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17 
Limited Dependent Variable Models 
and Sample Selection Corrections 

I n Chapter 7, we studied the linear probability model, which is simply an appli<.>ation of, 
the multiple regression model to a binary dependent variable. A binary dependent vam­

able is an example of a limited dependent variable (LDV). An LDV is broadly defined 
as a dependent variable whose range of values is substantively restricted. A binar;y vari­
able takes on only two values, zero and one. We have seen several other examples of1im­
ited dependent vl¢ables: participation percentage in a pension plan must be betWeen zero 
and 100, the number of times an individual is arrested in a given year is a nonnegative 
integer, and college grade point average is between zero and 4.0 at most colleges. 

Most economic variables we would like to explain are limited in some way, often because 
they must be positive. For example, hourly wage, housing price, and nominal interest rates 
must be greater than zero. But not all such variables need special treatment. If a stui.Gtlypos­
itive variable takes on many different values, a special econometric model is rarely necessaJ\Y. 
When y is discrete and takes on a small number of values, it makes no sense to treat it as 
an approximately continuous variable. Discreteness of y does not in itself mean that J.irl­
ear models are inappropriate. However, as we saw in Chapter 7 for binary response, the 
linear probability model has certain drawbacks. In Section 17.1, we discuss logit and JP!Th 
bit models, which overcome the shortcomings of the LPM; the disadvantage is that tliey 
are more difficult to interpret. 

Other kinds of limited dependent variables arise in econometric analysis, espeGially 
when the behavior of individuals, families, or firms is being modeled. Optimizing beliav­
ior often leads to a corner solution response for some nontrivial fraction of tfie Jmpu1a, 
tion. That is, it is optimal to choose a zero quantity or dollar value, for examp1e. During 
any given year, a significant number of families will make zero charitable contributions-. 
Therefore, annual family charitable contributions has a population distribution that is sp,read 
out over a large range of positive values, but with a pileup at the value zero. :A.Ithoujh a 
linear model could be appropriate for capturing the expected value of charitable contriou.­
tions, a linear model will likely lead to negative predictions for some families. Taking the 
natu.rallog is not possible because many observations are zero. The Tobit model, whiGh we 
cover in Section 17.2, is explicitly designed to model comer solution dependent variables. 

Another important kind of LDV is a count variable, which takes on nonnegative, inte­
ger values. Section 17.3 illustrates how Poisson regression models are well suited for mod­
eling count variables. 
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In some cases, we observe limited dependent variables due to data censoring, a topic 
we introduce in Section 17 .4. The general problem of sample selection, where we observe 
a nonrandom sample from the underlying population, is treated in Section 17.5. 

Limited dependent variable models can be used for time series and panel data, but 
they are most often applied to cross-sectional data. Sample selection problems are usually 
confined to cross-sectional or panel data. We focus on cross-sectional applications in this 
chapter. Wooldridge (2002) presents these problems in the context of panel data models 
and provides many more details for cross-sectional and panel data applications. 

1 7.1 Log it and Pro bit Models for Binary Response 

The linear probability model is simple to estimate and use, but it has some drawbacks that 
we discussed in Section 7.5. The two most important disadvantages are that the fitted prob­
abilities can be less than zero or greater than one and the partial effect of any explanatory 
variable (appearing in level form) is constant. These limitations of the LPM can be over­
come by using more sophisticated binary response models. 

In a binary response model, interest lies primarily in the response probability 

(;J 7.1) 

where we use x to denote the full set of explanatory variables. For example, when y is an 
employment indicator, x might contain various individual characteristics such as educa­
tion, age, marital status, and other factors that affect employment status, including a binary 
indicator variable for participation in a recent job training program. 

Specifying Logit and Probit Models 

In the LPM, we assume that the response probability is linear in a set of parameters, f3i; 
see equation (7.27). To avoid the LPM limitations, consider a class of binary response 
models of the form 

(17.2) 

where G is a function taking on values strictly between zero and one: 0 < G(z) < 1, for 
all real numbers z. This ensures that the estimated response probabilities are strictly 
between zero and one. As in earlier chapters, we write xfJ = f3 1x1 + ... + f3kxk. 

Various nonlinear functions have been suggested for the function G in order to make 
sure that the probabilities are between zero and one. The two we will cover here are used 
in the vast majority of applications (along with the LPM). In the logit model, G is the 
logistic function: 

G(z) = exp(f)/[1 + exp(z)J = A(z), 
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which is between zero and one for all real numbers z. This is the cumulative distribution 
function for a standard logistic random variable. In the probit model, G is the standard 
normal cumulative distribution function (cdf), which is expressed as an integral: 

G(z) = <P(z) = J cp(v)dv, (1 '7.4) 
-0) 

where c/>(z) is the standard normal density 

(17.5) 

This choice of G again ensures that (17 .2) is strictly between zero and one for all values 
of the parameters and the xj. 

The G functions in (17.3) and (17.4) are both increasing functions. Each increases most 
quickly at z = 0, G(z) ~ 0 as z ~ -co, and G(z) ~ l as z ~ oo. The logistic function is 
plotted in Figure 17 .1. The standard normal cdf has a shape very similar to that of the 
logistic cdf. 

Logit and probit models can be de~ved from an underlying latent variable model. 
Let y* be an unobserved, or latent, variable, determined by 

y* = {30 + xfJ + e,y = l[y* > 0], (1 '1.6) 

G(z) = exp(z)/[1 + exp(z)] 

1 ---------------------.---------------------

.5---------------------- - -----------

a~----~------~----~------~----~----~ 

-3 -2 -1 0 2 
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where we introduce the notation I [ ·] to define a binary outcome. The function I ( ·] is called 
the indicator function, which takes on the value one if the event in brackets is true, and 
zero otherwise. Therefore, y is one if y* > 0, and y is zero if y* s 0. We assume that e is 
independent of x and that e either has the standard logistic distribution or the standard nor­
mal distribution. In either case, e is symmetrically distributed about zero, which means that 
1 - G(- z) = G(z) for all real numbers z. Economists tend to favor the normality assump­
tion for e, which is why the probit model is more popular than logit in econometrics. In 
addition, several specification problems, which we touch on later, are most easily analyzed 
using probit because of properties of the normal distribution. 

From (17.6) and the assumptions given, we can derive the response probability for y: 

P(y = llx) = P(y* > Oix) = P[e > -(/30 + xp)lxJ 

= I - G[ -(/30 + xp)] = G(/30 + xp), 

which is exactly the same as (17 .2). 
In most applications of binary response models, the primary goal is to explain the 

effects of the xi on the response probability P(y = llx). The latent variable formulation 
tends to give the impression that we are primarily interested in the effects of each xi on 
y*. As we will see, for logit and probit, the direction of the effect of xi on E(y*ix) = 
/30 + xp and on E(yix) = P(y = llx) = G(/30 + xp) is always the same. But the latent 
variable y* rarely has a well-defined unit of measurement. (For example, y* might be the 
difference in utility levels from two different actions.) Thus, the magnitudes of each f3i are 
not, by themselves, especially useful (in contrast to the linear probability model). For most 
purposes, we want to estimate the effect of xi on the probability of success 
P(y = llx), but this is complicated by the nonlinear nature of G( · ). 

To find the partial effect of roughly continuous variables on the response probability, 
we must rely on calculus. If xi is a roughly continuous variable, its partial effect on 
p(x) = P(y = llx) is obtained from the partial derivative: 

ap(x) dG ----a;; = g(/30 + xp)f3i, where g(z) = ~(z). 

Because G is the cdf of a continuous random variable, g is a probability density function. 
In the logit and pro bit cases, G( ·) is a strictly increasing cdf, and so g(z) > 0 for all z. 
Therefore, the partial effect of xi on p(x) depends on x through the positive quantity g(/30 

+ xp), which means that the partial effect always has the same sign as f3t 
Equation (17. 7) shows that the relative effects of any two continuous explanatory vari­

ables do not depend on x: the ratio of the partial effects for xi and x,. is f3/f311• In the typical 
case that g is a symmetric density about zero, with a unique mode at zero, the largest effect 
occurs when f30 + xp = 0. For example, in the probit case with g(z) = cp(z), g(O) = cp(O) = 
1/yz:;. = .40. In the Iogit case, g(z) = exp(z)/(I + exp(z)f, and so g(O) = .25. 

If, say, x1 is a binary explanatory variable, then the partial effect from changing x 1 from 
zero to one, holding all other variables fixed, is simply 

(17.8) 
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Again, this depends on all the values of the other xj. For example, if y is an employment 
indicator and x1 is a dummy variable indicating participation in a job training program, 
then (17.8) is the change in the probability of employment due to the job training pro­
gram; this depends on other characteristics that affect employability, such as education and 
experience. Note that knowing the sign of /3 1 is sufficient for determining whether the pro­
gram had a positive or negative effect. But to find the magnitude of the effect, we have to 
estimate the quantity in (17 .8). 

We can also use the difference in (17.8) for other kinds of discrete variables (such as 
number of children). If xk denotes this variable, then the effect on the probability of xk 
going from ck to ck + 1 is simply 

G[f3o + f3Ixi + f3zxz + .. · + f3ick + 1)] 

- G(f3o + f3Ixi + f3zxz + · · · + f3kck). 
(17.9j 

It is straightforward to include standard functional forms among the explanatory vari­
ables. For example, in the model 

P(y = liz) = G(/30 ~ /31z1 + /32zr + /33log(z2) + f34z3), 

the partial effect of z1 on P(y = liz) is aP(y = llz)/az1 = g(/30 + x/3)(/31 + 2f32z1), and 
the partial effect of z2 on the response probability is aP(y = llz)/az2 = g(/30 + xf3)(/3/z2)., 

where xfJ = f3 1z1 + f32zr + f33log(z2) + f34z3. Therefore, g(f30 + x/3)(/3/100) is the approx­
imate change in the response probability when z2 increases by 1 percent. Models with 
interactions among explanatory variables, including those between discrete and continu­
ous variables, are handled similarly. When measuring effects of discrete variables, we 
should use (17.9). 

Maximum Likelihood Estimation of Logit and Probit Models 
How should we estimate nonlinear binary response models? To estimate the LPM_. we-; 
can use ordinary least squares (see Section 7 .5) or, in some cases, weighted least squares 
(see Section 8.5). Because of the nonlinear nature of E(ylx), OLS and WLS are not app.li• 
cable. We could use nonlinear versions of these methods, but it is no more difficult to use 
maximum likelihood estimation (MLE) (see Appendix B for a brief discussion). Up until 
now, we have had little need for MLE, although we did note that, under the classical linear. 
model assumptions, the OLS estimator is the maximum likelihood estimator (conditional 
on the explanatory variables). For estimating limited dependent variable models, maxi­
mum likelihood methods are indispensable. Because maximum likelihood estimation is 
based on the distribution of y given x, the heteroskedasticity in Var(ylx) is automatically 
accounted for. 

Assume that we have a random sample of size n. To obtain the maximum likelihood 
estimator, conditional on the explanatory variables, we need the density of Y; given X;. We 
can write this as 

f(ylx;;/3) = [G(x;/J)]Y[l - G(x;/J)] 1-Y, y = 0,1, (17.10) 
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where, for simplicity, we absorb the intercept into the vector X;. We can easily see that 
when y = l, we get G(x;/J) and when y = 0, we get 1 - G(x;/J). The log-likelihood 
function for observation i is a function of the parameters and the data (x;.Y;) and is 
obtained by taking the Jog of (17 .I 0): 

f;(/J) = Y;1og[G(x;/J)] + (1 - Y;)1og[l - G(x;/J)]. (17,..11) 

Because G( ·) is strictly between zero and one for logit and probit, f;(IJ) is well defined 
for all values of /l 

The log-likelihood for a sample size of n is obtained by summing (17.11) across 
~II A 

all observations: ;£(/J) = kJi=I f;(IJ). The MLE of p, denoted by fJ, maximizes this log-
likelihood. If G( ·) is the standard logit cdf, then fj is the log it estimator; if G(") is the 
standard normal cdf, then fj is the probit estimator. 

Because of the nonlinear nature of the maximization problem, we cannot write for­
mulas for the logit or probit maximum likelihood estimates. In addition to raising com­
putational issues, this makes the statistical theory for logit and probit much more difficult 
than OLS or even 2SLS. Nevertheless, the general theory of MLE for random samples 
implies that, under very general conditions, the MLE is consistent, asymptotically normal, 
and asymptotically efficient. (See Wooldridge [2002, Chapter 13] for a general dis­
cussion.) We will just use the results here; applying logit and probit models is fairly easy, 
provided we understand what the statistics mean. 

Each /3j comes with an (asymptotic) standard error, the formula for which is compli­
cated and presented in the chapter appendix. Once we have the standard errors-and these 
are reported along with the coefficient estimates by any package that supports logit and 
probit-we can construct (asymptotic) t tests and confidence intervals, just as with OLS, 
2SLS, and the other estimators we have encountered. In particular, to test H0: 

f3j = 0, we form the t statistic /3/se(/3) and carry out the test in the usual way, once we 
have decided on a one- or two-sided alternative. 

Testing Multiple Hypotheses 
We can also test multiple restrictions in logit and probit models. In most cases, these are 
tests of multiple exclusion restrictions, as in Section 4.5. We will focus on exclusion 
restrictions here. 

There are three ways to test exclusion restrictions for logit and probit models. The 
Lagrange multiplier or score test only requires estimating the model under the null hypoth­
esis, just as in the linear case in Section 5.2; we will not cover the score test here, since 
it is rarely needed to test exclusion restrictions. (See Wooldridge [2002, Chapter 15] for 
other uses of the score test in binary response models.) 

The Wald test requires estimation of only the unrestricted model. In the linear model 
case, the Wald statistic, after a simple transformation, is essentially the F statistic, so there 
is no need to cover the Wald statistic separately. The formula for the Wald statistic is given 
in Wooldridge (2002, Chapter 15). This statistic is computed by econometrics packages 
that allow exclusion restrictions to be tested after the unrestricted model has been estimated. 
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It has an asymptotic chi-square distribution, with df equal to the number of restriction 
being tested. 

If both the restricted and unrestricted models are easy to estimate-as is usually the 
case with exclusion restrictions-then the likelihood ratio (LR) test becomes very attrac­
tive. The LR test is based on the same concept as the F test in a linear model. The F test 
measures the increase in the sum of squared residuals when variables are dropped from 
the model. The LR test is based on the difference in the log-likelihood functions for tl'ie 
unrestricted and restricted models. The idea is this. Because the MLE maximizes the log­
likelihood function, dropping variables generally leads to a smaller-or at least no 
larger-log-likelihood. (This is similar to the fact that the R-squared never increases 
when variables are dropped from a regression.) The question is whether the fall in the 
log-likelihood is large enough to conclude that the dropped variables are important. We 
can make this decision once we have a test statistic and a set of critical values. 

The likelihood ratio statistic is twice the difference in the log-likelihoods: 

(17.12) 

where :£"' is the log-likelihood v~lue for the unrestricted model and :£, is the log­
likelihood value for the restricted model. Because:£"';::: :£,, LR is nonnegative and usually 
strictly positive. In computing the LR statistic for binary response models, it is important 
to know that the log-likelihood function is always a negative number. This fact follows 
from equation (17 .11 ), because Y; is either zero or one and both variables inside the 

A probit model to explain whether a firm is taken over by another 
firm during a given year is 

P(takeover = llx = cfl({30 + {3 1avgprof + f32'nktval 
+ {33debtearn + {34ceoten + {35ceosal + {36ceoage), 

where takeover is a binary response variable, avgprof is the firm's 
average profit margin over several prior years, mktva/ is market 
value of the firm, debtearn is the debt-to-earnings ratio, and 
ceoten, ceosal, and ceoage are the tenure, annual salary, and age 
of the chief executive officer, respectively. State the null hypothe­
sis that, other factors being equal, variables related to the CEO 
have no effect on the probability of takeover. How many df are in 
the chi-square distribution for the LR or Wald test? 

log function are strictly between zero and 
one, which means their natural logs are 
negative. That the log-likelihood functions 
are both negative does not change the way 
we compute the LR statistic; we simply 
preserve the negative signs in equation 
(17.12). 

The multiplication by two in (17 .12) is 
needed so that LR has an approximate Ghi­
square distribution under H0. If we are test­
ing q exclusion restrictions, LR .!!. X~· This 
means that, to test H0 at the 5% level we 
use as our critical value the 951h percentile 
in the x~ distribution. Computing p-values 
is easy with most software packages. 

Interpreting the Logit and Probit Estimates 

Given modem computers, from a practical perspective the most difficult aspect of logit or 
probit models is presenting and interpreting the results. The coefficient estimates, thei.J; 
standard errors, and the value of the log-likelihood function are reported by all software 
packages that do logit and probit, and these should be reported in any application. The 
coefficients give the signs of the partial effects of each xj on the response probability~ and 
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the statistical significance of xj is determined by whether we can reject H0: {3j = 0 at a 
sufficiently small significance level. 

As we briefly discussed in Section 7.5 for the linear probability model, we can com­
pute a goodness-of-fit measure called the percent correctly predicted. As before, we 
define a binary predictor of y1 to be one if the predicted probability is at least .5, and zero 
otherwise. Mathematically, y1 = 1 if GCfio + x;/J) ~ .5 and )i1 = 0 if GCfio + x;/J) < .5. 
Given {y1: i = 1,2, ... ,n}, we can see how well y1 predicts y1 across all observations. There 
are four possible outcomes on each pair, (y1,y;); when both are zero or both are one, we 
make the correct prediction. In the two cases where one of the pair is zero and the other 
is one, we make the incorrect prediction. The percent correctly predicted is the percent­
age of times that y1 = y1• 

Although the percent correctly predicted is useful as a goodness-of-fit measure, it can 
be misleading. In particular, it is possible to get rather high percentages correctly predicted 
even when the least likely outcome is very poorly predicted. For example, suppose that 
n = 200, 160 observations have y1 = 0, and, out of these 160 observations, 140 of the y1 
are also zero (so we correctly predict 87.5% of the zero outcomes). Even if none of the 
predictions is correct when y1 = 1, we still correctly predict 70% of all outcomes (140/ 
200 = .70). Often, we hope to have some ability to predict the least likely outcome (such 
as whether someone is arrested for committing a crime), and so we should be up front 
about how well we do in predicting each outcome. Therefore, it makes sense to also com­
pute the percent correctly predicted for each of the outcomes. Problem 17.1 asks you to 
show that the overall percent correctly predicted is a weighted average of q0 (the percent 
correctly predicted for y1 = 0) and q1 (the percent correctly predicted for y1 = 1), where 
the weights are the fractions of zeros and ones in the sample, respectively. 

Some have criticized the prediction rule just described for using a threshold value of .5, 
especially when one of the outcomes is unlikely. For example, if y ;=: .08 (only 8% "suc­
cesses" in the sample), it could be that we never predict y1 = 1 because the estimated prob­
ability of success is never greater than .5. One alternative is to use the fraction of successes 
in the sample as the threshold-.08 in the previous example. In other words, define y1 = 1 
when G(fi0 + x;/J) ~ .08 and zero otherwise. Using this rule will certainly increase the 
number of predicted successes, but not without cost: we will necessarily make more 
mistakes- perhaps many more-in predicting zeros ("failures"). In terms of the overall 
percent correctly predicted, we may do worse than using the .5 threshold. 

A third possibility is to choose the threshold such that the fraction of y1 = 1 in the 
sample is the same as (or very close to) y. In other words, search over threshold values r, 

A """ - """ 0 < r < 1, such that if we define y1 = 1 when G({30 + x;/J) ~ r, then ""'i=t Y;:::::: ""'i=l Y;· 
(The trial-and-error required to find the desired value of r can be tedious but it is feasi­
ble. In some cases, it will not be possible to make the number of predicted successes 
exactly the same as the number of successes in the sample.) Now, given this set of y1, we 
can compute the percent correctly predicted for each of the two outcomes as well as the 
overall percent correctly predicted. 

There are also various pseudo R-squared measures for binary response. McFadden 
(1974) suggests the measure 1 - :£11/:£0 , where :£,, is the log-likelihood function for 
the estimated model, and :£0 is the log-likelihood function in the model with only an 
intercept. Why does this measure make sense? Recall that the log-likelihoods are negative, 
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and so :£11,/:£0 = l;e,,JI:£J Further, 1:£11,1 :s 1:£J If the covariates have no explanatory 
power, then :£

11
,/:£0 = 1, and the pseudo R-squared is zero, just as the usual R-squared 

is zero in a linear regression when the covariates have no explanatory power. Usuany. 
1:£

11
,1 < 1:£

0
1, in which case 1 - :£

11
,/:£

0 
> 0. If :£

11
, were zero, the pseudo R-squared woul(I 

equal unity. In fact, :£
11

, cannot reach zero in a probit or logit model, as that would reguire, 
the estimated probabilities when Y; = 1 all to be unity and the estimated probabilities when 
Y; = 0 all to be zero. 

Alternative pseudo R-squareds for probit and logit are more directly related to the usual 
R-squared ~om O~S estimation of a linear probability model. For either probit or logit, 
let Y; = G(/30 + x;/J) be the fitted probabilities. Since these probabilities are also estimates 
of E(y;ix;). we can base an R-squared on how close theY; are to theY;· One possibility that 
suggests itself from standard regression analysis is to compute the squared correlation 
between Y; and Y;· Remember, in a linear regression framework, this is an algebraically 
equivalent way to obtain the usual R-squared; see equation (3.29). Therefore, we can 
compute a pseudo R-squared for probit and logit that is directly comparable to the usual 
R-squared from estimation of a linear probability model. In any case, goodness-of-fitr 1s 
usually less important than trying to obtain convincing estimates of the ceteris paribus 
effects of the explanatory variables. 

Often, we want to estimate the effects of the xj on the response probabilities. 
P(y = llx). If xj is (roughly) continuous, then 

(17.13) 

for "small" chan~es in Yj· ~So, for !:uj = 1, the change in the estimated success proba15i­
lity is roughly g(f30 + xfJ)f3t Compared with the linear probability model, the cost of using 

probit and logit models is that the partial effects in equation (17.13) are harder to sum­

marize because the scale factor, g({30 + xjj), depends on x (that is, on all of the explana­

tory variables). One possibility is to plug in interesting values for the x1 such as mean~ 

medians, minimums, maximums, and lower and upper quartiles-and then see how 

g({30 + xjj) changes. Although attractive, this can be tedious and result in too much infor; 

mation even if the number of explanatory variables is moderate. 
As a quick summary for getting at the magnitudes of the partial effects, it is handy to 

have a single scale factor that can be used to multiply each f3/or at least those coefficients­
on roughly continuous variables). One method, commonly used in econometrics packages 
that routinely estimate probit and logit models, is to replace each explanatory variable with 
its sample average. In other words, the adjustment factor is 

(17.14) 

where g(·) is the standard normal density in the probit case and g(z) exp(z)/ ['l * 
exp(z)]2 in the logit case. The idea behind (17.14) is that, when it is multiplied by {3,[, we; 
obtain the partial effect of xj for the "average" person in the sample. There are two poten­
tial problems with this motivation. First, if some of the explanatory variables are disGrete 
the averages of them represent no one in the sample (or population, for that matter). :For 
example, if x1 =female and 47.5% of the sample is female, what sense does it make to 
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plug in :X1 = .475 to represent the "average" person? Second, if a continuous explanatory 
variable appears as a nonlinear function-say, as a natural log or in a quadratic-it is not 
clear whether we want to average the nonlinear function or plug the average into the non­
linear function. For example, should we use log(sales) or log(sales) to represent average 
firm size? Econometrics packages that compute the scale factor in (17.14) default to 
the former: the software is written to compute the averages of the regressors included in 
the probit or logit estimation. 

A different approach to computing a scale factor circumvents the issue of which values 
to plug in for the explanatory variables. Instead, the second scale factor results from aver­
aging the individual partial effects across the sample (leading to what is sometimes called 
the average partial effect). For a continuous explanatory variable xj, the average partial 

effect is n- 1 ~';~ 1 [g(,80 + x/3),8) = [n-l~';=J g(,80 + x;Jl)],Bj. The term multiplying ,Bj 
acts as a scale factor: 

(17.15) 

Eq~ation (1,_7.15) is easily computed af~r probi! or logit e!timatioE, where g(,82 + x;Jll = 
cp(f30 + x;/J) in the probit case and g(f30 + x;/J) = exp(f30 + X;/l)/[1 + exp(f30 + x;/3)] 2 

in the logit case. The two scale factors differ-and are possibly quite different-because 
in (17.15) we are using the average of the nonlinear function rather than the nonlinear 
function of the average [as in (17.14)]. 

Because both of the scale factors just described depend on the calculus approximation 
in (17.13), neither makes much sense for discrete explanatory variables. Instead, it is better 
to use equation (17 .9) to directly estimate the change in the probability. For a change in 
xk from ck to ck + 1, the discrete analog of the partial effect based on (17.14) is 

G[,Bo + ,Bixl + ... + ,Bk- lxk-J + ,Bk(ck + 1)] 

- G(,Bo + ,Bixl + ... + ,Bk-lxk-1 + ,Bkck), 
(U.16) 

where G is the standard normal cdf in the probit case and G(z) = exp(z)/[1 + exp(z)] in 
the logit case. [For binary xk, ( 17 .16) is computed routinely by certain econometrics pack­
ages, such as Stata®.] The average partial effect, which usually is more comparable to LPM 
estimates, is 

II 

n-l~ {G[,Bo + ,Bixil + ... + ,Bk-lxik-1 + ,Bk(ck + 1)] 
i=l 

- G(,Bo + ,Bixil + ... + ,Bk-Jxik-1 + t3tct)}. 
(17 .J 7) 

Obtaining equation (17.17) for either probit or logit is actually rather simple. First, for 
each observation, we estimate the probability of success for the two chosen values of xk, 
plugging in the actual outcomes for the other explanatory variables. (So, we would have 
n estimated differences.) Then, we average the differences in estimated probabilities across 
all observations. If xk is binary, we plug in one and zero as the only two possible values. 
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In applications where one applies probit, logit, and the LPM, it makes sense to 
compute the scale factors described above for probit and logit in making comparisons of 
partial effects. Still, sometimes one wants a quicker way to compare magnitudes of the dif­
ferent estimates. As mentioned earlier, for probit g(O) = .4 and for logit, g(O) =.25. Thus, 
to make the magnitudes of probit and logit roughly comparable, we can multiply the pro­
bit coefficients by .4/.25 = 1.6, or we can multiply the logit estimates by .625. In the LPM_, 
g(O) is effectively one, so the logit slope estimates can be divided by four to make them 
comparable to the LPM estimates; the probit slope estimates can be divided by 2.5 to make 
them comparable to the LPM estimates. Still, in most cases, we want the more accurate 
comparisons obtained by using the scale factors in (17.15) for logit and probit. 

EXAMPLE 1 7 . 1 

(Married Women's Labor Force Participation) 

We now use the MROZ.RAW data to estimate the labor force participation model from 
Example 8.8-see also Section 7 .5-by log it and probit. We also report the linear probability 
model estimates from Example 8.8, using the heteroskedasticity-robust standard errors. ilifie 
results, with standard errors in parentheses, are given in Table 17 .1. 

The estimates from the three models tell a consistent story. The signs of the coefficients are 
the same across models, and the same variables are statistically significant in each model. The 
pseudo R-squared for the LPM is just the usual R-squared reported for OLS; for logit and pro­
bit, the pseudo R-squared is the measure based on the log-likelihoods described earlier. 

As we have aJ!'eady emphasized, the magnitudes of the coefficient estimates across mod­
els are not directly comparable. Instead, we compute the scale factors in equations (17.14) 
and (17 .15). If we evaluate the standard normal probability density function c/J(~0 + ~1x1 *' 
~ 2x2 + ... + ~~?<k) at the sample averages of the explanatory variables (including the average 
of exper2, kidslt6, and kidsge6), the result is approximately .391. When we compute (~7.14) 
for the logit case, we obtain about .243. The ratio of these, .391/.243 = 1.61, is very close to 
the simple rule of thumb for scaling up the probit estimates to make them comparable to tfie 
logit estimates: multiply the probit estimates by 1.6. Nevertheless, for comparing probit and 
log it to the LPM estimates, it is better to use (17 .15). These scale factors are about .301 (pro­
bit) and .179 (logit). For example, the scaled log it coefficient on educ is about .179(.22~) "' 
.040, and the scaled pro bit coefficient on educ is about .301(.131) = .039; both are remark­
ably close to the LPM estimate of .038. Even on the discrete variable kidslt6, the scaled legit 
and probit coefficients are similar to the LPM coefficient of - .262 . These are .179( -1.443) = 
-.258(1ogit) and .301(-.868) = -.261 (probit). 

The biggest difference between the LPM model and the logit and probit models is tlilat the 
LPM assumes constant marginal effects for educ, kids/t6, and so on, while the logit and J2r0-

Using the probit estimates and the calculus approximation, what 
is the approximate change in the response probability when 
exper increases from 1 0 to 11? 

bit models imply diminishing magnitudes of 
the partial effects. In the LPM, one more 
small child is estimated to reduce the prob­
ability of labor force participation by about 
.262, regardless of how many young chil­
dren the woman already has (and regardless 
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TABLE 17.1 

LPM, Logit, and Probit Estimates of Labor Force Participation 

Dependent Variable: inlf 

Independent LPM Logit Pro bit 
Variab1~s (OLS) (MLE) (MLE) 

mvifeinc -.0034 -.021 -.012 
(.0015) (.008) (.005) 

educ .038 .221 .131 
(.007) (.043) (.025) 

exper .039 .206 .123 
(.006) (.032) (.019) 

expeil - .00060 - .0032 - .0019 
(.00018) (.0010) (.0006) 

age -.016 - .088 - .053 
(.002) (.0 15) (.008) 

kidslt6 -.262 -1 .443 -.868 
(.032) (.204) (.119) 

kidsge6 .013 .060 .036 
(.013) (.075) (.043) 

constant .586 .425 .270 
(.151) (.860) (.509) 

Percent Correctly Predicted 73.4 73.6 73.4 
Log-Likelihood Value - -401.77 -401.30 
Pseudo R-Squared .264 .220 .221 

of the levels of the other explanatory variables). We can contrast this with the estimated mar­
ginal effect from probit. For concreteness, take a woman with nwifeinc = 20.13, educ = 12.3, 
exper = 1 0.6, and age = 42.5-which are roughly the sample averages-and kidsge6 = 1. 
What is the estimated decrease in the probability of working in going from zero to one small 
child? We evaluate the standard normal cdf, cf>(~0 + ~1x1 + ... + ~.Xk), with kidslt6 = 1 and 
kidslt6 = 0, and the other independent variables set at the preceding values. We get roughly 
.373 - .707 = - .334, which means that the labor force participation probability is about .334 
lower when a woman has one young child. If the woman goes from one to two young children, 
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the probability falls even more, but the marginal effect is not as large: .117 - .373 = - .2§6. 

Interestingly, the estimate from the linear probability model, which is supposed to estimate the 

effect near the average, is in fact between these two estimates. 

Figure 17.2 illustrates how the estimated response probabilities from nonlinear bin~ 
response models can differ from the linear probability model. The estimated probability 
of labor force participation is graphed against years of education for the linear probaBil­
ity model and the pro bit model. (The graph for the logit model is very similar to that lfon 
the probit model.) In both cases, the explanatory variables, other than educ, are set at thein 
sample averages. In particular, the two equations graphed are i,;iJ = .1 02 + .038 educ for 
the linear model and iniJ = <I>( -1.403 + .131 educ ). At lower levels of education, the lin­
ear probability model estimates higher labor force participation probabilities than the pro­
bit model. For example, at eight years of education, the linear probability model estimates 
a .406 labor force participation probability while the probit model estimates about .361 . 
The estimates are the same at around 11 113 years of education. At higher levels of edu­
cation, the probit model gives higher labor force participation probabilities. In this sam­
ple, the smallest years of education is 5 and the largest is 17, so we really should not make 
comparisons outside of this range. 

Fl®URE 17.2 
J:stimated Response Probabilities with Respectto !iducation for the Linea~ Probability 

and Probit Models 
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The same issues concerning endogenous explanatory variables in linear models also 
arise in logit and probit models. We do not have the space to cover them, but it is possi­
ble to test and correct for endogenous explanatory variables using methods related to two 
stage least squares. Evans and Schwab ( 1995) estimated a pro bit model for whether a stu­
dent attends college, where the key explanatory variable is a dummy variable for whether 
the student attends a Catholic school. Evans and Schwab estimated a model by maximum 
likelihood that allows attending a Catholic school to be considered endogenous. (See 
Wooldridge [2002, Chapter 15] for an explanation of these methods.) 

Two other issues have received attention in the context of probit models. The first is 
nonnormality of e in the latent variable model ( 17 .6). Naturally, if e does not have a stan­
dard normal distribution, the response probability will not have the probit form. Some 
authors tend to emphasize the inconsistency in estimating the {3i, but this is the wrong 
focus unless we are only interested in the direction of the effects. Because the response 
probability is unknown, we could not estimate the magnitude of partial effects even if we 
had consistent estimates of the f3t 

A second specification problem, also defined in terms of the latent variable model, is 
heteroskedasticity in e. If Var(ejx) depends on x, the response probability no longer has 
the form G(/30 + x/3); instead, it depends on the form of the variance and requires more 
general estimation. Such models are not often used in practice, since logit and probit with 
flexible functional forms in the independent variables tend to work well. 

Binary response models apply with little modification to independently pooled cross 
sections or to other data sets where the observations are independent but not necessarily 
identically distributed. Often, year or other time period dummy variables are included to 
account for aggregate time effects. Just as with linear models, logit and probit can be used 
to evaluate the impact of certain policies in the context of a natural experiment. 

The linear probability model can be applied with panel data; typically, it would be 
estimated by fixed effects (see Chapter 14). Logit and probit models with unobserved 
effects have recently become popular. These models are complicated by the nonlinear 
nature of the response probabilities, and they are difficult to estimate and interpret. (See 
Wooldridge [2002, Chapter 15].) 

1 7.2 The Tobit Model 
for Corner Solution Responses 

As mentioned in the chapter introduction, another important kind of limited dependent 
variable is a comer solution response. Such a variable is zero for a nontrivial fraction of 
the population but is roughly continuously distributed over positive values. An example is 
the amount an individual spends on alcohol in a given month. In the population of people 
over age 21 in the United States, this variable takes on a wide range of values. For some 
significant fraction, the amount spent on alcohol is zero. The following treatment omits 
verification of some details concerning the Tobit model. (These are given in Wooldridge 
[2002, Chapter 16].) 

Let y be a variable that is essentially continuous over strictly positive values but that 
takes on zero with positive probability. Nothing prevents us from using a linear model for y. 
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In fact, a linear model might be a good approximation to E(ylx1,x2, ••• ,xk), especially for. 
xj near the mean values. But we would possibly obtain negative fitted values, which leads 
to negative predictions for y; this is analogous to the problems with the LPM for binary, 
outcomes. Also, the assumption that an explanatory variable appearing in level form has 
a constant partial effect on E(ylx) can be misleading. Probably, Var{ylx) would be 
heteroskedastic, although we can easily deal with general heteroskedasticity by comput­
ing robust standard errors and test statistics. Because the distribution of y piles up at zero, 
y clearly cannot have a conditional normal distribution. So all inference would have only 
asymptotic justification, as with the linear probability model. 

In some cases, it is important to have a model that implies nonnegative predicted values 
for y, and which has sensible partial effects over a wide range of the explanatory variables. 
Plus, we sometimes want to estimate features of the distribution of y given x1, ••• , xk other. 
than the conditional expectation. The Tobit model is quite convenient for these purposes. 
Typically, the Tobit model expresses the observed response, y, in terms of an underlying 
latent variable: 

y* = f3o + x{3 + u, ulx - Normal(O,u2
) 

y = max(O,y*). (17.19) 

The latent variable y* satisfies the classical linear model assumptions; in particular, it has 
a normal, homoskedastic distribution with a linear conditional mean. Equation (17.'19) 
implies that the observed variable, y, equals y* when y* 2: 0, but y = 0 when y* < 0. 
Because y* is normally distributed, y has a continuous distribution over strictly positive 
values. In particular, the density of y given x is the same as the density of y* given x lfor 
positive values. Further, 

P(y = Olx) = P(y* < Olx) = P(u < -x/Jix) 

= P(u/u < -xfJ/ulx) = <I>( -xfJ!u) = 1 - <l>(xfJ/u), 

because u!u has a standard normal distribution and is independent of x; we have absoroed 
the intercept into x for notational simplicity. Therefore, if (x;.Y;) is a random draw from 
the population, the density of Y; given X; is 

(27Tu2)- 112exp[ -(y- X;/J)Z/(2u2)] = (llu)cp[(y- X;/J)Iu], y > 0 

P(y; = Olx;) = 1 - <l>(x;/Jiu), 

where cp is the standard normal density function. 

(H.20) 

(17.21) 

From (17 .20) and (17 .21 ), we can obtain the log-likelihood function for each obserr 
vation i: 

e;(/J,u) = l(y; = O)log[l - <l>(x;/Jiu)] 

+ 1(y; > O)log{ (llu)cp[(Y; - x;/J)/u)l; 
(1'7.22) 

notice how this depends on u, the standard deviation of u, as well as on the f3t The log­
likelihood for a random sample of size n is obtained by summing ( 17 .22) across all i. !Illie-
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maximum likelihood estimates of p and 
u are obtained by maximizing the log­
likelihood; this requires numerical meth­
ods, although in most cases this is easily 
done using a packaged routine. 

Let y be the number of extramarital affairs for a married woman 
from the U.S. population; we would like to explain this variable in 
terms of other characteristics of the woman-in particular, 
whether she works outside of the home-her husband, and her 
family. Is this a good candidate for a Tobit model? As in the case of logit and probit, each 

Tobit estimate comes with a standard error, 
and these can be used to construct t statis­

tics for each /3j; the matrix formula used to find the standard errors is complicated and 
will not be presented here. (See, for example, Wooldridge [2002, Chapter 16].) 

Testing multiple exclusion restrictions is easily done using the Wald test or the 
likelihood ratio test. The Wald test has a similar form to the logit or probit case; the LR 
test is always given by (17.12), where, of course, we use the Tobit log-likelihood func­
tions for the restricted and unrestricted models. 

Interpreting the Tobit Estimates 

Using modern computers, the maximum likelihood estimates for Tobit models are usually 
not much more difficult to obtain than the OLS estimates of a linear model. Further, the 
outputs from Tobit and OLS are often similar. This makes it tempting to interpret the /3j 
from Tobit as if these were estimates from a linear regression. Unfortunately, things are 
not so easy. 

From equation (17.18), we see that the f3j measure the partial effects of the xj on 
E(y*Jx), where y* is the latent variable. Sometimes, y* has an interesting economic mean­
ing, but more often it does not. The variable we want to explain is y, as this is the observed 
outcome (such as hours worked or amount of charitable contributions). For example, as a 
policy matter, we are interested in the sensitivity of hours worked to changes in marginal 
tax rates. 

We can estimate P(y = OJx) from (17.21), which, of course, allows us to estimate 
P(y > OJx). What happens if we want to estimate the expected value of y as a function of 
x? In Tobit models, two expectations are of particular interest: E(yJy > O,x), which is 
sometimes called the "conditional expectation" because it is conditional on y > 0, and 
E(yJx), which is, unfortunately, called the "unconditional expectation." (Both expectations 
are conditional on the explanatory variables.) The expectation E(yJy > O,x) tells us, for 
given values of x, the expected value of y for the subpopulation where y is positive. Given 
E(yJy > O,x), we can easily find E(yJx): 

E(yJx) = P(y > OJx)·E(yJy > O,x) = cl>(x{J/u)·E(yJy > O,x). (17.23) 

To obtain E(yJy > O,x), we use a result for normally distributed random variables: 
if z- Normal(O,l), then E(zJz > c) = <f>(c)/[1 - cl>(c)] for any constant c. But E(yJy > 
O,x) = x{J + E(ulu > -x{J) = x{J + uE[(ulu)J(ulu) > -x{J/u] = x{J + urp(x{Jiu)lcl>(x{Jiu), 
because r/>( - c) = cp(c), 1 - cl>( -c) = cl>(c), and u/u has a standard normal distribution 
independent of x. 
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We can summarize this as 

E(yjy > O,x) = x{J + uA(x{J/u), (r1'1 7.24) 

where A(c) = cp(c)lciJ(c) is called the inverse Mills ratio; it is the ratio between the stan­
dard normal pdf and standard normal cdf, each evaluated at c. 

Equation (17.24) is important. It shows that the expected value of y conditional on 
y > 0 is equal to x{J plus a strictly positive term, which is u times the inverse Mills ratio 
evaluated at x{J/u. This equation also shows why using OLS only for observations where 
Y; > 0 will not always consistently estimate {J; essentially, the inverse Mills ratio is an 
omitted variable, and it is generally correlated with the elements of x. 

Combining (17 .23) and (17 .24) gives 

E(yjx) = clJ(x{J/u)[x{J + u'A(x{J/u)] = ciJ{x{J/u)x{J + ucf>(x{Jiu), ~17.25) 

where the second equality follows because ciJ(x{J/u)A(x{J/u) = cf>(x{J/u). This equation 
shows that when y follows a Tobit model, E(yjx) is a nonlinear function of x and '{J. 
Although it is not obvious, the right-hand side of equation (17.25) can be shown to be pos­
itive for any values of x and {J. Therefore, once we have estimates of {J, we can be sure, 
that predicted values for y-that is, estimates of E{yjx)-are positive. The cost of ensur­
ing positive predictions for y is that equation (17.25) is more complicated than a linear; 
model for E{yjx). Even more importantly, the partial effects from (17 .25) are more com­
plicated than for a linear model. As we will see, the partial effects of xj on E{yjy > O,x) 
and E{yjx) have the same sign as the coefficient, f3j, but the magnitude of the effeGts 
depends on the values of all explanatory variables and parameters. Because u appears in 
(17 .25), it is not surprising that the partial effects depend on u, too. 

If xj is a continuous variable, we can find the partial effects using calculus. First, 

aE(yjy > O,x)liJxj = f3j + f3/ ~~(x{J/u), 

assuming that xj is not functionally related to other regressors. By differentiating A(GI) = 
cf>(c)lclJ(c) and using dciJ/dc = cp(c) and dcp/dc = -ccp(c), it can be shown that dA!dc = - X(r;,) 
[c + A(c)] . Therefore, 

aE(yjy > O,x)/ axj = f3j{ 1 - A(x{J/u)[x{J/u + A(x{J/u)]} . (17'.26') 

This shows that the partial effect of xj on E(yjy > 0, X) is not determined just by nr 
The adjustment factor is given by the term in brackets, {·},and depends on a linear func­
tion of x, x{J/u = ({30 + f3 1x1 + ... + f3kxk)lu. It can be shown that the adjustment faGtor 
is strictly between zero and one. In practice, we can estimate (17.26) by plugging in the 
MLEs of the f3j and u . As with logit and pro bit models, we must plug in values for the ~j• 
usually the mean values or other interesting values. Equation (17.26) reveals a suotle 
point that is sometimes lost in applying the Tobit model to comer solution responses: the 
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parameter u appears directly in the partial effects, so having an estimate of u is crucial 
for estimating the partial effects. Sometimes, u is called an "ancillary" parameter (which 
means it is auxiliary, or unimportant). Although it is true that the value of u does not affect 
the sign of the partial effects, it does affect the magnitudes, and we are often interested in 
the economic importance of the explanatory variables. Therefore, characterizing u as 
ancillary is misleading and comes from a confusion between the Tobit model for corner 
solution applications and applications to true data censoring. (See Section 17.4.) 

All of the usual economic quantities, such as elasticities, can be computed. For exam­
ple, the elasticity of y with respect to x1, conditional on y > 0, is 

aE(yly > O,x) x1 

dx1 E(yiy > O,x) 
(17.27) 

This can be computed when x 1 appears in various functional forms, including level, log­
arithmic, and quadratic forms. 

· If x 1 is a binary variable, the effect of interest is obtained as the difference between 
E(yly > O,x), with x 1 = 1 and x1 = 0. Partial effects involving other discrete variables 
(such as number of children) can be handled similarly. 

We can use (17 .25) to find the partial derivative of E(ylx) with respect to continuous 
xi. This derivative accounts for the fact that people starting at y = 0 might choose y > 0 
when xi changes: 

aP(y > Olx) I I aE(yly > 0, x) 
= ax. ·E(y y > O,x) + P(y > 0 x)· ax. . 

J J 

(17.28) 

Because P(y > Olx) = c'P(xf3/u), 

aP(y > Olx) 
= (f3/u)</J(x{3/u), (17.29) 

so we can estimate each term in ( 17 .28), once we plug in the MLEs of the {3i and u and 
particular values of the xi. 

Remarkably, when we plug (17.26) and (17.29) into (17.28) and use the fact that 
c'P(c)A(c) = </J(c) for any c, we obtain 

(17.30) 

Equation (17 .30) allows us to roughly compare OLS and Tobit estimates. [Equation 
(17.30) also can be derived directly from equation (17.25) using the fact that d</J(z)/dz = 
- z</J(z).] The OLS slope coefficients, say, yi, from the regression of Y; on xil,x;2, ... , X;k• 
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i = l, ... ,n-that is, using all of the data-are direct estimates of aE(ylx)/axj. To make thel'ooit 
coefficient, sj. comparable to ~· we must multiply sj by an adjustment factor. 

As in the probit and logit cases, there are two common approaches for computi11g an 
adjustment factor for the coefficients on the continuous explanatory variables. First, we 
can evaluate cJ>{x{J/fr) at the sample averages to obtain cJ>(x{J/fr). Or, second, we can aver-

"'" ~ age the individual adjustment factors: n- 1 """;; 1 cJ>(X;{Jifr). For comparing scaled Tobit coef-
ficients to OLS coefficients, the latter scale factor generally is more appropriate. Because 
P(y > Olx) = cJ>(x;/Jifr) both scale factors will tend to be closer to one when there are 
relatively few observations withY; = 0. In the extreme case that all )'; > 0, the Tol'iit 
and OLS estimates are identical. 

Unfortunately, for discrete explanatory variables, comparing OLS and Tobit estimates 
is not so easy (although using the scale factor for continuous explanatory variables often 
is a useful approximation). For Tobit, the partial effect of a discrete explanatory varial:ile 
for example, a binary variable, should really be obtained by estimating E{ylx) from equa­
tion (17.25). For example, if x1 is a binary, we should first plug in x1 = 1 and then x1 = 0. 
If we set the other explanatory variables at their sample averages, we obtain a measure 
analogous to (17 .16) for the logit and pro bit cases. If we compute the difference .in 
expected values for each individual, and then average the difference, we get a measure 
analogous to (17 .17). 

EX:AMPLI: 17.2 

(Married Women's Annual Labor Supply) 

The file MROZ.RAW includes data on hours worked for 753 married women, 428 of whom 
worked for a wage outside the home during the year; 325 of the women worked zero hours. 
For the women who worked positive hours, the range is fairly broad, extending 
from 12 to 4,950. Thus, annual hours worked is a good candidate for a Tobit model. We also 
estimate a linear model (using all753 observations) by OLS. The results are given in Table 1?.2-. 

This table has several noteworthy features. First, the Tobit coefficient estimates have tthe 
same sign as the corresponding OLS estimates, and the statistical significance of the esti­
mates is similar. (Possible exceptions are the coefficients on nwifeinc and kidsge6, but the 
t statistics have similar magnitudes.) Second, though it is tempting to compare the magni­
tudes of the OLS and Tobit estimates, this is not very informative. We must be careful not to 
think that, because the Tobit coefficient on kidslt6 is roughly twice that of the OLS coefficient, 
the Tobit model implies a much greater response of hours worked to young children. 

We can multiply the Tobit estimates by appropriate adjustment factors to make them 
roughly comparable to the OLS estimates. The factor n- 1 ~·;;, cJ>(x;/Jifr) turns out to be about 
.589, which we can use to obtain the average partial effects for the Tobit estimation. If, for 
example, we multiply the educ coefficient by .589 we get .589(80.65) = 47.50 (that is, 47.5 
hours more), which is quite a bit larger than the OLS partial effect, about 28.8 hours. So, even 
for estimating an average effect, the Tobit estimates are notably larger in magnitude tnalil ttie 
corresponding OLS estimate. If, instead, we want the estimated effect of another year of edu­
cation starting at the average values of all explanatory variables, then we compute the scale 
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TABLE 17.2 

OLS and Tobit Estimation of Annual Hours Worked 

Dependent Variable: hours 

Independent Linear Tobit 
Variables (OLS) (MLE) 

nwifeinc -3.45 -8.81 
(2.54) (4.46) 

educ 28.76 80.65 
(12.95) (21.58) 

exper 65.67 131.56 
(9.96) (17.28) 

exper2 -.700 -1.86 
(.325) (0.54) 

age -30.51 - 54.41 
(4.36) (7.42) 

kidslt6 -442.09 -894.02 
(58.85) (111.88) 

kidsge6 -32.78 -16.22 
(23.18) (38.64) 

constant 1,330.48 965.31 
(270.78) (446.44) 

Log-Likelihood Value - -3,819.09 
R-Squared .266 .274 
u 750.18 1,122.02 

factor cfJ(x{Jifr) . This turns out to be about .645 [when we use the squared average of expe­
rience, (exper)2, rather than the average of exper2] This partial effect, which is about 52 hours, 
is almost twice as large as the OLS estimate. With the exception of kidsge6, the scaled Tobit 
slope coefficients are all greater in magnitude than the corresponding OLS coefficient. 

We have reported an R-squared for both the linear regression and the Tobit models. The 
R-squared for OLS is the usual one. For Tobit, the R-squared is the square of the correlation 
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coefficient between Y; and 9;. where 9; = <l>(x;/j/iJ}x;{j + ucfJ(x;/j/iJ) is the estimate ol 
E(yjx = X;). This is motivated by the fact that the usual R-squared for OLS is equal to tile 
squared correlation between theY; and the fitted values [see equation (3 .29)]. In nonlinear 
models such as the Tobit model, the squared correlation coefficient is not identical to an 
R-squared based on a sum of squared residuals as in (3 .28). This is because the fitted values 
as defined earlier, and the residuals, Y; - 9;. are not uncorrelated in the sample. A~ 
R-squared defined as the squared correlation coefficient between Y; and Y; has the advantage 
of always being between zero and one; an R-squared based on a sum of squared residuals 
need not have this feature. 

We can see that, based on the R-squared measures, the Tobit conditional mean functton 
fits the hours data somewhat, but not substantially, better. However, we should remember 
that the Tobit estimates are not chosen to maximize an R-squared-they maximize the log­
likelihood function-whereas the OLS estimates are the values that do produce the highest 
R-squared given the linear functional form . 

By construction, all of the Tobit fitted values for hours are positive. By contrast, 39 of the OI.S 
fitted values are negative. Although negative predictions are of some concern, 39 out of 7E3 is 
just over 5% of the observations. It is not entirely clear how negative fitted values for OLS trans­
late into differences in estimated partial effects. Figure 17.3 plots estimates of E(hoursjx) as a 
function of education; for the Tobit model, the other explanatory variables are set at their aver­
age values. For the linear model, the equation graphed is hoUis = 387.19 + 28.76 educ. For 
the Tobit model, the equation graphed is hoUis = <I>[( -694.12 + 80.65 educ}/1,122.02] . 
( -694.12 + 80.65 educ) + 1,122.02 · c/J[( -694.12 + 80.65 educ}/1,122.02]. As can be seen 
from the figure, the linear model gives notably higher estimates of the expected hours worked 
at even fairly high levels of education. For example, at eight years of education, the OlS pre­
dicted value of hours is about 617.5, while the Tobit estimate is about 423.9. At 12 years of 
education, the predicted hours are about 732.7 and 598.3, respectively. The two prediction lines 
cross after 17 years of education, but no woman in the sample has more than 17 years of ecu­
cation. The increasing slope of the Tobit line clearly indicates the increasing marginal effect of 
education on expected hours worked. 

Specification Issues in Tobit Models 

The Tobit model, and in particular the formulas for the expectations in (17.24) and (1 '7.2§), 
rely crucially on normality and homoskedasticity in the underlying latent variable model 
When E(y/x) = {30 + {31x1 + ... + {3kxk, we know from Chapter 5 that conditiomillllor­
mality of y does not play a role in unbiasedness, consistency, or large sample inference. 
Heteroskedasticity does not affect unbiasedness or consistency of OLS, although we mus~ 
compute robust standard errors and test statistics to perform approximate inference. lib a 
Tobit model, if any of the assumptions in ( 17 .18) fail, then it is hard to know what the To'Bit 
MLE is estimating. Nevertheless, for moderate departures from the assumptions, the Tooit 
model is likely to provide good estimates of the partial effects on the conditional means-. at 
is possible to allow for more general assumptions in (17 .18), but such models are muc'J) 
more complicated to estimate and interpret. 
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FIGURE 17.3 
Estimated Expected Values of Hours with RespeGt to Education for the Linear and 

Tobit Models. 
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One potentially important limitation of the Tobit model, at least in certain applications, 
is that the expected value conditional on y > 0 is closely linked to the probability that 
y > 0. This is clear from equations (17 .26) and (17 .29). In particular, the effect of xi on 
P(y > Olx) is proportional to f3i, as is the effect on E(yly > O,x), where both functions 
multiplying f3i are positive and depend on x only through x{J/u. This rules out some inter­
esting possibilities. For example, consider the relationship between amount of life insur­
ance coverage and a person's age. Young people may be less likely to have life insurance 
at all, so the probability that y > 0 increases with age (at least up to a point). Conditional 
on having life insurance, the value of policies might decrease with age, since life insur­
ance becomes less important as people near the end of their lives. This possibility is not 
allowed for in the Tobit model. 

One way to informally evaluate whether the Tobit model is appropriate is to estimate 
a probit model where the binary outcome, say, w, equals one if y > 0, and w = 0 if y = 
0. Then, from ( 17.21 ), w follows a pro bit model, where the coefficient on xi is 
'Yj = f3/u. This means we can estimate the ratio of f3i to u by probit, for e~ach j. If the 
Tobit model holds, the probit estimate, iii' should be "close" to f3/iT, where f3i and iT are 
the Tobit estimates. These will never be identical because of sampling error. But we can 
look for certain problematic signs. For example, if ~ is significan_: and negative, but ~i is 
positive, the Tobit model might not be appropriate. Or, if iii and f3i are the same sign, but 
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1,8/8- I is much larger or smaller than ltl. this could also indicate problems. We should not 
worry too much about sign changes or magnitude differences on explanatory variables that> 
are insignificant in both models. 

In the annual hours worked example, iT = 1, 122.02. When we divide the Tobit 
co-efficient on nwifeinc by &, we obtain -8.81/1,122.02 = -.0079; the probit coeffi­
cient on nwifeinc is about -.0 12, which is different, but not dramatically so. On 
kidslt6, the coefficient estimate over iT is about -.797, compared with the probit estimate 
of - .868. Again, this is not a huge difference, but it indicates that having small children 
has a larger effect on the initial labor force participation decision than on how many hours 
a woman chooses to work once she is in the labor force. (Tobit effectively averages these 
two effects together.) We do not know whether the effects are statistically different, but 
they are of the same order of magnitude. 

What happens if we conclude that the Tobit model is inappropriate? There are 
models, usually called hurdle or two-part models, that can be used when Tobit seems 
unsuitable. These all have the property that P(y > 0/x) and E(y/y > O,x) depend on dif­
ferent parameters, so xj can have dissimilar effects on these two functions. (See Woold­
ridge [2002, Chapter 16] for a description of these models.) 

1 7.3 The Poisson Regression Model 

Another kind of nonnegative dependent variable is a count variable, which can take on 
nonnegative integer values: { 0, I ,2, ... }. We are especially interested in cases where y takes 
on relatively few values, including zero. Examples include the number of children ever 
born to a woman, the number of times someone is arrested in a year, or the number ofi. 
patents applied for by a firm in a year. For the same reasons discussed for binary and Tobi~ 
responses, a linear model for E(y/x1, •• • ,xk) might not provide the best fit over all value 
of the explanatory variables. (Nevertheless, it is always informative to start with a line!Ui 
model, as we did in Example 3.5.) 

As with a Tobit outcome, we cannot take the logarithm of a count variable because it 
takes on the value zero. A profitable approach is to model the expected value as an expo­
nential function: 

(17.31) 

Because exp(-) is always positive, (l7.31) ensures that predicted values for y will also be 
positive. The exponential function is graphed in Figure A.5 of Appendix A. 

Athough (17.31) is more complicated than a linear model, we basically already know 
how to interpret the coefficients. Taking the log of equation (17.31) shows that 

1(17.32) 

so that the log of the expected value is linear. Therefore, using the approximation prqpet­
ties of the log function that we have used often in previous chapters, 

%ilE(y/x) = (100/3)Llxj. 
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In other words, l00f3j is roughly the percentage change in E(yix), given a one-unit increase 
in xj. Sometimes, a more accurate estimate is needed, and we can easily find one by look­
ing at discrete changes in the expected value. Keep all explanatory variables except xk fixed 
and let xP be the initial value and xl the subsequent value. Then, the proportionate change 
in the expected value is 

[exp(/30 + xk_ 1/Jk_ 1 + f3kxl)!exp(f30 + xk_ 1f3k- 1 + f3kxp)] - 1 = exp(f3Juk)- 1, 

where xk_ 1f3k_ 1 is shorthand for f3 1x1 + ... + f3k_ 1xk_ 1, and t:uk = xl - xp. When 
!:l.xk = !-for example, if xk is a dl!_mmy variable that~ we change from zero to one-then 
the change is exp(f3k) - I. Given f3k, we obtain exp(f3k) - I and multiply this by 100 to 
turn the proportionate change into a percentage change. 

By reasoning similar to the linear model, if f3j multiplies Iog(xj), then f3j is an elas­
ticity. The bottom line is that, for practical purposes, we can interpret the coefficients in 
equation (17.31) as if we have a linear model, with log(y) as the dependent variable. There 
are some subtle differences that we need not study here. 

Because ( 17.31) is nonlinear in its parameters-remember, exp( ·) is a nonlinear 
function-we cannot use linear regression methods. We could use nonlinear least squares, 
which, just as with OLS, minimizes the sum of squared residuals. It turns out, however, 
that all standard count data distributions exhibit heteroskedasticity, and nonlinear least 
squares does not exploit this (see Wooldridge [2002, Chapter 12]). Instead, we will rely 
on maximum likelihood and the important related method of quasi-maximum likelihood 
estimation. 

In Chapter 4, we introduced normality as the standard distributional assumption for 
linear regression. The normality assumption is reasonable for (roughly) continuous depen­
dent variables that can take on a large range of values. A count variable cannot have a nor­
mal distribution (because the normal distribution is for continuous variables that can take 
on all values), and if it takes on very few values, the distribution can be very different from 
normal. Instead, the nominal distribution for count data is the Poisson distribution. 

Because we are interested in the effect of explanatory variables on y, we must look at 
the Poisson distribution conditional on x. The Poisson distribution is entirely determined 
by its mean, so we only need to specify E(yix). We assume this has the same form as 
(17.31), which we write in shorthand as exp(xfJ). Then, the probability thaty equals the 
value h, conditional on x, is 

P(y = Jzix) = exp[ -exp(xfJ)][exp(xfJ)]"/h!, h = 0,1, ... , 

where h! denotes factorial (see Appendix B). This distribution, which is the basis for the 
Poisson regression model, allows us to find conditional probabilities for any values of the 
explanatory variables. For example, P(y = Oix) = exp[ -exp(xfJ)]. Once we have estimates 
of the f3j, we can plug them into the probabilities for various values of x. 

Given a random sample { (X;,Y;): i = 1 ,2, ... , n}, we can construct the log-likelihood 
function: 

n n 

;J!,(fJ) = L C;({J) = 2 {Y;X;/3 - exp(x;/J)}, (17.33) 
1=1 i=1 
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where we drop the term -log(y;!) because it does not depend on fJ. This log-likelihood 
function is simple to maximize, although the Poisson MLEs are not obtained in closed 
form. 

The standard errors of the Poisson estimates ffij are easy to obtain after the log­
likelihood function has been maximized; the formula is in the chapter appendix. These are 
reported along with the ffij by any software package. 

As with the probit, logit, and Tobit models, we cannot directly compare the magni­
tudes of the Poisson estimates of an exponential function with the OLS estimates o£ a 
linear function. Nevertheless, a rough comparison is possible, at least for continuous 
explanatory variables. If (17.31) holds, then the partial effect of xi with respect to E(ylx1, 

x2, ... ,xk) is aE(yix1,x2, ... ,xk)/xi = exp(/30 + f31x1 + ... + f31h) · f3j· This expression follow 
from the chain rule in calculus because the derivative of the exponential function is just 
the exponential function. If we let iii denote an OLS slope coefficient from the regression 
y on x1,x2, ... ,xk, then we can roughly compare the magnitude of ~,he iii a~d the average 
partial effect for an exponential regression function, namely, [n- 1 ~i=l exp(f3o + /31x;1 + ... 
+ /3~;k)] {3j' 

Although Poisson MLE analysis is a natural first step for count data, it is often much 
too restrictive. All of the probabilities and higher moments of the Poisson distribution aw 
determined entirely by the mean. In particular, the variance is equal to the mean: 

Var(ylx) = E(ylx). U7.34) 

This is restrictive and has been shown to be violated in many applications. Fortunate1y, 
the Poisson distribution has a very nice robustness property: whether or not the Poisson 
distribution holds, we still get consistent, asymptotically normal estimators of the {3i' (See 
Wooldridge [2002, Chapter 19] for details.) This is analogous to the OLS estimator, which 
is consistent and asymptotically normal whether or not the normality assumption holds; 
yet OLS is the MLE under normality. 

When we use Poisson MLE, but we do not assume that the Poisson distribution is 
entirely correct, we call the analysis quasi-maximum likelihood estimation (QMDE). 
The Poisson QMLE is very handy because it is programmed in many econometrics paGk­
ages. However, unless the Poisson variance assumption (17.34) holds, the standard errors 
need to be adjusted. 

A simple adjustment to the standard errors is available when we assume that the vari­
ance is proportional to the mean: 

Var(ylx) = a2E(ylx), (17.35) 

where u 2 > 0 is an unknown parameter. When u 2 = 1, we obtain the Poisson varianae 
assumption. When u 2 > 1, the variance is greater than the mean for all x; this is called 
overdispersion because the variance is larger than in the Poisson case, and it is observed 
in many applications of count regressions. The case a2 < 1, called underdispersiolb is-~ 
common but is allowed in (17.35). 

Under (17.35), it is easy to adjust the usual Poisson MLE standard errors. JL.et 
ffij denote the Poisson QMLE and define the residuals as fi; = Y;- Y;· where Y; = exp(no + 
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/3 1xil + .. . + /3kxik) is the fitted value. As usual, the residual for observation i is the 
difference between Y; and its fitted value. A consistent estimator of u 2 is (n- k- 1)- 1 

L~- 1 url9;, where the division by Y; is the proper heteroskedasticity adjustment, and 
n - k - 1 is the df given n observations and k + I estimates /30, /3 1, • •• , fjk. 
Letting ft be the positive square root of ft2, we multiply the usual Poisson standard errors 
by ft. If ft is notably greater than one, the corrected standard errors can be much bigger 
than the nominal, generally incorrect, Poisson MLE standard errors. 

Even (17.35) is not entirely general. Just as in the linear model, we can obtain stan­
dard errors for the Poisson QMLE that do not restrict the variance at all. (See Wooldridge 
[2002, Chapter 19] for further explanation.) 

Under the Poisson distributional assumption, we can use the likelihood ratio statistic 
to test exclusion restrictions, which, as always, has the form in ( 17 .12). If we have q exclu­

suppose that we obtain iJ2 = 2. How will the adjusted standard 
errors compare with the usual Poisson MLE standard errors? How 
will the quasi-LR statistic compare with the usual LR statistic? 

1 7. 3 

(Poisson Regression for Number of Arrests) 

sion restrictions, the statistic is distributed 
approximately as x~ under the null. Under 
the less restrictive assumption (17.35), a 
simple adjustment is available (and then 
we call the statistic the quasi-likelihood 
ratio statistic): we divide (17 .12) by ft2, 

where ft2 is obtained from the unrestricted 
model. 

We now apply the Poisson regression model to the arrest data in CRIM£1.RAW, used, among 
other places, in Example 9.1. The dependent variable, narr86, is the number of times a man 
is arrested during 1986. This variable is zero for 1,970 of the 2,725 men in the sample, and 
only eight values of narr86 are greater than five. Thus, a Poisson regression model is more 
appropriate than a linear regression model. Table 17.3 also presents the results of OLS esti­
mation of a linear regression model. 

The standard errors for OLS are the usual ones; we could certainly have made these robust 
to heteroskedasticity. The standard errors for Poisson regression are the usual maximum like­
lihood standard errors. Because iJ = 1.232, the standard errors for Poisson regression should 
be inflated by this factor (so each corrected standard error is about 23% higher). For exam­
ple, a more reliable standard error for tottime is 1.23(.015) "" .0185, which gives a t statistic 
of about 1.3. The adjustment to the standard errors reduces the significance of all variables, 
but several of them are still very statistically significant. 

The OLS and Poisson coefficients are not directly comparable, and they have very different 
meanings. For example, the coefficient on pcnv implies that, if ~pcnv = .1 0, the expected 
number of arrests falls by .013 (pcnv is the proportion of prior arrests that led to conviction). 
The Poisson coefficient implies that ~pcnv = .1 0 reduces expected arrests by about 4% 
[.402(.1 0) = .0402, and we multiply this by 1 00 to get the percentage effect]. As a policy 
matter, this suggests we can reduce overall arrests by about 4% if we can increase the prob­
ability of conviction by .1. 
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TABLE 17.3 

Determinants of Number of Arrests for Young Men 

Dependent Variable: narr86 

Independent Linear Exponential 
Variables (OLS) (Poisson QMLE) 

""" pcnv - .132 -.402 
(.040) (.085) 

I 

avgsen - .011 -.024 
(.012) (.020) 

~ 

tottime .012 .024 
(.009) (.015) 

""' 
ptime86 -.041 -.099 

(.009) (.021) 

qemp86 -.051 -.038 
(.014) (.029) 

inc86 -.0015 -.0081 
(.0003) (.0010) 

black .327 .661 
(.045) (.074) I• 

hi span .194 .500 
(.040) (.074) 

bom60 - .022 -.051 
(.033) (.064) 

constant .577 -.600 
(.038) (.067) 

Log-Likelihood Value - -2,248.76 
R-Squared .073 .077 
{t .829 1.232 
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The Poisson coefficient on black implies that, other factors being equal, the expected num­
ber of arrests for a black man is estimated to be about 100 · [exp(.661) -1] = 93.7% higher 
than for a white man with the same values for the other explanatory variables. 
. As with the Tobit application in Table 17 .2, we report an R-squared for Poisson regression: 
the squared correlation coefficient between Y;and Y; = exp(~0 + ~1x; 1 + ... + ~kx;k) . The moti­
vation for this goodness-of-fit measure is the same as for the Tobit model. We see that the 
exponential regression model, estimated by Poisson QMLE, fits slightly better. Remember that 
the OLS estimates are chosen to maximize the R-squared, but the Poisson estimates are not. 
(They are selected to maximize the-Jog-likelihood function .) 

Other count data regression models have been· proposed and used in applications, which 
generalize the Poisson distribution in a vari~ty of ways. If we are interested in the effects 
of the xi on the mean response, there is little reason to go beyond Poisson regression: it is 
simple, often gives good results, and has the robustness property discussed earlier. In fact, 
we could apply Poisson regression to a y that is a Tobit-like outcome, provided (17.31) 
holds. This might give good ~stimates of the mean effects. Extensipns of Poisson regres­
sion are more useful when we are interested in esti~~ti~g probabilities, such as P(y > 1\x) . 

. (See, for example, Cameron and Trivedi [1998].) 

17.4 Censored and Truncated Regression Models 

The models in Sections 17.1, 17.2, and 17.3 apply to various kinds of limited dependent 
variables that arise frequently in applied econometric work. In using these methods, it is 
important to remember that we use a probit or legit model for a binary response, a Tobit 
model for a comer solution outcome, or a Poisson regression model for a count response 
because we want models that account for important features of the distribution of y. There 
is no issue of data observability. For example, in the Tobit application to women's labor 
supply in Example 17 .2, there is no problem with observing hours worked: it is simply 
the case that a nontrivial fraction of married women in the population choose not to work 
for a wage. In the Poisson regression application to annual arrests, we observe the depen­
dent variable for every young man in a random sample from the population, but the depen­
dent variable can be zero as well as other small integer values. 

Unfortunately, the distinction between lumpiness in an outcome variable (such as taking 
on the value zero for a nontrivial fraction of the population) and problems of data censoring 
can be confusing. This is particularly true when applying the Tobit model. In this book, 
the standard Tobit model described in Section 17.2 is only for comer solution outcomes. But 
the literature on Tobit models usually treats another situation within the same framework: the 
response variable has been censored above or below some threshold. Typically, the censoring 
is due to survey design and, in some cases, institutional constraints. Rather than treat data 
censoring problems along with comer solution outcomes, we solve data censoring by apply­
ing a censored regression model. Essentially, the problem solved by a censored regression 
model is one of missing data on the response variable, y, but where we have information about 
the variable when it is missing, namely, whether it is above or below a known threshold. 
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A truncated regression model arises when we exclude, on the basis of y, a subset of tlle 
population in our sampling scheme. In other words, we do not have a random sample from 
the underlying population, but we know the rule that was used to include units in the sam­
ple. This rule is determined by whether y is above or below a certain threshold. We explain 
more fully the difference between censored and truncated regression models later. 

Censored Regression Models 

While censored regression models can be defined without distributional assumptions., in 
this subsection we study the censored normal regression model. The variable we would 
like to explain, y, follows the classical linear model. For emphasis, we put an i subscript 
on a random draw from the population: 

W; = min(y;.c;). 

fU.36) 

(1 -~.37) 

Rather than observing)';. we only observe it if it is less than a censoring value, c;. Notice 
that (17.36) includes the assumption that ll; is independent of c;. (For concreteness, we 

Let mvp; be the marginal value product for worker i; this is the 
price of a firm's good multiplied by the marginal product of the 
worker. Assume mvp; is a linear function of exogenous variables, 
such as education, experience, and so on, and an unobservable 
error. Under perfect competition and without institutional con­
straints, each worker is paid his or her marginal value product. Let 
minwage; denote the minimum wage for worker i, which varies by 
state. We observe wage;. which is the larger of mvp, and 
minwage;. Write the appropriate model for the observed wage. 

explicitly consider censoring from above 
or right censoring; the problem of cen­
soring from below, or left censoring, i 
handled similarly.) 

One example of right data censoring~s 
top coding. When a variable is top Goded, 
we know its value only up to a certain 
threshold. For responses greater than the 
threshold, we only know that the variab1e 
is at least as large as the threshold. ~or 
example, in some surveys, family wealth 
is top coded. Suppose that respondents are 
asked their wealth, but people are allowed 

to respond with "more than $500,000." Then, we observe actual wealth for those respon­
dents whose wealth is less than $500,000 but not for those whose wealth is greater tllan 
$500,000. In this case, the censoring threshold, c;. is the same for all i. In many situa­
tions, the censoring threshold changes with individual or family characteristics. 

If we observed a random sample for (x,y), we would simply estimate fJ by OLS. and 
statistical inference would be standard. (We again absorb the intercept into x for simg1iG­
ity.) The censoring causes problems. Using arguments similar to the Tobit modet an OtS 
regression using only the uncensored observations-that is, those withY; < c;-produc6S 
inconsistent estimators of the {3j. An OLS regression of W; on X;. using all observations, 
does not consistently estimate the {3j• unless there is no censoring. This is similar to the 
Tobit case, but the problem is much different. In the Tobit model, we are mode!il)g eco­
nomic behavior, which often yields zero outcomes; the Tobit model is supposed to refleGI 
this. With censored regression, we have a data collection problem because, for somerrea­
son, the data are censored. 
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Under the assumptions in (17.36) and (17.37), we can estimate fJ (and u 2) by maxi­
mum likelihood, given a random sample on (x;,W;). For this, we need the density of w;, 
given (x;,c;). For uncensored observations, W; = )';, and the density of W; is the same as 
that for Y;: Normal(x;fJ,u2). For censored observations, we need the probability that w; 
equals the censoring value, c;, given X;: 

P(w; = c;lx;) = P(y; 2': c;lx;) = P(u; 2': c; - x;/3) = 1 - <P[(c; - x;/3)/u]. 

We can combine these two parts to obtain the density of w;, given X; and c;: 

f(wlx;,c;) = 1 - <P[(c1 - x;/3)/u], w = C;, (17.38) 

= (llu)cf> [(w - x;/3)/u], w < c;. (17.39) 

The log-likelihood for observation i is obtained by taking the natural log of the density 
for each i. We can maximize the sum of these across i, with respect to the {3i and u, to 
obtain the MLEs. 

It is important to know that we can interpret the {3i just as in a linear regression model 
under random sampling. This is much different than the Tobit applications, where the 
expectations of interest are nonlinear functions of the f3j· 

An important application of censored regression models is duration analysis. A dura­
tion is a variable that measures the time before a certain event occurs. For example, we 
might wish to explain the number of days before a felon released from prison is arrested. 
For some felons, this may never happen, or it may happen after such a long time that we 
must censor the duration in order to analyze the data. 

In duration applications of censored normal regression, as well as in top coding, we 
often use the natural log as the dependent variable, which means we also take the log of 
the censoring threshold in (17 .3 7). As we have seen throughout this text, using the log 
transformation for the dependent variable causes the parameters to be interpreted as per­
centage changes. Further, as with many positive variables, the log of a duration typically 
has a distribution closer to normal than the duration itself. 

EXAMPLE 17 . 4 

(Duration of Recidivism) 

The file RECID.RAW contains data on the time in months until an inmate in a North Carolina 
prison is arrested after being released from prison; call this durat. Some inmates participated 
in a work program while in prison. We also control for a variety of demographic variables, as 
well as for measures of prison and criminal history. 

Of 1 ,445 inmates, 893 had not been arrested during the period they were followed; there­
fore, these observations are censored. The censoring times differed among inmates, ranging 
from 70 to 81 months. 

Table 17.4 gives the results of censored normal regression for log(durat). Each of the coef­
ficients, when multiplied by 100, gives the estimated percentage change in expected duration 
given a ceteris paribus increase of one unit in the corresponding explanatory variable. 
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TABLE 17.4 

Censored Regression Estimation of Criminal Recidivism . ~-
Dependent Variable: log(durat) .. 

Coefficient 
Independent Variables (Standard Error) 

workprg -.063 
(.120) 

~· 

priors -.137 
(.021) 

I ~ 

tserved -.019 
(.003) 

~· 

felon .444 
(.145) 

alcohol -.635 
(.144) 

drugs -.298 
(.133) 

\l: 

black -.543 ~ 

(.117) 

married .341 
(.140) 

educ .023 
(.025) 

age .0039 
(.0006) 

constant 4.099 
(.348) 

Log-Likelihood Value -1,597.06 
u 1.810 
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Several of the coefficients in Table 17.4 are interesting. The variables priors (number of prior 
convictions) and tserved (total months spent in prison) have negative effects on the time until 
the next arrest occurs. This suggests that these variables measure proclivity for criminal activ­
ity rather than representing a deterrent effect. For example, an inmate with one more prior 
conviction has a duration until next .arrest that is almost .M% less. A year of time served 
reduces duration by about 100·12(.019) = 22 .8%. A somewhat surprising finding is that a 
man serving time for a felony has an estimated expected duration that is almost 56% 
(exp(.444) - 1 = .56) longer than a man serving time for a nonfelony. 

Those with a history of drug or alcohol abuse have substantially shorter expected durations 
until the next arrest. (The variables alcohol and drugs are binary variables.) Older men, and 
men who were married at the time of incarceration, ar~ expected to have significantly longer 
durations until their next arrest. Black men have substantially shorter durations, on the order 
of 42% [exp(-.543)- 1 = -.42). 

The key policy variable, workprg, does not h<;~ve the desired effect. The point estimate is 
that. other things being equal, men who participate~ in the work p~ogram have estimated 
recidivism durations that are about 6.3% shorter th~n men who ~id not participate. The coef­
ficient has a small t statistic, so we would probably conclude that the work program has no 
effect. This could be due to a self-selection problem, or it could be a product of the way men 
were assigned to the program. Of course, it may simply be that the program was ineffective. 

In this example, it is crucial to account for the censoring, especially because almost 
62% of the durations are censored. If we apply straight OLS to the entire sample and treat 
the censored durations as if they were uncensored, the coefficient estimates are markedly 
different. In fact, they are all shrunk toward zero. For example, the coefficient on priors 
becomes -;- .059 (se = .009), and that on alcohol becomes -.262 (se = .060). Although 
the directions of the effects are the same, the importance of these variables is greatly 
diminished. The censored regression estimates are much more reliable. 

There are c;>ther ways of measuring the effects of eiich of the explanatory variables in 
Table 17.4" o~· the duration, rather than focusing only on the expected duration. A treat­
ment of modern duration analysis is beyond the s~ope of thi~ ~ext. (For an introduction, 
see Wooldridge l2002, Chapter 20].) . . 

. ~ any ?f the assumptio~s . of, .the. c~n~ored normal regressi.!Jn ~odel are violated-in 
particular, if there is heteroskedasticity o~ non11<?rmality-;-the MLEs are generally incon­
sistent. This shows that the censoring is potentially very costly, as OLS using an uncen­
S<?red sample requires neither nprm.ality nor homoskedasticity for consistency. There ru:e 
methods that do not require us to assume a distribution, but they are more advanced. (See 
Wooldridge [2002, Chapter 16].) 

Truncat~d Regression Models 

A truncated 'regression model is similar to a censored regression model, but it differs in 
one major respect: in a truncated regress.ion model, 'we . do not observe any information 
about a certain segment of the population~ This typically happens when a survey targets a 
particular subset· of the population and, perhaps due to cost c'onsiderations, entirely ignores· 
the other part of the population. :· ' 
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For example, Hausman and Wise (1977) used data from a negative income tax exper­
iment to study various determinants of earnings. To be included in the study, a family had 
to have income less than 1.5 times the 1967 poverty line, where the poverty line depended 
on family size. 

The truncated normal regression model begins with an underlying population model 
that satisfies the classical linear model assumptions: 

Y = {30 + x{3 + u, ulx - Normal(O,u2). (17.40} 

Recall that this is a strong set of assumptions, because 11 must not only be independent of 
x, but also normally distributed. We focus on this model because relaxing the assumptions 
is difficult. 

Under (17 .40) we know that, given a random sample from the population, OLS is the 
most efficient estimation procedure. The problem arises because we do not observe a ran­
dom sample from the population: Assumption MLR.2 is violated. In particular, a random 
draw (x;.Y;) is observed only if Y; ::S c;. where c; is the truncation threshold that can depend 
on exogenous variables-in particular, the X;. (In the Hausman and Wise example, G; 

depends on family size.) This means that, if { (x;.Y;): i = 1, ... ,n} is our observed sample, 
then Y; is necessarily less than or equal to c;. This differs from the censored regression 
model: in a censored regression model, we observe X; for any randomly drawn observa­
tion from the population; in the truncated model, we only observe X; if Y; ::S C;. 

To estimate the {3i (along with u), we need the distribution of Y;. given that Y; ::S c; and 
X;. This is written as 

(~ 7.41) 

where f(ylx;/1,u2) denotes the normal density with mean {30 + x;/3 and variance u 2, and 
F(c;lxJ3,u2) is the normal cdf with the same mean and variance, evaluated at c;. This 
expression for the density, conditional on Y; ::S c;. makes intuitive sense: it is the popula­
tion density for y, given x, divided by the probability that Y; is less than or equal to Gi 

(given X;). P(y; ::S c;lx;). In effect, we renormalize the density by dividing by the area under 
f( ·I xJJ,u2) that is to the left of c;. 

If we take the log of (17.41), sum across all i, and maximize the result with respect to 
the {3i and u 2, we obtain the maximum likelihood estimators. This leads to consistent, 
approximately normal estimators. The inference, including standard errors and log­
likelihood statistics, is standard. 

We could analyze the data from Example 17.4 as a truncated sample if we drop all 
data on an observation whenever it is censored. This would give us 552 observations from 
a truncated normal distribution, where the truncation point differs across i. However, we 
would never analyze duration data (or top-coded data) in this way, as it eliminates usefu1 
information. The fact that we know a lower bound for 893 durations, along with the 
explanatory variables, is useful information; censored regression uses this information, 
while truncated regression does not. 
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A better example of truncated regression is given in Hausman and Wise (1977), where 
they emphasize that OLS applied to a sample truncated from above generally produces esti­
mators biased toward zero. Intuitively, this makes sense. Suppose that the relationship of 
interest is between income and education levels. If we only observe people whose income 
is below a certain threshold, we are lopping off the upper end. This tends to flatten the esti­
mated line relative to the true regression line in the whole population. Figure 17.4 illus­
trates the problem when income is truncated from above at $50,000. Although we observe 
the data points represented by the open circles, we do not observe the data sets represented 
by the darkened circles. A regression analysis using the truncated sample does not lead to 
consistent estimators. Incidentally, if the sample in Figure 17.4 was censored rather than 
truncated-that is, we had top-coded data-we would observe education levels for all 
points in Figure 17 .4, but for individuals with incomes above $50,000 we would not know 
the exact income amount. We would only know that income was at least $50,000. In effect, 
all observations represented by the darkened circles would be brought down to the hori­
zontal line at income = 50. 

As with censored regression, if the underlying homoskedastic normal assumption in 
( 17 .40) is violated, the truncated normal MLE is biased and inconsistent. Methods that do 
not require these assumptions are available; see Wooldridge (2002, Chapter 17) for 
discussion and references. 

FIGURE 17.4 
A tr.ue, or population, regression line and the incorrect: regression line for the truncated 

population with incomes below $50,000. 

income 
(in thousands 150 

of dollars) 

50 

15 

true regression 
line 

• \ 
0 

10 

• 

regression line 
for truncated 
population 

• 

20 
educ 

(in years) 



616 Part 3 Advanced Topics 

1 7.5 Sample Selection Corrections 

Truncated regression is a special case of a general problem known as nonrandom sample 
selection. But survey design is not the only cause of nonrandom sample selection. Often, 
respondents fail to provide answers to certain questions, which leads to missing data for the 
dependent or independent variables. Because we cannot use these observations in our 
estimation, we should wonder whether dropping them leads to bias in our estimators. 

Another general example is usually called incidental truncation. Here, we do nor 
observe y because of the outcome of another variable. The leading example is estimating 
the so-called wage offer function from labor economics. Interest lies in how various fac­
tors, such as education, affect the wage an individual could earn in the labor force. For 
people who are in the workforce, we observe the wage offer as the current wage. But, for. 
those currently out of the workforce, we do not observe the wage offer. Because wor'king 
may be systematically correlated with unobservables that affect the wage offer, using only 
working people-as we have in all wage examples so far-might produce biased estima­
tors of the parameters in the wage offer equation. 

Nonrandom sample selection can also arise when we have panel data. In the simplest 
case, we have two years of data, but, due to attrition, some people leave the sample. This 
is particularly a problem in policy analysis, where attrition may be related to the effec­
tiveness of a program. 

When Is OLS on the Selected Sample Consistent? 

In Section 9.4, we provided a brief discussion of the kinds of sample selection that can be 
ignored. The key distinction is between exogenous and endogenous sample selection. :tn 
the truncated Tobit case, we clearly have endogenous sample selection, and OLS is biased 
and inconsistent. On the other hand, if our sample is determined solely by an exogenous 
explanatory variable, we have exogenous sample selection. Cases between these extremes 
are less clear, and we now provide careful definitions and assumptions for them. The pop­
ulation model is 

(17.42) 

It is useful to write the population model for a random draw as 

Y; = x;{J + U;, (117.43) 

where we use x;{J as shorthand for {30 + f3 1xil + /32-1:;2 + ... + f3kxik· Now, let n be. the 
size of a random sample from the population. If we could observe Y; and each xu for all 
i, we would simply use OLS. Assume that, for some reason, either Y; or some of the inde­
pendent variables are not observed for certain i. For at least some observations, we obsezye 
the full set of variables. Define a selection indicators; for each i by s; = 1 if we observe 
all of (y;,X;). and s; = 0 otherwise. Thus, s; = 1 indicates that we will use the observation 
in our analysis; s; = 0 means the observation will not be used. We are interested jn the 
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statistical properties of the OLS estimators using the selected sample, that is, using obser­
vations for which s; = 1. Therefore, we use fewer than n observations, say, 11 1• 

It turns out to be easy to obtain conditions under which OLS is consistent (and even 
unbiased). Effectively, rather than estimating (17.43), we can only estimate the equation 

S;Y; = S;X;/J + S;U;. 

When s; = 1, we simply have (17.43); when s; = 0, we simply have 0 = 0 + 0, which 
clearly tells us nothing about {J. Regressing S;Y; on s;X; for i = 1 ,2, ... , 11 is the same as 
regressing Y; on X; using the observations for which s; = 1. Thus, we can learn about the 
consistency of the sj by studying (17 .44) on a random sample. 

From our analysis in Chapter 5, the OLS estimators from (17.44) are consistent if the 
error term has zero mean and is uncorrelated with each explanatory variable. In the pop­
ulation, the zero mean assumption is E(su) = 0, and the zero con·elation assumptions can 
be stated as 

E[(sx)(su)] = E(sX}I) = 0, (l7.45) 

where s, xj, and u are random variables representing the population; we have used the fact 
that s2 = s because s is a binary variable. Condition (17 .45) is different from what we 
need if we observe all variables for a random sample: E(xju) = 0. Therefore, in the pop­
ulation, we need u to be uncorrelated with sxj. 

The key condition for unbiasedness is E(sulsx 1, ••• , sxk) = 0. As usual, this is a stronger 
assumption than that needed for consistency. 

If s is a function only of the explanatory variables, then sxj is just a function of x 1, 

x2, ..• , xk; by the conditional mean assumption in (17 .42), sxj is also uncorrelated with u. 

In fact, E(sulsx" ... ,sxk) = sE(uisx1, ••• ,sxk) = 0, because ECulx1, ••• ,xk) = 0. This is the 
case of exogenous sample selection, where s; = 1 is determined entirely by x; 1, ••• ,x;k· 
As an example, if we are estimating a wage equation where the explanatory variables are 
education, experience, tenure, gender, marital status, and so on-which are assumed to 
be exogenous-we can select the sample on the basis of any or all of the explanatory 
variables. 

If sample selection is entirely random in the sense that s; is independent of (x;,u;), then 
E(sxp) = E(s)E(xp) = 0, because E(xp) = 0 under (17.42). Therefore, if we begin with 
a random sample and randomly drop observations, OLS is still consistent. In fact, OLS is 
again unbiased in this case, provided there is not perfect multicollinearity in the selected 
sample. 

If s depends on the explanatory variables and additional random terms that are inde­
pendent of x and u, OLS is also consistent and unbiased. For example, suppose that IQ 
score is an explanatory variable in a wage equation, but IQ is missing for some people. 
Suppose we think that selection can be described by s = 1 if IQ 2:: v, and s = 0 if 
IQ < v, where v is an unobserved random variable that is independent of IQ, u, and the 
other explanatory variables. This means that we are more likely to observe an /Q that is 
high, but there is always some chance of not observing any /Q. Conditional on the explana­
tory variables, sis independent of u, which means that E(ulx1, ••• ,xk,s) = ECulx1, ••• ,xk), 

and the last expectation is zero by assumption on the population model. If we add the 
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homoskedasticity assumption E(u2Jx,s) = E(u2) = u 2, then the usual OLS standard errors 
and test statistics are valid. 

So far, we have shown several situations where OLS on the selected sample is unBi­
ased, or at least consistent. When is OLS on the selected sample inconsistent? We already 
saw one example: regression using a truncated sample. When the truncation is from above 
s; = 1 if Y; :5 c;. where c; is the truncation threshold. Equivalently, s; = 1 if tt; :5 c; - xi 
Because s; depends directly on u;. s; and u; will not be uncorrelated, even conditional on x. 
This is why OLS on the selected sample does not consistently estimate the {3i. There ar~ 
less obvious ways that s and u can be correlated; we consider this in the next subsection. 

The results on consistency of OLS extend to instrumental variables estimation. If theWs 
are denoted z1r in the population, the key condition for consistency of 2SLS is E(sz~ru) ::::: Q, 
which holds if E(ujz,s) = 0. Therefore, if selection is determined entirely by the exoge­
nous variables z, or if s depends on other factors that are independent of u and z, then 2SkS 
on the selected sample is generally consistent. We do need to assume that the explanato!\Y 
and instrumental variables are appropriately correlated in the selected part of the population. 
Wooldridge (2002, Chapter 17) contains precise statements of these assumptions. 

It can also be shown that, when selection is entirely a function of the exogenous vani­
ables, maximum likelihood estimation of a nonlinear model-such as a logit or probi~ 
model-produces consistent, asymptotically normal estimators, and the usual standard 
errors and test statistics are valid. (Again, see Wooldridge [2002, Chapter 17].) 

Incidental Truncation 

As we mentioned earlier, a common form of sample selection is called incidental trunca­
tion. We again start with the population model in (17 .42). However, we assume that we 
will always observe the explanatory variables xi. The problem is, we only observe lY lfon ru 
subset of the population. The rule determining whether we observe y does not depend 
directly on the outcome of y. A leading example is when y = 1og(wage0

), where wag& is 
the wage offer, or the hourly wage that an individual could receive in the labor marke~.lrn 
the person is actually working at the time of the survey, then we observe the wage offer 
because we assume it is the observed wage. But for people out of the workforce, we can­
not observe wage0

• Therefore, the truncation of wage offer is incidental because it dependsoo 
on another variable, namely, labor force participation. Importantly, we would genera'lly 
observe all other information about an individual, such as education, prior experience, gen­
der, marital status, and so on. 

The usual approach to incidental truncation is to add an explicit selection equation to 
the population model of interest: 

y = x{J + u, E(ujx) = 0 

s = l[zy + v ~ 0], 

(17.461 

(17.47> 

where s = 1 if we observe y, and zero otherwise. We assume that elements of x and 
z are always observed, and we write x{J = {30 + {31x1 + ... + {3~xk and zy = 'Wo + 
"Y1Z1 + · · · + "Y 111Zm· 
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The equation of primary interest is (17.46), and we could estimate f3 by OLS given a 
random sample. The selection equation, (17.47), depends on observed variables, z11 , and 
an unobserved error, v. A standard assumption, which we will make, is that z is exoge­
nous in (17 .46): 

E(ulx,z) = 0. 

In fact, for the following proposed methods to work well, we will require that x be a strict 
subset of z: any xi is also an element of z, and we have some elements of z that are not 
also in x. We will see later why this is crucial. 

The error term v in the sample selection equation is assumed to be independent of z 
(and therefore x). We also assume that v has a standard normal distribution. We can easily 
see that correlation between u and v generally causes a sample selection problem. To see 
why, assume that (u,v) is independent of z. Then, taking the expectation of (17.46), 
conditional on z and v, and using the fact that x is a subset of z gives 

E(ylz,v) = xf3 + E(ulz,v) = x/3 + E(ulv), 

where E(ulz,v) = E(uiv) because (u,v) is independent of z. Now, if u and v are jointly nor­
mal (with zero mean), then E(ulv) = pv for some parameter p. Therefore, 

E(ylz,v) = x{3 + pv. 

We do not observe v, but we can use this equation to compute E(ylz,s) and then special­
ize this to s = 1. We now have: 

E(ylz,s) = x/3 + pE(viz,s). 

Because sand v are related by (17.47), and v has a standard normal distribution, we can 
show that E(vlz,s) is simply the inverse Mills ratio, ,\(zy), when s = 1. This leads to the 
important equation 

E(ylz,s = 1) = xf3 + p'A.(zy). (17.48} 

Equation ( 17 .48) shows that the expected value of y, given z and observability of y, is equal 
to x/3, plus an additional term that depends on the inverse Mills ratio evaluated at zy. 
Remember, we hope to estimate {3. This equation shows that we can do so using only the 
selected sample, provided we include the term ,\(zy) as an additional regressor. 

If p = 0, ,\(zy) does not appear, and OLS of yon x using the selected sample consis­
tently estimates {3. Otherwise, we have effectively omitted a variable, ,\(z-y), which is gen­
erally correlated with x. When does p = 0? The answer is when u and v are uncorrelated. 

Because 1' is unknown, we cannot evaluate ,\(Z;')') for each i. However, from the 
assumptions we have made, s given z follows a probit model: 

P(s = liz) = ci>(zy). 

Therefore, we can estimate 1' by probit of s; on Z;, using the entire sample. In a second 
step, we can estimate {3. We summarize the procedure, which has recently been dubbed 
the Heckit method in econometrics literature after the work of Heckman (1976). 
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SAMPLE SELECTION CORRECTION: 
(i) Using all n observations, estimate a probit model of s; on Z; and obtain the esti­

mates 'Yh· Compute the inverse Mills ratio, A; = A(z;')l) for each i. (Actually, we only neea 
these for the i with s; = 1.) 

(ii) Using the selected sample, that is, the observations for which s; = 1 (say, n1 of 
them), run the regression of 

~1 '1.50) 

The fjj are consistent and approximately normally distributed. 

A simple test of selection bias is available from regression (17 .50). Namely, we can 
use the usual t statistic on A; as a test of H0: p = 0. Under H0, there is no sample seleG­
tion problem. 

When p =I= 0, the usual OLS standard errors reported from (17.50) are not exactly cor­
rect. This is because they do not account for estimation of -y, which uses the same obser­
vations in regression ( 17 .50), and more. Some econometrics packages compute correGted 
standard errors. (Unfortunately, it is not as simple as a heteroskedasticity adjustment. Sw 
Wooldridge [2002, Chapter 6] for further discussion.) In many cases, the adjustments do 
not lead to important differences, but it is hard to know that beforehand (unless p is small 
and insignificant). 

We recently mentioned that x should be a strict subset of z. This has two implications. 
First, any element that appears as an explanatory variable in (17 .46) should also be an 
explanatory variable in the selection equation. Although in rare cases it makes sense to 
exclude elements from the selection equation, including all elements of x in z is not very, 
costly; excluding them can lead to inconsistency if they are incorrectly excluded. 

A second major implication is that we have at least one element of z that is not also 
in x. This means that we need a variable that affects selection but does not have a partial 
effect on y. This is not absolutely necessary to apply the procedure-in fact, we Gan 
mechanically carry out the two steps when z = x-but the results are usually less than 
convincing unless we have an exclusion restriction in ( 17 .46). The reason for this lis that 
while the inverse Mills ratio is a nonlinear function of z, it is often well approximated lOy 
a linear function. If z = x, A; can be highly correlated with the elements of X;. As we k:now~ 
such multicollinearity can lead to very high standard errors for the fjj. Intuitively, if we db 
not have a variable that affects selection but not y, it is extremely difficult, if not impos­
sible, to distinguish sample selection from a misspecified functional form in (1?7.46). 

EXAMPLE 17.5 

(Wage Offer Equation for Married Women) 

We apply the sample selection correction to the data on married women in MROZ.RAW. Recall 
that of the 753 women in the sample, 428 worked for a wage during the year. The wage 
offer equation is standard, with log(wage) as the dependent variable and educ, exper, and 
exper2 as the explanatory variables. In order to test and correct for sample selection bias-
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TABLE 17.5 
Wage Offer Equation for Married Women 

Dependent Variable: log( wage) 

Independent Variables OLS Heckit 
_1 

educ .108 .109 
(.014) (.016) 

exper .042 .044 
(.012) (.016) 

exper2 -.00081 -.00086 
(.00039) (.00044) 

constant -.522 -.578 
(.199) (.307) 

X - .032 
(.134) 

Sample Size 428 428 
R-Squared .157 .157 

due to unobservability of the wage offer f<;>r. nonworking wo~en-:-we .ne~d to estimate a pro­
bit model for labor force participation. In addition to the eau~ation and~experience variables, 
we include the factors in Table 17.1: other income, age.' number of young children, and num­
ber of older children. The fact that these four variables are excluded from the wage offer equa­
tion is an assumption: we assume that, given the productivity factors, nwifeinc, age, kids/t6, 
and kidsge6 have no effect on the '«age offe!. It is cl,~ar fr~rl} the probit _results in Table 17.1 
that at least age and kidslt6 have~ s!rcing efteq 0p'!lab9r fcir<>:e. partig&ation. 

Table 17.5 contains the results from OLS and Heckit. [The standard errors reported for the 
Heck it results are just the usual ms standard ·errors from regression (17 .50).] There is no evi­
dence of a sample selection problem in estimating the wage offer equation. The coefficient 

tn on A has a very small t statistic (.239), so we fail to reject 1-:10:.p = 0. Just as importantly, there 
q are no ·practically large differences in the estimated slope coeffiEients in· Table 17 .5. The esti­

mated returns to education differ by only one-tenth of a perc:entage point. 

· An -alternative to the preceding two-step estimation· method 'is full maximum likeli- ·•, .•. 
hooi:l 'estimati6n. This is more complicatdi as it requires obtaining the joint distribution of 
y ana s. It often' makes 'seni;'e to ftesf for sample selection using the previous procedure; if 
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there is no evidence of sample selection, there is no reason to continue. If we detect sam­
ple selection bias, we can either use the two-step estimates or estimate the regression and 
selection equations jointly by MLE. (See Wooldridge [2002, Chapter 17].) 

In Example 17 .5, we know more than just whether a woman worked during the year: 
we know how many hours each woman worked. It turns out that we can use this informa­
tion in an alternative sample selection procedure. In place of the inverse Mills ratio X. 

A l' 

we use the Tobit residuals, say, v;. which are computed as V; = Y; - xJJ whenever Y; > 0. 
It can be shown that the regression in (17.50) with V; in place of A; also produces consis­
tent estimates of the {3i, and the standard t statistic on V; is a valid test for sample selection 
bias. This approach has the advantage of using more information, but it is less widely appli­
cable. (See Wooldridge [2002, Chapter 17].) 

There are many more topics concerning sample selection. One worth mentioning is 
models with endogenous explanatory variables in addition to possible sample seleGtion 
bias. Write a model with a single endogenous explanatory variable as 

(~ 7.51) 

where y1 is only observed when s = 1, and y2 may only be observed along with Yi- An 
example is when y1 is the percentage of votes received by an incumbent, and y2 is the per­
centage of total expenditures accounted for by the incumbent. For incumbents who do not 
run, we cannot observe y 1 or y2• If we have exogenous factors that affect the decision to 
run and that are correlated with campaign expenditures, we can consistently estimate a 1 
and the elements of fJ1 by instrumental variables. To be convincing, we need two exoge­
nous variables that do not appear in (17.51). Effectively, one should affect the seleGtion 
decision, and one should be correlated with y2 [the usual requirement for estimating 
(17.51) by 2SLS]. Briefly, the method is to estimate the selection equation by prooit, 
where all exogenous variables appear in the probit equation. Then, we add the inverse 
Mills ratio to (17 .51) and estimate the equation by 2SLS. The inverse Mills ratio acts as 
its own instrument, as it depends only on exogenous variables. We use all exogenous vari­
ables as the other instruments. As before, we can use the t statistic on A; as a test for seleG­
tion bias. (See Wooldridge [2002, Chapter 17] for further information.) 

SUMMARY 

In this chapter, we have covered several advanced methods that are often used in appliGa­
tions, especially in microeconomics. Logit and probit models are used for binary response 
variables. These models have some advantages over the linear probability model: fitted 
probabilities are between zero and one, and the partial effects diminish. The primary Gost 
to logit and probit is that they are harder to interpret. 

The Tobit model is applicable to nonnegative outcomes that pile up at zero but also 
take on a broad range of positive values. Many individual choice variables, such as labor. 
supply, amount of life insurance, and amount of pension fund invested in stocks, !have 
this feature . As with logit and probit, the expected values of y given x-either condi­
tional on y > 0 or unconditionally-depend on x and fJ in nonlinear ways. We gave the 
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expressions for these expectations as well as formulas for the partial effects of each xi 
on the expectations. These can be estimated after the Tobit model has been estimated 
by maximum likelihood. 

When the dependent variable is a count variable-that is, it takes on nonnegative, inte­
ger values-a Poisson regression model is appropriate. The expected value of y given the 
xi has an exponential form. This gives the parameter interpretations as semi-elasticities or 
elasticities, depending on whether xi is in level or logarithmic form. In short, we can inter­
pret the parameters as if they are in a linear model with log()') as the dependent variable. 
The parameters can be estimated by MLE. However, because the Poisson distribution 
imposes equality of the variance and mean, it is often necessary to compute standard errors 
and test statistics that allow for over- or underdispersion. These are simple adjustments to 
the usual MLE standard errors and statistics. 

Censored and truncated regression models handle specific kinds of missing data prob­
lems. In censored regression, the dependent variable is censored above or below a thresh­
old. We can use information on the censored outcomes because we always observe the 
explanatory variables, as in duration applications or top coding of observations. A trun­
cated regression model arises when a part of the population is excluded entirely: we 
observe no information on units that are not covered by the sampling scheme. This is a 
special case of a sample selection problem. 

Section 17.5 gave a systematic treatment of nonrandom sample selection. We 
showed that exogenous sample selection does not affect consistency of OLS when it is 
applied to the subsample, but endogenous sample selection does. We showed how to 
test and correct for sample selection bias for the general problem of incidental trunca­
tion, where observations are missing on y due to the outcome of another variable (such 
as labor force participation). Heckman's method is relatively easy to implement in these 
situations. 

KEY TERMS 

Average Partial Effect Likelihood Ratio Statistic Quasi-Likelihood Ratio 
Binary Response Models Limited Dependent Statistic 
Censored Normal Variable (LDV) Quasi-Maximum 

Regression Model Logit Model Likelihood Estimation 
Censored Regression Log-Likelihood Function (QMLE) 

Model Maximum Likelihood Response Probability 
Comer Solution Response Estimation (MLE) Selected Sample 
Count Variable Nonrandom Sample Tobit Model 
Duration Analysis Selection Top Coding 
Exogenous Sample Overdispersion Truncated Normal 

Selection Percent Correctly Predicted Regression Model 
Heckit Method Poisson Distribution Truncated Regression 
Incidental Truncation Poisson Regression Model Model 
Inverse Mills Ratio Probit Model Wald Statistic 
Latent Variable Model Pseudo R-Squared 
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PROBLEMS 

17.1 (i) For a binary response y, Jet y be the proportion of ones in the sample (which is 
equal to the sample average of the)';). Let []0 be the percent correctly predicted 
for the outcome y = 0 and let []1 be the percent correctly predicted for the our­
come y = 1. If p is the overall percent correctly predicted, show that p is a 
weighted average of []0 and []1: 

P = (1 - y) qo + yql. 

(ii) In a sample of 300, suppose that y = .70, so that there are 210 outcomes 
with Y; = 1 and 90 with Y; = 0. Suppose that the percent correctly pre­
dicted when y = 0 is 80, and the percent correctly predicted when y = 1 
is 40. Find the overall percent correctly predicted. 

17.2 Let grad be a dummy variable for whether a student-athlete at a large university 
graduates in five years. Let hsGPA and SAT be high school grade point average and SAT 
score, respectively. Let study be the number of hours spent per week in an organized study 
hall. Suppose that, using data on 420 student-athletes, the following Jogit model is obtained: 

P(grad = l[hsGPA,SAT,study) = A( -1.17 + .24 lzsGPA + .00058 SAT+ .073 study), 

where A(z) = exp(z)/[1 + exp(z)] is the logit function. Holding lzsGPA fixed at 3.0 and 
SAT fixed at 1 ,200, compute the estimated difference in the graduation probability for 
someone who spent 10 hours per week in study hall and someone who spent 5 hours per 
week. 

17.3 (Requires calculus) 
(i) Suppose in the Tobit model that x 1 = log(z1), and this is the only place 

z1 appears in x. Show that 

iJE(yfy > 0, x) 
!l = (f31/z 1){ I - A(x(3/cr)[x(3/cr + A(x(3/cr)]}, (!17.52) 
uZ1 

where /3 1 is the coefficient on log(z1). 

(ii) If x1 = z1, and x2 = Zf, show that 

where !3 1 is the coefficient on z1 and !32 is the coefficient on ZT· 

17.4 Let mvp; be the marginal value product for worker i, which is the price of a 'finn's 
good multiplied by the marginal product of the worker. Assume that 

log(mvp;) = /30 + f3 1xil + ... + f3kxik + U; 

wage; = max(mvp;,minwage;), 
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where the explanatory variables include education, experience, and so on, and minwage; 
is the minimum wage relevant for person i. Write log(wage;) in terms of log(mvp;) and 
log(mimvage;). 

17.5 (Requires calculus) Let patents be the number of patents applied for by a firm dur­
ing a given year. Assume that the conditional expectation of patents given sales and RD is 

where sales is annual firm sales and RD is total spending on research and development 
over the past 10 years. 

(i) How would you estimate the {3j? Justify your answer by discussing the 
nature of patents. 

(ii) How do you interpret {3 1? 
(iii) Find the partial effect of RD on E(patentsisales,RD). 

17.6 Consider a family saving function for the population of all families in the United 
States: 

sav = {30 + {3 1inc + {32hhsize + {33educ + {34age + u, 

where hhsize is household size, educ is years of education of the household head, and age 
is age of the household head. Assume that E(uiinc,lthsize,educ,age) = 0. 

(i) Suppose that the sample includes only families whose head is over 25 
years old. If we use OLS on such a sample, do we get unbiased estima­
tors of the f3/ Explain. 

(ii) Now, suppose our sample includes only married couples without chil­
dren. Can we estimate all of the parameters in the saving equation? 
Which ones can we estimate? 

(iii) Suppose we exclude from our sample families that save more than 
$25,000 per year. Does OLS produce consistent estimators of the f3/ 

17.7 Suppose you are hired by a university to study the factors that determine whether 
students admitted to the university actually come to the university. You are given a large 
random sample of students who were admitted the previous year. You have information 
on whether each student chose to attend, high school performance, family income, finan­
cial aid offered, race, and geographic variables. Someone says to you, "Any analysis of 
that data will lead to biased results because it is not a random sample of all college appli­
cants, but only those who apply to this university." What do you think of this criticism? 

COMPUTER EXERCISES 

C17.1 Use the data in PNTSPRD.RAW for this exercise. 
(i) The variable favwin is a binary variable if the team favored by the 

Las Vegas point spread wins. A linear probability model to estimate 
the probability that the favored team wins is 

P(favwin = lispread) = {30 + {31spread. 
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by ordinary least squares. Report the results in the usual form. Do 
there appear to be significant wage differences by race and ethnicity? 

(iii) Estimate a probit model for inlf that includes the explanatory vari­
ables in the wage equation from part (ii) as well as nwifeinc and 
kidlt6. Do these last two variables have coefficients of the expected 
sign? Are they statistically significant? 

(iv) Explain why, for the purposes of testing and, possibly, correcting the 
wage equation for selection into the workforce, it is important for 
nwifeinc and kidlt6 to help explain in/f. What must you assume about 
nwifeinc and kid/.t6 in the wage equation? 

(v) Compute the inverse Mills ratio (for each observation) and add it as 
an additional regressor to the wage equation from part (ii). What is 
its two-sided p-value? Do you think this is particularly small with 
3,286 observations? 

(vi) Does adding the inverse Mills ratio change the coefficients in the 
wage regression in important ways? Explain. 

APPENDIX 11 7A 

Asymptotic Standard Errors 
in Limited Dependent Variable Models 

Derivations of the asymptotic standard errors for the models and methods introduced in 
this chapter are well beyond the scope of this text. Not only do the derivations require 
matrix algebra, but they also require advanced asymptotic theory of nonlinear estimation. 
The background needed for a careful analysis of these methods and several derivations are 
given in Wooldridge (2002). 

It is instructive to see the formulas for obtaining the asymptotic standard errors foli at 
least some of the methods. Given the binary response model P(y = Ilx) = G(x/3), where 
G( ·) is the logit or pro bit function, and fJ is the k X 1 vector of parameters, the asym.P,­
totic variance matrix of jj is estimated as 

Avar(fJ) = £.J A A , 

-- A _ ( ~ [g(X;/3)J2X:x; )-1 
i= I G(X;/3) [1 - G(X;/3)] 

(17.53) 

which is a k X k matrix. (See Appendix D for a summary of matrix algebra.) Without ilie 
terms involving g( ·) and G( · ), this formula looks a lot like the estimated variance matrix for 
the OLS estimator, minus the term {f2. The expression in (17.53) accounts for the norilinear 
nature of the response probability-that is, the nonlinear nature of G( ·)-as well as the, par­
ticular form of heteroskedasticity in a binary response model: Var(ylx) = G(x/3)[1 - G~x/J)J. 

The square roots of the diagonal elements of (17 .53) are the asymptotic standard er:rors 
of the jjj, and they are routinely reported by econometrics software that supports logit and 
probit analysis. Once we have these, (asymptotic) t statistics and confidence intervals ate 
obtained in the usual ways. 
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The matrix in (17 .53) is also the basis for Wald tests of multiple restrictions on fJ (see 
Wooldridge [2002, Chapter 15]). 

The asymptotic variance matrix for Tobit is more complicated but has a similar struc­
ture. Note that we can obtain a standard error for {f as well. The asymptotic variance for 
Poisson regression, allowing for u 2 * 1 in (17.35), has a form much like (17.53): 

;;;;;(jj) = u2 (~ exp(X;jj)x;X;r
1 

The square roots of the diagonal elements of this matrix are the asymptotic standard errors. 
If the Poisson assumption holds, we can drop {f2 from the formula (because u 2 = 1 ). 

Asymptotic standard errors for censored regression, truncated regression, and the 
Heckit sample selection correction are more complicated, although they share features 
with the previous formulas. See Wooldridge (2002) for details. 




