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Multiple Regression Analysis: Inference 

This chapter continues our treatment of multiple regression analysis. We now tum 
to th~:< problem of testing hypotheses about the parameters in the population regres­

sion model. We begin by finding the distributions of the OLS estimators under the added 
assumption that the population error is normally distributed. Sections 4.2 and 4.3 cover 
hypothesis testing about individual parameters, while Section 4.4 discusses how to test a 
single hypothesis involving more than one parameter. We focus on testing multiple restric­
tions in Section 4.5 and pay particular attention to determining whether il group of inde­
pendent variables can ibe omitted from a model. 

4.1 Sampling Distributions 
of the OLS Estimators 

Up to this point, we have formed a set of assumptions under which OLS is unbiased; 
we have also derived and discussed the bias caused by omitted variables. In Section 
3.4, we oBtained the variances of the OLS estimators under the Gauss-Markov assump­
tions. In Section 3.5, we showed that this variance is smallest among linear unbiased 
estimators. 

'Knowing tfie expected value and variance of the OLS estimators is useful for describ­
ing the precision of the OLS estimators. However, in order to perform statistical inference, 
we need to know more than just tlie :fifSt two moments of ~i; we need to know the full 
samplin¥ distribution of the f3.i· Even under the Gauss-Markov assumptions, the distribu­
tion of {3i can fiave virtually any shape. 

When we condition on the values of the independent variables in our sample, it is clear 
that the Sa.Il!pling distributions of the OLS estimators depena on the underlying distribu­
tion of the errors. To make the sampling distributions of the ~i tractable, we now assume 
that tlie unobserved error is normally distributed in the population. We call this the nor­
mality assumption. 

123 
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Assumption MLR.6 (Normality) 

e population error u is independent of the explanatory variables x1, x2, . . • , xk and is normally 
tributed with zero mean and variance u 2: u - Normai(O,u2). 

Assumption MLR.6 is much stronger than any of our previous assumptions. In fact~ 
since u is independent of the xi under MLR.6, E(ulx1, • • • , xk) = E(u) = 0 and Var(ulx1, ••• , 

xk) = Var(u) = a 2. Thus, if we make Assumption MLR.6, then we are necessarily assum­
ing MLR.4 and MLR.5. To emphasize that we are assuming more than before, we will 
refer to the full set of Assumptions MLR.l through MLR.6. 

For cross-sectional regression applications, Assumptions MLR.l through MLR.6 are 
called the classical linear model (CLM) assumptions. Thus, we will refer to the mode1 
under these six assumptions as the classical linear model. It is best to think of the CL;Nf 
assumptions as containing all of the Gauss-Markov assumptions plus the assumption of a 
normally distributed error term. 

Under the CLM assumptions, the OLS estimators ~0, ~1 , ••• , ~k have a stronger effi­
ciency property than they would under the Gauss-Markov assumptions. It can be show,IIJ 
that the OLS estimators are the minimum variance unbiased estimators, which means 
that OLS has the smallest variance among unbiased estimators; we no longer have to 
restrict our comparison to estimators that are linear in theY;· This property of OLS under 
the CLM assumptions is discussed further in Appendix E. 

A succinct way to summarize the population assumptions of the CLM is 

ylx- Normal(/30 + j31x 1 + /3~2 + ... + J3kxk,a2), 

where xis again shorthand for (x1, ••• , xk). Thus, conditional on x, y has a normal distri­
bution with mean linear in x 1, ••• , xk and a constant variance. For a single independent vari­
able x, this situation is shown in Figure 4.1. 

The argument justifying the normal distribution for the errors usually runs something 
like this: Because u is the sum of many different unobserved factors affecting y, we can 
invoke the central limit theorem (see Appendix C) to conclude that u has an approximate 
normal distribution. This argument has some merit, but it is not without weaknesses. lrJISI, 

the factors in u can have very different distributions in the population (for examwe, abil­
ity and quality of schooling in the error in a wage equation). Although the centrlil ilimit 
theorem (CLT) can still hold in such cases, the normal approximation can be poor depend­
ing on how many factors appear in u and how different are their distributions. 

A more serious problem with the CLT argument is that it assumes that all uno"bsecved 
factors affect y in a separate, additive fashion. Nothing guarantees that this is so. If ll 
is a complicated function of the unobserved factors, then the CLT argument does not 
really apply. 

In any application, whether normality of u can be assumed is really an empiricalmat· 
ter. For example, there is no theorem that says wage conditional on educ, eyper, 
tenure is normally distributed. If anything, simple ·reasoning suggests that the 
is true: since wage can never be less than zero, it cannot, strictly speaking, 'have a 
mal distribution. Further, because there are minimum wage laws, some fraction of 
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I?IGURE 4.1 
lihe homoskedastiG normal distribution with a single explanatory variable. 

f(ylx) 
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population earns exactly the minimum wage, which also violates the normality assump­
tion. Nevertheless, as a practical matter, we can ask whether the conditional wage dis­
tribution is "close" to being normal. Past empirical evidence suggests that normality is 
not a good assumption for wages. 

Often, using a transformation, especially taking the log, yields a distribution that is 
closer to normal. For example, something like log(price) tends to have a distribution that 
looks more normal than the distribution of price. Again, this is an empirical issue. We will 
discuss the consequences of nonnormality for statistical inference in Chapter 5. 

There are some examples where MLR.6 is clearly false. Whenever y takes on just a 
few values it cannot have anything close to a normal distribution. The dependent vari­
able in Example 3.5 provides a good example. The variable narr86, the number of times 
a young man was arrested in 1986, takes on a small range of integer values and is zero 
for most men. Thus, narr86 is far from being normally distributed. What can be done 
in these cases? As we will see in Chapter 5-and this is important-nonnormality of 
the errors is not a serious problem with large sample sizes. For now, we just make the 
normality assumption. 

I 
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Nonnality of the error tenn translates into nonnal sampling distributions of the OLS 
estimators: 

Theorem 4.1 (Normal Sampling Distributions) 
Under the CLM assumptions MLR.1 through MLR.6, conditional on the sample values of the 
independent variables, 

where Var(A) was given in Chapter 3 [equation (3.51)]. Therefore, 

({3i- f3Ysd({3i)- Nonnal(O,l). _j 
The proof of ( 4.1) is not that difficult, given the properties of nonnally distributed ran-

A A "'n 
dam variables in Appendix B. Each {3i can be written as {3i = {3i + ~i= 1 wiiui, where wiJ = 
f vfSSRi, fii is the ;rn residual from the regression of the xi on all the other independent vari­
ables, and SSRi is the sum of squared residuals from this regression [see equation (3.62ia. 
Since t~e wu depend only on the independent variables, they can be treated as nonrandom. 
Thus, {3jisjust a linear combination of the errors in the sample, lui: i = 1, 2, ... , n}. Unde~ 

Suppose that u is independent of the explanatory variables, and it 
takes on the values -2, -1, 0, 1, and 2 with equal probability of 
1/5. Does this violate the Gauss-Markov assumptions? Does this 
violate the CLM assumptions? 

Assumption MLR.6 (and the random sam,. 
piing Assumption MLR.2), the errors are 
independent, identically distributed Nbt­
mal{O,u2) random variables. An importan 
fact about independent nonnal random 
variables is that a linear combination of 
such random variables is nonnally distriB­

uted (see Appendix B). This basically completes the proof. In Section 3.3, we showeCI that 
E({3i) = {3i, and we derived Var({3) in Section 3.4; there is no need tore-derive these faats. 

The second part of this theorem follows immediately from the fact that when w. stan­
dardize a nonnal random variable by subtracting off its mean and dividing by its stiiiielard 
deviation, we end up with a standard nonnal random variable. 

The conclusions of Theorem 4.1 can be strengthened. In addition to (4.1), any linear 
combination of the f3o, {31, ••• ,A is also normally distributed, and any subset of tlie 4bas 
a joint nonnal distribution. These facts underlie the testing results in the remaindeE of tb.is 
chapter. In Chapter 5, we will show that the nonnality of the OLS estimators is still 
approximately true in large samples even without nonnality of the errors. 

4.2 Testing Hypotheses about a Single 
Population Parameter: The t Test 

t 

This section covers the very important topic of testing hypotheses about any single 
eter in the population regression function. The population model can be written as 
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(4.2) 

and we assume that it satisfies the CLM assumptions. We know that OLS produces unbi­
ased estimators of the f3i. In this section, we study how to test hypotheses about a par­
ticular f3j· For a full understanding of hypothesis testing, one must remember that the f3i 
are unknown features of the population, and we will never know them with certainty. 
Nevertheless, we can hypothesize about the value of f3i and then use statistical inference 
to test our hypothesis. 

In order to construct hypotheses tests, we need the following result: 

Theorem 4.2 (t Distribution for the Standardized Estimators) 
Under the CLM assumptions MLR.1 through MLR.6, 

where k + 1 is the number of unknown parameters in the population model y = f30 + 
f3 1x1 + .. . + f3kxk + u (k slope parameters and the intercept f30) . 

This result differs from Theorem 4.1 in some notable respects. Theorem 4.1 showed 
that, under the CLM assumptions, (~i - f3)/sd(~i) - ANormal(O,l ). The t distribution in 
(4.3) comes from the fact that the constant u in sd(/3) has been replaced with the ran­
dom variable fT . The proof that this leads to a t distribution with n - k - 1 degrees 
of freedom is not especially insightful. Essentially, the proof shows that (4.3) can be 
written as the ratio of the standard normal random variable (~i- f3i)lsd(~) over the 
square root of fT1/u1. These random variables can be shown to be independent, and (n 
- k - 1)a2/u2 - X~-k- 1 • The result then follows from the definition of at random 
variable (see Section B.5). 

Theorem 4.2 is important in that it allows us to test hypotheses involving the f3j· In 
most applications, our primary interest lies in testing the null hypothesis 

where j corresponds to any of the k independent variables. It is important to understand 
what (4.4) means and to be able to describe this hypothesis in simple language for a par­
ticular application. Since f3i measures the partial effect of xi on (the expected value of) y, 
after controlling for all other independent variables, (4.4) means that, once x1, x1, ... , xi_ 1, 
xi+ 1, ... , xk have been accounted for, xi has no effect on the expected value of y. We can­
not state the null hypothesis as '\does have a partial effect on y" because this is true for 
any value of f3i other than zero. Classical testing is suited for testing simple hypotheses 
like (4.4). -

As an example, consider the wage equation 

log( wage) = {30 + f3 1educ + f3zexper + f33tenure + u. 
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The null hypothesis H0: {32 = 0 means that, once education and tenure have been accounted 
for, the number of years in the workforce (exper) has no effect on hourly wage. This is an 
economically interesting hypothesis. If it is true, it implies that a person's work history 
prior to the current employment does not affect wage. If {32 > 0, then prior work experi­
ence contributes to productivity, and hence to wage. 

You probably remember from your statistics course the rudiments of hypothesis test­
ing for the mean from a normal population. (This is reviewed in Appendix C.) The 
mechanics of testing (4.4) in the multiple regression context are very similar. The hard 
part is obtaining the coefficient estimates, the standard errors, and the critical values, but 
most of this work is done automatically by econometrics software. Our job is to learn how 
regression output can be used to test hypotheses of interest. 

The statistic we use to test (4.4) (against any alternative) is called "the" t statistic or 
"the" t ratio of {31 and is defined as 

We have put "the" in quotation marks because, as we will see shortly, a more general form 
of the t statistic is needed for testing other hypotheses about {3i' For now, it is important to 
know that (4.5) is suitable only for testing (4.4). For particular applications, it is helpful to 
index t statistics using the name of the independent variable; for example, teduc would be 
the t statistic for f3educ· 

The t statistic for {31 is simple to compute given {31 and its standard error. In fact, most 
regression packages do the division for you and report the t statistic along with each coef­
ficient and its standard error. 

Before discussing how to use ( 4.5) formally to test H0: {31 = 0, it is useful to see w~y 
lfi. has features that make it reasonable as a~test s}atistic to detect {3j =F 0. First, sin:e se(~) 
ii always positive, t~. has the same sign as ~: if f!i is positive, then so i~ t~., and if {31 is neg­
ative, so is t~1:.. Seco~d, for a given value of se({31), a larger value of~ 1dads to larger val­
ues oft~.· If {31 becomes more negative, so does t~.· 

~incd' we are testing H0: {3j = 0, it is only natti'ral to look at our un~biased estimator of 
{31, {31, for guidance. In any interesting application, the point estim~te {31 will never exactly 
be zero, ~hether or not H0 is true. The question is: How far is {3j from zero? A sample 
value of {31 very far from zero provides evidence aga.i.J.?st H0: {31 = 0. ~owever, we must 
recognize that there is a sampling error in our estimate~~· so the size of {31 must be weighed 
against its~ sampling error. Since the standard error of {31 is an estimate~ of the standard devi­
ation of {31, t~. measures how many estimated standard deviations {31 is ~way from zero. 
This is precis~ly what we do in testing whether the mean of a population is zero, using 
the standard t statistic from introductory statistics. Values oft~. sufficiently far from zero 
will result in a rejection of H0. The precise rejection rule dependl on the alternative hypoth­
esis and the chosen significance level of the test. 

Determining a rule for rejecting (4.4) at a-given significance level-that is, the prob­
ability of rejecting H0 when it is true-requires knowing the sampling distribution of 
l[J. when H0 is true. From Theorem 4.2, we know this to be tn-k-l· This is the key the­
ofetical result needed for testing ( 4.4 ). 
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Before proceeding, it is important to remember that we are testing hypotheses about 
the population parameters. We are not testing hypotheses about the estimates from a par­
ticular sample. Thus, it never makes sense to state a null hypothesis as "H0: {31 = 0" or, 
even worse, as "H0: .237 = 0" when the estimate of a parameter is .237 in the sample. We 
are testing whether the unknown population value, {31, is zero. 

Some treatments of regression analysis define the t statistic as the absolute value of 
(4.5), so that the t statistic is always positive. This practice has the drawback of making 
testing against one-sided alternatives clumsy. Throughout this text, the t statistic always 
has the same sign as the corresponding OLS coefficient estimate. 

Testing against One-Sided Alternatives 

In order to determine a rule for reje~ting H0, we need to decide on the relevant alterna­
tive hypothesis. First, consider a one-sided alternative of the form 

(4.6) 

This means that we do not care about alternatives to H0 of the form H1: f3i < 0; for 
some reason, perhaps on the basis of introspection or economic theory, we are ruling 
out population values of f3i less than zero. (Another way to think about this is that the 
null hypothesis is actually H0: f3i :S 0; in either case, the statistic tp . is used as the test 
statistic.) ' 

How should we choose a rejection rule? We must first decide on a significance level 
or the probability of rejecting H0 when it is in fact true. For concreteness, suppose we have 
decided on a 5% significance level, as this is the most popular choice. Thus, we are will­
ing to mistakenly reject H0 when it is true 5% of the time. Now, while tp . has a t distribu­
tion under H0-so that it has zero mean-under the alternative {3i > 0, tti'e expected value 
of tp. is positive. Thus, we are looking for a "sufficiently large" positive value of tp. in 
ordet to reject H0: {3i = 0 in favor of H1: {3i > 0. Negative values oft i3· provide no evidehce 
in favor of H1• ' 

The definition of "sufficiently large," with a 5% significance level, is the 951h percentile 
in a t distribution with n - k - 1 degrees of freedom; denote this by c. In 
other words, the rejection rule is that H0 is rejected in favor of H1 at the 5% significance 
level if 

(4.7) 

By our choice of the critical value c, rejection of H0 will occur for 5% of all random sam­
ples when H0 is true. 

The rejection rule in (4.7) is an example of a one-tailed test. In order to obtain c, we 
only need the significance level and the degrees of freedom. For example, for a 5% level 
test and with n - k - 1 = 28 degrees of freedom, the critical value is c = 1.701. If tp. < 
1. 701, then we fail to reject H0 in favor of ( 4.6) at the 5% level. Note that a negative value 
for tp., no matter how large in absolute value, leads to a failure in rejecting H0 in favor of 
(4.6): (See Figure 4.2.) 
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FIGURE 4.2 
5% rejeGtion rul~ for the alternative H1 : {3i > 0 with 28 df. 

1.701 rejection 
region 

The same procedure can be used with other significance levels. For a 10% level test 
and if df = 21, the critical value is c = 1.323. For a 1% significance level and if df = 21, 
c = 2.518. All of these critical values are obtained directly from Table G.2. You should 
note a pattern in the critical values: as the significance level falls, the critical value 
increases, so that we require a larger and larger value of tp. in order to reject H0• Thus, if 
H0 is rejected at, say, the 5% level, then it is automaticalfy rejected at the 10% level as 
well. It makes no sense to reject the null hypothesis at, say, the 5% level and then to redo 
the test to determine the outcome at the 10% level. 

As the degrees of freedom in the t distribution gets large, the t distribution approaches 
the standard normal distribution. For example, when n - k - l = 120, the 5% critical 
value for the one-sided alternative ( 4. 7) is,1.658, compared with the standard normal value 
of 1.645. These are close enough for practical purposes; for degrees of freedom greater 
than 120, one can use the standard normal critical values. 
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(Hourly Wage Equation) 

Using the data in WAGE1.RAW gives the estimated equation ----log(wage) = .284 + .092 educ + .0041 exper + .022 tenure 

(. 104) (.007) (.0017) (.003) 
n = 526, R2 = .316, 

where standard errors appear in parentheses below the estimated coefficients. We will follow 

this convention throughout the text. This equation can be used to test whether the return to 

exper, controlling for educ and tenure, is zero in the population, against the alternative that 

it is positive. Write this as H0 : f3exper = 0 versus H1: f3exper > 0. (In applications, indexing a 
parameter by its associated variable name is a nice way to label parameters, since the numer­

ical indices that we use in the general model are arbitrary and can cause confusion.) Remem­

ber that f3exper denotes the unknown population parameter. It is nonsense to write "H0: .0041 

= 0" or "H0: ~exper= 0." 
Since we have 522 degrees of freedom, we can use the standard normal critical values. 

The 5% critical value is 1.645, and the 1% critical value is 2.326. The t statistic for ~exper is 

texper = .0041/.0017 = 2.41, 

and so ~expe,. or exper, is statistically significant even at the 1% level. We also say that "~exper 
is statistically greater than zero at the 1% significance level." 

The estimated return for another year of experience, holding tenure and education fixed, 

is not especially large. For example, adding three more years increases log(wage) by 3(.0041) 

= .0123, so wage is only about 1.2% higher. Nevertheless, we have persuasively shown that 

the partial effect of experience is positive in the population. 

The one-sided alternative that the parameter is less than zero, 

(4.8) 

also arises in applications. The rejection rule for alternative ( 4.8) is just the mirror image 
of the previous case. Now, the critical value comes from the left tail of the t distribution. 
In practice, it is easiest to think of the rejection rule as 

t· < -c Pj ' 

where cis the critical value for the alternative H 1: {3j > 0. For simplicity, we always assume 
c is positive, since this is how critical values are reported in t tables, and so the critical 
value -cis a negative number. 



132 Part 1 Regression Analysis with Cross-Sectional Data 

,., .. - - . - -·- . ~-. - .. ' - ., . - .... --- -... -- --~ 

~. · Q U E S T I o.· N 4 . . 2 . . . , ·. :. .~ 

Let community loan approval rates be determined by 

apprate = {30 + {31percmin + {32avginc + 
{33avgwlth + {34avgdebt + u, 

where percmin is the percent minority in the community, avginc is 
average income, avgwlth is average wealth, and avgdebt is some 
measure of average debt obligations. How do you state the null 
hypothesis that there is no difference in loan rates across neigh­
borhoods due to racial and ethnic composition, when average 
income, average wealth, and average debt have been controlled 
for? How do you state the alternative that there is discrimination 
against minorities in loan approval rates? 

For example, if the significance level 
is 5% and the degrees of freedom is 18, 
then c = 1. 734, and so H0: {3j = 0 is 
rejected in favor of H 1: {3j < 0 at the 5% 
level if t iJ· < -1.734. It is important to 
remembe/ that, to reject H0 against the 
negative alternative (4.8), we must get a 
negative t statistic. A positive t ratio, no 
matter how large, provides no evidence in 
favor of (4.8). The rejection rule is iiius­
trated in Figure 4.3. 

FIGURE 4.3 

Area= .05 

rejection -1.734 
region 

0 
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(Student Performance and School Size) 

There is much interest in the effect of school size on student performance. (See, for example, 
The New York Times Magazine, 5/28/95.) One claim is that, everything else being equal, stu­
dents at smaller schools fare better than those at larger schools. This hypothesis is assumed 
to be true even after accounting for differences in class sizes across schools. 

The file MEAP93.RAW contains data on 408 high schools in Michigan for the year 1993. We 
can use these data to test the null hypothesis that school size has no effect on standardized test 
scores against the alternative that size has a negative effect. Performance is measured by the per­
centage of students receiving a passing score on the Michigan Educational Assessment Program 
(MEAP) standardized tenth-grade math test (math1 0). School size is measured by student enroll­

ment (enroll). The null hypothesis is H0: f3enroll = 0, and the alternative is H1: f3enroll < 0. For now, 
we will control for two other factors, average annual teacher compensation (totcomp) and the 
number of staff per one thousand students (staff). Teacher compensation is a measure of teacher 
quality, and staff size is a rough measure of how much attention students receive. 

The estimated equation, with standard errors in parentheses, is -mathlO = 2.274 + .00046 totcomp + .048 staff- .00020 enroll 
(6.113) (.00010) (.040) (.00022) 

n = 408, R2 = .0541. 

The coefficient on enroll, - .00020, is in accordance with the conjecture that larger schools 

hamper performance: higher enrollment leads to a lower percentage of students with a pass­
ing tenth-grade math score. (The coefficients on totcomp and staff also have the signs we 
expect.) The fact that enroll has an estimated coefficient different from zero could just be due 
to sampling error; to be convinced of an effect, we need to conduct a t test. 

Since n - k - 1 = 408 - 4 = 404, we use the standard normal critical value. At the 5% 

level, the critical value is -1.65; the t statistic on enroll must be Jess than -1.65 to reject H0 

at the 5% level. 
The t statistic on enroll is - .00020/.00022 = - .91, which is larger than -1.65: we fail to 

reject H0 in favor of H1 at the 5% level. In fact, the 15% critical value is -1.04, and since 
-.91 > -1.04, we fail to reject H0 even at the 15% level. We conclude that enroll is not sta­

tistically significant at the 15% level. 
The variable totcomp is statistically significant even at the 1% significance level because its 

t statistic is 4 .6. On the other hand, the t statistic for staff is 1.2, and so we cannot reject H0: 

f3staff = 0 against H1: f3staff > 0 even at the 1 0% significance level. (The critical value is c = 
1.28 from the standard normal distribution.) 

To illustrate how changing functional form can affect our conclusions, we also estimate the 
model with all independent variables in logarithmic form. This allows, for example, the school 
size effect to diminish as school size increases. The estimated equation is ----mathiO = -207.66 + 21.161og(totcomp) + 3.98log(staff)- l.29log(enroll) 

(48.70) (4.06) (4.19) (0.69) 
n = 408, R2 = .0654. 
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The t statistic on log(enro/1) is about -1.87; since this is below the 5% critical value -1.65, 

we reject H0 : f31og(enrom = 0 in favor of H1: f31og(enrom < 0 at the 5% level. 
In Chapter 2, we encountered a model where the dependent variable appeared in its original 

form (called level form), while the independent variable appeared in log form (called level-Jog 
model). The interpretation of the parameters is the same in the multiple regression context, 
except, of course, that we can give the parameters a ceteris paribus interpretation. Holding tot­
camp and staff fixed, we have !l~ = -1 .29[/llog(enro/1)), so that --LlmathlO "" -(1.29/100)(%Llenroll) "" - .013(%Llenroll). 

Once again, we have used the fact that the change in log(enroll), when multiplied by 100, is 
ap!Jroximately the percentage change in enroll. Thus, if enrollment is 1 0% higher at a school, 
~ is predicted to be .013(1 0) = 0.13 percentage points lower (math1 0 is measured as 
a percent). 

Which model do we prefer: the one using the level of enroll or the one using log(enroll)? 
In the level-level model, enrollment does not have a statistically significant effect, but in the 
level-log model it does. This translates into a higher R-squared for the level-log model, which 
means we explain more of the variation in math10 by using enroll in logarithmic form (6.5% 
to 5.4%). The level-log model is preferred, as it more closely captures the relationship 
between math10 and enroll. We will say more about using R-squared to choose functional 
form in Chapter 6. 

Two-Sided Alternatives 

In applications, it is common to test the null hypothesis H0: f3i = 0 against a two-sided 
alternative; that is, 

(4.10) 

Under this alternative, xi has a ceteris paribus effect on y without specifying whether the 
effect is positive or negative. This is the relevant alternative when the sign of f3i is not well 
determined by theory (or common sense). Even when we know whether f3i is positive or 
negative under the alternative, a two-sided test is often prudent. At a minimum, using a two­
sided alternative prevents us from looking at the estimated equation and then basing the 
alternative on whether {3i is positive or negative. Using the regression estimates to help us 
formulate the null or alternative hypotheses is not allowed because classical statistical infer­
ence presumes that we state the null and alternative about the population before looking at 
the data. For example, we should not first estimate the equation relating math performance 
to enrollment, note that the estimated effect is negative, and then decide the relevant alter­
native is H1: f3enroll < 0. 

When the alternative is two-sided, we are interested in the absolute value of the t sta­
tistic. The rejection rule for H0: f3i = 0 against (4.10) is 

. lt.s) > c, (4.11) 
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PI®UR;fi 4.4 
5% rejeation wleforif:he alter.native H1 : {jJ * 0 with 25 df. 

rejection -2 .06 
region 

2.06 rejection 
region 

where I· I denotes absolute value and c is an appropriately chosen critical value. To find c, 
we again specify a significance level, say 5%. For a two-tailed test, c is chosen to make 
the area in each tail of the t distribution equal 2.5%. In other words, c is the 97.51h per­
centile in the t distribution with n - k - 1 degrees of freedom. When n - k - 1 = 25, 
the 5% critical value for a two-sided test is c = 2.060. Figure 4.4 provides an illustration 
of this distribution. 

When a specific alternative is not stated, it is usually considered to be two-sided. In 
the remainder of this text, the default will be a two-sided alternative, and 5% will be the 
default significance level. When carrying out empirical econometric analysis, it is always 
a good idea to be explicit about the alternative and the significance level. If H0 is rejected 
in favor of ( 4.10) at the 5% level, we usually say that "xj is statistically significant, or 
statistically different from zero, at the 5% level." If H0 is not rejected, we say that '\is 
statistically insignificant at the 5% level." 
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(Determinants of College GPA) 

We use GPA 1.RAW to estimate a model explaining college GPA (co/GPA), with the average 
number of lectures missed per week (skipped) as an additional explanatory variable. The esti­
mated model is 

------ . colGPA = 1.39 + .412 hsGPA + .015 ACT- .083 skipped 
(.33) (.094) (.011) (.026) 

n = 141, R2 = .234. 

We can easily compute t statistics to see which variables are statistically significant, using a 
two-sided alternative in each case. The 5% critical value is about 1.96, since the degrees of 
freedom (141 - 4 = 137) is large enough to use the standard normal approximation. The 
1% critical value is about 2.58. 

The t statistic on hsGPA is 4.38, which is significant at very small significance levels. Thus, 
we say that "hsGPA is statistically significant at any conventional significance level." The t sta­
tistic on AU is 1.36, which is not statistically significant at the 1 0% level against a two-sided 
alternative. The coefficient on AU is also practically small : a 1 0-point increase in AU, which 
is large, is predicted to increase co/GPA by only .15 point. Thus, the variable AU is practically, 
as well as statistically, insignificant. 

The coefficient on skipped has a t statistic of - .083/.026 = - 3.19, s.o skipped is statistically 
significant at the 1% significance level (3 .19 > 2.58). This coefficient means that another lec­
ture missed per week lowers predicted co!GPA by about .083. Thus, holding hsGPA and AU 
fixed, the predicted difference in co/GPA between a student who misses no lectures per week 
and a student who misses five lectures per week is about .42. Remember that this says nothing 
about specific students, but pertains to average students across the population. 

In this example, for each variable in the model, we could argue that a one-sided alter­
native is appropriate. The variables hsGPA and skipped are very significant using a two­
tailed test and have the signs that we expect, so there is no reason to do a one-tailed test. 
On the other hand, against a one-sided alternative ({33 > 0), AU is significant at the 10% 
level but not at the 5% level. This does not change the fact that the coefficient on ACT is 
pretty small. 

Testing Other Hypotheses about f3j 

Although H0: {3i = 0 is the most common hypothesis, we sometimes want to test whether 
{3i is equal to some other given constant. Two common examples are {3i = 1 and {3i = -1 . 
Generally, if the null is stated as 

where ai is our hypothesized value of {3i, then the appropriate t statistic is 

t = (~ - .ai)/se(/3). 

(4.12) 
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As before, t measures how many estimated standard deviations ~jis away from the hypoth­
esized value of f3j· The general t statistic is usefully written as 

t = (estimate- hypothesized value). 
standard error 

(4.13) 

Under (4.12), this t statistic is distributed as t,-k- l from Theorem 4.2. The usual t statis­
tic is obtained when aj = 0. 

We can use the general t statistic to test against one-sided or two-sided alternatives. For 
example, if the null and alternative hypotheses are H0: {3j = I and H1: {3j > I, then we find 
the critical value for a one-sided alternative exactly as before: the difference is in how we 
compute the t statistic, not in how we obtain the appropriate c. We reject H0 in favor of 
H1 if t > c. In this case, we would say that "~j is statistically greater than one" at the appro­
priate significance level. 

4.4 

(Campus Crime and Enrollment) 

Consider a simple model relating the annual number of crimes on college campuses (crime) 
to student enrollment (enroll): 

log(crime) = {30 + {31log(enroll) + u. 

This is a constant elasticity model, where {31 is the elasticity of crime with respect to enroll­
ment. It is not much use to test H0: {31 = 0, as we expect the total number of crimes to increase 
as the size of the campus increases. A more interesting hypothesis to test would be that the 
elasticity of crime with respect to enrollment is one: H0: {31 = 1. This means that a 1% increase 
in enrollment leads to, on average, a 1% increase in crime. A noteworthy alternative is H 1: {31 

> 1, which implies that a 1 % increase in enrollment increases campus crime by more than 
1%. If {3 1 > 1, then, in a relative sense-not just an absolute sense-crime is more of a prob­
lem on larger campuses. One way to see this is to take the exponential of the equation: 

crime = exp({30)enrollf3,exp(u). 

(See Appendix A for properties of the natural logarithm and exponential functions.) For 
{30 = 0 and u = 0, this equation is graphed in Figure 4.5 for {31 < 1, {31 = 1, and {31 > 1. 

We test {31 = 1 against {31 > 1 using data on 97 colleges and universities in the United 
States for the year 1992, contained in the data file CAMPUS.RAW. The data come from the 
FBI's Uniform Crime Reports, and the average number of campus crimes in the sample is about 
394, while the average enrollment is about 16,076. The estimated equation (with estimates 
and standard errors rounded to two decimal places) is ----log(crime) = -6.63 + 1.27 log(enroll) 

(1.03) (0.11) (4.14) 

n = 97, R2 = .585. 
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crime 

/31 = 1 

~-------- /31 < 1 

0 enroll 

The estimated elasticity of crime with respect to enroll, 1.27, is in the direction of the alter­
native /31 > 1. But is there enough evidence to conclude that /31 > 1? We need to be careful 
in testing this hypothesis, especially because the statistical output of standard regression pack­
ages is much more complex than the simplified output reported in equation (4.14). Our first 
instinct might be to construct "the" t statistic by taking the coefficient on log(enro/1) and divid­
ing it by its standard error, which is the t statistic reported by a regression package. But this 
is the wrong statistic for testing H0 : f31 = 1. The correct t statistic is obtained from (4.13): we 
subtract the hypothesized value, unity, from the estimate and divide the result by the stan­
dard error of {31: t = (1.27 - 1 )/.11 = .27/.11 "" 2.45. The one-sided 5% critical value for a 
t distribution with 97 - 2 = 95 df is about 1.66 (using df = 120), so we clearly reject f31 = 

1 in favor of f31 > 1 at the 5% level. In fact, the 1% critical value is about 2.37, and so we 
reject the null in favor of the alternative at even the 1 % level. 

We should keep in mind that this analysis holds no other factors constant, so the elasticity of 
1.27 is not necessarily a good estimate of ceteris paribus effect. It could be that larger enrollments 
are correlated with other factors that cause higher crime: larger schools might be located in higher 
crime areas. We could control for this by collecting data on crime rates in the local city. 



Chapter 4 Multiple Regression Analysis: Inference 139 

For a two-sided alternative, f~r example AH0: {3j = -1, H1: {3j =f= -I, we still compute 
the t statistic as in (4.13): t = ({3j + 1)/se({3j) (notice how subtracting -1 means adding 
1). The rejection rule is the usual one for a two-sided test: reject H0 if ltl > c, where c is 
a two-tailed critical value. If H0 is rejected, we say that "~j is statistically different from 
negative one" at the appropriate significance level. 

(Housing Prices and Air Pollution) 

For a sample of 506 communities in the Boston area, we estimate a model relating median 
housing price (price) in the community to various community characteristics: nox is the amount 
of nitrogen oxide in the air, in parts per million; dist is a weighted distance of the community 
from five employment centers, in miles; rooms is the average number of rooms in houses in 
the community; and stratio is the average student-teacher ratio of schools in the community. 
The population model is 

log(price) = {30 + {3 1log(nox) + {32log(dist) + {33rooms + {34stratio + u. 

Thus, /31 is the elasticity of price with respect to nox. We wish to test H0 : /31 = -1 against the 
alternative H1: /31 =F -1. The t statistic for doing this test is t = ({31 + 1 )/se({31). 

Using the data in HPRICE2.RAW, the estimated model is ----log(price) = 11.08- .954log(nox)- .134log(dist) + .255rooms- .052stratio 
(0.32) (.117) (.043) (.019) (.006) 

n = 506, R2 = .581. 

The slope estimates all have the anticipated signs. Each coefficient is statistically different from 
zero at very small significance levels, including the coefficient on log(nox). But we do not want 
to test that /31 = 0. The null hypothesis of interest is H0 : /31 = -1, with corresponding t statistic 
(- .954 + 1 )/.117 = .393. There is little need to look in the t table for a critical value when 
the t statistic is this small: the estimated elasticity is not statistically different from -1 even at 
very large significance levels. Controlling for the factors we have included, there is little evi­
dence that the elasticity is different from -1. 

Computing p-Values for tTests 

So far, we have talked about how to test hypotheses using a classical approach: after stat­
ing the alternative hypothesis, we choose a significance level, which then determines a 
critical value. Once the critical value has been identified, the value of the t statistic is com­
pared with the critical value, and the null is either rejected or not rejected at the given sig­
nificance level. 

Even after deciding on the appropriate alternative, there is a component of arbitrari­
ness to the classical approach, which results from having to choose a significance level 
ahead of time. Different researchers prefer different significance levels, depending on the 
particular application. There is no "correct" significance level. 
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Committing to a significance level ahead of time can hide useful information about the 
outcome of a hypothesis test. For example, suppose that we wish to test the null hypoth­
esis that a parameter is zero against a two-sided alternative, and with 40 degrees of free­
dom we obtain a t statistic equal to 1.85. The null hypothesis is not rejected at the 5% 
level, since the t statistic is less than the two-tailed critical value of c = 2.021. A researcher 
whose agenda is not to reject the null could simply report this outcome along with the 
estimate: the null hypothesis is not rejected at the 5% level. Of course, if the t statistic, or 
the coefficient and its standard error, are reported, then we can also determine that the null 
hypothesis would be rejected at the 10% level, since the 10% critical value is c = 1.684. 

Rather than testing at different significance levels, it is more informative to answer the 
following question: Given the observed value of the t statistic, what is the smallest sig­
nificance level at which the null hypothesis would be rejected? This level is known as the 
p-value for the test (see Appendix C). In the previous example, we know the p-value is 
greater than .05, since the null is not rejected at the 5% level, and we know that the p-value 
is less than .10, since the null is rejected at the 10% level. We obtain the actual p-value 
by computing the probability that a t random variable, with 40 df, is larger than 1.85 in 
absolute value. That is, the p-value is the significance level of the test when we use the 
value of the test statistic, 1.85 in the above example, as the critical value for the test. This 
p-value is shown in Figure 4.6. 

Because a p-value is a probability, its value is always between zero and one. In order 
to compute p-values, we either need extremely detailed printed tables of the t distri­
bution-which is not very practical-or a computer program that computes areas under 
the probability density function of the t distribution. Most modern regression packages 
have this capability. Some packages compute p-values routinely with each OLS regres­
sion, but only for certain hypotheses. If a regression package reports a p-value along 
with the standard OLS output, it is almost certainly the p-value for testing the null 
hypothesis H0: f3j = 0 against the two-sided alternative. The p-value in this case is 

where, for clarity, we let T denote a t distributed random variable with n - k - 1 degrees 
of freedom and let t denote the numerical value of the test statistic. 

The p-value nicely summarizes the strength or weakness of the empirical evidence 
against the null hypothesis. Perhaps its most useful interpretation is the following: the 
p-value is the probability of observing a t statistic as extreme as we did if the null hypoth­
esis is true. This means that small p-values are evidence against the null; large p-values 
provide little evidence against H0. For example, if the p-value = .50 (reported always as 
a decimal, not a percent), then we would observe a value of the t statistic as extreme as 
we did in 50% of all random samples when the null hypothesis is true; this is pretty weak 
evidence against H0. 

In the example with df = 40 and t = 1.85, the p-value is computed as 

p-value = P(JTJ > 1.85) = 2P(T > 1.85) = 2(.0359) = .0718, 

where P(T > 1.85) is the area to the right of 1.85 in a t distribution with 40 df (This value 
was computed using the econometrics package Stata; it is not available in Table 0.2.) This 
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FIGURE4.6 
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means that, if the null hypothesis is true, we would observe an absolute value of the t sta­
tistic as large as 1.85 about 7.2 percent of the time. This provides some evidence against 
the null hypothesis, but we would not reject the null at the 5% significance level. 

The previous example illustrates that once the p-value has been computed, a classical 
test can be carried out at any desired level. If a denotes the significance level of the test 
(in decimal form), then Ho is rejected if p-value < a; otherwise, H0 is not rejected at the 
IOO·a% level. 

Computing p-values for one-sided alternatives is also quite simple. Suppose, for exam­
ple, that we test H0: f3i == 0 against H1: {3i > 0. If {3i < 0, then computing a p-value is not 
important: we know that the p-value is greater than .50, which will never cause us to reject 
H0 in favor of H1• If {3i > 0, then t > 0 and the p-value is just the probability that at 
random variable with the appropriate df exceeds the value t. Some regression packages 
only compute p-values for two-sided alternatives. But it is simple to obtain the one-sided 
p-value: just divide the two-sided p-value by 2. 

If the alternative is H1: {3i < 0, it makes sense to compute a p-value if {3i < 0 
(and hence t < 0): p-value = P(T < t) == P(T > \t\) because the t distribution is 
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symmetric about zero. Again, this can be obtained as one-half of the p-value for the 
two-tailed test. 

Suppose you estimate a regression model and obtain ~1 = .56 and 
p-value = .086 for testing H0 : {31 = 0 against H1: {31 =f. 0. What is 
the p-value for testing H0: {31 = 0 against H1: (31 > 0? 

Because you will quickly become 
familiar with the magnitudes oft statistics 
that lead to statistical significance, espe­
cially for large sample sizes, it is not 
always crucial to report p-values for t 
statistics. But it does not hurt to report 
them. Further, when we discuss F testing 

in Section 4.5, we will see that it is important to compute p-values, because critical val­
ues for F tests are not so easily memorized. 

A Reminder on the Language of Classical Hypothesis Testing 

When H0 is not rejected, we prefer to use the language "we fail to reject H0 at the x% level," 
rather than "H0 is accepted at the x% level." We can use Example 4.5 to illustrate why the 
former statement is preferred. In this example, the estimated elasticity of price with respect 
to nox is - .954, and the t statistic for testing H0: {3

110
x = -1 is t = .393; therefore, we can­

not reject H0• But there are many other values for {3
110

x (more than we can count) that cannot 
be rejected. For example, the t statistic for H0: {3

110
., = -.9 is (- .954 + .9)/.117 = - .462, 

and so this null is not rejected either. Clearly f3
11
ox = - 1 and {3

110
x = -.9 cannot both be true, 

so it makes no sense to say that we "accept" either of these hypotheses. All we can say is that 
the data do not allow us to reject either of these hypotheses at the 5% significance level. 

Economic, or Practical, versus Statistical Significance 

Because we have emphasized statistical significance throughout this section, now is a 
good time to remember that we should pay attention to the magnitude of the coefficient 
estimates in addition to the size of the t statistics. The statistical significance of a variable 
xi is determined entirely by the size of tp .• whereas the economicAsignificance or practi­
cal significance of a variable is related fo the size (and sign) of f3t 

Recall that the t statisti~ for ~esting H0: f3i = 0 is defined by dividing the estimate by 
its stand~d error: tp. = f3jse(f3) . AThus, tp. can indicate statistical significance either 
because f3i is "large" 6r because se(f3) is "srriall." It is important in practice to distinguish 
between these reasons for statistically significant t statistics. Too much focus on statisti­
cal significance can lead to the false conclusion that a variable is "important" for explain­
ing y even though its estimated effect is modest. 

[Participation Rates in 401 (k) Plans] 

In Example 3.3, we used the data on 401 (k) plans to estimate a model describing participation 
rates in terms of the firm's match rate and the age of the plan. We now include a measure of 
firm size, the total number of firm employees (totemp). The estimated equation is 
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--prate = 80.29 + 5.44 mrate + .269 age- .00013 totemp 
(0.78) (0.52) (.045) (.00004) 

n = 1,534, R2 = .100. 

The smallest t statistic in absolute value is that on the variable totemp: t = -.00013/.00004 
= - 3.25, and this is statistically significant at very small significance levels. (The two-tailed 
p-value for this t statistic is about .001.) Thus, all of the variables are statistically significant at 
rather small significance levels. 

How big, in a practical sense, is the coefficient on totemp? Holding mrate and age fixed, 
if a firm grows by 10,000 employees, the participation rate falls by 1 0,000(.00013) = 1.3 per­
centage points. This is a huge increase in number of employees with only a modest effect on 
the participation rate. Thus, although firm size does affect the participation rate, the effect is 
not practically very large. 

The previous example shows that it is especially important to interpret the magnitude of 
the coefficient, in addition to looking at t statistics, when working with large samples. With 
large sample sizes, parameters can be estimated very precisely: standard errors are often quite 
small relative to the coefficient estimates, which usually results in statistical significance. 

Some researchers insist on using smaller significance levels as the sample size increases, 
partly as a way to offset the fact that standard errors are getting smaller. For example, if 
we feel comfortable with a 5% level when n is a few hundred, we might use the 1% level 
when n is a few thousand. Using a smaller significance level means that economic and 
statistical significance are more likely to coincide, but there are no guarantees: in the 
previous example, even if we use a significance level as small as .1% (one-tenth of one 
percent), we would still conclude that totemp is statistically significant. 

Most researchers are also willing to entertain larger significance levels in applications 
with small sample sizes, reflecting the fact that it is harder to find significance with smaller 
sample sizes (the critical values are larger in magnitude, and the estimators are Jess 
precise). Unfortunately, whether or not this is the case can depend on the researcher's 
underlying agenda. 

(Effect of job Training on Firm Scrap Rates) 

The scrap rate for a manufacturing firm is the number of defective items-products that must 
be discarded-out of every 1 00 produced. Thus, for a given number of items produced, a 
decrease in the scrap rate reflects higher worker productivity 

We can use the scrap rate to measure the effect of worker training on productivity. Using 
the data in JTRAIN.RAW, but only for the year 1987 and for nonunionized firms, we obtain 
the following estimated equation: ----Jog(scrap) = 12.46- .029 hrsemp - .962 Jog(sales) + .761log(employ) 

(5.69) (.023) (.453) (.407) 
n = 29, R2 = .262. 
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The variable hrsemp is annual hours of training per employee, sales is annual firm sales (in 
dollars), and employ is the number of firm employees. For 1987, the average scrap rate in !tHe 
sample is about 4.6 and the average of hrsemp is about 8.9. 

The main variable of interest is hrsemp. One more hour of training per employee lowers 
log(scrap) by .029, which means the scrap rate is about 2.9% lower. Thus, if hrsemp increases 
by 5-each employee is trained 5 more hours per year-the scrap rat~ is estimated to fall by 
5(2.9) = 14.5%. This seems like a reasonably large effect, but whether the additional train­
ing is worthwhile to the firm depends on the cost of training and the benefits from a lower 
scrap rate. We do not have the numbers needed to do a cost benefit analysis, but the esti­
mated effect seems nontrivial. 

What about the statistical significance of the training variable? The t statistic on nrsemP.. is 
-.029/.023 = -1 .26, and now you probably recognize this as not being large enougn in 
magnitude to conclude that hrsemp is statistically significant at the 5% level. In fact, with 29 
- 4 = 25 degrees of freedom for the one-sided alternative, H1: f3hrsemp < 0, the 5% critical 
value is about -1 . 71. Thus, using a strict 5% level test, we must conclude that hrsemp is not 
statistically significant, even using a one-sided alternative. 

Because the sample size is pretty small, we might be more liberal with the significance level. 
The 10% critical value is -1.32, and so hrsemp is almost significant against the one-sided 
alternative at the 10% level. The p-value is easily computed as P(T25 < -1 .26) = .1 ~ ~o . This 
may be a low enough p-value to conclude that the estimated effect of training is not Just due 
to sampling error, but some economists would have different opinions on this. 

Remember that large standard errors can also be a result of multicollinearity (high Gar­
relation among some of the independent variables), even if the sample size seems ifairly 
large. As we discussed in Section 3.4, there is not much we can do about this problem 
other than to collect more data or change the scope of the analysis by dropping orr Gom­
bining certain independent variables. As in the case of a small sample size, it can be 'hard 
to precisely estimate partial effects when some of the explanatory variables are fiig1ily Gar­
related. (Section 4.5 contains an example.) 

We end this section with some guidelines for discussing the economic and statistiGal 
significance of a variable in a multiple regression model: 

1. Check for statistical significance. If the variable is statistically significant, diSGuss 
the magnitude of the coefficient to get an idea of its practical or economia im_por­
tance. This latter step can require some care, depending on how the independent 
and dependent variables appear in the equation. (In particular, what are the units of 
measurement? Do the variables appear in logarithmic form?) 

2. If a variable is not statistically significant at the usual levels ( 10%, 5%, or~%), 
you might still ask if the variable has the expected effect on y and whether that 
effect is practically large. If it is large, you should compute a p-va1ue for the t 
statistic. For small sample sizes, you can sometimes make a case for p-values as 
large as .20 (but there are no hard rules). With large p-values, that is, small t 
statistics, we are treading on thin ice because the practically large estimates may 
be due to sampling error: a different random sample could result in a vew dif· 
ferent estimate. 
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3. It is common to find variables with small t statistics that have the "wrong" sign. For 
practical purposes, these can be ignored: we conclude that the variables are statisti­
cally insignificant. A significant variable that has the unexpected sign and a practically 
large effect is much more troubling and difficult to resolve. One must usually think 
more about the model and the nature of the data in order to solve such problems. Often, 
a counterintuitive, significant estimate results from the omission of a key variable or 
from one of the important problems we will discuss in Chapters 9 and 15. 

4.3 Confidence Intervals 

Under the classical linear model assumptions, we can easily construct a confidence inter­
val (CI) for the population parameter f3j· Confidence intervals are also called interval esti­
mates because they provide a range of likely values for the population parameter, and not 
just a point estimate. 

Using the fact that (~j - {3)/se(~j) has a t distribution with n - k - 1 degrees of free­
dom [see (4.3)], simple manipulation leads to a CI for the unknown f3i a 95% confidence 
interval, given by 

(4.16) 

where the constant c is the 97.5th percentile in a tn - k- l distribution. More precisely, the 
lower and upper bounds of the confidence interval are given by 

fl/= ~i- c·se(~) 
and 

i3i = ~i + c·se(~). 
respectively. 

At this point, it is useful to review the meaning of a confidence interval. If random 
s~ples were obtained over and over again, with fli, and i3i co~puted each time, then the 
(unknown) population value f3i would lie in the interval (fli, {3i) for 95% of the samples. 
Unfortunately, for the single sample that we use to construct the CI, we do not know 
whether f3i is actually contained in the interval. We hope we have obtained a sample that 
is one of the 95% of all samples where the interval estimate contains f3i, but we have no 
guarantee. 

Constructing a confidence interval is very simple when using current computing tech­
nology. Three quantities are needed: ~i' se(~), and c. The coefficient estimate and its stan­
dard error are reported by any regression package. To obtain the value c, we must know 
the degrees of freedom, n - k- 1, and the level of confidence-95% in this case. Then, 
the value for c is obtained from the t,.-k-l distribution. 

A~s an example~ for~df = n - k --: 1 = 25, a 95% confidence interval for any f3i is given 
by [~- 2.06·se(f3), f3j + 2.06·se(f3i)]. 

When n - k - 1 > 120, the tn-k-l distribution is close enough to normal to use the 
97.5th pe!centile in a standard normal distribution for constructing a 95% CI: ~j ± 
1.96·se(f3). In fact, when n - k- 1 >50, the value of cis so close to 2 that we can use 
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a simple rule of thumb for a 95% confidence interval: {3j plus or minus two of its stan­
dard errors. For small degrees of freedom, the exact percentiles should be obtained from 
the t tables. 

It is easy to construct confidence intervals for any other level of confidence. For exam­
ple, a 90% CI is obtained by choosing c to be the 951h percentile in the tn-k-l distribution. 
When df = n - k - 1 = 25, c = 1.71, and so the 90% CI is ~j ± l.71·se(/3), which is 
necessarily narrower than the 95% Cl. For a 99% Cl, c is the 99.5th percentile in the t25 
distribution. When df = 25, the 99% CI is roughly {3j ± 2.79·se(/3). which is inevitably 
wider than the 95% Cl. 

Many modern regression packages save us from doing any calculations by reporting a 
95% CI along with each coefficient and its standard error. Once a confidence interval is 
constructed, it is easy to carry out two-tailed hypotheses tests. If the null hypothesis is Ho: 
{3j = aj, then H0 is rejected against H1: {3j =I= aj at (say) the 5% significance level if, and 
only if, aj is not in the 95% confidence interval. 

(Model of R&D Expenditures) 

Economists studying industrial organization are interested in the relationship between firm 
size-often measured by annual sales-and spending on research and development (R&D). 
Typically, a constant elasticity model is used . One might also be interested in the ceteris paribus 
effect of the profit margin-that is, profits as a percentage of sales-on R&D spending. Using 
the data in RDCHEM .RAW, on 32 U.S. firms in the chemical industry, we estimate the fol­
lowing equation (with standard errors in parentheses below the coefficients): 

~ = -4.38 + 1.084 1og(sales) + .0217 profmarg 
(.47) (.060) (.0218) 

n = 32, R2 = .918. 

The estimated elasticity of R&D spending with respect to firm sales is 1.084, so that, holding 
profit margin fixed, a 1 percent increase in sales is associated with a 1.084 percent increase 
in R&D spending. (Incidentally, R&D and sales are both measured in millions of dollars, but 
their units of measurement have no effect on the elasticity estimate.) We can construct a 95% 
confidence interval for the sales elasticity once we note that the estimated model has n - k 
- 1 = 32 - 2 - 1 = 29 degrees of freedom. From Table G.2, we find the 97.51h percentile 
in a t29 distribution: c = 2.045. Thus, the 95% confidence interval for f31og(soles) is 1.084 ± 
.060(2.045), or about .961,1.21) That zero is well outside this interval is hardly surprising : we 
expect R&D spending to increase with firm size. More interesting is that unity is included in 

the 95% confidence interval for f31og(soles)• which means that we cannofreject H0:f31og(soles) = 1 
against H1:f31og(salesl * 1 at the 5% significance level. In other words, the estimated R&D-sales 
elasticity is not statistically different from 1 at the 5% level. (The estimate is not practically 
different from 1, either.) 

The estimated coefficient on profmarg is also positive, and the 95% confidence interval for 
the population parameter, f3profmarg• is .0217 ± .0128(2.045), or about (- .0045,.0479). In this 
case, zero is included in the 95% confidence interval, so we fail to reject H0:f3profmarg = 0 against 
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H1 :f3profmarg =1- 0 at the 5% level. Nevertheless, the t statistic is about 1. 70, which gives a two­
sided p-value of about .1 0, and so we would conclude that profmarg is statistically significant at 
the 1 0% level against the two-sided alternative, or at the 5% level against the one-sided 
alternative H1:,Bprofmarg > 0. Plus, the economic size of the profit margin coefficient is not trivial: 
holding sales fixed, a one percentage point increase in profmarg is estimated to increase R&D 
spending by 1 00(.0217) = 2.2 percent. A complete analysis of this example goes beyond simply 
stating whether a particular value, zero in this case, is or is not in the 95% confidence interval. 

You should remember that a confidence interval is only as good as the underlying 
assumptions used to construct it. If we have omitted important factors that are correlated 
with the explanatory variables, then the coefficient estimates are not reliable: OLS is 
biased. If heteroskedasticity is present-for instance, in the previous example, if the vari­
ance of log(rd) depends on any of the explanatory variables-then the standard error is 
not valid as an estimate of sd(~j) (as we discussed in Section 3.4), and the confidence inter­
val computed using these standard errors will not truly be a 95% Cl. We have also used 
the normality assumption on the errors in obtaining these Cis, but, as we will see in Chap­
ter 5, this is not as important for applications involving hundreds of observations. 

4.4 Testing Hypotheses about a Single Linear 
Combination of the Parameters 

The previous two sections have shown how to use classical hypothesis testing or confi­
qence intervals to test hypotheses about a single f3j at a time. In applications, we must often 
test hypotheses involving more than one of the population parameters. In this section, we 
show how to test a single hypothesis involving more than one of the f3j· Section 4.5 shows 
how to test multiple hypotheses. 

To illustrate the general approach, we will consider a simple model to compare the 
returns to education at junior colleges and four-year colleges; for simplicity, we refer to 
the latter as "universities." (Kane and Rouse [1995] provide a detailed analysis of the 
returns to two- and four-year colleges.) The population includes working people with a 
high school degree, and the model is 

log( wage)= /30 + f3dc + f32univ + f33exper + u, (4.17) 

where jc is number of years attending a two-year college, univ is number of years at a 
four-year college, and exper is months in the workforce. Note that any combination of 
junior college and four-year college is allowed, including jc = 0 and univ = 0. 

The hypothesis of interest is whether one year at a junior college is worth one year at 
a university: this is stated as 

(4.18) 

Under H0, another year at a junior college and another year at a university lead to the same 
ceteris paribus percentage increase in wage. For the most part, the alternative of interest 
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is one-sided: a year at a junior college is worth less than a year at a university. This is 
stated as 

The hypotheses in ( 4.18) and ( 4.19) concern two parameters, {31 and {37,.., a situ~tion we 
have not faced yet. We cannot simply use the indivi!fual t statistics for {31 and ~ to test 
H0• However, conceptually, there is no difficulty in constructing a t statistic for testing 
(4.18). In order to do so, we rewrite the null and alternative as H0: {31 - (3, = 0 and H1: 

{31 - {32 < 0, respectively. The t statistic is based on whether th~ estimated difference S1 -

~is sufficiently less than zero to warrant rejecting (4.18) in favor of (4.19). To account 
for the sampling error in our estimators, we standardize this difference by dividing by the 
standard error: 

(4.20) 

Once we have the t statistic in (4.20), testing proceeds as before. We choose a significance 
level for the test and, based on the df, obtain a critical value. Because the alternative is of 
the form in (4.19), the rejection rule is of the form t < -c, where cis a positive value 
chosen from the appropriate t distribution. Or, we compute the t statistic and then com­
pute the p-value (see Section 4.2). 

The only thing that makes testing the equality of two different parameters more diffi­
cult than testing about a single {3j is obtaining the standard error· in the denominator of 
(4.20). Obtaining the numerator is trivial once we have performed the OLS regression. 
Using the data in TWOYEAR.RAW, which comes from Kane and Rouse (1995), we esti­
mate equation (4.17): ----log(wage) = 1.472 + .0667 jc + .0769 univ + .0049 exper 

(.021) (.0068) (.0023) (.0002) (4.21) 

n = 6,763, R2 = .22~~ 

It is clear from (4.21) thatjc and univ have both economically and statistically significant 
effects on wage. This is certainly of interest, but we are more concerned about testing 
whether the estimated difference in the coefficients is statistically significant. The differ­
ence is estimated as S 1 - ~ = - .0102, so the return to a year at a junior college is about 
one percentage point less than a year at a university. Economically, this is not a trivial dif­
ference. The difference of -.0102 is the numerator of the t statistic in ( 4.20). 

Unfortunately, the regression results in equation (4.21) do not contain enough in­
formation to obtain the standard error of S1 - ~- It might be tempting to claim that se(S1 

- ~) = se(S1) - se(~). but this is not true. In fact, if we reversed the roles of S1 and~. 
we would wind up with a negative standard error of the difference using the difference in 
standard errors. Standard errors must always be positive because they are estimates of stan­
dard deviations. Although the standard error of the difference S 1 - ~certainly depends on 
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se(/31) and se(~). it does so in a somewhat complicated way. To find se(/31 - ~). we first 
obtain the variance of the difference. Using the results on variances in Appendix B, we have 

(4.22) 

Observe carefully how the two variances are added together, and twice the covariance is 
then subtracted. The standard deviation of /31 - ~is just the square root of (4.22), and, 
since [se(/31)]2 is an unbiased estimator of Var(/31), and similarly for [se(/32)]2, we have 

when;_ s12 denotes an estimate of Cov(/31,/32). We have not displayed a formula for 
Cov({31,{32) . Some regression packages have features that allow one to obtain s12, in which 
case one can compute the standard error in (4.23) and then the 1 statistic in (4.20). Appen­
dix E shows how to use matrix algebra to obtain s12• 

Some of the more sophisticated econometrics programs include special commands that 
can be used for testing hypotheses about linear combinations. Here, we cover an approach 
that is simple to compute in virtually any statistical package. Rather than trying to com­
pute se(/31 - /32) from (4.23), it is much easier to estimate a different model that directly 
delivers the standard error of interest. Define a new parameter as the difference between 
{3 1 and {32: 01 = {3 1 - {32• Then, we want to test 

(4.24) 

The 1 statistic in (4.20) in terms of 01 is just t = 01/se( 01 ). The challenge is finding se( 01 ) . 

We can do this by rewriting the model so that 01 appears directly on one of the inde­
pendent variables. Because 01 = {3 1 - {31, we can also write {31 = 01 + {32• Plugging this 
into ( 4.17) and rearranging gives the equation 

log(wage) = {30 + (01 + {32)jc + {31tmiv + {33exper + u 

= f3o + fJ,jc + f3z{jC + univ) + {33exper + U. 
(4.25) 

The key insight is that the parameter we are interested in testing hypotheses about, e,' now 
multiplies the variable jc. The intercept is stiJI {30 , and exper still shows up as being mul­
tiplied by {33• More importantly, there is a new vruiable multiplying {32, ~amely 

jc + univ. Thus, if we want to directly estimate 01 and obtain the standard error 01, then 
we must construct the new variable jc + univ and include it in the regression model in 
place of univ. In this example, the new variable has a natural interpretation: it is total years 
of college, so define 1otcoll = jc + univ and write (4.25) as 

log( wage) = f3o ,_ e,jc + f3zto1coll + {33exper + u. (4.26) 

The parameter {3 1 has disappeared from the model, while 01 appears explicitly. This 
model is really just a different way of writing the original model. The only reason we 

I 
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have defined this new model is that, when we estimate it, the coefficient on jc is 01, 

and, more importantly, se(01) is reported along with the estimate. The t statistic that 
we want is the one reported by any regression package on the variable jc (not the vari­
able totcoll). 

When we do this with the 6,763 observations used earlier, the result is ---log(wage) = 1.472 - .0102 jc + .0769 .totco/1 + .0049 exper 

(.021) (.0069) (.0023) (.0002) (4.27) 

n = 6, 763, R2 = .222. 

The only number in this equation that we could not get from (4.21) is the standard error 
for the estimate - .0102, which is .0069. The t statistic for testing (4.18) is -.0102/.0069 
= -1.48. Against the one-sided alternative (4.19), the p-value is about .070, so there is 
some, but not strong, evidence against (4.18). 

The intercept and slope estimate on exper, along with their standard errors, are the same 
as in (4.21). This fact must be true, and it provides one way of checking whether the trans­
formed equation has been properly estimated. The coefficient on the new variable, totco/1, 
is the same as the coefficient on univ in (4.21), and the standard error is also the same. 
We know that this must happen by comparing (4.17) and (4.25). 

It is quite simple to compute a 95% confidence interval for 01 = {31 - {32• Using the 
standard normal approximation, the Cl is obtained as usual: 01 ± 1.96 se(01), which in 
this case leads to - .0102 ± .0135. 

The strategy of rewriting the model so that it contains the parameter of interest works 
in all cases and is easy to implement. (See Problems 4.12 and 4.14 for other examples.) 

4.5 Testing Multiple Linear Restrictions: The FTest 

The t statistic associated with any OLS coefficient can be used to test whether the corre­
sponding unknown parameter in the population is equal to any given constant (which is 
usually, but not always, zero). We have just shown how to test hypotheses about a single 
linear combination of the {31 by rearranging the equation and running a regression using 
transformed variables. But so far, we have only covered hypotheses involving a single 
restriction. Frequently, we wish to test multiple hypotheses about the underlying parame­
ters {30, {3 1, ••• , f3k· We begin with the leading case of testing whether a set of indepen­
dent variables has no partial effect on a dependent variable. 

Testing Exclusion Restrictions 

We already know how to test whether a particular variable has no partial effect on 
the dependent variable: use the t statistic. Now, we want to test whether a group of 
variables has no effect on the dependent variable. More precisely, the null hypothesis 
is that a set of variables has no effect on y, once another set of variables has been 
controlled. 
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As an illustration of why testing significance of a group of variables is useful, we con­
sider the following model that explains major league baseball players' salaries: 

log(salary) = {30 + f3 1years + f32gamesyr + f33bavg + 
{34/zrunsyr + f35rbisyr + u, 

(4.28) 

where salary is the 1993 total salary, years is years in the league, gamesyr is aver­
age games played per year, bavg is career batting average (for example, bavg = 250), 
lmmsyr is home runs per year, and rbisyr is runs batted in per year. Suppose we want to 
test the null hypothesis that, once years in the league and games per year have been con­
trolled for, the statistics measuring performance-bavg, hrwzsyr, and rbisyr-have no 
effect on salary. Essentially, the null hypothesis states that productivity as measured by 
baseball statistics has no effect on salary. 

In terms of the parameters of the model, the null hypothesis is stated as 

The null (4.29) constitutes three exclusion restrictions: if (4.29) is true, then bavg, 
hrunsyr, and rbisyr have no effect on log(salary) after years and gamesyr have been 
controlled for and therefore should be excluded from the model. This is an example of 
a set of multiple restrictions because we are putting more than one restriction on 
the parameters in (4.28); we will see more general examples of multiple restrictions 
later. A test of multiple restrictions is called a multiple hypotheses test or a joint 
hypotheses test. 

What should be the alternative to (4.29)? If what we have in mind is that "performance 
statistics matter, even after controlling for years in the league and games per year," then 
the appropriate alternative is simply 

(4.30) 

The alternative (4.30) holds if at least one of {33, {34, or {35 is different from zero. (Any or 
all could be different from zero.) The test we study here is constructed to detect any vio­
lation of H0• It is also valid when the alternative is something like H1: {33 > 0, or 
{34 > 0, or {35 > 0, but it will not be the best possible test under such alternatives. We do 
not have the space or statistical background necessary to cover tests that have more power 
under multiple one-sided alternatives. 

How should we proceed in testing (4.29) against (4.30)? It is tempting to test (4.29) 
by using the t statistics on the variables bavg, lmmsyr, and rbisyr to determine whether 
each variable is individually significant. This option is not appropriate. A particular t sta­
tistic tests a hypothesis that puts no restrictions on the other parameters. Besides, we would 
have three outcomes to contend with-one for each t statistic. What would constitute rejec­
tion of (4.29) at, say, the 5% level? Should all three or only one of the three t statistics be 
required to be significant at the 5% level? These are hard questions, and fortunately we 
do not have to answer them. Furthermore, using separate t statistics to test a multiple 



152 Part 1 Regression Analysis with Cross-Sectional Data 

hypothesis like (4.29) can be very misleading. We need a way to test the exclusion restric­
tions jointly. 

To illustrate these issues, we estimate equation (4.28) using the data in MLBI.RAW. 
This gives ----log (salmy) = 11.19 + .0689 years+ .0126 gamesyr 

(0.29) (.0121) (.0026) 
+ .00098 bavg + .0144 hrunsyr + .0108 rbisyr (4.M) 

(.00110) (.016'1) (.0072) 
n = 353, SSR = 183.186, R2 = .6278, 

where SSR is the sum of squared residuals. (We will use this later.) We have left several 
terms after the decimal in SSR and R-squared to facilitate future comparisons. Equation 
(4.31) reveals that, whereas years and gamesyr are statistically significant, none of the 
variables bavg, hrunsyr, and rbisyr has a statistically significant t statistic against a two­
sided alternative, at the 5% significance level. (The t statistic on rbisyr is the closest to be­
ing significant; its two-sided p-value is .134.) Thus, based on the three t statistics, it 
appears that we cannot reject H0• 

This conclusion turns out to be wrong. In order to see this, we must derive a test of 
multiple restrictions whose distribution is known and tabulated. The sum of squared resid­
uals now turns out to provide a very convenient basis for testing multiple hypotheses. We 
will also show how the R-squared can be used in the special case of testing for exclusion 
restrictions. 

Knowing the sum of squared residuals in (4.31) tells us nothing about the truth of 
the hypothesis in (4.29). However, the factor that will tell us something is how much 
the SSR increases when we drop the variables bavg, lmmsyr, and rbisyr from the 
model. Remember that, because the OLS estimates are chosen to minimize the sum of 
squared residuals, the SSR always increases when variables are dropped from the 
model; this is an algebraic fact. The question is whether this increase is large enough. 
relative to the SSR in the model with all of the variables, to warrant rejecting the null 
hypothesis. 

The model without the three variables in question is simply 

log(salary) = {30 + {3 1years + {32gamesyr + u. 

In the context of hypothesis testing, equation (4.32) is the restricted model for testing 
(4.29); model (4.28) is called the unrestricted model. The restricted model always has 
fewer parameters than the unrestricted model. 

When we estimate the restricted model using the data in MLB 1.RA W, we obtain ----log(salal)•) = 11.~2 + .0713 years + .0202 gamesyr 

(.11) (.0125) (.0013) 

n = 353, SSR = 198.311, R2 = .5971. 
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As we surmised, the SSR from (4.33) is greater than the SSR from (4.31), and the 
R-squared from the restricted model is less than the R-squared from the unrestricted 
model. What we need to decide is whether the increase in the SSR in going from the 
unrestricted model to the restricted model (183.186 to 198.311) is large enough to war­
rant rejection of (4.29). As with all testing, the answer depends on the significance level 
of the test. But we cannot carry out the test at a chosen significance level until we have 
a statistic whose distribution is known, and can be tabulated, under H0• Thus, we need a 
way to combine the information in the two SSRs to obtain a test statistic with a known 
distribution under H0. 

Because it is no more difficult, we might as well derive the test for the general case. 
Write the unrestricted model with k independent variables as 

(4.34) 

the number of parameters in the unrestricted model is k + 1. (Remember to add one for 
the intercept.) Suppose that we have q exclusion restrictions to test: that is, the null hypoth­
esis states that q of the variables in (4.34) have zero coefficients. For notational simplic­
ity, assume that it is the last q variables in the list of independent variables: 
xk-q + 1, ... , xk. (The order of the variables, of course, is arbitrary and unimportant.) The 
null hypothesis is stated as 

Ho: f3k-q+l = 0, ... , f3k = 0, (4.35) 

which puts q exclusion restrictions on the model (4.34). The alternative to (4.35) is simply 
that it is false; this means that at least one of the parameters listed in (4.35) is different 
from zero. When we impose the restrictions under H0, we are left with the restricted 
model: 

(4.36) 

In this subsection, we assume that both the unrestricted and restricted models contain an 
intercept, since that is the case most widely encountered in practice. 

Now, for the test statistic itself. Earlier, we suggested that looking at the rela­
tive increase in the SSR when moving from the unrestricted to the restricted model 
should be informative for testing the hypothesis (4.35). The F statistic (or F ratio) is 
defined by 

F = _(:....S_S_R!_, _-_S_S_R..J!"!..:..')--'Iq._ 
SSRu/(n- k- 1)' 

(4.37) 

where SSR, is the sum of squared residuals from the restricted model and SSR .. , is the sum 
of squared residuals from the unrestricted model. 

You should immediately notice that, since SSR, can be no smaller than SSR"'' the 
F statistic is always nonnegative (and almost always strictly positive). Thus, if you 
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Consider relating individual performance on a standardized test, 
score, to a variety of other variables. School factors include aver­
age class size, per student expenditures, average teacher com­
pensation, and total school enrollment. Other variables specific to 
the student are family income, mother's education, father's edu­
cation, and number of siblings. The model is 

score = {30 + f31classize + f32expend + f33tchcomp + 
{34enroll + f3sfaminc + f36motheduc + 
{37fatheduc + f38siblings + u. 

State the null hypothesis that student-specific variables have no 
effect on standardized test performance, once school-related fac­
tors have been controlled for. What are k and q for this example? 
Write down the restricted version of the model. 

compute a negative F statistic, then some­
thing is wrong; theorder of the SSRs in the 
numerator ofF has usually been reversed. 
Also, the SSR in the denominator of F is 
the SSR from the unrestricted model. The 
easiest way to remember where the SSRs 
appear is to think of F as measuring the 
relative increase in SSR when moving 
from the unrestricted to the restricted 
model. 

The difference in SSRs in the numerator 
ofF is divided by q, which is the number of 
restrictions imposed in moving from the 
unrestricted to the restricted model (q inde­
pendent variables are dropped). Therefore, 
we can write 

q = numerator degrees of freedom = d/,. - df,r, (4.38) 

which also shows that q is the difference in degrees of freedom between the restricted and 
unrestricted models. (Recall that df = number of observations - number of estimated 
parameters.) Since the restricted model has fewer parameters-and each model is esti­
mated using the same n observations-d/,. is always greater than df,r· 

The SSR in the denominator of F is divided by the degrees of freedom in the unre­
stricted model: 

n - k - 1 = denominator degrees of freedom = df.,. (4.39) 

In fact, the denominator ofF is just the unbiased estimator of a 2 = Var(u) in the unre­
stricted model. 

In a particular application, computing the F statistic is easier than wading through the 
somewhat cumbersome notation used to describe the general case. We first obtain the 
degrees of freedom in the unrestricted model, df.". Then, we count how many variables 
are excluded in the restricted model; this is q. The SSRs are reported with every OLS 
regression, and so forming the F statistic is simple. 

In the major league baseball salary regression, n = 353, and the full model (4.28) con­
tains six parameters. Thus, n - k - l = df., = 353 - 6 = 347. The restricted model 
(4.32) contains three fewer independent variables than (4.28), and so q = 3. Thus, we have 
all of the ingredients to compute the F statistic; we hold off doing so until we know what 
to do with it. 

In order to use the F statistic, we must know its sampling distribution under the null 
in order to choose critical values and rejection rules. It can be shown that, under H0 (and 
assuming the CLM assumptions hold), F is distributed as an F random variable with (q,n 
- k - 1) degrees of freedom. We write this as 

F- Fq.11-k-t· 
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The distribution of Fq,n-k- l is readily tabulated and available in statistical tables (see Table 
G.3) and, even more importantly, in statistical software. 

We will not derive the F distribution because the mathematics is very involved. 
Basically, it can be shown that equation ( 4.37) is actually the ratio of two independent chi­
square random variables, divided by their respective degrees of freedom. The numerator 
chi-square random variable has q degrees of freedom, and the chi-square in the denomi­
nator has n - k - 1 degrees of freedom. This is the definition of an F distributed random 
variable (see Appendix B). 

It is pretty clear from the definition ofF that we will reject H0 in favor of H1 when F is 
sufficiently "large." How large depends on our chosen significance level. Suppose that we 
have decided on a 5% level test. Let c be the 95th percentile in the Fq.n-k-l distribution. This 
critical value depends on q (the numerator df) and 11 - k - 1 (the denominator df). It is 
important to keep the numerator and denominator degrees of freedom straight. 

The 10%, 5%, and 1% critical values for the F distribution are given in Table G.3. The 
rejection rule is simple. Once c has been obtained, we reject H0 in favor of H1 at the cho­
sen significance level if 

F>c. 

With a 5% significance level, q = 3, and n - k - = 60, the critical value is c = 2.76. 
We would reject H0 at the 5% level if the computed value of the F statistic exceeds 2.76. 
The 5% critical value and rejection region are shown in Figure 4,7. For the same degrees 
of freedom, the 1% critical value is 4.13. 

In most applications, the numerator degrees of freedom (q) will be notably smaller than 
the denominator degrees of freedom (n - k - 1). Applications where n - k - 1 is small 
are unlikely to be successful because the parameters in the unrestricted model will prob­
ably not be precisely estimated. When the denominator df reaches about 120, the F dis­
tribution is no longer sensitive to it. (This is entirely analogous to the t distribution being 
well approximated by the standard normal distribution as the df gets large.) Thus, there is 
an entry in the table for the denominator df = oo, and this is what we use with large sam­
ples (because n - k - 1 is then large). A similar statement holds for a very large numer­
ator df, but this rarely occurs in applications. 

If H0 is rejected, then we say that xk-q+l• ... , xk are jointly statistically significant (or 
just jointly significant) at the appropriate significance level. This test alone does not allow 
us to say which of the variables has a partial effect on y; they may all affect y or maybe 
only one affects y. If the null is not rejected, then the variables are jointly insignificant, 
which often justifies dropping them from the model. 

For the major league baseball example with three numerator degrees of freedom and 
347 denominator degrees of freedom, the 5% critical value is 2.60, and the 1% critical 
value is 3.78. We reject H0 at the 1% level ifF is above 3.78; we reject at the 5% level if 
F is above 2.60. 

We are now in a position to test the hypothesis that we began this section with: after 
controlling for years and gamesyr, the variables bavg, hrunsyr, and rbisyr have no effect 
on players' salaries. In practice, it is easiest to first compute (SSR,- SSR11,)/SSR11, and to 
multiply the result by (n - k - 1)/q; the reason the formula is stated as in (4.37) is that 
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FIGURE 4.7 
"The 5% critical value. and rejection region irn an Fa_60 distribution. 

area= .95 

2.76 rejection 
region 

it makes it easier to keep the numerator and denominator degrees of freedom straight. 
Using the SSRs in (4.31) and (4.33), we have 

F = (198.311-183.186).347 "'='955 
183.186 3 . . 

This number is well above the 1% critical value in the F distribution with 3 and 347 
degrees of freedom, and so we soundly reject the hypothesis that bavg, hrunsyr, and rbisyr 
have no effect on salary. 

The outcome of the joint test may seem surprising in light of the insignificant t sta­
tistics for the three variables. What is happening is that the two variables hrunsyr and 
rbisyr are .highly correlated, and this multicollinearity makes it difficult to uncover the 
partial effect of each variable; this is reflected in the individual t statistics. The F statis­
tic tests whether these variables (including bavg) are jointly significant, and multi­
collinearity between hrunsyr and rbisyr is much less relevant for testing this hypothesis. 
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In Problem 4.16, you are asked to reestimate the model while dropping rbisyr, in which 
case hrunsyr becomes very significant. The same is true for rbisyr when hrunsyr is 
dropped from the model. 

The F statistic is often useful for testing exclusion of a group of variables when the 
variables in the group are highly correlated. For example, suppose we want to test whether 
firm performance affects the salaries of chief executive officers. There are many ways to 
measure firm performance, and it probably would not be clear ahead of time which mea­
sures would be most important. Since measures of firm performance are likely to be highly 
correlated, hoping to find individually significant measures might be asking too much due 
to multicollinearity. But an F test can be used to determine whether, as a group, the firm 
performance variables affect salary. 

Relationship between F and t Statistics 
We have seen in this section how the F statistic can be used to test whether a group of 
variables should be included in a model. What happens if we apply the F statistic to the 
case of testing significance of a single independent variable? This case is certainly not 
ruled out by the previous development. For example, we can take the null to be H0: 

{3k = 0 and q = 1 (to test the single exclusion restriction that xk can be excluded from the 
model). From Section 4.2, we know that the t statistic on {3kcan be used to test this hypoth­
esis. The question, then, is do we have two separate ways of testing hypotheses about a 
single coefficient? The answer is no. It can be shown that the F statistic for testing exclu­
sion of a single variable is equal to the square of the corresponding t statistic. Since t~-k-l 
has an Fl.n-k- l distribution, the two approaches lead to exactly the same outcome, pro­
vided that the alternative is two-sided. The t statistic is more flexible for testing a single 
hypothesis because it can be used to test against one-sided alternatives. Since t statistics 
are also easier to obtain than F statistics, there is really no reason to use an F statistic to 
test hypotheses about a single parameter. 

We have already seen in the salary regressions for major league baseball players that 
two (or more) variables that each have insignificant t statistics can be jointly very signif­
icant. It is also possible that, in a group of several explanatory variables, one variable has 
a significant t statistic, but the group of variables is jointly insignificant at the usual sig­
nificance levels. What should we make of this kind of outcome? For concreteness, sup­
pose that in a model with many explanatory variables we cannot reject the null hypothe­
sis that {31, {32, {33, {34, and {35 are all equal to zero at the 5% level, yet the t statistic for {31 

is significant at the 5% level. Logically, we cannot have {31 =I= 0 but also have {31, {32, {33, 
{34, and {35 all equal to zero! But as a matter of testing, it is possible that we can group a 
bunch of insignificant variables with a significant variable and conclude that the entire set 
of variables is jointly insignificant. (Such possible conflicts between a t test and a joint F 
test give another example of why we should not "accept" null hypotheses; we should only 
fail to reject them.) The F statistic is intended to detect whether a set of coefficients is dif­
ferent from zero, but it is never the best test for determining whether a single coefficient 
is different from zero. The t test is best suited for testing a single hypothesis. (In statisti­
cal terms, an F statistic for joint restrictions including {31 = 0 will have less power for 
detecting {31 =I= 0 than the usual t statistic. See Section C.6 in Appendix C for a discussion 
of the power of a test.) 
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Unfortunately, the fact that we can sometimes hide a statistically significant variable along 
with some insignificant variables could lead to abuse if regression results are not carefully 
reported. For example, suppose that, in a study of the determinants of loan-acceptance rates 
at the city level, x1 is the fraction of black households in the city. Suppose that the variables 
x2, x3, x4 , and x5 are the fractions of households headed by different age groups. In explain­
ing loan rates, we would include measures of income, wealth, credit ratings, and so on. Sup­
pose that age of household head has no effect on loan approval rates, once other variables are 
controlled for. Even if race has a marginally significant effect, it is possible that the race and 
age variables could be jointly insignificant. Someone wanting to conclude that race is not a 
factor could simply report something like "Race and age variables were added to the equa­
tion, but they were jointly insignificant at the 5% level." Hopefully, peer review prevents these 
kinds of misleading conclusions, but you should be aware that such outcomes are possible. 

Often, when a variable is very statistically significant and it is tested jointly with 
another set of variables, the set will be jointly significant. In such cases, there is no logi­
cal inconsistency in rejecting both null hypotheses. 

The R-Squared Form of the F Statistic 
For testing exclusion restrictions, 'it is often more convenient to have a form of the F statis­
tic that can be computed using the R-squareds from the restricted and unrestricted models. 
One reason for this is that the R-squared is always between zero and one, whereas the SSRs 
can be very large depending on the unit of measurement of y, making the calculation based 
on the SSRs tedious. Using the fact that SSRr = SST(l - R~) and SSRur = SST(1 - R~r), 
we can substitute into ( 4.37) to obtain 

(R~r- R~)lq 
(1 - R~r)/dfur 

(4.41) 

(note that the SST terms cancel everywhere). This is called the R-squared form of the F 
statistic. [At this point, you should be cautioned that although equation (4.41) is very 
convenient for testing exclusion restrictions, it cannot be applied for testing all linear 
restrictions. As we will see when we discuss testing general linear restrictions, the sum of 
squared residuals form of the F statistic is sometimes needed.] 

. Because the R-squared is reported with almost all regressions (whereas the SSR is not), 
it is easy to use the R-squareds from the unrestricted and restricted models to test for exclu­
sion of some variables. Particular attention should be paid to the order of the R-squareds 
in the numerator: the unrestricted R-squared comes first [contrast this with the SSRs in 
(4.37)]. Because R~r > R~. this shows again that F will always be positive. 

In using the R-squared form of the test for excluding a set of variables, it is important 
to not square the R-squared before plugging it into formula (4.41); the squaring has already 
been done. All regressions report R2, and these numbers are plugged directly into (4.41). 
For the baseball salary example, we can use (4.41) to obtain the F statistic: 

F = (.6278 - .5971). 347 = 
9 54 

(1 - .6278) 3 . ' 

which is very close to what we obtained before. (The difference is due to rounding error.) 
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4.9 

(Parents' Education in a Birth Weight Equation) 

As another example of computing an F statistic, consider the following model to explain child 
birth weight in terms of various factors: 

bwght = {30 + {31cigs + f3UJarity + {33faminc + 
{34motheduc + {3sfatheduc + u, 

(4.42) 

where bwght is birth weight, in pounds, eigs is average number of cigarettes the mother smoked 
per day during pregnancy, parity is the birth order of this child, famine is annual family income, 
mothedue is years of schooling for the mother, and fathedue is years of schooling for the father. 
Let us test the null hypothesis that, after controlling for eigs, parity, and famine, parents' educa­
tion has no effect on birth weight. This is stated as H0: {34 = 0, {35 = 0, and so there are q = 2 
exclusion restrictions to be tested. There are k + 1 = 6 parameters in the unrestricted model 
(4.42), so the df in the unrestricted model is n - 6, where n is the sample size. 

We will test this hypothesis using the data in BWGHT.RAW. This data set contains infor­
mation on 1 ,388 births, but we must be careful in counting the observations used in testing 
the null hypothesis. It turns out that information on at least one of the variables mothedue 
and fathedue is missing for 197 births in the sample; these observations cannot be included 
when estimating the unrestricted model. Thus, we really have n = 1,191 observations, and 
so there are 1,191 - 6 = 1,185 df in the unrestricted model. We must be sure to use these 
same 1,191 observations when estimating the restricted model (not the full 1,388 observa­
tions that are available). Generally, when estimating the restricted model to compute an F test, 
we must use the same observations to estimate the unrestricted model; otherwise, the test is 
not valid. When there are no missing data, this will not be an issue. 

The numerator df is 2, and the denominator df is 1, 185; from Table G.3, the 5% critical 
value is e = 3.0. Rather than report the complete results, for brevity, we present only the 
R-squareds. The R-squared for the full model turns out to be R~, = .0387. When mothedue 
and fathedue are dropped from the regression, the R-squared falls to R; = .0364. Thus, the 
F statistic is F = [(.0387 - .0364)/(1 - .0387)](1,185/2) = 1.42; since this is well below the 
5% critical value, we fail to reject H0 . In other words, mothedue and fathedue are jointly 
insignificant in the birth weight equation . 

Computing p-Values for F Tests 

For reporting the outcomes of F tests, p-values are especially useful. Since the F distri­
bution depends on the numerator and denominator df, it is difficult to get a feel for how 
strong or weak the evidence is against the null hypothesis simply by looking at the value 
of the F statistic and one or two critical values. 

In the F testing context, the p-value is defined as 

p-value = P(~ >F), (4.43) 
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The data in ATIEND.RAW were used to estimate the two equations ----atndrte = 47.13 + 13.37 priGPA 

where, for emphasis, we let ?1' denote an F 
random variable with (q,n - k- 1) degrees 
of freedom, and F is the actual value of the 
test statistic. The p-value still has the same 
interpretation as it did for t statistics: it is the 
probability of observing a value of F at least 
as large as we did, given that the null hypoth­
esis is true. A small p-value is evidence 
against H0• For example, p-value = .016 
means that the chance of observing a value 
ofF as large as we did when the null hypoth­
esis was true is only I .6%; we usually reject 
H0 in such cases. If the p-value = .314, then 
the chance of observing a value of the F sta­
tistic as large as we did under the null 
hypothesis is 31.4%. Most would find this to 

(2.87) (1.09) 
n = 680, R2 = .183, 

and ----atndrte = 75.70 + 17.26 priGPA- 1.72ACT 
(3 .88) (1.08) (?) 

n = 680, R2 = .291, 

where, as always, standard errors are in parentheses; the standard 
error for A a is missing in the second equation. What is the t sta­
tistic for the coefficient on AG? (Hint: First compute the F statis­
tic for significance of AG.) 

be pretty weak evidence against H0. 

As with t testing, once the p-value has been computed, the F test can be carried out at 
any significance level. For example, if the p-value = .024, we reject H0 at the 5% signif­
icance level but not at the 1% level. 

The p-vaiue for the F test in Example 4.9 is .238, and so the null hypothesis that 
f3motlreduc and f3fatheduc are both zero is not rejected at even the 20% significance level. 

Many econometrics packages have a built-in feature for testing multiple exclusion 
restrictions. These packages have several advantages over calculating the statistics by 
hand: we will less likely make a mistake, p-values are computed automatically, and the 
problem of missing data, as in Example 4.9, is handled without any additional work on 
our part. 

The F Statistic for Overall Significance of a Regression 

A special set of exclusion restrictions is routinely tested by most regression packages. 
These restrictions have the same interpretation, regardless of the model. In the model with 
k independent variables, we can write the null hypothesis as 

H0: x 1, x2, ... , xkdo not help to explain y . 

This null hypothesis is, in a way, very pessimistic. It states that none of the explanatory 
variables has an effect on y. Stated in terms of the parameters, the null is that all slope 
parameters are zero: 

(4.44) 

and the alternative is that at least one of the f3j is different from zero. Another useful way 
of stating the null is that H0: E(yjx1, x2, • • • , xk) = E(y), so that knowing the values of x 1, 

x2, ... , xkdoes not affect the expected value of y . 
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There are k restrictions in (4.44), and when we impose them, we get the restricted 
model 

y = f3o + u; (4.45) 

all independent variables have been dropped from the equation. Now, the R-squared from 
estimating ( 4.45) is zero; none of the variation in y is being explained because there are 
no explanatory variables. Therefore, the F statistic for testing (4.44) can be written as 

(1 - R2)/(n - k - 1) ' 
(4.46) 

where R2 is just the usual R-squared from the regression of yon x1, x2, ... , xk. 
Most regression packages report the F statistic in (4.46) automatically, which makes it 

tempting to use this statistic to test general exclusion restrictions. You must avoid this 
temptation. The F statistic in (4.41) is used for general exclusion restrictions; it depends 
on the R-squareds from the restricted and unrestricted models. The special form of (4.46) 
is valid only for testing joint exclusion of all independent variables. This is sometimes 
called determining the overall significance of the regression. 

If we fail to reject (4.44), then there is no evidence that any of the independent variables 
help to explain y. This usually means that we must look for other variables to explain y. For 
Example 4.9, the F statistic for testing (4.44) is about 9.55 with k = 5 and n- k- 1 = 1,185 
df The p-value is zero to four places after the decimal point, so that (4.44) is rejected very 
strongly. Thus, we conclude that the variables in the bwght equation do explain some varia­
tion in bwght. The amount explained is not large: only 3.87%. But the seemingly small 
R-squared results in a highly significant F statistic. That is why we must compute the F sta­
tistic to test for joint significance and not just look at the size of the R-squared: 

Occasionally, the F statistic for the hypothesis that all independent variables are 
jointly insignificant is the focus of a study. Problem 4.10 asks you to use stock return 
data to test whether stock returns over a four-year horizon are predictable based on infor­
mation known only at the beginning of the period. Under the efficient markets hypothe­
sis, the returns should not be predictable; the null hypothesis is precisely (4.44). 

Testing General Linear Restrictions 
Testing exclusion restrictions is by far the most important application of F statistics. Some­
times, however, the restrictions implied by a theory are more complicated than just exclud­
ing some independent variables. It is still straightforward to use the F statistic for testing. 

As an example, consider the following equation: 

log(price) = {30 + f31log(assess) + f3 2log(lotsize) 

+ f33log(sqrft) + f34bdrms + u, 
(4.47) 

where price is house price, assess is the assessed housing value (before the house was 
sold), lotsize is size of the lot, in feet, sqrft is square footage, and bdrms is number of 
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bedrooms. Now, suppose we would like to test whether the assessed housing price is a 
rational valuation. If this is the case, then a 1% change in assess should be associated 
with a 1% change in price; that is, {3 1 = 1. In addition, lotsize, sqrft, and bdrms should 
not help to explain log(price), once the assessed value has been controlled for. Together, 
these hypotheses can be stated as 

(4.48) 

There are four restrictions here to be tested; three are exclusion restrictions, but {3 1 = 1 is 
not. How can we test this hypothesis using the F statistic? 

As in the exclusion restriction case, we estimate the unrestricted model, (4.47) in this case, 
and then impose the restrictions in (4.48) to obtain the restricted model. It is the second step 
that can be a little tricky. But all we do is plug in the restrictions. If we write (4.47) as 

(4.49) 

then the restricted model is y = {30 + x1 + u. Now, in order to impose the restriction that 
the coefficient on x 1 is unity, we must estimate the following model: 

y - XI = f3o + U. (4.50) 

This is just a model with an intercept ({30) but with a different dependent variable than in 
(4.49). The procedure for computing the F statistic is the same: estimate (4.50), obtain the 
SSR (SSR,), and use this with the unrestricted SSR from (4.49) in the F statistic (4.37). 
We are testing q = 4 restrictions, and there are n - 5 df in the unrestricted model. The F 
statistic is simply [(SSR,- SSR11,)/SSR11,][(n - 5)/4]. 

Before illustrating this test using a data set, we must emphasize one point: we cannot 
use the R-squared form of the F statistic for this example because the dependent variable 
in (4.50) is different from the one in (4.49). This means the total sum of squares from the 
two regressions will be different, and (4.41) is no longer equivalent to (4.37). As a gen­
eral rule, the SSR form of the F statistic should be used if a different dependent variable 
is needed in running the restricted regression. 

The estimated unrestricted model using the data in HPRICEl.RAW is ----)og(price) = .264 + 1.043 log(assess) + .0074 log(lotsize) 

(.570) (.151) (.0386) 

- .1032 log(sqrft) + .0338 bdnns 

(.1384) (.0221) 

n = 88, SSR = 1.822, R2 = .773. 

If we use separate t statistics to test each hypothesis in (4.48), we fail to reject each one. 
But rationality of the assessment is a joint hypothesis, so we should test the restrictions 
jointly. The SSR from the restricted model turns out to be SSR, = 1.880, and so the F sta­
tistic is [(1.880 - 1.822)/1.822](83/4) = .661. The 5% critical value in an F distribution 
with (4,83) djis about 2.50, and so we fail to reject H0. There is essentially no evidence 
against the hypothesis that the assessed values are rational. 
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4.6 Reporting Regression Results 

We end this chapter by providing a few guidelines on how to report multiple regression 
results for relatively complicated empirical projects. This should help you to read pub­
lished works in the applied social sciences, while also preparing you to write your own 
empirical papers. We will expand on this topic in the remainder of the text by reporting 
results from various examples, but many of the key points can be made now. 

Naturally, the estimated OLS coefficients should always be reported. For the key vari­
ables in an analysis, you should interpret the estimated coefficients (which often requires 
knowing the units of measurement of the variables). For example, is an estimate an elas­
ticity, or does it have some other interpretation that needs explanation? The economic or 
practical importance of the estimates of the key variables should be discussed. 

The standard errors should always be included along with the estimated coefficients. 
Some authors prefer to report the t statistics rather than the standard errors (and sometimes 
just the absolute value of the t statistics). Although nothing is really wrong with this, there 
is some preference for reporting standard errors. First, it forces us to think carefully about 
the null hypothesis being tested; the null is not always that the population parameter is zero. 
Second, having standard errors makes it easier to compute confidence intervals. 

The R-squared from the regression should always be included. We have seen that, in 
addition to providing a goodness-of-fit measure, it makes calculation of F statistics for 
exclusion restrictions simple. Reporting the sum of squared residuals and the standard error 
of the regression is sometimes a good idea, but it is not crucial. The number of observa­
tions used in estimating any equation should appear near the estimated equation. 

If only a couple of models are being estimated, the results can be summarized in equa­
tion form, as we have done up to this point. However, in many papers, several equations 
are estimated with many different sets of independent variables. We may estimate the same 
equation for different groups of people, or even have equations explaining different depen­
dent variables. In such cases, it is better to summarize the results in one or more tables. 
The dependent variable should be indicated clearly in the table, and the independent vari­
ables should be listed in the first column. Standard errors (or t statistics) can be put in 
parentheses below the estimates. 

4. 1 Q 

(Salary-Pension Tradeoff for Teachers) 

Let totcomp denote average total annual compensation for a teacher, including salary and all 
fringe benefits (pension, health insurance, and so on). Extending the standard wage equation, 
total compensation should be a function of productivity and perhaps other characteristics. As 
is standard, we use logarithmic form: 

log(totcomp) =/(productivity characteristics,other factors), 

where f(·) is some function (unspecified for now). Write 

totcomp =salary +benefits= salary (1 + benefits) 
salary · 
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This equation shows that total compensation is the product of two terms: salary and 1 + b!s, 
where b/s is shorthand for the "benefits to salary ratio." Taking the log of this equation gives 
log(totcomp) = log(sa/ary) + log(1 + bls). Now, for "small" bls, log(1 + bls) = b/s; we will 
use this approximation. This leads to the econometric model 

Iog(salm)•) = {30 + f3 1(bls) + other factors. 

Testing the salary-benefits tradeoff then is the same as a test of H0: {31 = -1 against H1: 

f3t '* -1 . 
We use the data in MEAP93.RAW to test this hypothesis. These data are averaged at the 

school level. and we do not observe very many other factors that could affect total compen­
sation. We will include controls for size of the school (enroll), staff per thousand students 
(staff), and measures such as the school dropout and graduation rates. The average bls in the 
sample is about .205, and the largest value is .450. 

The estimated equations are given in Table 4.1, where standard errors are given in paren­
theses below the coefficient estimates. The key variable is bls, the benefits-salary ratio. 

TABLE 4.1 

Testing the Salary-Benefits Tradeoff 
l 

,~•; •• J, J u 

Dependent Variable: log( salary) ~ I • 

Independent Variables (1) (2) (3) 

b/s -.825 -.605 -.589 
(.200) (.165) (.165) 

log( enroll) --- .0874 .0881 
(.0073) (.0073) I• 

Iog(staff) --- -.222 -.218 
(.050) (.050) I• 

drop rate --- --- - .00028 
(.00161) 

gradrate --- --- .00097 
(.00066) 

intercept 10.523 10.884 10.738 
(0.042) (0.252) (0.258) 

Observations 408 408 408 
I 

R-Squared .040 .353 .361 
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How does adding droprate and gradrate affect the estimate of the 
salary-benefits tradeoff? Are these variables jointly significant at 
the 5% level? What about the 10% level? 

From the first column in Table 4.1, we see 
that, without controlling for any other factors, 
the OLS coefficient for bls is - .825. The t sta­
tistic for testing the null hypothesis H0 : {31 = 

-1 is t = (- .825 + 1 )/.200 = .875, and so 
the simple regression fails to reject H0. After 
adding controls for school size and staff size 

(which roughly captures the number of students taught by each teacher), the estimate of the 
bls coefficient becomes - .605. Now, the test of {31 = -1 gives a t statistic of about 2.39; thus, 
H0 is rejected at the 5% level against a two-sided alternative. The variables log(enro//) and 
log(staff) are very statistically significant. . 

SUMMARY 

In this chapter, we have covered the very important topic of statistical inference, which 
allows us to infer something about the population model from a random sample. We sum­
marize the main points: 

1. Under the classical linear model assumptions MLR.l through MLR.6, the OLS esti­
mators are normally distributed. 

2. Under the CLM assumptions, the t statistics have t distributions under the null hypoth­
esis. 

3. We use t statistics to test hypotheses about a single parameter against one- or two-sided 
alternatives, using one- or two-tailed tests, respectively. The most common null hypoth­
esis is H0: f3j = 0, but we sometimes want to test other values of f3j under H0. 

4. In classical hypothesis testing, we first choose a significance level, which, along with 
the df and alternative hypothesis, determines the critical value against which we com­
pare the t statistic. It is more informative to compute the p-value for a t test-the 
smallest significance level for which the null hypothesis is rejected-so that the 
hypothesis can be tested at any significance level. 

5. Under the CLM assumptions, confidence intervals can be constructed for each f3j· 
These Cis can be used to test any null hypothesis concerning f3j against a two-sided 
alternative. 

6. Single hypothesis tests concerning more than one f3j can always be tested by rewrit­
ing the model to contain the parameter of interest. Then, a standard t statistic can be 
used. 

7. The F statistic is used to test multiple exclusion restrictions, and there are two equiva­
lent forms of the test. One is based on the SSRs from the restricted and unrestricted 
models. A more convenient form is based on the R-squareds from the two models. 

8. When computing an F statistic, the numerator df is the number of restrictions being 
tested, while the denominator df is the degrees of freedom in the unrestricted model. 
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9. The alternative for F testing is two-sided. In the classical approach, we specify a sig­
nificance level which, along with the numerator df and the denominator df, determines 
the critical value. The null hypothesis is rejected when the statistic, F, exceeds the 
critical value, c. Alternatively, we can compute a p-value to summarize the evidence 
against H0• 

10. General multiple linear restrictions can be tested using the sum of squared residuals 
form of the F statistic. 

11. The F statistic for the overall significance of a regression tests the null hypothesis that 
all slope parameters are zero, with the intercept unrestricted. Under H0, the explana­
tory variables have no effect on the expected value of y. 

The Classical Linear Model Assumptions 

Now is a good time to review the full set of classical linear model (CLM) assumptions foli 
cross-sectional regression. Following each assumption is a comment about its role in mul­
tiple regression analysis. 

Assumption MLR.1 (Linear in Parameters) 
The model in the population can be written as 

Y = f3o + f3lxl + f3r2 + · · · + f3kxk + u, 

where {30, {3 1, ... , f3k are the unknown parameters (constants) of interest and u is an unob­
servable random error or disturbance term. 

Assumption MLR.l describes the population relationship we hope to estimate, and 
explicitly sets out the f3j-the ceteris paribus population effects of the xj on y-as the 
parameters of interest. 

Assumption MLR.2 (Random Sampling) 

We have a random sample of n observations, {(xil,x•"2•···.X;k,Y;): i = l, ... ,n}, following the 
population model in Assumption MLR.l. 

This random sampling assumption means that we have data that can be used to esti­
mate the f3j, and that the data have been chosen to be representative of the population 
described in Assumption MLR.l. 

Assumption MLR.3 (No Perfect Collinearity) 
In the sample (and therefore in the population), none of the independent variables is con­
stant, and there are no exact linear relationships among the independent variables. 

Once we have a sample of data, we need to know that we can use the data to compute 
the OLS estimates, the {3j This is the role of Assumption MLR.3: if we have sample vari­
ation in each independent variable and no exact linear relationships among the indepen­
dent variables, we can compute the {3j. 

Assumption MLR.4 (Zero Conditional Mean) 

The error u has an expected value of zero given any values of the explanatory variables. 
In other words, E(ulx1,x2, . .. ,xk) = 0. 
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As we discussed in the text, assuming that the unobservables are, on average, unre­
lated to the explanatory variables is key to deriving the first statistical property of each 
OLS estimator: its unbiasedness for the corresponding population parameter. Of course, 
all of the previous assumptions are used to show unbiasedness. 

Assumption MLR.S (Homoskedasticity) 

The error u has the same variance given any values of the explanatory variables. In other 
words, 

Var(ulx1,x2, ... ,xk) = cr2. 

Compared with Assumption MLR.4, the homoskedasticity assumption is of secondary 
importance; in particular, Assumption MLR.5 has no bearing on the unbiasedness of the 
f3t Still, homoskedasticity has two important implications: (i) We can derive formulas for 
the sampling variances whose components are easy to characterize; (ii) We can conclude, 
under the Gauss-Markov assumptions MLR.l to MLR.5, that the OLS estimators have 
smallest variance among all linear, unbiased estimators. 

Assumption MLR.6 (Normality) 

The population error u is independent of the explanatory variables x1, x2, ••• , xk and is nor­
mally distributed with zero mean and variance cr2: u - Normal(O, cr2). 

In this chapter, we added Assumption MLR.6 to obtain the exact sampling distribu­
tions of t statistics and F statistics, so that we can carry out exact hypotheses tests. In the 
next chapter, we will see that MLR.6 can be dropped if we have a reasonably large sam­
ple size. Assumption MLR.6 does imply a stronger efficiency property of OLS: the OLS 
estimators have smallest variance among all unbiased estimators; the comparison group is 
no longer restricted to estimators linear in the {y;: i = 1,2, .. . ,11}. 

KEY TERMS 

Alternative Hypothesis Minimum Variance R-squared Form of the 
Classical Linear Model Unbiased Estimators F Statistic 
Classical Linear Model Multiple Hypotheses Rejection Rule 

(CLM) Assumptions Test Restricted Model 
Confidence Interval (CI) Multiple Restrictions Significance Level 
Critical Value Normality Assumption Statistically Insignificant 
Denominator Degrees of Null Hypothesis Statistically Significant 

Freedom Numerator Degrees of t Ratio 
Economic Significance Freedom t Statistic 
Exclusion Restrictions One-Sided Alternative 1\vo-Sided Alternative 
F Statistic One-Tailed Test Two-Tailed Test 
Joint Hypotheses Test Overall Significance of the Unrestricted Model 
Jointly Insignificant Regression 
Jointly Statistically p-Value 

Significant Practical Significance 



168 Part 1 Regression Analysis with Cross-Sectional Data 

PROBLEMS 

4.1 Which of the following can cause the usual OLS t statistics to be invalid (that is, not 
to have t distributions under H0)? 

(i) Heteroskedasticity. 
(ii) A sample correlation coefficient of .95 between two independent variables 

that are in the model. 
(iii) Omitting an important explanatory variable. 

4.2 Consider an equation to explain salaries of CEOs in terms of annual firm sales, return 
on equity (roe, in percent form), and return on the firm's stock (ros, in percent form): 

log(salary) = /30 + f3 1log(sales) + f32roe + f33ros + u. 

(i) In terms of the model parameters, state the null hypothesis that, after con­
trolling for sales and roe, ros has no effect on CEO salary. State the alter­
native that better stock market performance increases a CEO's salary. 

(ii) Using the data in CEOSALl.RAW, the following equation was obtained 
by OLS: 

~ = 4.32 + .280 log(sales) + .0174 roe + .00024 ros 
(.32) (.035) (.0041) (.00054) 

n = 209, R2 = .283. 

By what percentage is sa/my predicted to increase if ros increases by 50 
points? Does ros have a practically large effect on salary? 

(iii) Test the null hypothesis that ros has no effect on salary against the 
alternative that ros has a positive effect. Carry out the test at the 10% sig­
nificance level. 

(iv) Would you include ros in a final model explaining CEO compensation in 
terms of firm performance? Explain. 

4.3 The variable rdintens is expenditures on research and development (R&D) as a per­
centage of sales. Sales are measured in millions of dollars. The variable profmarg is 
profits as a percentage of sales. 

Using the data in RDCHEM.RAW for 32 firms in the chemical industry, the following 
equation is estimated: -----rdilltens = .472 + .321 log(sales) + .050 profnzarg 

(1.369) (.216) (.046) 
n = 32, R2 = .099. 

(i) Interpret the coefficient on log(sales). In particular, if sales increases by 
10%, what is the estimated percentage point change in rdintens? Is this an 
economically large effect? 

(ii) Test the hypothesis that R&D intensity does not change with sales against 
the alternative that it does increase with sales. Do the test at the 5% and 
10% levels. 

(iii) Interpret the coefficient on profmarg. Is it economically large? 
(iv) Does profmarg have a statistically significant effect on rdintens? 
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4.4 Are rent rates influenced by the student population in a college town? Let rent 
be the average monthly rent paid on rental units in a college town in the United States. Let 
pop denote the total city population, avginc the average city income, and pctstu the student 
population as a percentage of the total population. One model to test for a relationship is 

log(rent) = {30 + {3 11og(pop) + {321og(avginc) + {33pctstu + u. 

(i) State the null hypothesis that size of the student body relative to the pop­
ulation has no ceteris paribus effect on monthly rents. State the alternative 
that there is an effect. 

(ii) What signs do you expect for {31 and {32? 
(iii) The equation estimated using 1990 data from RENTAL.RAW for 64 col­

lege towns is --log(rent) = .043 + .066 log(pop) + .507 log(avginc) + .0056 pctstu 
(.844) (.039) (.081) (.0017) 

n = 64, R2 = .458. 

What is wrong with the statement: "A 10% increase in population is asso­
ciated with about a 6.6% increase in rent"? 

(iv) Test the hypothesis stated in part (i) at the 1% level. 

4.5 Consider the estimated equation from Example 4.3, which can be used to study the 
effects of skipping class on college GPA: 

.......----.__ 
co!GPA = 1.39 + .412 hsGPA + .015 ACT- .083 skipped 

(.33) (.094) (.011) (.026) 
n = 141, R2 = .234. 

(i) Using the standard normal approximation, find the 95% confidence inter­
val for f3ItsGPA· 

(ii) Can you reject the hypothesis H0: f3lrsGPA = .4 against the two-sided alter­
native at the 5% level? 

(iii) Can you reject the hypothesis H0: f3lrsGPA = 1 against the two-sided alter­
native at the 5% level? 

4.6 In Section 4.5, we used as an example testing the rationality of assessments of hous­
ing prices. There, we used a log-log model in price and assess [see equation (4.47)] . Here, 
we use a level-level formulation. 

(i) In the simple regression model 

price = {30 + {3 1assess + u, 

the assessment is rational if {3 1 = 1 and {30 = 0. The estimated equation is 

-priCe = -14.47 + .976 assess 
(16.27) (.049) 

n = 88, SSR = 165,644.51, R2 = .820. 

First, test the hypothesis that H0: {30 = 0 against the two-sided alterna­
tive. Then, test H0: {3 1 = I against the two-sided alternative. What do 
you conclude? 
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(ii) To test the joint hypothesis that {30 = 0 and {3 1 = I, we need the SSR in 

""'" the restricted model. This amounts to computing ""'-'i=I (price;- assess; f. 
where 11 = 88, since the residuals in the restricted model are just price; 
- assess;. (No estimation is needed for the restricted model because both 
parameters are specified under H0.) This turns out to yield SSR = 
209,448.99. Carry out the F test for the joint hypothesis. 

(iii) Now, test H0: {32 = 0, {33 = 0, and {34 = 0 in the model 

price = {30 + {3 1assess + {32/otsize + {33sq1ft + {34bdrms + u. 

The R-squared from estimating this model using the same 88 houses 
is .829. 

(iv) If the variance of price changes with assess, lotsize, sq1ft, or bdrms, what 
can you say about the F test from part (iii)? 

4.7 In Example 4.7, we used data on nonunionized manufacturing firms to estimate the 
relationship between the scrap rate and other firm characteristics. We now look at this 
example more closely and use all available firms . 

(i) The population model estimated in Example 4.7 can be written as 

log(scrap) = {30 + {3/zrsemp + {32Iog(sales) + {33log(employ) + u. 

Using the 43 observations available for 1987, the estimated equation is ----log(scmp) = 11.74 - .042 hrsemp- .951 log(sa/es) + .992 log(employ) 
(4.57) (.019) (.370) (.360) 

n = 43, R2 = .310. 

Compare this equation to that estimated using only the 29 nonunionized 
firms in the sample. 

(ii) Show that the population model can also be written as 

log(scrap) = {30 + {31hrsemp + {32Iog(saleslemploy) + 83log(employ) + u, 

where 83 = {32 + {33. [Hint: Recall that log(xzlx3) = log(x2) - log(x3).] 

Interpret the hypothesis H0: 83 = 0. 
(iii) When the equation from part (ii) is estimated, we obtain ----Iog(scrap) = 11.74 - .042 hrsemp- .951 log(saleslemploy) + .041 log(employ) 

(4.57) (.019) (.370) (.205) 
n = 43, R2 = .310. 

Controlling for worker training and for the sales-to-employee ratio, do big­
ger firms have larger statistically significant scrap rates? 

(iv) Test the hypothesis that a I% increase in sales/employ is associated with 
a I% drop in the scrap rate. 

4.8 Consider the multiple regression model with three independent variables, under the 
classical linear model assumptions MLR.l through MLR.6: 

Y = f3o + /3,x, + f3~z + f33x3 + u. 
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You would like to test the null hypothesis H0: {3 1 - 3{32 = 1. 
(i) Let /31 and /3z denote the OLS estimators of {31 and {3,. Find Var(/31 - 3{3,) 

in terms of the variances of {31 and /3z and the cova;iance between the~. 
What is the standard error of /31 - 3/3z? 

(ii) Write the t statistic for testing H0: {3 1 - 3{32 = 1. 
(iii) Define fJ1 = {3 1 - 3{32 and 01 = {31 - 3/32• Write a regression ~quation 

involving {30, fJ1, {32, and {33 that allows you to directly obtain fJ1 and its 
standard error. 

4.9 In Problem 3.3, we estimated the equation 

SfiiP = 3,638.25 - .148 totwrk- 11.13 educ + 2.20 age 
(112.28) (.017) (5.88) (1.45) 

11 = 706, R2 = .113, 

where we now report standard errors along with the estimates. 
(i) Is either educ or age individually significant at the 5% level against a two­

sided alternative? Show your work. 
(ii) Dropping educ and age from the equation gives 

SfiiP = 3,586.38 - .151 totwrk 
(38.91) (.017) 

11 = 706, R2 = .103. 

Are educ and age jointly significant in the original equation at the 5% 
level? Justify your answer. 

(iii) Does including educ and age in the model greatly affect the estimated 
tradeoff between sleeping and working? 

(iv) Suppose that the sleep equation contains heteroskedasticity. What does this 
mean about the tests computed in parts (i) and (ii)? 
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4.10 Regression analysis can be used to test whether the market efficiently uses infor­
mation in valuing stocks. For concreteness, let return be the total return from holding 
a firm's stock over the four-year period from the end of 1990 to the end of 1994. The 
efficient markets hypothesis says that these returns should not be systematically related 
to information known in 1990. If firm characteristics known at the beginning of the 
period help to predict stock returns, then we could use this information in choosing 
stocks. 

For 1990, Jet dkr be a firm's debt to capital ratio, let eps denote the earnings 
per share, let netinc denote net income, and let salary denote total compensation for 
the CEO. 

(i) Using the data in RETURN.RAW, the following equation was estimated: -return = -14.37 + .321 dkr + .043 eps- .0051 neti11c + .0035 salary 
(6.89) (.201) (.078) (.0047) (.0022) 

n = 142, R2 = .0395. 

Test whether the explanatory variables are jointly significant at the 5% 
level. Is any explanatory variable individually significant? 
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(ii) Now, reestimate the model using the log form for netinc and salary: 

-reiiim = -36.30 + .327 dkr + .069 eps- 4.74 log(netinc) + 7.24 log(salary) 
(39.37) (.203) (.080) (3.39) (6.31) 

n = 142, R2 = .0330. 

Do any of your conclusions from part (i) change? 
(iii) How come we do not also use the logs of dkr and eps in part (ii)? 
(iv) Overall, is the evidence for predictability of stock returns strong or weak? 

4.11 The following table was created using the data in CEOSAL2.RAW: 

Dependent Variable: log(salary) 
~ 

Independent Variables (1) (2) (3) 

log(sales) .224 .158 .188 
(.027) (.040) (.040) 

log(mktval) --- .112 .100 
(.050) (.049) 

profmarg --- -.0023 -.0022 
(.0022) (.0021) 

ceo ten --- --- .0171 
(.0055) 

comten --- --- -.0092 
(.0033) 

intercept 4.94 4.62 4.57 
(0.20) (0.25) (0.25) 

Observations 177 177 177 
R-Squared .281 .304 .353 

; 

The variable mktval is market value of the firm, profmarg is profit as a percentage of sales, 
ceoten is years as CEO with the current company, and comten is total years with the 
company. 

(i) Comment on the effect of profmarg on CEO salary. 
(ii) Does market value have a significant effect? Explain. 
(iii) Interpret the coefficients on ceoten and comten. Are the variables statisti­

cally significant? 
(iv) What do you make of the fact that longer tenure with the company, hold­

ing the other factors fixed, is associated with a lower salary? 
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COMPUTER EXERCISES 

C4.1 The following model can be used to study whether campaign expenditures affect 
election outcomes: 

voteA = {30 + {3 11og(expendA) + {321og(expendB) + {33p1tystrA + 11, 

where voteA is the percentage of the vote received by Candidate A, expendA and e:ApendB are 
campaign expenditures by Candidates A and B, and prtystrA is a measure of party strength 
for Candidate A (the percentage of the most recent presidential vote that went to A's party). 

(i) What is the interpretation of {31? 
(ii) In terms of the parameters, state the null hypothesis that a I% increase 

in A's expenditures is offset by a I% increase in B 's expenditures. 
(iii) Estimate the given model using the data in VOTEI.RAW and report the 

results in usual form. Do A's expenditures affect the outcome? What 
about B's expenditures? Can you use these results to test the hypothesis 
in part (ii)? 

(iv) Estimate a model that directly gives the t statistic for testing the hypoth­
esis in part (ii). What do you conclude? (Use a two-sided alternative.) 

C4.2 Use the data in LAWSCH85.RAW for this exercise. 
(i) Using the same model as Problem 3.4, state and test the null hypothesis 

that the rank of law schools has no ceteris paribus effect on median start­
ing salary. 

(ii) Are features of the incoming class of students-namely, LSAT and 
CPA-individually or jointly significant for explaining salary? (Be sure 
to account for missing data on LSAT and GPA.) 

(iii) Test whether the size of the entering class (clsize) or the size of the 
faculty (faculty) needs to be added to this equation; carry out a single 
test. (Be careful to account for missing data on clsize and faculty.) 

(iv) What factors might influence the rank of the law school that are not 
included in the salary regression? 

C4.3 Refer to Problem 3.14. Now, use the log of the housing price as the dependent 
variable: 

log(pn'ce) = {30 + {31sqift + {32bdnns + u. 

(i) You are interested in estimating and obtaining a confidence interval for 
the percentage change in price when a 150-square-foot bedroom is 
added to a house. In decimal form, this is 81 = 150{31 + {32• Use the data 
in HPRICEl.RAW to estimate 81• 

(ii) Write {32 in terms of 81 and {31 and plug this into the log(price) equation. 
(iii) Use part (ii) to obtain a standard error for 01 and use this standard error 

to construct a 95% confidence interval. 

C4.4 In Example 4.9, the restricted version of the model can be estimated using all 1 ,388 
observations in the sample. Compute the R-squared from the regression of bwght on cigs, 




