tity = 120 - 9.8 price + .03 income. What is the demand for CDs if price = 15 and 
income = 200? What does this suggest about using linear functions to describe demand 
curves? 

A.4 Suppose the unemployment rate in the United States goes from 6.4% in one year to 
5.6% in the next. 

(i) What is the percentage point decrease in the unemployment rate? 
(ii) By what percentage has the unemployment rate fallen? 

A.5 Suppose that the return from holding a particular firm's stock goes from 15% in on 
year to 18% in the following year. The majority shareholder claims that "the stock return 
only increased by 3%," while the chief executive officer claims that "the return on the 
firm's stock has increased by 20%." Reconcile their disagreement. 
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A.6 Suppose that Person A earns $35,000 per year and Person B earns $42,000. 
(i) Find the exact percentage by which Person B's salary exceeds Person A's. 
(ii) Now, use the difference in natural logs to find the approximate percentage 

difference. 
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A.7 Suppose the following model describes the relationship between annual salary 
(salary) and the number of previous years of labor market experience (exper): 

log(salmy) = 10.6 + .027 exper. 

(i) What is salmy when exper = 0? When exper = 5? (Hint: You will need 
to exponentiate.) 

(ii) Use equation (A.28) to approximate the percentage increase in salary 
when exper increases by five years. 

(iii) Use the results of part (i) to compute the exact percentage difference in 
salary when exper = 5 and exper = 0. Comment on how this compares 
with the approximation in part (ii). 

A.S Let grthemp denote the proportionate growth in employment, at the county level, 
from 1990 to 1995, and let salestax denote the county sales tax rate, stated as a propor­
tion. Interpret the intercept and slope in the equation 

grthemp = .043 - . 78 salestax. 

A.9 Suppose the yield of a certain crop (in bushels per acre) is related to fertilizer amount 
(in pounds per acre) as 

yield = 120 + .19 Yfertilizer. 

(i) Graph this relationship by plugging in several values for fertilizer. 
(ii) Describe how the shape of this relationship compares with a linear rela­

tionship between yield andfertilizer. 
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APPENDIX B 

Fundamentals of Probability 

This appendix covers key concepts from basic probability. Appendices B and C are 
primarily for review; they are not intended to replace a course in probability and 

statistics. However, all of the probability and statistics concepts that we use in the text are 
covered in these appendices. 

Probability is of interest in its own right for students in business, economics, and other 
social sciences. For example, consider the problem of an airline trying to decide how many 
reservations to accept for a flight that has 100 available seats. If fewer than 100 peopl~ 
want reservations, then these should all be accepted. But what if more than 100 people 
request reservations? A safe solution is to accept at most 100 reservations. However, 
because some people book reservations and then do not show up for the flight, there is 
some chance that the plane will not be full even if 100 reservations are booked. This results 
in lost revenue to the airline. A different strategy is to book more than 100 reservations 
and to hope that some people do not show up, so the final number of passengers is as Glose 
to 100 as possible. This policy runs the risk of the airline having to compensate people 
who are necessarily bumped from an overbooked flight. 

A natural question in this context is: Can we decide on the optimal (or best) numBer 
of reservations the airline should make? This is a nontrivial problem. Nevertheless, given 
certain information (on airline costs and how frequently people show up for reservations), 
we can use basic probability to arrive at a solution. 

8.1 Random Variables 
and Their Probability Distributions 

Suppose that we flip a coin 10 times and count the number of times the coin turns up 
heads. This is an example of an experiment. Generally, an experiment is any proced~ 
that can, at least in theory, be infinitely repeated and has a well-defmed set of outcomes. 
We could, in principle, carry out the coin-flipping procedure again and again. Befor~ we 
flip the coin, we know that the number of heads appearing is an integer from 0 to 10, so 
the outcomes of the experiment are well defined. 
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A random variable is one that takes on numerical values and has an outcome that is 
determined by an experiment. In the coin-flipping example, the number of heads appear­
ing in 10 flips of a coin is an example of a random variable. Before we flip the coin 10 
times, we do not know how many times the coin will come up heads. Once we flip the coin 
10 times and count the number of heads, we obtain the outcome of the random variable for 
this particular trial of the experiment. Another trial can produce a different outcome. 

In the airline reservation example mentioned earlier, the number of people showing up 
for their flight is a random variable: before any particular flight, we do not know how 
many people will show up. 

To analyze data collected in business and the social sciences, it is important to have a 
basic understanding of random variables and their properties. Following the usual con­
ventions in probability and statistics throughout Appendices B and C, we denote random 
variables by uppercase letters, usually W, X, Y, and Z; particular outcomes of random vari­
ables are denoted by the corresponding lowercase letters, w, x, y, and z. For example, in 
the coin-flipping experiment, let X denote the number of heads appearing in 10 flips of a 
coin. Then, X is not associated with any particular value, but we know X will take on a 
value in the set { 0,1 ,2, ... , 10}. A particular outcome is, say, x = 6. 

We indicate large collections of random variables by using subscripts. For example, if 
we record last year's income of 20 randomly chosen households in the United States, we 
might denote these random variables by X1.X2, .•• ,X20; the particular outcomes would be 
denoted x1,x2, ... ,x20• 

As stated in the definition, random variables are always defined to take on numerical 
values, even when they describe qualitative events. For example, consider tossing a single 
coin, where the two outcomes are heads and tails. We can define a random variable as fol­
lows: X = 1 if the coin turns up heads, and X = 0 if the coin turns up tails. 

A random variable that can only take on the values zero and one is called a Bernoulli 
(or binary) random variable. In basic probability, it is traditional to call the event X = 1 
a "success" and the event X = 0 a "failure." For a particular application, the success­
failure nomenclature might not correspond to our notion of a success or failure, but it is 
a useful terminology that we will adopt. 

Discrete Random Variables 

A discrete random variable is one that takes on only a finite or countably infinite number 
of values. The notion of "countably infinite" means that even though an infinite number 
of values can be taken on by a random variable, those values can be put in a one-to-one 
correspondence with the positive integers. Because the distinction between "countably 
infinite" and "uncountably infinite" is somewhat subtle, we will concentrate on discrete 
random variables that take on only a finite number of values. Larsen and Marx (1986, 
Chapter 3) provide a detailed treatment. 

A Bernoulli random variable is the simplest example of a discrete random variable. 
The only thing we need to completely describe the behavior of a Bernoulli random variable 
is the probability that it takes on t~e value one. In the coin-flipping example, if the coin 
is "fair," then P(X = 1) = 1/2 (read as "the probability that X equals one is one-half"). 
Because probabilities must sum to one, P(X = 0) = 112, also. 



730 Appendix B Fundamentals of Probability 

Social scientists are interested in more than flipping coins, so we must allow for more 
general situations. Again, consider the example where the airline must decide how many 
people to book for a flight with 100 available seats. This problem can be analyzed in the 
context of several Bernoulli random variables as follows: for a randomly selected cus­
tomer, define a Bernoulli random variable as X = 1 if the person shows up for the reser­
vation, and X = 0 if not. 

There is no reason to think that the probability of any particular customer showing up 
is 112; in principle, the probability can be any number between zero and one. Call this 
number 0, so that 

P(X = 1) = 0 (8.1) 

P(X = 0) = 1 - 0. (8.2) 

For example, if(} = .75, then there is a 75% chance that a customer shows up after mak­
ing a reservation and a 25% chance that the customer does not show up. Intuitively, the 
value of(} is crucial in determining the airline's strategy for booking reservations. Meth­
ods for estimating (}, given historical data on airline reservations, are a subject of mathe­
matical statistics, something we tum to in Appendix C. 

More generally, any discrete random variable is completely described by listing its 
possible values and the associated probability that it takes on each value. If X takes on the 
k possible values {x1, ... ,xd, then the probabilities p1, p2, ... ,pk are defined by 

pi= P(X = x),j = 1,2, ... ,k, (8.3) 

where each pi is between 0 and 1 and 

Pt + Pz + .. · + Pk = 1. (8.4) 

Equation (B.3) is read as: "The probability that X takes on the value xi is equal toP/ 
Equations (B .l) and (B.2) show that the probabilities of success and failure for a 

Bernoulli random variable are determined entirely by the value of e. Because Bernoulli 
random variables are so prevalent, we have a special notation for them: X - Bernoulli((}) 
is read as "X has a Bernoulli distribution with probability of success equal to 8." 

The probability density function (pdf) of X summarizes the information concerning 
the possible outcomes of X and the corresponding probabilities: 

(8.5) 

with f(x) = 0 for any x not equal to xi for some j . In other words, for any real number x, 
f(x) is the probability that the random variable X takes on the particular value x . When 
dealing with more than one random variable, it is sometimes useful to subscript the pdf 
in question: fx is the pdf of X, fr is the pdf of Y, and so on. 
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Given the pdf of any discrete random variable, it is simple to compute the 
of any event involving that random variable. For example, suppose that X is 

1
l>robabiJity 

of free throws made by a basketball player out of two attempts, so that X can he number 
three values [0,1,2}. Assume that the pdf of X is given by take on the 

f(O) = .20,.1(1) = .44, andf(2) = .36. 

The three probabilities sum to one, as they must. Using this pdf, we can calculat 
ability that the player makes at least one free throw: P(X ~ 1) = 'fl()(e the Prob­
P(X = 2) = .44 + .36 = .80. The pdf of X is shown in Figure B.l. :::::: 1) + 

Continuous Random Variables 

A variable X is a continuous random variable if it takes on any real value With 
ability. This definition is somewhat counterintuitive, since in any application, :eto Prob­
ally observe some outcome for a random variable. The idea is that a continu011 e eventu­
variable X can take on so many possible values that we cannot count them or Ills random 
up with the positive integers, so logical consistency dictates that X can take on eatch thern 
with probability zero. While measurements are always discrete in practice, ran:ch Value 
abies that take on numerous values are best treated as continuous. For example ~Ill Varj. 
refined measure of the price of a good is in terms of cents. We can imagine 'r1 ~ lllost 
possible values of price in order (even though the list may continue indefinitei;;'•ng a)) 

'Which 

f(x) 

.44 

.36 

.20 

0 2 X 
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technically makes price a discrete random variable. However, there are so many possible 
values of price that using the mechanics of discrete random variables is not feasible. 

We can define a probability density function for continuous random variables, and 
as with discrete random variables, the pdf provides information on the likely outcomes 
of the random variable. However, because it makes no sense to discuss the probability 
that a continuous random variable takes on a particular value, we use the pdf of a 
continuous random variable only to compute events involving a range of values. For 
example, if a and b are constants where a < b, the probability that X lies between the 
numbers a and b, P(a :5 X :5 b), is the area under the pdf between points a and b, as 
shown in Figure B.2. If you are familiar with calculus, you recognize this as the integral 
of the function f between the points a and b. The entire area under the pdf must always 
equal one. 

When computing probabilities for continuous random variables, it is easiest to work 
with the cumulative distribution function (cdf). If X is any random variable, then its cdf 
is defined for any real number x by 

F(x) = P(X :5 x). (8.6) 

FI<:;URE B.2 
The probability that X lies between the points a and b. 

a b X 



Appendix B Fundamentals of Probability 733 

For discrete random variables, (B.6) is obtained by summing the pdf over all values xi such 
that xi ::s x. For a continuous random variable, F(x) is the area under the pdf,J, to the left 
of the point x. Because F(x) is simply a probability, it is always between 0 and 1. Further, 
if x1 < x2, then P(X ::s x1) ::s P(X ::s x2), that is, F(x1) ::s F(x2). This means that a cdf is an 
increasing (or at least a nondecreasing) function of x. 

Two important properties of cdfs that are useful for computing probabilities are the 
following: 

For any number c, P(X > c) = 1 - F(c). (8.7) 

For any numbers a < b, P(a <X ::s b) = F(b) - F(a). (8.8) 

In our study of econometrics, we will use cdfs to compute probabilities only for continu­
ous random variables, in which case it does not matter whether inequalities in probability 
statements are strict or not. That is, for a continuous random variable X, 

P(X:::: c) = P(X > c), (8.9) 

and 

P(a <X< b) = P(a ::s X ::s b) = P(a ::s X< b) = P(a <X ::s b). (8.10) 

Combined with (B.7) and (B.8), equations (B .9) and (B.lO) greatly expand the probabil­
ity calculations that can be done using continuous cdfs. 

Cumulative distribution functions have been tabulated for all of the important 
continuous distributions in probability and statistics. The most well-known of these is 
the normal distribution, which we cover along with some related distributions in 
Section B.5. 

8.2 Joint Distributions, Conditional Distributions, 
and Independence 

In economics, we are usually interested in the occurrence of events involving more than 
one random variable. For example, in the airline reservation example referred to earlier, 
the airline might be interested in the probability that a person who makes a reservation 
shows up and is a business traveler; this is an example of a joint probability. Or, the air­
line might be interested in the following conditional probability: conditional on the person 
being a business traveler, what is the probability of his or her showing up? In the next two 
subsections, we formalize the notions of joint and conditional distributions and the impor­
tant notion of independence of random variables. 
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Joint Distributions and Independence 

Let X and Y be discrete random variables. Then, (X,Y) have a joint distribution, which is 
fully described by the joint probability density function of (X,Y): 

fx.r(x,y) = P(X = x,Y = y), (8.11) 

where the right-hand side is the probability that X = x and Y = y. When X and Yare con­
tinuous, a joint pdf can also be defmed, but we will not cover such details because joint 
pdfs for continuous random variables are not used explicitly in this text. 

In one case, it is easy to obtain the joint pdf if we are given the pdfs of X and Y. Tn 
particular, random variables X and Yare said to be independent if, and only if, 

fx.r(x,y) = fx(x)fy(y} (8.12) 

for all x andy, wherefx is the pdf of X andfy is the pdf of Y. In the context of more than 
one random variable, the pdfsfx andfr are often called marginal probability density funG­
tions to distinguish them from the joint pdf fx.r· This definition of independence is valid 
for discrete and continuous random variables. 

To understand the meaning of (B.l2), it is easiest to deal with the discrete case. If X 
and Yare discrete, then (B.l2) is the same as 

P(X = x,Y = y) = P(X = x)P(Y = y); (8.13) 

in other words, the probability that X = x and Y = y is the product of the two probabili­
ties P(X = x) and P(Y = y). One implication of (B.13) is that joint probabilities are fairly 
easy to compute, since they only require knowledge of P(X = x) and P(Y = y). 

If random variables are not independent, then they are said to be dependent. 

8.1 

(Free Throw Shooting) 

Consider a basketball player shooting two free throws. Let X be the Bernoulli random variable 
equal to one if she or he makes the first free throw, and zero otherwise. Let Y be a Bernoulli 
random variable equal to one if he or she makes the second free throw. Suppose that she m 
he is an 80% free throw shooter, so that P(X = 1) = P(Y = 1) = .8. What is the probability 
of the player making both free throws? 

If X and Y are independent, we can easily answer this question: P(X = 1, Y = 1) = 
P(X = 1)P(Y = 1) = (.8)(.8) = .64. Thus, there is a 64% chance of making both free throws. 
If the chance of making the second free throw depends on whether the first was made-that 
is, X and Yare not independent-then this simple calculation is not valid. 
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Independence of random variables is a very important concept. In the next subsection, 
we will show that if X and Y are independent, then knowing the outcome of X does not 
change the probabilities of the possible outcomes of Y, and vice versa. One useful fact 
about independence is that if X and Y are independent and we define new random vari­
ables g(X) and h(Y) for any functions g and h, then these new random variables are also 
independent. 

There is no need to stop at two random variables. If X1, X2, ••• ,X11 are discrete random 
variables, then their joint pdf isf(x1,x2, • •• ,X11 ) = P(X1 = x1,X2 = x2, •• • ,X11 = X11 ). The ran­
dom variables X1, X2, ••• ,X11 are independent random variables if, and only if, their joint 
pdf is the product of the individual pdfs for any (x1 ,x2, ••• , X

11
). This definition of indepen­

dence also holds for continuous random variables. 
The notion of independence plays an important role in obtaining some of the classic 

distributions in probability and statistics. Earlier, we defined a Bernoulli random variable 
as a zero-one random variable indicating whether or not some event occurs. Often, we are 
interested in the number of successes in a sequence of independent Bernoulli trials. A stan­
dard example of independent Bernoulli trials is flipping a coin again and again. Because 
the outcome on any particular flip has nothing to do with the outcomes on other flips, 
independence is an appropriate assumption. 

Independence is often a reasonable approximation in more complicated situations. In 
the airline reservation example, suppose that the airline accepts 11 reservations for a par­
ticular flight. For each i = 1,2, ... , 11, let Y; denote the Bernoulli random variable indicat­
ing whether customer i shows up: Y; = 1 if customer i appears, and Y; = 0 otherwise. 
Letting 8 again denote the probability of success (using reservation), each Y; has a 
Bernoulli((}) distribution. As an approximation, we might assume that the Y; are indepen­
dent of one another, although this is not exactly true in reality: some people travel in 
groups, which means that whether or not a person shows up is not truly independent of 
whether all others show up. Modeling this kind of dependence is complex, however, so 
we might be willing to use independence as an approximation. 

The variable of primary interest is the total number of customers showing up out of 
the n reservations; call this variable X. Since each Y; is unity when a person shows up, we 
can write X = Y1 + Y2 + ... + Yw Now, assuming that each Y; has probability of success 
(} and that the Y; are independent, X can be shown to have a binomial distribution. That 
is, the probability density function of X is 

f(x) = (: )exo - 8)"-x, x = 0,1,2, ... ,n, (8.14) 

where (
11

) = '( 
1~ )', and for any integer n, n! (read "n factorial") is defined as 

X X. ll X . 

n! = w(n - l)·(n - 2)· ··1. By convention, 0! = 1. When a random variable X has the 
pdf given in (B.l4), we write X- Binomial(11,8). Equation (B.l4) can be used to compute 
P(X = x) for any value of x from 0 to n. 

If the flight has 100 available seats, the airline is interested in P(X > 1 00). Suppose, 
initially, that n = 120, so that the airline accepts 120 reservations, and the probability that 
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each person shows up is 8 = .85. Then, P(X > 100) = P(X = 101) + P(X = 102) + ... 
+ P(X = 120), and each of the probabilities in the sum can be found from equation (B.l4) 
with n = 120, 8 = .85, and the appropriate value of x (101 to 120). This is a difficult hand 
calculation, but many statistical packages have commands for computing this kind of prob­
ability. In this case, the probability that more than 100 people will show up is about .659, 
which is probably more risk of overbooking than the airline wants to tolerate. If, instead 
the number of reservations is 110, the probability of more than 100 passengers showin~ 
up is only about .024. 

Conditional Distributions 

In econometrics, we are usually interested in how one random variable, call it Y, is related 
to one or more other variables. For now, suppose that there is only one variable whose 
effects we are interested in, call it X. The most we can know about how X affects Y is 
contained in the conditional distribution of Y given X. This information is summarized 
by the conditional probability density fimction, defined by 

friX<Yix) = fx.r(x,y)lfx(x) ~8.15) 

for all values of x such that fx(x) > 0. The interpretation of (B.15) is most easily seen 
when X and Y are discrete. Then, 

fr1x<Yix) = P(Y = YIX = x), (8.16") 

where the right-hand side is read as "the probability that Y = y given that X = x." Wl'len 
Y is continuous,JYIX(yix) is not interpretable directly as a probability, for the reasons dis­
cussed earlier, but conditional probabilities are found by computing areas under the con­
ditional pdf. 

An important feature of conditional distributions is that, if X and Y are independent 
random variables, knowledge of the value taken on by X tells us nothing about the prob­
ability that Y takes on various values (and vice versa). That is, fr1x<Yix) = fy(y), and 
fxlr<xiy) = fx(x). 

(Free Throw Shooting) 

Consider again the basketball-shooting example, where two free throws are to be attempted. 
Assume that the conditional density is 

fr1x<lll) = .85.Jrlx(Oi1) = .15 

fr1xOIO) = .70./riX(OiO) = .30. 

This means that the probability of the player making the second free throw depends Ofil 

whether the first free throw was made: if the first free throw is made, the chance of making 
the second is .85; if the first free throw is missed, the chance of making the second is .70. 
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This implies that X and Yare not independent; they are· dependent. 
We can still compute P(X = 1, Y = 1) provided we know P(X = 1 ). Assume that the prob­

ability of making the first free throw is .8, that is, P(X = 1) = .8. Then, from (B.15), we have 

P(X = l,Y = 1) = P(Y = liX = l)·P(X = 1) = (.85)(.8) = .68. 

8.3 Features of Probability Distributions 

For many purposes, we will be interested in only a few aspects of the distributions of 
random variables. The features of interest can be put into three categories: measures of 
central tendency, measures of variability or spread, and measures of association between 
two random variables. We cover the last of these in Section B.4. 

A Measure of Central Tendency: The Expected Value 

The expected value is one of the most important probabilistic concepts that we will 
encounter in our study of econometrics. If X is a random variable, the expected value (or 
expectation) of X, denoted E(X) and sometimes JLX or simply JL, is a weighted average of 
all possible values of X. The weights are determined by the probability density function. 
Sometimes, the expected value is called the population mean, especially when we want to 
emphasize that X represents some variable in a population. 

The precise definition of expected value is simplest in the case that X is a discrete ran­
dom variable taking on a finite number of values, say, {x1, • •• ,xk}. Letf(x) denote the prob­
ability density function of X. The expected value of X is the weighted average 

k 

E(X) = xif(x1) + xd(x2) + ... + xtf(xk) = ~ x/(xj). 
j=l 

(8.17) 

This is easily computed given the values of the pdf at each possible outcome of X. 

(Computing an Expected Value) 

Suppose that X takes on the values -1, 0, and 2 with probabilities 1/8, 1/2, and 3/8, respec­
tively. Then, 

E(X) = ( -1)·(1/8) + 0·(112) + 2·(3/8) = 5/8. 

This example illustrates something curious about expected values: the expected value of 
X can be a number that is not even a possible outcome of X. We know that X takes on the 
values -1, 0, or 2, yet its expected value is 5/8. This makes the expected value deficient 
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for summarizing the central tendency of certain discrete random variables, but calcula­
tions such as those just mentioned can be useful, as we will see later. 

If X is a continuous random variable, then E(X) is defined as an integral: 

"' 
E(X) = I xf(x)dx, (8.18) 

which we assume is well defined. This can still be interpreted as a weighted average. For 
the most common continuous distributions, E(X) is a number that is a possible outcome 
of X. In this text, we will not need to compute expected values using integration, although 
we will draw on some well-known results from probability for expected values of special 
random variables. 

Given a random variable X and a function g( · ), we can create a new random variable 
g(X). For example, if X is a random variable, then so is X2 and log(X) (if X > 0). Tile 
expected value of g(X) is, again, simply a weighted average: 

k 

E[g(X)] = :L g(xi)fx(x) 
j=l 

or, for a continuous random variable, 

"' 
E[g(X)] = I g(x)fx(x)dx. 

For the random variable in Example 8.3, let g(X) = X 2. Then, 

E(X2) = ( -1)2(118) + (0)2(112) + (2)2(3/8) = 13/8. 

(8.19) 

(8.20) 

In Example B.3, we computed E(X) = 5/8, so that [E(X)f = 25/64. This shows that E(X2
) 

is not the same as [E(X)F. In fact, for a nonlinear function g(X), E[g(X)] -=/= g[E(X)] (excegt 
in very special cases). 

If X and Yare random variables, then g(X,Y) is a random variable for any function g, 
and so we can define its expectation. When X and Y are both discrete, taking on values 
{x1,x2, ... ,xd and {y1,y2, ... ,y,.}, respectively, the expected value is 

k m 

E[g(X, Y)] = :L :L g(x1,,y)fx. y(x,,y), 
/r=lj=l 

wherefx.r is the joint pdf of (X,Y). The definition is more complicated for continuous ran­
dom variables since it involves integration; we do not need it here. The extension to more 
than two random variables is straightforward. 
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Properties of Expected Values 

In econometrics, we are not so concerned with computing expected values from various 
distributions; the major calculations have been done many times, and we will largely take 
these on faith. We will need to manipulate some expected values using a few simple rules. 
These are so important that we give them labels: 

PROPERTY E.l 
For any constant c, E(c) = c. 

PROPERTY E.2 
For any constants a and b, E(aX + b) = aE(X) + b. 

One useful implication of E.2 is that, if /.L = E(X), and we define a new random variable 
as Y =X- /.L. then E(Y) = 0; in E.2, take a = 1 and b = -1-L· 

As an example of Property E.2, let X be the temperature measured in Celsius at noon 
on a particular day at a given location; suppose the expected temperature is E(X) = 25. If 
Y is the temperature measured in Fahrenheit, then Y = 32 + (9/5)X. From Property E.2, 
the expected temperature in Fahrenheit is E(Y) = 32 + (9/5)·E(X) = 32 + (9/5)·25 = 77. 

Generally, it is easy to compute the expected value of a linear function of many ran­
dom variables. 

PROPERTY E.3 
If {a1,a2, ... ,a

11
} are constants and {X1,X2, ... ,X

11
} are random variables, then 

E(a 1X1 + a2X2 + ... + a,,X11 ) = a1E(X1) + a2E(X2) + ... + a11E(X11 ). 

Or, using summation notation, 

fJ 11 

E(L a;X;) = L a;E(X;). (8.21) 
i=l i=l 

As a special case of this, we have (with each a; = 1) 

11 n 

E(L X;) = L E(X;). 
i=l i=l 

so that the expected value of the sum is the sum of expected values. This property is used 
often for derivations in mathematical statistics. 

(Finding Expected Revenue) 

Let X1, X2, and X3 be the numbers of small, medium, and large pizzas, respectively, sold dur­
ing the day at a pizza parlor. These are random variables with expected values E(X1) == 25, 



740 Appendix B Fundamentals of Probability 

E(X2) = 57, and E(X3) = 40. The prices of small, medium, and large pizzas are $5.50, $7.60, 
and $9.15. Therefore, the expected revenue from pizza sales on a given day is 

E(5.50 X1 + 7.60 X2 + 9.15 X3) = 5.50 E(X1) + 7.60 E(X2) + 9.15 E(X3) 

= 5.50(25) + 7.60(57) + 9.15(40) = 936.70, 

that is, $936.70. The actual revenue on any particular day will generally differ from this value, 
but this is the expected revenue. 

We can also use Property E.3 to show that if X- Binomial(n,O), then E(X) = nO. That 
is, the expected number of successes in n Bernoulli trials is simply the number of trials 
times the probability of success on any particular trial. This is easily seen by writing X as 
X = Y1 + Y2 + ... + Y,., where each Yi - Bernoulli(O). Then, 

11 n 

E(X) = L E(Y;) = L 8 =nO. 
i=l i=l 

We can apply this to the airline reservation example, where the airline makes n = 120 
reservations, and the probability of showing up is 8 = .85. The expected number of peo­
ple showing up is 120(.85) = 102. Therefore, if there are 100 seats available, the expected 
number of people showing up is too large; this has some bearing on whether it is a good 
idea for the airline to make 120 reservations. 

Actually, what the airline should do is define a profit function that accounts for the net 
revenue earned per seat sold and the cost per passenger bumped from the flight. This profit 
function is random because the actual number of people showing up is random. Let r be 
the net revenue from each passenger. (You can think of this as the price of the ticket for 
simplicity.) Let c be the compensation owed to any passenger bumped from the flight. Nei­
ther r nor c is random; these are assumed to be known to the airline. Let Y denote profits 
for the flight. Then, with 100 seats available, 

Y= rX ifXs 100 

== 100r- c(X- 100) if X> 100. 

The first equation gives profit if no more than I 00 people show up for the flight; the second 
equation is profit if more than 100 people show up. (In the latter case, the net revenue 
from ticket sales is 1 OOr, since all 100 seats are sold, and then c(X - I 00) is the cost ofi 
making more than 100 reservations.) Using the fact that X has a Binomial(n,.85) distribu­
tion, where n is the number of reservations made, expected profits, E(Y), can be found as 
a function of n (and rand c). Computing E(Y) directly would be quite difficult, but it can 
be found quickly using a computer. Once values for r and c are given, the value of n that 
maximizes expected profits can be found by searching over different values of n. 

Another Measure of Central Tendency: The Median 

The expected value is only one possibility for defining the central tendency of a random 
variable. Another measure of central tendency is the median. A general definition of 
median is too complicated for our purposes. If X is continuous, then the median of X, say, 
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m, is the value such that one-half of the area under the pdf is to the left of m, and one­
half of the area is to the right of m. 

When X is discrete and takes on a finite number of odd values, the median is obtained 
by ordering the possible values of X and then selecting the value in the middle. For exam­
ple, if X can take on the values { -4,0,2,8, 10, 13,17}, then the median value of X is 8. If 
X takes on an even number of values, there are really two median values; sometimes, these 
are averaged to get a unique median value. Thus, if X takes on the values { -5,3,9,17}, 
then the median values are 3 and 9; if we average these, we get a median equal to 6. 

In general, the median, sometimes denoted Med(X), and the expected value, E(X), are 
different. Neither is "better" than the other as a measure of central tendency; they are both 
valid ways to measure the center of the distribution of X. In one special case, the median 
and expected value (or mean) are the same. If X has a symmetric distribution about the 
value JL, then JL is both the expected value and the median. Mathematically, the condition 
is f(JL + x) = f(JL - x) for all x. This case is illustrated in Figure B.3. 

Measures of Variability: Variance and Standard Deviation 

Although the central tendency of a random variable is valuable, it does not tell us every­
thing we want to know about the distribution of a random variable. Figure B.4 shows the 

FIGURE 8.3 
A symmetric probability distribution. 

f(x) 

X 
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FIGURE 8.4 

Random variables with the same mean but different distributions. 

pdf 

pdfs of two random variables with the same mean. Clearly, the distribution of X is more 
tightly centered about its mean than is the distribution of Y. We would like to have a sim­
ple way of summarizing this. 

Variance 

For a random variable X, let J.L = E(X). There are various ways to measure how far X is 
from its expected value, but the simplest one to work with algebraically is the squared dif­
ference, (X- J.L)2• (The squaring eliminates the sign from the distance measure; the result­
ing positive value corresponds to our intuitive notion of distance.) This distance is itself a 
random variable since it can change with every outcome of X. Just as we needed a num­
ber to summarize the central tendency of X, we need a number that tells us how far X is 
from J.L, on average. One such number is the variance, which tells us the expected distance 
from X to its mean: 

(8.23) 

Variance is sometimes denoted a}, or simply a 2, when the context is clear. From (B.23), 
it follows that the variance is always nonnegative. 
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As a computational device, it is useful to observe that 

(8.24) 

In using either (B.23) or (B.24), we need not distinguish between discrete and continuous 
random variables: the definition of variance is the same in either case. Most often, we first 
compute E(X), then E(X2), and then we use the formula in (B.24). For example, if X­
Bernoulli( B), then E(X) = e, and, since X2 =X, E(X2) = 8.1t follows from equation (B.24) 
that Var(X) = E(X2) - p,2 = 8 - 82 = 8(1 - 8). 

1\vo important properties of the variance follow. 

PROPERTY VAR.l 
Var(X) = 0 if, and only if, there is a constant c, such that P(X = c) = I, in which case, 
E(X) =c. 

This first property says that the variance of any constant is zero and if a random variable 
has zero variance, then it is essentially constant. 

PROPERTY VAR.2 
For any constants a and b, Var(aX + b) = a2Var(X). 

This means that adding a constant to a random variable does not change the variance, but 
multiplying a random variable by a constant increases the variance by a factor equal to 
the square of that constant. For example, if X denotes temperature in Celsius and 
Y = 32 + (9/5)X is temperature in Fahrenheit, then Var(Y) = (9/5)2Var(X) = 
(81125)Var(X). 

Standard Deviation 
The standard deviation of a random variable, denoted sd(X), is simply the positive 
square root of the variance: sd(X) == +V'var(X). The standard deviation is sometimes 
denoted ax, or simply a, when the random variable is understood. Two standard devia­
tion properties immediately follow from Properties VAR.l and VAR.2. 

PROPERTY SD.l 
For any constant c, sd(c) = 0. 

PROPERTY SD.2 
For any constants a and b, 

sd(aX + b) = laisd(X). 

In particular, if a > 0, then sd(aX) = a·sd(X). 

This last property makes the standard deviation more natural to work with than the vari­
ance. For example, suppose that X is a random variable measured in thousands of dollars, 
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say, income. If we define Y = l ,OOOX, then Y is income measured in dollars. Suppose that 
E(X) = 20, and sd(X) = 6. Then, E(Y) = l,OOOE(X) = 20,000, and sd(Y) = l,OOO·sd(X) 
= 6,000, so that the expected value and standard deviation both increase by the same fac­
tor, 1,000. If we worked with variance, we would have Var(Y) = (l,000)2Var(X), so that 
the variance of Y is one million times larger than the variance of X. 

Standardizing a Random Variable 

As an application of the properties of variance and standard deviation-and a topic of prac­
tical interest in its own right-suppose that given a random variable X, we define a new 
random variable by subtracting off its mean /.L and dividing by its standard deviation u.: 

_x-P-
Z= ---, 

a 
(8.25) 

which we can write as Z = aX+ b, where a = (lla), and b = -(P-Ia). Then, from Prop: 
erty E.2, 

E(Z) = aE(X) + b = (P-Ia) - (P-Ia) = 0. 

From Property VAR.2, 

Thus, the random variable Z has a mean of zero and a variance (and therefore a standard 
deviation) equal to one. This procedure is sometimes known as standardizing the random 
variable X, and Z is called a standardized random variable. (In introductory statistics 
courses, it is sometimes called the z-transform of X.) It is important to remember that the 
standard deviation, not the variance, appears in the denominator of (B .25). As we will see, 
this transformation is frequently used in statistical inference. 

As a specific example, suppose that E(X) = 2, and Var(X) = 9. Then, Z = (X-
2)13 has expected value zero and variance one. 

8.4 Features of Joint and Conditional Distributions 

Measures of Association: Covariance and Correlation 

While the joint pdf of two random variables completely describes the relationship between 
them, it is useful to have summary measures of how, on average, two random variables 
vary with one another. As with the expected value and variance, this is similar to using a 
single number to summarize something about an entire distribution, which in this casd s 
a joint distribution of two random variables. 
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Covariance 

Let ILx = E(X) and ILr = E(Y) and consider the random variable (X - ILx)(Y- /Ly). Now, 
if X is above its mean and Y is above its mean, then (X- ILx)(Y- /Ly) > 0. This is also 
true if X < ILx and Y < ILr· On the other hand, if X > ILx and Y < ILr· or vice versa, then 
(X - ILx)(Y - /Ly) < 0. How, then, can this product tell us anything about the relation­
ship between X and Y? 

The covariance between two random variables X and Y, sometimes called the popu­
lation covariance to emphasize that it concerns the relationship between two variables 
describing a population, is defined as the expected value of the product (X - ILx)(Y- /Ly): 

Cov(X,Y) == E[(X- 1-Lx)(Y- /Ly)], (8.26) 

which is sometimes denoted axr· If axy > 0, then, on average, when X is above its mean, 
Y is also above its mean. If axy < 0, then, on average, when X is above its mean, Y is 
below its mean. 

Several expressions useful for computing Cov(X,Y) are as follows: 

Cov(X,Y) = E[(X- 1-Lx)(Y- /Ly)] = E[(X- ILx)Y] 

= E[X(Y - /Ly)] = E(XY) - ILxiLr· 

It follows from (B.27), that if E(X) = 0 or E(Y) = 0, then Cov(X,Y) = E(XY). 

(8.27) 

Covariance measures the amount of linear dependence between two random variables. 
A positive covariance indicates that two random variables move in the same direction, 
while a negative covariance indicates they move in opposite directions. Interpreting the 
magnitude of a covariance can be a little tricky, as we will see shortly. 

Because covariance is a measure of how two random variables are related, it is natural 
to ask how covariance is related to the notion of independence. This is given by the fol­
lowing property. 

PROPERTY COV.1 
If X and Y are independent, then Cov(X,Y) = 0. 

This property follows from equation (B.27) and the fact that E(XY) = E(X)E(Y) when X 
and Yare independent. It is important to remember that the converse of COV.l is not true: 
zero covariance between X and Y does not imply that X and Y are independent. In fact, 
there are random variables X such that, if Y = X2, Cov(X,Y) = 0. [Any random variable 
with E(X) = 0 and E(X3) = 0 has this property.] If Y = X2, then X and Yare clearly not 
independent: once we know X, we know Y. It seems rather strange that X and X2 could 
have zero covariance, and this reveals a weakness of covariance as a general measure of 
association between random variables. The covariance is useful in contexts when 
relationships are at least approximately linear. 

The second major property of covariance involves covariances between linear 
functions. 
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PROPERTY COV.2 
For any constants a 1, b1, a2, and b2, 

(8.28) 

An important implication of COV.2 is that the .covariance between two random variables 
can be altered simply by multiplying one or both of the random variables by a constan. 
This is important in economics because monetary variables, inflation rates, and so on can 
be defined with different units of measurement without changing their meaning. 

Finally, it is useful to know that the absolute value of the covariance between any two 
random variables is bounded by the product of their standard deviations; this is known as 
the Cauchy-Schwartz inequality. 

PROPERTY COV.3 
iCov(X,Y)i :s sd(X)sd(Y). 

Correlation Coefficient 

Suppose we want to know the relationship between amount of education and annual earn­
ings in the working population. We could let X denote education and Y denote earnings and 
then compute their covariance. But the answer we get will depend on how we choose to 
measure education and earnings. Property COV.2 implies that the covariance between 
education and earnings depends on whether earnings are measured in dollars or thousands 
of dollars, or whether education is measured in months or years . It is pretty clear that 
how we measure these variables has no bearing on how strongly they are related. But the 
covariance between them does depend on the units of measurement. 

The fact that the covariance depends on units of measurement is a deficiency that is 
overcome by the correlation coefficient between X and Y: 

Cov(X,Y) uXY 
Corr(X,Y) = sd(X)·sd(Y) = uxur; (Q.29) 

the correlation coefficient between X and Y is sometimes denoted Pxy (and is sometimes 
called the population correlation). 

Because ux and O'y are positive, Cov(X,Y) and Corr(X,Y) always have the same sign, 
and Corr(X,Y) = 0 if, and only if, Cov(X,Y) = 0. Some of the properties of covariance 
carry over to correlation. If X and Y are independent, then Corr(X,Y) = 0, but zero corre­
lation does not imply independence. (Like the covariance, the correlation coefficient is 
also a measure of linear dependence.) However, the magnitude of the correlation coeffi­
cient is easier to interpret than the size of the covariance due to the following property. 

PROPERTY CORR.l 
-1 :s Corr(X,Y) :s 1. 

If Corr(X,Y) = 0, or equivalently Cov(X,Y) = 0, then there is no linear relationship 
between X and Y, and X and Yare said to be uncorrelated random variables; otherwise, 

1 
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X and Yare correlated. Corr(X,Y) = 1 implies a perfect positive linear relationship, which 
means that we can write Y = a + bX for some constant a and some constant b > 0. 
Corr(X,Y) = -1 implies a perfect negative linear relationship, so that Y = a + bX for 
some b < 0. The extreme cases of positive or negative 1 rarely occur. Values of Pxr closer 
to 1 or -1 indicate stronger linear relationships. 

As mentioned earlier, the correlation between X and Y is invariant to the units of 
measurement of either X or Y. This is stated more generally as follows. 

PROPERTY CORR.2 
For constants a1, b1, a2, and b2, with a 1a2 > 0, 

Corr(a 1X + b1,a2Y + b2) = -Corr(X,Y). 

As an example, suppose that the correlation between earnings and education in the work­
ing population is .15. This measure does not depend on whether earnings are measured in 
dollars, thousands of dollars, or any other unit; it also does not depend on whether 
education is measured in years, quarters, months, and so on. 

Variance of Sums of Random Variables 

Now that we have defined covariance and correlation, we can complete our list of major 
properties of the variance. 

PROPERTY VAR.3 
For constants a and b, 

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X,Y). 

It follows immediately that, if X and Yare uncorrelated-so that Cov(X,Y) = 0-then 

Var(X + Y) = Var(X) + Var(Y) (8.30) 

and 

Var(X - Y) = Var(X) + Var(Y). (8.31) 

In the latter case, note how the variance of the difference is the sum of the variances, not 
the difference in the variances. 

As an example of (B.30), Jet X denote profits earned by a restaurant during a Friday 
night and let Y be profits earned on the following Saturday night. Then, Z = X + Y is 
profits for the two nights. Suppose X and Y each have an expected value of $300 and a 
standard deviation of $15 (so that the variance is 225). Expected profits for the two nights 
is E(Z) = E(X) + E(Y) = 2·(300) = 600 dollars. If X andY are independent, and therefore 
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uncorrelated, then the variance of total profits is the sum of the variances: Var(Z) ~ 
Var(X) + Var(Y) = 2·(225) = 450. It follows that the standard deviation of total profits 
is \450 or about $21.21. 

Expressions (B.30) and (B.31) extend to more than two random variables. To state this 
extension, we need a definition. The random variables {X1, • •• ,X,} are pairwise uncor­
related random variables if each variable in the set is uncorrelated with every other wat<i­
able in the set. That is, Cov(X;,X) = 0, for all i i= j. 

PROPERTY VAR.4 
If {X1, ••• ,X,} are pairwise uncorrelated random variables and {a;: i = 1, ... ,n} are con­
stants, then 

Var(a 1X1 + ... + a,X,) = afVar(X1) + ... + a;.var(X,). 

In summation notation, we can write 

( 

11 ) n 
Var L a;X; = L a7Var(X;). 

i=l i=l 
(8.32) 

A special case of Property VAR.4 occurs when we take a; = I for all i. Then, for pair­
wise uncorrelated random variables, the variance of the sum is the sum of the variances: 

(8.33) 

Because independent random variables are uncorrelated (see Property COV.l), the vari­
ance of a sum of independent random variables is the sum of the variances. 

If the X; are not pairwise uncorrelated, then the expression for Var(L~- 1 a;X;) is much 
more complicated; we must add to the right-hand side of (B.32) the terms 2apFov(x;.x) 
for all i > j. 

We can use (B.33) to derive the variance for a binomial random variable. Let X­
Binomial(n,O) and write X = Y1 + ... + Y,, where the Y; are independent Bemoulli(O) 
random variables. Then, by (B.33), Var(X) = Var(Y1) + ... + Var(Y,) = nO(l - 8). 

In the airline reservation example with n = 120 and 8 = .85, the variance of the num­
ber of passengers arriving for their reservations is 120(.85)(.15) = 15.3, so the standard 
deviation is about 3.9. 

Conditional Expectation 

Covariance and correlation measure the linear relationship between two random variables 
and treat them symmetrically. More often in the social sciences, we would like to explain 
one variable, called Y, in terms of another variable, say, X. Further, if Y is related to X in a 
nonlinear fashion, we would like to know this. Call Y the explained variable and X the ex­
planatory variable. For example, Y might be hourly wage, and X might be years of formal 
education. 
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We have already introduced the notion of the conditional probability density function 
of Y given X. Thus, we might want to see how the distribution of wages changes with edu­
cation level. However, we usually want to have a simple way of summarizing this distri­
bution. A single number will no longer suffice, since the distribution of Y given X = x 
generally depends on the value of x. Nevertheless, we can summarize the relationship 
between Y and X by looking at the conditional expectation of Y given X, sometimes called 
the conditional mean. The idea is this. Suppose we know that X has taken on a particular 
value, say, x. Then, we can compute the expected value of Y, given that we know this out­
come of X. We denote this expected value by E(YIX = x), or sometimes E(Yix) for short­
hand. Generally, as x changes, so does E(Yix). 

When Y is a discrete random variable taking on values {y1, ••• ,y,), then 

Ill 

E(Yix) = ~ Y/rjx(Yiix). 
j=l 

When Y is continuous, E(Yix) is defined by integrating yf r!x<Yix) over all possible values 
of y. As with unconditional expectations, the conditional expectation is a weighted aver­
age of possible values of Y, but now the weights reflect the fact that X has taken on a spe­
cific value. Thus, E(Yix) is just some function of x, which tells us how the expected value 
of Yvaries with x. 

As an example, let (X,Y) represent the population of all working individuals, where 
X is years of education and Y is hourly wage. Then, E(YIX = 12) is the average hourly 
wage for all people in the population with 12 years of education (roughly a high 
school education). E(YIX = 16) is the average hourly wage for all people with 16 years 
of education. Tracing out the expected value for various levels of education provides 
important information on how wages and education are related. See Figure B.5 for an 
illustration. 

In principle, the expected value of hourly wage can be found at each level of educa­
tion, and these expectations can be summarized in a table . Because education can vary 
widely-and can even be measured in fractions of a year-this is a cumbersome way to 
show the relationship between average wage and amount of education. In econometrics, 
we typically specify simple functions that capture this relationship. As an example, 
suppose that the expected value of WAGE given EDUC is the linear function 

E(WAGEIEDUC) = 1.05 + .45 EDUC. 

If this relationship holds in the population of working people, the average wage for peo­
ple with 8 years of education is 1.05 + .45(8) = 4.65, or $4.65. The average wage for 
people with 16 years of education is 8.25, or $8.25. The coefficient on EDUC implies that 
each year of education increases the expected hourly wage by .45, or 45 cents. 

Conditional expectations can also be nonlinear functions. For example, suppose that 
E(Yix) = 10/x, where X is a random variable that is always greater than zero. This function 
is graphed in Figure B.6. This could represent a demand function, where Y is quantity 
demanded and X is price. If Y and X are related in this way, an analysis of linear associ­
ation, such as correlation analysis, would be incomplete. 
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FIGURE B.S 
The expected value of hourly wage given various levels of education. 
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Properties of Conditional Expectation 

Several basic properties of conditional expectations are useful for derivations in econo­
metric analysis. 

PROPERTY CE.l 
E[c(X)iXl = c(X), for any function c(X). 

This first property means that functions of X behave as constants when we compute expec­
tations conditional on X. For example, E(X2iX) = X2• Intuitively, this simply means that 
if we know X, then we also know )(2. 

PROPERTY CE.2 
For functions a(X) and b(X), 

E[a(X)Y + b(X)iX] = a(X)E(YjX) + b(X). 

For example, we can easily compute the conditional expectation of a function such as 
XY + 2X2: E(XY + 2X2iX) = XE(YjX) + 2X2• 
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FIGURE 8.6 

Graph of E(Yixl = 10/x. 
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The next property ties together the notions of independence and conditional 
expectations. 

PROPERTY CE.3 
If X and Yare independent, then E(YIX) = E(Y). 

This property means that, if X and Y are independent, then the expected value of Y given 
X does not depend on X, in which case, ECYIX) always equals the (unconditional) 
expected value of Y. In the wage and education example, if wages were independent of 
education, then the average wages of high school and college graduates would be the same. 
Since this is almost certainly false, we cannot assume that wage and education are 
independent. 

A special case of Property CE.3 is the following: if U and X are independent and 
E( U) = 0, then E( UIX) = 0. 

There are also properties of the conditional expectation that have to do with the fact 
that E(YIX) is a function of X, say, ECYIX) = p..(X). Because X is a random variable, p..(X) 
is also a random variable. Furthermore, p..(X) has a probability distribution and therefore 
an expected value. Generally, the expected value of p..(X) could be very difficult to com­
pute directly. The law of iterated expectations says that the expected value of p..(X) is 
simply equal to the expected value of Y. We write this as follows. 
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PROPERTY CE.4 
E[E(Y[X)] = E(Y). 

Appendix B Fundamentals of Probability 

This property is a little hard to grasp at first. It means that, if we first obtain E(Y[X) as a 
function of X and take the expected value of this (with respect to the distribution of X, of 
course), then we end up with E(Y). This is hardly obvious, but it can be derived using the 
definition of expected values. 

As an example of how to use Property CE. 4, let Y = WAGE and X = EDUC, where 
WAGE is measured in hours and EDUC is measured in years. Suppose the expected value 
of WAGE given EDUC is E(WAGE[EDUC) = 4 + .60 EDUC. Further, E(EDUC) = 11.5. 
Then, the law of iterated expectations implies that E(WAGE) = E(4 + .60 EDUC) = 21-

+ .60 E(EDUC) = 4 + .60(11.5) = 10.90, or $10.90 an hour. 
The next property states a more general version of the Jaw of iterated expectations. 

PROPERTY CE.4' 
E(Y[X) = E[E(Y[X,Z)[X]. 

In other words, we can find E(Y[X) in two steps. First, find E(Y[X,Z) for any other ran­
dom variable Z. Then, find the expected value of E(Y[X,Z), conditional on X. 

PROPERTY CE.S 
If E(Y[X) = E(Y), then Cov(X,Y) = 0 [and so Corr(X,Y) = 0]. In fact, every function of 
X is uncorrelated with Y. 

This property means that, if knowledge of X does not change the expected value of Y, then 
X and Y must be uncorrelated, which implies that if X and Y are correlated, then E(Y[X) 
must depend on X. The converse of Property CE.5 is not true: if X and Y are uncorrelated, 
E(Y[X) could still depend on X. For example, suppose Y = X2. Then, E(Y[X) = X2, which 
is clearly a function of X. However, as we mentioned in our discussion of covariance and 
correlation, it is possible that X and X2 are uncorrelated. The conditional expectation 
captures the nonlinear relationship between X and Y that correlation analysis would 
miss entirely. 

Properties CE.4 and CE.5 have two important implications: if U and X are random 
variables such that E( Ujx) = 0, then E( U) = 0, and U and X are uncorrelated. 

PROPERTY CE.6 
If E(Y2) < oo and E[g(X)2] < oo for some function g, then E{ [Y - p.(X)JZ[X} s 
E{[Y- g(X)]Z[X} and E{[Y- p.(X)]Z} =:;; E{[Y- g(X)]Z}. 

Property CE.6 is very useful in predicting or forecasting contexts. The first inequality says 
that, if we measure prediction inaccuracy as the expected squared prediction error, 
conditional on X, then the conditional mean is better than any other function of X for 
predicting Y. The conditional mean also minimizes the unconditional expected squared 
prediction error. 
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Conditional Variance 

Given random variables X and Y, the variance of Y, conditional on X = x, is simply the 
variance associated with the conditional distribution of Y, given X= x: E{ [Y- ECY!x)J21x). 
The formula 

Var(YIX = x) = E(Y2ix) - [E(Yix)J2 

is often useful for calculations. Only occasionally will we have to compute a conditional 
variance. But we will have to make assumptions about and manipulate conditional vari­
ances for certain topics in regression analysis. 

As an example, let Y = SAVING and X = INCOME (both of these measured annually 
for the population of all families) . Suppose that Var(SAVINGIINCOME) = 400 + .25 
INCOME. This says that, as income increases, the variance in saving levels also increases. 
It is important to see that the relationship between the variance of SAVING and INCOME 
is totally separate from that between the expected value of SAVING and INCOME. 

We state one useful property about the conditional variance. 

PROPERTY CV.l 
If X and Yare independent, then Var(YIX) = Var(Y). 

This property is pretty clear, since the distribution of Y given X does not depend on X, and 
Var(YIX) is just one feature of this distribution. 

B.S The Normal and Related Distributions 

The Normal Distribution 

The normal distribution and those derived from it are the most widely used distributions in 
statistics and econometrics. Assuming that random variables defined over populations are 
normally distributed simplifies probability calculations. In addition, we will rely heavily on 
the normal and related distributions to conduct inference in statistics and econometrics­
even when the underlying population is not necessarily normal. We must postpone the 
details, but be assured that these distributions will arise many times throughout this text. 

A normal random variable is a continuous random variable that can take on any value. 
Its probability density function has the familiar bell shape graphed in Figure B.7. 

Mathematically, the pdf of X can be written as 

I 
f(x) = ~ ~ exp[ -(x- /L)2/2u2], -oo < x < oo, 

uv2Tr 
(8.34) 

where IL = E(X) and u 2 = Var(X). We say that X has a normal distribution with expected 
value IL and variance o- 2, written as X- Normal(/L,o-2) . Because the normal distribution is 
symmetric about IL· IL is also the median of X. The normal distribution is sometimes called 
the Gaussian distribution after the famous statistician C. F. Gauss. 
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Certain random variables appear to roughly follow a normal distribution. Human 
heights and weights, test scores, and county unemployment rates have pdfs roughly the 
shape in Figure B.7. Other distributions, such as income distributions, do not appear to 
follow the normal probability function. In most countries, income is not symmetrically 
distributed about any value; the distribution is skewed toward the upper tail. In some cases, 
a variable can be transformed to achieve normality. A popular transformation is the natu­
ral log, which makes sense for positive random variables. If X is a positive random vari­
able, such as income, and Y = log(X) has a normal distribution, then we say that X has a 
lognormal distribution. It turns out that the lognormal distribution fits income distribution 
pretty well in many countries. Other variables, such as prices of goods, appear to be well 
described as lognormally distributed. 

The Standard Normal Distribution 
One special case of the normal distribution occurs when the mean is zero and the variance 
(and, therefore, the standard deviation) is unity. If a random variable Z has a Normal(O,l) 
distribution, then we say it has a standard normal distribution. The pdf of a standard nor­
mal random variable is denoted cp(z); from (B.34), with p, = 0 and a 2 = 1, it is given by 

1 
cp(z) = ~ ~ exp( -z2/2), -oo < z < oo. 

V27T 

FIGURE B.7 
The general shape of the normal probability density function. 
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The standard normal cumulative distribution function is denoted Cl>(z) and is obtained 
as the area under 4J, to the left of z; see Figure B.8. Recall that Cl>(z) = P(Z :5 z); because 
Z is continuous, CI>(z) = P(Z < z) as well. 

No simple formula can be used to obtain the values of Cl>(z) [because Cl>(z) is the inte­
gral of the function in (B.35), and this intregral has no closed form]. Nevertheless, the val­
ues for Cl>(z) are easily tabulated; they are given for z between -3.1 and 3.1 in Table G.l 
in Appendix G. For z :5 -3.1, Cl>(z) is less than .001, and for z ~ 3.1, CI>(z) is greater than 
.999. Most statistics and econometrics software packages include simple commands for 
computing values of the standard normal cdf, so we can often avoid printed tables entirely 
and obtain the probabilities for any value of z. 

Using basic facts from probability-and, in particular, properties (B.7) and (B.8) con­
cerning cdfs-we can use the standard normal cdf for computing the probability of any 
event involving a standard normal random variable. The most important formulas are 

P(Z > z) = 1 - Cl>(z), (8.36) 

P(Z < -z) = P(Z > z), (8.37) 

and 

P(a :5 Z :5 b) = Cl>(b) - Cl>(a). (8.38) 

FIGURE 8.8 
ifhe standard normal Gumulative distribution funGtion. 
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Because Z is a continuous random variable, all three formulas hold whether or not tbe 
inequalities are strict. Some examples include P(Z > .44) = I - .67 = .33, P(Z < - .92) 
= P(Z > .92) = 1- .821 = .179, and P(-1 < Z ::s .5) = .692- .159 = .533. 

Another useful expression is that, for any c > 0, 

PCIZI >c) = P(Z >c) + P(Z < -c) 

= 2·P(Z >c) = 2[1 - <l>(c)]. 
(8.39) 

Thus, the probability that the absolute value of Z is bigger than some positive constant c 
is simply twice the probability P(Z > c); this reflects the symmetry of the standard nor­
mal distribution. 

In most applications, we start with a normally distributed random variable, X -
Normal(J.L,a2), where JL is different from zero and a 2 * 1. Any normal random variable 
can be turned into a standard normal using the following property. 

PROPERTY NORMAL.1 
If X- Normai(J.L,a2), then (X - JL)/a - Normal(O, 1). 

Property Normal. I shows how to tum any normal random variable into a standard normal. 
Thus, suppose X- Normal(3,4), and we would like to compute P(X ::5 1). The steps always 
involve the normalization of X to a standard normal: 

P(X ::s 1) = P(X - 3 ::s 1 - 3) = P (X ~ 3 
::s - 1) 

= P(Z::s -1) = <l>(-1) = .159. 

(Probabilities for a Normal Random Variable) 

First, let us compute P(2 <X s 6) when X- Normal(4,9) (whether we use < or :S is irrele­
vant because X is a continuous random variable). Now, 

P(2 <X ::s 6) = p (2- 4 < X- 4 ::::; 6- 4) = P(-2/3 < z::::; 2/3) 
3 3 3 

= <1>(.67) - <l>(- .67) = .749 - .251 = .498. 

Now, let us compute P(!XI > 2): 

PCIXI > 2) = P(X > 2) + P(X < -2) 

= P[(X- 4)/3 > (2 - 4)/3] + P[(X- 4)/3 < ( -2 - 4)/3] 

= 1- <l>(-2/3) + <l>(-2) 

= 1 - .251 + .023 = .772. 
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Additional Properties of the Normal Distribution 

We end this subsection by collecting several other facts about normal distributions that we 
will later use. 

PROPERTY NORMAL.2 
If X - Normal(JL,u2

), then aX + b - Normal(aJL + b,a2u 2
). 

Thus, if X - Normal(1,9), then Y = 2X + 3 is distributed as normal with mean 
2E(X) + 3 = 5 and variance 22·9 = 36; sd(Y) = 2sd(X) = 2·3 = 6. 

Earlier, we discussed how, in general, zero correlation and independence are not the 
same. In the case of normally distributed random variables, it turns out that zero correla­
tion suffices for independence. 

PROPERTY NORMAL.3 
If X and Y are jointly normally distributed, then they are independent if, and only if, 
Cov(X,Y) = 0. 

PROPERTY NORMAL.4 
Any linear combination of independent, identically distributed normal random variables 
has a normal distribution. 

For example, let X;. fori = 1, 2, and 3, be independent random variables distributed as 
Normal(JL,u2). Define W = X1 + 2X2 - 3X3• Then, W is normally distributed; we must 
simply find its mean and variance. Now, 

Also, 

Var(W) = Var(X1) + 4Var(X2) + 9Var(X3) = 14u2• 

Property Normal.4 also implies that the average of independent, normally distributed 
random variables has a normal distribution. If Y1, Y2, .•. , Y, are independent random vari­
ables and each is distributed as Normal(JL,u2), then 

Y- Normal(JL,u2/n). (8.40) 

This result is critical for statistical inference about the mean in a normal population. 

The Chi-Square Distribution 

The chi-square distribution is obtained directly from independent, standard normal ran­
dom variables. Let Z;. i = 1 ,2, ... , n, be independent random variables, each distributed as 
standard normal. Define a new random variable as the sum of the squares of the Z;: 

n 

x=:Lzr (8.41) 
i=l 
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Then, X has what is known as a chi-square distribution with 11 degrees of freedom (or 
df for short). We write this as X- x;. The df in a chi-square distribution corresponds to 
the number of terms in the sum in (B.41). The concept of degrees of freedom will play an 
important role in our statistical and econometric analyses. "-

The pdf for chi-square distributions with varying degrees of freedom is given in 
Figure B.9; we will not need the formula for this pdf, and so we do not reproduce it here. 
From equation (B.41), it is clear that a chi-square random variable is always nonnegative, 
and that, unlike the normal distribution, the chi-square distribution is not symmetric about 
any point. It can be shown that if X- xJ, then the expected value of X is 11 [the number 
of terms in (B.41)], and the variance of X is 211. 

The t Distribution 

The t distribution is the workhorse in classical statistics and multiple regression analysis. 
We obtain a t distribution from a standard normal and a chi-square random variable. 

Let Z have a standard normal distribution and let X have a chi-square distribution with n 
degrees of freedom. Further, assume that Z and X are independent. Then, the random variable 

z 
T=--

VXill 
(8.42) 

f(x) 

X 

-
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has a t distribution with n degrees of freedom. We wiJI denote this by T - fw The t dis­
tribution gets its degrees of freedom from the chi-square random variable in the denomi­
nator of (B.42). 

The pdf of the t distribution has a shape similar to that of the standard normal distri­
bution, except that it is more spread out and therefore has more area in the tails. The ex­
pected value of at distributed random variable is zero (strictly speaking, the expected value 
exists only for n > 1), and the variance is nl(n - 2) for n > 2. (The variance does not exist 
for n :5 2 because the distribution is so spread out.) The pdf of the t distribution is plotted 
in Figure B.l 0 for various degrees of freedom. As the degrees of freedom gets large, the t 
distribution approaches the standard normal distribution. 

The F Distribution 

Another important distribution for statistics and econometrics is the F distribution. In par­
ticular, the F distribution will be used for testing hypotheses in the context of multiple 
regression analysis. 

To define an F random variable, let XI - x'l and x2 - x'l, and assume that XI and x2 
are independent. Then, the random variable 

1 
-

(8.43) 

-3 0 3 
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The Fk
1
,k

2 
distribution for various degrees of freedom, k1 and k2• 

f(x) 

df= 6, 8 

I 

111 
I 

• 

X 

has an F distribution with (k 1,k2) degrees of freedom. We denote this as F- Fk
1
,k,· The 

pdf of the F distribution with different degrees of freedom is given in Figure B.ll. 
The order of the degrees of freedom in Fk,.k, is critical. The integer k1 is called the 

numerator degrees of freedom because it is associated with the chi-square variable in the 
numerator. Likewise, the integer k2 is called the denominator degrees of freedom because 
it is associated with the chi-square variable in the denominator. This can be a little tricky 
because (B.43) can also be written as (X1k2)/(X2k1), so that k1 appears in the denominator. 
Just remember that the numerator dfis the integer associated with the chi-square variable 
in the numerator of (B.43), and similarly for the denominator df. 

SUMMARY 

In this appendix, we have reviewed the probability concepts that are needed in econo­
metrics. Most of the concepts should be familiar from your introductory course in prob­
ability and statistics. Some of the more advanced topics, such as features of conditional 
expectations, do not need to be mastered now-there is time for that when these concepts 
arise in the context of regression analysis in Part 1. 

In an introductory statistics course, the focus is on calculating means, variances, 
covariances, and so on for particular distributions. In Part 1, we will not need such 
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calculations: we mostly rely on the properties of expectations, variances, and so on that 
have been stated in this appendix. 

KEY TERMS 

Bernoulli (or Binary) Discrete Random Variable Probability Density 
Random Variable Expected Value Function (pdf) 

Binomial Distribution Experiment Random Variable 
Chi-Square Distribution F Distribution Standard Deviation 
Conditional Distribution Independent Random Standard Normal 
Conditional Expectation Variables Distribution 
Continuous Random Joint Distribution Standardized Random 

Variable Law of Iterated Variable 
Correlation Coefficient Expectations Symmetric Distribution 
Covariance Median t Distribution 
Cumulative Distribution Normal Distribution Uncorrelated Random 

Function ( cdf) Pairwise Uncorrelated Variables 
Degrees of Freedom Random Variables Variance 

PROBLEMS 

B.l Suppose that a high school student is preparing to take the SAT exam. Explain why 
his or her eventual SAT score is properly viewed as a random variable. 

B.2 Let X be a random variable distributed as Normal(5,4 ). Find the probabilities of the 
following events: 

(i) P(X ~ 6). 
(ii) P(X > 4). 
(iii) PCIX - 51 > 1). 

B.3 Much is made of the fact that certain mutual funds outperform the market year after 
year (that is, the return from holding shares in the mutual fund is higher than the return 
from holding a portfolio such as the S&P 500). For concreteness, consider a 10-year period 
and let the population be the 4,170 mutual funds reported in The Wall Street Journal on 
January 1, 1995. By saying that performance relative to the market is random, we mean 
that each fund has a 50-50 chance of outperforming the market in any year and that per­
formance is independent from year to year. 

(i) If performance relative to the market is truly random, what is the prob­
ability that any particular fund outperforms the market in all 10 years? 

(ii) Find the probability that at least one fund out of 4,170 funds outperforms 
the market in all 10 years. What do you make of your answer? 

(iii) If you have a statistical package that computes binomial probabilities, 
find the probability that at least five funds outperform the market in all 
10 years. 
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B.4 For a randomly selected county in the United States, let X represent thepro.ROrtio 
of a~ults over age 65 who are employed, or the elderly employ~ent rate. 'Jlb~n, X ~ 
restncted to a value between zero and one. Suppose that the cumulative distribution fun 
tion for X is given by F(x) = 3x2 

- 2_x3 for 0 ::5 x ::5 1. Find the probability that the elder.~­
employment rate is at least .6 (60%). Y 

B.5 Just prior to jury selection for 0. J. Simpson's murder trial in 1995, a poll fo d 
that about 20% of the adult population believed Simpson was innocent (after muon of~ 
physical evidence in the case had been revealed to the public). Ignore the ifaGt that thi e 
20% is an estimate based on a subsample from the population; for illustration, take it s 
the true percentage of people who thought Simpson was innocent prior to jiJIY seleotio: 
Assume that the 12 jurors were selected randomly and independently from the populatio~ 
(although this turned out not to be true). 

(i) Find the probability that the jury had at least one member who believed 
in Simpson's innocence prior to jury selection. [Hint: Define the Bino­
mial(l2, .20) random variable X to be the number of jurors believing in 
Simpson's innocence.] 

(ii) Find the probability that the jury had at least two members who oelieved 
in Simpson's innocence. [Hint: P(X 2: 2) = 1 - P(X ::5 1), and F(_X:;; 
1) = P(X = 0) + P(X = 1).] 

B.6 (Requires calculus) Let X denote the prison sentence, in years, for peqgle oon­
victed of auto theft in a particular state in the United States. Suppose that the pdf of X is 
given by 

f(x) = (1/9)x2, 0 < x < 3. 

Use integration to find the expected prison sentence. 

B.7 If a basketball player is a 74% free throw shooter, then, on average, l'iow many free 
throws will he or she make in a game with eight free throw attempts? 

B.S Suppose that a college student is taking three courses: a two-credit course, a three­
credit course, and a four-credit course. The expected grade in the two-credit course is 3.5, 
while the expected grade in the three- and four-credit courses is 3.0. What i,_s the e;weoted 
overall grade point average for the semester? (Remember that each course grade is 
weighted by its share of the total number of units.) 

B.9 Let X denote the annual salary of university professors in the United States, mea­
sured in thousands of dollars. Suppose that the average salary is 52.3, with a standard devi­
ation of 14.6. Find the mean and standard deviation when salary is measured in dollars. 

B.lO Suppose that at a large university, college grade point average, GPA, and SAT soore. 
SAT, are related by the conditional expectation E(GPA/SAT) = .70 + .002 SAT. 

(i) Find the expected GPA when SAT= 800. Find E(GPA/SAT = 1,400). 
Comment on the difference. 

(ii) If the average SAT in the university is 1,100, what is the avemge @PA? 
(Hint: Use Property CE.4.) 

(iii) If a student's SAT score is 1,100, does this mean he or she will have the 
GPA found in part (ii)? Explain. 



APPENDIX C 

Fundamentals of Mathematical Statistics 

C.1 Populations, Parameters, 
and Random Sampling 

Statistical inference involves learning something about a population given the availability 
of a sample from that population. By population, we mean any well-defined group of sub­
jects, which could be individuals, firms, cities, or many other possibilities. By "learning," 
we can mean several things, which are broadly divided into the categories of estimation 
and hypothesis testing. 

A couple of examples may help you understand these terms. In the population of all 
working adults in the United States, labor economists are interested in learning about the 
return to education, as measured by the average percentage increase in earnings given 
another year of education. It would be impractical and costly to obtain information on 
earnings and education for the entire working population in the United States, but we can 
obtain data on a subset of the population. Using the data collected, a labor economist may 
report that his or her best estimate of the return to another year of education is 7 .5%. This 
is an example of a point estimate. Or, she or he may report a range, such as "the return to 
education is between 5.6% and 9.4%." This is an example of an interval estimate. 

An urban economist might want to know whether neighborhood crime watch programs 
are associated with lower crime rates. After comparing crime rates of neighborhoods with 
and without such programs in a sample from the population, he or she can draw one of 
two conclusions: neighborhood watch programs do affect crime, or they do not. This 
example falls under the rubric of hypothesis testing. 

The first step in statistical inference is to identify the population of interest. This 
may seem obvious, but it is important to be very specific. Once we have identified the 
population, we can specify a model for the population relationship of interest. Such 
models involve probability distributions or features of probability distributions, and 
these depend on unknown parameters. Parameters are simply constants that determine 
the directions and strengths of relationships among variables. In the labor economics 
example just presented, the parameter of interest is the return to education in the 
population. 

763 
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Sampling 

For reviewing statistical inference, we focus on the simplest possible setting. Let Y be a 
random variable representing a population with a probability density function f(y;(J), 
which depends on the single parameter e. The probability density function (pdf) of y is 
assumed to be known except for the value of 8; different values of (J imply different pop­
ulation distributions, and therefore we are interested in the value of e. If we can obtain 
certain kinds of samples from the population, then we can learn something about e. The 
easiest sampling scheme to deal with is random sampling. 

RANDOM SAMPLING. If Y1,Y2, ... , Y11 are independent random variables with a com­
mon probability density function f(y;(J), then { Y1, ••• , Y11 } is said to be a random sample 
fromf(y;O) [or a random sample from the population represented by f(y;(J)]. 

When { Y1, ••• , Yn} is a random sample from the density f(y;(J), we also say that the Yi are 
independent, identically distributed (or i.i.d.) random variables fromf(y;(J). In some cases, 
we will not need to entirely specify what the common distribution is. 

The random nature of Y1 ,Y2, •• • , Y
11 

in the definition of random sampling reflects the fact 
that many different outcomes are possible before the sampling is actually carried out. For 
example, if family income is obtained for a sample of n = I 00 families in the United States, 
the incomes we observe will usually differ for each different sample of 100 families. Once 
a sample is obtained, we have a set of numbers, say, {y1,y2, ... ,y11 }, which constitute the 
data that we work with. Whether or not it is appropriate to assume the sample came from 
a random sampling scheme requires knowledge about the actual sampling process. 

Random samples from a Bernoulli distribution are often used to illustrate statistical 
concepts, and they also arise in empirical applications. If Y1, Y2, ••• , Y,, are independent ran­
dom variables and each is distributed as Bernoulli{(}), so that P(Yi = 1) = (J and 
P(Yi = 0) = 1 - 0, then { Y1 ,Y2, .•. , Y,} constitutes a random sample from the Bernoulli((}) 
distribution. As an illustration, consider the airline reservation example carried along 
in Appendix B. Each Yi denotes whether customer i shows up for his or her reservation; 
Yi = 1 if passenger i shows up, and Yi = 0 otherwise. Here, 0 is the probability that a ran­
domly drawn person from the population of all people who make airline reservations 
shows up for his or her reservation. 

For many other applications, random samples can be assumed to be drawn from a nor­
mal distribution. If { Y1, ... , Yn} is a random sample from the N ormal(~-t,u2) population, 
then the population is characterized by two parameters, the mean IL and the variance u 2• 

Primary interest usually lies in /L. but u 2 is of interest in its own right because making 
inferences about IL often requires learning about u 2• 

C.2 Finite Sample Properties of Estimators 

In this section, we study what are called finite sample properties of estimators. The tean 
"finite sample" comes from the fact that the properties hold for a sample of any size, no 
matter how large or small. Sometimes, these are called small sample properties. In 
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Section C.3, we cover "asymptotic properties," which have to do with the behavior of 
estimators as the sample size grows without bound. 

Estimators and Estimates 
To study properties of estimators, we must define what we mean by an estimator. Given 
a random sample { Y1,Y2, ••• , Yn} drawn from a population distribution that depends on an 
unknown parameter (J, an estimator of (J is a rule that assigns each possible outcome of 
the sample a value of 0. The rule is specified before any sampling is carried out; in par­
ticular, the rule is the same regardless of the data actually obtained. 

As an example of an estimator, let { Y1, ••• , Yn} be a random sample from a population 
with mean 1-L· A natural estimator of 1-L is the average of the random sample: 

n 

y =Il-l LY;. (C.1) 
i=J 

Y is called the sample average but, unlike in Appendi~ A where we defined the sample 
average of a set of numbers as a descriptive statistic, Y is now viewed as an estimator. 
Given any outcome of the random variables Y1, ... , Yn, we use the same rule to estimate 
JL: we simply average them. For actual data outcomes {y1, ... ,yn }, the estimate is just the 
average in the sample: y = (y 1 + y2 + ... + Yn)/n. 

(City Unemployment Rates) 

Suppose we obtain the following sample of unemployment rates for 1 0 cities in the United 
States: 

City Unemployment Rate 

1 5.1 

2 6.4 

3 9.2 

4 4.1 

5 7.5 

6 8.3 

7 2.6 

(continued) 
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City l!Ji\emplqyment Rate 

8 3.5 

9 5.8 
I t 

lO 7.5 

Our estimate of the average city unemployment rate in the United States is y = 6.0. EaC!h 
sample generally results in a different estimate. But the rule for obtaining the estimate' is the 
same, regardless of which cities appear in the sample, or how many. .\ 

More generally, an estimator W of a parameter (J can be expressed as an abstract math­
ematical formula: 

(C.2) 

for some known function h of the random variables Y1,Y2, •• • , Yw As with the special case 
of the sample average, W is a random variable because it depends on the random sample: 
as we obtain different random samples from the population, the value of W can change. 
When a particular set of numbers, say, {y 1 ·Y2· .. . , y,}, is plugged into the function h, we 
obtain an estimate of e, denoted w = h(y1, ••• ,y,). Sometimes, W is called a point esti­
mator and w a point estimate to distinguish these from illterval estimators and estimates, 
which we will come to in Section C.5. 

For evaluating estimation procedures, we study various properties of the probability 
distribution of the random variable W. The distribution of an estimator is often called its 
sampling distribution, because this distribution describes the likelihood of various out­
comes of W across different random samples. Because there are unlimited rules for com­
bining data to estimate parameters, we need some sensible criteria for choosing amongc 
estimators, or at least for eliminating some estimators from consideration. Therefore, we 
must leave the realm of descriptive statistics, where we compute things such as sample 
average to simply summarize a body of data. In mathematical statistics, we study the sam­
pling distributions of estimators. 

Unbiased ness 

In principle, the entire sampling distribution of W can be obtained given the probability 
distribution of Y; and the function h. It is usually easier to focus on a few features of the 
distribution of Win evaluating it as an estimator of e. The first important property of: an 
estimator involves its expected value. 

UNBIASED ESTIMATOR. An estimator, W of e, is an unbiased estimator if 
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E(W) = e, (C.3) 

for all possible values of e. 

If an estimator is unbiased, then its probability distribution has an expected value equal to 
the parameter it is supposed to be estimating. Unbiasedness does not mean that the esti­
mate we get with any particular sample is equal to e, or even very close to e. Rather, if 
we could indefinitely draw random samples on Y from the population, compute an esti­
mate each time, and then average these estimates over all random samples, we would 
obtain e. This thought experiment is abstract because, in most applications, we just have 
one random sample to work with. 

For an estimator that is not unbiased, we define its bias as follows. 

BIAS OF AN ESTJ MATOR. If W is a biased estimator of e, its bias is defined as 

Bias(W) = E(W) - e. (C.4) 

Figure C.l shows two estimators; the first one is unbiased, and the second one has a pos­
itive bias. 

FIGU RE C.l 
An unbiased estimator, W1, and an estimator with positive bias, W,_. 

f(w) 
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The unbiasedness of an estimator and the size of any possible bias depend on the 
distribution of y· and on the function h. The distribution of Y is usually beyond our con­
trol (although we often choose a model for this distribution): it may be determined by 
nature or social forces . But the choice of the rule h is ours, and if we want an unbiased 
estimator, then we must choose h accordingly. 

Some estima~rs can be shown to be unbiased quite generally. We now show that the 
sample average Y is an unbiased estimator of the population mean JL, regardless of the 
underlying population distribution. We use the properties of expected values (E.1 and E.2) 
that we covered in Section B.3: 

E(f) = E (otn) ~ r) = (1/n)E (~ r) =(lin)(~ E(Y;)) 

= (lin) ( ~ JL) = (1/n)(nJL) = JL . 

For hypothesis testing, we will need to estimate the variance a 2 from a population 
with mean JL. Letting { Y1, ••• , Y,} denote the random sample from the population with 
E(Y) = JL and Var(Y) = a 2, define the estjmator as 

1 n 
sz = -- L (Yi - Y)z, 

n - I i=l 
(C.5) 

which is usually called the sample variance. It can be shown that S2 is unbiased for a 2: 

E(S2) = a 2. The division by n - 1, rather than n, accounts for the fact that the mean JL is 
estimated rather than known. If JL were known, an unbiased estimator of a 2 would be 

n- 1 L~=l (Yi - JL)2, but JL is rarely known in practice. 
Although unbiasedness has a certain appeal as a property for an estimator-indeed, its 

antonym, "biased," has decidedly negative connotations-it is not without its problems. 
One weakness of unbiasedness is that some reasonable, and even some very good, esti­
mators are not unbiased. We will see an example shortly. 

Another important weakness of unbiasedness is that unbiased estimators exist that are 
actually quite poor estimators. ~onsider estimating the mean JL from a population. Rather 
than using the sample average Y to estimate JL, suppose that, after collecting a sample of 
size n, we discard all of the observations except the first. That is, our estimator of JL is 
simply W = Y1• This estimator is unbiased because E(Y1) = JL. Hopefully, you sense that 
ignoring all but the first observation is not a prudent approach to estimation: it throws out 
most of the information in the sample. For example, with 11 = 100, we obtain 100 out­
comes of the random variable Y, but then we use only the first of these to estimate E(Y). 

The Sampling Variance of Estimators 

The example at the end of the previous subsection shows that we need additional criteria 
in order to evaluate estimators. Unbiasedness only ensures that the sampling distribution 
of an estimator has a mean value equal to the parameter it is supposed to be estimating. 
This is fine, but we also need to know how spread out the distribution of an estimator is. 
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An estimator can be equal to e, on average, but it can also be very far away with large 
probability. In Figure C.2, WI and Wz are both unbiased estimators of e. But the distribu­
tion of W1 is more tightly centered about e: the probability that W1 is greater than any 
given distance from e is less than the probability that W2 is greater than that same distance 
from e. Using W1 as our estimator means that it is less likely that we will obtain a ran­
dom sample that yields an estimate very far from e. 

To summarize the situation shown in Figure C.2, we rely on the variance (or standard 
deviation) of an estimator. Recall that this gives a single measure of the dispersion in the 
distribution. The variance of an estimator is often called its sampling variance because 
it is the variance associated with a sampling distribution. Remember, the sampling vari­
ance is not a random variable; it is a constant, but it might be unknown. 

We now obtain the variance of the sample average for estimating the mean JL from a 
population: 

Var(i') = Var((l/n) ~ Y;) = (l!n 2)Var(~ lj) = (lln 2)(~ Var(lj)) 
(€.6) 

FICUR~ C.2 
"J;he sampling distributions of two unbiased estimators of B. 

f(w) 

pdf of W2 

/ 

(J w 
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Notice how we used the properties of variance from Sections B.3 and B.4 (VAR.2 and 
VAR.4 ), as well as the independence of the Y;. To summarize: If { Y t i = 1 ,2, ... ,n} is a 
random sample from a population with mean JL and variance cr2, then Y has the same mean 
as the population, but its sampling variance equals the population variance, cr2, divided by 
the sample size. 

An important implication of Var(i') = cr2/n is that it can be made very close to zero 
by increasing the sample size n. This is a key feature of a reasonable estimator, and we 
return to it in Section C.3. 

As suggested by Figure C.2, among unbiased estimators, we prefer the estimator with 
the smallest variance. This allows us to eliminate certain estimators from consideration. 
For a random sample from a population with mean JL and variance cr2, we know that Y is 
unbiased, and Var(i') = cr2/n. What about the estimator Y1, which is just the first obser­
vation drawn? Because Y1 is a rando~ draw from the population, Var(Y1) = cr2• Thus, the 
difference between Var(Y1) and Var(Y) can be large even for small sample sizes. If n = 
10, then Var(Y1) is 10 times as large as Var(i') = cr2/10. This gives us a formal way of 
excluding Y1 as an estimator of JL. 

To emphasize this point, Table C.l contains the outcome of a small simulation study. 
Using the statistical package Stata®, 20 random samples of size 10 were generated from a 
normal distribution, with JL = 2 and cr2 = 1; we are interested in estimating JL here. For each 
of the 20 random samples, we compute two estimates, y1 and y; these values are listed in 
Table C.l. As can be seen from the table, the values for y 1 are much more spread out than 
those for y: y1 ranges from -0.64 to 4.27, while y ranges only from 1.16 to 2.58. Further, 
in 16 out of 20 cases, y is closer than y1 to JL = 2. The average of y1 across the simulations 
is about 1.89, while that for y is 1.96. The fact that these averages are close to 2 illustrates 
the unbiasedness of both estimators (and we could get these averages closer to 2 by doing 
more than 20 replications). But compari_!lg just the average outcomes across random draws 
masks the fact that the sample average Y is far superior to Y1 as an estimator of JL. 

TABLE C.1 

Simulation of Estimators for a Normai(JL, 1) Distribution with JL = 2 

Replication Yt y 

1 -0.64 1.98 

2 1.06 1.43 

3 4.27 1.65 

4 1.03 1.88 

5 3.16 2.34 

6 2.77 2.58 

(continued) 
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TABLE C.l 

Simulation of Estimators for a Normai(JL, 1) Distribution with JL = 2 (Continued) 

Replication YI y 

7 1.68 1.58 

8 2.98 2.23 

9 2.25 1.96 

10 2.04 2.11 

11 0.95 2.15 

12 1.36 1.93 

13 2.62 2.02 

14 2.97 2.10 

15 1.93 2.18 

16 1.14 2.10 

17 2.08 1.94 

18 1.52 2.21 

19 1.33 1.16 

20 1.21 1.75 

Efficiency 

Comparing the variances of Y and Y1 in the previous subsection is an example of a gen­
eral approach to comparing different unbiased estimators. 

RELATIVE EFFICIENCY. If W1 and W2 are two unbiased estimators of fJ, W1 is efficient 
relative to W2 when Var(W1) s Var(W2) for all fJ, with strict inequality for at least one 
value of e. 

Earlier, we showed that, for estimating the population mean JL, Var(Y) < Var(Y1) for any 
value of a 2 whenever n > 1. Thus, Y is efficient relative to Y1 for estimating JL. We 
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cannot always choose between unbiased estimators based on the smallest variance crite­
rion: given two unbiased estimators of e, one can have smaller variance from some val­
ues of e, while the other can have smaller variance for other values of e. 

If we restrict our attention to a certain class of estimators, we can sho~ that the sam­
ple average has the smallest variance. Problem C.2 asks you to show that Y has the small­
est variance among all unbiased estimators that are also linear functions of Y1 ,Y2, ••• , Y,.. 
The assumptions are that the Y; have common mean and variance, and that they are pair­
wise uncorrelated. 

If we do not restrict our attention to unbiased estimators, then comparing variances is 
meaningless. For example, when estimating the population mean JL, we can use a trivial 
estimator that is equal to zero, regardless of the sample that we draw. Naturally, the vari­
ance of this estimator is zero (since it is the same value for every random sample). But 
the bias of this estimator is - JL, so it is a very poor estimator when IJLI is large. 

One way to compare estimators that are not necessarily unbiased is to compute the 
mean squared error (MSE) of the estimators. If W is an estimator of e, then the MSE 
of W is defined as MSE(W) = E[(W- e)2]. The MSE measures how far, on average, the 
estimator is away from e. It can be shown that MSE(W) = Var(W) + [Bias(W)]2, so thaJ 
MSE(W) depends on the variance and bias (if any is present). This allows us to compare 
two estimators when one or both are biased. 

C.3 Asymptotic or Larger Sample 
Properties of Estimators 

In Section C.2, we encountered the estimator Y1 for the population mean JL, and we saw 
that, even though it is unbiased, it is a poor estimator because its variance can be much 
larger than that of the sample mean. One notable feature of Y1 is that it has the same vari­
ance for any sample size. It seems reasonable to require any estimation _procedure to 
improve as the sample size increases. For estimating a population mean JL, Y improves in 
the sense that its variance gets smaller as n gets larger; Y1 does not improve in this sense. 

We can rule out certain silly estimators by studying the asymptotic or large sample 
properties of estimators. In addition, we can say something positive about estimators that 
are not unbiased and whose variances are not easily found. 

Asymptotic analysis involves approximating the features of the sampling distribution 
of an estimator. These approximations depend on the size of the sample. Unfortunately, 
we are necessarily limited in what we can say about how "large" a sample size is needed 
for asymptotic analysis to be appropriate; this depends on the underlying population dis­
tribution. But large sample approximations have been known to work well for sample sizes 
as small as n = 20. 

Consistency 

The first asymptotic property of estimators concerns how far the estimator is likely to 
be from the parameter it is supposed to be estimating as we let the sample size increase 
indefinitely. 
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CONSISTENCY. Let W, be an estimator of e based on a sample YpY2, • . • , Y, of size n. 
Then, W, is a consistent estimator of e if for every e > 0, 

(C.7) 

If W, is not consistent fore, then we say it is inconsistent. 

When W, is consistent, we also say that e is the probability limit of W11 , written as 
plim(W,) = e. 

Unlike unbiasedness-which is a feature of an estimator for a given sample size-con­
sistency involves the behavior of the sampling distribution of the estimator as the sample 
size n gets large. To emphasize this, we have indexed the estimator by the sample size in 
stating this definition, and we will continue with this convention throughout this section. 

Equation (C.7) looks technical, and it can be rather difficult to establish based on fun­
damental probability principles. By contrast, interpreting (C.7) is straightforward. It means 
that the distribution of W, becomes more and more concentrated about e, which roughly 
means that for larger sample sizes, W, is less and less likely to be very far from e. This 
tendency is illustrated in Figure C.3. 

FIG t!J Rfi C.3 
The sampling distributions of a Gonsistent estimatorior'three sample sizes. 

fw (W) 
n 

8 w 
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If an estimator is not consistent, then it does not help us to learn about e, even with 
an unlimited amount of data. For this reason, consistency is a minimal requirement of an 
estimator used in statistics or econometrics. We will encounter estimators that are consis­
tent under certain assumptions and inconsistent when those assumptions fail. When 
estimators are inconsistent, we can usually find their probability limits, and it will be 
important to know how far these probability limits are from e. 

As we noted earlier, unbiased estimators are not necessarily consistent, but those 
whose variances shrink to zero as the sample size grows are consistent. This can be stated 
formally: If W

11 
is an unbiased estimator of e and Var(W,.) ~ 0 as n ~ oo, then 

plim(W,) = e. Unbiased estimators that use the entire data sample will usually have a 
variance that shrinks to zero as the sample size grows, thereby being consistent. 

A good example of a consistent estimator is the average of a random sample drawn 
from a population with J.L and variance u 2• We have already shown that the sample average 
is unbiased for J.L. In equation (C.6), we derived Var(Y,) = u 2/n for any sample size n. 
Therefore, Var(Y,) ~ 0 as n ~ oo, soY, is a consistent estimator of J.L (in addition to being 
unbiased). _ _ 

The conclusion that Y, is consistent for J.L holds even if Var(Y,) does not exist. This 
classic result is known as the law of large numbers (LLN). 

LAW OF LARGE NUMBERS. Let Y1,Y2, ••• ,Y, be independent, identically distributed 
random variables with mean J.L. Then, 

plim(Y,) = J.L. (C. B) 

The law of large numbers means that, if we are interested in estimating the population 
average J.L, we can get arbitrarily close to J.L by choosing a sufficiently large sample. This 
fundamental result can be combined with basic properties of plims to show that fairly 
complicated estimators are consistent. 

PROPERTY PLIM.l 
Let e be a parameter and define a new parameter, y = g(e), for some continuous function 
g(e). Suppose that plim(W,) = e. Define an estimator of y by G, = g(W,). Then, 

(C.9) 

This is often stated as 

plim g(W11 ) = g(plim W11 ) (C.lO) 

for a continuous function g(e). 

The assumption that g(e) is continuous is a technical requirement that has often been 
described nontechnically as "a function that can be graphed without lifting your pencil 
from the paper." Because all the functions we encounter in this text are continuous, we 
do not provide a formal definition of a continuous function. Examples of continuous 
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functions are g(fJ) = a + bf) for constants a and b, g(fJ) = fJ2, g(fJ) = 1/fJ, g(fJ) = Yo, g(fJ) 
= exp(fJ), and many variants on these. We will not need to mention the continuity assump­
tion again. 

As an important example of a consistent but biased estimator, consider estimating the 
standard deviation, u, from a population with mean p, and variance u 2• We already 

1 "'" -claimed that the sample varianceS,~ = --
1 
~i=I (Y; - Y)2 is unbiased for u 2. Using 

n-
the law of large numbers and some algebra, S,~ can also be shown to be consistent for 
u 2• The natural estimator of u = W is S11 = VS'f (where the square root is always the 
positive square root). S11 , which is called the sample standard deviation, is not an unbi­
ased estimator because the expected value of the square root is not the square root of the 
ex~cted value (see Section B.3). Nevertheless, by PLIM.l, plim S" = Yplim SJ = 
Vu2 = u, so S11 is a consistent estimator of u. 

Here are some other useful properties of the probability limit: 

PROPERTY PLIM.2 
If plim(T11 ) = a and plim( U,.) = f3, then 

(i) plim(T" + U") = a + f3; 
(ii) plim(T,,U11 ) = af3; 
(iii) plim(T11/U11 ) = alf3, provided f3 * 0. 

These three facts about probability limits allow us to combine consistent estimators in a 
variety of ways to get other consistent estimators. For example, let { Y1, • •• , Y

11
} be a ran­

dom sample of size n on annual earnings from the population of workers with a high 
school education and denote the population mean by J.l.r· Let {Z1, ... ,Z11 } be a random sam­
ple on annual earnings from the population of workers with a college education and denote 
the population mean by p..2 . We wish to estimate the percentage difference in annual earn­
ings between the two groups, which is y = lOO ·(p,z - P,y)lp,y. (This is the percentage by 
which average earning_s for college graduates differ~ from average earnings for high school 
graduates.) Because Y11 is consistent for P,y and Z11 is consistent for p,2 , it follows from 
PLIM.l and part (iii) of PLIM.2 that 

- - -
G11 = 100·(Z11 - Y11 )1Y11 

- -
is a consistent estimator of y. G11 is just the percentage difference between Z11 and Y11 in 
the sample, so it is a natural estimator. G11 is not an unbiased estimator of y, but it is still 
a good estimator except possibly when n is small. 

Asymptotic Normality 

Consistency is a property of point estimators. Although it does tell us that the distribution 
of the estimator is collapsing around the parameter as the sample size gets large, it tells 
us essentially nothing about the shape of that distribution for a given sample size. For 
constructing interval estimators and testing hypotheses, we need a way to approximate the 
distribution of our estimators. Most econometric estimators have distributions that are well 
approximated by a normal distribution for large samples, which motivates the following 
definition. 
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ASYMPTOTIC NORMALITY. Let {Z11 : n = 1,2, ... } be a sequence of random variables, 
such that for all numbers z, 

P(Z11 :5 z) --7 <P(z) as n --7 co, 

where <P(z) is the standard normal cumulative distribution function. Then, Zn is said to 
have an asymptotic standard normal distribution. In this case, we often write Z11 .e Nor­
mal(O,l). (The "a" above the tilde stands for "asymptotically" or "approximately.") 

Property (C.ll) means that the cumulative distribution function for Z
11 

gets closer and 
closer to the cdf of the standard normal distribution as the sample size n gets large. When 
asymptotic normality holds, for large n we have the approximation P(Z11 :5 z) = <P(z). 
Thus, probabilities concerning Z,. can be approximated by standard normal probabilities. 

The central limit theorem (CLT) is one of the most powerful results in proba­
bility and statistics. It states that the average from a random sample for any popula­
tion (with finite variance), when standardized, has an asymptotic standard normal 
distribution. 

CENTRAL LIMIT THEOREM. Let {Y1,Y2, ••• , Y,.} be a random sample with mean J.L and 
variance a 2• Then, 

(€ .12) 

has an asymptotic standard normal distribution. 

The variable Z
11 

in (C.l2) is the standardized version of Y11 : we have subtracted off 
E(Y

11
) = J.L and divided by sd(Y11 ) = a/Vn. Thus, regardless of the population distribu­

tion of Y, Z,. has mean zero and variance one, which coincides with the mean and vari­
ance of the standard normal distribution. Remarkably, the entire distribution of Zn gets 
arbitrarily close to the standard normal distribution as n gets large. 

We can write the standardized variable in equation (C.l2) as Vn(Y11 - J.L)Ia, which 
shows that we must multiply the difference between the sample mean and the population 
mean by the square root of the sample size in order to obtain a useful limiting distribu­
tion. Without the multiplication by Vn, we would just have (Y,. - J.L)/a, which converges 
in probability to zero. In other words, the distribution of (Y11 - J.L)Ia simply collapses to 
a single point as n --7 co, which we know cannot be a good approximation to the distribu­
tion of (Y

11 
- J.L)Ia for reasonable sample sizes. Multiplying by Vn ensures that the 

variance of Z
11 

remains constant. Practically, we often treat Y11 as being approximately 
normally distributed with mean J.L and variance a 2/n, and this gives us the correct statistical 
procedures because it leads to the standardized variable in equation (C.l2). 

Most estimators encountered in statistics and econometrics can be written as functions 
of sample averages, in which case we can apply the law of large numbers and the central 
limit theorem. When two consistent estimators have asymptotic normal distributions, we 
choose the estimator with the smallest asymptotic variance. 
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In addition to the standardized sample average in (C.l2), many other statistics that 
depend on sample averages tum out to be asymptotically normal. An important one is 
obtained by replacing a with its consistent estimator S11 in equation (C.l2): 

(C.13) 

also has an approximate standard normal distribution for large n. The exact (finite sample) 
distributions of (C.l2) and (C.13) are definitely not the same, but the difference is often 
small enough to be ignored for large n. 

Throughout this section, each estimator has been subscripted by n to emphasize the 
nature of asymptotic or large sample analysis. Continuing this convention clutters the nota­
tion without providing additional insight, once the fundamentals of asymptotic analysis 
are understood. Henceforth, we drop then subscript and rely on you to remember that esti­
mators depend on the sample size, and properties such as consistency and asymptotic nor­
mality refer to the growth of the sample size without bound. 

C.4 General Approaches to Parameter Estimation 

Until this point, we have used the sample average to illustrate the finite and large sample 
properties of estimators. It is natural to ask: Are there general approaches to estimation that 
produce estimators with good properties, such as unbiasedness, consistency, and efficiency? 

The answer is yes. A detailed treatment of various approaches to estimation is beyond 
the scope of this text; here, we provide only an informal discussion. A thorough discus­
sion is given in Larsen and Marx (1986, Chapter 5). 

Method of Moments 

Given a parameter 8 appearing in a population distribution, there are usually many ways 
to obtain unbiased and consistent estimators of 8. Trying all different possibilities and 
comparing them on the basis of the criteria in Sections C.2 and C.3 is not practical. For­
tunately, some methods have been shown to have good general properties, and, for the 
most part, the logic behind them is intuitively appealing. 

In the previous sections, we have studied the sample average as an unbiased estima­
tor of the population average and the sample variance as an unbiased estimator of the pop­
ulation variance. These estimators are examples of method of moments estimators. Gen­
erally, method of moments estimation proceeds as follows. The parameter 8 is shown to 
be related to some expected value in the distribution of Y, usually E(Y) or E(Y2) (although 
more exotic choices are sometimes used). Suppose, for example, that the parameter of 
interest, 8, is rela!ed to the population mean as 8 = g(J-L) for some function g. Because the 
samp~ average Y is an unbiased and c~nsistent estimator of J-L, jt is natural to replace J-L 
withY, which gives us the estimator g(Y) ~f 8. The estimator g(Y) is consistent for 8, and 
if g(J-L) is a linear function of J-L, then g(Y) is unbiased as wei!. What we have done is 
replace the population moment, J-L, with its sample counterpart, Y. This is where the name 
"method of moments" comes from . 
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We cover two additional method of moments estimators that will be useful for our dis­
cussion of regression analysis. Recall that the covariance between two random variables 
X and Y is defined as axy = E[(X - J.Lx)(Y - J.Ly)]. The method of moments 
suggests estimating axr by n- 1 ,L';=J (X; - X)(Y; - Y). This is a consistent estimator 
of axr• but it turns out to be biased for essentially the same reason that the sample vari­
ance is biased if 11, rather than n - 1, is used as the divisor. The sample covariance is 
defined as 

1 ~ - -
Sxr = -=-t -'.J (X; - X)(Y; - Y). 

n i=J 
(C.14) 

It can be shown that this is an unbiased estimator of axr· (Replacing n with n - 1 makes 
no difference as the sample size grows indefinitely, so this estimator is still consistent.) 

As we discussed in Section B.4, the covariance between two variables is often diffi­
cult to interpret. Usually, we are more interested in correlation. Because the population 
correlation is Pxr = axyl(axay). the method of moments suggests estimating Pxr as 

Sxr 
Rxr = S S 

X y 

n 

.L (X;- X)(Y;- Y) 
i=J (C.15) 

which is called the sample correlation coefficient (or sample correlation for short). 
Notice that we have canceled the division by 11 - 1 in the sample covariance and the sam­
ple standard deviations. In fact, we could divide each of these by 11, and we would arrive 
at the same final formula. 

It can be shown that the sample correlation coefficient is always in the interval [ -1,1], 
as it should be. Because Sxr• Sx, and Sy are consistent for the corresponding population 
parameter, Rxr is a consistent estimator of the population correlation, Pxr· However, Rxy is 
a biased estimator for two reasons. First, Sx and Sy are biased estimators of ax and ay, 
respectively. Second, Rxr is a ratio of estimators, so it would not be unbiased, even if Sx 
and Sy were. For our purposes, this is not important, although the fact that no unbiased esti­
mator of Pxr exists is a classical result in mathematical statistics. 

Maximum Likelihood 
Another general approach to estimation is the method of maximum likelihood, a topic 
covered in many introductory statistics courses. A brief summary in the simplest case will 
suffice here. Let { Y1, Y2, ••• , Y,.} be a random sample from the population distribution f(y;O). 
Because of the random sampling assumption, the joint distribution of { Y1 ,Y2, ... , Y,.} is 
simply the product of the densities: f(y 1;8)f(Y2;8) ... f(y,.;O). In the discrete case, this is 
P(Y1 = ypY2 = Y2· ... , Y,. = y,.). Now, define the Likelihood fimction as 
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which is a random variable because it depends on the outcome of the random sample 
{ Y1 ,Y2, ... , Yn}. The maximum likelihood estimator of e, call it W, is the value of e that 
maximizes the likelihood function. (This is why we write L as a function of e, followed 
by the random sample.) Clearly, this value depends on the random sample. The maximum 
likelihood principle says that, out of all the possible values for e. the value that makes the 
likelihood of the observed data largest should be chosen. Intuitively, this is a reasonable 
approach to estimating e. 

Usually, it is more convenient to work with the log-likelihood function, which is 
obtained by taking the natural log of the likelihood function: 

II 

log [L(e; r,, ... ,Y/1)] = L log [f(Y;; e)], (C.16) 
i=l 

where we use the fact that the log of the product is the sum of the logs. Because (C.l6) 
is the sum of independent, identically distributed random variables, analyzing estimators 
that come from (C.l6) is relatively easy. 

Maximum likelihood estimation (MLE) is usually consistent and sometimes unbiased. 
But so are many other estimators. The widespread appeal of MLE is that it is generally 
the most asymptotically efficient estimator when the population model f(y;e) is correctly 
specified. In addition, the MLE is sometimes the minimum variance unbiased estima­
tor; that is, it has the smallest variance among all unbiased estimators of e. (See Larsen 
and Marx [1986, Chapter 5] for verification of these claims.) 

In Chapter 17, we will need maximum likelihood to estimate the parameters of more 
advanced econometric models. In econometrics, we are almost always interested in the 
distribution of Y conditional on a set of explanatory variables, say, X1,X2, ••• ,Xk. Then, we 
replace the density in (C.l6) withfiY;Ixn·····X;k; e1, ... ,eP)' where this density is allowed 
to depend on p parameters, e I' ... , e p· Fortunately, for successful application of maximum 
likelihood methods, we do not need to delve much into the computational issues or the 
large-sample statistical theory. Wooldridge (2002, Chapter 13) covers the theory of 
maximum likelihood estimation. 

Least Squares 

A third kind of estimator, and one that plays a major role throughout the text, is called a 
least squares estimator. We have already seen an example of least squares: the sa_!llple 
mean, Y, is a least squares estimator of the population mean, J.l-. We already know Y is a 
method of moments estimator. What makes it a least squares estimator? It can be shown 
that the value of m that makes the sum of squared deviations 

n 

L (Y;- m)2 

i=l 

as small as possible is m = Y. Showing this is not difficult, but we omit the algebra. 
For som~ important distributions, including the normal and the Bernoulli, the sam­

ple average Y is also the maximum likelihood estimator of the population mean J.l-· Thus, 
the principles of least squares, method of moments, and maximum likelihood often 
result in the same estimator. In other cases, the estimators are similar but not identical. 



780 Appendix C Fundamentals of Mathematical Statistics 

C.S Interval Estimation and Confidence Intervals 

The Nature of Interval Estimation 

A point estimate obtained from a particular sample does not, by itself, provide enough 
information for testing economic theories or for informing policy discussions. A point esti­
mate may be the researcher's best guess at the population value, but, by its nature, it pro­
vides no information about how close the estimate is "likely" to be to the population 
parameter. As an example, suppose a researcher reports, on the basis of a random sample 
of workers, that job training grants increase hourly wage by 6.4%. How are we to know 
whether or not this is close to the effect in the population of workers who could have been 
trained? Because we do not know the population value, we cannot know how close an esti­
mate is for a particular sample. However, we can make statements involving probabilities, 
and this is where interval estimation comes in. 

We already know one way of assessing the uncertainty in an estimator: find its sam­
pling standard deviation. Reporting the standard deviation of the estimator, along with 
the point estimate, provides some information on the accuracy of our estimate. However, 
even if the problem of the standard deviation's dependence on unknown population 
parameters is ignored, reporting the standard deviation along with the point estimate 
makes no direct statement about where the population value is likely to lie in relation to 
the estimate. This limitation is overcome by constructing a confidence interval. 

We illustrate the concept of a confidence interval with an example. Suppose the pop­
ulation has a Normal(JL,1) distribution and let ( Y1, ••• , Ynl be a random sample from this 
population. (We assume that the variance of the population is known and equal to unity 
for the sake of illustration; we then show what to do in the more realistic case that the 
variance is un~own.) The sample average, Y, has a normal distri_!Jution with mean JL and 
variance lin: Y- No!ffial(JL,1/n). From this, we can standardize Y, and, because the stan­
dardized version of Y has a standard normal distribution, we have 

p ( -1.96 < ~~~ < 1.96) = .95. 

The event in parentheses is identical to the event Y- 1.96/Vn < JL < Y + 1.96/Vn, so 

P(Y- 1.96/Vn < JL < y + 1.96/Vn) = .95. (C.17) 

Equation (C.17) is interesting because it tells us that the probability that the random inter­
val [Y - 1.96/Vn,Y + 1.96/Vn] contains the population mean JL is .95, or 95%. This 
information allows us to construct an interval estimate of JL, which is obtained by plug­
ging in the sample outcome of the average, y. Thus, 

[y - 1.96/Vn,ji + 1.96/Vn] (C.18) 

is an example of an interval estimate of JL. It is also called a 95% confidence interval. A 
shorthand notation for this interval is y ± 1.96/Vn. 
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The confidence interval in equation (C.l8) is easy to compute, once the sample data 
{y1 ,y2, ••• , y

11
} are observed; y is the only factor that depends on the data. For example, 

suppose that n = 16 and the average of the 16 data points is 7 .3. Then, the 95% confi­
dence interval for J.L is 7.3 ± 1.96/Vi6 = 7.3 ± .49, which we can write in interval form 
as [6.81,7.79]. By construction, y = 7.3 is in the center of this interval. 

Unlike its computation, the meaning of a confidence interval is more difficult to under­
stand. When we say that equation (C.l8) is a 95% confidence interval for J.L, we mean that 
the random interval 

[Y- I.96!\0t,:Y + L961\0tJ (C.19) 

contains J.L with probability .95. In other words, before the random sample is drawn, there 
is a 95% chance that (C.l9) contains J.L· Equation (C.l9) is an example of an interval esti­
mator. It is a random interval, since the endpoints change with different samples. 

A confidence interval is often interpreted as follows: "The probability that J.L is in the 
interval (C.l8) is .95." This is incorrect. Once the sample has been observed and y has 
been computed, the limits of the confidence interval are simply numbers (6.81 and 7.79 
in the example just given). The population parameter, J.L, though unknown, is also just 
some number. Therefore, J.L either is or is not in the interval (C.18) (and we will never 
know with certainty which is the case). Probability plays no role once the confidence inter­
val is computed for the particular data at hand. The probabilistic interpretation comes from 
the fact that for 95% of all random samples, the constructed confidence interval will 
contain J.L. 

To emphasize the meaning of a confidence interval, Table C.2 contains calculations 
for 20 random samples (or replications) from the Normal(2,1) distribution with sample 
size n = 10. For each of the 20 samples, y is obtained, and (C.18) is computed as y ± 
1.96/VlO = y ± .62 (each rounded to two decimals). As you can see, the interval changes 
with each random sample. Nineteen of the 20 intervals contain the population value of J.L. 
Only for replication number 19 is J.L not in the confidence interval. In other words, 95% 
of the samples result in a confidence interval that contains J.L. This did not have to be the 
case with only 20 replications, but it worked out that way for this particular simulation. 

TABLE C.2 

Simulated Confidence Intervals from a Normai(J.L,l) Distribution with J.L = 2 

Replication j 95% Interval Contains p,? 
-

1 1.98 ( 1.36,2.60) Yes 

2 1.43 (0.81 ,2.05) Yes 

3 1.65 ( 1.03,2.27) Yes 

4 1.88 ( 1.26,2.50) Yes 

(continued) 

~ 

!: 

~! 
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TABLE C.2 

Simulated Confidence Intervals from a Normai(JL,l) Distribution with JL = 2 
(Continued) 

Replication y 95% Interval Contains p.? 

5 2.34 (1.72,2.96) Yes 

6 2.58 ( 1.96,3.20) Yes 

7 1.58 (.96,2.20) Yes 

8 2.23 ( 1.61 ,2.85) Yes 

9 1.96 ( 1.34,2.58) Yes 

10 2.11 (1.49,2.73) Yes 

11 2.15 ( 1.53,2. 77) Yes 

12 1.93 (1.31 ,2.55) Yes 

13 2.02 (1.40,2.64) Yes 

14 2.10 ( 1.48,2. 72) Yes 

15 2.18 ( 1.56,2.80) Yes 

16 2.10 ( 1.48,2. 72) Yes 

17 1.94 (1.32,2.56) Yes 

18 2.21 (1.59,2.83) Yes 

19 1.16 (.54,1.78) No 

20 1.75 (1.13,2.37) Yes 

Confidence Intervals for the Mean 
from a Normally Distributed Population 

The confidence interval derived in equation (C.l8) helps illustrate how to construct and 
interpret confidence intervals. In practice, equation (C.18) is not very useful for the mean 
of a normal population because it assumes that the variance is known to be unity. It is easy 
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to extend (C.18) to the case where the standard deviation u is known to be any value: the 
95% confidence interval is 

[.y - 1.96u/Vn,y + 1.96u!Vn]. (C.20) 

Therefore, provided u is known, a confidence interval for p. is readily constructed. To 
allow for unknown u, we must use an estimate. Let 

( 
1 II )1/2 

s = -- L <Y; - .Y> 2 

n- 1 i=l 

denote the sample standard deviation. Then, we obtain a confidence interval that depends 
entirely on the observed data by replacing u in equation (C.20) with its estimate, s. Unfor­
tunately, this does not preserve the 95% level of confidence because s depends on the par­
ticular sample. In other words, the random interval [Y ± 1.96(S/Vn)] no longer contains p. 
with probability .95 because the constant u has been replaced with the random variable S. 

How should we proceed? Rather than using the standard normal distribution, we must 
rely on the t distribution. The t distribution arises from the fact that 

(C.22) 

where Y is the sample average and S is the sample standard deviation of the random sam­
ple { Y1, ••• , Y11 }. We will not prove (C.22); a careful proof can be found in a variety of 
places (for example, Larsen and Marx [1986, Chapter 7]). 

To construct a 95% confidence interval, let c denote the 97.51h percentile in the t11 _ 1 

distribution. In other words, c is the value such that 95% of the area in the t11 _ 1 is between 
-c and c: P( -c < !11 _ 1 < c) = .95. (The value of c depends on the degrees of freedom 
n- 1, but we do not make this explicit.) The choice of cis illustrated in Figure C.4. Once 
c has been properly chosen, the random interval [Y - c·S/Vn,Y + c·S/Vn] contains J.L 
with probability .95. For a particular sample, the 95% confidence interval is calculated as 

[y- c·s/Vn,Y + c·s!Vn]. (C.23) 

The values of c for various degrees of freedom can be obtained from Table G.2 in 
Appendix G. For example, if n = 20, so that the dfis n - 1 = 19, then c = 2.093. Thus, 
the 95% confidence interval is [.y ± 2.093(stv10)], where y and s are the values obtained 
from the sample. Even if s = u (which is very unlikely), the confidence interval in (C.23) 
is wider than that in (C.20) because c > 1.96. For small degrees of freedom, (C.23) is 
much wider. 

More generally, let c .. denote the 100(1 - a) percentile in the t11 _ 1 distribution. Then, 
a 100(1 - a)% confidence interval is obtained as 

(C.24) 
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FIGURE C:.4 
The 97.51h percentile, G, in a tdistribution. 

Area= .025 Area= .025 

-c 0 c 

Obtaining c"12 requires choosing a and knowing the degrees of freedom n - 1; then, Table 
G.2 can be used. For the most part, we will concentrate on 95% confidence intervals. 

There is a simple way to remember how to construct a confidence interval for the mean 
of a normal distribution. Recall that sd(Y) = a/"V;;. Thus, s/"V;; is the point estimate of 
sd(Y). The associated random variable, S/"V;;, is sometimes called the standard error of 
Y. Because what shows up in formulas is the point estimate si"V;;, we define the standard 
error of y as se()i) = s/"V;;. Then, (C.24) can be written in shorthand as 

(C.25) 

This equation shows why the notion of the standard error of an estimate plays an impor­
tant role in econometrics. 

J:XAMP.L.I; C.2 

(Effect of Job Training Grants on Worker Productivity) 

Holzer, Block, Cheatham, and Knott (1993) studied the effects of job training grants on worker 
productivity by collecting information on "scrap rates" for a sample of Michigan manufac­
turing firms receiving job training grants in 1988. Table C.3 lists the scrap rates-measured 
as number of items per 100 produced that are not usable and therefore need to be 

----,. 

: 
I 

I 
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scrapped-for 20 firms. Each of these firms received a job training grant in 1988; there were 
no grants awarded in 1987. We are interested in constructing a confidence interval for the 
change in the scrap rate from 1987 to 1988 for the population of all manufacturing firms that 
could have received grants. 

TABLE C.3 

Scrap Rates for 20 Michigan Manufacturing Firms 

Firm 1987 1988 Change 

1 10 3 -7 

2 1 1 0 

3 6 5 -1 

4 .45 .5 .05 

5 1.25 1.54 .29 

6 1.3 1.5 .2 

7 1.06 .8 -.26 

8 3 2 -1 

9 8.18 .67 -7.51 

10 1.67 1.17 -.5 

11 .98 .51 -.47 

12 1 .5 -.5 

13 .45 .61 .16 

14 5.03 6.7 1.67 

15 8 4 -4 

16 9 7 -2 

17 18 19 1 

(continued) 
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TABLE C.3 
Scrap Rates for 20 Michigan Manufacturing Firms (Continued) 

Firm 1987 1988 Change 

18 .28 .2 -.08 

19 7 5 -2 

20 3.97 3.83 - .14 

Average 4 .38 3.23 -1.15 

We assume that the change in scrap rates has a normal distribution. Since n = 20, a 95% con­
fidence interval for the mean change in scrap rates p. is L¥ ± 2.093·se(y)]. where se(y) = s/Yn. 
The value 2.093 is the 97.51h percentile in a t19 distribution. For the particular sample values, 
y = -1.15 and se(y) = .54 (each rounded to two decimals), so the 95% confidence interval 
is [-2.28,- .02]. The value zero is excluded from this interval, so we conclude that, with 95% 
confidence, the average change in scrap rates in the population is not zero. 

At this point, Example C.2 is mostly illustrative because it has some potentially serious 
flaws as an econometric analysis. Most importantly, it assumes that any systematic reduc­
tion in scrap rates is due to the job training grants. But many things can happen over the 
course of the year to change worker productivity. From this analysis, we have no way of 
knowing whether the fall in average scrap rates is attributable to the job training grants or 
if, at least partly, some external force is responsible. 

A Simple Rule of Thumb for a 95% Confidence Interval 

The confidence interval in (C.25) can be computed for any sample size and any confi­
dence level. As we saw in Section B.5, the t distribution approaches the standard normal 
distribution as the degrees of freedom gets large. In particular, for a = .05, ca.12 ~ 1.96 
as n ~ oo, although c"12 is always greater than 1.96 for each n. A rule of thumb for an 
approximate 95% confidence interval is 

LY ± 2·se(ji)]. (C.26) 

In other words, we obtain y and its standard error and then compute y plus and minus 
twice its standard error to obtain the confidence interval. This is slightly too wide for very 
large n, and it is too narrow for small n. As we can see from Example C.2, even for n as 
small as 20, (C.26) is in the ballpark for a 95% confidence interval for the mean from a 
normal distribution. This means we can get pretty close to a 95% confidence interval with­
out having to refer to t tables. 

I 
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Asymptotic Confidence Intervals for Nonnormal Populations 

In some applications, the population is clearly nonnormal. A leading case is the Bernoulli 
distribution, where the random variable takes on only the values zero and one. In other 
cases, the nonnormal population has no standard distribution. This does not matter, pro­
vided the sample size is sufficiently large for the central_limit theorem to give a good 
approximation for the distribution of the sample average Y. For large n, an approximate 
95% confidence interval is 

[.y :±: 1.96·se(y)], (C.27) 

where the value 1.96 is the 97.5'h percentile in the standard normal distribution. Mechan­
ically, computing an approximate confidence interval does not differ from the normal 
case. A slight difference is that the number multiplying the standard error comes from 
the standard normal distribution, rather than the t distribution, because we are using 
asymptotics. Because the t distribution approaches the standard normal as the df 
increases, equation (C.25) is also perfectly legitimate as an approximate 95% interval; 
some prefer this to (C.27) because the former is exact for normal populations. 

EXAM~LE C.3 

(Race Discrimination in Hiring) 

The Urban Institute conducted a study in 1988 in Washington, D.C., to examine the extent of 
race discrimination in hiring. Five pairs of people interviewed for several jobs. In each pair, one 
person was black and the other person was white. They were given resumes indicating that 
they were virtually the same in terms of experience, education, and other factors that deter­
mine job qualification. The idea was to make individuals as similar as possible with the excep­
tion of race. Each person in a pair interviewed for the same job, and the researchers recorded 
which applicant received a job offer. This is an example of a matched pairs analysis, where 
each trial consists of data on two people (or two firms, two cities, and so on) that are thought 
to be similar in many respects but different in one important characteristic. 

Let 08 denote the probability that the black person is offered a job and let Ow be the prob­
ability that the white person is offered a job. We are primarily interested in the difference, 08 

- Ow. Let B; denote a Bernoulli variable equal to one if the black person gets a job offer from 
employer i, and zero otherwise. Similarly, W; = 1 if the white person gets a job offer from 
employer i, and zero otherwise. Pooling across the five pairs of people, there were a total of 
n = 241 trials (pairs of interviews with employers). Unbiased estimators of 08 and Ow are 8 
and W, the fractions of interviews for which blacks and whites were offered jobs, respectively. 

To put this into the framework of computing a confidence interval for a population mean, 
define a new variable Y; = B, - W;. Now, Y; can take on three values: -1 if the black person 
did not get the job but the white person did, 0 if both people either did or did not get the 
job, and 1 if the black person got the job and the white person did not. Then, IL = E(Y;) = 

E(B,) - E(W,) = 08 - Ow. 
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The distribution of Y; is certainly not normal-it is discrete and takes on only three values. 
Nevertheless, an approximate confidence interval for 08 - Ow can be obtained by using large 
sample methods. 

Using the 241 observed data points, 5 = .224 and w = .357, soy= .224 - .357 = - .13B. 
Thus, 22.4% of black applicants were offered jobs, while 35.7% of white applicants were 
offered jobs. This is prima facie evidence of discrimination against blacks, but we can learn 
much more by computing a confidence interval for f..L· To compute an approximate 95% con­
fidence interval, we need the sample standard deviation. This turns out to be s = .482 [using 
equation (C.21 )] . Using (C.27), we obtain a 95% Cl for f..L =08 - Ow as -.133 ± 
1.96(.482/v'24i) = - .133 ± .031 = [-.164,- .102]. The approximate 99% Cl is - .133 ± 
2.58(.482/v'241) = [- .213,- .053]. Naturally, this contains a wider range of values than the 
95% Cl. But even the 99% Cl does not contain the value zero. Thus, we are very confident 
that the population difference 08 - Ow is not zero. 

One final comment needs to be made before we leave confidence intervals. Because 
the standard error for y, se(ji) = s!Vii, shrinks to zero as the sample size grows, we see 
that-all else equal-a larger sample size means a smaller confidence interval. Thus, an 
important benefit of a large sample size is that it results in smaller confidence intervals. 

C.6 Hypothesis Testing 

So far, we have reviewed how to evaluate point estimators, and we have seen-in the case 
of a population mean-how to construct and interpret confidence intervals. But sometimes 
the question we are interested in has a definite yes or no answer. Here are some examples: 
(1) Does a job training program effectively increase average worker productivity? (see 
Example C.2); (2) Are blacks discriminated against in hiring? (see Example C.3); (3) Do 
stiffer state drunk driving laws reduce the number of drunk driving arrests? Devising meth­
ods for answering such questions, using a sample of data, is known as hypothesis testing. 

Fundamentals of Hypothesis Testing 
To illustrate the issues involved with hypothesis testing, consider an election example. Sup­
pose there are two candidates in an election, Candidates A and B. Candidate A is reported 
to have received 42% of the popular vote, while Candidate B received 58%. These are sup­
posed to represent the true percentages in the voting population, and we treat them as such. 

Candidate A is convinced that more people must have voted for him, so he would like 
to investigate whether the election was rigged. Knowing something about statistics, Can­
didate A hires a consulting agency to randomly sample 100 voters to record whether or not 
each person voted for him. Suppose that, for the sample collected, 53 people voted for Can­
didate A. This sample estimate of 53% clearly exceeds the reported population value of 
42%. Should Candidate A conclude that the election was indeed a fraud? 

While it appears that the votes for Candidate A were undercounted, we cannot be cer­
tain. Even if only 42% of the population voted for Candidate A, it is possible that, in 
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a sample of I 00, we observe 53 people who did vote for Candidate A. The question is: 
How strong is the sample evidence against the officiany reported percentage of 42%? 

One way to proceed is to set up a hypothesis test. Let (J denote the true proportion of 
the population voting for Candidate A. The hypothesis that the reported results are accu­
rate can be stated as 

H0: (J = .42. (C.28) 

This is an example of a null hypothesis. We always denote the nun hypothesis by H0. In 
hypothesis testing, the null hypothesis plays a role similar to that of a defendant on trial 
in many judicial systems: just as a defendant is presumed to be innocent until proven 
guilty, the nun hypothesis is presumed to be true until the data strongly suggest otherwise. 
In the current example, Candidate A must present fairly strong evidence against (C.28) in 
order to win a recount. 

The alternative hypothesis in the election example is that the true proportion voting 
for Candidate A in the election is greater than .42: 

(C.29) 

In order to conclude that H0 is false and that H1 is true, we must have evidence "beyond 
reasonable doubt" against H0• How many votes out of 100 would be needed before we feel 
the evidence is strongly against Ha? Most would agree that observing 43 votes out of a sam­
ple of 100 is not enough to overturn the original election results; such an outcome is well 
within the expected sampling variation. On the other hand, we do not need to observe 100 
votes for Candidate A to cast doubt on H0. Whether 53 out of 100 is enough to reject H0 
is much less clear. The answer depends on how we quantify "beyond reasonable doubt." 

In hypothesis testing, we can make two kinds of mistakes. First, we can reject the null 
hypothesis when it is in fact true. This is called a Type I error. In the election example, 
a Type I error occurs if we reject H0 when the true proportion of people voting for Can­
didate A is in fact .42. The second kind of error is failing to reject H0 when it is actually 
false. This is called a Type II error. In the election example, a Type II error occurs if 
(J > .42 but we fail to reject H0. 

After we have made the decision of whether or not to reject the null hypothesis, we 
have either decided correctly or we have committed an error. We will never know with 
certainty whether an error was committed. However, we can compute the probability of 
making either a Type I or a Type II error. Hypothesis testing rules are constructed to make 
the probability of committing a Type I error fairly small. Generally, we define the signi­
ficance level (or simply the level) of a test as the probability of a Type I error; it is typically 
denoted by a. Symbolically, we have 

a = P(Reject H0jH0). (C.30) 

The right-hand side is read as: "The probability of rejecting H0 given that H0 is true." 
Classical hypothesis testing requires that we initially specify a significance level for a 

test. When we specify a value for a, we are essentially quantifying our tolerance for a 
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Type I error. Common values for a are .1 0, .05, and .01. If a = .05, then the researcher 
is willing to falsely reject H0 5% of the time, in order to detect deviations from H0• 

Once we have chosen the significance level, we would then like to minimize the proba­
bility of a Type II error. Alternatively, we would like to maximize the power of a test 
against all relevant alternatives. The power of a test is just one minus the probability of a 
Type II error. Mathematically, 

rr(8) = P(Reject H0l8) = 1 - P(Type 1118), 

where 8 denotes the actual value of the parameter. Naturally, we would like the power to 
equal unity whenever the null hypothesis is false. But this is impossible to achieve while 
keeping the significance level small. Instead, we choose our tests to maximize the power 
for a given significance level. 

Testing Hypotheses about the Mean in a Normal Population 

In order to test a null hypo~hesis against an alternative, we need to choose a test statistic 
(or statistic, for short) and a critical value. The choices for the statistic and critical value 
are based on convenience and on the desire to maximize power given a significance level 
for the test. In this subsection, we review how to test hypotheses for the mean of a nor­
mal population. 

A test statistic, denoted T, is some function of the random sample. When we compute 
the statistic for a particular outcome, we obtain an outcome of the test statistic, which we 
will denote t. 

Given a test statistic, we can define a rejection rule that determines when H0 is rejected 
in favor of H1• In this text, all rejection rules are based on comparing the value of a test 
statistic, t, to a critical value, c. The values oft that result in rejection of the null hypoth­
esis are collectively known as the rejection region. In order to determine the critical value, 
we must first decide on a significance level of the test. Then, given a, the critical value 
associated with a is determined by the distribution of T, assuming that H0 is true. We will 
write this critical value as c, suppressing the fact that it depends on a. 

Testing hypotheses about the mean J.L from a Normal(J.L,CT2) population is straightfor­
ward. The null hypothesis is stated as 

(C.31) 

where J.Lo is a value that we specify. In the majority of applications, J.Lo = 0, but the gen­
eral case is no more difficult. 

The rejection rule we choose depends on the nature of the alternative hypothesis. The 
three alternatives of interest are 

and 

HI: J.L > 1-Lo• 

HI: J.L < 1-Lo• 

(C.32) 

(C.33) 

(€ .34) 
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Equation (C.32) gives a one-sided alternative, as does (C.33). When the alternative 
hypothesis is (C.32), the null is effectively H0: J.L s p.0, since we reject H0 only when 
J.L > J.Lo· This is appropriate when we are interested in the value of J.L only when J.L is at 
least as large as p.0• Equation (C.34) is a two-sided alternative. This is appropriate when 
we are interested in any departure from the null hypothesis. 

Consider first the alternative in (C.32). Intuitively, we should reject H0 in favor of H1 
when the value of the sample average, ji, is "sufficiently" greater than p.0. But how should 
we determine when y is large enough for H0 to be rejected at the chosen significance level? 
This requires knowing the probability of rejecting the null hypothesis when it is true. 
Rather than working directly withy, we use its standardized version, where u is replaced 
with the sample standard deviation, s: 

t = Vn(y - p.0)/s = (y - p.0)/se(ji), (C.35) 

where se{ji) = s/Vn is the standard error of y. Given the sample of data, it is easy to obtain t. 
We work with t because, under the null hypothesis, the random variable 

T = Vn(i'- p.0)/S 

has a t,_ 1 distribution. Now, suppose we have settled on a 5% significance level. Then, 
the critical value c is chosen so that P(T > ciH0) = .05; that is, the probability of a Type 
I error is 5%. Once we have found c, the rejection rule is 

t > c, (C.36) 

where c is the 100(1 - a) percentile in a t,_ 1 distribution; as a percent, the significance 
level is lOO·a%. This is an example of a one-tailed test because the rejection region is in 
one tail of the t distribution. For a 5% significance level, cis the 95th percentile in the t,_ 1 
distribution; this is illustrated in Figure C.5. A different significance level leads to a dif­
ferent critical value. 

The statistic in equation (C.35) is often called the t statistic for testing Ho: J.L = p.0. The 
t statistic measures the distance from y to p.0 relative to the standard error of y, se{ji). 

(Effect of Enterprise Zones on Business Investments) 

In the population of cities granted enterprise zones in a particular state (see Papke [1994] for 
Indiana), let Y denote the percentage change in investment from the year before to the year 
after a city became an enterprise zone. Assume that Y has a Normai(JL,a2) distribution. The null 
hypothesis that enterprise zones have no effect on business investment is H0: JL = 0; the alter­
native that they have a positive effect is H1: JL > 0. (We assume that they do not have a neg­
ative effect.) Suppose that we wish to test H0 at the 5% level. The test statistic in this case is 

y y r------
- s/Vn - se(ji) · 

(C.37) 
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FIGURE C.S 
Rejection region for a 5% significance level test against the one-sided alternative Jl > Jlo· 

Area= .05 

0 

c rejection 

Suppose that we have a sample of 36 cities that are granted enterprise zones. Then, the crit­
ical value is c = 1.69 (see Table G.2), and we reject H0 in favor of H1 if t > 1.69. Suppose 
that the sample yields y = 8.2 and s = 23.9. Then, t == 2.06, and H0 is therefore rejected at 
the 5% level. Thus, we conclude that, at the 5% significance level, enterprise zones have an 
effect on average investment. The 1% critical value is 2.44, so H0 is not rejected at the 
1% level. The same caveat holds here as in Example C.2: we have not controlled for other 
factors that might affect investment in cities over time, so we cannot claim that the effect 
is causal. 

The rejection rule is similar for the one-sided alternative (C.33). A test with a signif­
icance level of lOO·a% rejects H0 against (C.33) whenever 

t< -c; (C.38) 

in other words, we are looking for negative values of the t statistic-which implies y < 
p.0-that are sufficiently far from zero to reject H0. 

For two-sided alternatives, we must be careful to choose the critical value so that the 
significance level of the test is still a. If H 1 is given by H 1: JL * p.0, then we reject H0 if 
y is far from JLo in absolute value: a y much larger or much smaller than JLo provides 
evidence against H0 in favor of H1• A lOO·a% level test is obtained from the rejection rule 
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lrl > c, (C.39) 

where Jrl is the absolute value of the t statistic in (C.35). This gives a two-tailed test. We 
must now be careful in choosing the critical value: c is the 100(1 - a/2) percentile in the 
t,_, distribution. For example, if a = .05, then the critical value is the 97.51h percentile in 
the t,_ 1 distribution. This ensures that H0 is rejected only 5% of the time when it is true 
(see Figure C.6). For example, if n = 22, then the critical value is c = 2.08, the 97.51h 

percentile in a t21 distribution (see Table G.2). The absolute value of the t statistic must 
exceed 2.08 in order to reject H0 against H1 at the 5% level. 

It is important to know the proper language of hypothesis testing. Sometimes, the 
appropriate phrase "we fail to reject H0 in favor of H1 at the 5% significance level" is 
replaced with "we accept H0 at the 5% significance level." The latter wording is incorrect. 
With the same set of data, there are usually many hypotheses that cannot be rejected. In 
the earlier election example, it would be logically inconsistent to say that H0: 8 = .42 and 
H0: 8 = .43 are both "accepted," since only one of these can be true. But it is entirely pos­
sible that neither of these hypotheses is rejected. For this reason, we always say "fail to 
reject H0" rather than "accept H0." 

FIGURE C.6 
Rejection region for a 5% signifiGance level test against the two-sided alternative 

t'l1 : Jl * Jlo· 

Area= .025 

0 
rejection rejection 
region -c c region 
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Asymptotic Tests for Nonnormal Populations 

If the sample size is large enough to invoke the central limit theorem (see Section C.3), 
the mechanics of hypothesis testing for population means are the same whether or not the 
population distribution is normal. The theoretical justification comes from the fact that, 
under the null hypothesis, 

T = VnCY- P-o)IS.!!. Normal(O,l). 

Therefore, with large n, we can compare the t statistic in (C.35) with the critical values from 
a standard normal distribution. Because the tn-l distribution converges to the standard nor­
mal distribution as n gets large, the t and standard normal critical values will be very close 
for extremely large n. Because asymptotic theory is based on n increasing without bound, it 
cannot tell us whether the standard normal or t critical values are better. For moderate val­
ues of n, say, between 30 and 60, it is traditional to use the t distribution because we know 
this is correct for normal populations. For n > 120, the choice between the t and standard 
normal distributions is largely irrelevant because the critical values are practically the same. 

Because the critical values chosen using either the standard normal or t distribution 
are only approximately valid for nonnormal populations, our chosen significance levels 
are also only approximate; thus, for nonnormal populations, our significance levels are 
really asymptotic significance levels. Thus, if we choose a 5% significance level, but our 
population is nonnormal, then the actual significance level will be larger or smaller than 
5% (and we cannot know which is the case). When the sample size is large, the actual 
significance level will be very close to 5%. Practically speaking, the distinction is not 
important, so we will now drop the qualifier "asymptotic." 

(Race Discrimination in Hiring) 

In the Urban Institute study of discrimination in hiring (see Example C.3), we are primarily inter­
ested in testing H0: J.L = 0 against H1: J.L < 0, where J.L = 88 - 8w is the difference in proba­
bilities that blacks and whites receive job offers. Recall that J.L is the population mean of the 
variable Y = 8 - W, where 8 and Ware binary indicators. Using the n = 241 paired compar­
isons, we obtained y = - .133 and se(Y) = .482/v'241 "" .031 . The t statistic for testing 
H0: J.L = 0 is t = - .133/.031 "" -4.29. You will remember from Appendix B that the standard 
normal distribution is, for practical purposes, indistinguishable from the t distribution with 
240 degrees of freedom. The value -4.29 is so far out in the left tail of the distribution that 
we reject H0 at any reasonable significance level. In fact, the .005 (one-half of a percent) critical 
value (for the one-sided test) is about -2.58. At value of -4.29 is very strong evidence against 
H0 in favor of H1. Hence, we conclude that there is discrimination in hiring. 

I 

~-------------------------------------------------~· ~1 
Computing and Using p-Values 

The traditional requirement of choosing a significance level ahead of time means that dif­
ferent researchers, using the same data and same procedure to test the same hypothesis, 

I 

' 
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could wind up with different conclusions. Reporting the significance level at which we are 
carrying out the test solves this problem to some degree, but it does not completely remove 
the problem. 

To provide more information, we can ask the following question: What is the largest 
significance level at which we could carry out the test and still fail to reject the null hypoth­
esis? This value is known as the p-value of a test (sometimes called the prob-value). 
Compared with choosing a significance level ahead of time and obtaining a critical value, 
computing a p-value is somewhat more difficult. But with the advent of quick and 
inexpensive computing, p-values are now fairly easy to obtain. 

As an illustration, consider the problem of te~ting H0: JL = 0 in a Normal(JL,a2) pop­
ulation. Our test statistic in this case is T = v'ii· Y/S, and we assume that n is large enough 
to treat T as having a standard normal distribution under H0. Suppose that the observed 
value of T for our sample is t = 1.52. (Note how we have skipped the step of choosing a 
significance level.) Now that we have seen the value t, we can find the largest significance 
level at which we would fail to reject H0. This is the significance level associated with 
using t as our critical value. Because our test statistic T has a standard normal distribution 
under H0, we have 

p-value = P(T > 1.52IH0) = 1 - <1>(1.52) = .065, (C.40) 

where <I>(·) denotes the standard normal cdf. In other words, the p-value in this example 
is simply the area to the right of 1.52, the observed value of the test statistic, in a standard 
normal distribution. See Figure C.7 for illustration. 

Because p-value = .065, the largest significance level at which we can carry out this 
test and fail to reject is 6.5%. If we carry out the test at a level below 6.5% (such as at 
5% ), we fail to reject H0• If we carry out the test at a level larger than 6.5% (such as 10% ), 
we reject H0• With the p-value at hand, we can carry out the test at any level. 

The p-value in this example has another useful interpretation: it is the probability that 
we observe a value of T as large as 1.52 when the null hypothesis is true. If the null 
hypothesis is actually true, we would observe a value ofT as large as 1.52 due to chance 
only 6.5% of the time. Whether this is small enough to reject H0 depends on our tolerance 
for a Type I error. The p-value has a similar interpretation in all other cases, as we 
will see. 

Generally, small p-values are evidence against H0, since they indicate that the 
outcome of the data occurs with small probability if H0 is true. In the previous example, 
if t had been a larger value, say, t = 2.85, then the p-value would be 1 -
<1>(2.85) = .002. This means that, if the null hypothesis were true, we would observe a 
value of T as large as 2.85 with probability .002. How do we interpret this? Either we 
obtained a very unusual sample or the null hypothesis is false. Unless we have a very small 
tolerance for Type I error, we would reject the null hypothesis. On the other hand, a large 
p-value is weak evidence against H0. If we had gotten t = .47 in the previous example, 
then p-value = I - <1>(.47) = .32. Observing a value ofT larger than .47 happens with 
probability .32, even when H0 is true; this is large enough so that there is insufficient doubt 
about H0, unless we have a very high tolerance for Type I error. 
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FIGURE C.7 
The p-value when t = 1.52 for the one-sided alternative p > p0• 
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For hypothesis testing about a population mean using the t distribution, we need 
detailed tables in order to compute p-values. Table G.2 only allows us to put bounds on 
p-values. Fortunately, many statistics and econometrics packages now compute p-values 
routinely, and they also provide calculation of cdfs for the t and other distributions used 
for computing p-values. 

EXAMWLE C.6 

(Effect of Job Training Grants on Worker Productivity) 

Consider again the Holzer et al. (1993) data in Example C.2 . From a policy perspective, there 
are two questions of interest. First, what is our best estimate of the mean change in scrap 

I 

I 

II 
I 

I, 

rates, p.? We have already obtained this for the sample of 20 firms listed in Table C.3: the ~ 

sample average of the change in scrap rates is -1 .15. Relative to the initial average scrap rate 
in 1987, this represents a fall in the scrap rate of about 26.3% ( -1 .15/4.38 = - .263), which 
is a nontrivial effect_ 

We would also like to know whether the sample provides strong evidence for an effect in 
the population of manufacturing firms that could have received grants. The null hypothesis is 
H0: J.L = 0, and we test this against H 1: J.L < 0, where J.L is the average change in scrap rates. 
Under the null, the job training grants have no effect on average scrap rates. The alternative 
states that there is an effect. We do not care about the alternative J.L > 0, so the null hypoth­
esis is effectively H0: J.L ~ 0. 
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Since j7 = -1.15 and se(j7) =.54, t = -1.15/.54 = -2.13. This is below the 5% critical 
value of -1.73 (from a t19 distribution) but above the 1% critical value, -2.54. The p-value 
in this case is computed as 

p-value = P(T19 < -2.13), (C.41) 

where T19 represents a t distributed random variable with 19 degrees of freedom. The inequal­
ity is reversed from (C.40) because the alternative has the form in (C.33). The probability in 
(C.41) is the area to the left of -2.13 in a t19 distribution (see Figure C. B). 

Using Table G.2, the most we can say is that the p-value is between .025 and .01, but it 
is closer to .025 (since the 97.51h percentile is about 2.09). Using a statistical package, such 
as Stata, we can compute the exact p-value. It turns out to be about .023, which is reason­
able evidence against H0. This is certainly enough evidence to reject the null hypothesis that 
the training grants had no effect at the 2.5% significance level (and therefore at the 5% level). 

Computing a p-value for a two-sided test is similar, but we must account for the two-sided 
nature of the rejection rule. Fort testing about population means, the p-value is computed as 

FIGURE C.8 
The p:value when t< =-2.1B with 19 d_egrees offreedom 

for the one-siged alternative J.L<O. 

-2.13 0 
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where tis the value of the test statistic and T,_ 1 is at random variable. (For large n, replace 
T,_ 1 with a standard normal random variable.) Thus, compute the absolute value of the t 
statistic, find the area to the right of this value in a t, _1 distribution, and multiply the area 
by two. 

For non normal populations, the exact p-value can be difficult to obtain. Nevertheless, 
we can find asymptotic p-values by using the same calculations. These p-values are valid 
for large sample sizes. For n larger than, say, 120, we might as well use the standard nor­
mal distribution. Table G. l is detailed enough to get accurate p-values, but we can also 
use a statistics or econometrics program. 

(Race Discrimination in Hiring) 

Using the matched pair data from the Urban Institute (n = 241 ), we obtained t = -4.29. If 
Z is a standard normal random variable, P(Z < -4.29) is, for practical purposes, zero. In other 
words, the (asymptotic) p-value for this example is essentially zero. This is very strong evidence 
against H0 . 

SUMMARY OF HOW TO USE p-VALUES: 

(i) Choose a test statistic T and decide on the nature of the alternative. This deter­
mines whether the rejection rule is t > c, t < -c, or It! > c. 

(ii) Use the observed value of the t statistic as the critical value and compute the cor­
responding significance level of the test. This is the p-value. If the rejection rule is of the 
form t > c, then p-value = P(T > t). If the rejection rule is t < - c, then p-value = P(T 
< t); if the rejection rule is ltl > c, then p-value = P(ITI > ltl). 

(iii) If a significance level a has been chosen, then we reject H0 at the 100· a% level 
if p-value < a. If p-value ~ a, then we fail to reject H0 at the lOO·a% level. Therefore, 
it is a small p-value that leads to rejection. 

The Relationship between Confidence Intervals 
and Hypothesis Testing 

Because contructing confidence intervals and hypothesis tests both involve probability state­
ments, it is natural to think that they are somehow linked. It turns out that they are. After a 
confidence interval has been constructed, we can carry out a variety of hypothesis tests. 

The confidence intervals we have discussed are all two-sided by nature. (In this text, 
we will have no need to construct one-sided confidence intervals.) Thus, confidence inter­
vals can be used to test against two-sided alternatives. In the case of a population mean, 
the null is given by (C.31), and the alternative is (C.34 ). Suppose we have constructed a 
95% confidence interval for f.L· Then, if the hypothesized value of f.L under H0, f.Lo• is not 
in the confidence interval, then H0: f.L = f.Lo is rejected against H 1: f.L =F J.Lo at the 5% level. 
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If JLo lies in this interval, then we fail to reject H0 at the 5% level. Notice how any value 
for JLo can be tested once a confidence interval is constructed, and since a confidence inter­
val contains more than one value, there are many null hypotheses that will not be rejected. 

C.B 

(Training Grants and Worker Productivity) 

In the Holzer et al. example, we constructed a 95% confidence interval for the mean change· 
in scrap rate .JL as [-2 .28,-.02]. ~ince zero is excluded from this interval, we reject H0: JL = 
0 against H1: JL '=f. 0 at the 5% level. This 95% confidence interval also means that we fail to" 
reject H0: JL = -2 at the 5% level. In fact, there is a continuum of null hypotheses that are 
not rejected given ~his confidence interval. 

Practical versus Statistical Significance 

In the examples covered so far, we have produced three kinds of evidence concerning 
population parameters: point estimates, confidence intervals, and hypothesis tests . These 
tools for learning about population parameters are equally important. There is an under­
standable tendency for students to focus on confidence intervals and hypothesis tests 
because these are things to which we can attach confidence or significance levels. But 
in any study, we must also interpret the magnitudes of point estimates. 

The sign and magnitude of y determine its practical significance and allow us to dis­
cuss the direction of an intervention or policy effect, and whether the estimated effect is 
"large" or "small." On the other hand, statistical significance of y depends on the mag­
nitude of its t statistic. For testing H0: JL = 0, the t statistic is simply t = y/se(.Y). In other 
words, statistical significance depends on the ratio of y to its standard error. Consequently, 
a t statistic can be large because y is large or se(.Y) is small. In applications, it is impor­
tant to discuss both practical and statistical significance, being aware that an estimate can 
be statistically significant without being especially large in a practical sense. Whether an 
estimate is practically important depends on the context as well as on one's judgment, so 
there are no set rules for determining practical significance. 

Ci: .9 

(Effect of Freeway Width on Commute Time) 

Let Y denote the change in commute time, measured in minutes, for commuters in a metro­
politan area from before a freeway was widened to after the freeway was widened. Assume 
that Y- Normai(JL,u2) . The null hypothesis that the widening did not reduce average com­
mute time is H0: JL = 0; the alternative that it reduced average commute time is H1: JL < 0. 
Suppose a random sample of commuters of size n = 900 is obtained to determine the effec­
tiveness of the freeway project. The average change in commute time is computed to bey = 
-3.6, and the sample standard deviation iss = 32.7; thus, se{y) = 32.7/V90o = 1.09. 

•l 
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The t statistic is t = -3.6/1.09 = - 3.30, which is very statistically significant; the p-value is 
about .0005 . Thus, we conclude that the freeway widening had a statistically significant effect 
on average commute time. 

If the outcome of the hypothesis test is all that were reported from the study, it would be 
misleading. Reporting only statistical significance masks the fact that the estimated reduction 
in average commute time, 3.6 minutes, is pretty meager. To be up front, we should report the 
point estimate of - 3.6, along with the significance test. 

Finding point estimates that are statistically significant without being practically sig­
nificant can occur when we are working with large samples. To discuss why this happens, 
it is useful to have the following definition. 

TEST CONSISTENCY. A consistent test rejects H0 with probability approaching one as 
the sample size grows whenever H 1 is true. 

Another way to say that a test is consistent is that, as the sample size tends to infinity, the 
power of the test gets closer and closer to unity whenever H1 is true. All of the tests we 
cover in this text have this property. In the case of testil_!g hypotheses about a population 
mean, test consistency follows because the variance of Y converges to zero as the sample 
size gets large. The t statistic for testing H0: J.L = 0 is T = YI(S/'\(;;). Since plim(f) = J.L 
and plim(S) = a, it follows that if, say, J.L > 0, then T gets larger and larger (with high 
probability) as n ~ oo. In other words, no matter how close J.L is to zero, we can be almost 
certain to reject H0: J.L = 0 given a large enough sample size. This says nothing about 
whether J.L is large in a practical sense. 

C.7 Remarks on Notation 

In our review of probability and statistics here and in Appendix B, we have been careful 
to use standard conventions to denote random variables, estimators, and test statistics. For 
example, we have used W to indicate an estimator (random variable) and w to denote a 
particular estimate (outcome of the random variable W). Distinguishing between an esti­
mator and an estimate is important for understanding various concepts in estimation and 
hypothesis testing. However, making this distinction quickly becomes a burden in econo­
metric analysis because the models are more complicated: many random variables and 
parameters will be involved, and being true to the usual conventions from probability and 
statistics requires many extra symbols. 

In the main text, we use a simpler convention that is widely used in econometrics. If 
8 is a population parameter, the notation iJ ("theta hat") will be used to denote both an 
estimator and an estimate of 8. This notation is useful in that it provides a simple way of 
attaching an estimator to the population parameter it is supposed to be estimating. Thus, 
if the population parameter is {3, then /3 denotes an estimator or estimate of {3; if the param­
eter is a 2, a2 is an estimator or estimate of a 2; and so on. Sometimes, we will discuss two 
estimators of the same parameter, in which case we will need a different notation, such as 
8 ("theta tilde"). 
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Although dropping the conventions from probability and statistics to indicate estima­
tors, random variables, and test statistics puts additional responsibility on you, it is not a 
big deal once the difference between an estimator and an estimate is understood. If we are 
discussing statistical properties of &-such as deriving whether or not it is unbiased or 
consistent-then we are necessarily viewing e as an estimator. On the other hand, if we 
write something like e = 1.73, then we are clearly denoting a point estimate from a given 
sample of data. The confusion that can arise by using e to denote both should be minimal 
once you have a good understanding of probability and statistics. 

SUMMARY 

We have discussed topics from mathematical statistics that are heavily relied upon in 
econometric analysis. The notion of an estimator, which is simply a rule for combining 
data to estimate a population parameter, is fundamental. We have covered various proper­
ties of estimators. The most important small sample properties are unbiasedness and effi­
ciency, the latter of which depends on comparing variances when estimators are unbiased. 
Large sample properties concern the sequence of estimators obtained as the sample size 
grows, and they are also depended upon in econometrics. Any useful estimator is consis­
tent. The central limit theorem implies that, in large samples, the sampling distribution of 
most estimators is approximately normal. 

The sampling distribution of an estimator can be used to construct confidence intervals. 
We saw this for estimating the mean from a normal distribution and for computing approx­
imate confidence intervals in nonnormal cases. Classical hypothesis testing, which requires 
specifying a null hypothesis, an alternative hypothesis, and a significance level, is carried 
out by comparing a test statistic to a critical value. Alternatively, a p-value can be computed 
that allows us to carry out a test at any significance level. 

KEY TERMS 

Alternative Hypothesis Interval Estimator Power of a Test 
Asymptotic Normality Law of Large Numbers Practical Significance 
Bias (LLN) Probability Limit 
Biased Estimator Least Squares Estimator p-Value 
Central Limit Theorem Maximum Likelihood Random Sample 

(CLT) Estimator Rejection Region 
Confidence Interval Mean Squared Error (MSE) Sample Average 
Consistent Estimator Method of Moments Sample Correlation 
Consistent Test Minimum Variance Coefftcient 
Critical Value Unbiased Estimator Sample Covariance 
Estimate Null Hypothesis Sample Standard Deviation 
Estimator One-Sided Alternative Sample Variance 
Hypothesis Test One-Tailed Test Sampling Distribution 
Inconsistent Population Sampling Variance 
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Significance Level 
Standard Error 
Statistical Significance 
t Statistic 

Test Statistic 
Two-Sided Alternative 
Two-Tailed Test 
Type I Error 

Type II Error 
Unbiased Estimator 

PROBLEMS 

C.l Let Y1, Y2, Y3, and Y4 be independent, identically distributed random variables 

from a population with mean J.L and variance a-2• Let Y = i (Y1 + Y2 + Y3 + Y4) denote 

the average of these four random variables. 
(i) What are the expected value and variance of Y in terms of J.L and a-2? 
(ii) Now, consider a different estimator of J.L: 

1 1 1 1 
W= gyi + gy2 + 4Y3 + 2Y4. 

This is an example of a weighted average of the Y;. Show that W is also 
an unbiased estimator of J.L. Find the variance of W. 

(iii) Based 0_!1 your answers to parts (i) and (ii), which estimator of J.L do you 
prefer, Y or W? 

C.2 This is a more general version of Problem C.l. Let Y1, Y2, ••• , Y, ben pairwise uncor­
related random variables with common mean J.L and common variance a-2• Let Y denote 
the sample average. 

(i) Define the class of linear estimators of J.L by 

~ = a 1Y1 + a2Y2 + ... + a,Y,, 

where the a; are constants. What restriction on the a; is needed for Wa to 
be an unbiased estimator of J.L? 

(ii) Find Var(Wa). 
(iii) For any numbers a 1,a2, ••• , a

11
, the following inequality holds: (a 1 + 

a2 + ... + a,Yin:::;; a1 +a~+ ··:.+a~. Use this, along with parts (i) ~nd 
(ii), to show that Var(~) ;::: Var(Y) whenever ~ is unbiased, so that Y is 
the best linear unbiased estimator. [Hint: What does the inequality become 
when the a; satisfy the restriction from part (i)?] 

C.3 Let Y denote the sample average from a random sample with mean J.L and variance 
a-2• Consider two alternative estimators of J.L: W1 = [(11 - l)ln]Y and W2 = Y/2. 

(i) Show that W1 and W2 are both biased estimators of J.L and find the biases. 
What happens to the biases as n ~ oo? Comment on any important differ­
ences in bias for the two estimators as the sample size gets large. 

(ii) Find the probability limits of W1 and W2• {Hint: Use Properties PLIM.l 
and PLIM.2; for W1, note that plim [(n- 1)/n] = 1.} Which estimator is 
consistent? 

(iii) Find Var(W1) and Var(W2). _ 

(iv) Argue that W1 is a better estimator than Y if J.L is "close" to zero. (Consider 
both bias and variance.) 
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C.4 For positive random variables X and Y, suppose the expected value of Y given X is 
ECYIX) = ex. The unknown parameter e shows how the expected value of y changes 
with X. 

(i) 

(ii) 

(iii) 

Define the random variable Z = YIX. Show that E(Z) = e. [Hint: Use Prop­
erty CE.2 along with the law of iterated expectations, Property CE.4. In 
particular, first show that ECZIX) = e and then use CE.4.] 
Use part (i) to prove that the estimator W1 = n- 1 ~·;=I (Y;IX;) is unbiased 
for e, where ( (X;,Y;): i = 1,2, ... , n} is a random sample. 
Explain why the estimator W2 = Y!X, where the overbars denote sample 
averages, is not the same as W1• Nevertheless, show that W2 is also unbi-
ased for e. 

(iv) The following table contains data on corn yields for several counties in 
Iowa. The USDA predicts the number of hectares of corn in each county 
based on satellite photos. Researchers count the number of "pixels" of corn 
in the satellite picture (as opposed to, for example, the number of pixels of 
soybeans or of uncultivated land) and use these to predict the actual num­
ber of hectares. To develop a prediction equation to be used for counties in 
general, the USDA surveyed farmers in selected counties to obtain corn 
yields in hectares. Let Y; = corn yield in county i and let X; = number of 
corn pixels in the satellite picture for county i. There are n = 17 observa­
tions for eight counties. Use this sample to compute the estimates of e 
devised in parts (ii) and (iii). Are the estimates similar? 

Plot Corn Yield Corn Pixels 

1 165.76 374 

2 96.32 209 

3 76.08 253 

4 185.35 432 

5 116.43 367 

6 162.08 361 

7 152.04 288 

8 161.75 369 

9 92.88 206 

10 149.94 316 

(colltinued) 
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Plot Corn Yield Com Pixels 

11 64.75 145 

12 127.07 355 

13 133.55 295 

14 77.70 223 

15 206.39 459 

16 108.33 290 

17 118.17 307 

C.S Let Y denote a Bernoulli(&) random variable with 0 < 8 < 1. Suppose we are inter­
ested in estimating the odds ratio, y = 8/(1 - 8), which is the probability of success over 
the probability of failure. Given !! random sample { Y1, ••• , Y,}, we know that an unbiased 
and consistent esti"!ator of J is Y, the proportion of successes in n trials. A natural esti­
mator of y is G = Y/(1 - Y), the proportion of successes over the proportion of failures 
in the sample. 

(i) Why is G not an unbiased estimator of y? 
(ii) Use PLIM.2(iii) to show that G is a consistent estimator of y. 

C.6 You are hired by the governor to study whether a tax on liquor has decreased aver­
age liquor consumption in your state. You are able to obtain, for a sample of individuals 
selected at random, the difference in liquor consumption (in ounces) for the years before 
and after the tax. For person i who is sampled randomly from the population, Y; denotes 
the change in liquor consumption. Treat these as a random sample from a Normal(J.L,u2) 

distribution. 
(i) The null hypothesis is that there was no change in average liquor con­

sumption. State this formally in terms of J.L. 
(ii) The alternative is that there was a decline in liquor consumption; state the 

alternative in terms of J.L. 
(iii) Now, suppose your sample size is n = 900 and you obtain the estimates 

y = -32.8 and s = 466.4. Calculate the t statistic for testing H0 against H1; 

obtain the p-value for the test. (Because of the large sample size, just use 
the standard normal distribution tabulated in Table G.l.) Do you reject H0 

at the 5% level? At the 1% level? 
(iv) Would you say that the estimated fall in consumption is large in 

magnitude? Comment on the practical versus statistical significance of this 
estimate. 
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(v) What has been implicitly assumed in your analysis about other determi­
nants of liquor consumption over the two-year period in order to infer 
causality from the tax change to liquor consumption? 

805 

C.7 The new management at a bakery claims that workers are now more productive than 
they were under old management, which is why wages have "generally increased." Let Wf 
be Worker i's wage under the old management and let Wf be Worker i's wage after the 
change. The difference is D; = Wf - Wf. Assume that the D; are a random sample from 
a Normal(J.L,u2) distribution. 

(i) Using the following data on 15 workers, construct an exact 95% confi­
dence interval for J.L. 

(ii) Formally state the null hypothesis that there has been no change in average 
wages. In particular, what is E(D;) under H0? If you are hired to examine 
the validity of the new management's claim, what is the relevant alterna­
tive hypothesis in terms of J.L = E(D;)? 

(iii) Test the null hypothesis from part (ii) against the stated alternative at the 
5% and 1% levels. 

(iv) Obtain the p-value for the test in part (iii). 

Worker Wage Before Wage After 

1 8.30 9.25 

2 9.40 9.00 

3 9.00 9.25 

4 10.50 10.00 

5 11.40 12.00 

6 8.75 9.50 

7 10.00 10.25 

8 9.50 9.50 

9 10.80 11.50 

10 12.55 13.10 

11 12.00 11.50 

12 8.65 9.00 

(continued) 
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Worker Wage Before Wage After 

13 7.75 7.75 

14 11.25 11.50 

15 12.65 13.00 

C.8 The New York Times (2/5/90) reported three-point shooting performance for the top 
10 three-point shooters in the NBA. The following table summarizes these data: 

Player FGA-FGM 

Mark Price 429-188 

Trent Tucker 833-345 

Dale Ellis 1,149-472 

Craig Hodges 1,016-396 

Danny Ainge 1,051-406 

Byron Scott 676-260 

Reggie Miller 416-159 

Larry Bird 1,206-455 

Jon Sundvold 440-166 

Brian Taylor 417-157 

Note: FGA = field goals attempted and FGM = field goals 
made. 

For a given player, the outcome of a particular shot can be modeled as a Bernoulli (zero­
one) variable: if Y; is the outcome of shot i, then Y; = 1 if the shot is made, and Y; = 0 if the 
shot is missed. Let 8 denote the prob_ability of making any particular three-point shot 
attempt. The natural estimator of 8 is Y = FGM/FGA. 

(i) Estimate 8 for Mark Price. 
(ii) Find the standard deviation of the estimator Y in terms of 8 and the num­

ber of shot attempts, n. 
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- -
(iii) The asymptotic distribution of (Y - e)lse(Y) is standard normal, where 

se(Y) = V Y(l - Y)ln. Use this fact to test H0: e = .5 against H1: e < .5 
for Mark Price. Use a 1% significance level. 

C.9 Suppose that a military dictator in an unnamed country holds a plebiscite (a yes/no 
vote of confidence) and claims that he was supported by 65% of the voters. A human rights 
group suspects foul play and hires you to test the validity of the dictator's claim. You have 
a budget that allows you to randomly sample 200 voters from the country. 

(i) Let X be the number of yes votes obtained from a random sample of 200 
out of the entire voting population. What is the expected value of X if, in 
fact, 65% of all voters supported the dictator? 

(ii) What is the standard deviation of X, again assuming that the tme fraction 
voting yes in the plebiscite is .65? 

(iii) Now, you collect your sample of 200, and you find that 115 people actu­
ally voted yes. Use the CLT to approximate the probability that you would 
find 115 or fewer yes votes from a random sample of 200 if, in fact, 65% 
of the entire population voted yes. 

(iv) How would you explain the relevance of the number in part (iii) to some­
one who does not have training in statistics? 

C.lO Before a strike prematurely ended the 1994 major league baseball season, Tony 
Gwynn of the San Diego Padres had 165 hits in 419 at bats, for a .394 batting average. 
There was discussion about whether Gwynn was a potential .400 hitter that year. This issue 
can be couched in terms of Gwynn's probability of getting a hit on a particular at bat, call 
it e. Let Y; be the Bernoulli(e) indicator equal to unity if Gwynn gets a hit during his i1h 

at bat, and zero otherwise. Then, Y1, Y2, ••. , Y,. is a random sample from a Bernoulli(e) dis­
tribution, where e is the probability of success, and 11 = 419. 

Our best point estimate of e is Gwynn's batting average, which is just the proportion 
of successes: y = .394. Using the fact that se(y) = Vji(l - y)hz, construct an approxi­
mate 95% confidence interval for e, using the standard normal distribution. Would you 
say there is strong evidence against Gwynn's being a potential .400 hitter? Explain. 
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APPENDIX F 

Answers to Chapter Questions 

Chapter 2 

QUESTION 2.1 
When student ability, motivation, age, and other factors in u are not related to attendance, 
(2.6) would hold. This seems unlikely to be the case. 

QUESTION 2.2 
About $11.05. To see this, from the average wages measured in 1976 and 2003 dollars, 
we can get the CPI deflator as 19.06/5.90 = 3.23. When we multiply 3.42 by 3.23, we 
obtain about 11.05. 

QUESTION 2.3 
54.65, as can be seen by plugging shareA = 60 into equation (2.28). This is not unrea­
sonable: if Candidate A spends 60% of the total money spent, he or she is predicted to 
receive almost 55% of the vote. 

QUESTION 2.4 
The equation will be s-ara;:;Tiim = 9,631.91 + 185,01 roe, as is easily seen by multiply­
ing equation (2.39) by 10. 

QUESTION 2.5 
Equation (2.58) can be written as Var(/3o) = (u2n-1) (~·;=I xr)/(~~=1 (X; - .f)2). where 
the term multiplying u 2n-• is greater than or equal to one, but it is equal to one if, and 
only if, x = 0. In this case, the variance is as small as it can possibly be: Var(/30) = u 2/n. 

Chapter 3 

QUESTION 3.1 
Just a few factors include age and gender distribution, size of the police force (or, more 
generally, resources devoted to crime fighting), population, and general historical factors . 
These factors certainly might be correlated with prbconv and avgsen, which means (3.5) 
would not hold. For example, size of the police force is possibly correlated with both prbcon 
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and avgsen, as some cities put more effort into crime prevention and law enforcement. We 
should try to bring as many of these factors into the equation as possible. 

QUESTION 3.2 
We use the third property of OLS concerning predicted values and residuals: when we plug 
the average values of all independent variables into the OLS regression line, we obtain the 
average value of the dependent variable. So colGPA = 1.29 + .453 hsGPA + .0094 ACT 
= 1.29 + .453(3.4) + .0094(24.2) = 3.06. You can check the average of colGPA in 
GPAl.RAW to verify this to the second decimal place. 

QUESTION 3.3 
No. The variable shareA is not an exact linear function of expendA and expendB, even 
though it is an exact nonlinear function: shareA = lOO·[expendAI(expendA + expendB)]. 
Therefore, it is legitimate to have expendA, expendB, and shareA as explanatory variables. 

QUESTION 3.4 
As we discussed in Section 3.4, if we are interested in the effect of x 1 on y, correlation among 
the other explanatory variables (x2, x3, and so on) does not affect Var(/31) . These variables 
are included as controls, and we do not have to worry about collinearity among the control 
variables. Of course, we are controlling for them primarily because we think they are cor­
related with attendance, but this is necessary to perform a ceteris paribus analysis. 

Chapter 4 

QUESTION 4.1 
Under these assumptions, the Gauss-Markov assumptions are satisfied: u is independent 
of the explanatory variables, so E(u/x1, • •• ,xk) = E(u), and Var(u/x1, ••• ,xk) = Var(u). Fur­
ther, it is easily seen that E(u) = 0. Therefore, MLR.4 and MLR.5 hold. The classical lin­
ear model assumptions are not satisfied because u is not normally distributed (which is a 
violation of MLR.6). 

QUESTION 4.2 
H0: /3 1 = 0, H 1: /3 1 < 0. 

QUESTION 4.3 
Because /3 1 = .56 > 0 and we are testing against H1: /3 1 > 0, the one-sided p-value is 
one-half of the two-sided p-value, or .043. 

QUESTION 4.4 
H0: /35 = /36 = /37 = /38 = 0. k = 8 and q = 4. The restricted version of the model is 
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QUESTION 4.5 
The F statistic for testing exclusion of ACT is [(.291 - .183)/(1 - .291)](680 - 3) = 
103.13. Therefore, the absolute value of the t statistic is about 10.16. The t statistic on 
ACT is negative, because f3AcT is negative, so tACT = -10.16. 

QUESTION 4.6 
Not by much. The F test for joint significance of droprate and gradrate is easily com­
puted from the R-squareds in the table: F = [(.361 - .353)/(1 - .361)](402/2) = 2.52. 
The 10% critical value is obtained from Table G.3a as 2.30, while the 5% critical value 
from Table G.3b is 3. The p-value is about .082. Thus, droprate and gradrate are jointly 
significant at the 10% level, but not at the 5% level. In any case, controlling for these vari­
ables has a minor effect on the b/s coefficient. 

Chapter 5 

QUESTION 5.1 
This requires some assumptions. It seems reasonable to assume that {32 > 0 (score depends 
positively on priGPA) and Cov(skipped,priGPA) < 0 (skipped and priGPA are negatively 
correlated). This means that {3281 < 0, which means that plim i3 1 < {31• Because /3 1 is 
thought to be negative (or at least nonpositive), a simple regression is likely to over­
estimate the importance of skipping classes. 

QUESTION 5.2 
f3j ± 1.96se(f3) is the asymptotic 95% confidence interval. Or, we can replace 1.96 
with 2. 

Chapter 6 

QUESTION 6.1 
Because fincdol = l,OOOjaminc, the coefficient on fincdol will be the coefficient on 
famine divided by 1 ,000, or .092711 ,000 = .0000927. The standard error also drops by 
a factor of 1,000, so the t statistic does not change, nor do any of the other OLS statis­
tics. For readability, it is better to measure family income in thousands of dollars. 

QUESTION 6.2 
We can do this generally. The equation is 

log(y) = {30 + /31log(x1) + /32x2 + ... , 
where x2 is a proportion rather than a percentage. Then, ceteris paribus, ~log(y) = f3i:.x2, 

100·~log(y) = f32(100·~x2), or %~y = f3z(100·~x2). Now, because ~x2 is the change in 
the proportion, 100·Lh2 is a percentage point change. In particular, if ~x2 = .01, then 
100·~x2 = 1, which corresponds to a one percentage point change. But then {32 is the 
percentage change in y when 100·~2 = 1. 
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QUESTION 6.3 
The new model would be stndfnl = {30 + {3 1atndrte + f3UJriGPA + {33ACT + {34priGPA2 

+ {35ACT2 + {36priGPA ·atndrte + {31ACT·atndrte + u. Therefore, the partial effect of 
atndrte on stndfizl is {3 1 + {36priGPA + {31ACT. This is what we multiply by llatndrte to 
obtain the ceteris paribus change in stndfnl. 

QUESTION 6.4 
From equation (6.21), R2 = 1 - a2/[SSTI(n - 1)]. For a given sample and a given depen­
dent variable, SSTI(n - 1) is fixed. When we use different sets of explanatory variables, 
only a2 changes. As a2 decreases, R2 increases. If we make a, and therefore &2, as small 
as possible, we are making R2 as large as possible. 

QUESTION 6 .5 
One possibility is to collect data on annual earnings for a sample of actors, along with prof­
itability of the movies in which they each appeared. In a simple regression analysis, we could 
relate earnings to profitability. But we should probably control for other factors that may 
affect salary, such as age, gender, and the kinds of movies in which the actors performed. 
Methods for including qualitative factors in regression models are considered in Chapter 7. 

Chapter 7 

QUESTION 7.1 
No, because it would not be clear when party is one and when it is zero. A better name 
would be something like Dem, which is one for Democratic candidates and zero for 
Republicans. Or, Rep, which is one for Republicans and zero for Democrats. 

QUESTION 7.2 
With outfield as the base group, we would include the dummy variables frstbase, 
scndbase, thrdbase, slzrtstop, and catcher. 

QUESTION 7.3 
The null in this case is H0: 51 = 52 = 53 = 54 = 0, so that there are four restrictions. As 
·usual, we would use an F test (where q = 4 and k depends on the number of other explana­
tory variables). 

QUESTION 7.4 
Because tenure appears as a quadratic, we should allow separate quadratics for men 
and women. That is, we would add the explanatory variables female·tenure and 
female· tenure2• 

QUESTION 7.5 
We plug pcnv = 0, avgsen = 0, tottime = 0, ptime86 = 0, qemp86 = 4, black= 1, and 
hispan = 0 into (7.31): a;:;:go= .380- .038(4) + .170 = .398, or almost .4. It is hard 
to know whether this is "reasonable." For someone with no prior convictions who was 
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of inf on open, log(pcinc), and 02 and compute the t statistic for significance of v2• If 02 is 
significant, the 2SLS and OLS estimates are statistically different. 

QUESTION 16.4 
The demand equation looks like 

log(fish1) = {30 + {3 1log(prcfish1) + {31log(inc1) 

+ {33log(prcchick1) + {34log(prcbeef,) + 1111 , 

where logarithms are used so that all elasticities are constant. By assumption, the demand 
function contains no seasonality, so the equation does not contain monthly dummy variables 
(say,febt>mart> ... ,dec1, with January as the base month). Also, by assumption, the supply 
of fish is seasonal, which means that the supply function does depend on at least some of 
the monthly dummy variables. Even without solving the reduced fonn for log(prcfish), we 
conclude that it depends on the monthly dummy variables. Since these are exogenous, they 
can be used as instruments for log(prcfish) in the demand equation. Therefore, we can esti­
mate the demand-for-fish equation using monthly dummies as the IVs for log(prcfish). Iden­
tification requires that at least one monthly dummy variable appears with a nonzero coeffi­
cient in the reduced form for log(prcfish). 

Chapter 17 

QUESTION 17.1 
H0: {34 = {35 = {36 = 0, so that there are three restrictions and therefore three df in the LR 
or Wald test. 

QUESTION 17.2 
We need the partial derivative of <l>(/30 + /3 1nwifeinc + /32educ + /33exper + /34exper2 

+ ... ) with respect to exper, which is c/J( · )(/33 + 2/34eAper), where c/J( ·) is evaluated at the 
given values and the initial level of experience. Therefore, we need to evaluate the stan­
dard normal probability density at .270 - .012(20.13) + .131(12.3) + .123(10) -
.0019(102)- .053(42.5)- .868(0) + .036(1) = .463, where we plug in the initial level 
of experience (10). But ¢(.463) = (27T)- 112exp[ -(.4632)12] = .358. Next, we multiply this 
by /33 + 2/34exper, which is evaluated at exper = 1 0. The partial effect using the calculus 
approximation is .358[.123 - 2(.0019)(10)] = .030. In other words, at the given values 
of the explanatory variables and starting at exper = 10, the next year of experience 
increases the probability of labor force participation by about .03. 

QUESTION 17.3 
No. The number of extramarital affairs is a nonnegative integer, which presumably takes 
on zero or small numbers for a substantial fraction of the population. It is not realistic to 
use a Tobit model, which, while allowing a pileup at zero, treats y as being continuously 
distributed over positive values. Formally, assuming that y = max(O,y*), where y* is nor­
mally distributed, is at odds with the discreteness of the number of extramarital affairs 
when y > 0. 
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QUESTION 17.4 
The adjusted standard errors are the usual Poisson MLE standard errors multiplied by 
a = v'2 = 1.41, so the adjusted standard errors will be about 41% higher. The quasi-LR 
statistic is the usual LR statistic divided by &2, so it will be one-half of the usual LR statistic. 

QUESTION 17.5 
By assumption, mvp; = {30 + x;/J + tt;, where, as usual, x;/J denotes a linear function of 
the exogenous variables. Now, observed wage is the largest of the minimum wage and the 
marginal value product, so wage; = max(mimvage;,mvp;), which is very similar to equa­
tion (17 .34 ), except that the max operator has replaced the min operator. 

Chapter 18 

QUESTION 18.1 
We can plug these values directly into equation ( 18.1) and take expectations. First, because 
z., = 0, for all s < 0, y _1 = a + zt_ 1• Then, z0 = 1, so Yo = a + 80 + u0. 

For h;::: I, y, =a+ 811 _ 1 + 811 + u,. Because the errors have zero expected values, E(y_ 1) 

= a, E(y0) = a + 80, and E(y11 ) = a + 811 _ 1 + 81, for all It 2::: 1. As h ~ co, 

811 ~ 0. It follows that E(y11 ) ~ a as lz ~ co, that is, the expected value of y11 returns to 
the expected value before the increase in z, at time zero. This makes sense: although the 
increase in z lasted for two periods, it is still a temporary increase. 

QUESTION 18.2 
Under the described setup, t::.y, and t::.x, are i.i.d. sequences that are independent of one 
another. In particular, t::.y, and t::.x, are uncorrelated. If y1 is the slope coefficient from 
regressing t::.y, on t::.x, t = 1 ,2, ... , n, then plim '91 = 0. This is as it should be, as we are 
regressing one I(O) process on another I(O) process, and they are uncorrelated. We write 
the equation t::.y, = 'Yo+ y1t::.x, + e,, where 'Yo= y1 = 0. Because {e,} is independent of 
{ t::.x,}, the strict exogeneity assumption holds. Moreover, { e,} is serially uncorrelated and 
homoskedastic. By Theorem 11.2 in Chapter 11, the t statistic for y1 has an approximate 
standard normal distribution. If e, is normally distributed, the classical linear model 
assumptions hold, and the t statistic has an exact t distribution. 

QUESTION 18.3 
Writex, = x,_ 1 +a, where {a,} is 1(0). By assumption, there is a linear combination, say, 
s, = y, - f3x,, which is I(O). Now, y, - f3x,_ 1 = y, - f3(x, - a,) = s, + {3a,. Because s, 
and a, are 1(0) by assumption, so is s, + f3a,. 

QUESTION 18.4 
Just use the sum of squared residuals form of the F test and assume homoskedasticity. The 
restricted SSR is obtained by regressing t::.hy6,- t::.hyJT-1 + (lzy6,_ 1 - hy31_ 2) on a con­
stant. Notice that a0 is the only parameter to estimate in t::.hy6, = a0 + y0!:::.hy3T-I + 
8(hy6,_ 1 - lzy3,_2) when the restrictions are imposed. The unrestricted sum of squared 
residuals is obtained from equation (18.39). 
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QUESTION 18.5 
We are fitting two equations: y, = a + /3r and y, = y + 8year,. We can obtain the 
relationship between the parameters by noting that year, = t + 49. Plugging this into the 
second equation gives y, = y + 8(1 + 49) = ( y + 498) + St. Matching the slope and 
intercept with the first equation gives 8 = /3-so that the slopes on t and year, are iden­
tical-and a = y + 498. Generally, when we use year rather than t, the intercept will 
change, but the slope will not. (You can verify this by using one of the time series data 
sets, such as HSEINV.RAW or INVEN.RAW.) Whether we use tor some measure of year 
does not change fitted values, and, naturally, it does not change forecasts of future values. 
The intercept simply adjusts appropriately to different ways of including a trend in the 
regression. 



APPENDIX G 

Statistical Tables 

TABLE G.1 

Cumulative Areas under the Standard Normal Distribution 

z 0 1 2 3 4 5 6 7 8 9 

-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 

(continued) 
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TABLE G.l (Continued) 

z 0 1 2 3 4 5 6 7 8 9 

-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 
- 0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 
- 0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 

Examples: If Z- Normal(O,l), then P(Z s -1.32) = .0934 and P(Z s 1.84) = .9671. 
Source: This table was generated using the Stata® function normprob. 
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TABLE G.2 
Critical Values of the t Distribution 

Significance Level 

1-Tailed: .10 .05 .025 .01 .005 
2-Tailed: .20 .10 .05 .02 .01 

1 3.078 6.314 12.706 31.821 63.657 
2 1.886 2.920 4.303 6.965 9.925 
3 1.638 2.353 3.182 4.541 5.841 
4 1.533 2.132 2.776 3.747 4.604 
5 1.476 2.015 2.571 3.365 4.032 

6 1.440 1.943 2.447 3.143 3.707 
7 1.415 1.895 2.365 2.998 3.499 

D 8 1.397 1.860 2.306 2.896 3.355 
e 9 1.383 1.833 2.262 2.821 3.250 

g 10 1.372 1.812 2.228 2.764 3.169 

r 11 1.363 1.796 2.201 2.718 3.106 
e 12 1.356 1.782 2.179 2.681 3.055 
e 13 1.350 1.771 2.160 2.650 3.012 
s 14 1.345 1.761 2.145 2.624 2.977 

15 1.341 1.753 2.131 2.602 2.947 
0 

f 16 1.337 1.746 2.120 2.583 2.921 
17 1.333 1.740 2.110 2.567 2.898 

F 
18 1.330 1.734 2.101 2.552 2.878 
19 1.328 1.729 2.093 2.539 2.861 

r 20 1.325 1.725 2.086 2.528 2.845 
e 
e 21 1.323 1.721 2.080 2.518 2.831 

d 22 1.321 1.717 2.074 2.508 2.819 

0 23 1.319 1.714 2.069 2.500 2.807 

m 24 1.318 1.711 2.064 2.492 2.797 
25 1.316 1.708 2.060 2.485 2.787 

26 1.315 1.706 2.056 2.479 2.779 
27 1.314 1.703 2.052 2.473 2.771 
28 1.313 1.701 2.048 2.467 2.763 
29 1.311 1.699 2.045 2.462 2.756 
30 1.310 1.697 2.042 2.457 2.750 

40 1.303 1.684 2.021 2.423 2.704 
60 1.296 1.671 2.000 2.390 2.660 
90 1.291 1.662 1.987 2.368 2.632 

120 1.289 1.658 1.980 2.358 2.617 
00 1.282 1.645 1.960 2.326 2.576 . 

Examples: The I% critical value for a one-tailed test with 25 df is 2.485. The 5% critical value for a two-tailed 
test with large(> 120) dfis 1.96. 
Source: This table was generated using the Stata® function invttail. 
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TABLE G.3a 

10% Critical Values of the F Distribution 

Numerator Degrees of Freedom 

1 2 3 4 5 6 7 8 

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 

D II 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 

e 12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 
n 13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 
0 14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 
m 
i 15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 
n 
a 16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 

t 17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 
0 18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 
r 19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 

D 20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 
e 21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 g 

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 r 
e 23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 
e 24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 
s 

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 
0 26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 f 

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 
F 28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 
r 29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 
e 
e 30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 
d 40 
0 

2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 

m 60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 
90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 

00 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 

Example: The I 0% critical value for numerator df = 2 and denominator df = 40 is 2.44. 
Source: This table was generated using the Stata® function invFtail. 

9 10 

2.35 2.32 
2.27 2.25 
2.21 2.19 
2.16 2.14 
2.12 2.10 

2.09 2.06 
2.06 2.03 
2.03 2.00 
2.00 1.98 
1.98 1.96 

1.96 1.94 
1.95 1.92 
1.93 1.90 
1.92 1.89 
1.91 1.88 

1.89 1.87 
1.88 1.86 
1.87 1.85 
1.87 1.84 
1.86 1.83 

1.85 1.82 
1.79 1.76 
1.74 1.71 
1.70 1.67 
1.68 1.65 

1.63 1.60 
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TABLE G.3b 
5% Critical Values of the F Distribution 

Numerator Degrees of Freedom 

1 2 3 4 5 6 7 8 9 
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 

D 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 e 
n 13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 
0 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 
m 
i 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 
n 16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 
a 17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 t 
0 18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 
r 19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 

D 20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 
e 21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 
g 22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 
r 
e 23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 
e 24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 
s 

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 
0 26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 
f 27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 

F 28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 
r 29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 
e 
e 30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 
d 40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 
0 60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 
m 

90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 
120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 

00 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 

Example: The 5% critical value for numerator df = 4 and large denominator df(oo) is 2.37. 
Source: This table was generated using the Stata~ function invFtail. 
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2.98 
2.85 
2.75 
2.67 
2.60 

2.54 
2.49 
2.45 
2.41 
2.38 

2.35 
2.32 
2.30 
2.27 
2.25 

2.24 
2.22 
2.20 
2.19 
2.18 

2.16 
2.08 
1.99 
1.94 
1.91 

1.83 
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TABLE G.3c 
1% Critical Values of the F Distribution 

Numerator Degrees of Freedom 

1 2 3 4 5 6 7 8 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 

D 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 
e 13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 
n 

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 0 
m 15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 
i 

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 n 
a 17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 
t 18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 
0 

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 r 

D 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 

e 21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 
g 22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 
r 23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 
e 

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 e 
s 25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 

0 26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 
f 27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 
F 

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 r 
e 30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 
e 

40 7.31 5.18 4.31 d 3.83 3.51 3.29 3.12 2.99 
0 60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 
m 90 6.93 4.85 4.01 3.54 3.23 3.01 2.84 2.72 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 

00 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 

Example: The I% critical value for numerator df = 3 and denominator df = 60 is 4.13. 
Source: This table was generated using the Stata"' function invFtail. 

9 10 

4.94 4.85 
4.63 4.54 
4.39 4.30 
4.19 4.10 
4.03 3.94 

3.89 3.80 
3.78 3.69 
3.68 3.59 
3.60 3.51 
3.52 3.43 

3.46 3.37 
3.40 3.31 
3.35 3.26 
3.30 3.21 
3.26 3.17 

3.22 3.13 
3.18 3.09 
3.15 3.06 
3.12 3.03 
3.09 3.00 

3.07 2.98 
2.89 2.80 
2.72 2.63 
2.61 2.52 
2.56 2.47 

2.41 2.32 
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TABLE G.4 

Critical Values of the Chi-Square Distribution 

Significance Level 

.10 .05 .01 

1 2.71 3.84 6.63 
2 4.61 5.99 9.21 
3 6.25 7.81 11.34 
4 7.78 9.49 13.28 
5 9.24 11.07 15.09 

6 10.64 12.59 16.81 
7 12.02 14.07 18.48 
8 13.36 15.51 20.09 

D 9 14.68 16.92 21.67 
e 10 15.99 18.31 23.21 g 
r 11 17.28 19.68 24.72 
e 12 18.55 21.03 26.22 e 
s 13 19.81 22.36 27.69 

14 21.06 23.68 29.14 
0 15 22.31 25.00 30.58 
f 

16 23.54 26.30 32.00 
F 17 24.77 27.59 33.41 
r 18 25.99 28.87 34.81 
e 19 27.20 30.14 36.19 e 
d 20 28.41 31.41 37.57 
0 21 29.62 32.67 38.93 m 

22 30.81 33.92 40.29 
23 32.01 35.17 41.64 
24 33.20 36.42 42.98 
25 34.38 37.65 44.31 

26 35.56 38.89 45.64 
27 36.74 40.11 46.96 
28 37.92 41.34 48.28 
29 39.09 42.56 49.59 
30 40.26 43.77 50.89 

£wmp/e: The 5% critical value with df = 8 is 15.51. 
Source: This table was generated using the Stata® function 
invchi2tail. 



858 

Determination for Young Men," Joumal of Applied 
Econometrics 13, 163-183. 

Wald, A. ( 1940), "The Fitting of Straight Lines If Both Vari­
ables Are Subject to Error," Annals of Mathematical 
Statistics II, 284-300. 

Wallis, K. F. ( 1972), "Testing for Fourth-Order Auto­
correlation in Quarterly Regression Equations," 
Econometrica 40, 617-636. 

White, H. ( 1980), "A Heteroskedasticity-Consistent 
Covariance Matrix Estimator and a Direct Test for 
Heteroskedasticity," Econometrica 48, 817-838. 

White, H. (1984), Asymptotic The01y for Econometricians. 
Orlando: Academic Press. 

White, M. J. (1986), "Property Taxes and Firm Location: 
Evidence from Proposition 13," in Studies in State and 
Local Public Finance. Ed. H. S. Rosen, 83-112. 
Chicago: University of Chicago Press. 

Whittington, L. A., J. Aim, and H. E. Peters ( 1990), "Fertility 
and the Personal Exemption: Implicit Pronatalist Policy 
in the United States," American Economic Review 80, 
545-556. 

Wooldridge, J. M. (1989), "A Computationally Simple Het­
eroskedasticity and Serial Correlation-Robust Standard 

References 

Error for the Linear Regression Model," Economics Let­
ters 31, 239-243. 

Wooldridge, J. M. (1991a), "A Note on Computing 
R-Squared and Adjusted R-Squared for Trending and 
Seasonal Data," Economics Letters 36, 49-54. 

Wooldridge, J. M. (1991 b), "On the Application of Robust, 
Regression-Based Diagnostics to Models of Conditional 
Means and Conditional Variances," Joumal of Economet­
rics 47, 5-46. 

Wooldridge, J. M. ( 1994a), "A Simple Specification 
Test for the Predictive Ability of Transformation Mod­
els," Review of Economics and Statistics 76, 59-65. 

Wooldridge, J. M. (1994b), "Estimation and Inference for 
Dependent Processes," Chapter 45 in Handbook of 
Econometrics, Volume 4. Ed. R. F. Engle and D. L. 
McFadden, 2639-2738. Amsterdam: North-Holland. 

Wooldridge, J. M. ( 1995), "Score Diagnostics for Linear 
Models Estimated by Two Stage Least Squares," in 
Advances in Econometrics and Quantitative Economics. 
Ed. G. S. Maddala, P. C. B. Phillips, and T. N. Srinivasan, 
66-87. Oxford: Blackwell. 

Wooldridge, J. M. (2002), Econometric Analysis of Cross 
Section and Panel Data. Cambridge, MA: MIT Press. 



Glossary 

A 

Adjusted R-Squared: A goodness-of-fit measure in multiple 
regression analysis that penalizes additional explanatory 
variables by using a degrees of freedom adjustment in 
estimating the error variance. 

Alternative Hypothesis: The hypothesis against which the 
null hypothesis is tested. 

AR(l) Serial Correlation: The errors in a time series regres­
sion model follow an AR(l) model. 

Asymptotic Bias: See inconsistency. 
Asymptotic Confidence Interval: A confidence interval that 

is approximately valid in large sample sizes. 
Asymptotic Normality: The sampling distribution of a prop­

erly normalized estimator converges to the standard 
normal distribution. 

Asymptotic Properties: Properties of estimators and test 
statistics that apply when the sample size grows without 
bound. 

Asymptotic Standard Error: A standard error that is valid 
in large samples. 

Asymptotic t Statistic: A t statistic that has an approximate 
standard normal distribution in large samples. 

Asymptotic Variance: The square of the value we must 
divide an estimator by in order to obtain an asymptotic 
standard normal distribution. 

Asymptotically Efficient: For consistent estimators with 
asymptotically normal distributions, the estimator with the 
smallest asymptotic variance. 

Asymptotically Uncorrelated: A time series process in 
which the correlation between random variables at two 
points in time tends to zero as the time interval between 
them increases. (See also weakly dependent.) 

Attenuation Bias: Bias in an estimator that is always toward 
zero; thus, the expected value of an estimator with attenu­
ation bias is less in magnitude than the absolute value of 
the parameter. 

Augmented Dickey-Fuller Test: A test for a unit root that 
includes lagged changes of the variable as regressors. 

Autocorrelation: See serial correlation. 
Autoregressive Conditional Heteroskedasticity (ARCH): A 

model of dynamic heteroskedasticity where the variance 
of the error term, given past information, depends linearly 
on the past squared errors. 

Autoregressive Process of Order One [AR(l)]: A time 
series model whose current value depends linearly on its 
most recent value plus an unpredictable disturbance. 

Auxiliary Regression: A regression used to compute 
a test statistic-such as the test statistics for hetero­
skedasticity and serial correlation-or any other 
regression that does not estimate the model of primary 
interest. 

Average: The sum of 11 numbers divided by 11. 

Average Partial Effect: For nonconstant partial effects, the 
partial effect averaged across the specified population. 

Average Treatment Effect: A treatment, or policy, effect 
averaged across the population. 

B 

Balanced Panel: A panel data set where all years (or peri­
ods) of data are available for all cross-sectional units. 

Base Group: The group represented by the overall intercept 
in a multiple regression model that includes dummy 
explanatory variables. 

Base Period: For index numbers, such as price or production 
indices, the period against which all other time periods are 
measured. 

Base Value: The value assigned to the base period for con­
structing an index number; usually the base value is I 
or 100. 

Benchmark Group: See base group. 
Bernoulli (or Binary) Random Variable: A random vari­

able that takes on the values zero or one. 
Best Linear Unbiased Estimator (BLUE): Among all linear 

unbiased estimators, the estimator with the smallest vari­
ance. OLS is BLUE, conditional on the sample values of 
the explanatory variables, under the Gauss-Markov 
assumptions. 

Beta Coefficients: See standardized coefficients. 
Bias: The difference between the expected value of an esti­

mator and the population value that the estimator is 
supposed to be estimating. 

Biased Estimator: An estimator whose expectation, or sam­
pling mean, is different from the population value it is 
supposed to be estimating. 

Biased Towards Zero: A description of an estimator whose 
expectation in absolute value is less than the absolute 
value of the population parameter. 

Binary Response Model: A model for a binary (dummy) 
dependent variable. 

Binary Variable: See dummy variable. 
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Binomial Distribution: The probability distribution of the 
number of successes out of 11 independent Bernoulli tri­
als, where each trial has the same probability of success. 

Bivariate Regression Model: See simple linear regression 
model. 

BLUE: See best linear unbiased estimator. 
Breusch-Godfrey Test: An asymptotically justified test for 

AR(p) serial correlation, with AR(l) being the most pop­
ular; the test allows for lagged dependent variables as 
well as other regressors that are not strictly exogenous. 

Breusch-Pagan Test: A test for heteroskedasticity where 
the squared OLS residuals are regressed on the explana­
tory variables in the model. 

c 

Causal Effect: A ceteris paribus change in one variable has 
an effect on another variable. 

Censored Normal Regression Model: The special case of 
the censored regression model where the underlying pop­
ulation model satisfies the classical linear model 
assumptions. 

Censored Regression Model: A multiple regression model 
where the dependent variable has been censored above or 
below some known threshold. 

Central Limit Theorem (CLT): A key result from probabil­
ity theory that implies that the sum of independent 
random variables, or even weakly dependent random vari­
ables, when standardized by its standard deviation, has a 
distribution that tends to standard normal as the sample 
size grows. 

Ceteris Paribus: All other relevant factors are held fixed. 
Chi-Square Distribution: A probability distribution 

obtained by adding the squares of independent standard 
normal random variables. The number of terms in the 
sum equals the degrees of freedom in the distribution. 

Chi-Square Random Variable: A random variable with a 
chi-square distribution. 

Chow Statistic: An F statistic for testing the equality of 
regression parameters across different groups (say, men 
and women) or time periods (say, before and after a pol­
icy change). 

Classical Errors-in-Variables (CEV): A measurement 
error model where the observed measure equals the 
actual variable plus an independent, or at least an uncor­
related, measurement error. 

Classical Linear Model: The multiple linear regression 
model under the full set of classical linear model assump­
tions. 

Classical Linear Model (CLM) Assumptions: The ideal 
set of assumptions for multiple regression analysis: for 
cross-sectional analysis, Assumptions MLR. l through 
MLR.6 and for time series analysis, Assumptions TS.l 
through TS.6. The assumptions include linearity in the 
parameters, no perfect collinearity, the zero conditional 
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mean assumption, homoskedasticity, no serial correla­
tion, and normality of the errors. 

Cluster Effect: An unobserved effect that is common to all 
units, usually people, in the cluster. 

Cluster Sample: A sample of natural clusters or groups that 
usually consist of people. 

Cochrane-Orcutt (CO) Estimation: A method of estimat­
ing a multiple linear regression model with AR( I) errors 
and strictly exogenous explanatory variables; unlike 
Prais-Winsten, Cochrane-Orcutt does not use the equa­
tion for the first time period. 

Coefficient of Determination: See R-squared. 
Cointegration: The notion that a linear combination of two 

series, each of which is integrated of order one, is inte­
grated of order zero. 

Column Vector: A vector of numbers arranged as a column. 
Composite Error Term: In a panel data model, the sum of 

the time-constant unobserved effect and the idiosyncratic 
error. 

Conditional Distribution: The probability distribution of 
one random variable, given the values of one or more 
other random variables. 

Conditional Expectation: The expected or average value of 
one random variable, called the dependent or explained 
variable, that depends on the values of one or more other 
variables, called the independent or explanatory variables. 

Conditional Forecast: A forecast that assumes the future 
values of some explanatory variables are known with 
certainty. 

Conditional Variance: The variance of one random vari­
able, given one or more other random variables. 

Confidence Interval ( Cl): A rule used to construct a ran­
dom interval so that a certain percentage of all data sets, 
determined by the confidence level, yields an interval that 
contains the population value. 

Confidence Level: The percentage of samples in which we 
want our confidence interval to contain the population 
value; 95% is the most common confidence level, but 
90% and 99% are also used. 

Consistency: An estimator converges in probability to the 
correct population value as the sample size grows. 

Consistent Estimator: An estimator that converges in 
probability to the population parameter as the sample 
size grows without bound. 

Consistent Test: A test where, under the alternative 
hypothesis, the probability of rejecting the null hypothe­
sis converges to one as the sample size grows without 
bound. 

Constant Elasticity Model: A model where the elasticity 
of the dependent variable, with respect to an explanatory 
variable, is constant; in multiple regression, both vari­
ables appear in logarithmic form. 

Contemporaneously Homoskedastic: In time series or 
panel data applications, the variance of the error term, 
conditional on the regressors in the same time period, is 
constant. 
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Contemporaneously Exogenous: In time series or panel 
data applications, a regressor is contemporaneously 
exogenous if it is uncorrelated with the error term in the 
same time period, although it may be correlated with the 
errors in other time periods. 

Continuous Random Variable: A random variable that 
takes on any particular value with probability zero. 

Control Group: In program evaluation, the group that does 
not participate in the program. 

Control Variable: See explanatory variable. 
Corner Solution Response: A nonnegative dependent 

variable that is roughly continuous over strictly positive 
values but takes on the value zero with some regularity. 

Correlation Coefficient: A measure of linear depen­
dence between two random variables that does not 
depend on units of measurement and is bounded 
between - I and I. 

Count Variable: A variable that takes on nonnegative inte­
ger values. 

Covariance: A measure of linear dependence between two 
random variables. 

Covariance Stationary: A time series process with con­
stant mean and variance where the covariance between 
any two random variables in the sequence depends only 
on the distance between them. 

Covariate: See explanatory variable. 
Critical Value: In hypothesis testing, the value against which 

a test statistic is compared to determine whether or not the 
null hypothesis is rejected. 

Cross-Sectional Data Set: A data set collected by sampling 
a population at a given point in time. 

Cumulative Distribution Function (cdf): A function that 
gives the probability of a random variable being less than 
or equal to any specified real number. 

D 

Data Censoring: A situation that arises when we do not 
always observe the outcome on the dependent variable 
because at an upper (or lower) threshold we only know 
that the outcome was above (or below) the threshold. 
(See also censored regression model.) 

Data Frequency: The interval at which time series data are 
collected. Yearly, quarterly, and monthly are the most 
common data frequencies. 

Data Mining: The practice of using the same data set to 
estimate numerous models in a search to find the "best" 
model. 

Davidson-MacKinnon Test: A test that is used for testing a 
model against a nonnested alternative; it can be imple­
mented as at test on the fitted values from the competing 
model. 

Degrees of Freedom (d/): In multiple regression analysis, 
the number of observations minus the number of esti­
mated parameters. 

Denominator Degrees of Freedom: In an F test, the 
degrees of freedom in the unrestricted model. 
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Dependent Variable: The variable to be explained in a mul­
tiple regression model (and a variety of other models). 

Derivative: The slope of a smooth function, as defined 
using calculus. 

Descriptive Statistic: A statistic used to summarize a set of 
numbers; the sample average, sample median, and sam­
ple standard deviation are the most common. 

Deseasonalizing: The removing of the seasonal components 
from a monthly or quarterly time series. 

Detrending: The practice of removing the trend from a time 
series. 

Diagonal Matrix: A matrix with zeros for all off-diagonal 
entries. 

Dickey-Fuller Distribution: The limiting distribution of the 
t statistic in testing the null hypothesis of a unit root. 

Dickey-Fuller (DF) Test: At test of the unit root null 
hypothesis in an AR( I) model. (&e also augmented 
Dickey-Fuller test.) 

Difference in Slopes: A description of a model where some 
slope parameters may differ by group or time period. 

Difference-in-Differences Estimator: An estimator that 
arises in policy analysis with data for two time periods. 
One version of the estimator applies to independently 
pooled cross sections and another to panel data sets. 

Diminishing Marginal Effect: The marginal effect of an 
explanatory variable becomes smaller as the value of the 
explanatory variable increases. 

Discrete Random Variable: A random variable that takes 
on at most a finite or countably infinite number of values. 

Distributed Lag Model: A time series model that relates 
the dependent variable to current and past values of an 
explanatory variable. 

Disturbance: See error term. 
Downward Bias: The expected value of an estimator is 

below the population value of the parameter. 
Dummy Dependent Variable: See binary response model. 
Dummy Variable: A variable that takes on the value zero 

or one. 
Dummy Variable Regression: In a panel data setting, the 

regression that includes a dummy variable for each cross­
sectional unit, along with the remaining explanatory 
variables. It produces the fixed effects estimator. 

Dummy Variable Trap: The mistake of including too many 
dummy variables among the independent variables; it 
occurs when an overall intercept is in the model and a 
dummy variable is included for each group. 

Duration Analysis: An application of the censored regres­
sion model, where the dependent variable is time elapsed 
until a certain event occurs, such as the time before an 
unemployed person becomes reemployed. 

Durbin-Watson (DW) Statistic: A statistic used to test for 
first order serial correlation in the errors of a time series 
regression model under the classical linear model 
assumptions. 
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Dynamically Complete Model: A time series model where 
no further lags of either the dependent variable or the 
explanatory variables help to explain the mean of the 
dependent variable. 

E 

Econometric Model: An equation relating the dependent 
variable to a set of explanatory variables and unobserved 
disturbances, where unknown population parameters 
determine the ceteris paribus effect of each explanatory 
variable. 

Economic Model: A relationship derived from economic 
theory or less formal economic reasoning. 

Economic Significance: See practical significance. 
Elasticity: The percentage change in one variable given a 

I% ceteris paribus increase in another variable. 
Empirical Analysis: A study that uses data in a formal 

econometric analysis to test a theory, estimate a relation­
ship, or determine the effectiveness of a policy. 

Endogeneity: A term used to describe the presence of an 
endogenous explanatory variable. 

Endogenous Explanatory Variable: An explanatory vari­
able in a multiple regression model that is correlated with 
the error term, either because of an omitted variable, 
measurement error, or simultaneity. 

Endogenous Sample Selection: Nonrandom sample selec­
tion where the selection is related to the dependent 
variable, either directly or through the error term in the 
equation. 

Endogenous Variables: In simultaneous equations models, 
variables that are determined by the equations in the 
system. 

Engle-Granger Two-Step Procedure: A two-step method 
for estimating error correction models whereby the cointe­
grating parameter is estimated in the first stage, and the 
error correction parameters are estimated in the second. 

Error Correction Model: A time series model in first dif­
ferences that also contains an error correction term, 
which works to bring two I( I) series back into long-run 
equilibrium. 

Error Term: The variable in a simple or multiple regression 
equation that contains unobserved factors that affect the 
dependent variable. The error term may also include 
measurement errors in the observed dependent or inde­
pendent variables. 

Error Variance: The variance of the error term in a multi­
ple regression model. 

Errors-in· Variables: A situation where either the depen­
dent variable or some independent variables are 
measured with error. 

Estimate: The numerical value taken on by an estimator for 
a particular sample of data. 

Estimator: A rule for combining data to produce a numeri­
cal value for a population parameter; the form of the rule 
does not depend on the particular sample obtained. 
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Event Study: An econometric analysis of the effects of an 
event, such as a change in government regulation or eco­
nomic policy, on an outcome variable. 

Excluding a Relevant Variable: In multiple regression 
analysis, leaving out a variable that has a nonzero partial 
effect on the dependent variable. 

Exclusion Restrictions: Restrictions that state that certain 
variables are excluded from the model (or have zero pop­
ulation coefficients). 

Exogenous Explanatory Variable: An explanatory vari­
able that is uncorrelated with the error term. 

Exogenous Sample Selection: Sample selection that either 
depends on exogenous explanatory variables or is inde­
pendent of the error term in the equation of interest. 

Exogenous Variable: Any variable that is uncorrelated with 
the error term in the model of interest. 

Expected Value: A measure of central tendency in the dis­
tribution of a random variable, including an estimator. 

Experiment: In probability, a general term used to denote 
an event whose outcome is uncertain. In econometric 
analysis, it denotes a situation where data are collected 
by randomly assigning individuals to control and treat­
ment groups. 

Experimental Data: Data that have been obtained by run­
ning a controlled experiment. 

Experimental Group: See treatment group. 
Explained Sum of Squares (SSE): The total sample varia­

tion of the fitted values in a multiple regression model. 
Explained Variable: See dependent variable. 
Explanatory Variable: In regression analysis, a variable that 

is used to explain variation in the dependent variable. 
Exponential Function: A mathematical function defined 

for all values that has an increasing slope but a constant 
proportionate change. 

Exponential Smoothing: A simple method of forecasting a 
variable that involves a weighting of all previous out­
comes on that variable. 

Exponential Trend: A trend with a constant growth rate. 

F 

F Distribution: The probability distribution obtained by 
forming the ratio of two independent chi-square random 
variables, where each has been divided by its degrees of 
freedom. 

F Random Variable: A random variable with an F 
distribution. 

F Statistic: A statistic used to test multiple hypotheses 
about the parameters in a multiple regression model. 

Feasible GLS (FGLS) Estimator: A GLS procedure where 
variance or correlation parameters are unknown and 
therefore must first be estimated. (See also generalized 
least squares estimator.) 

Finite Distributed Lag (FDL) Model: A dynamic model 
where one or more explanatory variables are allowed to 
have lagged effects on the dependent variable. 
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First Difference: A transformation on a time series con­
structed by taking the difference of adjacent time periods, 
where the earlier time period is subtracted from the later 
time period. 

First-Differenced (FD) Equation: In time series or panel 
data models, an equation where the dependent and inde­
pendent variables have all been first-differenced. 

First-Differenced (FD) Estimator: In a panel data setting, 
the pooled OLS estimator applied to first differences of 
the data across time. 

First Order Autocorrelation: For a time series process 
ordered chronologically, the correlation coefficient 
between pairs of adjacent observations. 

First Order Conditions: The set of linear equations used to 
solve for the OLS estimates. 

Fitted Values: The estimated values of the dependent vari­
able when the values of the independent variables for each 
observation are plugged into the OLS regression line. 

Fixed Effect: See unobserved effect. 
Fixed Effects Estimator: For the unobserved effects panel 

data model, the estimator obtained by applying pooled 
OLS to a time-demeaned equation. 

Fixed Effects Model: An unobserved effects panel data 
model where the unobserved effects is allowed to be arbi­
trarily correlated with the explanatory variables in each 
time period. 

Fixed Effects Transformation: For panel data, the time­
demeaned data. 

Forecast Error: The difference between the actual outcome 
and the forecast of the outcome. 

Forecast Interval: In forecasting, a confidence interval for 
a yet unrealized future value of a time series variable. 
(See also prediction interval.) 

Functional Form Misspecification: A problem that occurs 
when a model has omitted functions of the explanatory 
variables (such as quadratics) or uses the wrong functions 
of either the dependent variable or some explanatory 
variables. 

G 

Gauss-Markov Assumptions: The set of assumptions 
(Assumptions MLR.l through MLR.5 or TS. l through 
TS.5) under which OLS is BLUE. 

Gauss-Markov Theorem: The theorem that states that, 
under the five Gauss-Markov assumptions (for cross­
sectional or time series models), the OLS estimator is 
BLUE (conditional on the sample values of the explana­
tory variables). 

Generalized Least Squares (GLS) Estimator: An estimator 
that accounts for a known structure of the error variance 
(heteroskedasticity ), serial correlation pattern in the errors, 
or both, via a transformation of the original model. 

Geometric (or Koyck) Distributed Lag: An infinite dis­
tributed lag model where the lag coefficients decline at a 
geometric rate. 
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Goodness-of-Fit Measure: A statistic that summarizes how 
well a set of explanatory variables explains a dependent 
or response variable. 

Granger Causality: A limited notion of causality where 
past values of one series (x,) are useful for predicting 
future values of another series (y,), after past values of y, 
have been controlled for. 

Growth Rate: The proportionate change in a time series 
from the previous period. It may be approximated as 
the difference in logs or reported in percentage form. 

H 

Heckit Method: An econometric procedure used to 
correct for sample selection bias due to incidental 
truncation or some other form of nonrandomly t 
missing data. 

Heterogeneity Bias: The bias in OLS due to omitted het­
erogeneity (or omitted variables). 

Heteroskedasticity: The variance of the error term, given 
the explanatory variables, is not constant. 

Heteroskedasticity of Unknown Form: Heteroskedasticity 
that may depend on the explanatory variables in an 
unknown, arbitrary fashion. 

Heteroskedasticity-Robust F Statistic: An F-type statistic 
that is (asymptotically} robust to heteroskedasticity of 
unknown form. 

Heteroskedasticity-Robust LM Statistic: An LM statistic 
that is robust to heteroskedasticity of unknown form. 

Heteroskedasticity-Robust Standard Error: A standard 
error that is (asymptotically) robust to heteroskedasticity 
of unknown form. 

Heteroskedasticity-Robust t Statistic: At statistic that is 
(asymptotically) robust to heteroskedasticity of unknown 
form. 

Highly Persistent: A time series process where outcomes 
in the distant future are highly correlated with current 
outcomes. 

Homoskedasticity: The errors in a regression model have 
constant variance conditional on the explanatory vari­
ables. 

Hypothesis Test: A statistical test of the null, or main­
tained, hypothesis against an alternative hypothesis. 

Idempotent Matrix: A (square) matrix where multiplica­
tion of the matrix by itself equals itself. 

Identification: A population parameter, or set of parame­
ters, can be consistently estimated. 

Identified Equation: An equation whose parameters can be 
consistently estimated, especially in models with endoge­
nous explanatory variables. 

Identity Matrix: A square matrix where all diagonal ele­
ments are one and all off-diagonal elements are zero. 
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:liosyncratic Error: In panel data models, the error that 
changes over time as well as across units (say, individu­
als, firms, or cities). 

mpact Elasticity: In a distributed lag model, the immedi­
ate percentage change in the dependent variable given a 
I% increase in the independent variable. 

mpact Multiplier: See impact propensity. 
mpact Propensity: In a distributed lag model, the immedi­

ate change in the dependent variable given a one-unit 
increase in the independent variable. 

ncidental Truncation: A sample selection problem 
whereby one variable, usually the dependent variable, is 
only observed for certain outcomes of another variable. 

nclusion of an Irrelevant Variable: The including of an 
explanatory variable in a regression model that has a zero 
population parameter in estimating an equation by OLS. 

nconsistency: The difference between the probability limit 
of an estimator and the parameter value. 

nconsistent: An estimator does not converge (in probabil­
ity) to the correct population parameter as the sample 
size grows. 

ndependent Random Variables: Random variables 
whose joint distribution is the product of the marginal 
distributions. 

ndependent Variable: See explanatory variable. 
ndependently Pooled Cross Section: A data set obtained 

by pooling independent random samples from different 
points in time. 

ndex Number: A statistic that aggregates information on 
economic activity, such as production or prices. 

nfinite Distributed Lag (IDL) Model: A distributed lag 
model where a change in the explanatory variable can 
have an impact on the dependent variable into the indefi­
nite future. 

:nfluential Observations: See outliers. 
:nformation Set: In forecasting, the set of variables that we 

can observe prior to forming our forecast. 
:n-Sample Criteria: Criteria for choosing forecasting mod­

els that are based on goodness-of-fit within the sample 
used to obtain the parameter estimates. 

Instrumental Variable (IV): In an equation with an 
endogenous explanatory variable, an IV is a variable that 
does not appear in the equation, is uncorrelated with the 
error in the equation, and is (partially) correlated with the 
endogenous explanatory variable. 

Instrumental Variables (IV) Estimator: An estimator in a 
linear model used when instrumental variables are avail­
able for one or more endogenous explanatory variables. 

Integrated of Order One [1(1)]: A time series process that 
needs to be first-differenced in order to produce an I(O) 
process. 

Integrated of Order Zero [1(0)]: A stationary, weakly 
dependent time series process that, when used in regres­
sion analysis, satisfies the law of large numbers and the 
central limit theorem. 

Interaction Effect: In multiple regression, the partial effect 
of one explanatory variable depends on the value of a dif­
ferent explanatory variable. 
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Interaction Term: An independent variable in a regression 
model that is the product of two explanatory variables. 

Intercept: In the equation of a line, the value of they vari­
able when the x variable is zero. 

Intercept Parameter: The parameter in a multiple linear 
regression model that gives the expected value of the 
dependent variable when all the independent variables 
equal zero. 

Intercept Shift: The intercept in a regression model differs 
by group or time period. 

Internet: A global computer network that can be used to 
access information and download databases. 

Interval Estimator: A rule that uses data to obtain lower 
and upper bounds for a population parameter. (See also 
confidence interval.) 

Inverse: For an 11 X 11 matrix, its inverse (if it exists) is the 
11 X 11 matrix for which pre- and post-multiplication by 
the original matrix yields the identity matrix. 

Inverse Mills Ratio: A term that can be added to a multiple 
regression model to remove sample selection bias. 

Joint Distribution: The probability distribution determin­
ing the probabilities of outcomes involving two or more 
random variables. 

Joint Hypotheses Test: A test involving more than one 
restriction on the parameters in a model. 

Jointly Insignificant: Failure to reject, using an F test at a 
specified significance level, that all coefficients for a 
group of explanatory variables are zero. 

Jointly Statistically Significant: The null hypothesis that 
two or more explanatory variables have zero population 
coefficients is rejected at the chosen significance level. 

Just Identified Equation: For models with endogenous 
explanaiory variables, an equation that is identified but 
would not be identified with one fewer instrumental 
variable. 

L 

Lag Distribution: In a finite or infinite distributed lag 
model, the lag coefficients graphed as a function of the 
lag length. 

Lagged Dependent Variable: An explanatory variable that 
is equal to the dependent variable from an earlier time 
period. 

Lagged Endogenous Variable: In a simultaneous equa­
tions model, a lagged value of one of the endogenous 
variables. 

Lagrange Multiplier (LM) Statistic: A test statistic with 
large-sample justification that can be used to test for 
omitted variables, heteroskedasticity, and serial correla­
tion, among other model specification problems. 

Large Sample Properties: See asymptotic properties. 
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Latent Variable Model: A model where the observed 
dependent variable is assumed to be a function of an 
underlying latent, or unobserved, variable. 

Law of Iterated Expectations: A result from probability 
that relates unconditional and conditional expectations. 

Law of Large Numbers (LLN): A theorem that says that 
the average from a random sample converges in proba­
bility to the population average; the LLN also holds for 
stationary and weakly dependent time series. 

Leads and Lags Estimator: An estimator of a cointegrating 
parameter in a regression with I( I) variables, where the 
current, some past, and some future first differences in the 
explanatory variable are included as regressors. 

Least Absolute Deviations (LAD): A method for estimat­
ing the parameters of a multiple regression model based 
on minimizing the sum of the absolute values of the 
residuals. 

Least Squares Estimator: An estimator that minimizes a 
sum of squared residuals. 

Level-Level Model: A regression model where the depen­
dent variable and the independent variables are in level 
(or original) form. 

Level-Log Model: A regression model where the dependent 
variable is in level form and (at least some of) the inde­
pendent variables are in logarithmic form. 

Likelihood Ratio Statistic: A statistic that can be used to 
test single or multiple hypotheses when the constrained 
and unconstrained models have been estimated by maxi­
mum likelihood. The statistic is twice the difference in 
the unconstrained and constrained Jog-likelihoods. 

Limited Dependent Variable (LDV): A dependent or 
response variable whose range is restricted in some 
important way. 

Linear Function: A function where the change in the 
dependent variable, given a one-unit change in an inde­
pendent variable, is constant. 

Linear Probability Model (LPM): A binary response 
model where the response probability is linear in its 
parameters. 

Linear Time Trend: A trend that is a linear function of time. 
Linear Unbiased Estimator: In multiple regression analy­

sis, an unbiased estimator that is a linear function of the 
outcomes on the dependent variable. 

Linearly Independent Vectors: A set of vectors such that 
no vector can be written as a linear combination of the 
others in the set. 

Logarithmic Function: A mathematical function defined 
for positive arguments that has a positive, but diminish­
ing, slope. 

Log Function: A mathematical function, defined only for 
strictly positive arguments, with a positive but decreasing 
slope. 

Logit Model: A model for binary response where the 
response probability is the \ogit function evaluated at a 
linear function of the explanatory variables. 

Log-Level Model: A regression model where the dependent 
variable is in logarithmic form and the independent vari­
ables are in level (or original) form. 
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Log-Likelihood Function: The sum of the log-likelihoods, 
where the log-likelihood for each observation is the log 
of the density of the dependent variable given the 
explanatory variables; the log-likelihood function is 
viewed as a function of the parameters to be estimated. 

Log-Log Model: A regression model where the dependent 
variable and (at least some of) the explanatory variables 
are in logarithmic form. 

Longitudinal Data: See panel data. 
Long-Run Elasticity: The long-run propensity in a distrib­

uted Jag model with the dependent and independent 
variables in logarithmic form; thus, the long-run elastic­
ity is the eventual percentage increase in the explained 
variable, given a permanent I% increase in the explana­
tory variable. 

Long-Run Multiplier: See long-run propensity. 
Long-Run Propensity (LRP): In a distributed Jag model, 

the eventual change in the dependent variable given 
a permanent, one-unit increase in the independent 
variable. 

Loss Function: A function that measures the Joss when a 
forecast differs from the actual outcome; the most com­
mon examples are absolute value Joss and squared loss. 

M 
., 

Marginal Effect: The effect on the dependent variable that 
results from changing an independent variable by a small 
amount. 

Martingale: A time series process whose expected value, 
given all past outcomes on the series, simply equals the 
most recent value. 

Martingale Difference Sequence: The first difference of a 
martingale. It is unpredictable (or has a zero mean), given 
past values of the sequence. 

Matched Pair Sample: A sample where each observation is 
matched with another, as in a sample consisting of a hus­
band and wife or a set of two siblings. 

Matrix: An array of numbers. 
Matrix Multiplication: An algorithm for multiplying 

together two conformable matrices. 
Matrix Notation: A convenient mathematical notation, 

grounded in matrix algebra, for expressing and manipu­
lating the multiple regression model. 

Maximum Likelihood Estimation (MLE): A broadly 
applicable estimation method where the parameter esti­
mates are chosen to maximize the log-likelihood 
function. 

Maximum Likelihood Estimator: An estimator that maxi­
mizes the (Jog of) the likelihood function. 

Mean: See expected value. 
Mean Absolute Error (MAE): A performance measure in 

forecasting, computed as the average of the absolute val­
ues of the forecast errors. 

Mean Squared Error (MSE): The expected squared distance 
that an estimator is from the population value; it equals 
the variance pIus the square of any bias. 
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Measurement Error: The difference between an observed 
variable and the variable that belongs in a multiple 
regression equation. 

Median: In a probability distribution, it is the value where 
there is a 50% chance of being below the value and a 
50% chance of being above it. In a sample of numbers, it 
is the middle value after the numbers have been ordered. 

Method of Moments Estimator: An estimator obtained by 
using the sample analog of population moments; ordinary 
least squares and two stage least squares are both method 
of moments estimators. 

Micronumerosity: A term introduced by Arthur Goldberger 
to describe properties of econometric estimators with 
smalJ sample sizes. 

Minimum Variance Unbiased Estimator: An estimator 
with the smalJest variance in the class of alJ unbiased 
estimators. 

Missing Data: A data problem that occurs when we do not 
observe values on some variables for certain observations 
(individuals, cities, time periods, and so on) in the sample. 

Misspccification Analysis: The process of determining 
likely biases that can arise from omitted variables, mea­
surement error, simultaneity, and other kinds of model 
misspecification. 

Moving Average Process of Order One [MA(l)]: A time 
series process generated as a linear function of the cur­
rent value and one Jagged value of a zero-mean, constant 
variance, uncorrelated stochastic process. 

Multicollinearity: A term that refers to correlation among 
the independent variables in a multiple regression model; 
it is usually invoked when some correlations are "large," 
but an actual magnitude is not welJ defined. 

Multiple Hypotheses Test: A test of a nulJ hypothesis 
involving more than one restriction on the parameters. 

Multiple Linear Regression (MLR) Model: A model lin­
ear in its parameters, where the dependent variable is a 
function of independent variables plus an error term. 

Multiple Regression Analysis: A type of analysis that is 
used to describe estimation of and inference in the multi­
ple linear regression model. 

Multiple Restrictions: More than one restriction on the 
parameters in an econometric model. 

Multiple-Step-Ahead Forecast: A time series forecast of 
more than one period into the future. 

Multiplicative Measurement Error: Measurement error 
where the observed variable is the product of the true 
unobserved variable and a positive measurement error. 

Multivariate Normal Distribution: A distribution for mul­
tiple random variables where each linear combination of 
the random variables has a univariate (one-dimensional) 
normal distribution. 

N 

11-R-Squared Statistic: See Lagrange multiplier statistic. 
Natural Experiment: A situation where the economic envi­

ronment-sometimes summarized by an explanatory 
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variable-exogenously changes, perhaps inadvertently, 
due to a policy or institutional change. 

Natural Logarithm: See logarithmic function. 
Nominal Variable: A variable measured in nominal or cur­

rent dolJars. 
Nonexperimental Data: Data that have not been obtained 

through a controlled experiment. 
Nonlinear Function: A function whose slope is not constant. 
Nonnested Models: Two (or more) models where no model 

can be written as a special case of the other by imposing 
restrictions on the parameters. 

Nonrandom Sample: A sample obtained other than by 
sampling randomly from the population of interest. 

Nonstationary Process: A time series process whose joint 
distributions are not constant across different epochs. 

Normal Distribution: A probability distribution commonly 
used in statistics and econometrics for modeling a popula­
tion. Its probability distribution function has a bell shape. 

Normality Assumption: The classical linear model 
assumption that states that the error (or dependent 
variable) has a normal distribution, conditional on the 
explanatory variables. 

Null Hypothesis: In classical hypothesis testing, we take 
this hypothesis as true and require the data to provide 
substantial evidence against it. 

Numerator Degrees of Freedom: In an F test, the number 
of restrictions being tested. 

0 

Observational Data: See nonexperimental data. 
OLS: See ordinary least squares. 
OLS Intercept Estimate: The intercept in an OLS regres­

sion line. 
OLS Regression Line: The equation relating the predicted 

value of the dependent variable to the independent vari­
ables, where the parameter estimates have been obtained 
by OLS. 

OLS Slope Estimate: A slope in an OLS regression line. 
Omitted Variable Bias: The bias that arises in the OLS 

estimators when a relevant variable is omitted from the 
regression. 

Omitted Variables: One or more variables, which we 
would like to control for, have been omitted in estimating 
a regression model. 

One-Sided Alternative: An alternative hypothesis that 
states that the parameter is greater than (or less than) the 
value hypothesized under the null. 

One-Step-Ahead Forecast: A time series forecast one 
period into the future. 

One-Tailed Test: A hypothesis test against a one-sided 
alternative. 

Online Databases: Databases that can be accessed via a 
computer network. 

Online Search Services: Computer software that alJows the 
Internet or databases on the Internet to be searched by 
topic, name, title, or keywords. 
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Order Condition: A necessary condition for identifying 
the parameters in a model with one or more endogenous 
explanatory variables: the total number of exogenous 
variables must be at least as great as the total number of 
explanatory variables. 

Ordinal Variable: A variable where the ordering of the val­
ues conveys information but the magnitude of the values 
does not. 

Ordinary Least Squares (OLS): A method for estimating 
the parameters of a multiple linear regression model. The 
ordinary least squares estimates are obtained by minimiz­
ing the sum of squared residuals. 

Outliers: Observations in a data set that are substantially 
different from the bulk of the data, perhaps because of 
errors or because some data are generated by a different 
model than most of the other data. 

Out-of-Sample Criteria: Criteria used for choosing fore­
casting models that are based on a part of the sample that 
was not used in obtaining parameter estimates. 

Overall Significance of a Regression: A test of the joint 
significance of all explanatory variables appearing in a 
multiple regression equation. 

Over Controlling: In a multiple regression model, includ­
ing explanatory variables that should not be held fixed 
when studying the ceteris paribus effect of one or more 
other explanatory variables; this can occur when vari­
ables that are themselves outcomes of an intervention or 
a policy are included among the regressors. 

Overdispersion: In modeling a count variable, the variance 
is larger than the mean. 

Overidentified Equation: In models with endogenous 
explanatory variables, an equation where the number of 
instrumental variables is strictly greater than the number 
of endogenous explanatory variables. 

Overidentifying Restrictions: The extra moment conditions 
that come from having more instrumental variables than 
endogenous explanatory variables in a linear model. 

Overspecifying a Model: See inclusion of an irrelevant 
variable. 

p 

p-Value: The smallest significance level at which the null 
hypothesis can be rejected. Equivalently, the largest sig­
nificance level at which the null hypothesis cannot be 
rejected. 

Pairwise Uncorrelated Random Variables: A set of two or 
more random variables where each pair is uncorrelated. 

Panel Data: A data set constructed from repeated cross sec­
tions over time. With a balanced panel, the same units 
appear in each time period. With an unbalanced panel, 
some units do not appear in each time period, often due 
to attrition. 

Parameter: An unknown value that describes a population 
relationship. 

Parsimonious Model: A model with as few parameters as 
possible for capturing any desired features. 
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Partial Derivative: For a smooth function of more than one 
variable, the slope of the function in one direction. 

Partial Effect: The effect of an explanatory variable on the 
dependent variable, holding other factors in the regres­
sion model fixed. 

Percent Correctly Predicted: In a binary response model, 
the percentage of times the prediction of zero or one 
coincides with the actual outcome. 

Percentage Change: The proportionate change in a vari­
able, multiplied by I 00. 

Percentage Point Change: The change in a variable that is 
measured as a percentage. 

Perfect Collinearity: In multiple regression, one indepen­
dent variable is an exact linear function of one or more 
other independent variables. 

Plug-In Solution to the Omitted Variables Problem: A 
proxy variable is substituted for an unobserved omitted 
variable in an OLS regression. 

Point Forecast: The forecasted value of a future outcome. 
Poisson Distribution: A probability distribution for count 

variables. 
Poisson Regression Model: A model for a count dependent 

variable where the dependent variable, conditional on the 
explanatory variables, is nominally assumed to have a 
Poisson distribution. 

Policy Analysis: An empirical analysis that uses economet­
ric methods to evaluate the effects of a certain policy. 

Pooled Cross Section: A data configuration where indepen­
dent cross sections, usually collected at different points in 
time, are combined to produce a single data set. 

Pooled OLS Estimation: OLS estimation with indepen­
dently pooled cross sections, panel data, or cluster 
samples, where the observations are pooled across time 
(or group) as well as across the cross-sectional units. 

Population: A well-defined group (of people, firms, cities, 
and so on) that is the focus of a statistical or econometric 
analysis. 

Population Model: A model, especially a multiple linear 
regression model, that describes a population. 

Population R-Squared: In the population, the fraction of 
the variation in the dependent variable that is explained 
by the explanatory variables. 

Population Regression Function: See conditional . 
expectation. 

Positive Definite: A symmetric matrix such that all qua­
dratic forms, except the trivial one that must be zero, 
are strictly positive. 

Positive Semi-Definite: A symmetric matrix such that all 
quadratic forms are nonnegative. 

Power of a Test: The probability of rejecting the null hypothe­
sis when it is false; the power depends on the values of the 
population parameters under the alternative. 

Practical Significance: The practical or economic impor­
tance of an estimate, which is measured by its sign and 
magnitude, as opposed to its statistical significance. 

Prais-Winsten (PW) Estimation: A method of estimating 
a multiple linear regression model with AR(l) errors and 
strictly exogenous explanatory variables; unlike 
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Cochrane-Orcutt, Prais-Wins ten uses the equation for the 
first time period in estimation. 

Predetermined Variable: In a simultaneous equations 
model, either a lagged endogenous variable or a lagged 
exogenous variable. 

Predicted Variable: See dependent variable. 
Prediction: The estimate of an outcome obtained by plug­

ging specific values of the explanatory variables into an 
estimated model, usually a multiple regression model. 

Prediction Error: The difference between the actual out­
come and a prediction of that outcome. 

Prediction Interval: A confidence interval for an unknown 
outcome on a dependent variable in a multiple regression 
model. 

Predictor Variable: See explanatory variable. 
Probability Density Function (pdf): A function that, for 

discrete random variables, gives the probability that the 
random variable takes on each value; for continuous ran­
dom variables, the area under the pdf gives the 
probability of various events. 

Probability Limit: The value to which an estimator con­
verges as the sample size grows without bound. 

Probit Model: A model for binary responses where the 
response probability is the standard normal cdf evaluated 
at a linear function of the explanatory variables. 

Program Evaluation: An analysis of a particular private or 
public program using econometric methods to obtain the 
causal effect of the program. 

Proportionate Change: The change in a variable relative to 
its initial value; mathematically, the change divided by 
the initial value. 

Proxy Variable: An observed variable that is related but not 
identical to an unobserved explanatory variable in multi­
ple regression analysis. 

Pseudo R-Squared: Any number of goodness-of-fit mea­
sure for limited dependent variable models. 

Quadratic Form: A mathematical function where the vec­
tor argument both pre- and post-multiplies a square, 
symmetric matrix. 

Quadratic Functions: Functions that contain squares of 
one or more explanatory variables; they capture dimin­
ishing or increasing effects on the dependent variable. 

Qualitative Variable: A variable describing a non­
quantitative feature of an individual, a firm, a city, 
and so on. 

Quasi-Demeaned Data: In random effects estimation for 
panel data, it is the original data in each time period 
minus a fraction of the time average; these calculations 
are done for each cross-sectional observation. 

Quasi-Differenced Data: In estimating a regression model 
with AR( I) serial correlation, it is the difference between 
the current time period and a multiple of the previous 
time period, where the multiple is the parameter in the 
AR(l) model. 
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Quasi-Experiment: See natural experiment. 
Quasi-Likelihood Ratio Statistic: A modification of the 

likelihood ratio statistic that accounts for possible distri­
butional misspecification, as in a Poisson regression 
model. 

Quasi-Maximum Likelihood Estimation (QMLE): Maxi­
mum likelihood estimation but where the log-likelihood 
function may not correspond to the actual conditional 
distribution of the dependent variable. 

R 

R-Bar Squared: See adjusted R-squared. 
R-Squared: In a multiple regression model, the proportion 

of the total sample variation in the dependent variable 
that is explained by the independent variable. 

R-Squared Form of the F Statistic: The F statistic for 
testing exclusion restrictions expressed in terms 
of the R-squareds from the restricted and unrestricted 
models. 

Random Effects Estimator: A feasible GLS estimator in 
the unobserved effects model where the unobserved 
effect is assumed to be uncorrelated with the explanatory 
variables in each time period. 

Random Effects Model: The unobserved effects panel data 
model where the unobserved effect is assumed to be 
uncorrelated with the explanatory variables in each time 
period. 

Random Sample: A sample obtained by sampling ran­
domly from the specified population. 

Random Sampling: A sampling scheme whereby each 
observation is drawn at random from the population. In 
particular, no unit is more likely to be selected than any 
other unit, and each draw is independent of all other 
draws. 

Random Variable: A variable whose outcome is uncertain. 
Random Vector: A vector consisting of random variables. 
Random Walk: A time series process where next period's 

value is obtained as this period's value, plus an indepen­
dent (or at least an uncorrelated) error term. 

Random Walk with Drift: A random walk that has a con­
stant (or drift) added in each period. 

Rank Condition: A sufficient condition for identification 
of a model with one or more endogenous explanatory 
variables. 

Rank of a Matrix: The number of linearly independent 
columns in a matrix. 

Rational Distributed Lag (RDL) Model: A type of infinite 
distributed lag model where the lag distribution depends 
on relatively few parameters. 

Real Variable: A monetary value measured in terms of a 
base period. 

Reduced Form Equation: A linear equation where an 
endogenous variable is a function of exogenous variables 
and unobserved errors. 

Reduced Form Error: The error term appearing in a 
reduced form equation. 
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Reduced Form Parameters: The parameters appearing in a 
reduced form equation. 

Regressand: See dependent variable. 
Regression Specification Error Test (RESET): A general 

test for functional form in a multiple regression model; it is 
an F test of joint significance of the squares, cubes, and 
perhaps higher powers of the fitted values from the initial 
OLS estimation. 

Regression through the Origin: Regression analysis 
where the intercept is set to zero; the slopes are 
obtained by minimizing the sum of squared residuals, 
as usual. 

Regressor: See explanatory variable. 
Rejection Region: The set of values of a test statistic that 

leads to rejecting the null hypothesis. 
Rejection Rule: In hypothesis testing, the rule that deter­

mines when the null hypothesis is rejected in favor of the 
alternative hypothesis. 

Relative Change: See proportionate change. 
Residual: The difference between the actual value and the 

fitted (or predicted) value; there is a residual for each 
observation in the sample used to obtain an OLS regres­
sion line. 

Residual Analysis: A type of analysis that studies the sign 
and size of residuals for particular observations after a 
multiple regression model has been estimated. 

Residual Sum of Squares: See sum of squared residuals. 
Response Probability: In a binary response model, the proba­

bility that the dependent variable takes on the value one, 
conditional on explanatory variables. 

Response Variable: See dependent variable. 
Restricted Model: In hypothesis testing, the model 

obtained after imposing all of the restrictions required 
under the null. 

Root Mean Squared Error (RMSE): Another name for 
the standard error of the regression in multiple regression 
analysis. 

Row Vector: A vector of numbers arranged as a row. 

s 

Sample Average: The sum of 11 numbers divided by 11; a 
measure of central tendency. 

Sample Correlation: For outcomes on two random vari­
ables, the sample covariance divided by the product of 
the sample standard deviations. 

Sample Correlation Coefficient: An estimate of the (popu­
lation) correlation coefficient from a sample of data. 

Sample Covariance: An unbiased estimator of the popula­
tion covariance between two random variables. 

Sample Regression Function (SRF): See OLS regression 
line. 

Sample Selection Bias: Bias in the OLS estimator that is 
induced by using data that arise from endogenous sample 
selection. 

Sample Standard Deviation: A consistent estimator of the 
population standard deviation. 
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Sample Variance: An unbiased, consistent estimator of the 
population variance. 

Sampling Distribution: The probability distribution of an 
estimator over all possible sample outcomes. 

Sampling Variance: The variance in the sampling distribu­
tion of an estimator; it measures the spread in the 
sampling distribution. 

Scalar Multiplication: The algorithm for multiplying a 
scalar (number) by a vector or matrix. 

Scalar Variance-Covariance Matrix: A variance­
covariance matrix where all off-diagonal terms 
are zero and the diagonal terms are the same positive 
constant. 

Score Statistic: See Lagrange multiplier statistic. 
Seasonal Dummy Variables: A set of dummy variables 

used to denote the quarters or months of the year. 
Seasonality: A feature of monthly or quarterly time ~eries 

where the average value differs systematically by season 
of the year. 

Seasonally Adjusted: Monthly or quarterly time series data 
where some statistical procedure-possibly regression on 
seasonal dummy variables-has been used to remove the 
seasonal component. 

Selected Sample: A sample of data obtained not by random 
sampling but by selecting on the basis of some observed 
or unobserved characteristic. 

Self-Selection: Deciding on an action based on the likely 
benefits, or costs, of taking that action. 

Semi-Elasticity: The percentage change in the dependent 
variable given a one-unit increase in an independent 
variable. 

Sensitivity Analysis: The process of checking whether the 
estimated effects and statistical significance of key 
explanatory variables are sensitive to inclusion of other 
explanatory variables, functional form, dropping of 
potentially out-lying observations, or different methods 
of estimation. 

Serial Correlation: In a time series or panel data model, 
correlation between the errors in different time periods. 

Serial Correlation-Robust Standard Error: A standard 
error for an estimator that is (asymptotically) valid 
whether or not the errors in the model are serially 
correlated. 

Serially Uncorrelated: The errors in a time series or panel 
data model are pairwise uncorrelated across time. 

Short-Run Elasticity: The impact propensity in a distrib­
uted lag model when the dependent and independent 
variables are in logarithmic form. 

Significance Level: The probability of Type I error in 
hypothesis testing. 

Simple Linear Regression Model: A model where the 
dependent variable is a linear function of a single inde­
pendent variable, plus an error term. 

Simultaneity: A term that means at least one explanatory 
variable in a multiple linear regression model is deter­
mined jointly with the dependent variable. 

Simultaneity Bias: The bias that arises from using OLS to 
estimate an equation in a simultaneous equations model. 
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Simultaneous Equations Model (SEM): A model that 
jointly determines two or more endogenous variables, 
where each endogenous variable can be a function of 
other endogenous variables as well as of exogenous vari­
ables and an error term. 

Slope: In the equation of a line, the change in they variable 
when the x variable increases by one. 

Slope Parameter: The coefficient on an independent vari­
able in a multiple regression model. 

Spreadsheet: Computer software used for entering and 
manipulating data. 

Spurious Correlation: A correlation between two variables 
that is not due to causality, but perhaps to the dependence 
of the two variables on another unobserved factor. 

Spurious Regression Problem: A problem that arises when 
regression analysis indicates a relationship between two 
or more unrelated time series processes simply because 
each has a trend, is an integrated time series (such as a 
random walk), or both. 

Square Matrix: A matrix with the same number of rows as 
columns. 

Stable AR(l) Process: An AR( I) process where the 
parameter on the lag is less than one in absolute value. 
The correlation between two random variables in the 
sequence declines to zero at a geometric rate as the dis­
tance between the random variables increases, and so a 
stable AR( I) process is weakly dependent. 

Standard Deviation: A common measure of spread in the 
distribution of a random variable. 

Standard Deviation of [Ji: A c<_?mmon measure of spread in 
the sampling distribution of f3i. 

Standard Error: Generically, an estimate of the standard 
deviation of an estimator. 

Standard Error of Pi An estimate of }he standard devia­
tion in the sampling distribution of f3r 

Standard Error of the Estimate: See standard error of the 
regression. 

Standard Error of the Regression (SER): In multiple 
regression analysis, the estimate of the standard deviation 
of the population error, obtained as the square root of the 
sum of squared residuals over the degrees of freedom. 

Standard Normal Distribution: The normal distribution 
with mean zero and variance one. 

Standardized Coefficients: Regression coefficients that 
measure the standard deviation change in the dependent 
variable given a one standard deviation increase in an 
independent variable. 

Standardized Random Variable: A random variable trans­
formed by subtracting off its expected value and dividing 
the result by its standard deviation; the new random vari­
able has mean zero and standard deviation one. 

Static Model: A time series model where only contempora­
neous explanatory variables affect the dependent variable. 

Stationary Process: A time series process where the mar­
ginal and all joint distributions are invariant across time. 

Statistical Inference: The act of testing hypotheses about 
population parameters. 
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Statistical Significance: The importance of an estimate 
as measured by the size of a test statistic, usually a 1 
statistic. 

Statistically Different from Zero: See statistically 
significant. 

Statistically Insignificant: Failure to reject the null hypoth­
esis that a population parameter is equal to zero, at the 
chosen significance level. 

Statistically Significant: Rejecting the null hypothesis that 
a parameter is equal to zero against the specified alterna­
tive, at the chosen significance level. 

Stochastic Process: A sequence of random variables 
indexed by time. 

Stratified Sampling: A nonrandom sampling scheme 
whereby the population is first divided into several 
nonoverlapping, exhaustive strata, and then random sam­
ples are taken from within each stratum. 

Strict Exogeneity: An assumption that holds in a time 
series or panel data model when the explanatory variables 
are strictly exogenous. 

Strictly Exogenous: A feature of explanatory variables in a 
time series or panel data model where the error term at 
any time period has zero expectation, conditional on the 
explanatory variables in all time periods; a less restrictive 
version is stated in terms of zero correlations. 

Strongly Dependent: See highly persistent process. 
Structural Equation: An equation derived from economic 

theory or from less formal economic reasoning. 
Structural Error: The error term in a structural equation, 

which could be one equation in a simultaneous equations 
model. 

Structural Parameters: The parameters appearing in a 
structural equation. 

Sum of Squared Residuals (SSR): In multiple regression 
analysis, the sum of the squared OLS residuals across all 
observations. 

Summation Operator: A notation, denoted by L, used to 
define the summing of a set of numbers. 

Symmetric Distribution: A probability distribution charac­
terized by a probability density function that is 
symmetric around its median value, which must also be 
the mean value (whenever the mean exists). 

Symmetric Matrix: A (square) matrix that equals its 
transpose. 

T 

t Distribution: The distribution of the ratio of a standard 
normal random variable and the square root of an inde­
pendent chi-square random variable, where the 
chi-square random variable is first divided by its df 

t Ratio: See 1 statistic. 
t Statistic: The statistic used to test a single hypothesis 

about the parameters in an econometric model. 
Test Statistic: A rule used for testing hypotheses where 

each sample outcome produces a numerical value. 



Glossary 

Text Editor: Computer software that can be used to edit 
text files. 

Text (ASCII) File: A universal file format that can be trans­
ported across numerous computer platforms. 

Time-Demeaned Data: Panel data where, for each cross­
sectional unit, the average over time is subtracted from 
the data in each time period. 

Time Series Data: Data collected over time on one or more 
variables. 

Time Series Process: See stochastic process. 
Time Trend: A function of time that is the expected value 

of a trending time series process. 
Tobit Model: A model for a dependent variable that takes 

on the value zero with positive probability but is roughly 
continuously distributed over strictly positive values. (See 
also corner solution response.) 

Top Coding: A form of data censoring where the value of a 
variable is not reported when it is above a given threshold; 
we only know that it is at least as large as the threshold. 

Total Sum of Squares (SST): The total sample variation in 
a dependent variable about its sample average. 

Trace of a Matrix: For a square matrix, the sum of its diag­
onal elements. 

Transpose: For any matrix, the new matrix obtained by 
interchanging its rows and columns. 

Treatment Group: In program evaluation, the group that 
participates in the program. 

Trending Process: A time series process whose expected 
value is an increasing or a decreasing function of time. 

Trend-Stationary Process: A process that is stationary 
once a time trend has been removed; it is usually 
implicit that the detrended series is weakly dependent. 

True Model: The actual population model relating the 
dependent variable to the relevant independent variables, 
plus a disturbance, where the zero conditional mean 
assumption holds. 

Truncated Normal Regression Model: The special case of 
the truncated regression model where the underlying pop­
ulation model satisfies the classical linear model 
assumptions. 

Truncated Regression Model: A linear regression model 
for cross-sectional data in which the sampling scheme 
entirely excludes, on the basis of outcomes on the depen­
dent variable, part of the population. 

Two-Sided Alternative: An alternative where the pop­
ulation parameter can be either less than or greater than 
the value stated under the null hypothesis. 

Two Stage Least Squares (2SLS) Estimator: An instru­
mental variables estimator where the IV for an 
endogenous explanatory variable is obtained as the fitted 
value from regressing the endogenous explanatory vari­
able on all exogenous variables. 

Two-Tailed Test: A test against a two-sided alternative. 
Type I Error: A rejection of the null hypothesis when it is 

true. 
Type II Error: The failure to reject the null hypothesis 

when it is false. 

u 

Unbalanced Panel: A panel data set where certain years 
(or periods) of data are missing for some cross-sectional 
units. 

Unbiased Estimator: An estimator whose expected value 
(or mean of its sampling distribution) equals the popula­
tion value (regardless of the population value). 

Unconditional Forecast: A forecast that does not rely on 
knowing, or assuming values for, future explanatory 
variables. 

Uncorrelated Random Variables: Random variables that 
are not linearly related. 

Underspecifying a Model: See excluding a relevant 
variable. 

Unidentified Equation: An equation with one or more 
endogenous explanatory variables where sufficient 
instrumental variables do not exist to identify the 
parameters. 

Unit Root Process: A highly persistent time series process 
where the current value equals last period's value, plus a 
weakly dependent disturbance. 

Unobserved Effect: In a panel data model, an unobserved 
variable in the error term that does not change over time. 
For cluster samples, an unobserved variable that is com­
mon to all units in the cluster. 

Unobserved Effects Model: A model for panel data or 
cluster samples where the error term contains an unob­
served effect. 

Unobserved Heterogeneity: See unobserved effect. 
Unrestricted Model: In hypothesis testing, the model that 

has no restrictions placed on its parameters. 
Upward Bias: The expected value of an estimator is greater 

than the population parameter value. 

v 

Variance: A measure of spread in the distribution of a ran­
dom variable. 

Variance-Covariance Matrix: For a random vector, the 
positive semi-definite matrix defined by putting the vari­
ances down the diagonal and the covariances in the 
appropriate off-diagonal entries. 

Variance-Covariance Matrix of the OLS Estimator: The 
matrix of sampling variances and covariances for the vec­
tor of OLS coefficients. 

Variance of the Prediction Error: The variance in the 
error that arises when predicting a future value of the 
dependent variable based on an estimated multiple 
regression equation. 

Vector Autoregressive (VAR) Model: A model for two 
or more time series where each variable is modeled as a 
linear function of past values of all variables, plus distur­
bances that have zero means given all past values of the 
observed variables. 
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Wald Statistic: A general test statistic for testing hypothe­
ses in a variety of econometric settings; typically, the 
Wald statistic has an asymptotic chi-square distribution. 

Weakly Dependent: A term that describes a time series 
process where some measure of dependence between 
random variables at two points in time-such as correla­
tion-diminishes as the interval between the two points 
in time increases. 

Weighted Least Squares (WLS) Estimator: An estimator 
used to adjust for a known form of heteroskedasticity, 
where each squared residual is weighted by the inverse of 
the (estimated) variance of the error. 

White Test: A test for heteroskedasticity that involves 
regressing the squared OLS residuals on the OLS fitted 
values and on the squares of the fitted values; in its most 
general form, the squared OLS residuals are regressed on 
the .explanatory variables, the squares of the explanatory 
vanables, and all the nonredundant interactions of the 
explanatory variables. 

Glossary 

Within Estimator: See fixed effects estimator. 
Within Transformation: See fixed effects transformation. 

y 

Year Dummy Variables: For data sets with a time series 
component, dummy (binary) variables equal to one in the 
relevant year and zero in all other years. 

z 

Zero Conditional Mean Assumption: A key assumption 
used in multiple regression analysis that states that, given 
any values of the explanatory variables, the expected 
value of the error equals zero. (See Assumptions MLR.4, 
TS.3, and TS.3'.) 

Zero Matrix: A matrix where all entries are zero. 
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