
Multiple Regression Analysis: Estimation 

I n Chapter 2, we learned how to use simple regression analysis to explain a dependent 
variable, y, as a function of a single independent variable, x. The primary drawback in 

using simple regression analysis for empirical work is that it is very difficult to draw 
ceteris paribus conclusions about how x affects y: the key assumption, SLR.4-that all 
other factors affecting y are uncorrelated with x-is often unrealistic. 

Multiple regression analysis is more amenable to ceteris paribus analysis because it 
allows us to explicitly control for many other factors that simultaneously affect the depen
dent variable. This is important both for testing economic theories and for evaluating policy 
effects when we must rely on nonexperimental data. Because multiple regression models 
can accommodate many explanatory variables that may be correlated, we can hope to infer 
causality in cases where simple regression analysis would be misleading. 

Naturally, if we add more factors to our model that are useful for explaining y, then 
more of the variation in y can be explained. Thus, multiple regression analysis can be used 
to build better models for predicting the dependent variable. 

An additional advantage of multiple regression analysis is that it can incoqJOrate fairly 
general functional form relationships. In the simple regression model, only one function 
of a single explanatory variable can appear in the equation. As we will see, the multiple 
regression model allows for much more flexibility. 

Section "3 .1 formally introduces the multiple regression model and further discusses 
the advantages of multiple regression over simple regression. In Section 3.2, we demon
strate how to estimate the parameters in the multip1e regression model using the method 
of ordinary least squares. In Sections 3.3, 3.4, and 3.5, we describe various statistical 
properties of the OLS estimators, including unbiasedness and efficienc¥. 

The multiple regression model is still the most widely used vehicle for empirical 
analysis in economics and other social sciences. Likewise, the method of ordinary least 
squares is popularly used for estimating the parameters of the multiple regression model. 

3.1 Motivation for Multiple Regression 

The Model with Two Independent Variables 

We begin with some simple examples to show how multiple regression analysis can be 
used to solve problems that cannot be solved by simple regression. 

73 
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The first example is a simple variation of the wage equation introduced in Chapter 2 
for obtaining the effect of education on hourly wage: 

where exper is years of labor market experience. Thus, wage is determined by the two 
explanatory or independent variables, education and experience, and by other unobserved 
factors, which are contained in u. We are still primarily interested in the effect of educ 
on wage, holding fixed all other factors affecting wage; that is, we are interested in the 
parameter {31• 

Compared with a simple regression analysis relating wage to educ, equation (3.1) 
effectively takes exper out of the error term and puts it explicitly in the equation. Because 
exper appears in the equation, its coefficient, {32, measures the ceteris paribus effect of 
exper on wage, which is also of some interest. 

Not surprisingly, just as with simple regression, we will have to make assumptions 
about how u in (3.1) is related to the independent variables, educ and exper. However, as 
we will see in Section 3.2, there is one thing of which we can be confident: because (3.1) 
contains experience explicitly, we will be able to measure the effect of education on wage, 
holding experience fixed. In a simple regression analysis-which puts exper in the error 
term-we would have to assume that experience is uncorrelated with education, a tenu
ous assumption. 

As a second example, consider the problem of explaining the effect of per student 
spending (expend) on the average standardized test score (avgscore) at the high school 
level. Suppose that the average test score depends on funding, average family income 
(avginc), and other unobservables: 

avgscore = {30 + f3 1expend + f32avginc + u. (3.2) 

The coefficient of interest for policy purposes is {3 1, the ceteris paribus effect of expend 
on avgscore. By including avginc explicitly in the model, we are able to control for its 
effect on avgscore. This is likely to be important because average family income tends 
to be correlated with per student spending: spending levels are often determined by both 
property and local income taxes. In simple regression analysis, avginc would be included 
in the error term, which would likely be correlated with expend, causing the OLS esti
mator of {3 1 in the two-variable model to be biased. 

In the two previous similar examples, we have shown how observable factors other 
than the variable of primary interest [educ in equation (3.1) and expend in equation (3.2)] 
can be included in a regression model. Generally, we can write a model with two inde
pendent variables as 

(3.3) 

where {30 is the intercept, {3 1 measures the change in y with respect to x1, holding other 
factors fixed, and {32 measures the change in y with respect to x2, holding other factors 
fixed. 
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Multiple regression analysis is also useful for generalizing functional relationships 
between variables. As an example, suppose family consumption (cons) is a quadratic func
tion of family income (inc): 

(3.4) 

where u contains other factors affecting consumption. In this model, consumption depends 
on only one observed factor, income; so it might seem that it can be handled in a simple 
regression framework. But the model falls outside simple regression because it contains 
two functions of income, inc and inc2 (and therefore three parameters, {30, {31, and {32). 
Nevertheless, the consumption function is easily written as a regression model with two 
independent variables by letting x1 = inc and x2 = inc2• 

Mechanically, there will be no difference in using the method of ordinary least squares 
(introduced in Section 3.2) to estimate equations as different as (3.1) and (3.4). Each 
equation can be written as (3.3), which is all that matters for computation. There is, 
however, an important difference in how one interprets the parameters. In equation (3.1), 
{31 is the ceteris paribus effect of educ on wage. The parameter {31 has no such interpreta
tion in (3.4). In other words, it makes no sense to measure the effect of inc on cons while 
holding inc2 fixed, because if inc changes, then so must inc2 ! Instead, the change in con
sumption with respect to the change in income-the marginal propensity to consume
is approximated by 

!::.cons . 
-.- = {31 + 2{321/lC. 

I:::. me 

See Appendix A for the calculus needed to derive this equation. In other words, the 
marginal effect of income on consumption depends on {32 as well as on {31 and the level 
of income. This example shows that, in any particular application, the definitions of 
the independent variables are crucial. But for the theoretical development of multiple 
regression, we can be vague about such details. We will study examples like this more 
completely in Chapter 6. 

In the model with two independent variables, the key assumption about how u is 
related to x1 and x2 is 

(3.5) 

The interpretation of condition (3.5) is similar to the interpretation of Assumption SLR.4 
for simple regression analysis. It means that, for any values of x1 and x2 in the population, 
the average unobservable is equal to zero. As with simple regression, the important part 
of the assumption is that the expected value of u is the same for all combinations of x1 and 
x2; that this common value is zero is no assumption at all as long as the intercept {30 is 
included in the model (see Section 2.1). 

How can we interpret the zero conditional mean assumption in the previous examples? 
In equation (3.1), the assumption is E(uieduc,exper) = 0. This implies that other factors 
affecting wage are not related on average to educ and exper. Therefore, if we think innate 
ability is part of u, then we will need average ability levels to be the same across all 
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combinations of education and experience in the working population. This may or may 
not be true, but, as we will see in Section 3.3, this is the question we need to ask in order 
to determine whether the method of ordinary least squares produces unbiased estimators. 

The example measuring student performance [equation (3.2)] is similar to the wage 
equation. The zero conditional mean assumption is E(ujexpend,avginc) = 0, which means 

A simple model to explain city murder rates (murdrate) in terms of 
the probability of conviction (prbconv) and average sentence 
length (avgsen) is 

murdrate = f3o + f31prbconv + {32avgsen + u. 

What are some factors contained in u7 Do you think the key 
assumption (3.5) is likely to hold? 

that other factors affecting test scores
school or student characteristics-are, on 
average, unrelated to per student funding 
and average family income. 

When applied to the quadratic con
sumption function in (3.4), the zero condi
tional mean assumption has a slightly 
different interpretation. Written literally, 
equation (3.5) becomes E(ujinc, inc2) = 0. 
Since inc2 is known when inc is known, 
including inc2 in the expectation is redun

dant: E(ujinc,inc2) = 0 is the same as E(ujinc) = 0. Nothing is wrong with putting inc2 along 
with inc in the expectation when stating the assumption, but E(ujinc) = 0 is more concise. 

The Model with k Independent Variables 

Once we are in the context of multiple regression, there is no need to stop with two inde
pendent variables. Multiple regression analysis allows many observed factors to affect y. 
In the wage example, we might also include amount of job training, years of tenure with 
the current employer, measures of ability, and even demographic variables like number of 
siblings or mother's education. In the school funding example, additional variables might 
include measures of teacher quality and school size. 

The general multiple linear regression model (also called the multiple regression 
model) can be written in the population as 

where {30 is the intercept, {31 is the parameter associated with x1, {32 is the parameter asso
ciated with x2, and so on. Since there are k independent variables and an intercept, equa
tion (3.6) contains k + I (unknown) population parameters. For shorthand purposes, we 
will sometimes refer to the parameters other than the intercept as slope parameters, even 
though this is not always literally what they are. [See equation (3.4), where neither {31 nor 
{32 is itself a slope, but together they determine the slope of the 'relationship between con
sumption and income.] 

The terminology for multiple regression is similar to that for simple regression and is 
given in Table 3.1. Just as in simple regression, the variable u is the error term or 
disturbance. It contains factors other than x 1, x2, ... ,xk that affect y. No matter how many 
explanatory variables we include in our model, there will always be factors we cannot 
include, and these are collectively contained in 11. 

When applying the general multiple regression model, we must know how to interpret the 
parameters. We will get plenty of practice now and in subsequent chapters, but it is useful at 



' ., 

Chapter 3 Multiple Regression Analysis: Estimation 77 

TABLE 3.1 
Terminology for Multiple Regression 

y xt,x2, ... ,xk 

Dependent Variable Independent Variables 

Explained Variable Explanatory Variables 

Response Variable Control Variables 

Predicted Variable Predictor Variables 

Regressand Regressors 

this point to be reminded of some things we already know. Suppose that CEO salary (salary) 
is related to ftrm sales (sales) and CEO tenure (ceoten) with the fum by 

log(salary) = f30 + f3 1log(sales) + f32ceoten + f33ceoten2 + u. (3.7) 

This ftts into the multiple regression model (with k = 3) by defining y = log(salary), 
x 1 = log(sales), x2 = ceoten, and x3 = ceoten2• As we know from Chapter 2, the parame
ter /31 is the (ceteris paribus) elasticity of salary with respect to sales. If /33 = 0, then 100/32 

is approximately the ceteris paribus percentage increase in salary when ceoten increases 
by one year. When /33 * 0, the effect of ceoten on salary is more complicated. We will 
postpone a detailed treatment of general models with quadratics until Chapter 6. 

Equation (3.7) provides an important reminder about multiple regression analysis. The 
term "linear" in multiple linear regression model means that equation (3.6) is linear in the 
parameters, f3j· Equation (3.7) is an example of a multiple regression model that, while 
linear in the f3j, is a nonlinear relationship between salary and the variables sales and 
ceoten. Many applications of multiple linear regression involve nonlinear relationships 
among the underlying variables. 

The key assumption for the general multiple regression model is easy to state in terms 
of a conditional expectation: 

At a minimum, equation (3.8) requires that all factors in the unobserved error term be 
uncorrelated with the explanatory variables. It also means that we have correctly 
accounted for the functional relationships between the explained and explanatory vari
ables. Any problem that causes 11 to be correlated with any of the independent variables 
causes (3.8) to fail. In Section 3.3, we will show that assumption (3.8) implies that OLS 
is unbiased and will derive the bias that arises when a key variable has been omitted from 
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the equation. In Chapters 15 and 16, we will study other reasons that might cause (3.8) 
to fail and show what can be done in cases where it does fail. 

3.2 Mechanics and Interpretation 
of Ordinary Least Squares 

We now summarize some computational and algebraic features of the method of ordinary 
least squares as it applies to a particular set of data. We also discuss how to interpret the 
estimated equation. 

Obtaining the OLS Estimates 

We first consider estimating the model with two independent variables. The estimated OLS 
equation is written in a form similar to the simple regression case: 

where So is the estimate of f3o, sl is the estimate of {31, and ~is the estimate of f3z· But 
how do we obtain So. sl. and ~?The method of ordinary least squares chooses the esti
mates to minimize the sum of squared residuals. That is, given n observations on y, x1, 

and Xz, { (X;!• X;z. Y;): i = 1, 2, ... , n}, the estimates So. sl. and ~are chosen simultane
ously to make 

as small as possible. 
In order to understand what OLS is doing, it is important to master the meaning of 

the indexing of the independent variables in (3.10). The independent variables have two 
subscripts here, i followed by either 1 or 2. The i subscript refers to the observation 
number. Thus, the sum in (3.10) is over all i = 1 ton observations. The second index 
is simply a method of distinguishing between different independent variables. In the 
example relating wage to educ and exper, xil == educ; is education for person i in the 
sample, and xi2 = exper; is experience for person i. The sum of squared residuals in 

equation (3.10) is~~=! (wage;- So- S1educ;- S2exper/. In what follows, the i sub
script is reserved for indexing the observation number. If we write xij, then this means 
the ;th observation on the jth independent variable. (Some authors prefer to switch the order 
of the observation number and the variable number, so that xli is observation i on variable 
one. But this is just a matter of notational taste.) 

In the general case with k independent variables, we seek estimates f3a, S1, ••• , Skin 
the equation 



q 

t I 

n 

Chapter 3 Multiple Regression Analysis: Estimation 79 

The OLS estimates, k + 1 of them, are chosen to minimize the sum of squared residuals: 

n 

~ (Y;- ~o- ~txn - ··· - ~~;k)2 . (3.12) 
i=l 

This minimization problem can be solved using multi variable calculus (see Appendix 3A). 
This leads to k + 1 linear equations ink + 1 unknowns ~0, ~1 , ••• , ~k: 

II 

~ (Y;- ~o- ~,x;,- ··· - ~k.xik) = 0 
i=l 

II 

~ Xn(Y;- ~o- ~txit- ··· - f2tx;k) = 0 
i=l 

n 

~ X;2(Y;- ~o- ~lxil- ··· - ~tx;k) = 0 
i=l 

n 

~ X;k(Y;- ~o- ~I xi! - · · · - ~tx;k) = 0. 
i=l 

(3.'13) 

These are often called the OLS first order conditions. As with the simple regression 
model in Section 2.2, the OLS first order conditions can be obtained by the method of 
moments: under assumption (3.8), E(u) = 0 and E(xp) = 0, where j = 1, 2, ... , k. The 
equations in (3.13) are the sample counterparts of these population moments, although we 
have omitted the division by the sample size n. 

For even moderately sized n and k, solving the equations in (3.13) by hand calcula
tions is tedious. Nevertheless, modem computers running standard statistics and econo
metrics software can solve these equations with large n and k very quickly. 

There is only one slight caveat: we must assume that the equations in (3.13) can be 
solved uniquely for the ~t For now, we just assume this, as it is usually the case in 
well-specified models. In Section 3.3, we state the assumption needed for unique OLS 
estimates to exist (see Assumption MLR.3). 

As in simple regression analysis, equation (3.11) is called the OLS regression line 
or the sample regression function (SRF). We will call ~0 the OLS intercept estimate 
and ~1 , ••• , ~k the OLS slope estimates (corresponding to the independent variables 
x 1, x2, ••• , xk). 

In order to indicate that an OLS regression has been run, we will either write out equa
tion (3.11) withy and x 1, •• • , xk replaced by their variable names (such as wage, educ, and 
exper), or we will say that "we ran an OLS regression of yon x 1, x2, ••• , xk" or that "we 
regressed yon x1, x2, ••• , xk." These are shorthand for saying that the method of ordinary 
least squares was used to obtain the OLS equation (3.11 ). Unless explicitly stated other
wise, we always estimate an intercept along with the slopes. 
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Interpreting the OLS Regression Equation 

More important than the details underlying the computation of the ~jis the interpretation of 
the estimated equation. We begin with the case of two independent variables: 

The intercept ~0 in equation (3.14) is the predicted value of y when xi = 0 and x2 = 0. 
Sometimes, setting xi and x2 both equal to zero is an interesting scenario; in other cases, 
it will not make sense. Nevertheless, the intercept is always needed to obtain a prediction 
of y from the OLS regression line, as (3.14) makes clear. 

The estimates ~I and ~ have partial effect, or ceteris paribus, interpretations. From 
equation (3.14), we have 

~.9 = ~I~I + ~~2• 
so we can obtain the predicted change in y given the changes in xi and x2• (Note how the 
intercept has nothing to do with the changes in y.) In particular, when x2 is held fixed, so 
that ~2 = 0, then 

~.9 = ~I~I• 
holding x2 fixed. The key point is that, by including x2 in our model, we obtain a coeffi
cient on xi with a ceteris paribus interpretation. This is why multiple regression analysis 
is so useful. Similarly, 

holding xi fixed. 

(Determinants of College GPA) 

The variables in GPA 1.RAW include college grade point average (co/GPA), high school GPA 
(hsGPA), and achievement test score (ACT) for a sample of 141 students from a large univer
sity; both college and high school GPAs are on a four-point scale. We obtain the following 
OLS regression line to predict college GPA from high school GPA and achievement test score: 

-------colGPA = 1.29 + .453 hsGPA + .0094 ACI'. 

How do we interpret this equation? First, the intercept 1.29 is the predicted college GPA if 
hsGPA and A a are both set as zero. Since no one who attends college has either a zero high 
school GPA or a zero on the achievement test, the intercept in this equation is not, by itself, 
meaningful. 

More interesting estimates are the slope coefficients on hsGPA and Aa. As expected, there 
is a positive partial relationship between co/GPA and hsGPA: holding AU fixed, another point 
on hsGPA is associated with .453 of a point on the college GPA, or almost half a point. In 
other words, if we choose two students, A and B, and these students have the same ACT 
score, but the high school GPA of Student A is one point higher than the high school GPA of 
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Student B, then we predict Student A to have a college GPA .453 higher than that of Student 
B. (This says nothing about any tWo actual people, but it is our best prediction.) 

The sign on ACT implies that, while holding hsGPA .fixed, a change in the ACT score of 10 
poirits_;.a very large change, since the average score in the sample is about 24 with a stan
dard deviation less than three-affects co/GPA by less than one-tenth of a point. This is a small 
effect, and it suggests that, once high school GPA is acq:>ugted for, the ACT score is not a 
strong predictor of college GPA. (Naturally, there are many other factors that contribute to 
GPA, but here we focus on statistics available for high school -students:) Later, after we dis
cuss statistical inference, we will show that not only is the coefficient.on ACT practically small, 
it is also statistically insignificant. 

If we focus on a simple regression analysis relating co/GPA' to Aa only, we obtain 
-------....: 
colGPA = 2.40 + :0271 ACT; 

thus, the coefficient on Aa is almost three times as large as the estimate in (3.15). But this 
equation does not allow us to compare two people with the same high school GPA; it corre
sponds to a different experiment. We say more about the d_ifferences between multiple and 
simple regression later. 

·The case .with more than two independent variables is similar. The OLS regression 
line is · 

Written in terms of changes, 

The coefficient on x 1 measures the change in jl due to a one-unit increase in x1, holding 
all other independent variables fixed. That is, 

holding x2, x3, •• • , xdixed. Thus, we have controlled for the variables x2, x3, ••• , xk when 
estimating the effect of x1 on y. The other coefficients have a similar interpretation. 

The following is an example with three independent variables. 

3.2 

(Hourly Wage Equation) 

Using the 526 observations on workers in WAGE1.RAW, we include educ (years of education), 
exper (years of labor market experience), and tenure (years with the current employer) in an 
equation explaining log(wage). The estimated equation is ----log(wage) = .284 + .092 educ + .0041 exper + .022 tenure. 



82 Part 1 Regression Analysis with Cross-Sectional Data 

As in the simple regression case, the coefficients have a percentage interpretation. The only 
difference here is that they also have a ceteris paribus interpretation. The coefficient .092 
means that, holding exper and tenure fixed, another year of educati~n is predicted to 
increase log(wage) by .092, which translates into an approximate 9.2 percent [100(.092)) 
increase in wage. Alternatively, if we take two pe'ople with the same levels of experience and 
job tenure, the coefficient on educ is the proportionate difference in predicted wage when 
their education levels differ by one year. This measure of the return to education at least 
keeps two important productivity factors fixed; 'whether it is a good estimate of the ceteris 
paribus return to another year of education requires us to stJJdy the statistical properties of 
OLS (see Section 3.3). . ~ 

On the Meaning of "Holding Other Factors Fixed" 
in Multiple Regression 

The partial effect interpretation of slope coefficients in multiple regression analysis can 
cause some confusion, so we attempt to prevent that problem now. 

In Example 3.1, we observed that the coefficient on ACT measures the predicted dif
ference . i~ cqlGPA, holding hsc;TPA fixed. The power ,of multiple regression analys~s is that 
it provides this ceteris paribus interpretation even though the data have not been collected 
in a ceterjs paribus fashion . In giving the coefficient on ACT a partial effect interpretation, 
it may seem that we actually went out and sampled people with the same high school GPA 
but possibly with different ACT scores. This is not the case. The data are a random sam
ple from a large university: there were no restrictions placed on the sample values of 
hsGPA or ACT in obtaining the data. Rarely do we have the luxury of holding certain vari
ables fixed in obtaining our sample. If we could collect a sample of individuals with the 
same high school GPA, then we could perform a simple regression analysis relating
e,o/GPA to ACT. Multiple regression effectively allows us to mimic this situation without 
r~siri'c'ti~g the values of any independent· variables. 

The power of multiple regression analysis is that it allows us to do in nonexperimental 
environments what natural scientists are able to do in a controlled laboratory setting: keep 
other factors fixed. · · · 

Changing More than One Independent Variable Simultaneously 
. . 

Sometimes, we want to change more than one independent variable at the same •time to 
find the resulting effect on the dependent variable. This is easily done using equation (3.17) . .. . 
For example, in equation (3.19), we can obtain the estimated effect on wage when an indi-
vidual stays at the same firm for another year: exper (general wbrkforce experience) and 

Jf·•••r: · 
tenure both increase by one year. The total effect (holding educ fixed) is ---- . ' Lllog(wage) = .0041 Llexper + .022 Lltenure = .0041 + _.Of2 = .0261, 

or about 2.6 percent. Since exper and tenure each increase by one year, we just add the 
coefficients on exper and tenure and multiply by 100 to tum the effect into a percent. 
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OLS Fitted Values and Residuals 

After obtaining the OLS regression line (3.11 ), we can obtain a fitted or predicted value 
for each observation. For observation i, the fitted value is simply 

which is just the predicted value obtained by plugging the values of the independent vari
ables for observation i into equation (3.11 ). We should not forget about the intercept in 
obtaining the fitted values; otherwise, the an~n be very misleading. As an example, 
if in (3.15), hsGPA; = 3.5 and ACT;= 24, colGPA; = 1.29 + .453(3.5) + .0094(24) = 
3.101 (rounded to three places after the decimal). 

Normally, the actual value Y; for any observation i will not equal the predicted value, 
.Y;: OLS minimizes the average squared prediction error, which says nothing about the 
prediction error for any particular observation. The residual for observation i is defined 
just as in the simple regression case, 

There is a residual for each observation. If £7; > 0, then Y; is below Y;· which means that, 
for this observation, Y; is underpredicted. If zl; < 0, then Y; < Y;. and Y; is overpredicted. 

The OLS fitted values and residuals have some important properties that are immedi
ate extensions from the single variable case: 

1. The sample average of the residuals is zero and soy = y. 
2. The sample covariance between each independent variable and the OLS residuals 

is zero. Consequently, the sample covariance between the OLS fitted values and the 
OLS residuals is zero. 

3. The point (x1, x2, • •• , xk, y) is always on the OLS regression line: y = f3o + {31x1 + 
~2 + · · · + {:Jkxk. 

~._:r-- ·• . - ,--..,-~ T- ... ,w-:.~..---- - ,--- ~ - --- ---1 

; · L_ .. : ·: _ Q Jd H . ~ J: LQ _ ~ :t · ~ . 1 

In Example 3.1, the OLS fitted line explaining college GPA in terms 
of high school GPA and ACT score is 

The first two properties are immediate 
consequences of the set of equations used 
to obtain the OLS estimates. The first 
equation in (3.13) says that the sum of the 
residuals is zero. The remaining equations 

are of the form ~~; 1 X;/t; = 0, which 
implies that each independent variable has 
zero sample covariance with u;. Property 
(3) follows immediately from property (1). 

------colGPA = 1.29 + .453 hsGPA + .0094 ACT. 

If the average high school GPA is about 3.4 and the average ACT 
score is about 24.2, what is the average college GPA in the sample? 

A "Partial ling Out" Interpretation of Multiple Regression 

When applying OLS, we do not need to know explicit formulas for the {:Ji that solve the 
system of equations in (3 .13 ). Nevertheless, for certain derivations, we do need explicit 
formulas for the {:Ji' These formulas also shed further light on the workings of OLS. 
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Consider again the case with k = 2 independent variables, y = ~0 + ~1x 1 + ~2• For 
concreteness, we focus on ~1 • One way to express ~1 is 

where the fii are the OLS residuals from a simple regression of x1 on x2, using the sample 
at hand. We regress our first independent variable, x1, on our second independent variable, 
x2, and then obtain the residuals (y plays no role here). Equation (3.22) shows that we can 
then do a simple regression of yon f 1 to obtain ~1 • (Note that the residuals fii have a zero 
sample average, and so ~1 is the usual slope estimate from simple regression.) 

The representation in equation (3.22) gives another demonstration of ~1 's partial effect 
interpretation. The residuals fil are the part of xil that is uncorrelated with x;2. Another way 
of saying this is that fil is xii after the effects of xi2 have been partialled out, or netted out. 
Thus, ~1 measures the sample relationship between y and x1 after x2 has been partialled out. 

In simple regression analysis, there is no partialling out of other variables because no 
other variables are included in the regression. Computer Exercise C3.5 steps you through 
the partialling out process using the wage data from Example 3.2. For practical purposes, 
the important thing is that ~1 in the equation y = ~0 + ~1x 1 + ~2 measures the change 
in y given a one-unit increase in x1, holding x2 fixed. 

In the general model with k explanatory variables, ~1 can still be written as in equa
tion (3.22), but the residuals fii come from the regression of x1 on x2, .. . , xk. Thus, ~1 
measures the effect of x1 on y after x2, ••• , xk have been partialled or netted out. 

Comparison of Simple and Multiple Regression Estimates 
Two special cases exist in which the simple regression of yon x1 will produce the same 
OLS estimate on x1 as the regression of yon x1 and x2. To be more precise, write the sim
ple regression of y on x 1 as y = i30 + i31x1, and write the multiple regression as 
y = ~0 + ~1x 1 + ~~2 • We know that the simple regression coefficient i31 does not usu
ally equal the multiple regression coefficient ~1 • It turns out there is a simple relation
ship between i31 and ~1 , which allows for interesting comparisons between simple and 
multiple regression: 

where 81 is the slope coefficient from the simple regression of x;2 on X;i, i = 1, ... , n. This 
equation shows how i31 differs from the partial effect of x1 on y. The confounding term is 
the partial effect of x2 on y times the slope in the sample regression of x2 on x 1. (See Section 
3A.4 in the chapter appendix for a more general verification.) 

The relationship between i31 and ~1 also shows there are two distinct cases where they 
are equal: 

1. The partial effect of x2 on y is zero in the sample. That is, ~ = 0. 
2. x1 and x2 are uncorrelated in the sample. That is, 81 = 0. 
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Even though simple and multiple regression estimates are almost never identical, we 
can use the above formula to characterize why they might be either very different or quite 
similar. For example, if ~is small, we might expect the multiple and simple regression 
estimates of {31 to be similar. In Example 3.1, the sample correlation between hsGPA and 
ACT is about 0.346, which is a nontrivial correlation. But the coefficient on ACT is fairly 
little. It is not surprising to find that the simple regression of colGPA on hsGPA produces 
a slope estimate of .482, which is not much different from the estimate .453 in (3.15). 

[Participation in 401 (k) Pension Plans] 

We use the data in 401 K.RAW to estimate the effect of a plan's match rate (mrate) on the 
participation rate (prate) in its 401 (k) pension plan. The match rate is the amount the firm 
contributes to a worker's fund for each dollar the worker contributes (up to some limit); thus, 
mrate = .75 means that the firm contributes 75 cents for each dollar contributed by the 
worker. The participation rate is the percentage of eligible workers having a 401 (k) account. 
The variable age is the age of the 401 (k) plan. There are 1,534 plans in the data set, the aver
age prate is 87.36, the average mrate is .732, and the average age is 13.2. 

Regressing prate on mrate, age gives --prate = 80.12 + 5.52 mrate + .243 age. 

Thus, both mrate and age have the expected effects .. What happens if we do not control for 
age? The estimated effect of age is not trivial, and ·so we might exp~ct a large change in the 
estimated effect of mrate if age is droppe~ from the regressior:J. However, the simple regres
sion of prate ()n mrate yields p;:ate = 83.08 + 5:89 inratr;,, The si_r,np)~ regression estimate of 
the effect of mrate on prate is clearly different from the multiple regression estimate, but the 
difference is riot very big. (The sill'}ple regfessioh estimate is 01ily about G.l percent larger than 

• • ;· t • 1 • . 

the multiple regression estimate.) .This can be explained by the fact th'at the sample correla-
tion betvveeh 'mrate and age is only .. 12. . . . .' . . . ' 

. . ... 

In the case with k independent variables, the simple regression of yon x1 and the multi
ple regression of y on x1, x2, •.• , xk prod~;we MI .l~~~9HaJ ~sti~at~ . ()fx1 only if (1) the OLS 
coefficients on x2 through xk are all zerp .t?r .. (2)' ! 1 i~ , u':lc9~l~~e~ '!V~th each of x2, ... , xk. 
Neither of these is very likely in practice. But if the coeffi~ients on Xz .through xk are small, 
or the sample correlations between x1 and the pth~r.indepen9ent viuiables are insubstantial, 
then the simple and multiple regression estimat~~ o( t!ie 'e:ffe~t pf f ,.qn 'y can' be similar. 

. . . ·. . 

Goodness-of-Fit 

As with simple regression, we can define the total sum of squares (SST), the explained sum 
of squares (SSE), and the residual sum of squares or sum of squared residuals (SSR) as 

n 

SST = Z (yi- y)2 (3.24) 
i=l 



86 Part 1 Regression Analysis with Cross-Sectional Data 

n 

SSE= L (J;- y)2 

i=l 

n 

ssR = :L af. (3.26) 
i=l 

Using the same argument as in the simple regression case, we can show that 

SST = SSE + SSR. 

In other words, the total variation in {Y;} is the sum of the total variations in {.y;} and in 
{a;}. 

Assuming that the total variation in y is nonzero, as is the case unless Y; is constant in 
the sample, we can divide (3.27) by SST to get 

SSR/SST + SSE/SST = 1. 

Just as in the simple regression case, the R-squared is defined to be 

R2 = SSE/SST = 1 - SSR/SST, (3.28) 

and it is interpreted as the proportion of the sample variation in Y; that is explained by the 
OLS regression line. By definition, R2 is a number between zero and one. 

R2 can also be shown to equal the squared correlation coefficient between the actual 
Y; and the fitted values Y;· That is, 

[We have put the average of theY; in (3.29) to be true to the formula for a correlation coef
ficient; we know that this average equals y because the sample average of the residuals is 
zero and Y; = Y; + u;.] 

An important fact about R2 is that it never decreases, and it usually increases when 
another independent variable is added to a regression. This algebraic fact follows because, 
by definition, the sum of squared residuals never increases when additional regressors are 
added to the model. For example, the last digit of one's social security number has noth
ing to do with one's hourly wage, but adding this digit to a wage equation will increase 
the R2 (by a little, at least). 

The fact that R2 never decreases when any variable is added to a regression makes it a 
poor tool for deciding whether one variable or several variables should be added to a model. 
The factor that should determine whether an explanatory variable belongs in a model is 
whether the explanatory variable has a nonzero partial effect on y in the population. We 
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will show how to test this hypothesis in Chapter 4 when we cover statistical inference. 
We will also see that, when used properly, R2 allows us to test a group of variables to see 
if it is jmportant for explaining y. For now, we use it as a goodness-of-fit measure for a 
given model. 

(Determinants of College GPA) 

From the grade point average regression that we did earlier, the equation with R2 is 

c --------" colGPA = 1.29 + .453 hsGPA + .0094 ACT p; 
n = 14l,R2 = .176. 

This means that hsGPA and ACT together explain about 17.6 percent of the variation in college 
GPA for this sample of students. This may not seem like a high percentage, but we must 
remember that there are many other factors-including family background, personality, qual
ity of high school education, affinity for college-that contribute to a student's college per
formance. If hsGPA and ACT explained almost all of the variation in co/GPA. then performance 
in college would be preordained by high school performance! 

T ,.,, 

E~AMI?LE .3.§ 

(Explaining Arrest Records) 

CRIME1.RAW contains data on arrests during the year 1986 and other information on 2, 725 men 
born in either 1960 or 1961 in California. Each man in the sample was arrested at least once prior 
to 1986. The variable narr86 is the number of times the man was arrested during 1986: it is zero 
for most men in the sample (72.29 percent), and it varies from 0 to 12. (The percentage of men 
arrested once during 1986 was 20.51.) The variable pcnv is the proportion (not percentage) of 
arrests prior to 1986 that led to conviction, avgsen is average sentence length served for prior 
convictions (zero for most people), ptime86 is months spent in prison in 1986, and qemp86 is 
the number of quarters during which the man was employed in 1986 (from zero to four). 

A linear model explaining arrests is 

narr86 = {30 + {3 1pcnv + {32avgsen + {33ptime86 + {34qemp86 + u, 

where pcnv is a proxy for the likelihood for being convicted of a crime and avgsen is a mea
sure of expected severity of punishment, if convicted. The variable ptime86 captures the incar
cerative effects of crime: if an individual is in prison, he cannot be arrested for a crime out
side of prison. Labor market opportunities are crudely captured by qemp86. 

First, we estimate the model without the variable avgsen. We obtain 
p' -------- I narr86 = .712- .150 pcnv- .034 ptime86- .104 qemp86 

n = 2,725, R2 = .0413. 
., 

This equation says that, as a group, the three variables pcnv, ptime86, and qemp86 explain 
about 4.1 percent of the variation in narr86. 
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Each of the OLS slope coefficients has the anticipated sign. An increase in the proportion of 
convictions lowers the predicted number of arrests. If we increase pcnv by .50 (a large increase 
in the probability of conviction), then, holding the other factors fixed, 1:1~ = - .150(.50) 
= - .075. This may seem unusual because an arrest cannot change by a fraction. But we can 
use this value to obtain the predicted change in expected arrests for a large group of men. For 
example, among 100 men, the predicted fall in arrests when pcnv increases by .50 is -7.5. 

Similarly, a longer prison term leads to a lower predicted number of arrests. In fact, if 
ptime86 increases from 0 to 12, predicted arrests for a particular man fall by .034(12) = .408. 
Another quarter in which legal employment is reported lowers predicted arrests by .1 04, which 
would be 10.4 arrests among 100 men. 

If avgsen is added to the model, we know that R2 will increase. The estimated equation is -----narr86 = .707- .151 pcnv + .0074 avgsen- .037 ptime86- .103 qemp86 

n = 2,725, R2 = .0422. 

Thus, adding the average sentence variable increases R2 from .0413 to .0422, a practically 
small effect. The sign of the coefficient on avgsen is also unexpected: it says that a longer 
average sentence length increases criminal activity. 

Example 3.5 deserves a final word of caution. The fact that the four explanatory vaFi
ables included in the second regression explain only about 4.2 percent of the variation lin 
narr86 does not necessarily mean that the equation is useless. Even though these variables 
collectively do not explain much of the variation in arrests, it is still possible that the OES 
estimates are reliable estimates of the ceteris paribus effects of each independent variabl 
on narr86. As we will see, whether this is the case does not directly depend on the size 
of R2• Generally, a low R2 indicates that it is hard to predict individual outcomes on y wig_! 
much accuracy, something we study in more detail in Chapter 6. In the arrest examllle, 
the small R2 reflects what we already suspect in the social sciences: it is generally veey 
difficult to predict individual behavior. 

Regression through the Origin 

Sometimes, an economic theory or common sense suggests that {30 should be zero, and so 
we should briefly mention OLS estimation when the intercept is zero. Specifically, we 
now seek an equation of the form 

(3.30) 

where the symbol "-" over the estimates is used to distinguish them from the OLS esti
mates obtained along with the intercept [as in (3.11)]. In (3.30), when xi = 0, x2 = 0 .... 
xk = 0, the predicted value is zero. In this case, f;I , .. . , f;k are said to be the OLS estimates 
from the regression of yon xi, x2, .. . , xk through the origin. 

The OLS estimates in (3.30), as always, minimize the sum of squared residua1s, but 
with the intercept set at zero. You should be warned that the properties of OLS ilia~ 
we derived earlier no longer hold for regression through the origin. In partiGular, tlie 
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OLS residuals no longer have a zero sample average. Further, if R2 is defined as 1 -
""" - - 2 SSR/SST, where SST is given in (3.24) and SSR is now LJi= l (Y;- {31x; 1 - ..• - {3kxik) , 

then R2 can actually be negative. This means that the sample average, ji, "explains" more 
of the variation in theY; than the explanatory variables. Either we should include an inter
cept in the regression or conclude that the explanatory variables poorly explain y. In order 
to always have a nonnegative R-squared, some economists prefer to calculate R2 as the 
squared correlation coefficient between the actual and fitted values of y, as in (3.29). (In 
this case, the average fitted value must be computed directly since it no longer equals ji.) 
However, there is no set rule on computing R-squared for regression through the origin. 

One serious dmwback with regression through the origin is that, if the intercept {30 in the 
population model is different from zero, then the OLS estimators of the slope parameters 
will be biased. The bias can be severe in some cases. The cost of estimating an intercept 
when {30 is truly zero is that the variances of the OLS slope estimators are larger. 

3.3 The Expected Value of the OLS Estimators 

We now tum to the statistical properties of OLS for estimating the parameters in an under
lying population model. In this section, we derive the expected value of the OLS estima
tors. In particular, we state and discuss four assumptions, which are direct extensions of 
the simple regression model assumptions, under which the OLS estimators are unbiased 
for the population parameters. We also explicitly obtain the bias in OLS when an impor
tant variable has been omitted from the regression. 

You should remember that statistical properties have nothing to do with a particu
lar sample, but rather with the property of estimators when random sampling is done 
repeatedly. Thus, Sections 3.3, 3.4, and 3.5 are somewhat abstract. Although we give 
examples of deriving bias for particular models, it is not meaningful to talk about 
the statistical properties of a set of estimates obtained from a single sample. 

The first assumption we make simply defines the multiple linear regression (MLR) model. 

Assumption MLR.1 (Linear in Parameters) 

The model in the population can be written as 

where {30, {31, •.. , {3k are the unknown parameters (constants) of interest and u is an unob
servable random error or disturbance term. 

Equation (3.31) formally states the population model, sometimes called the true model, 
to allow for the possibility that we might estimate a model that differs from (3.31). The 
key feature is that the model is linear in the parameters {30, {31, ••• , f3k· As we know, (3.31) 
is quite flexible because y and the independent variables can be arbitrary functions of the 
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underlying variables of interest, such as natural logarithms and sql!ares [see, for example, 
equation (3.7)]. 

Assumption MLR.2 (Random Sampling) j 
e have a random sample of n observations, {(x;1,x;2, ... ,x;k.y;): i = 1 ,2, .. . ,n}, following the 
pulation model in Assumption MLR.1 . 

Sometimes, we need to write the equation for a particular observation i: for a randomly 
drawn observation from the population, we have 

Remember that i refers to the observation, and the second subscript on x is the variable 
number. For example, we can write a CEO salary equation for a particular CEO i as 

The term U; contains the unobserved factors for CEO i that affect his or her salary. For 
applications, it is usually easiest to write the model in population form, as in (3.31). It 
contains less clutter and emphasizes the fact that we are interested in estimating a popu
lation relationship. 

In light of model (3.31), the OLS estimators /3o. /31, ~ •••• , /3kfrom the regression ofy 
on x 1, ... , xk are now considered to be estimators of {30, {31, . . . , {3k. We saw, in Section 3.2_, 
that OLS chooses the estimates for a particular sample so that the residuals average out to 
zero and the sample correlation between each independent variable and the residuals is zero. 
Still, we need an assumption that ensures the OLS estimators are well defined. 

Assumption MLR.3 (No Perfect Collinearity) j 
the sample (and therefore in the population), none of the independent variables is constant 
d there are no exact linear relationships among the independent variables. 

Assumption MLR.3 is more complicated than its counterpart for simple regression because 
we must now look at relationships between all independent variables. If an independent wri
able in (3.31) is an exact linear combination of the other independent variables, then WCISA}' 

the model suffers from perfect coUinearity, and it cannot be estimated by OLS. 
It is important to note that Assumption MLR.3 does allow the independent variab1es 

to be correlated; they just cannot be perfectly correlated. If we did not allow for any cot· 
relation among the independent variables, then multiple regression would be of veFj lllin· 
ited use for econometric analysis. For example, in the model relating test scores to eiln
cational expenditures and average family income, 

avgscore = {30 + {31expend + {32avginc + u, 
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we fully expect expend and avginc to be correlated: school districts with high average 
family incomes tend to spend more per student on education. In fact, the primary moti
vation for including avginc in the equation is that we suspect it is correlated with expend, 
and so we would like to hold it fixed in the analysis. Assumption MLR.3 only rules out 
perfect correlation between expend and avginc in our sample. We would be very unlucky 
to obtain a sample where per student expenditures are perfectly correlated with average 
family income. But some correlation, perhaps a substantial amount, is expected and cer
tainly allowed. 

The simplest way that two independent variables can be perfectly correlated is when 
one variable is a constant multiple of another. This can happen when a researcher inad
vertently puts the same variable measured in different units into a regression equation. 
For example, in estimating a relationship between consumption and income, it makes 
no sense to include as independent variables income measured in dollars as well as 
income measured in thousands of dollars. One of these is redundant. What sense would 
it make to hold income measured in dollars fixed while changing income measured in 
thousands of dollars? 

We already know that different nonlinear functions of the same variable can appear 
among the regressors. For example, the model cons = {30 + {31inc + f3zincZ + u does 
not violate Assumption MLR.3: even though Xz = inc2 is an exact function of x1 = inc, 

'' inez is not an exact linear function of inc. Including ineZ in the model is a useful way to 
generalize functional form, unlike including income measured in dollars and in thou
sands of dollars. 

Common sense tells us not to include the same explanatory variable measured in dif
ferent units in the same regression equation. There are also more subtle ways that one 
independent variable can be a multiple of another. Suppose we would like to estimate an 
extension of a constant elasticity consumption function. It might seem natural to specify 
a model such as 

where x1 = log(inc) and Xz = log(incz). Using the basic properties of the natural log (see 
Appendix A), log(incZ) = 2·1og(inc). That is, Xz = 2x1, and naturally this holds for all 
observations in the sample. This violates Assumption MLR.3. What we should do instead 
is include [log(inc)]2, not log( inez), along with log(inc). This is a sensible extension of the 
constant elasticity model, and we will see how to interpret such models in Chapter 6. 

Another way that independent variables can be perfectly collinear is when one inde
pendent variable can be expressed as an exact linear function of two or more of the other 
independent variables. For example, suppose we want to estimate the effect of campaign 
spending on campaign outcomes. For simplicity, assume that each election has two can
didates. Let voteA be the percentage of the vote for Candidate A, let expendA be campaign 
expenditures by Candidate A, let expendB be campaign expenditures by Candidate B, and 
let totexpend be total campaign expenditures; the latter three variables are all measured in 
dollars. It may seem natural to specify the model as 

voteA = {30 + {31expendA + {32expendB + {33totexpend + u, (3.35) 
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in order to isolate the effects of spending by each candidate and the total amount of spend
ing. But this model violates Assumption MLR.3 because x3 = x 1 + x2 by definition. Trying 
to interpret this equation in a ceteris paribus fashion reveals the problem. The parameter 
of {31 in equation (3.35) is supposed to measure the effect of increasing expenditures by 
Candidate A by one dollar on Candidate A's vote, holding Candidate B's spending and 
total spending fixed. This is nonsense, because if expendB and totexpend are held fixed, 
then we cannot increase expendA. 

The solution to the perfect collinearity in (3.35) is simple: drop any one of the three 
variables from the model. We would probably drop totexpend, and then the coefficient on 
expendA would measure the effect of increasing expenditures by A on the percentage of 
the vote received by A, holding the spending by B fixed. 

The prior examples show that Assumption MLR.3 can fail if we are not careful in spec
ifying our model. Assumption MLR.3 also fails if the sample size, n, is too small in rela

In the previous example, if we use as explanatory variables expendA, 
expendB, and shareA, where shareA = 1 OO·(expendA!totexpend) 
is the percentage share of total campaign expenditures made by 
Candidate A, does this violate Assumption MLR.37 

tion to the number of parameters being 
estimated. In the general regression model 
in equation (3.31), there are k + 1 param
eters, and MLR.3 fails if n < k + 1. Intu
itively, this rrtakes sense: to estimate k + 1 
parameters, we need at least k + 1 obser
vations. Not surprisingly, it is better to 
ha've as many observations as possible, 

something we will see with our variance calculations in Section 3.4. 
If the model is carefully specified and n ~ k + 1, Assumption MLR.3 can fail in rare 

cases due to bad luck in collecting the sample. For example, in a wage equation with edu
cation and experience as variables, it is possible that we could obtain a random sample 
where each individual has exactly twice as much education as years of experience. This 
scenario would cause Assumption MLR.3 to fail, but it can be considered very unlikely 
unless we have an extremely small sample size. 

The final, and most important, assumption needed for unbiasedness is a direct exten
sion of Assumption SLR.4. 

Assumption MLR.4 (Zero Conditional Mean) 

The error u has an expected value of zero given any values of the independent variables. In 
other words, 

One way that Assumption MLR.4 can fail is if the functional relationship between the 
explained and explanatory variables is rnisspecified in equation (3.31): for example, if we 
forget to include the quadratic term inc2 in the consumption function cons = {30 + {31 inc 
+ {32inc2 + u when we estimate the model. Another functional form rnisspecification 
occurs when we use the level of a variable when the log of the variable is what actually 
shows up in the population model, or vice versa. For example, if the true model has 
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log(wage) as the dependent variable but we use wage as the dependent variable in our 
regression analysis, then the estimators will be biased. Intuitively, this should be pretty 
clear. We will discuss ways of detecting functional form misspecification in Chapter 9. 

Omitting an important factor that is correlated with any of x 1, x2, ••• , xk causes 
Assumption MLR.4 to fail also. With multiple regression analysis, we are able to include 
many factors among the explanatory variables, and omitted variables are less likely to be 
a problem in multiple regression analysis than in simple regression analysis . Neverthe
less, in any application, there are always factors that, due to data limitations or ignorance, 
we will not be able to include. If we think these factors should be controlled for and they 
are correlated with one or more of the independent variables, then Assumption MLR.4 
will be violated. We will derive this bias later. 

There are other ways that u can be correlated with an explanatory variable. In 
Chapter 15, we will discuss the problem of measurement error in an explanatory vari
able. In Chapter 16, we cover the conceptually more difficult problem in which one or 
more of the explanatory variables is determined jointly with y. We must postpone our 
study of these problems until we have a firm grasp of multiple regression analysis under 
an ideal set of assumptions. 

- When Assumption MLR.4 holds, we often say that we have exogenous explanatory 
variables. If xi is correlated with u for any reason, then xi is said to be an endogenous 
explanatory variable. The terms "exogenous" and "endogenous" originated in simulta
neous equations analysis (see Chapter 16), but the term "endogenous explanatory vari
able" has evolved to cover any case in which an explanatory variable may be cor
related with the error term. 

Before we show the unbiasedness of the OLS estimators under MLR.l to MLR.4, a word 
of caution. Beginning students of econometrics sometimes confuse Assumptions MLR.3 and 
MLR.4, but they are quite different. Assumption MLR.3 rules out certain relationships 
among the independent or explanatory variables and has nothing to do with the error, u. You 
will know immediately when carrying out OLS estimation whether or not Assumption 
MLR.3 holds. On the other hand, Assumption MLR.4-the much more important of the 
two--restricts the relationship between the unobservables in u and the explanatory variables. 
Unfortunately, we will never know for sure whether the average value of the unobservables 
is unrelated to the explanatory variables. But this is the critical assumption. 

We are now ready to show unbiasedness of OLS under the first four multiple regres
sion assumptions. As in the simple regression case, the expectations are conditional on 
the values of the explanatory variables in the sample, something we show explicitly in 
Appendix 3A but not in the text. 

Theorem 3.1 (Unbiasedness of OLS) 
Under Assumptions MLR.l through MLR.4, 

for any values of the population parameter {3i. In other words, the OLS estimators are unbi
ased estimators of the population parameters. 
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In our previous empirical examples, Assumption MLR.3 has been satisfied (because 
we have been able to compute the OLS estimates). Furthermore, for the most part, the 
samples are randomly chosen from a well-defined population. If we believe that the spec
ified models are correct under the key Assumption MLR.4, then we can conclude that OLS 
is unbiased in these examples. 

Since we are approaching the point where we can use multiple regression in serious 
empirical work, it is useful to remember the meaning of unbiasedness. It is tempting, in 
examples such as the wage equation in (3.19), to say something like "9.2 percent is an 
unbiased estimate of the return to education." As we know, an estimate cannot be unbi
ased: an estimate is a fixed number, obtained from ·a particular sample, which usually is 
not equal to the population parameter. When we say that OLS is unbiased under Assump
tions MLR.l through MLR.4, we mean that the procedure by which the OLS estimates 
are obtained is unbiased when we view the procedure as being applied across all possible 
random samples. We hope that we have obtained a sample that gives us an estimate close 
to the population value, but, unfortunately, this cannot be assured. What is assured is that 
we have no reason to believe our estimate is more likely to be too big or more likely to 
be too small. 

Including Irrelevant Variables in a Regression Model 

One issue that we can dispense with fairly quickly is that of inclusion of an irrelevant 
variable or overspecifying the model in multiple regression analysis. This means that 
one (or more) of the independent variables is included in the model even though it has no 
partial effect on y in the population. (That is, its population coefficient is zero.) 

To illustrate the issue, suppose we specify the model as 

and this model satisfies Assumptions MLR.l through MLR.4. However, x3 has no effect 
on y after x1 and x2 have been controlled for, which means that (33 == 0. The variable x3 

may or may not be correlated with x 1 or x2; all that matters is that, once x1 and x2 are con
trolled for, x3 has no effect on y. In terms of conditional expectations, E(yjx1,x2,x3) == 
E(yjxl,x2) == f3o + f31xl + f3-r2 · 

Because we do not know that {33 == 0, we are inclined to estimate the equation 
including x3: 

We have included the irrelevant variable, x3, in our regression. What is the effect of includ
ing x3 in (3.39) when its coefficient in the population model (3.38) is zero? In terms of the 
unbiasedness of /31 and ~. there is no effect. This conclusion requires no special derivation, 
as it follows immediately from Theorem 3.1. Remember, unbiasedn:ss means E<j3) = {3j 
for~any value of f3j, ipcluding f3j == 0. Thus, we can conclude that E(f3o) == {30, ¥(/31) = {31, 

E(f3J.) = {32, and E(~) == 0 (for any values of {30, {3 1, and /32). Even though ~itself will 
never be exactly zero, its average value across all random samples will be zero. 
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The conclusion of the preceding example is much more general: including one or more 
irrelevant variables in a multiple regression model, or overspecifying the model, does not 
affect the unbiasedness of the OLS estimators. Does this mean it is harmless to include 
irrelevant variables? No. As we will see in Section 3.4, including irrelevant variables can 
have undesirable effects on the variances of the OLS estimators. 

Omitted Variable Bias: The Simple Case 

Now suppose that, rather than including an irrelevant variable, we omit a variable that 
actually belongs in the true (or population) model. This is often called the problem of 
excluding a relevant variable or underspecifying the model. We claimed in Chapter 2 
and earlier in this chapter that this problem generally causes the OLS estimators to be 
biased. It is time to show this explicitly and, just as importantly, to derive the direction 
and size of the bias. 

Deriving the bias caused by omitting an important variable is an example of mis
specification analysis. We begin with the case where the true population model has two 
explanatory variables and an error term: 

and we assume that this model satisfies Assumptions MLR.l through MLR.4. 
Suppose that our primary interest is in {31, the partial effect of x1 on y. For example, y 

is hourly wage (or log of hourly wage), x1 is education, and x2 is a measure of innate abil
ity. In order to get an unbiased estimator of {31, we should run a regression of yon x1 and 
x2 (which gives unbiased estimators of {30 , {31, and~). However, due to our ignorance or 
data unavailability, we estimate the model by excluding x2• In other words, we perform a 
simple regression of y on x1 only, obtaining the equation 

(3.41) 

We use the symbol "-" rather than """ to emphasize that {31 comes from an underspeci
fied model. 

When first learning about the omitted variable problem, it can be difficult to distin
guish between the underlying true model, (3.40) in this case, and the model that we actu
ally estimate, which is captured by the regression in (3.41). It may seem silly to omit the 
variable x2 if it belongs in the model, but often we have no choice. For example, suppose 
that wage is determined by 

wage = {30 + {31educ + ~abil + u. 

Since ability is not observed, we instead estimate the model 

wage = {30 + {31educ + v, 

where v = {32abil + u. The estimator of {31 from the simple regression of wage on educ 
is what we are calling {31• 
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We derive the expected value of {31 conditional on the sample values of x 1 and x2• Deriv
ing this expectation is not difficult because {31 is just the OLS slope estimator from a sim
ple regression, and we have already studied this estimator extensively in Chapter 2. The 
difference here is that we must analyze its properties when the simple regression model 
is misspecified due to an omitted variable. 

As it turns out, we have done almost all of the work to derive the bias in the simple 
regression estimator of {31• From equation (3.23) we have the algebraic relationship {31 = 
~1 + {3z81, where ~1 and /3z are the slope estimators (if we could have them) from the mul
tiple regression 

Y; on x;1• x,"2, i = 1, ... ,n 

and 81 is the slope from the simple regression 

x,"2 on Xn, i = 1, ... ,n. 

Because 81 depends only on the independent variables in the sample, we treat it as fixed 
(nonrandom) when computing E({j1). Further, since the model in (3.40) satisfies 
Assumptions MLR.l to MLR.4, we know that ~1 and ~2 would be unbiased for {31 and 
{32, respectively. Therefore, 

E({j1) = E(~1 .r {3zS1) = E(~1 ) + E(/Jz)81 

= f3t + {3281, 

which implies the bias in {31 is 

(3.45) 

Because the bias in this case arises from omitting the explanatory variable x2, the term on 
the right-hand side of equation (3.46) is often called the omitted variable bias. 

From equation (3.46), we see that there are two cases where {31 is unbiased. The first 
is pretty obvious: if {32 = 0-so that x2 does not appear in the true model (3.40)-then 
{31 is unbiased. We already know this from the simple regression analysis in Chapter 2. 
The second case is more interesting. If 81 = 0, then {31 is unbiased for {31, even if {32 * 0. 
_ Because 81 is the sample covariance between x 1 and x2 over the sample variance of x 1, 

51 = 0 if, and only if, x 1 and x2 are uncorrelated in the sample. Thus, we have the impor
tant conclusion that, if x 1 and x2 are uncorrelated in the sample, then {31 is unbiased. This 
is not surprising: in Section 3.2, we showed that the simple regression estimator {31 and 
the multiple regression estimator ~1 are the same when x 1 and x2 are uncorrelated in the 
sample. [We can also show that {31 is unbiased without conditioning on the x;2 if E(x2Jx1) 

= E(x2); then, for estimating {31, leaving x2 in the error term does not violate the zero 
conditional mean assumption for the error, once we adjust the intercept.] 

When x 1 and x2 are correlated, S1 has the same sign as the correlation between x 1 and 
x2: S1 > 0 if x 1 and x2 are positively correlated and 81 < 0 if x 1 and x2 are negatively corre
lated. The sign of the bias in {31 depends on the signs of both {32 and 81 and is summarized 
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TABLE 3.2 

Summary of Bias in {3.. When x2 Is Omitted in Estimating Equation (3.40) 

Corr(xHx:z) > 0 Corr(x1,.t2) < 0 

{32 > 0 positive bias negative bias 

f3z < 0 negative bias positive bias 

in Table 3.2 for the four possible cases when there is bias. Table 3.2 warrants careful study. 
For example, the bias in i31 is positive if {32 > 0 (x2 has a positive effect on y) and x1 and 
x2 are positively correlated, the bias is negative if {32 > 0 and x1 and x2 are negatively cor
related, and so on. 

Table 3.2 summarizes the direction of the bias, but the size of the bias is also very 
important. A small bias of either sign need not be a cause for concern. For example, if 
the return to education in the population is 8.6 percent and the bias in the OLS esti
mator is 0.1 percent (a tenth of one percentage point), then we would not be very con
cerned. On the other hand, a bias on the order of three percentage points would be 
much more serious. The size of the bias is determined by the sizes of {32 and ~ 1 • 

In practice, since {32 is an unknown population parameter, we cannot be certain 
whether {32 is positive or negative. Nevertheless, we usually have a pretty good idea about 
the direction of the partial effect of x2 on y. Further, even though the sign of the correla
tion between x 1 and x2 cannot be known if x2 is not observed, in many cases, we can make 
an educated guess about whether x1 and x2 are positively or negatively correlated. 

In the wage equation (3.42), by definition, more ability leads to higher productivity 
and therefore higher wages: {32 > 0. Also, there are reasons to believe that educ and 
abil are positively correlated: on average, individuals with more innate ability choose 
higher levels of education. Thus, the OLS estimates from the simple regression equation 
wage = {30 + {3 1educ + v are on average too large. This does not mean that the estimate 
obtained from our sample is too big. We can only say that if we collect many random sam
ples and obtain the simple regression estimates each time, then the average of these esti
mates will be greater than {31• 

(Hourly Wage Equation) 

Suppose the model log(wage) = {30 + {31educ + {32abil + u satisfies Assumptions MLR.1 
through MLR.4. The data set in WAGE1.RAW does not contain data on ability, so we estimate 
{31 from the simple regression 

,...---_____; 

Iog(wage) = .584 + .083 educ 
n = 526, R2 = .186. 

(3.47) 
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This is the result from only a single sample, so we cannot say that .083 is greater than {31; the 
true return to education could be lower or higher than 8.3 percent (and we will never know 
for sure). Nevertheless, we know that the average of the estimates across all random samples 
would be too large. 

As a second example, suppose that, at the elementary school level, the average score 
for students on a standardized exam is determined by 

avgscore = /30 + f3 1expend + f32povrate + u, (3.48) 

where expend is expenditure per student and povrate is the poverty rate of the children in 
the school. Using school district data, we only have observations on the percentage of stu
dents with a passing grade and per student expenditures; we do not have information on 
poverty rates. Thus, we estimate /31 from the simple regression of avgscore on expend. 

We can again obtain the likely bias in i31. First, /32 is probably negative: there is ample 
evidence that children living in poverty score lower, on average, on standardized tests. 
Second, the average expenditure per student is probably negatively correlated with the 
poverty rate: the higher the poverty rate, the lower the average per student spending, so 
that Corr(x1, x2) < 0. From Table 3.2, i31 will have a positive bias. This observation has 
important implications. It could be that the true effect of spending is zero; that is, /31 = 0. 
However, the simple regression estimate of /31 will usually be greater than zero, and this 
could lead us to conclude that expenditures are important when they are not. 

When reading and performing empirical work in economics, it is important to master 
the terminology associated with biased estimators. In the context of omitting a variable 
from model (3.40), if E(iJ1) > /31, then we say that i31 has an upward bias. When E(iJ1) 

< f3 1, i31 has a downward bias. These definitions are the same whether /31 is positive 
or negative. The phrase biased towards zero refers to cases where E(iJ1) is closer to 
zero than /31• Therefore, if /3 1 is positive, then i31 is biased towards zero if it has a 
downward bias. On the other hand, if /31 < 0, then i31 is biased towards zero if it has an 
upward bias. 

Omitted Variable Bias: More General Cases 

Deriving the sign of omitted variable bias when there are multiple regressors in the esti
mated model is more difficult. We must remember that correlation between a single 
explanatory variable and the error generally results in all OLS estimators being biased. 
For example, suppose the population model 

satisfies Assumptions MLR.l through MLR.4. But we omit x3 and estimate the model as 
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Now, suppose that x2 and x3 are uncorrelated, but that x1 is correlated with x3• In other 
words, x1 is correlated with the omitted variable, but x2 is not. It is tempting to think that, 
while ~1 is probably biased based on the derivation in the previous subsection, ~is unbi
ased because x2 is uncorrelated with x3• Unfortunately, this is not generally the case: both 
~1 and ~ will normally be biased. The only exception to this is when x1 and x2 are also 
uncorrelated. 

Even in the fairly simple model above, it can be difficult to obtain the direction of bias 
in ~1 and~. This is because x 1, x2, and x3 can all be pairwise correlated. Nevertheless, an 
approximation is often practically useful. If we assume that x1 and x2 are uncorrelated, then 
we can study the bias in ~1 as if x2 were absent from both the population and the estimated 
models. In fact, when x1 and x2 are uncorrelated, it can be shown that 

II 

:L (xn - i 1)xi3 
E(~t) = f3t + {33...1.:.=::..!,:----

:L (xn- it)2 
i=l 

This is just like equation (3.45), but {33 replaces {32, and x3 replaces x2 in regression (3.44 ). 
Therefore, the bias in ~1 is obtained by replacing {32 with {33 and x2 with x3 in Table 3.2. If 
{33 > 0 and Corr(x1, x3) > 0, the bias in ~1 is positive, and so on. 

As an example, suppose we add exper to the wage model: 

wage = {30 + {3 1educ + {32exper + {33abil + u. 

If abil is omitted from the model, the estimators of both {31 and {32 are biased, even if we 
assume exper is uncorrelated with abil. We are mostly interested in the return to educa
tion, so it would be nice if we could conclude that ~1 has an upward or a downward bias 
due to omitted ability. This conclusion is not possible without further assumptions. As an 
approximation, let us suppose that, in addition to exper and abil being uncorrelated, educ 
and exper are also uncorrelated. (In reality, they are somewhat negatively correlated.) 
Since {33 > 0 and educ and abil are positively correlated, ~1 would have an upward bias, 
just as if exper were not in the model. 

The reasoning used in the previous example is often followed as a rough guide for 
obtaining the likely bias in estimators in more complicated models. Usually, the focus 
is on the relationship between a particular explanatory variable, say, x1, and the key 
omitted factor. Strictly speaking, ignoring all other explanatory variables is a valid prac
tice only when each one is uncorrelated with x1, but it is still a useful guide. Appendix 
3A contains a more careful analysis of omitted variable bias with multiple explanatory 
variables. 

3.4 The Variance of the OLS Estimators 

We now obtain the variance of the OLS estimators so that, in addition to knowing the cen
tral tendencies of the {3j, we also have a measure of the spread in its sampling distribution. 
Before finding the variances, we add a homoskedasticity assumption, as in Chapter 2. We 
do this for two reasons. First, the formulas are simplified by imposing the constant error 
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variance assumption. Second, in Section 3.5, we will see that OLS has an important effi
ciency property if we add the homoskedasticity assumption. 

In the multiple regression framework, homoskedasticity is stated as follows: 

Assumption MLR.S (Homoskedasticity) j 
e error u has ~he ~a me variance given any values of the explanatory variables. In other words, 
(ulx1, ... ,xk) - a . 

Assumption MLR.5 means that the variance in the error term, u, conditiqnal on the 
explanatory variables, is the same for all combinations of outcomes of the explanatory 
variables. If this assumption fails, then the model exhibits heteroskedasticity, just as in the 
two-variable case. 

In the equation 

wage = f30 + f3 1educ + f32exper + f33tenure + u, 

homoskedasticity requires that the variance of the unobserved error u does not depend on 
the levels of education, experience, or tenure. That is, 

Var(ujeduc, exper, tenure) = u 2• 

If this variance changes with any of the three explanatory variables, then heteroskedastic
ity is present. 

Assumptions MLR.l through MLR.5 are collectively known as the Gauss-Markov 
assumptions (for cross-sectional regression). So far, our statements of the assumptions 
are suitable only when applied to cross-sectional analysis with random sampling. As we 
will see, the Gauss-Markov assumptions for time series analysis, and for other situa
tions such as panel data analysis, are more difficult to state, although there are many 
similarities. 

In the discussion that follows, we will use the symbol x to denote the set of all inde
pendent variables, (x1, ... , xk). Thus, in the wage regression with educ, exper, and tenure 
as independent variables, x = (educ, exper, tenure). Then we can write Assumptions 
MLR.l and MLR.4 as 

and Assumption MLR.5 is the same as Var(yjx) = u 2• Stating the assumptions in this way 
clearly illustrates how Assumption MLR.5 differs greatly from Assumption MLR.4. 
Assumption MLR.4 says that the expected value of y, given x, is linear in the parameters, 
but it certainly depends on x1, x2, ... , xk. Assumption MLR.5 says that the variance of y, 
given x, does not depend on the values of the independent variables. 

We can now obtain the variances of the [:Jj, where we again condition on the sample 
values of the independent variables. The proof is in the appendix to this chapter. 
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Theorem 3.2 (Sampling Variances of the OLS Slope Estimators) 
Under Assumptions MLR.1 through MLR.S, conditional on the sample values of the indepen
dent variables, 

A u2 
Var(f3) = SST/1 - Rj) ' (3.5H 

for j = 1, 2, ... , k, where SSTi = ~;=l (x;i- x)2 is the total sample variation in xi• and RJ is the 
R-squared from regressing. xi on all other independent variables (and including an intercept). 

Before we study equation (3.51) in more detail, it is important to know that all of the 
Gauss-Markov assumptions are used in obtaining this formula. Whereas we did not need 
the homoskedasticity assumption to conclude that OLS is unbiased, we do need it to val
idate equation (3.51). 

The size of Var({3i) is practically important. A larger variance means a less precise 
estimator, and this translates into larger confidence intervals and less accurate hypothe
ses tests (as we will see in Chapter 4). In the next subsection, we discuss the elements 
comprising (3.51). 

The Components of the OLS Variances: Multicollinearity 

Equation (3.51) shows that the variance of {3idepends on three factors: u 2, SSTi, and RJ. 
Remember that the index j simply denotes any one of the independent variables (such as 
education or poverty rate). We now consider each of the factors affecting Var({3) in turn. 

THE ERROR VARIANCE, u 2 • From equation (3.51), a larger u2 means larger variances 
for the OLS estimators. This is not at all surprising: more "noise" in the equation (a larger 
a-2) makes it more difficult to estimate the partial effect of any of the independent variables 
on y, and this is reflected in higher variances for the OLS slope estimators. Because u 2 is a 
feature of the population, it has nothing to do with the sample size. It is the one component 
of (3.51) that is unknown. We will see later how to obtain an unbiased estimator of a-2. 

For a given dependent variable y, there is really only one way to reduce the error vari
ance, and that is to add more explanatory variables to the equation (take some factors out 
of the error term). Unfortunately, it is not always possible to find additional legitimate fac
tors that affect y. 

THE TOTAL SAMPLE VARIATION IN xi, SST/' Fr~m equation (3.51), we see that 
the larger the total variation in xi is, the smaller is Var({3i). Thus, everything else being 
equal, for estimating {3i. we prefer to have as much sample variation in xi as possible. We 
already discovered this in the simple regression case in Chapter 2. Although it is rarely 
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possible for us to choose the sample values of the independent variables, there is a way 
to increase the sample variation in each of the independent variables: increase the sample 
size. In fact, when sampling randomly from a population, SSTj increases without bound 
as the sample size gets larger and larger. This is the component of the variance that sys
tematically depends on the sample size. 

When SSTj is small, Var(S) can get very large, but a smap SSTj is not a violation of 
Assumption MLR.3. Technically, as SSTj goes to zero, Var(/3) approaches infinity. The 
extreme case of no sample variation in xi, SSTj = 0, is not allowed by Assumption MLR.3. 

THE LINEAR RELATIONSHIPS AMONG THE INDEPENDENT VARIABLES, RJ. The term 
RJ in equation (3.51) is the most difficult of the three components to understand. This term 
does not appear in simple regression analysis because there is only one independent vari
able in such cases. It is important to see that this R-squared is distinct from the R-squared 
in the regression of yon x1, x2, ... , xk: RJ is obtained from a regression involving only 
the independent variables in the original model, where xi plays the role of a dependent 
variable. 

Consider first the k = 2 case: y = {30 + {31x1 + f3zX2 + u. Then, Var(S1) = u 2/ 

[SST1(1 - R[)], where R[ is the R-squared from the simple regression of x1 on x2 (and an 
intercept, as always). Because the R-squared measures goodness-of-fit, a value of R[ close 
to one indicates that x2 explains much of the variation in x1 in the sample. This means that 
x1 and x2 are highly correlated. 

As Rr increases to one, Var(S1) gets larger and larger. Thus, a high degree of linear 
relationship between x1 and x2 can lead to large variances for the OLS slope estimators. 
(A similar argument applies to S2.) See Figure 3.1 for the relationship between Var(S1) 

and the R-squared from the regression of x1 on x2• 

In the general case, RJ is the proportion of the total variation in xi that can be explained 
by the other i~dependent variables appearing in the equation. For a given u 2 and SSTi, the 
smallest Var(f3) is obtained when RJ = 0, which happens if, and only if, xi has zero sam
ple correlation with every other independent variable. This is the best case for estimating 
{3i, but it is rarely encountered. 

The other extreme case, RJ = 1, is ruled out by Assumption MLR.3, because 
RJ = 1 means that, in the sample, xi is a peifect linear combination of some of the other 
independent variables in the regression. A more relevant case is when Rf is "close" to 
one. ~rom equation (3.51) and Figure 3.1, we see that this can cause Var(/3) to be large: 
Var(~) -7 co as RJ -7 1. High (but not perfect) correlation between two or more inde
pendent variables is called multicollinearity. 

Before we discuss the multicollinearity issue further, it is important to be very clear 
on one thing: a case where RJ is close to one is not a violation of Assumption MLR.3. 

Since multicollinearity violates none of our assumptions, the "problem" of multi
collinearity is not really well defined. When we say that multicollinearity arises for esti
mating {3i when RJ is "close" to one, we put "close" in quotation marks because there is 
no absolute number that we can cite to conclude that multicollinearity is a problem. For 
example, RJ = .9 means that 90 percent of the sample variation in xi can be explained by 
the other independent variables in the regression model. Unquestionably, this means that 
xjhas a strong linear relationship to the other independent variables. But whether this trans-
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Var(~1 ) 

QL---------------------~-------------------------
R~ 

lates into a Var(/3j) that is too large to be useful depends on the sizes of a 2 and SSTj'AAs 
we will see in Chapter 4, for statistical inference, what ultimately matters is how big {3j is 
in relation to its standard deviation. 

"'Just as a large value of RJ can cause a large Var(/3), so can a small value of SSTj. There
fore, a small sample size can lead to large sampling variances, too. Worrying about high 
degrees of correlation among the independent variables in the sample is really no different 
from worrying about a small sample size: both work to increase Var(/3). The famous 
University of Wisconsin econometrician Arthur Goldberger, reacting to econometricians' 
obsession with multicollinearity, has (tongue in cheek) coined the term micronumerosity, 
which he defines as the "problem of small sample size." [For an engaging discussion of mul
ticollinearity and rnicronumerosity, see Goldberger (1991).] 

Although the problem of multicollinearity cannot be clearly defined, one thing is clear: 
everything else being equal, for estimating f3j, it is better to have less correlation between 
xj and the other independent variables. This observation often leads to a discussion of how 
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to "solve" the multicollinearity problem. In the social sciences, where we are usually 
passive collectors of data, there is no good way to reduce variances of unbiased estima
tors other than to collect more data. For a given data set, we can try dropping other inde
pendent variables from the model in an effort to reduce multicollinearity. Unfortunately, 
dropping a variable that belongs in the population model can lead to bias, as we saw in 
Section 3.3. 

Perhaps an example at this point will help clarify some of the issues raised concerning 
multicollinearity. Suppose we are interested in estimating the effect of various school 
expenditure categories on student performance. It is likely that expenditures on teacher 
salaries, instructional materials, athletics, and so on, are highly correlated: wealthier 
schools tend to spend more on everything, and poorer schools spend less on everything. 
Not surprisingly, it can be difficult to estimate the effect of any particular expenditure cat
egory on student performance when there is little variation in one category that cannot 
largely be explained by variations in the other expenditure categories (this leads to high 
RJ for each of the expenditure variables). Such multicollinearity problems can be miti
gated by collecting more data, but in a sense we have imposed the problem on ourselves: 
we are asking questions that may be too subtle for the available data to answer with any 
precision. We can probably do much better by changing the scope of the analysis and 
lumping all expenditure categories together, since we would no longer be trying to esti
mate the partial effect of each separate category. 

Another important point is that a high degree of correlation between certain indepen
dent variables can be irrelevant as to how well we can estimate other parameters in the 
model. For example, consider a model with three independent variables: 

where x2 and x3 are highly correlated. Then Var(/32) and Var(/33) may be large. But the 
amount of correlation between x2 and x3 has no direct effect on Var(/31). In fact, if x 1 is 

uncorrelated with x2 and x3, then R? = 0 

QUESTION 3.4 
Suppose you postulate a model explaining final exam score in 
terms of class attendance. Thus, the dependent variable is final 
exam score, and the key explanatory variable is number of classes 
attended. To control for student abilities and efforts outside the 
classroom, you include among the explanatory variables cumula
tive GPA, SAT score, and measures of high school performance. 
Someone says, "You cannot hope to learn anything from this 
exercise because cumulative GPA, SAT score, and high school per
formance are likely to be highly collinear." What should be your 
response? 

and Var(/31) = u 2/SST1, regardless of how 
much correlation there is between x2 and 
x3• If {31 is the parameter of interest, we do 
not really care about the amount of corre
lation between x2 and x3• 

The previous observation is important 
because economists often include many 
control variables in order to isolate the 
causal effect of a particular variable. For 
example, in looking at the relationship 
between loan approval rates and percent 
of minorities in a neighborhood, we might 

include variables like average income, average housing value, measures of creditwor
thiness, and so on, because these factors need to be accounted for in order to draw 
causal conclusions about discrimination. Income, housing prices, and creditworthiness 
are generally highly correlated with each other. But high correlations among these con
trols do not make it more difficult to determine the effects of discrimination. 
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Variances in Misspecified Models 

The choice of whether or not to include a particular variable in a regression model can 
be made by analyzing the tradeoff between bias and variance. In Section 3.3, we derived 
the bias induced by leaving out a relevant variable when the true model contains two 
explanatory variables. We continue the analysis of this model by comparing the variances 
of the OLS estimators. 

Write the true population model, which satisfies the Gauss-Markov assumptions, as 

Y = f3o + {3,x, + f3iXz + u. 

We consider two estimators of {31• The estimator ~1 comes from the multiple regression 

In other words, we include x2, along with x1, in the regression model. The estimator [31 is 
obtained by omitting x2 from the model and running a simple regression of yon x1: 

When {32 * 0, equation (3.53) excludes a relevant variable from the model and, as we saw 
in Section 3.3, this induces a bias in [3, unless x1 and x2 are uncorrelated. On the other hand, 
fi, is unbiased for {31 for any value of {32, including {32 = 0. It follows that, if bias is used 
as the only criterion, fi, is preferred to i31• 

The conclusion that ~1 is always preferred to /31 does not carry over when we bring 
variance into the picture. Conditioning on the values of x1 and x2 in the sample, we have, 
from (3.51), 

(3.54) 

where SST1 is the total variation in x 1, and R[ is the R-squared from the regression of x1 
on x2• Further, a simple modification of the proof in Chapter 2 for two-'!ariable regression 
shows that 

Comparing (3.55) to (3.54) shows that Var({31) is always smaller than Var(fi1), unless x1 

and x2 are uncorrelated in the sample, in which case the two estimators [31 and fi, are the 
same. Assuming that x 1 and x2 are not uncorrelated, we can draw the following conclusions: 

I. When {32 * 0, /31 is biased, ~1 is unbiased, and Var(i]1) < Var(~1 ). 
2. When {32 = 0, /31 and /31 are both unbiased, and Var(i]1) < Var(~1 ). 

From the second conclusion, it is clear that i31 is preferred if {32 = 0. Intuitively, if x2 does 
not have a partial effect on y, then including it in the model can only exacerbate the mul
ticollinearity problem, which leads to a less efficient estimator of {31• A higher variance 
for the estimator of {3 1 is the cost of including an irrelevant variable in a model. 



106 Part 1 Regression Analysis with Cross-Sectional Data 

The case where {32 * 0 is more difficult. Leaving x2 out of tbe model results in a biased 
estimator of {31• Traditionally, econometricians have suggested comparing the likely size 
of the bias due to omitting x2 with the reduction in the variance-summarized in the size 
of Rr-to decide whether x2 should be included. However, when {32 * 0, there are two 
favorable reasons for including x2 in the model. The most important of these is that any 
bias in j31 does not shrink as the sample size grows; in fact, the bias does not necessar
ily follow any pattern. Therefore, we can usefully think of the bias as being roughly the 
same for any sample size. On the other hand, Var(j31) and Var(~1 ) both shrink to zero as 
n gets large, which means that the multicollinearity induced by adding x2 becomes less 
important as the sample size grows. In large samples, we would prefer ~1 • 

The other reason for favoring ~1 is more subtle. The variance formula in (3.55) is con
ditional on the values of xi! and x;2 in the sample, which provides the best scenario for j31• 

When {32 * 0, the variance of j31 conditional only on x 1 is larger than that presented in 
(3.55). Intuitively, when {32 * 0 and x2 is excluded from the model, the error variance 
increases because the error effectively contains part of x2. But (3.55) ignores the error vari
ance increase because it treats both regressors as nonrandom. A full discussion of which 
independent variables to condition on would lead us too far astray. It is sufficient to say 
that (3.55) is too generous when it comes to measuring the precision in j31• 

Estimating u 2: Standard Errors 
of the OLS Estimators 
We now show how to choose an unbiased estimator of a 2, which then allows us to obtain 
unbiased estimators of Var({3) . 

Because a 2 = E(u2), an unbiased "estimator" of a 2 is the sample average of the squared 
~II 

errors: n· 1~;= 1 uf. Unfortunately, this is not a true estimator because we do not observe the 
u;. Nevertheless, recall that the errors can be written as u; = Y;- {30 - {31xn - {3z:x;2 - ••• 

- f3tx;k• and so the reason we do not observe the u; is that we do not know the {3i. When 
we replace each {3i with its OLS estimator, we get the OLS residuals: 

ll; = Y;- ~o - ~1xi1 - ~zX;z - · · · - ~kX;k· 

It seems natural to estimate a 2 by replacing u; with the ll;. In the simple regression case, 
we saw that this leads to a biased estimator. The unbiased estimator of a 2 in the general 
multiple regression case is 

fil= (~a1)/<n- k- 1) = SSR/(n ~ k - 1). (3.56) 

We already encountered this estimator in the k = 1 case in simple regression. 
The term n - k - 1 in (3.56) is the degrees offreedom (dj) for the general OLS prob

lem with n observations and k independent variables. Since there are k + 1 parameters in 
a regression model with k independent variables and an intercept, we can write 
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df= n- (k + 1) 

= (number of observations) -(number of estimated parameters). 
(3.57) 

This is the easiest way to compute the degrees of freedom in a particular application: count 
the number of parameters, including the intercept, and subtract this amount from the 
number of observations. (In the rare case that an intercept is not estimated, the number of 
parameters decreases by one.) 

Technically, the division by n - k- 1 in (3.56) comes from the fact that the expected 
value of the sum of squared residuals is E(SSR) = (n - k - 1)a2• Intuitively, we can 
figure out why the degrees of freedom adjustment is necessary by returning to 

the first order conditions for the OLS estimators. These can be written as L~=t it;= 0 and 

L~=t xu£1; = 0, wherej = 1, 2, ... , k. Thus, in obtaining the OLS estimates, k + 1 restric
tions are imposed on the OLS residuals. This means that, given n - (k + 1) of the resid
uals, the remaining k + 1 residuals are known: there are only n - (k + 1) degrees of free
dom in the residuals. (This can be contrasted with the errors u;. which have n degrees of 
freedom in the sample.) 

For reference, we summarize this discussion with Theorem 3.3. We proved this theo
rem for the case of simple regression analysis in Chapter 2 (see Theorem 2.3). (A general 
proof that requires matrix algebra is provided in Appendix E.) 

j Theorem 3.3 (Unbiased Estimation of u 2 ) 

~der the Gauss-Markov Assumptions MLR.1 through MLR.S, E(a2) = u 2• J 
The positive square root of &2, denoted fJ; is called the standard error of the regression 
(SER). The SER is an estimator of the standard deviation of the error term. This estimate 
is usually reported by regression packages, although it is called different things by differ
ent packages. (In addition to SER, u is also called the standard error of the estimate and 
the root mean squared error.) 

Note that u can either decrease or increase when another independent variable is added 
to a regression (for a given sample). This is because, although SSR must fall when another 
explanatory variable is added, the degrees of freedom also falls by one. Because SSR is 
in the numerator and df is in the denominator, we cannot tell beforehand which effect will 
dominate. 

For constructing confidence intervals and conducting tests in Chapter 4, we will need 
to estimate the standard deviation of pi, which is just the square root of the variance: 

sd({ji) = a![SSTp - Rj)]112• 

Since a i~ unknown, we replace it with its estimator, u . This gives us the standard 
error of Pi 
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Just as the OLS estimates can be obtained for any given sample, so can the standard errors. 
Since se(~) depends on fr, the standard error has a sampling distribution, which will play 
a role in Chapter 4. 

We should emphasize one thing about standard errors. Because (3.58) is obtained directly 
from the variance formula in (3.51), and because (3.51) relies on the homoskedasticity 
Assumption MLR.5, it follows that the standard error formula in (3.58) is not a valid esti
mator of sd(~) if the errors exhibit heteroskedasticity. Thus, while the presence of het
eroskedasticity does not cause bias in the {3i, it does lead to bias in the usual formula for 
Var({j), which then invalidates the standard errors. This is important because any regression 
package computes (3.58) as the default standard error for each coefficient (with a somewhat 
different representation for the intercept). If we suspect heteroskedasticity, then the "usual" 
OLS standard errors are invalid, and some corrective action should be taken. We will see in 
Chapter 8 what methods are available for dealing with heteroskedasticity. 

3.5 Efficiency of OLS: 
The Gauss-Markov Theorem 

In this section, we state and discuss the important Gauss-Markov Theorem, which jus
tifies the use of the OLS method rather than using a variety of competing estimators. We 
know one justification for OLS already: under Assumptions MLR.l through MLR.4, OLS 
is unbiased. However, there are many unbiased estimators of the f3i under these assump
tions (for example, see Problem 3.13). Might there be other unbiased estimators with vari
ances smaller than the OLS estimators? 

If we limit the class of competing estimators appropriately, then we can show that OLS 
is best within this class. Specifically, we will argue that, under Assumptions MLR.l 
through MLR.5, the OLS estimator {3i for f3i is the best linear unbiased estimator 
(BLUE). In order to state the theorem, we need to understand each component of the 
acronym "BLUE." First, we know what an estimator is: it is a rule that can be applied to 
any sample of data to produce an estimate. We also know what an unbiased estimator is: 
in the current context, an estimator, say, i3i, of f3i is an unbiased estimator of f3i if E<.i3) = 
f3i for any {30, {31, • •• , {3 k· 

What about the meaning of the term "linear"? In the current context, an estimator i3; 
of f3i is linear if, and only if, it can be expressed as a linear function of the data on the 
dependent variable: • 

(3.59) 

where each wij can be a function of the sample values of all the independent variables. The 
OLS estimators are linear, as can be seen from equation (3.22). 

Finally, how do we define "best"? For the current theorem, best is defined as smallest 
variance. Given two unbiased estimators, it is logical to prefer the one with the smallest 
variance (see Appendix C). 
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Now, let {30, {31, •. . , {3kdenote the OLS estimators in model (3.31) under Assumptions 
MLR.l through MLR.5. The SJauss-Mru:_kov Theorem says that, for any estimator i3i that 
is linear and unbiased, Var(f3) ::5 Var(f3), and the inequality is usually strict. In other 
words, in the class of linear unbiased estimators, OLS has the smallest variance (under 
the fi~e Gauss-Markov assumptions). Actually, the theorem says more than this. If we 
want to estimate any linear function of the {3i, then the corresponding linear combination 
of the OLS estimators achieves the smallest variance among all linear unbiased estima
tors. We conclude with a theorem, which is proven in Appendix 3A. 

Theorem 3.4 (Gauss-Markov Theorem) J 
der Assumptions MLR.1 through MLR.S, ~0• ~ 1 .... , ~k are the best linear unbiased estima-
s (BLUEs) of {30, {31, . .. , {3k, respectively. 

It is because of this theorem that Assumptions MLR.l through MLR.5 are known as the 
Gauss-Markov assumptions (for cross-sectional analysis). 

The importance of the Gauss-Markov Theorem is that, when the standard set of 
assumptions holds, we need not look for alternative unbiased estimators of the form 
in (3.59): none will be better than OLS. Equivalently, if we are presented with an 
estimator that is both linear and unbiased, then we know that the variance of this estimator 
is at least as large as the OLS variance; no additional calculation is needed to show this. 

For our purposes, Theorem 3.4 justifies the use of OLS to estimate multiple regression 
models. If any of the Gauss-Markov assumptions fail, then this theorem no longer holds. 
We already know that failure of the zero conditional mean assumption (Assumption 
MLR.4) causes OLS to be biased, so Theorem 3.4 also fails. We also know that het
eroskedasticity (failure of Assumption MLR.5) does not cause OLS to be biased. However, 
OLS no longer has the smallest variance among linear unbiased estimators in the presence 
of heteroskedasticity. In Chapter 8, we analyze an estimator that improves upon OLS when 
we know the brand of heteroskedasticity. 

SUMMARY 

1. The multiple regression model allows us to effectively hold other factors fixed while 
examining the effects of a particular independent variable on the dependent variable. It 
explicitly allows the independent variables to be correlated. 

2. Although the model is linear in its parameters, it can be used to model nonlinear rela
tionships by appropriately choosing the dependent and independent variables. 

3. The method of ordinary least squares is easily applied to estimate the multiple 
regression model. Each slope estimate measures the partial effect of the corresponding 
independent variable on the dependent variable, holding all other independent variables 
fixed. 
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4. R2 is the proportion of the sample variation in the dependent variable explained by tlie 
independent variables, and it serves as a goodness-of-fit measure. It is important not 1fo 
put too much weight on the value of R2 when evaluating econometric models. 

5. Under the first four Gauss-Markov assumptions (MLR.l through MLR.4), the OJ!,S 
estimators are unbiased. This implies that including an irrelevant variable in a moile1J lias 
no effect on the unbiasedness of the intercept and other slope estimators. On the otlien 
hand, omitting a relevant variable causes OLS to be biased. In many circumstances, fiie 
direction of the bias can be determined. · 

6. Under the five Gauss-Markov assumptions, the variance of an OLS slope estimator; is 
given by Va_,r({3) = a 2/[SSTp - Rj)]. As the error variance a 2 increases, so does Var~~~~ 
while Var(f3j) decreases as the sample variation in xj, SSTj, increases. The term Rj m~a
sures the amount of collinearity between x

1
. and the other explanatory variables. As I.R~ 

~ J 
approaches one, Var(f3) is unbounded. 

7. Adding an irrelevant variable to an equation generally increases the variances of ffie 
remaining OLS estimators because of multicollinearity. 

8. Under the Gauss-Markov assumptions (MLR.l through MLR.5), the OLS estimators 
are best linear unbiased estimators (BLUEs). 

The Gauss-Markov Assumptions 

The following is a summary of the five Gauss-Markov assumptions that we used ;in ili.is 
chapter. Remember, the first four were used to establish unbiasedness of OLS, while~ the 
fifth was added to derive the usual variance formulas and to conclude that OLS is bes~ 
linear unbiased. 

Assumption MLR.1 (Linear in Parameters) 

The model in the population can be written as 

Y = f3o + f3,x, + f3iX2 + .. · + f3~.xk + u, 

where {30, {31, ... , f3k are the unknown parameters (constants) of interest and u is an runo"'b
servable random error or disturbance term. 

Assumption MLR.2 (Random Sampling) 

We have a random sample of n observations, { (xi/,x;2 • .•• ., X;k,Y;): i = 1 ,2, ... , nj} !fol
lowing the population model in Assumption MLR.l. 

Assumption MLR.3 (No Perfect Collinearity) 

In the sample (and therefore in the population), none of the independent variaDles is 
constant, and there are no exact linear relationships among the independent variables. 

Assumption MLR.4 (Zero Conditional Mean) 

The error u has an expected value of zero given any values of the independent variables. 
In other words, 
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Assumption MLR.S (Homoskedasticity) 

The error u has the same variance given any value of the explanatory variables. In other 
words, 

KEY TERMS 

Best Linear Unbiased Gauss-Markov Theorem Population Model 
Estimator (BLUE) Inclusion of an Irrelevant Residual 

Biased Towards Zero Variable Residual Sum of Squares 
Ceteris Paribus Intercept Sample Regression 
Degrees of Freedom (df) Micronumerosity Function (SRF) 
Disturbance Misspecification Analysis Slope Parameter 
Downward Bias Multicollinearity Standard Deviatio'! of ~j 
Endogenous Explanatory Multiple Linear Regression Standard Error of {3j 

Variable Model Standard Error of the 
Error Term Multiple Regression Regression (SER) 
Excluding a Relevant Analysis Sum of Squared Residuals 

Variable OLS Intercept Estimate (SSR) 
Exogenous Explanatory OLS Regression Line Total Sum of Squares 

Variable OLS Slope Estimate (SST) 
Explained Sum of Omitted Variable Bias True Model 

Squares (SSE) Ordinary Least Squares Underspecifying the 
First Order Conditions Overspecifying the Model Model 
Gauss-Markov Partial Effect Upward Bias 

Assumptions Perfect Collinearity 

PROBLEMS 

3.1 Using the data in GPA2.RAW on 4,137 college students, the following equation was 
estimated by OLS: -colgpa = 1.392 - .0135 hsperc + .00148 sat 

n = 4,137, R2 = .273, 

where colgpa is measured on a four-point scale, hsperc is the percentile in the high school 
graduating class (defined so that, for example, hsperc = 5 means the top five percent of 
the class), and sat is the combined math and verbal scores on the student achievement test. 

(i) Why does it make sense for the coefficient on hsperc to be negative? 
(ii) What is the predicted college GPA when hsperc = 20 and sat = 1050? 
(iii) Suppose that two high school graduates, A and B, graduated in the same 

v, 
percentile from high school, but Student A's SAT score was 140 points 
higher (about one standard deviation in the sample). What is the predicted 

wl"l difference in college GPA for these two students? Is the difference large? 
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(iv) Holding hsperc fixed, what difference in SAT scores leads to a predicted 
colgpa difference of .50, or one-half of a grade point? Comment on your 
answer. 

3.2 The data in WAGE2.RAW on working men was used to estimate the following 
equation: ---educ = 10.36 - .094 sibs + .131 meduc + .210 feduc 

n = 722, R2 = .214, 

where educ is years of schooling, sibs is number of siblings, meduc is mother's years of 
schooling, andfeduc is father's years of schooling. 

(i) Does sibs have the expected effect? Explain. Holding meduc and feduc 
fixed, by how much does sibs have to increase to reduce predicted years 
of education by one year? (A noninteger answer is acceptable here.) 

(ii) Discuss the interpretation of the coefficient on meduc. 
(iii) Suppose that Man A has no siblings, and his mother and father each have 

12 years of education. Man B has no siblings, and his mother and father 
each have 16 years of education. What is the predicted difference in years 
of education between B and A? 

3.3 The following model is a simplified version of the multiple regression model used 
by Biddle and Hamermesh (1990) to study the tradeoff between time spent sleeping and 
working and to look at other factors affecting sleep: 

sleep = /30 + /31totwrk + f32educ + f33age + u, 

where sleep and totwrk (total work) are measured in minutes per week and educ and age 
are measured in years. (See also Computer Exercise C2.3.) 

(i) If adults trade off sleep for work, what is the sign of {31? 
(ii) What signs do you think /32 and {33 will have? 
(iii) Using the data in SLEEP75.RAW, the estimated equation is --sleep = 3638.25 - .148 totwrk- 11.13 educ + 2.20 age 

n = 706, R2 = .113. 

If someone works five more hours per week, by how many minutes is sleep 
predicted to fall? Is this a large tradeoff? 

(iv) Discuss the sign and magnitude of the estimated coefficient on educ. 
(v) Would you say totwrk, educ, and age explain much of the variation in 

sleep? What other factors might affect the time spent sleeping? Are these 
likely to be correlated with totwrk? 

3.4 The median starting salary for new law school graduates is determined by 

log( salary) = {30 + f3 1LSAT + f32GPA + f331og(libvol) + f341og(cost) 

+ f35rank + u, 

where LSAT is the median LSAT score for the graduating class, GPA is the median col
lege GPA for the class, libvol is the number of volumes in the law school library, cost is 
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the annual cost of attending law school, and rank is a law school ranking (with rank = 1 
being the best). 

(i) Explain why we expect {35 !5 0. 
(ii) What signs do you expect for the other slope parameters? Justify your 

answers. 
(iii) Using the data in LAWSCH85.RAW, the estimated equation is -----log(salary) = 8.34 + .0047 LSAT + .248 GPA + .095log(libvol) 

+ .038 log(cost) - .0033 rank 

n = 136, R2 = .842. 

What is the predicted ceteris paribus difference in salary for schools with a 
median GPA different by one point? (Report your answer as a percentage.) 

(iv) Interpret the coefficient on the variable log(libvol). 
(v) Would you say it is better to attend a higher ranked law school? 

How much is a difference in ranking of 20 worth in terms of predicted 
starting salary? 

3.5 In a study relating college grade point average to time spent in various activities, you 
distribute a survey to several students. The students are asked how many hours they spend 
each week in four activities: studying, sleeping, working, and leisure. Any activity is put 
into one of the four categories, so that for each student, the sum of hours in the four 
activities must be 168. 

(i) In the model 

GPA = {30 + {3 1study + {32sleep + {33work + {34/eisure + u, 

does it make sense to hold sleep, work, and leisure fixed, while changing 
study? 

(ii) Explain why this model violates Assumption MLR.3. 
(iii) How could you reformulate the model so that its parameters have a useful 

interpretation and it satisfies Assumption MLR.3? 

3.6 Consider the multiple regression model containing three independent variables, under 
Assumptions MLR.l through MLR.4: 

Y = f3o + f3txt + /3-rz + f33x3 + u. 

You are interested in estimating the sum of the parameters on x1 and x2; call this 01 = {31 

+ f3z· 
(i) 
(ii) 

Show that 01 = S1 + /3z is an unbiased estimator of 01• 

Find Var(01) in terms of VarCS1), VarCS2), and CorrCS1./3z). 
3.7 Which of the following can cause OLS estimators to be biased? 

(i) Heteroskedasticity. 
(ii) Omitting an important variable. 
(iii) A sample correlation coefficient of .95 between two independent variables 

both included in the model. 
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3.8 Suppose that average worker productivity at manufacturing firms (avgprod) 
depends on two factors, average hours of training (avgtrain) and average worker 
ability (avgabil): 

avgprod = {30 + {3 1avgtrain + {32avgabil + u. 

Assume that this equation satisfies the Gauss-Markov assumptions. If grants have been 
given to firms whose workers have less than average ability, so that avgtrain and avgabil 
are negatively correlated, what is the likely bias in ~1 obtained from the simple regression 
of avgprod on avgtrain? 

3.9 The following equation describes the median housing price in a community in terms 
of amount of pollution (nox for nitrous oxide) and the ave.rage number of rooms in houses 
in the community (rooms) : 

log(price) = {30 + {3 1log(nox) + {32rooms + u. 

(i) What are the probable signs of {31 and {32? What is the interpretation of 
{31? Explain. 

(ii) Why might nox [or more precisely, log(nox)] and rooms be negatively cor
related? If this is the case, does the simple regression of log(price) on 
log(nox) produce an upward or a downward biased estimator of {3 1? 

(iii) Using the data in HPRICE2.RAW, the following equations were estimated: ----log(price) = 11.71 - 1.043 log(nox), n = 506, R2 = .264. ----log(price) = 9.23 - .718log(nox) + .306 rooms, n = 506, R2 = .514. 

Is the relationship between the simple and multiple regression estimates of the 
elasticity of price with respect to nox what you would have predicted, given 
your answer in part (ii)? Does this mean that - .718 is definitely closer to the 
true elasticity than -1.043? 

3.10 Suppose that you are interested in estimating the ceteris paribus relationship 
between y and x 1• For this purpose, you can collect data on two control variables, x2 and 
x3• (For concreteness, you might think of y as final exam score, x1 as class attendance, x2 
as GPA up through the previous semester, and x3 as SAT or ACT score.) Let ~1 be the 
simple regression estimate from y on x 1 and let ~1 be the multiple regression estimate 
from yon x1,x2,x3• 

(i) If x1 is highly correlated with x2 and x3 in the sample, and x2 and x3 have 
large partial effects on y, would you expect ~1 and ~1 to be similar or very 
different? Explain. 

(ii) If x 1 is almost uncorrelated with x2 and x3, but x2 and x3 are highly cor
related, will ~1 and ~1 tend to be similar or very different? Explain. 

(iii) If x 1 is highly correlated with x2 and x3, and x2 and x3 have small par
tial effects on y, would you expect se(~ 1 ) or se(~ 1 ) to be smaller? 
Explain. 

(iv) If x 1 is almost uncorrelated with x2 and x3, x2 and x3 have large partial 
effects on y, and x2 and x3 are highly correlated, would you expect se(~1 ) 
or se(~1 ) to be smaller? Explain. 
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3.11 Suppose that the population model determining y is 

y = {30 + {31x1 + {3~2 + {33x3 + u, 

and this model satisifies Assumptions MLR.l through MLR.4. However, we estimate the 
model that omits x3. Let ~0, ~1 , and ~ be the OLS estimators from the regression of y on 
x 1 and x2• Show that the expected value of ~1 (given the values of the independent vari
ables in the sample) is 

n 

2: filxi3 

E(~l) = {31 + {33...:..;=""""':,--

2: r;l 
i=l 

where the fil are the OLS residuals from the regression of x1 on x2• [Hint: The formula for 
~1 comes from equation (3.22). Plug Y; = {30 + {3 1xil + {3~;2 + {33xi3 + u; into this equa
tion. After some algebra, take the expectation treating x;3 and fil as nonrandom.] 

3.12 The following equation represents the effects of tax revenue mix on subsequent 
employment growth for the population of counties in the United States: 

growth = {30 + {3 1sharep + {32share1 + {33shares + other factors, 

where growth is the percentage change in employment from 1980 to 1990, sharep is the 
share of property taxes in total tax revenue, share1 is the share of income tax revenues, 
and shares is the share of sales tax revenues. All of these variables are measured in 1980. 
The omitted share, shareF, includes fees and miscellaneous taxes. By definition, the four 
shares add up to one. Other factors would include expenditures on education, infrastruc
ture, and so on (all measured in 1980). 

(i) Why must we omit one of the tax share variables from the equation? 
(ii) Give a careful interpretation of {31. 

3.13 (i) Consider the simple regression model y == {30 + {31x + u under the first 
four Gauss-Markov assumptions. For some function g(x), for example g(x) 
= x2 or g(x) = log(l + x2), define Z; = g(x;). Define a slope estimator as 

~~ = (~ (Z;- i)Y;)!(~ (Z;- i)x;)· 
•=I •=I 

Show that ~1 is linear and unbiased. Remember, because E(uix) = 0, you 
can treat both X; and Z; as nonrandom in your derivation. 

(ii) Add the homoskedasticity assumption, MLR.5. Show that 

(iii) Show directly that, under the Gauss-Markov assumptions, Var(~1 ) ~ 
Var(~1 ), where ~1 is the OLS estimator. [Hint: The Cauchy-Schwartz 
inequality in Appendix B implies that 
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and report the equation in the usual form, including the sample size and 
R-squared. Are the signs of the slope coefficients what you expected? 
Explain. 

(ii) What do you make of the intercept you estimated in part (i)? In partic
ular, does it make sense to set the two explanatory variables to zero? 
[Hint: Recall that log(l)=O.] 

(iii) Now run the simple regression of mathlO on log(expend), and compare 
the slope coefficient with the estimate obtained in part (i). Is the esti
mated spending effect now larger or smaller than in part (i)? 

(iv) Find the correlation between [expend= log(expend) and lnchprg. Does 
its sign make sense to you? 

(v) Use part (iv) to explain your findings in part (iii). 

C3.8 Use the data in DISCRIM.RAW to answer this question. These are zip 
code-level data on prices for various items at fast-food restaurants, along with charac
teristics of the zip code population, in New Jersey and Pennsylvania. The idea is to see 
whether fast-food restaurants charge higher prices in areas with a larger concentration 
of blacks. 

(i) 

(ii) 

Find the average values of prpblck and income in the sample, along with 
their standard deviations. What are the units of measurement of prpblck 
and income? 
Consider a model to explain the price of soda, psoda, in terms of the 
proportion of the population that is black and median income: 

psoda = /30 + f31prpblck + f32income + u. 

Estimate this model by OLS and report the results in equation form, 
including the sample size and R-squared. (Do not use scientific notation 
when reporting the estimates.) Interpret the coefficient on prpblck. Do 
you think it is economically large? 

(iii) Compare the estimate from part (ii) with the simple regression estimate 
from psoda on prpblck. Is the discrimination effect larger or smaller 
when you control for income? 

(iv) A model with a constant price elasticity with respect to income may be 
more appropriate. Report estimates of the model 

log(psoda) = /30 + f3 1prpblck + f32income + u. 

If prpblck increases by .20 (20 percentage points), what is the estimated 
percentage change in psoda? (Hint: The answer is 2.xx, where you fill 
in the "xx.") 

(v) Now add the variable prppov to the regression in part (iv). What happens 

to {3prpblck? 

(vi) Find the correlation between log(income) and prppov. Is it roughly what 
you expected? 

(vii) Evaluate the following statement: "Because log(income) and prppov 
are so highly correlated, they have no business being in the same 
regression." 
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3A.1 Derivation of the First Order Conditions in Equation (3.13) 
The analysis is very similar to the simple regression case. We must characterize the solu
tions to the problem 

II 

min L (Y; - bo- b!xil - ... - bk.xik)z. 
b0, b1, ... , bk ;;1 

Taking the partial derivatives with respect to each of the bi (see Appendix A), evaluating 
them at the solutions, and setting them equal to zero gives 

n 

-2 L (Y; - f3o- /3!xil- · · · - /3~;k) = 0 
j;! 

~ A A A 

-2~ X;/Y; - f3o- {31x;1 - ••• - f3~;k) = 0, for all j = 1, ... , k. 
j;! 

Canceling the -2 gives the first order conditions in (3.13). 

3A.2 Derivation of Equation (3.22) 

To derive (3.22), write xi! in terms of its fitted value and its residual from the regression 
of x1 on x2, ••• , xk: xi! = Xn + fn, for all i = 1, ... , n. Now, plug this into the second equa
tion in (3.13): 

n 

L (xn + fn)(Y; - f3o - /3Icxm - .. · - ~~;k) = 0. (3.60) 
j ; l 

By the definition of the OLS residual il;. since Xn is just a linear function of the explana
tory variables x;2 •••• , X;k• it follows that L~; 1 Xnil; = 0. Therefore, equation (3.60) can be 
expressed as 

(3.61) 

Since the fn are the residuals from regressing x1 on x2, •.. , xk, L~; 1 X;/n = 0, for allj = 
""" A 2, ... , k. Therefore, (3.61) is equivalent to ~;; 1 fn(Y; - {31xn) = 0. Finally, we use the 

""" A fact that ~;; 1 X;/n = 0, which means that {31 solves 

n 

L fn(Y;- /3/n) = 0. 
j;! 

Now, straightforward algebra gives (3.22), provided, of course, that L~; 1 ff1 > 0; this is 
ensured by Assumption MLR.3. 
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3A.3 Proof of Theorem 3.1 
We prove Theorem 3.1 for ~1 ; the proof for the other slope parameters is virtually identi
cal. (See Appendix E for a more succinct proof using matrices.) Under Assumption 
MLR.3, the OLS estimators exist, and we can write ~1 as in (3.22). Under Assumption 
MLR.1 , we can write Y; as in (3.32); substitute this for Y; in (3.22). Then, using "'/I ~ - "'II A - • - "'II A - "'/I A2 "'"i= l 'il - 0, "'"i=l xiiril- 0, for allJ- 2, .. . , k, and "'"i=l xilril- "'"i=l r ;1• we have 

(3.62) 

Now, under Assumptions MLR.2 and MLR.4, the expected value of each ll;, given all inde
pendent variables in the sample, is zero. Since the fil are just functions of the sample inde
pendent variables, it follows that 

E(~1 IX) = {31 + (~ fiiE(u;IX)) /(~ fr1) 

= 131 + (~ ril ·o)f(·~ rr~) = 131· 
r=l r=l 

where X denotes the data on all independent variables and E(~1 IX) is the expected value 
of ~1 , given xil, .. . , xik• for all i = 1, ... , n. This completes the proof. 

3A.4 General Omitted Variable Bias 
We can derive the omitted variable bias in the general model in equation (3.31) under the 
first four Gauss-Markov assumptions. In particular, let the ~i,j = 0, 1, ... , k beth': OLS esti
mators from the regression using the full set of explanatory variables. Let the _{3i,j = 0,1, 
... , k - 1 be the OLS estimators from the regression that leaves out xk. Let 8i, j = 1, ... , 
k - 1 be the slope coefficient on xi in the auxiliary regression of X;k on xil, xi2, ... X;.k-l• i = 
I, ... , n. A useful fact is that 

(3.63) 

This shows explicitly that, when we do not control for xk in the regression, the estimated 
partial effect of xi equals the partial effect when we include xk plus the partial effect of xk 
on y times the partial relationship between the omitted variable, xk, an~ xi, j < k. Condi
tional on the entire set of explanatory variables, X, ~e know that the {3i are all unbiased 
for the corresponding {3i, j = l, ... , k. Further, since 8i is just a function of X, we have 

E(,8)X) = E(~)X) _:+- E(~kiX)Bi 
= f3j + f3A· 

(3.64) 

Equation (3.64) shows that ,Bi is biase_d for {3i unless f3k = 0-in which case xk has no 
partial effect in the population-or 8i equals zero, which means that X;k and xii are 
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partially uncorrelated in the sample. The key to obtaining equation (3.64) is equation 
(3.63). To show equation (3.63), we can use equation (3.22) a couple of times. For sim
plicity, we look at j = 1. Now, /31 is the slope coefficient in the simple regression of Y; 
on fn, i = 1 ... , n, where the fn are the OLS residuals from the regression of Xn on x,'2, 

X;3 • .•• , X; k-l· Consider the numerator of the expression for /31: ~;= 1 fnY;· But for each i, we 
can writ~ Y; = So + /31xn + ... + jjk.xik + U; and plug in for Y;· Now, by properties of the 
OLS residuals, the fn have zero sample average and are uncorrelated with x;2, x;3 • ••• , xi,k-l 

in the sample. Similarly, the ft; have zero sample average and zero sample correlation with 
Xn, x,'2, ... , X;k· It follows that the fn and ft; are uncorrelated in the sample (since the fn are 
just linear combinations of xil, x,'2, ... , X;,k- 1). So 

(3.6'5) 

~n ~n -
Now, ...:::.,;=1 fnxn = ...:::.,;= 1 r;f. which is also the denominator of {31• Therefore, we have 
shown that 

This is the relationship we wanted to show. 

3A.5 Proof of Theorem 3.2 
Again, we prove this for j = 1. Write /31 as in equation (3.62). Now, under MLR.5, 
Var(u;IX) = a 2, for all i = 1, ... , n. Under random sampling, the u; are independent, even 
conditional on X, and the fn are nonrandom conditional on X. Therefore, 

Var(/311X) = (~ fl1 Var(u;IX)) /(~ fl1r 

Now, since ~;=I f11 is the sum of squared residuals from regressing x1 on x2, ... , xk, 

~;=I f11 = SST1(1 - Rf). This completes the proof. 

3A.6 Proof of Theorem 3.4 
We show that, for any other linear unbiased estimator /31 of {31, Var(/31) ~ Var(/31), where 
/31 is the OLS estimator. The focus on j = 1 is without loss of generality. 

For /31 as in equation (3.59), we can plug in for Y; to obtain 
n 11 n n n 

/31 = f3o ~ Wn + {31 ~ WnXil + /32~ wilxi2 + ··· + f3k~ wilxik + ~ wilui. 
i=l i=l i=l i=l i=l 
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Now, since the w;1 are functions of the xij, 
II II Jl n II 

EC/3r!X) = /30~ wn + /3 1 ~ w; 1x;1 + /32 ~ w;1x;2 + ... + j3k~ w; 1X;k + ~ wnE(u;!X) 
i=J i=J i=J i=l i=J 

, IJ " JJ 

= J3o~ W;r + l3r ~ W;rX;r + J3z ~ W;rX;2 + ·· · + J3k~ W;rX;k 
i=J i=l i=J i=l 

because E(u;jX) = 0, for all i = I, ... , n under MLR.2 and MLR.4. Therefore, for E(/31iX) 
to equal j31 for any values of the parameters, we must have 

tl II II 

~ w11 = 0, ~ w; 1X; 1 = I, ~ w; 1xu = 0, j = 2, ... , k. 
i=J i=l i=l 

(3.66) 

Now, let f; 1 be the residuals from the regression of x; 1 on x;2 • • • • , X;k· Then, from (3 .66) ~r 
follows that 

n 

~w;/;r= 
i=l 

(3.67) 

~II 
because X;1 = X; 1 + f;1 and £.J;=r wilx;1 = 0. Now, consider the differenc;e between 
Var(/31jX) and Var(/31jX) under MLR. l through MLR.5: 

Because of (3.67), we can write the difference in (3.68), without u 2, as 

But (3.69) is simply 

II 

~ (w;r- i'/;r)2, 
i=l 

t3.68) 

where '91 = (~:¥ 1 w;/n)/(~·;= 1 frr). as can be seen by squaring each term in~
summing, and then canceling terms. Because (3.70) is just the sum of squared 
als from the simple regression of w; 1 on f; 1-remember that the sample average of fn 
zero-(3.70) must be nonnegative. This completes the proof. 




