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Dedication 

To Anna and Red who, until they discovered what an econometrician was, were very 
impressed thattheir son might become one. With apologies to K.A. C. Manderville, I draw 
their attention to the following, adapted from The Undoing of Lamia Gurdleneck. 

"You haven't told me yet," said Lady Nuttal, "what it is your fiance does for a living." 
"He's an econometrician," replied Lamia, with an annoying sense of being on the 

defensive. 
Lady Nuttal was obviously taken aback. It had not occurred to her that econometri­

cians entered into normal social relationships. The species, she would have surmised, 
was perpetuated in some collateral manner, like mules. 

"But Aunt Sara, it's a very interesting profession," said Lamia warmly. 
"I don't doubt it," said her aunt, who obviously doubted it very much. "To express 

anything important in mere figures is so plainly impossible that there must be endless 
scope for well-paid advice on how to do it. But don't you think that life with an econo­
metrician would be rather, shall we say, humdrum?" 

Lamia was silent. She felt reluctant to discuss the surprising depth of emotional 
possibility which she had discovered below Edward's numerical veneer. 

"It's not the figures themselves," she said finally, "it's what you do with them 
that matters." 



Chapter 1 

Introduction 

1.1 What is Econometrics? 

Strange as it may seem, there does not exist a generally accepted answer to this 
question. Responses vary from the silly, "Econometrics is what econometricians do," 
to the staid, "Econometrics is the study of the application of statistical methods to the 
analysis of economic phenomena," with sufficient disagreements to warrant an entire 
journal article devoted to this question (Tintner, 1953). 

This confusion stems from the fact that econometricians wear many different hats. 
First, and foremost, they are economists, capable of utilizing economic theory to 
improve their empirical analyses of the problems they address. At times they are math­
ematicians, formulating economic theory in ways that make it appropriate for statisti­
cal testing. At times they are accountants, concerned with the problem of finding and 
collecting economic data and relating theoretical economic variables to observable 
ones. At times they are applied statisticians, spending hours with the computer trying 
to estimate economic relationships or predict economic events. And at times they are 
theoretical statisticians, applying their skills to the development of statistical tech­
niques appropriate to the empirical problems characterizing the science of economics. 
lt is to the last of these roles that the term "econometric theory" applies, and it is on 
this aspect of econometrics that most textbooks on the subject focus. This guide is 
aGGordingly devoted to this "econometric theory" dimension of econometrics, discuss­
ing the empirical problems typical of economics and the statistical techniques used to 
overcome these problems. 

What distinguishes an econometrician from a statistician is the former's preoccupa­
tion with problems caused by violations of statisticians' standard assumptions; owing 
to 1lie nature of economic relationships and the lack of controlled experimentation, 
these assumptions are seldom met. Patching up statistical methods to deal with sit­
uations frequently encountered in empirical work in economics has created a large 
oatteey of extremely sophisticated statistical techniques. In fact, econometricians are 
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often accused of using sledgehammers to crack open peanuts while turning a blind eye 
to data deficiencies and the many questionable assumptions required for the successful 
application of these techniques. Valavanis has expressed this feeling forcefully: 

Econometric theory is like an exquisitely balanced French recipe, spelling out precisely 
with how many turns to mix the sauce, how many carats of spice to add, and for how many 
milliseconds to bake the mixture at exactly 474 degrees of temperature. But when the 
statistical cook turns to raw materials, he finds that hearts of cactus fruit are unavailable, so 
he substitutes chunks of cantaloupe; where the recipe calls for vermicelli he uses shredded 
wheat; and he substitutes green garment die for curry, ping-pong balls for turtle's eggs, and, 
for Chalifougnac vintage 1883, a can of turpentine. (Valavanis, 1959, p. 83) 

How has this state of affairs come about? One reason is that prestige in the econo­
metrics profession hinges on technical expertise rather than on the hard work required 
to collect good data: 

It is the preparation skill of the econometric chef that catches the professional eye, not the 
quality of the raw materials in the meal, or the effort that went into procuring them. (Griliches, 
1994, p. 14) 

Criticisms of econometrics along these lines are not uncommon. Rebuttals cite 
improvements in data collection, extol the fruits of the computer revolution, and pro­
vide examples of improvements in estimation due to advanced techniques. It remains 
a fact, though, that in practice good results depend as much on the input of sound and 
imaginative economic theory as on the application of correct statistical methods. The 
skill of the econometrician lies in judiciously mixing these two essential ingredients; 
in the words of Malinvaud: 

The art of the econometrician consists in finding the set of assumptions which are both 
sufficiently specific and sufficiently realistic to allow him to take the best possible advantage 
of the data available to him. (Malinvaud, 1966, p. 514) 

Modern econometrics texts try to infuse this art into students by providing a large 
number of detailed examples of empirical application. This important dimension of 
econometrics texts lies beyond the scope of this book, although Chapter 22 on applied 
econometrics provides some perspective on this. Readers should keep this in mind as 
they use this guide to improve their understanding of the purely statistical methods of 
econometrics. 

1.2 The Disturbance Term 

A major distinction between economists and econometricians is the latter's concern 
with disturbance terms. An economist will specify, for example, that consumption is 
a function of income, and write C = f(Y), where Cis consumption and Y is income. 
An econometrician will claim that this relationship must also include a disturbance 
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(or error) tenn, and may alter the equation to read C = f(Y) + e where e (epsilon) is a 
disturbance tenn. Without the disturbance term the relationship is said to be exact or 
deterministic; with the disturbance tenn it is said to be stochastic. 

The word "stochastic" comes from the Greek "stokhos," meaning a target or bull's 
eye. A stochastic relationship is not always right on target in the sense that it predicts 
the precise value of the variable being explained, just as a dart thrown at a target sel­
dom hits the bull's eye. The disturbance term is used to capture explicitly the size of 
these "misses" or "errors." The existence of the disturbance tenn is justified in three 
main ways. (Note: these are not mutually exclusive.) 

1. Omission of the influence of innumerable chance events. Although income might 
be the major determinant of the level of consumption, it is not the only determi­
nant. Other variables, such as the interest rate or liquid asset holdings, may have 
a systematic influence on consumption. Their omission constitutes one type of 
specification error: the nature of the economic relationship is not correctly spec­
ified. In addition to these systematic influences, however, are innumerable less 
systematic influences, such as weather variations, taste changes, earthquakes, epi­
demics, and postal strikes. Although some of these variables may have a significant 
impact on consumption, and thus should definitely be included in the specified 
relationship, many have only a very slight, irregular influence; the disturbance is 
often viewed as representing the net influence of a large number of such small and 
independent causes. 

2. Measurement error. It may be the case that the variable being explained cannot 
be measured accurately, either because of data collection difficulties or because 
it is inherently unmeasurable and a proxy variable must be used in its stead. The 
disturbance term can in these circumstances be thought of as representing this 
measurement error. Errors in measuring the explaining variable(s) (as opposed to 
the variable being explained) create a serious econometric problem, discussed in 
chapter 10. The tenninology "errors in variables" is also used to refer to measure­
ment errors. 

J. Human indeterminacy. Some people believe that human behavior is such that 
actions taken under identical circumstances will differ in a random way. The dis­
turbance tenn can be thought of as representing this inherent randomness in human 
oehavior. 

Associated with any explanatory relationship are unknown constants, called param­
eters~ which tie the relevant variables into an equation. For example, the relationship 
Between Gonsumption and income could be specified as 

where {3, and /32 are the parameters characterizing this consumption function. Econo­
mists are often keenly interested in learning the values of these unknown parameters. 

'iDhe {}~istence of the disturbance tenn, coupled with the fact that its magnitude is 
unknow.lb makes calculation of these parameter values impossible. Instead, they must 
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be estimated. It is on this task, the estimation of parameter values, that the bulk of 
econometric theory focuses. The success of econometricians' methods of estimating 
parameter values depends in large part on the nature of the disturbance term. Statistical 
assumptions concerning the characteristics of the disturbance term, and means of test­
ing these assumptions, therefore play a prominent role in econometric theory. 

1.3 Estimates and Estimators 

In their mathematical notation, econometricians usually employ Greek letters to represent 
the true, unknown values of parameters. The Greek letter most often used in this context 
is beta (j3) . Thus, throughout this book, f3 is usually employed as the parameter value that 
the econometrician is seeking to learn. Of course, no one ever actually learns the value of 
{3, but it can be estimated via statistical techniques; empirical data can be used to take an 
educated guess at {3. In any particular application, an estimate of f3 is simply a number. 
For example, f3 might be estimated as 16.2. But, in general, econometricians are seldom 
interested in estimating a single parameter; economic relationships are usually sufficiently 
complex to require more than one parameter, and because these parameters occur in the 
same relationship, better estimates of these parameters can be obtained if they are esti­
mated together (i.e., the influence of one explaining variable is more accurately captured 
if the influence of the other explaining variables is simultaneously accounted for). As 
a result, f3 seldom refers to a single parameter value; it almost always refers to a set of 
parameter values, individually called f3~o {32, ••• , f3t where k is the number of different 
parameters in the set. f3 is then referred to as a vector and is written as 

In any particular application, an estimate of f3 will be a set of numbers. For example, 
if three parameters are being estimated (i.e., if the dimension of f3 is 3), f3 might be 
estimated as 

r 
0.8] 
1.2 

-4.6 

In general, econometric theory focuses not on the estimate itself, but on the estimator­
the formula or "recipe" by which the data are transformed into an actual estimate. The 
reason for this is that the justification of an estimate computed from a particular sample 
rests on a justification of the estimation method (the estimator). The econometrician 
has no way of knowing the actual values of the disturbances inherent in a sample oi 
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data; depending on these disturbances, an estimate calculated from that sample could 
be quite inaccurate. It is therefore impossible to justify the estimate itself. However, it 
may be the case that the econometrician can justify the estimate by showing, for exam­
ple, that the estimating formula used to produce that estimate, the estimator, "usually" 
produces an estimate that is "quite close" to the true parameter value regardless of the 
particular sample chosen. (The meaning of this sentence, in particular the meaning of 
"usually" and of "quite close," is discussed at length in the next chapter.) Thus an esti­
mate of f3 from a particular sample is defended by justifying the estimator. 

Because attention is focused on estimators of {3, a convenient way of denoting those 
estimators is required. An easy way of doing this is to place a mark over the f3 or a 
superscript on it. Thus tJ (beta-hat) and {3* (beta-star) are often used to denote estima­
tors of beta. One estimator, the ordinary least squares (OLS) estimator, is very popu­
lar in econometrics; the notation {3°LS is used throughout this book to represent it. 
Alternative estimators are denoted by tJ, {3*, or something similar. Many textbooks use 
the letter b to denote the OLS estimator. 

1.4 Good and Preferred Estimators 

Any fool can produce an estimator of {3, since literally an infinite number of them exists; 
that is, there exists an infinite number of different ways in which a sample of data can be 
used to produce an estimate of {3, all but a few of these ways producing "bad" estimates. 
What distinguishes an econometrician is the ability to produce "good" estimators, which 
in tum produce "good" estimates. One of these "good" estimators could be chosen as 
the "best" or "preferred" estimator and could be used to generate the "preferred" esti­
mate of {3. What further distinguishes an econometrician is the ability to provide "good" 
estimators in a variety of different estimating contexts. The set of "good" estimators 
(and the choice of "preferred" estimator) is not the same in all estimating problems. 
In 'faGt, a "good" estimator in one estimating situation could be a "bad" estimator 
in another situation. 

The study of econometrics revolves around how to generate a "good" or the "preferred" 
estimator in a given estimating situation. But before the "how to" can be explained, the 
meaning of "good" and "preferred" must be made clear. This takes the discussion into 
the subjective realm: the meaning of "good" or "preferred" estimator depends upon 
tile subjective values of the person doing the estimating. The best the econometrician 
canJj.o under these circumstances is to recognize the more popular criteria used in this 
regard and generate estimators that meet one or more of these criteria. Estimators meet­
ing certain of these criteria could be called "good" estimators. The ultimate choice of 
the "preferred" estimator, however, lies in the hands of the person doing the estimating, 
ifoflitlisher value judgments that determine which of these criteria is the most important. 
This valu judgment may well be influenced by the purpose for which the estimate is 
souglit., Iilli addition to the subjective prejudices of the individual. 

<Clear:~. our investigation of the subject of econometrics can go no further until 
the possiole criteria for a "good" estimator are discussed. This is the purpose of the 
ne~t cha,gter. 
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General Notes 

1.1 What is Econometrics? 

• The term "econometrics" first came into promi­
nence with the formation in the early 1930s 
of the Econometric Society and the founding of 
the journal Econometrica. The introduction of 
Dowling and Glahe (1970) surveys briefly the 
landmark publications in econometrics. Geweke, 
Horowitz, and Pesaran (2007) is a concise history 
and overview of recent advances in economet­
rics. Hendry and Morgan (1995) is a collection 
of papers of historical importance in the develop­
ment of econometrics, with excellent commen­
tary. Epstein (1987), Morgan (1990), and Qin 
(1993) are extended histories; see also Morgan 
( 1990a). Shorter histories, complementing one 
another, are Farebrother (2006) and Gilbert 
and Qin (2006). Hendry (1980) notes that the 
word "econometrics" should not be confused 
with "eco-nomystics," "economic-tricks," or 
"icon-ometrics." Econometrics actually comes 
in several different flavors, reflecting different 
methodological approaches to research; Hoover 
(2006) is a good summary. 

• Just as the study of economics has split into two 
halves, microeconomics and macroeconomics, 
econometrics has divided into two halves, micro­
econometrics and time-series analysis. Data for 
microeconometrics tend to be disaggregated, 
so that heterogeneity of individuals and firms 
plays a much more prominent role than in time­
series data for which data tend to be aggregated. 
Aggregation averages away heterogeneity, lead­
ing to data and relationships that have continuity 
and smoothness features. Disaggregated data, on 
the other hand, frequently reflect discrete, non­
linear behavior, presenting special estimating/ 
inference problems. But time-series data have 
their own special estimating/inference problems, 
such as unit roots. Panel data, containing obser­
vations on microeconomic decision makers over 
time, blend microeconometric and time-series 
data, creating yet more special estimating/infer­
ence problems. The later chapters of this book 
address these special problems. 

• Before and during the 1960s econometric 
estimation techniques were based on analytical 
expressions derived via mathematics. During 
the 1970s and 1980s the range of econometrics 
was extended by utilizing numerical optimiza­
tion algorithms (see chapter 23) to produce esti­
mates for situations in which analytical solutions 
were not available. More recently, a new genera­
tion of econometric techniques has arisen, based 
on simulation methods (again, see chapter 23) 
that enable estimation in circumstances in 
which the criterion functions to be optimized do 
not have tractable expressions, or in applications 
of Bayesian methods. The computer has played 
a prominent role in making progress possible 
on these technical fronts. One purpose of this 
book is to make these and other technical dimen­
sions of econometrics more understandable and 
so alleviate two dangers this progress has 
produced, articulated below by two of the 
more respected members of the econometric 
profession. 

Think first why you are doing what you are doing 
before attacking the problem with aJl of the technical 
arsenal you have and churning out a paper that 
may be mathematically imposing but of limited 
practical use. (G. S. Maddala, as quoted by Hsiao, 
2003, p. vii) 

The cost of computing has dropped exponentially, 
but the cost of thinking is what it always was. 
That is why we see so many articles with so many 
regressions and so little thought. (Zvi Griliches, as 
quoted by Mairesse, 2003, p. xiv) 

• The discipline of econometrics has grown so 
rapidly, and in so many different directions, that 
disagreement regarding the definition of econo­
metrics has grown rather than diminished over the 
past decade. Reflecting this, at least one promi­
nent econometrician, Goldberger (1989, p. 151), 
has concluded that "nowadays my definition 
would be that econometrics is what econometri­
cians do." One thing that econometricians do that 
is not discussed in this book is serve as expert wit­
nesses in court cases. Fisher (1986) has an inter­
esting account of this dimension of econometric 



work; volume 113 of the Journal of Econometrics 
(2003) has several very informative papers on 
econometrics in the courts. Judge et al. (1988, 
p. 81) remind readers that "econometrics isjim!" 

• Granger (2001) discusses the differences between 
econometricians and statisticians. One major 
distinguishing feature of econometrics is that 
it focuses on ways of dealing with data that are 
awkward/dirty because they were not produced 
by controlled experiments. In recent years, how­
ever, controlled experimentation in economics 
has become more common. Burtless (1995) sum­
marizes the nature of such experimentation and 
argues for its continued use. Heckman and Smith 
(1995) is a strong defense of using traditional 
data sources. Much of this argument is associated 
with the selection bias phenomenon (discussed in 
chapter 17) - people in an experimental program 
inevitably are not a random selection of all peo­
ple, particularly with respect to their unmeasured 
attributes, and so results from the experiment are 
compromised. Friedman and Sunder (1994) is 
a primer on conducting economic experiments. 
Meyer (1995) discusses the attributes of "natu­
ral" experiments in economics. 

• Keynes (1939) described econometrics as "statis­
tical alchemy," an attempt to turn the base metal of 
imprecise data into the pure gold of a true param­
eter estimate. He stressed that in economics there 
is no such thing as a real parameter because all 
parameters associated with economic behavior are 
1ocal approximations applying to a specific time 
and !(l1ace. Mayer (1993, chapter 10), Summers 
( ~ 991 ), Brunner (1973), Rubner (1970), Streissler 
(.1!970)., and Swann (2006, chapters 5 and 6) are 
good sources of cynical views of econometrics, 
summed up dramatically by McCloskey (1994, 
p. :359) : "most allegedly empirical research in 
economics is unbelievable, uninteresting or both." 
More critical comments on econometrics appear 
in this boolc in section 10.3 on errors in variables 
and chapter 20 on prediction. Fair (1973) and 
Fromm and Schink (1973) are examples of stud­
ies defending the use of sophisticated econometric 
technigues. The use of econometrics in the policy 
context has been hampered by the (inexplicable?) 
operation of ''@oodhart's Law" (1978), namely 

Chapter 1 Introduction 7 

that all econometric models break down when 
used for policy. The finding of Dewald, Thursby, 
and Anderson (1986) that there is a remarkably 
high incidence of inability to replicate empirical 
studies in economics, does not promote a favor­
able view of econometricians. 

• In a book provocatively titled Putting Econo­
metrics in its Place, Swann (2006) complains that 
econometrics has come to play a too-dominant 
role in applied economics; it is viewed as a uni­
versal solvent when in fact it is no such thing. He 
argues that a range of alternative methods, despite 
their many shortcomings, should be used to sup­
plement econometrics. In this regard he discusses 
at length the possible contributions of experimen­
tal economics, surveys and questionnaires, simu­
lation, engineering economics, economic history 
and the history of economic thought, case stud­
ies, interviews, common sense and intuition, and 
metaphors. Each of these, including economet­
rics, has strengths and weaknesses. Because they 
complement one another, however, a wise strategy 
would be to seek information from as many of 
these techniques as is feasible. He summarizes this 
approach by appealing to a need in economics to 
respect and assimilate "vernacular knowledge" of 
the economy, namely information gathered by lay­
people from their everyday interaction with mar­
kets. In support of this view, Bergmann (2007) 
complains that empirical work in economics 
ignores information that could be obtained by 
interviewing economic decision makers; Bartel, 
Ichniowski, and Shaw (2004) advocate "insider 
econometrics," in which information obtained 
by interviewing/surveying knowledgeable insid­
ers (decision makers) is used to guide traditional 
econometric analyses. Along these same lines, 
feminist economists have complained that tradi­
tional econometrics contains a male bias. They 
urge econometricians to broaden their teaching 
and research methodology to encompass the col­
lection of primary data of different types, such as 
survey or interview data, and the use of qualita­
tive studies which are not based on the exclusive 
use of "objective" data. See MacDonald (1995), 
Nelson (1995), and Bechtold (1999). King, 
Keohane, and Verba (1994) discuss how research 
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using qualitative studies can meet traditional sci­
entific standards. See also Helper (2000). 

• What has been the contribution of econometrics 
to the development of economic science? Some 
would argue that empirical work frequently 
uncovers empirical regularities that inspire the­
oretical advances. For example, the difference 
between time-series and cross-sectional estimates 
of the MPC prompted development of the rela­
tive, permanent, and life-cycle consumption the­
ories. But many others view econometrics with 
scorn, as evidenced by the following quotes: 

We don't genuinely take empirical work seriously in 
economics. It's not the source by which economists 
accumulate their opinions, by and large. (Leamer in 
Hendry, Leamer, and Poirier, 1990, p. 182) 

The history of empirical work that has been 
persuasive- that has changed people's understanding 
of the facts in the data and which economic models 
understand those facts - looks a lot more different 
than the statistical theory preached in econometrics 
textbooks. (Cochrane, 2001, p. 302) 

Very little of what economists will tell you 
they know, and almost none of the content of the 
elementary text, has been discovered by running 
regressions. Regressions on government-collected 
data have been used main! y to bolster one theoretical 
argument over another. But the bolstering they 
provide is weak, inconclusive, and easily countered 
by someone else's regressions. (Bergmann, 1987, p. 
192) 

No economic theory was ever abandoned because 
it was rejected by some empirical econometric test, 
nor was a clear cut decision between competing 
theories made in light of the evidence of such a test. 
(Spanos, 1986,p.660) 

I invite the reader to try ... to identify a 
meaningful hypothesis about economic behavior 
that has fallen into disrepute because of a formal 
statistical test. (Summers, 1991, p. 130) 

This reflects the belief that economic data are not 
powerful enough to test and choose among theo­
ries, and that as a result econometrics has shifted 
from being a tool for testing theories to being a 
tool for exhibiting/displaying theories. Because 

economics is a nonexperimental science, often 
the data are weak, and, because of this, empirical 
evidence provided by econometrics is frequently 
inconclusive; in such cases, it should be qualified 
as such. Griliches ( 1986) comments at length on 
the role of data in econometrics, and notes that they 
are improving; Aigner ( 1988) stresses the potential 
role of improved data. This is summed up nicely 
by Samuelson (as quoted in Card and Krueger, 
1995, p. 355): "In economics it takes a theory to 
kill a theory, facts can only dent a theorist's hide." 

• The criticisms above paint a discouraging view 
of econometrics, but as cogently expressed by 
Masten (2002, p. 428), econometricians do have 
a crucial role to play in economics: 

In the main, empirical research is regarded as 
subordinate to theory. Theorists perform the 
difficult and innovative work of conceiving new 
and sometimes ingenious explanations for the 
world around us, leaving empiricists the relatively 
mundane task of gathering data and applying tools 
(supplied by theoretical econometricians) to support 
or reject hypotheses that emanate from the theory. 

To be sure, facts by themselves are worthless, "a 
mass of descriptive material waiting for a theory, 
or a fire," as Coase ( 1984, p. 230), in characteristic 
form, dismissed the contribution of the old-school 
institutionalists. But without diminishing in any 
way the creativity inherent in good theoretical 
work, it is worth remembering that theory without 
evidence is, in the end, just speculation. Two 
questions that theory alone can never answer are 
(1) which of the logically possible explanations for 
observed phenomena is the most probable?; and (2) 
are the phenomena that constitute the object of our 
speculations important? 

• Critics might choose to paraphrase the Malinvaud 
quote as ''The art of drawing a crooked line from 
an unproved assumption to a foregone conclu­
sion." The importance of a proper understand­
ing of econometric techniques in the face of a 
potential inferiority of econometrics to inspired 
economic theorizing is captured nicely by 
Samuelson (1965, p. 9): "Even if a scientific 
regularity were less accurate than the intuitive 



hunches of a virtuoso, the fact that it can be put 
into operation by thousands of people who are not 
virtuosos gives it a transcendental importance." 
This guide is designed for those of us who are 
not virtuosos! 

1.2 The Disturbance Term 

• The error term associated with a relationship 
need not necessarily be additive, as it is in the 
example cited. For some nonlinear functions it 
is often convenient to specify the error term in a 
multiplicative form . In other instances it may be 
appropriate to build the stochastic element into 
the relationship by specifying the parameters to 
be random variables rather than constants. (This 
is called the random-coefficients model.) 

• Some econometricians prefer to define the rela­
tionship between C and Y discussed earlier as 
"the mean of C conditional on Y isf(Y)," written 
as E (C I Y) = f(Y). This spells out more explicitly 
what econometricians have in mind when using 
this specification. The conditional expectation 
interpretation can cause some confusion. Suppose 
wages are viewed as a function of education, gen­
der, and marriage status. Consider an unmarried 
male with 12 years of education. The conditional 
expectation of such a person's income is the 
value of y averaged over all unmarried males with 
l2 years of education. This says nothing about 
what would happen to a particular individual's 
income if he were to get married. The coeffi­
cient on marriage status tells us what the aver­
age difference is between married and unmarried 
g_eople. much of which may be due to unmea­
sure'a characteristics that differ between married 
and unmarried people. A positive coefficient on 
mamiage status tells us that married people have 
diff§"ent unmeasured characteristics that tend 
t0 Gause higher earnings; it does not mean that 
getting married will increase one 's income. 
On ffie oilier hand, it could be argued that get­
ting married creates economies in organizing 
one•s nonwofk life, which enhances earning 
capaGity. 'il'his would suggest that getting mar­
rieg wou1<Llead to some increase in earnings, but 
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in light of earlier comments, the coefficient on 
marriage status would surely be an overestimate 
of this effect. 

• In terms of the throwing-darts-at-a-target anal­
ogy, characterizing disturbance terms refers to 
describing the nature of the misses: are the darts 
distributed uniformly around the hull's eye? 
Is the average miss large or small? Does the aver­
age miss depend on who is throwing the darts? 
Is a miss to the right likely to be followed by 
another miss to the right? In later chapters the sta­
tistical specification of these characteristics and 
the related terminology (such as "homoskedastic­
ity" and "autocorrelated errors") are explained in 
considerable detail. 

1.3 Estimates and Estimators 

• An estimator is simply an algebraic function of 
a potential sample of data; once the sample is 
drawn, this function creates an actual numerical 
estimate. 

• Chapter 2 discusses in detail the means whereby 
an estimator is "justified" and compared with 
alternative estimators. For example, an estima­
tor may be described as "unbiased" or "efficient." 
Frequently, estimates are described using the 
same terminology, so that reference might be 
made to an "unbiased" estimate. Technically this 
is incorrect because estimates are single numbers 
- it is the estimating formula, the estimator, that 
is unbiased, not the estimate. This technical error 
has become so commonplace that it is now gener­
ally understood that when one refers to an "unbi­
ased" estimate one merely means that it has been 
produced by an estimator that is unbiased. 

1.4 Good and Preferred Estimators 

• The terminology "preferred" estimator is used 
instead of the term "best" estimator because the 
latter has a specific meaning in econometrics. 
This is explained in chapter 2. 

• Estimation of parameter values is not the only 
purpose of econometrics. Two other major themes 
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can be identified: testing of hypotheses and eco­
nomic forecasting. Because both these problems 
are intimately related to the estimation of param­
eter values, it is not misleading to characterize 
econometrics as being primarily concerned with 
parameter estimation. 

Technical Notes 

1.1 What is Econometrics? 

• In the macroeconomic context, in particular in 
research on real business cycles, a computational 
simulation procedure called calibration is often 
employed as an alternative to traditional econo­
metric analysis. In this procedure, economic theory 
plays a much moreprominentrole than usual. Indeed, 
Pagan (1998, p. 611) claims that "it is this belief 
in the pre-eminence of theory that distinguishes a 
calibrator from a non-calibrator." This theory sup­
plies ingredients to a general equilibrium model 
designed to address a specific economic question. 
This model is then "calibrated" by setting param­
eter values equal to average values of economic 
ratios known not to have changed much over 
time or equal to empirical estimates from micro­
economic studies. A computer simulation pro­
duces output from the model, with adjustments 
to model and parameters made until the output 
from these simulations has qualitative character­
istics (such as correlations between variables of 
interest) matching those of the real world. Once 

this qualitative matching is achieved, the model 
is simulated to address the primary question of 
interest. Kydland and Prescott (1996) is a good 
exposition of this approach. Note that in contrast 
to traditional econometrics, no real estimation is 
involved, and no measures of uncertainty, such as 
confidence intervals, are produced. 

Econometricians have not viewed this tech­
nique with favor, primarily because there is so 
little emphasis on evaluating the quality of 
the output using traditional testing/assessment 
procedures. Hansen and Heckman ( 1996), a 
cogent critique, note (p. 90) that "Such models 
are often elegant, and the discussions produced 
from using them are frequently stimulating and 
provocative, but their empirical foundations are 
not secure. What credibility should we attach 
to numbers produced from their 'computational 
experiments,' and why should we use their 'cali­
brated models' as a basis for serious quantitative 
policy evaluation?" Pagan (1998, p. 612) is more 
direct: "The idea that a model should be used just 
because the 'theory is strong', without a demon­
stration that it provides a fit to an actual economy, 
is mind-boggling." 

Dawkins, Srinivasan, and Whalley (2001) is an 
excellent summary of calibration and the debates 
that surround it. Despite all this controversy, cali­
bration exercises are useful supplements to tradi­
tional econometric analyses because they widen 
the range of empirical information used to study 
a problem. 



Chapter 2 

Criteria for Estimators 

2.1 Introduction 

Chapter 1 posed the question: What is a "good" estimator? The aim of this chapter is 
to answer that question by describing a number of criteria that econometricians feel are 
measures of "goodness." These criteria are discussed under the following headings: 

1. Computational cost; 
2. Least squares; 
3. Highest 'R2

; 

4. Unbiasedness; 
§. Efficiency; 
6. Mean square error (MSE); 
7. Asymptotic properties; 
8. Maximum likelihood. 

fiisGussion of one major criterion, robustness (insensitivity to violations of the assump­
tions under which the estimator has desirable properties as measured by the criteria 
above), is postponed to chapter 21. Since econometrics can be characterized as a search 
for estimators satisfying one or more of these criteria, care is taken in the discussion of 
tlie Gritecia to ensure that the reader understands fully the meaning of the different criteria 
and the terminology associated with them. Many fundamental ideas of econometrics, 
Gllitica11otbe question, "What's econometrics all about?," are presented in this chapter. 

2.2 eomputational Cost 

To anyone, but ~articularly to economists, the extra benefit associated with choosing 
one estimator over another must be compared with its extra cost, where cost refers to 

II 
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expenditure of both money and effort. Thus, the computational ease and cost of using one 
estimator rather than another must be taken into account whenever selecting an estima­
tor. Fortunately, the existence and ready availability of high-speed computers, along with 
standard packaged routines for most of the popular estimators, has made computational 
cost very low. As a result, this criterion does not play as strong a role as it once did. Its 
influence is now felt only when dealing with two kinds of estimators. One is the case of an 
atypical estimation procedure for which there does not exist a readily available packaged 
computer program and for which the cost of programming is high. The second is an esti­
mation method for which the cost of running a packaged program is high because it needs 
large quantities of computer time; this could occur, for example, when using an iterative 
routine to find parameter estimates for a problem involving several nonlinearities. 

2.3 Least Squares 

For any set of values of the parameters characterizing a relationship, estimated values 
of the dependent variable (the variable being explained) can be calculated using the 
values of the independent variables (the explaining variables) in the data set. These 
estimated values (called y) of the dependent variable can be subtracted from the actual 
values (y) of the dependent variable in the data set to produce what are called the 
residuals (y - y). These residuals could be thought of as estimates of the unknown 
disturbances inherent in the data set. This is illustrated in Figure 2.1 . The line labeled 
y is the estimated relationship corresponding to a specific set of values of the unknown 
parameters. The dots represent actual observations on the dependent variable y and the 
independent variable x. Each observation is a certain vertical distance away from the 
estimated line, as pictured by the double-ended arrows. The lengths of these double­
ended arrows measure the residuals . A different set of specific values of the parameters 
would create a different estimating line and thus a different set of residuals. 

It seems natural to ask that a "good" estimator be one that generates a set of estimates 
of the parameters that makes these residuals "small." Controversy arises, however, over 

y 

X 

Figure 2.1 Minimizing the sum of squared residuals. 
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the appropriate definition of "small." Although it is agreed that the estimator should be 
chosen to minimize a weighted sum of all these residuals, full agreement as to what the 
weights should be does not exist. For example, those feeling that all residuals should 
be weighted equally advocate choosing the estimator that minimizes the sum of the 
absolute values of these residuals. Those feeling that large residuals should be avoided 
advocate weighting larger residuals more heavily by choosing the estimator that mini­
mizes the sum of the squared values of these residuals. Those worried about misplaced 
decimals and other data errors advocate placing a constant (sometimes zero) weight on 
the squared values of particularly large residuals. Those concerned only with whether 
or not a residual is bigger than some specified value suggest placing a zero weight on 
residuals smaller than this critical value and a weight equal to the inverse of the resid­
ual on residuals larger than this value. Clearly a large number of alternative definitions 
could be proposed, each with appealing features. 

By far the most popular of these definitions of "small" is the minimization of the 
sum of squared residuals. The estimator generating the set of values of the param­
eters that minimizes the sum of squared residuals is called the ordinary least squares 
(OLS) estimator. It is referred to as the OLS estimator and is denoted by f301.s in this 
book. This estimator is probably the most popular estimator among researchers doing 
empirical work. The reason for this popularity, however, does not stem from the fact 
that it makes the residuals "small" by minimizing the sum of squared residuals. Many 
econometricians are leery of this criterion because minimizing the sum of squared 
residuals does not say anything specific about the relationship of the estimator to the 
true parameter value f3 that it is estimating. In fact, it is possible to be too successful 
in minimizing the sum of squared residuals, accounting for so many unique features 
of that particular sample that the estimator loses its general validity, in the sense that, 
were that estimator applied to a new sample, poor estimates would result. The great 
;popularity of the OLS estimator comes from the fact that in some estimating problems 
(but not all!) it scores well on some of the other criteria, described below, which are 
thought to be of greater importance. A secondary reason for its popularity is its compu­
tational ease; all computer packages include the OLS estimator for linear relationships, 
and many have routines for nonlinear cases. 

Because the OLS estimator is used so much in econometrics, the characteristics of 
this estimator in different estimating problems are explored very thoroughly by all 
eGonometrics texts. The OLS estimator always minimizes the sum of squared resid­
uals~ l;mt it does not always meet other criteria that econometricians feel are more 
impoFtant. As will become clear in the next chapter, the subject of econometrics can 
be GbaFaGterized as an attempt to find alternative estimators to the OLS estimator for 
situations lin which the OLS estimator does not meet the estimating criterion consid­
ered to be of greatest importance in the problem at hand. 

2.4 Highest R2 

~ sta~stia that appears frequently in econometrics is the coefficient of determination, 
.It~s SUJWOsed to represent the proportion of the variation in the dependent variable 
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"explained" by variation in the independent variables. It does this in a meaningful 
sense in the case of a linear relationship estimated by OLS. In this case, it happens 
that the sum of the squared deviations of the dependent variable about its mean 
(the "total" variation in the dependent variable) can be broken into two parts, called 
the "explained" variation (the sum of squared deviations of the estimated values of the 
dependent variable around their mean) and the "unexplained" variation (the sum of 
squared residuals). R2 is measured either as the ratio of the "explained" variation to the 
"total" variation or, equivalently, as 1 minus the ratio of the "unexplained" variation to 
the "total" variation, and thus represents the percentage of variation in the dependent 
variable "explained" by variation in the independent variables. 

Because the OLS estimator minimizes the sum of squared residuals (the "unex­
plained" variation), it automatically maximizes R2

• Thus maximization of R2
, as a cri­

terion for an estimator, is formally identical to the least squares criterion, and as such it 
really does not deserve a separate section in this chapter. It is given a separate section 
for two reasons. The first is that the formal identity between the highest R2 criterion 
and the least squares criterion is worthy of emphasis. And the second is to distinguish 
clearly the difference between applying R2 as a criterion in the context of searching 
for a "good" estimator when the functional form and included independent variables 
are known, as is the case in the present discussion, and using R2 to help determine 
the proper functional form and the appropriate independent variables to be included. 
This latter use of R2

, and its misuse, are discussed later in the book (in sections 5.5 
and 6.2). 

2.5 Unbiasedness 

Suppose we perform the conceptual experiment of taking what is called a repeated 
sample: by keeping the values of the independent variables unchanged, we obtain new 
observations for the dependent variable by drawing a new set of disturbances. This 
could be repeated, say, 2000 times, obtaining 2000 of these repeated samples. For each 
of these repeated samples we could use an estimator /3* to calculate an estimate of f3. 
Because the samples differ, these 2000 estimates will not be the same. The manner in 
which these estimates are distributed is called the sampling distribution of /3*. This is 
illustrated for the one-dimensional case in Figure 2.2, where the sampling distribution 
of the estimator is labeled /(/3*). It is simply the probability density function of f3*, 
approximated by using the 2000 estimates of f3 to construct a histogram, which in turn 
is used to approximate the relative frequencies of different estimates of f3 from the 
estimator /3*. The sampling distribution of an alternative estimator, {3, is also shown in 
Figure 2.2. 

This concept of a sampling distribution, the distribution of estimates produced by 
an estimator in repeated sampling, is crucial to an understanding of econometrics. 
Appendix A at the end of this book discusses sampling distributions at greater length. 
Most estimators are adopted because their sampling distributions have "good" prop­
erties; the criteria discussed in this and the following three sections are directly con­
cerned with the nature of an estimator's sampling distribution. 
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Figure 2.2 Using the sampling distribution to illustrate bias. 
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The first of these properties is unbiasedness. An estimator /3* is said to be an unbi­
ased estimator of f3 if the mean of its sampling distribution is equal to f3, that is, if the 
average value of f3* in repeated sampling is /3. The mean of the sampling distribution 
offJ* is called the expected value of /3* and is written Ef3* ; the bias of /3* is the differ­
ence between E/3* and /3. In Figure 2.2, /3* is seen to be unbiased, whereas fi has a bias 
dj size (Ep- /3). The property of unbiasedness does not mean that /3* = f3; it says only 
that, if we could undertake repeated sampling an infinite number of times, we would 
get the correct estimate "on the average." In one respect this is without import because 
lin reality we only have one sample. A better way to interpret the desirability of the 
unbiasedness property is to view one sample as producing a single random draw out of 
an estimator's sampling distribution, and then ask, "If I have one random draw out of 
a sampling distribution would I prefer to draw out of a sampling distribution centered 
ov~r the unknown parameter or out of a distribution centered over some other value?" 

Tfie OLS criterion can be applied with no information concerning how the data 
were generated. This is not the case for the unbiasedness criterion (and all other crite­
ma rrelated to the sampling distribution), since this knowledge is required to construct 
the sampling distribution. Econometricians have therefore developed a standard set of 
assumptions (.discussed in chapter 3) concerning the way in which observations are 
gen~uated. The general, but not the specific, way in which the disturbances are distrib­
uted is an important component of this. These assumptions are sufficient to allow the 
basic natur:e of the sampling distribution of many estimators to be calculated, either by 
mathematical means (part of the technical skill of an econometrician) or, failing that, 
h¥ an enu?irical means called a Monte Carlo study, discussed in section 2.10 . 

.AII.th0ugh the mean of a distribution is not necessarily the ideal measure of its 
looati0n (fue median or mode in some circumstances might be considered superior), 
most eGenometricians consider unbiasedness a desirable property for an estimator to 
have. This !Preference for an unbiased estimator stems from the hope that a particular 
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estimate (i.e., from the sample at hand) will be close to the mean of the estimator's 
sampling distribution. Having to justify a particular estimate on a "hope" is not espe­
cially satisfactory, however. As a result, econometricians have recognized that being 
centered over the parameter to be estimated is only one good property that the sam­
pling distribution of an estimator can have. The variance of the sampling distribution, 
discussed next, is also of great importance. 

2.6 Efficiency 

In some econometric problems it is impossible to find an unbiased estimator. But 
whenever one unbiased estimator can be found, it is usually the case that a large num­
ber of other unbiased estimators can also be found. In this circumstance, the unbiased 
estimator whose sampling distribution has the smallest variance is considered the most 
desirable of these unbiased estimators; it is called the best unbiased estimator, or the 
efficient estimator among all unbiased estimators. Why it is considered the most desir­
able of all unbiased estimators is easy to visualize. In Figure 2.3 the sampling distribu­
tions of two unbiased estimators are drawn. The sampling distribution of the estimator 
~. denoted f ~). is drawn "flatter" or "wider" than the sampling distribution of /3*, 
reflecting the larger variance of fi. Although both estimators would produce estimates 
in repeated samples whose average would be f3, the estimates from fi would range 
more widely and thus would be less desirable. A researcher using fi would be less 
certain that his or her estimate was close to f3 than would a researcher using {3*. Would 
you prefer to obtain your estimate by making a single random draw out of an unbiased 
sampling distribution with a small variance or out of an unbiased sampling distribution 
with a large variance? 

{1 

Figure 2.3 Using the sampling distribution to illustrate efficiency. 

Estimates 
of {1 
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Sometimes reference is made to a criterion called "minimum variance." This crite­
rion, by itself, is meaningless. Consider the estimator /3* = 5.2 (i.e., whenever a sample 
is taken, estimate f3 by 5.2 ignoring the sample). This estimator has a variance of zero, 
the smallest possible variance, but no one would use this estimator because it performs 
so poorly on other criteria such as unbiasedness. (It is interesting to note, however, that 
it performs exceptionally well on the computational cost criterion!) Thus, whenever 
the minimum variance, or "efficiency," criterion is mentioned, there must exist, at least 
implicitly, some additional constraint, such as unbiasedness, accompanying that crite­
rion. When the additional constraint accompanying the minimum variance criterion is 
that the estimators under consideration be unbiased, the estimator is referred to as the 
best unbiased estimator. 

Unfortunately, in many cases it is impossible to determine mathematically which 
estimator, of all unbiased estimators, has the smallest variance. Because of this prob­
lem, econometricians frequently add a further restriction that the estimator be a linear 
function of the observations on the dependent variable. This reduces the task of finding 
the efficient estimator to mathematically manageable proportions. An estimator that is 
linear and unbiased and that has minimum variance among all linear unbiased estima­
tors is called the best linear unbiased estimator (BLUE). The BLUE is very popular 
among econometricians. 

This discussion of minimum variance or efficiency has been implicitly undertaken 
[n the context of a unidimensional estimator, that is, the case in which f3 is a single 
number rather than a vector containing several numbers. In the multidimensional case, 
the variance of fi becomes a matrix called the variance-covariance matrix of fi. This 
Greates special problems in determining which estimator has the smallest variance. The 
teGhnil::al notes to this section discuss this further. 

2.'1/ Mean Square Error 

Using the best unbiased criterion allows unbiasedness to play an extremely strong role 
in detemnining the choice of an estimator, since only unbiased estimators are consid­
ered. It may well be the case that, by restricting attention to only unbiased estimators, 
we are :ignoring estimators that are only slightly biased but have considerably lower 
';.ar.ianGes. This phenomenon is illustrated inA Figure 2.4. The sampling distribution of 
f3, the best unbiased estimator, is labeled/ (/3) . /3* is a biased estimator with sampling 
distni'bution f (/3*). It is apparent from Figure 2.4 that, although f (/3*) is not centered 
over fJ, refiJ.eGting the bias of /3*, it is "narrower" thanf{fi), indicating a smaller vari­
anGe.lt should be clear from the diagram that most researchers would probably choose 
the biased estimator /3* in preference to the best unbiased estimator fi. Would you 
prefer to _?'btain your estimate of f3 by making a single random draw out off (/3*) or 
out off@)? 

. This tiade.offibetween low bias and low variance is formalized by using as a crite­
non tbe minimization of a weighted average of the bias and the variance (i .e., choosing 
tbe estimaton that minirnizes this weighted average). This is not a viable formalization, 
howeve~:, beGause the bias could be negative. One way to correct for this is to use the 
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Figure 2.4 MES trades off bias and variance. 

Estimates 
of p 

absolute value of the bias; a more popular way is to use its square. When the estimator 
is chosen so as to minimize a weighted average of the variance and the square of the 
bias, the estimator is said to be chosen on the weighted square error criterion. When 
the weights are equal, the criterion is the popular MSE criterion. The popularity of the 
MSE criterion comes from an alternative derivation of this criterion: it happens that 
the expected value of a loss function consisting of the square of the difference between 
f3 and its estimate (i.e., the square of the estimation error) is the sum of the variance and 
the squared bias. Minimization of the expected value of this loss function makes good 
intuitive sense as a criterion for choosing an estimator. 

In practice, the MSE criterion is not usually adopted unless the best unbiased cri­
terion is unable to produce estimates with small variances. The problem of multicol­
linearity, discussed in chapter 12, is an example of such a situation. 

2.8 Asymptotic Properties 

The estimator properties discussed in sections 2.5, 2.6, and 2.7 above relate to the 
nature of an estimator's sampling distribution. An unbiased estimator, for example, 4s 
one whose sampling distribution is centered over the true value of the parameter being 
estimated. These properties do not depend on the size of the sample of data at hand: aru 
unbiased estimator, for example, is unbiased in both small and large samples. In many 
econometric problems, however, it is impossible to find estimators possessing these 
desirable sampling distribution properties in small samples. When this happens, as it 
frequently does, econometricians may justify an estimator on the basis of its asymp· 
to tic properties- the nature of the estimator's sampling distribution in extremely lwge 
samples. 
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The sampling distribution of most estimators changes as the sample size changes. 
The sample mean statistic, for example, has a sampling distribution that is centered 
over the population mean but whose variance becomes smaller as the sample size 
becomes larger. In many cases it happens that a biased estimator becomes less and 
less biased as the sample size becomes larger and larger- as the sample size becomes 
larger its sampling distribution changes, such that the mean of its sampling distribution 
shifts closer to the true value of the parameter being estimated. Econometricians have 
formalized their study of these phenomena by structuring the concept of an asymptotic 
distribution and defining desirable asymptotic or "large-sample properties" of an esti­
mator in terms of the character of its asymptotic distribution. The discussion below of 
this concept and how it is used is heuristic (and not technically correct); a more formal 
exposition appears in appendix C at the end of this book. 

Consider the sequence of sampling distributions of an estimator f3, formed by cal­
culating the sampling distribution of fi for successively larger sample sizes. If the dis­
tributions in this sequence become more and more similar in form to some specific 
distribution (such as a normal distribution) as the sample size becomes extremely large, 
this specific distribution is called the asymptotic distribution of fi. Two basic estimator 
properties are defined in terms of the asymptotic distribution. 

l. If the asymptotic distribution of fi becomes concentrated on a particular value k as 
tile sample size approaches infinity, k is said to be the probability Limit of fi and is 
wFitten plim fi = k; if plim fi = /3, then fi is said to be consistent. 

2. The variance of the asymptotic distribution of fi is called the asymptotic 
variance of fi; if fi is consistent and its asymptotic variance is smaller than the 
asymptotic variance of all other consistent estimators, fi is said to be asymptoti­
Gal!w ejfiGient. 

1-\t Gonsiderable risk of oversimplification, the plim can be thought of as the large­
sample equivalent of the expected value, and so plim fi = f3 is the large-sample equiva­
lent oil unbiasedness. Consistency can be crudely conceptualized as the large-sample 
equiva1ent of the minimum MSE property, since a consistent estimator can be (loosely 
s~g~ thought of as having, in the limit, zero bias and a zero variance. Asymptotic 
effiGien~ is the large-sample equivalent of best unbiasedness: the variance of an 
asymptoti,ca1ly efficient estimator goes to zero faster than the variance of any other 
consistent estimator. 

Figure 2.5 lillustrates the basic appeal of asymptotic properties. For sample size 20, 
the sampliQg distribution of /3* is shown as f(/3*)

20
. Since this sampling distribution is 

not centered oveF f3, the estimator /3* is biased. As shown in Figure 2.5, however, as the 
sample size linGreases to 40, then 70 and then 100, the sampling distribution of /3* shifts 
so as to be more Glosely centered over f3 (i.e., it becomes less biased), and it becomes 
l~ss ~read our (n.e. its variance becomes smaller). If /3* was consistent, as the sample 
:ze.m~d t~ mn~nity, the sampling distribution would shrink in width to a single 
erticallioe, of:in:fimte height, placed exactly at the point /3. 

It ~ust li>e ~mphasized that these asymptotic criteria are only employed in situations 
which estimators wjth the traditional desirable small-sample properties, such as 
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Figure 2.5 How sampling distribution can change as the sample size grows. 

unbiasedness, best unbiasedness, and minimum MSE, cannot be found. Since econo­
metricians quite often must work with small samples, defending estimators on the 
basis of their asymptotic properties is legitimate only if it is the case that estima­
tors with desirable asymptotic properties have more desirable small-sample properties 
than do estimators without desirable asymptotic properties. Monte Carlo studies 
(see section 2.10) have shown that in general this supposition is warranted. 

The message of the discussion above is that when estimators with attractive small­
sample properties cannot be found, one may wish to choose an estimator on the basis 
of its large-sample properties. There is an additional reason for interest in asymptotic 
properties, however, of equal importance. Often the derivation of small-sample prop­
erties of an estimator is algebraically intractable, whereas derivation of large-sample 
properties is not. This is because, as explained in the technical notes, the expeGted 
value of a nonlinear function of a statistic is not the nonlinear function of the expecteli 
value of that statistic, whereas the plim of a nonlinear function of a statistic is equal to 
the nonlinear function of the plim of that statistic. 

These two features of asymptotics give rise to the following four reasons for wh;y 
asymptotic theory has come to play such a prominent role in econometrics. 

I. When no estimator with desirable small-sample properties can be found, as ~s 
often the case, econometricians are forced to choose estimators on the basis of 
their asymptotic properties. An example is the choice of the OLS estimator wherua 
lagged value of the dependent variable serves as a regressor. See chapter 10. 
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2. Small-sample properties of some estimators are extraordinarily difficult to 
calculate, in which case using asymptotic algebra can provide an indication 
of what the small-sample properties of this estimator are likely to be. An exam­
ple is the plim of the OLS estimator in the simultaneous equations context. See 
chapter 11. 

3. Formulas based on asymptotic derivations are useful approximations to formulas 
that otherwise would be very difficult to derive and estimate. An example is the 
formula in the technical notes used to estimate the variance of a nonlinear function 
of an estimator. 

4. Many useful estimators and test statistics might never have been found had it not 
been for algebraic simplifications made possible by asymptotic algebra. An exam­
ple is the development of LR, W, and LM test statistics for testing nonlinear restric­
tions. See chapter 4. 

2.9 Maximum Likelihood 

The maximum likelihood principle of estimation is based on the idea that the sample of 
data at hand is more likely to have come from a "real world" characterized by one par­
tieular set of parameter values than from a "real world" characterized by any other set 
of parameter values. The maximum likelihood estimate (MLE) of a vector of param­
eter values f3 is simply the particular vector fJMLE that gives the greatest probability of 
obtaining the observed data. 

his idea is illustrated in Figure 2.6. Each of the dots represents an observation on x 
drawn at random from a population with mean J.1 and variance cr. Pair A of parameter 
:values. J.LA and (cr)\ gives rise in Figure 2.6 to the probability density function A for x, 
while the pair B, J.18 and (cr)8, gives rise to probability density function B. Inspection 
of the <diagram should reveal that the probability of having obtained the sample in 
question if the parameter values were J.lA and (cr)A is very low compared with the 
probability of having obtained the sample if the parameter values were )18 and (cr)8. 
On ffi:e maximum likelihood principle, pair B is preferred to pair A as an estimate of 

Values of x 

Maximum likelihood estimation. 
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J1 and cr. The MLE is the particular pair of values JlMLE and (cr)MLE that creates the 
greatest probability of having obtained the sample in question; that is, no other pair 
of values would be preferred to this maximum likelihood pair, in the sense that pair 
B is preferred to pair A. The means by which the econometrician finds this MLE is 
discussed in the technical notes to this section. 

In addition to its intuitive appeal, the maximum likelihood estimator has several 
desirable asymptotic properties. It is asymptotically unbiased, it is consistent, it is 
asymptotically efficient, it is distributed asymptotically normally, and its asymptotic 
variance can be found via a standard formula (the Cramer-Rao lower bound -see the 
technical notes to this section). Its only major theoretical drawback is that in order to 
calculate the MLE, the econometrician must assume a specific (e.g., normal) distribu­
tion for the error term. Most econometricians seem willing to do this. 

These properties make maximum likelihood estimation very appealing for situations 
in which it is impossible to find estimators with desirable small-sample properties, a 
situation that arises all too often in practice. In spite of this, however, until recently 
maximum likelihood estimation has not been popular, mainly because of high com­
putational cost. Considerable algebraic manipulation is required before estimation, 
and most types of MLE problems require substantial input preparation for available 
computer packages. But econometricians' attitudes to MLEs have changed recently, 
for several reasons. Advances in computers and related software have dramatically 
reduced the computational burden. Many interesting estimation problems have been 
solved through the use of MLE techniques, rendering this approach more useful (and 
in the process advertising its properties more widely). And instructors have been teach­
ing students the theoretical aspects of MLE techniques, enabling them to be more 
comfortable with the algebraic manipulations they require. 

2.10 Monte Carlo Studies 

A Monte Carlo study is a computer simulation exercise designed to shed light on the 
small-sample properties of competing estimators for a given estimating problem. They 
are called upon whenever, for that particular problem, there exist potentially attractive 
estimators whose small-sample properties cannot be derived theoretically. Estimators 
with unknown small-sample properties are continually being proposed in the econo­
metric literature, so Monte Carlo studies have become quite common, especially now 
that computer technology has made their undertaking quite cheap. This is one good 
reason for having a good understanding of this technique. A more important reason is 
that a thorough understanding of Monte Carlo studies guarantees an understanding off 
the repeated sample and sampling distribution concepts, which are crucial to an under­
standing of econometrics. Appendix A at the end of this book has more on sampling 
distributions and their relation to Monte Carlo studies. 

The general idea behind a Monte Carlo study is to (I) model the data-generating 
process, (2) generate several sets of artificial data, (3) employ these data and an esti­
mator to create several estimates, and (4) use these estimates to gauge the sampling 
distribution properties of that estimator for the particular data-generating prooess 
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undeli study. This is illustrated in Figure 2.7 for a context in which we wish to compare 
the properties of two competing estimators. These four steps are described below: 

a. ModeZ the data-generating process Simulation of the process thought to be gen­
erating the real-world data for the problem at hand requires building a model 
:for the computer to mimic the data-generating process, including its stochastic 
Gom onent(s). For example, it could be specified that N (the sample size) values 
of X Z. and an error term generate N values of Y according to Y = {31 + {32X + 
!JaZ 4- e, where the f3i are specific, known numbers, the N values of X and Z are 
given, exogenous, observations on explanatory variables, and theN values of e are 
dtawn !iandomly from a normal distribution with mean zero and known variance 
f#. ~<Eomputers are capable of generating such random error terms.) Any special 
features tfiought to characterize the problem at hand must be built into this model. 
For examp1~. if {32 = {33 -I then the values of {32 and {33 must be chosen such that this 
is the Gase. Or if the variance cr varies from observation to observation, depending 
on the value of Z~ then the error terms must be adjusted accordingly. An important 
feature of the study is that all of the (usually unknown) parameter values are known 
to the person conducting the study (because this person chooses these values). 

2. Create sets of data With a model of the data-generating process built into the 
computer, anific;ia1 data can be created. The key to doing this is the stochastic ele­
men~ of the data-generating process. A sample of size N is created by obtaining 
N. values o1i tbe stochastic variable e and then using these values, in conjunction 
With the rest of tbe model, to generate N values of Y. This yields one complete 

~f size N, nam6}y N observations on each of Y, X, and Z, corresponding to 
PartiGli)ar set of N error terms drawn. Note that this artificially generated set 
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of sample data could be viewed as an example of real-world data that a researcher 
would be faced with when dealing with the kind of estimation problem this model 
represents. Note especially that the set of data obtained depends crucially on the 
particular set of error terms drawn. A different set of error terms would create a 
different data set (because the Yvalues are different) for the same problem. Several 
of these examples of data sets could be created by drawing different sets of N error 
terms. Suppose this is done, say, 2000 times, generating 2000 sets of sample data, 
each of sample size N. These are called repeated samples. 

3. Calculate estimates Each of the 2000 repeated samples can be used as data for an 
estimator /J, say, creating 2000 estimated /J3; (i = 1, 2, ... , 2000) of the parameter 
/33. These 2000 estimates can be viewed as random "drawings" from the sampling 
distribution of /J3. 

4. Estimate sampling distribution properties These 2000 drawings from the sampling 
distribution of /J3 can be used as data to estimate the properties of this sampling 
distribution. The properties of most interest are its expected value and variance, 
estimates of which can be used to estimate bias and MSE. 
(a) The expected value of the sampling distribution of /J3 is estimated by the aver­

age of the 2000 estimates: 

_ 2000 I 
Estimated expected value = }13 = t1P3; 2000 

(b) The bias of /J3 is estimated by subtracting the known true value of f33 from the 
average: 

Estimated bias = ) 3 - /33 

(c) The variance of the sampling distribution of /J3 is estimated by using the tradi· 
tiona! formula for estimating variance: 

(d) The MSE of /J3 is estimated by the average of the squared differences between~ 
and the true value of {33: 

2000 A I 
Estimated MSE ~(,83; -/13 )

2 2000 

At stage 3 above an alternative estimator /Jr could also have been used to calG 
late 2000 estimates, as suggested in Figure 2.7. If so, the properties of the samplin 
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distribution of P! could also be estimated and then compared with those of the sam­
pling distribution of fi3• (Here P3 could be, for example, the OLS estimator and P! 
any competing estimator such as an instrumental variable estimator, the least absolute 
error estimator or a generalized least squares estimator. These estimators are discussed 
in later chapters.) On the basis of this comparison, the person conducting the Monte 
Carlo study may be in a position to recommend one estimator in preference to another 
for the sample size N. By repeating such a study for progressively greater values of N, 
it is possible to investigate how quickly an estimator attains its asymptotic properties. 

2.11 Adding Up 

Because in most estimating situations there does not exist a "superestimator" that is 
better than all other estimators on all or even most of these (or other) criteria, the ulti­
mate choice of estimator is made by forming an "overall judgment" of the desirable­
ness of each available estimator by combining the degree to which an estimator meets 
each of these criteria with a subjective (on the part of the econometrician) evaluation of 
the importance of each of these criteria. Sometimes an econometrician will hold a par­
tiGu1ar Griterion in very high esteem and this will determine the estimator chosen (if an 
estimator meeting this criterion can be found). More typically, other criteria also play 
a r,0le in the econometrician's choice of estimator, so that, for example, only estimators 
w.itfi reasonable computational cost are considered. Among these major criteria, most 
attention seems to be paid to the best unbiased criterion, with occasional deference 
t0 the MSE criterion in estimating situations in which all unbiased estimators have 
vamanGes that are considered too large. If estimators meeting these criteria cannot be 
found, as is often the case, asymptotic criteria are adopted. 

A major skill of econometricians is the ability to determine estimator properties with 
Tegard to ilie criteria discussed in this chapter. This is done either through theoreti­
Gal d~Ilivations using mathematics, part of the technical expertise of the econometri­
Gian or through Monte Carlo studies. To derive estimator properties by either of these 
means, the meGhanism generating the observations must be known; changing the way 
in whiGh the observations are generated creates a new estimating problem, in which 
old estimatons may have new properties and for which new estimators may have to be 
developed. 

The OLS estimator has a special place in all this. When faced with any estimating 
problem, the eGonometric theorist usually checks the OLS estimator first, determining 
whether or not it has desirable properties. As seen in the next chapter, in some circum­
stances it does 'have desirable properties and is chosen as the "preferred" estimator, 
but in many otliet Gircumstances it does not have desirable properties and a replace­
ment mustbefound. 'fhe econometrician must investigate whether the circumstances 
UDder ~hiGh the OLS estimator is desirable are met, and, if not, suggest appropriate 
altematl~e estimatons. (Unfortunately, in practice this is too often not done, with the 
OLS estimatorbein_g ado[!!ed without justification.) The next chapter explains how the 

orders tliis investigation. 
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General Notes 

2.2 Computational Cost 

• Computational cost has been reduced significantly 
by the development of extensive computer soft­
ware for econometricians. The more prominent 
of these are EVIEWS, GAUSS, LIMDEP, PC­
GIVE, RATS, SAS, SHAZAM, SPSS, STATA, 
and TSP. For those wanting to code special esti­
mation procedures themselves, this can be done 
using features of these software packages, or spe­
cialized software such as GAUSS, MATLAB, and 
OX. The Journal of Applied Econometrics and 
the Journal of Economic Surveys both publish 
software reviews regularly. All these packages are 
very comprehensive, encompassing most of the 
econometric techniques discussed in textbooks. 
For applications that they do not cover, in most 
cases, specialized programs exist. These pack­
ages should only be used by those well versed in 
econometric theory, however. Misleading or even 
erroneous results can easily be produced if these 
packages are used without a full understanding 
of the circumstances in which they are applica­
ble, their inherent assumptions, and the nature of 
their output; sound research cannot be produced 
merely by feeding data to a computer and saying 
SHAZAM. 

• The rapid drop in the cost of computer-intensive 
analysis has markedly changed econometrics. 
Now there is much more analysis using graph­
ics, nonparametrics, simulation, bootstrapping, 
Monte Carlo, Bayesian statistics, and data explo­
ration/mining, all discussed in later chapters. 

• Problems with the accuracy of computer calcula­
tions are ignored in practice, but can be consider­
able, as discussed at length by McCullough and 
Vi nod ( 1999). See also Aigner ( 1971, pp. 99-10 I) 
and Rhodes (1975). 

2.3 Least Squares 

• Experiments have shown that OLS estimates 
tend to correspond to the average of laymen's 
"freehand" attempts to fit a line to a scatter of 
data. See Mosteller eta[. (1981 ). 

• In Figure 2.1 the residuals were measured as the 
vertical distances from the observations to the 
estimated line. A natural alternative to this verti­
cal measure is the orthogonal measure - the dis­
tance from the observation to the estimating line 
along a line perpendicular to the estimating line. 
This infrequently seen alternative is discussed in 
Malinvaud (1966, pp. 7-11); it is sometimes used 
when measurement errors plague the data, as dis­
cussed in section 10.2. 

2.4 Highest R2 

• R2 is called the coefficient of determination. It is 
the square of the correlation coefficient between 
y and its OLS estimate y. 

• The total variation of the dependent variable y 
about its mean, L (y- y)2, is called SST (the 
total sum of squares); the "explained" variation, 
the sum of squared deviations of the estimated 
values of the dependent variable about their mean, 
L (y- y)2 is called SSR (the regression sum of 

squares); and the "unexplained" variation, the 
sum of squared residuals, is called SSE (the error 
sum of squares). R2 is then given by SSR/SST or 
by I - (SSE/SST). 

• What is a high R2? There is no generally accepted 
answer to this question. In dealing with time 
series data, very high R2s are not unusual, because 
of common trends. Ames and Reiter (196U 
found, for example, that on average the R2 of 
a relationship between a randomly chosen vark 
able and its own value lagged one period is 
about 0.7, and that an R2 in excess of 0.5 coulo 
be obtained by selecting an economic time seliies 
and regressing it against two to six other ran­
domly selected economic time series. For Gt:_oss­
sectional data, typical R2s are not nearly so higli. 
A more meaningful R2 for time series data Gan 
be calculated by first removing the time trend 
by getting the residuals from regressing y on a 
time trend, and then regressing these residual on 
the explanatory variables and a time trend. see 
Wooldridge (1991). 

• The OLS estimator maximizes R2
. Since 'tbe 

R2 measure is used as an index of how welL an 



estimator "fits" the sample data, theOLS estimator 
is often called the "best-fitting" estimator. A high 
R2 is often called a "good fit." 

• Because the R2 and OLS criteria are formally 
identical, objections to the latter apply to the 
former. The most frequently voiced of these is 
that searching for a good fit is likely to gener­
ate parameter estimates tailored to the particular 
sample at hand rather than to the underlying "real 
world." Further, a high R2 is not necessary for 
"good" estimates; R2 could be low because of a 
high variance of the disturbance terms, and our 
estimate of f3 could be "good" on other criteria, 
such as those discussed in later sections of this 
chapter. 

• The neat breakdown of the total variation into the 
"explained" and "unexplained" variations that 
a1lows meaningful interpretation of the R2 sta­
tistic is valid only under three conditions. First, 
th~ estimator in question must be the OLS esti­
mator. Second, the relationship being estimated 
must be linear. Thus the R2 statistic only gives 
the percentage of the variation in the dependent 
variable explained linearly by variation in the 
indepeniient variables. And third, the linear rela­
tion hip being estimated must include a constant, 
or intercept, term. The formulas for R2 can still be 
used to calculate an R2 for estimators other than 
the ®j..S estimator, for nonlinear cases, and for 
cases ~n which the intercept term is omitted; it 
can no longer have the same meaning, however, 
and could possibly lie outside the 0-1 interval. 
The zero intercept case is discussed at length in 
Aigner (ili9'l11, pp. 85- 90). An alternative R2 mea­
sure, in whiGh the variations in y and y are mea­
sured as deviations from zero rather than their 
means, i suggested. 

• Running a ![egression without an intercept is the 
most cemmon way of obtaining an R2 outside the 
0-t range. ';(o see how this could happen, draw a 
scatter of points in ~. y) space with an estimated 
OLS lline sucb tbat there is a substantial intercept. 
Now draw in 1he OLS line that would be esti­
mated if it were forced to go through the origin. 
Jn both Gases SSf is identical (because the same 

observations are !Used). But in the second case 
SSE and the SSR could be gigantic, because 
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the is and the (j - y)s could be huge. Thus if R2 

is calculated as 1 - SSE/SST, a negative num­
ber could result; if it is calculated as SSR/SST, a 
number greater than one could result. 

• R2 is sensitive to the range of variation of the 
dependent variable, so that comparisons of R2s 
must be undertaken with care. The favorite exam­
ple used to illustrate this is the case of the con­
sumption function versus the savings function. If 
savings is defined as income less consumption, 
income will do exactly as well in explaining vari­
ations in consumption as in explaining variations 
in savings, in the sense that the sum of squared 
residuals, the unexplained variation, will be 
exactly the same for each case. But in percentage 
terms, the unexplained variation will be a higher 
percentage of the variation in savings than of the 
variation in consumption because the latter are 
larger numbers . Thus the R2 in the savings func­
tion case will be lower than in the consumption 
function case. 

• R2 is also sensitive to the range of variation of the 
independent variable, basically because a wider 
range of the independent variables will cause 
a wider range of the dependent variable and so 
affect R2 as described above. A consequence 
of this is that it makes no sense to compare R2 

across different samples - do not compare the 
R2 for data from one country with the R2 for data 
from another country, for example. Comparing 
estimates of the variance of the error term would 
make more sense. 

• In general, econometricians are interested in 
obtaining "good" parameter estimates where 
"good" is not defined in terms of R2. Consequently 
the measure R2 is not of much importance in 
econometrics. Unfortunately, however, many 
practitioners act as though it is important, for 
reasons that are not entirely clear, as noted by 
Cramer (1987, p. 253): 

These measures of goodness of fit have a fatal 
attraction. Although it is generally conceded among 
insiders that they do not mean a thing, high values 
are still a source of pride and satisfaction to their 
authors, however hard they may try to conceal these 
feelings. 
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• Because of this, the meaning and role of R2 are 
discussed at some length throughout this book. 
Section 5.5 and its general notes extend the dis­
cussion of this section. Comments are offered in 
the general notes of other sections when appro­
priate. For example, one should be aware that R2s 
from two equations with different dependent vari­
ables should not be compared, and that adding 
dummy variables (to capture seasonal influences, 
for example) can inflate R2

, and that regressing 
on group means overstates R2 because the error 
terms have been averaged. 

2.5 Unbiasedness 

• In contrast to the OLS and R2 criteria, the unbi­
asedness criterion (and the other criteria related 
to the sampling distribution) says something 
specific about the relationship of the estimator to 
{3, the parameter being estimated. 

• Many econometricians are not impressed with 
the unbiasedness criterion, as our later discussion 
of the MSE criterion will attest. Savage (1954, 
p. 244) goes so far as to say: "A serious reason 
to prefer unbiased estimates seems never to have 
been proposed." This feeling probably stems from 
the fact that it is possible to have an "unlucky" 
sample and thus a bad estimate, with only cold 
comfort from the knowledge that, had all pos­
sible samples of that size been taken, the correct 
estimate would have been hit on average. This is 
especially the case whenever a crucial outcome, 
such as in the case of a matter of life or death, or a 
decision to undertake a huge capital expenditure, 
hinges on a single correct estimate. None the less, 
unbiasedness has enjoyed remarkable popularity 
among practitioners. Part of the reason for this 
may be due to the emotive content of the termi­
nology: who can stand up in public and state that 
they prefer biased estimators? 

• The main objection to the unbiasedness crite­
rion is summarized nicely by the story of the 
three econometricians who go duck hunting. The 
first shoots about a foot in front of the duck, 
the second about a foot behind; the third yells, 
"We got him!" 

2.6 Efficiency 

• Cochrane (2001, p. 303) has a sobering view of 
efficiency: "I can think of no case in which the 
application of a clever statistical model to wring 
the last ounce of efficiency out of a data set, 
changing t statistics from 1.5 to 2.5, substantially 
changed the way people think about an issue." 

• We have seen that efficiency has a trade-off with 
unbiasedness. It also has a trade-off with robust­
ness. To produce efficiency, extra information 
about the data-generating process is incorporated 
into estimation, causing the estimator to be sen­
sitive to the veracity of this extra information. 
By definition, robust estimators, discussed in 
chapter 21, are not affected much by violation 
of the assumptions under which they have been 
derived. 

• Often econometricians forget that although the 
BLUE property is attractive, its requirement that the 
estimator be linear can sometimes be restrictive. If 
the errors have been generated from a "fat-tailed" 
distribution, for example, so that relatively high 
errors occur frequently, linear unbiased estimators 
are inferior to several popular nonlinear unbiased 
estimators, called robust estimators.See chapter 21. 

• Linear estimators are not suitable for all estimat­
ing problems. For example, in estimating the 
variance d1 of the disturbance term, quadratic 
estimators are more appropriate. The traditional 
formula SSE/(N - K), where N is the number of 
observations and K is the number of explanatony 
variables (including a constant), is under gen­
eral conditions the best quadratic unbiased esti­
mator of d-. When K does not include tbe 
constant (intercept) term, this formula is written 
as SSE/(N- K- 1). 

• Although in many instances it is mathemati­
cally impossible to determine the best unbiased 
estimator (as opposed to the best linear unoi­
ased estimator), this is not the case if the '5pe­
cific distribution of the error is known. IJ:n this 
instance a lower bound, called the Cramer-Roo 
lower bound, for the variance (or varianGe­
covariance matrix) of unbiased estimators GaD 
be calculated. Furthermore, if this lower bound 



is attained (which is not always the case), it is 
attained by a transformation of the maximum 
likelihood estimator (see section 2.9) creating 
an unbiased estimator. As an examQ)e, consider 
the sample mean statistic x. Its variance, cr/N, 
is equal to the Cramer-Rao lower bound if the 
parent population is normal. Thus, x is the best 
unbiased estimator (whether linear or not) of the 
mean of a normal population. 

2. 7 Mean Square Error 

• Preference for the MSE criterion over the unbi­
asedness criterion often hinges on the use to 
which the estimate is put. As an example of this, 
consider a man betting on horse races. If he is 
buying "win" tickets, he will want an unbiased 
estimate of the winning horse, but if he is buy­
ing "show" tickets it is not important that his 
horse wins the race (only that his horse finishes 
among the first three), so he will be willing to use 
a slightly biased estimator of the winning horse if 
it has a smaller variance. 

• "llhe. difference between the variance of an esti­
Jiiator; and its MSE is that the variance measures 
the disP-ersion of the estimator around its mean 
whereas the MSE measures its dispersion around 
the true value of the parameter being estimated. 
:For. unbiased estimators they are identical. 

• Biased estimators with smaller variances than 
unbiased estimators are easy to find. For exam­
ple, m fJ is an unbiased estimator with variance 
vcfi_), then 0.9 fi is a biased estimator with vari­
ance 0.811 V(p). As a more relevant example, 
considec the fact that, although SSE/(N - K) is 
the llest quadratic unbiased estimator of cr, as 
noted in section 2.6, it can be shown that among 
quadratic estimators the MSE estimator of cr is 
SSFi(IN- IJ(: ;r 2). 

• The MSE estimator. has not been as popular as 
the best unbiased estimator because of the mathe­
matical difficulties~n i ts derivation. Furthermore, 
when it can be aerived its formula often involves 
unknown coefficients (the value of {3), making its 
application impossible. Monte Carlo studies have 

~li.llllO\\m that appm:K!imating the estimator by using 
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OLS estimates of the unknown parameters can 
sometimes circumvent this problem. 

2.8 Asymptotic Properties 

~ How large does the sample size have to be for 
estimators to display their asymptotic properties? 
The answer to this crucial question depends on the 
characteristics of the problem at hand. Goldfeld 
and Quandt (1972, p. 277) report an example in 
which a sample size of 30 is sufficiently large and 
an example in which a sample of 200 is required. 
They also note that large sample sizes are needed 
if interest focuses on estimation of estimator vari­
ances rather than on estimation of coefficients. 

• An observant reader of the discussion in the body 
of this chapter might wonder why the large-sam­
ple equivalent of the expected value is defined as 
the plim rather than being called the "asymptotic 
expectation." In practice most people use the two 
terms synonymously, as is done in this book, but 
technically the latter refers to the limit of the 
expected value, which is usually, but not always, 
the same as the plim. Consistency, which is the 
criterion of relevance in the asymptotic con­
text, relates to plim, not asymptotic expectation; 
asymptotic specialists get upset when reference is 
made to asymptotic expectation. For discussion 
see the technical notes to appendix C. 

2.9 Maximum Likelihood 

• Note that {JMLE is not, as is sometimes carelessly 
stated, the most probable value of {3; the most 
probable value of f3 is f3 itself. (Only in a Bayesian 
interpretation, discussed later in this book, would 
the former statement be meaningful.) {JMLE is 
simply the value of f3 that maximizes the prob­
ability of drawing the sample actually obtained. 

• The asymptotic variance of the MLE is usually 
equal to the Cramer-Rao lower bound, the lowest 
asymptotic variance that a consistent estimator 
can have. This is why the MLE is asymptotically 
efficient. Consequently, the variance (not just the 
asymptotic variance) of the MLE is estimated 
by an estimate of the Cramer-Rao lower bound. 
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The formula for the Cramer-Rao lower bound is 
given in the technical notes to this section. 

• Despite the fact that f3MLE is sometimes a biased 
estimator of f3 (although asymptotically unbi­
ased), often a simple adjustment can be found that 
creates an unbiased estimator, and this unbiased 
estimator can be shown to be best unbiased (with 
no linearity requirement) through the relationship 
between the maximum likelihood estimator and 
the Cramer-Rao lower bound. For example, the 
maximum likelihood estimator of the variance of 
a random variable x is given by the formula 

which is a biased (but asymptotically unbiased) 
estimator of the true variance. By multiplying 
this expression by NI(N- 1), this estimator can 
be transformed into a best unbiased estimator. 
Here N is the sample size. 

• Maximum likelihood estimators have an invari­
ance property similar to that of consistent esti­
mators. The maximum likelihood estimator of a 
nonlinear function of a parameter is the nonlinear 
function of the maximum likelihood estimator 
of that parameter: [g(f3)]MLE = g(f3MLE) where g 
is a nonlinear function. This greatly simplifies 
the algebraic derivations of maximum likelihood 
estimators, making adoption of this criterion 
more attractive. 

• Goldfeld and Quandt (1972) conclude that the 
maximum likelihood technique performs well in 
a wide variety of applications and for relatively 
small sample sizes. It is particularly evident, from 
reading their book, that the maximum likelihood 
technique is well suited to estimation involving 
nonlinearities and unusual estimation problems. 
Even in 1972 they did not feel that the computa­
tional costs of MLE were prohibitive. 

• Application of the maximum likelihood estima­
tion technique requires that a specific distribu­
tion for the error term be chosen. In the context 
of regression, the normal distribution is invari­
ably chosen for this purpose, usually on the 
grounds that the error term consists of the sum 
of a large number of random shocks and thus, by 

the central limit theorem, can be considered to be 
approximately normally distributed. (See Bartels, 
1977, for a warning on the use of this argument.) 
A more compelling reason is that the normal dis­
tribution is relatively easy to work with. See the 
general notes to chapter 4 for further discussion. 
In later chapters we encounter situations (such as 
count data and logit models) in which a distribu­
tion other than the normal is employed. It must be 
noted, though, that maximum likelihood estima­
tion is usually applied in contexts in which estima­
tion is based on the distribution of the dependent 
variable rather than the distribution of the error 
term, as evidenced in applications discussed in 
later chapters. The distribution of an error term 
is usually involved, however; the change-of-vari­
able theorem, discussed in the technical notes to 
section 2.9, is used to move from the error den­
sity to the dependent variable density. 

• Kmenta (1986, pp. 175-83) has a clear discus­
sion of maximum likelihood estimation. A good 
brief exposition is in Kane (1968, pp. 177-80). 
Valavanis (1959, pp. 23-6), an econometrics text 
subtitled "An Introduction to Maximum Likeli­
hood Methods," has an interesting account of the 
meaning of the maximum likelihood technique. 

2.10 Monte Carlo Studies 

• In this author's opinion, understanding Monte 
Carlo studies is one of the most important ele­
ments of studying econometrics, not because a 
student may need actually to do a Monte Carlo 
study, but because an understanding of Monte 
Carlo studies guarantees an understanding of 
the concept of a sampling distribution and the 
uses to which it is put. For examples and adv.'ce 
on Monte Carlo methods see Smith (1973 and 
Kmenta (1986, chapter 2). Hendry (1984) as a 
more advanced reference. Barreto and How1and 
(2006) is a text emphasizing Monte Carlo tud· 
ies. Appendix A at the end of this book provides 
further discussion of sampling distribution and 
Monte Carlo studies. Several exercises in ap_pJ:n· 
dix D illustrate Monte Carlo studies. 

• If a researcher is worried that the specific :p,anuD­
eter values used in the Monte Carlo study rna}' 



influence the results, it is wise to choose the 
parameter values equal to the estimated param­
eter values using the data at hand, so that these 
parameter values are reasonably close to the true 
parameter values. Furthermore, the Monte Carlo 
study should be repeated using nearby param­
eter values to check for sensitivity of the results. 
Bootstrapping is a special Monte Carlo method 
designed to reduce the influence of assump­
tions made about the parameter values and the 
error distribution. Section 4.6 of chapter 4 has an 
extended discussion. 

• The Monte Carlo technique can be used to exam­
ine test statistics as well as parameter estimators. 
For example, a test statistic could be examined to 
see how closely its sampling distribution matches, 
say, a chi-square. In this context, interest would 
undoubtedly focus on determining its size (type I 
error for a given critical value) and power, particu-
1ar1y as compared with alternative test statistics. 

• By repeating a Monte Carlo study for several 
different values of the factors that affect the out­
Gom of the study, such as sample size or nui­
sanGe- parameters, one obtains several estimates 
of; say, tlie critical values of a test statistic. These 
esamated critical values can be used as observa­
ti0ns with which to estimate a functional relation­
ship between tbe critical values and the factors 
affeGting tftese Gritical values. This relationship is 
Galled a response surface. McDonald (1998) has 
a good exposition in the context of finding criti­
cal value !for unit root and cointegration test sta­
tistics. See also Davidson and MacKinnon (1993, 
pp. 955-,6-g). MacKinnon (1991) is a good exam­
ple. IF.fe speGifies the response surface for criti­
cal values f0r cointegration tests (see chapter 19) 
as /Jo:> + /3 1N~1 -+' /J<J.'N-1. for sample size N, and 
provtdes values for. the {J;s for different combina­
tions of significance levels number of variables 
in ~e cointem;ating relatio~ship, the presence of 
ID mterceptr, and the presence of a trend. Notice 

the subsGript on ilie intercept reminds us that 
the asymptoiD.G Gritical value. 
common to hold theJvalues of the explanatory 

fixed during repeated sampling when 
~~lane: a Monte Car1o study. Whenever the 

of the explanatory variables are affected 
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by the error term, such as in the cases of simul­
taneous equations, measurement error, or the 
lagged value of a dependent variable serving as 
a regressor, this is illegitimate and must not be 
done - the process generating the data must be 
properly mimicked. But in other cases it is not 
obvious if the explanatory variables should be 
fixed. If the sample exhausts the population, such 
as would be the case for observations on all cit­
ies in Washington state with population greater 
than 30,000, it would not make sense to allow 
the explanatory variable values to change during 
repeated sampling. On the other hand, if a sample 
of wage-earners is drawn from a very large poten­
tial sample of wage-earners, one could visualize 
the repeated sample as encompassing the selec­
tion of wage-earners as well as the error term, 
and so one could allow the values of the explana­
tory variables to vary in sone representative way 
during repeated samples. Doing this allows the 
Monte Carlo study to produce an estimated sam­
pling distribution which is not sensitive to the 
characteristics of the particular wage-earners in 
the sample; fixing the wage-earners in repeated 
samples produces an estimated sampling distri­
bution conditional on the observed sample of 
wage-earners, which may be what one wants if 
decisions are to be based on that sample. 

2.11 Adding Up 

• Other, less prominent, criteria exist for selecting 
point estimates, some examples of which follow. 
(a) Admissibility An estimator is said to be 

admissible (with respect to some criterion) 
if, for at least one value of the unknown b, 
it cannot be beaten on that criterion by any 
other estimator. 

{b) Minimax A minimax estimator is one that 
minimizes the maximum expected loss, usu­
ally measured as MSE, generated by com­
peting estimators as the unknown f3 varies 
through its possible values. 

{c) Robustness An estimator is said to be robust 
if its desirable properties are not sensitive to 
violations of the conditions under which it 
is optimal. In general, a robust estimator is 
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applicable to a wide variety of situations, and 
is relatively unaffected by a small number of 
bad data values. See chapter 21. 

(d) MELO In the Bayesian approach to statis­
tics (see chapter 14), a decision-theoretic 
approach is taken to estimation; an estimate 
is chosen such that it minimizes an expected 
loss function and is called the MELO (mini­
mum expected loss) estimator. Under gen­
eral conditions, if a quadratic loss function is 
adopted, the mean of the posterior distribution 
of f3 is chosen as the point estimate of f3 and 
this has been interpreted in the non-Bayesian 
approach as corresponding to minimization 
of average risk. (Risk is the sum of the MSEs 
of the individual elements of the estimator of 
the vector {3.) See Zellner (1978). 

(e) Analogy principle Parameters are estimated 
by sample statistics that have the same prop­
erty in the sample as the parameters do in 
the population. See chapter 2 of Goldberger 
(1968b) for an interpretation of the OLS esti­
mator in these terms. Manski ( 1988) gives 
a more complete treatment. This approach 
is sometimes called the method of moments 
because it implies that a moment of the popu­
lation distribution should be estimated by the 
corresponding moment of the sample. See 
the technical notes. 

(f) Indirect inference Sometimes model estima­
tion is extremely difficult, but it may be pos­
sible easily to simulate from this model (given 
parameter values /3*), and easily estimate an 
approximate model with parameter values o. 
Find the {3* values that cause the simulated 
data to produce o estimates that are closest 
to the o estimates obtained using the actual 
data. A more detailed discussion appears in 
chapter 23. 

(g) Nearness/concentration Some estimators 
have infinite variances and for that reason are 
often dismissed. With this in mind, Fiebig 
( 1985) suggests using as a criterion the prob­
ability of nearness (prefer fi to {3* if prob 
<lfi- /31 < 1/3* - {Jj) ~ 0.5) or the pmbability of 
concentration (prefer fi to {3* if prob (j,B- /31 
< o) > prob (j/3*- /31 < o). 

• Two good introductory references for the mate­
rial of this chapter are Kmenta ( 1986, pp. 9-16, 
97-108, 156-72) and Kane (1968, chapter 8). 

Technical Notes 

2.5 Unbiasedness 

• The expected value of a variable x is defined for­
mally as Ex = fxftx)dx where f is the probabil­
ity density function (sampling distribution) of x. 
Thus E(fi) could be viewed as a weighted average 
of all possible values of fi where the weights are 
proportional to the heights of the density function 
(i.e., the sampling distribution) of fi. 

2.6 Efficiency 

• In this author's experience, student assessment 
of sampling distributions is hindered, more than 
anything else, by confusion about how to calcu­
late an estimator's variance. This confusion arises 
for several reasons. 
I. There is a crucial difference between a vari­

ance and an estimate of that variance, some­
thing that often is not well understood. 

2. Many instructors assume that some varianc 
formulas are "common knowledge," retained 
from previous courses. 

3. It is frequently not apparent that the deriva­
tions of variance formulas all follow a generi 
form. 

4. Students are expected to recognize that som 
formulas are special cases of more gene 
formulas. 

5. Discussions of variance, and appropriat fo~ 
mulas, are seldom gathered together m on 
place for easy reference. 

Appendix B has been included at the end o 
this book to alleviate this confusion, supplement 
ing the material in these technical notes. 

• In our discussion of unbiasedness, no cmifusi 
could arise from f3 being multidimensional: 
estimator's expected value is either equal10 
(in every dimension) or it is not. But in theG 



of the variance of an estimator, confusion could 
arise. An estimator /3* that is k-dimensional 
really consists of k different estimators, one for 
each dimension of {3. These k different estima­
tors all have their own variances. If all k of the 
variances associated with the estimator /3* are 
smaller than their respective counterparts of the 
estimator fj, then it is clear that the variance of f3: 
can be considered smaller than the variance of /3. 
For example, if f3 is two-dimensional, consisting 
of two separate parameters {3 1 and fJ2 

I. 

an estimator /3* would consist of two estimators 
f3t and f3f. If f3 were an unbiased estimator of 
f3 f3t would be an unbiased estimator of {3 1, and 
f3f would be an unbiased estimator of {32. The 
estimators f3r and /3[ would each have variances. 
Suppose their varianc~s were 3.1 and 7 :..4, respeAc­
tively. Now suppose f3, consisting of /3,1 and /31, 
lis another unbiased estimator, where /3 1 and /32 
have variances 5.6 and 8.3, respectively. In this 
examp'le, since the variance of /3 1 is less than the 
vanianGe of fj, and the variance of /3[ is less than 
the vaniance of /12> it is clear thatAthe "variance" of 
{3* is Jess than the variance of {3. But what if the 
varianGe of~2 were 6.3 instead of 8.3? Then it is 
not dlear which "variance" is smallest. 

• An additional complication exists in com­
paring the variances of estimators of a mul­
tidimensional f3. There may exist a nonzero 
covarianGe between the estimators of the sepa­
rate Gom_ponents of {3. For example, a posi-
tive covarianGe between fj, and fj2 implies that, 
whenever fj, overestimates f3 1, there is a tend­
ency for {J-g_ to overestimate {3

2
, making the com­

plete estimate of f3 worse than would be the case 
if this covariance was zero. Comparison of the 
l'variances" of; multidimensional estimators 
should therefore somehow account for this cava­

phenomenon. 

.. variance" of a multidimensional estima­
is called a variance-covariance matrix. If 
is an estimat011 of 1c.-dimensional {3, then the 
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variance-covariance matrix of /3*, denoted by 
V(/3*), is defined as a k x k matrix (a table with k 
entries in each direction) containing the variances 
of the k elements of {3* along the diagonal and the 
covariances in the off-diagonal positions. Thus, 

C(jJ~ ,p:') l 
I 
I 

* I . V(j]k ) ) 

where V(/3'[) is the variance of the kth element 
of /3* and C(/3 r, f3l) is the covariance between 
f3r and /3[. All this variance-covariance matrix 
does is array the relevant variances and covari­
ances in a table. Once this is done, the econome­
trician can draw on mathematicians' knowledge 
of matrix algebra to suggest ways in which the 
variance-covariance matrix of one .unbiased esti­
mator could be considered "smaller" than the 
variance-covariance matrix of another unbiased · 
estimator. 

• Consider four alternative ways of measuring 
smallness among variance-covariance matrices, 
all accomplished by transforming the matrices 
into single numbers and then comparing those 
numbers: 
1. Choose the unbiased estimator whose 

variance-covariance matrix has the smallest 
trace (sum of diagonal elements). 

2. Choose the unbiased estimator whose vari­
ance-covariance matrix has the smallest 
determinant. 

3. Choose the unbiased estimator for which any 
given linear combination of its elements has 
the smallest variance. 

4. Choose the unbiased estimator whose vari­
ance-covariance matrix minimizes a risk 
function consisting of a weighted sum of the 
individual variances and covariances. (A risk 
function is the expected value of a traditional 
loss function, such as the square of the dif­
ference between an estimate and what it is 
estimating.) 
This last criterion seems sensible: a resear­

cher can weight the variances and covariances 
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according to the importance he or she subjec­
tively feels their minimization should be given 
in choosing an estimator. It happens that in the 
context of an unbiased estimator, this risk func­
tion can be expressed in an alternative form, as 
the expected value of a quadratic function of 
the difference between the estimate and the true 
parameter value; that is, Ec/3- {3)'Qc/3- {3). This 
alternative interpretation also makes good intui­
tive sense as a choice criterion for use in the esti­
mating context. 

• If the weights in the risk function described above, 
the elements of Q, are chosen so as to make it 
impossible for this risk function to be negative 
(a reasonable request, since if it were negative it 
would be a gain, not a loss), then a very fortunate 
thing occurs. Under these circumstances all four 
of these criteria lead to the same choice of estima­
tor. What is more, this result does not depend on 
the particular weights used in the risk function. 

• Although these four ways of defining a smallest 
matrix are reasonably straightforward, econome­
tricians have chosen, for mathematical reasons, 
to use as their definition an equivalent but con­
ceptually more difficult idea. This fifth rule says, 
choose the unbiased estimator whose variance­
covariance matrix, when subtracted from the 
variance-covariance matrix of any other unbiased 
estimator, leaves a non-negative definite matrix. 
(A matrix A is non-negative definite if the qua­
dratic function formed by using the elements of A 
as parameters (x'A:r) takes on only non-negative 
values. Thus to ensure a non-negative risk func­
tion as described above, the weighting matrix Q 
must be non-negative definite.) 
Proofs of the equivalence of these five selection 
rules can be constructed by consulting Rothenberg 
(1973, p. 8), Theil (1971, p. 121), and Goldberger 
(1964, p. 38). 

• A special case of the risk function is revealing. 
Suppose we choose the weighting such that the 
variance of any one element of the estimator has 
a very heavy weight, with all other weights neg­
ligible. This implies that each of the elements of 
the estimator with the "smallest" variance-cova­
riance matrix has individual minimum variance. 
(Thus, the example given earlier of one estimator 

with individual variances 3.1 and 7.4 and another 
with variances 5.6 and 6.3 is unfair; these two 
estimators could be combined into a new estima­
tor with variances 3.1 and 6.3.) This special case 
also indicates that in general covariances play no 
role in determining the best estimator. 

2.7 Mean Square En·or 

• In the multivariate context, the MSE criterion 
can be interpreted in terms of the "smallest" (as 
defined in the technical notes to section 2.6) MSE 
matrix. This matrix, given by the formula Ec/3 -
{3)c/3 - {3)', is a natural matrix generalization of 
the MSE criterion. In practice, however, this gen­
eralization is shunned in favor of the sum of the 
MSEs of all the individual components of fi, a 
definition of risk that has come to be the usual 
meaning of the term. 

2.8 Asymptotic Properties 

• The econometric literature has become full of 
asymptotics, so much so that at least one promi­
nent econometrician, Leamer (1988), has com­
plained that there is too much of it. Appendix C 
of this book provides an introduction to the tech­
nical dimension of this important area of econo­
metrics, supplementing the items that follow. 

• The reason for the important result that Eg(x) :t 

g(Ex) for g nonlinear is illustrated in Figure 2.8. 
On the horizontal axis are measured values on 
fi, the sampling distribution of which is portrayed By 
pdfc/3), with values of gc/3) measured on the vertical 
axis. Values A and B of fi, equidistant from E/i are 
traced to give g(A) and g(B). Note that g(B) is much 
farther from g(Efi) than is g(A): high values of fi lead 
to values of gc/3) considerably above g(Efi), but low 
values of fi lead to values of gc/3) only slightly l:ie10W 
g(Efi). Consequently, the sampling distribution 
of gc/3) is asymmetric, as shown by pdf{g(b)], and 
in this example the expected value of g@ lies 
above g(Efi). 

If g were a linear function, the asymmetrY 
portrayed in Figure 2.8 would not arise and..tbUS 
we would have Egc/3) = g(Efi). For g nnnHJJ""'' • 

however, this result does not hold. 



Figure 2.8 Why the expected value of 
a nonlinear function is not the nonlinear 
function of the expected value. 

g(A) 

Suppose now that we allow the sample Jize to 
become very large, and suppose that plim f3 exists 
and Js equal to EP in Figure 2.8. As the sample 
size becomes very large, the sampling distribu­
tion ~f(j3} begins to collapse on plim p; that is, 
4ts vamancebecomes very, very small. The points 
A and 'B are no longer relevant since values near 
them now occur with negligible probability. Only 
values of.~very, very close to plimP are relevant; 
such values when traced through g<{J) are very, 
very c1ose to g~glim /l). Clearly, the distribution of 
1{(/3) collapses on g ptim P) as the distribution of 
/3 Gollapses on tP1im P. Thus plim g(p) = g(plim 
P>. for g a continuous function. 

For a simp1e example of this phenomenon, let 
8 be the squareifunction_, so that g<{J) = P2• From 
the well-lcnown iiesult that V(x) = £(~) - (Ex)2, 

can de<!_uce that E(/3'1.) (EP)2 + V(/J). Clearly, 
* (f:f:Jf, but!if the variance of P goes to zero 
s~ple size goe }oinfinity, then plim</J2) = 
~)-. 'iibe case of/} equal to the sample mean 

provides an easy example of this. 
that in lli~ 2.8 the modes, as well 

eJtpected values, of the two densities do 
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not correspond. An explanation of this can be con­
structed with the help of the change-of-variable the­
orem discussed in the technical notes to section 2.9. 

• An approximate correction factor can be esti­
mated to reduce the small-sample bias discussed 
here. For example, suppose an estimate P of f3 
is distributed normally with mean f3 and vari­
ance V<{J). Then exp<{J) is distributed lognor­
mally with mean exp[/3 + Y2V<{J)], suggesting 
that exp(/3) could be estimated by exp[J3 - YiV</J] 
which, although biased, should have less bias than 
exp (/J). If in this same example, the original error 
was not distributed normally, so that P was not 
distributed normally, a Taylor series expansion 
could be used to deduce an appropriate correction 
factor. Expand exp<{J) around EP = f3 to get 

exp@) = exp(/3) + @ - /3) exp(/3) + Y2@ - /3)2 exp(/3) 

plus higher-order terms that are neglected. Taking 
the expected value of both sides produces 

E exp<{J) = exp /3[1 + Y2V<{J)] 
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suggesting that exp f3 could be estimated by 

For discussion and examples of these kinds of 
adjustments, see Miller (1984), Kennedy (198la, 
1983), and Goldberger (1968a). An alternative 
way of producing an estimate of a nonlinear func­
tion g(/3) is to calculate many values of g(~ +E), 

where E is an error with mean zero and variance 
equal to the estimated variance of~. and average 
them. For more on this "smearing" estimate see 
Duan (1983). 

• An application of the adjustment discussed 
above, frequently exposited incorrectly in text­
books, is to cases in which a regression has 
produced an unbiased estimate h1 y of lny and 
a forecast of y is desired. Think of lily as being 
equal to lny plus a forecast error (fe) . If the errors 
in the regression are distributed normally, then 
hi y is distributed normally, with mean lny and 
variance V(fe). From above, the expected value of 
exp(ln y) is exp{lny + YlV(fe)} which is clearly 
biased as a forecast of y. A reasonable correc­
tion is to forecast using exp{ lily- Y2 V(fe)} where 
V(fe) is an estimate of the variance of the forecast 
error. See Kennedy (1983). The formula for this 
variance can be found in example (d) of section 
5 of appendix B; its magnitude depends on the 
regressor values associated with the value to be 
forecast. Estimation of this variance can most 
easily be done by using an observation-specific 
dummy as described in chapter 15. 

• When g is a linear function, the variance of g@) 
is given by the square of the slope of g times the 
variance of~; that is, V(a + bx) = b1V(x). When g 
is a continuous nonlinear function its variance is 
difficult to calculate; econometricians deal with 
this problem by using an estimate of the asymp­
totic variance of g@). As noted above in the con­
text of Figure 2.8, when the sample size becomes 
very large only values of~ very, very close to plim 
~ are relevant, and in this range a linear approxi­
mation to g@) is adequate. The slope of such a 
linear approximation is given by the first deriva­
tive of g with respect to ~. Thus the asymptotic 
variance of g(fj) is calculated as the square of this 

first derivative times the asymptotic variance of 
~. with this derivative evaluated at /3 = plim ~ for 
the theoretical variance, and evaluated at~ for the 
estimated variance. See appendix B for what is 
done when g@) or /3 is a vector. 

2.9 Maximum Likelihood 

• The likelihood of a sample is often identified 
with the "probability" of obtaining that sample, 
something which is, strictly speaking, not correct. 
The use of this terminology is accepted, however, 
because of an implicit understanding, articulated 
by Press et a/. (1992, p. 652): "If the y;'s take 
on continuous values, the probability will always 
be zero unless we add the phrase, 'plus or minus 
some fixed Lly on each data point.' So let's always 
take this phrase as understood." 

• The likelihood function is identical to the joint 
probability density function of the given sample. 
It is given a different name (i.e., the name "likeli­
hood") to denote the fact that in this context it is 
to be inte1preted as a function of the 
values (since it is to be maximized with respect to 
those parameter values) rather than, as is 
the case, being interpreted as a function of 
sample data. 

• The mechanics of finding a maximum lik,elilloodJ 
estimator are explained in most eccmc,me:triclsl 
texts. Because of the importance of 
likelihood estimation in the econometric 
ture, an example is presented here. Consider 
typical econometric problem of trying to find 
maximum likelihood estimator of the vector 

in the relationship y = /3 1 + f3rt + f33z + E wnere 
observations on y, x, and z are available. 
1. The first step is to specify the nature 

the distribution of the disturbance term 
Suppose the disturbances are identiGall~ 
independently distributed with 
density functionj(t:). For example, it Gould 



postulated that e is distributed normally with 
mean zero and variance ri'- so that 

f(e) = (2,mrf112 exp{-£2 /2cr}. 

2. The second step is to rewrite the given rela­
tionship as e = y - {3 1 - f3zx - {33z so that for 
the ith value of e we have 

f(E;) = (2Jrff-r' 'z 

xexp {- 2~ (yl -jJ,-flzx; -jJJz; t }· 

3. The third step is to form the likelihood func­
tion, the formula for the joint probability 
distribution of the sample, that is, a formula 
proportional to the probability of drawing the 
particular error terms inherent in this sample. 
If the error terms are independent of each 
other, this is given by the product of all the 
.fle~s, one for each of the N sample observa­
tions. For the example at hand, this creates the 
likelihood function 

/L = (ll:Jrfil)-N/2 

xexp {-~ L(Y; - A-fJ2x; -f33Z; )
2
} · 

2cr i=l 

a complicated function of the sample data and 
the unlgJown parameters {31' {32, and {33, plus 
any uriknow.n parameters inherent in the prob­
ability density function/- in this case ri'-. 

4. 'illhe fourth step is to find the set of values of 
the unknown parameters ({31, {32, {33, and rr), 
as functions of the sample data, that maximize 
this likelihood function. Since the parameter 
values tbatr maximize L also maximize lnL, 
and the latterr task is easier, attention usually 
focuses on tbe log-likelihood function. In this 
example, 

some silll.Ple cases_, such as this one, the 
values of this function (i.e., the 
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MLEs) can be found using standard algebraic 
maximizing techniques. In most cases, how­
ever, a numerical search technique (described 
in chapter 23) must be employed to find the 
MLE. 

• There are two circumstances in which the tech­
nique presented above must be modified. 
I. Density ofy not equal to density of e We have 

observations on y, not e. Thus, the likelihood 
function should be structured from the den­
sity of y, not the density of e. The technique 
described above implicitly assumes that the 
density of y,f{y), is identical tof{e), the den­
sity of e, so that we can replace e in this for­
mula by y - X/3. But this is not necessarily 
the case. The probability of obtaining a value 
of e in the small range de is given by f{e)de; 
this implies an equivalent probability for y of 
f{y)ldyl wheref{y) is the density function of y 
and Idyl is the absolute value of the range of 
y values corresponding to de. Thus, because 
of f{e)de = f{y)ldyl, we can calculate f{y) as 
f{e)lde/dyl. 
In the example given above f{y) and f{e) are 

identical since lde/dyl is one. But suppose our 
example were as above except that we had 

where A. is an extra parameter. (This is known 
as the Box-Cox transformation, discussed m 
chapter 6). In this case, de/dy = yA.-I so that 

f( ) A.-1 f{ ) A.-I (2 _2)-1/2 V· = Y· e· = Yi 1tu-
l I I 2 ....2 

xexp{-[(/-l)!A..-f31-f32x-{33z] /2u-} 

This method of finding the density of y when 
y is a function of another variable e whose 
density is known, is referred to as the change-of­
variable theorem. The multivariate analogue of 
lde/dyl is the absolute value of the Jacobian of the 
transformation - the determinant of the matrix 
of first derivatives of the vector e with respect to 
the vector y. Judge et al. ( 1988, pp. 30-6) have a 
good exposition. 
2. Observations not independent In the exam­

ples above, the observations were independent 
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of one another so that the density values for 
each observation could simply be multiplied 
together to obtain the likelihood function . 
When the observations are not independent, 
for example, if a lagged value of the regres­
sand appears as a regressor, or if the errors 
are autocorrelated, an alternative means 
of finding the likelihood function must be 
employed. There are two ways of handling 
this problem. 
(a) Using a multivariate density A multi­

variate density function gives the density 
of an entire vector of E rather than of just 
one element of that vector (i.e., it gives 
the "probability" of obtaining the entire 
set of E;). For example, the multivariate 
normal density function for the vector t: 
is given (in matrix terminology) by the 
formula 

j(£) = (2/Z"cT fN 12 jdet nr112 

xexp{ _2~ e-n-'e} 

where cf!n is the variance-covariance 
matrix of the vector E. This formula 
itself can serve as the likelihood function 
(i.e. , there is no need to multiply a set 
of densities together since this formula 
has implicitly already done that, as well 
as taking account of interdependencies 
among the data) . Note that this formula 
gives the density of the vector E, not the 
vector y. Since what is required is the 
density of y, a multivariate adjustment 
factor equivalent to the univariate jdt:/dyj 
used earlier is necessary. This adjust­
ment factor is jdet dE/dyj where dt:ldy is 
a matrix containing in its ijth position 
the derivative of the ith observation of 
t: with respect to the jth observation of y. 
It is called the Jacobian of the transfor­
mation from t: to y. Watts (1973) has a 
good explanation of the Jacobian. 

(b) Using a transformation It may be pos­
sible to transform the variables of the 

problem so as to be able to work with 
errors that are independent. For example, 
suppose we have 

but e is such that e, = pt:1• 1+ u, where u, is a 
normally distributed error with mean zero and 
variance cf!u. The t:s are not independent of 
one another, so the density for the vector t: 
cannot be formed by multiplying together all 
the individual densities; the multivariate den­
sity formula given earlier must be used, where 
n is a function of p and a2 is a function of 
p and cf!u. But the u errors are distributed 
independently, so the density of the u vector 
can be formed by multiplying together all the 
individual u1 densities. Some algebraic ma­
nipulation allows Lit to be expressed as 

u, = (y,- py 1.1)- /31(1 - p)- f3z(X ,- px t·l) 
- /33(Z t- pz 1·1). 

(There is a special transformation for u 1; 

the technical notes to section 8.4 where 
correlated errors are discussed.) The 
of the y vector, and thus the required 
hood function, is then calculated as the · 
sity of the u vector times the Jacobian 
transformation from u to y. In the example 
hand, this second method turns out to be 
ier, since the first method (using a 
density function) requires that the det:e111rrifi1mj 
of n be calculated, a difficult task. 

• Working through examples in the literature ofi 
application of these techniques is the best 
become comfortable with them and to 
aware of the uses to which MLEs can be 

. . ' To thts end see Beach and MacKinnon 
Savin and White (1978), Lahiri and Egy 
Spitzer (D82), Seaks and Layson (1 983~, 
Layson and Seaks (1984). 

• The Cramer-Rao lower bound is a matrix 
by the formula 

[ 
(flnL]_, 

- E-­
afl 



where e is the vector of unknown parameters 
(including c:fl) for the MLE estimates of which the 
Cramer-Rao lower bound is the asymptotic vari­
ance-covariance matrix. Its estimation is accom­
plished by inserting the MLE estimates of the 
unknown parameters. The inverse of the Cramer­
Rao lower bound is called the information matrix. 

• If a random variable x is distributed normally 
with variance c:fl, the MLE estimator of c:fl 
is [(x - x)2!N. From results reported ear­
lier in this chapter, competing estimators are 
L(x - x)2/(N - 1 ), the best unbiased estimator, 
and [(x - x)2/(N + I), the minimum MSE esti­
mator. They are identical asymptotically, but not 
in small samples. 

2.1l Adding Up 

• 1Iihe analogy principle of estimation is often 
called tfie method of moments because typically 
moment conditions (such as that EX'c. = 0, the 
covariance between the explanatory variables 
and the error is zero) are utilized to derive esti­
mators using this technique. For example, con­
siden a variable x with unknown mean p. The 
mean J.L of x is the first moment, so we estimate 
J,L by the first moment (the average) of the data, 
x. This procedure is not always so easy. Suppose, 
fop example, that the density of xis given by j(x) 
= .tx A- t for 0 ::;; .x ::;; 1 and zero elsewhere. The 
expected value of x is AI(A. + 1) so the method of 
moments estimator A.* of A. is found by setting x = 
A. *!(A:*+ 1) and solving to obtain A. • = x/(1 - x). 
In general, weare usually interested in estimating 
sevem1 parameters ana so will require as many of 
these moment conditions as there are parameters 
~o be estimated, lin which case finding estimates 
Involves solving these equations simultaneously. 
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• Consider, for example, estimating a and {3 in 
y = a + {3x + c.. Because c. is specified to be 
an independent error, the expected value of 
the product of x and c. is zero, an "orthogonal­
ity" or "moment" condition. This suggests that 
estimation could be based on setting the 
product of x and the residual c.* = y - a* - {3* x 
equal to zero, where a* and {3* are the desired 
estimates of a and {3. Similarly, the expected 
value of c. (its first moment) is specified to be 
zero, suggesting that estimation could be 
based on setting the average of the c.* equal to 
zero. This gives rise to two equations in two 
unknowns: 

1:(y- a *- {3*x)x = 0 

1:(y- a*- {3*x) = 0 

which a reader might recognize as the normal 
equations of the OLS estimator. It is not unusual 
for a method of moments estimator to tum out 
to be a familiar estimator, a result which gives 
it some appeal. Greene (2008, pp. 429-36) has a 
good textbook exposition. 

• This approach to estimation is straightforward so 
long as the number of moment conditions is equal 
to the number of parameters to be estimated. But 
what if there are more moment conditions than 
parameters? In this case there will be more equa­
tions than unknowns and it is not obvious how 
to proceed. The generalized method of moments 
(GMM) procedure, exposited in section 8.5, deals 
with this case. 

• Bera and Bilias (2002) have an advanced but 
very interesting discussion of relationships 
among a wide variety of different approaches to 
estimation. 
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Chapter 3 

The Classical Linear 
Regression Model 

3.1 Textbooks as Catalogs 

In chapter 2 we learned that many of the estimating criteria held in high regard b 
econometricians (such as best unbiasedness and minimum mean square error) are 
characteristics of an estimator's sampling distribution. These characteristics canno 
be determined unless a set of repeated samples can be taken or hypothesized; to taR . 
or hypothesize these repeated samples, knowledge of the way in which the observa 
tions are generated is necessary. Unfortunately, an estimator does not have the sam 
characteristics for all ways in which the observations can be generated. This mean. 
that in some estimating situations a particular estimator has desirable properties 'b 
in other estimating situations it does not have desirable properties. Because there-i 
no "superestimator" having desirable properties in all situations, for each estimatin 
problem (i.e., for each different way in which the observations can be generated) th 
econometrician must determine anew which estimator is preferred. An econometriG 
textbook can be characterized as a catalog of which estimators are most desirab~ · 
what estimating situations. Thus, a researcher facing a particular estimating proOle 
simply turns to the catalog to determine which estimator is most appropriate :for hi 
or her to employ in that situation. The purpose of this chapter is to explain how 
catalog is structured. 

The cataloging process described above is centered around a standard estimalin 
situation referred to as the classical linear regression model (CLR model). It fi~IIPe 
that in this standard situation the ordinary least squares (OLS) estimator is Gonside 
the optimal estimator. This model consists of five assumptions concerning the way 
which the data are generated. By changing these assumptions in one way or anoth 
different estimating situations are created, in many of which the OLS estimator 
no longer considered to be the optimal estimator. Most econometric problems ~ 
be characterized as situations in which one (or more) of these five assumptions is . 
lated in a particular way. The catalog works in a straightforward way: the estim 
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situation is modeled in the general mold of the CLR model and the researcher pin­
points the way in which this situation differs from the standard situation as described 
by the CLR model (i.e., finds out which assumption of the CLR model is violated in 
this problem); he or she then turns to the textbook (catalog) to see whether the OLS 
estimator retains its desirable properties, and if not what alternative estimator should 
be used. Because econometricians often are not certain of whether the estimating situ­
ation they face is one in which an assumption of the CLR model is violated, the catalog 
also includes a listing of techniques useful in testing whether or not the CLR model 
assumptions are violated. 

3.2 The Five Assumptions 

mtte CLR model consists of five basic assumptions about the way in which the observa­
tions are generated. 

'1. The first assumption of the CLR model is that the dependent variable can be 
GI!}Gulated as a linear function of a specific set of independent variables, plus a 
distuiibance term. The unknown coefficients of this linear function form the vector 
{} and are assumed to be constants. Several violations of this assumption, called 
speci'tiGation errors, are discussed in chapter 6: 
(a) Wrong regressors - the omission of relevant independent variables or the inclu­

sion of irrelevant independent variables. 
(lj} 'Nonlinearity- when the relationship between the dependent and independent 

varoiables is not linear. 
(c) @hanging parameters - when the parameters {/3) do not remain constant 

dur.ing the period in which data were collected. 
2. The seGond assumption of the CLR model is that the expected value of the 

distuF"bance term is zero; that is, the mean of the distribution from which the 
distuEbance teliiil is drawn is zero. Violation of this assumption leads to the biased 
interoept pr:oblem, discussed in chapter 7. 

3. The thirt!h assumption of the CLR model is that the disturbance terms all have 
the sam.!} var.iance and are not correlated with one another. Two major econo­
metric profu1ems, discussed in chapter 8, are associated with violations of this 
assumption: 
(a) HeterosRedastiGity - when the disturbances do not all have the same variance. 
(b) AutoGorrelated errors- when the disturbances are correlated with one another. 

fourth assumption of the CLR model is that the observations on the indepen­
variable can Be Gonsidered fixed in repeated samples; that is, it is possible to 

the Sa.JlU!!le with the same independent variable values. Three important 
~me1tri problems~ discussed in chapters 10 and 11, correspond to violations 

assumption: 
in variables - errors in measuring the independent variables. 

· - using a lagged value of the dependent variable as an inde­
var.iab1e. 
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(c) Simultaneous equation estimation - situations in which the dependent vari­
ables are determined by the simultaneous interaction of several relationships. 

5. The fifth assumption of the CLR model is that the number of observations 
is greater than the number of independent variables and that there are no exact lin­
ear relationships between the independent variables. Although this is viewed as an 
assumption for the general case, for a specific case it can easily be checked, so that 
it need not be assumed. The problem of multicollinearity (two or more independent 
variables being approximately linearly related in the sample data) is associated 
with this assumption. This is discussed in chapter 12. 

All this is summarized in Table 3.1, which presents these five assumptions of the 
CLR model, shows the appearance they take when dressed in mathematical notation, 
and lists the econometric problems most closely associated with violations of 
assumptions. Later chapters in this book comment on the meaning and significance 
these assumptions, note implications of their violation for the OLS estimator, · 
ways of determining whether or not they are violated, and suggest new esti 
appropriate to situations in which one of these assumptions must be replaced by 
alternative assumption. Before we move on to this, however, more must be said 
the character of the OLS estimator in the context of the CLR model, because of 
central role it plays in the econometrician's "catalog." 

Table 3.1 The assumptions of the CLR model. 

Assumption 

I. Dependent variable a linear function 
of a specific set of independent 
variables, plus a disturbance 

2. Expected value of 
disturbance term is zero 

3. Disturbances have uniform 
variance and are uncorrelated 

4. Observations on independent 
variables can be considered fixed 
in repeated samples 

5. No exact linear relationships 
between independent variables 
and more observations than 
independent variables 

The mathematical terminology is explained in the technical notes to this section. The notation is as follows: Y is a 
observations on the dependent variable; X is a matrix of observations on the independent variables; e is a vector ofilisl:urDIII"'f 
cr is the variance of the disturbances; I is the identity matrix; K is the number of independent variables; N is tne. IOUII,.....I 

observations. 
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3.3 The OLS Estimator in the CLR Model 

The central role of the OLS estimator in the econometrician's catalog is that of a stan­
dard against which all other estimators are compared. The reason for this is that the 
OLS estimator is extraordinarily popular. This popularity stems from the fact that, 
in the context of the CLR model, the OLS estimator has a large number of desirable 
properties, making it the overwhelming choice for the "optimal" estimator when the 
estimating problem is accurately characterized by the CLR model. This is best illus­
trated by looking at the eight criteria listed in chapter 2 and determining how the OLS 
estimator rates on these criteria in the context of the CLR model. 

~. Computational cost. All econometric software packages estimate OLS in a flash, 
and many popular nonstatistical software packages, such as Excel, do so as well. 

2. Least squares. Because the OLS estimator is designed to minimize the sum of 
sguared residuals, it is automatically "optimal" on this criterion. 

3. 'Highest R2
• Because the OLS estimator is optimal on the least squares criterion, it 

will automatically be optimal on the highest R2 criterion. 
4. lilnbiasedness. The assumptions of the CLR model can be used to show that the 

®LS estimator {3°Ls is an unbiased estimator of {3. 
5. f/Jesr. unbiasedness. In the CLR model f3°Ls is a linear estimator; that is, it can be 

wFitten as a linear function of the errors. As noted earlier, it is unbiased. Among all 
linear unbiased estimators of {3, it can be shown (in the context of the CLR model) 
to lhave the "smallest" variance-covariance matrix. Thus the OLS estimator is the 
oest linear unbiased estimator (BLUE) in the CLR model. If we add the additional 
assum.,ption that the disturbances are distributed normally (creating the classical 
normat linear regression model [CNLR model]), it can be shown that the OLS 
estimator is the best unbiased estimator (i.e. , best among all unbiased estimators, 
nol' just linear unbiased estimators). 

6. Mean sguare error. It is not the case that the OLS estimator is the minimum mean 
square error estimator in the CLR model. Even among linear estimators, it is pos­
sible iliat a sUbstantial reduction in variance can be obtained by adopting a slightly 
biased estimator. 'Ilhis is the OLS estimator's weakest point; chapters 12 and 13 
discuss several estimators whose appeal lies in the possibility that they may beat 
OLS on tlie mean square error (MSE) criterion. 
Asymptotic Griteria. Because the OLS estimator in the CLR model is unbiased, it 
is also unbiased in samples of infinite size and thus is asymptotically unbiased. It 
can also be sbow.n that the variance-covariance matrix of f3°LS goes to zero as the 

size goes to infinity, so that f3°Ls is also a consistent estimator of f3. Further, 
CNLR made1 it is asymptotically efficient. 

~'"""rnlikelihood. [tis impossible to calculate the maximum likelihood estima­
. the assurqptions of the CLR model, because these assumptions do not 
the functional i(orm of the distribution of the disturbance terms. However, 

are assumed to be distributed normally (the CNLR model), then 
out that pMr£ ds identical to f3°LS. 
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Thus, whenever the estimating situation can be characterized by the CLR model, the 
OLS estimator meets practically all of the criteria econometricians consider relevant. It 
is no wonder, then, that this estimator has become so popular. It is in fact too popular: 
it is often used, without justification, in estimating situations that are not accurately 
represented by the CLR model. If some of the CLR model assumptions do not hold, 
many of the desirable properties of the OLS estimator may no longer hold. If the OLS 
estimator does not have the properties that are thought to be of most importance, an 
alternative estimator must be found. Before moving to this aspect of our examination 
of econometrics, however, we will discuss in the next chapter some concepts of and 
problems in inference, to provide a foundation for later chapters. 

General Notes 

3.1 Textbooks as Catalogs 

• The econometricians' catalog is not viewed favor­
ably by all. Consider the opinion of Worswick 
(1972, p. 79): "[Econometricians] are not, it 
seems to me, engaged in forging tools to arrange 
and measure actual facts so much as making a 
marvelous array of pretend-tools which would 
perform wonders if ever a set of facts should turn 
up in the right form." 

• Bibby and Toutenburg (1977, pp. 72-3) note 
that the CLR model, what they call the general 
linear model (GLM), can be a trap, a snare, and 
a delusion. They quote Whitehead as saying: 
"Seek simplicity ... and distrust it," and go on to 
explain how use of the linear model can change 
in undesirable ways the nature of the debate on 
the phenomenon being examined in the study in 
question. For example, casting the problem in the 
mold of the CLR model narrows the question by 
restricting its terms of reference to a particular 
model based on a particular set of data; it trivial­
izes the question by focusing attention on appar­
ently meaningful yet potentially trivial questions 
concerning the values of unknown regression 
coefficients; and it "technicalizes" the debate, 
obscuring the real questions at hand, by turning 
attention to technical statistical matters capable 
of being understood only by experts. 

They warn users of the GLM by noting that, "it 
certainly eliminates the complexities of 
hardheaded thought, especially since so many 

computer programs exist. 
analyst who doesn't want to think too much, 
off-the-peg computer package is simplicity i 
especially if it cuts through a mass of 
cated data and provides a few easily r"'r>r-.r1f-.hl .l 

coefficients. Occam's razor has been used to 
tify worse barbarities: but razors are 
things and should be used carefully." 

• If more than one of the CLR model 
is violated at the same time, "'~·~ ... ,, ...... ot,.;.-;.,,.,J 

often find themselves in trouble because 
catalogs usually tell them what to do if only 
of the CLR model assumptions is violated. 
recent econometric research examines sit1uation) 
in which two assumptions of the CLR model 
violated simultaneously. These situations will 
discussed when appropriate. 

3.3 The OLS Estimator in the CLR 

• The process whereby the OLS estimatoF 
applied to the data at hand is usually referred 
by the terminology "running a regression:' 
dependent variable (the "regressand") i said 
be "regressed" on the independent variab1e 
regressors") to produce the OLS estimates. 
terminology comes from a pioneering 
study in which it was found that the mean 
of children born of parents of a given 
to "regress" or move towards the popUlation 
age height. See Maddala (1977, pp. 97-1~1) 
further comment on this and for disGusston 
the meaning and interpretation of 



Chapter 3 The Classical Linear Regression Model 45 

analysis. Regression analysis is the heart and 
soul of econometrics, as noted by Fiedler ( 1977, 
p. 63): "Most economists think of God as 
working great multiple regressions in the sky." 
Critics note that the New Standard Dictionary 
defines regression as "The diversion of psychic 
energy . .. into channels of fantasy." 

• The result that the OLS estimator in the CLR 
model is the BLUE is often referred to as the 
Gauss- Markov theorem. 

• 1fhe formula for the OLS estimator of a specific 
element of the f3 vector usually involves obser­
vations on all the independent variables (as well 
as observations on the dependent variable), not 
just observations on the independent variable 
corresponding to that particular element of /3. 
'iPhis is because, to obtain an accurate estimate of 
the influence of one independent variable on the 
dependent variable, the simultaneous influence 
of other independent variables on the dependent 
variaBle must be taken into account. Doing this 
ensures that the jth element of pDLS reflects the 
infiluence of the jth independent variable on the 
dependent variable, holding all the other indepen­
denr variatlles constant. Similarly, the formula 
for ffie variance of an element of poLs also usu­
all¥ involves observations on all the independent 
variaBle . 

• Because the OLS estimator is so popular, and 
'because ill so often plays a role in the formula­
tion of alter.native estimators, it is important that 
its mechanical properties be well understood. The 
most effecliive way of ex positing these character­
istics is througfi tfi.e use of a Venn diagram called 
the Ballentine. Suppose the CLR model applies, 
with Y determined by X and an error term. In 
Figure 3.1 the Gircle Y rrepresents variation in the 

variable ¥and the circle X represents 
in the mdependent variable X. The over-

of X with Y, the D'lue area, represents variation 
Y and X have in common in the sense that this 

in Y can be explained by X via an OLS 
'iJibe blue area reflects information 

by the estimating procedure in estimat­
coefliicient f3x; the larger this area, 

~s used to form the estimate 
smaller is its variance. 

Figure 3.1 Defining the Ballentine Venn diagram. 

Figure 3.2 Interpreting multiple regression with the 
Ballentine. 

Now consider Figure 3.2, in which a Ballentine 
for a case of two explanatory variables, X and Z, 
is portrayed (i.e., now Y is determined by both X 
and Z). In general, the X and Z circles will over­
lap, reflecting some collinearity between the two; 
this is shown in Figure 3.2 by the red-plus-orange 
area. If Y were regressed on X alone, informa­
tion in the blue-plus-red area would be used to 
estimate f3x, and if Y were regressed on Z alone, 
information in the green-plus-red area would be 
used to estimate f3: · What happens, though, if Y is 
regressed on X and Z together? 
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In the multiple regression of Y on X and Z 
together, the OLS estimator uses the information 
in the blue area to estimate f3x and the informa­
tion in the green area to estimate f3z, discarding 
the information in the red area. The information 
in the blue area corresponds to variation in Y that 
matches up uniquely with variation in X; using 
this information should therefore produce an 
unbiased estimate of f3x· Similarly, information in 
the green area corresponds to variation in Y that 
matches up uniquely with variation in Z; using 
this information should produce an unbiased esti­
mate of f3z· The information in the red area is not 
used because it reflects variation in Y that is deter­
mined by variation in both X and Z, the relative 
contributions of which are not a priori known. 
In the blue area, for example, variation in Y is all 
due to variation in X, so matching up this varia­
tion in Y with variation in X should allow accurate 
estimation of /3 ... But in the red area, matching up 
these variations will be misleading because not 
all variation in Y is due to variation in X. 

• Notice that regression Yon X and Z together cre­
ates unbiased estimates of f3x and f3z, whereas 
regressing Yon X and Z separately creates biased 
estimates of f3x and f3z because this latter method 
uses the red area. But notice also that, because the 
former method discards the red area, it uses less 
information to produce its slope coefficient esti­
mates and thus these estimates will have larger 
variances. As is invariably the case in economet­
rics, the price of obtaining unbiased estimates is 
higher variances. 

• Whenever X and Z are orthogonal to one another 
(have zero collinearity) they do not overlap as in 
Figure 3.2 and the red area disappears. Because 
there is no red area in this case, regressing Yon X 
alone or on Z alone produces the same estimates 
of f3x and f3z as if Y were regressed on X and Z 
together. Thus, although in general the OLS esti­
mate of a specific element of the f3 vector involves 
observations on all the regressors, in the case of 
orthogonal regressors it involves observations 
on only one regressor (the one for which it is the 
slope coefficient estimate). 

• Whenever X and Z are highly collinear and there­
fore overlap a lot, the blue and green areas become 

very small, implying that when Y is regressed on 
X and Z together very little information is used to 
estimate f3x and f3 •. This causes the variances of 
these estimates to be very large. Thus, the impact 
of multicollinearity is to raise the variances of the 
OLS estimates. Perfect collinearity causes the X 
and Z circles to overlap completely; the blue and 
green areas disappear and estimation is impos­
sible. Multicollinearity is discussed at length in 
chapter 12. 

• In Figure 3.1 the blue area represents the variation 
in Y explained by X. Thus, R2 is given as the ratio 
of the blue area to the entire Y circle. In Figure 3.2 
the blue-plus-red-plus-green area represents the 
variation in Y explained by X and Z together. 
(Note that the red area is discarded only for the 
purpose of estimating the coefficients, not for 
predicting Y; once the coefficients are estimated, 
all variation in X and Z is used to predict Y.) Thus, 
the R2 resulting from the multiple regression is 
given by the ratio of the blue-plus-red-plus-green 
area to the entire Y circle. Notice that there is no 
way of allocating portions of the total R2 to X anll 
Z because the red area variation is explained by 
both, in a way that cannot be disentangled. OnLy 
if X and Z are orthogonal, and the red area disap­
pears, can the total R2 be allocated unequivoGally 
to X and Z separately. 

• The yellow area represents variation in Y attrib­
utable to the error term, and thus the magnitude 
of the yellow area represents the magnitude of 
cr, the variance of the error term. This imElies. 
for example, that if, in the context of Figure 3.2, 
Y had been regressed on only X, omitting ~ rf 
would be estimated by the yellow-plus-green 
area, an overestimate. 

• The Ballentine was named by its originators 
Cohen and Cohen (1975) after a brand ofl!JS 
whose logo resembles Figure 3.2. Their 'IISC 

the Ballentine was confined to the exposition 
various concepts related to R2

• Kenned;y 
extended its use to the exposition of other 
of regression. It turns out that the •nllll""­

can mislead on occasion, particulatly 
used to exposit R2 concepts. A limitation 
Ballentine is that it is necessary in certain 
for the red area to represent a negative · 
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(Suppose the two explanatory variables X and Z 
each have positive coefficients, but in the data 
X and Z are negatively correlated: X alone could 
do a poor job of explaining variation in Ybecause, 
for example, the impact of a high value of X is off­
set by a low value of Z. The red area would have 
to be negative!) This problem notwithstanding, 
the use of the Ballentine to exposit bias and vari­
ance magnitudes for regression is retained in this 
book, on the grounds that the benefits of its illus­
trative power outweigh the danger that it will lead 
to error. The Ballentine is used here as a meta­
phoric device illustrating some regression results; 
it should not be given meaning beyond that. 

• An alternative geometric analysis of OLS, using 
vector geometry, is sometimes used. Davidson 
and MacKinnon ( 1993, chapter 1) have a good 
exposition. 

Tecfinical Notes 

3.2. Tiie Five Assumptions 

• Wile regression model y = g(x~> ... , xk) + e is 
really a specification of how the conditional 
means IE(y I x1, ... , xk) are related to each other 
through x. Th~ population regression function 
is written as E(y I xi> ... , xk) = g(x); it describes 
how the average or expected value of y varies 
with x. SupJ>Ose g is a linear function so that the 
regression function is y = /3 1 + /32x2 + f3JX3 + · · · + 
fj,.x~+l>. Eacb element of ~LS Cf3?LS, for example) 
is an estimate of the effect on the conditional 
expectation of y of a unit change in x4 , with all 
other x'be1d constant. 

fourth assum,P.tion of the CLR model is that 
observations on the explanatory variables can 
considere.d fix:e<L~n repeated samples; that is, 

possible to redJ:aw the sample with the same 
variable values. This is often weak­

to read that the explanatory variables are 
but independent of the error term. The 

of violations of this assumption given 
(errors in variables, autoregression, and 

equations) were all instances in 

which the explanatory variables were random and 
not independent of the error term. 
In many instances the explanatory variables are 
such that they can be considered fixed in repeated 
samples, for example, when there is one observa­
tion on each of the 50 states so that the sample 
exhausts the population. But in many instances 
the observations do not exhaust the population. 
A sample of a thousand individuals from the 
Current Population Survey (CPS) is an example. 
In this latter instance we could ask how would the 
parameter estimates vary when we draw a set of 
observations on a new set of a thousand individu­
als along with a new set of error terms: the nature 
of the conceptual repeated sample is different! 
There is no reason to believe that a new draw of 
a thousand observations from the CPS is related 
to a new draw of error terms, so the weaker 
version of the fourth assumption is satisfied. 
Consequently, the OLS estimator continues to 
be BLUE (although one might complain that in a 
sense it is no longer linear). It is straightforward 
to show that it is unbiased, but a difficulty arises 
when finding the formula for its variance-cova­
riance matrix. The usual formula is cr(X'X)-1 

but when X is stochastic rather than fixed this 
formula becomes crE[(X'X)-1

). The difficulty 
occurs because E[(X'X)-1

] is the expected value 
of a complicated nonlinear function of a sto­
chastic variable. As seen in the technical notes 
to section 2.8, the expected value of a nonlinear 
function is not equal to the nonlinear function of 
the expected value. Because of this (X'X)-1 is a 
biased estimate of E[(X'X)-1]. Econometricians 
wishing to avoid assuming that the explanatory 
variables are fixed in repeated samples use two 
means of dealing with this problem, neither of 
which is fully satisfactory. First, they may talk 
in terms of cr(X'X)- 1 being the variance of OLS 
conditional on X and so use this traditional for­
mula. But this is just another way of saying that 
we are holding X constant in repeated samples! 
Second, they may revert to asymptotic criteria 
so that although biased, cr(X'X)- 1 is a consistent 
estimate of crE[(X'X)- 1], and so continue to use 
this traditional formula. This is a bit questionable 
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because in small samples it means that estimation 
of the variance is biased downward because it 
does not account for variability coming from the 
change in explanatory variable observations over 
repeated samples. Stock and Watson (2007) is a 
textbook adopting the weaker version of assump­
tion 4, employing the asymptotic approach. They 
argue that the asymptotic approach is necessary 
in any event because it is unlikely that errors are 
distributed normally. (In large samples, the OLS 
estimator is distributed normally, regardless of 
how the errors are distributed.) 

• In the CLR model, the regression model is speci­
fied as y = {3 1 + /32x2 + · · · + f3k.xk + disturbance, a 
formula that can be written down N times, once 
for each set of observations on the dependent and 
independent variables. This gives a large stack of 
equations, which can be consolidated via matrix 
notation as Y = Xf3 +e. Here Y is a vector contain­
ing theN observations on the dependent variable 
y; X is a matrix consisting of K columns, each 
column being a vector of N observations on one 
of the independent variables; and e is a vector 
containing the N unknown disturbances. 

3.3 The OLS Estimator in the CLR Model 

• The formula for {3°LS is (X'xr'x'Y. A proper 
derivation of this is accomplished by minimiz­
ing the sum of squared errors. An easy way of 
remembering this formula is to premultiply Y = 
Xf3 + e by X' to get X'Y = X'Xf3 +X' e, drop the X' e, 
and then solve for {3. 

• The formula for the variance-<:ovariance matrix 
f3°l.S is cr(X'Xr' where cr is the variance of the 
disturbance term. For the simple case in which the 
regression function is y = {31 + f31x this gives the for­
mula crri.(x - x )2 for the variance of f3~l.S . Note 
that, if the variation in the regressor values is sub­
stantial, the denominator of this expression will be 
large, tending to make the variance of ~LS small. 

• The variance-covariance matrix of f3°LS is usu­
ally unknown because cT is usually unknown. 
It is estimated by s2(X'Xr1 where i is an estimator 
of cr. The estimator s2 is usually given by the 
formula €'€/(N - K) = 'Li?I(N - K) where € 

is the estimate of the disturbance vector, cal­
culated as (Y- Y) where Y is Xf3°LS . In the 
CLR model s2 is the best quadratic unbiased 
estimator of cr; in the CNLR model it is best 
unbiased. 

• By discarding the red area in Figure 3.2, the OLS 
formula ensures that its estimates of the influ­
ence of one independent variable are calculated 
while controlling for the simultaneous influence 
of the other independent variables, that is, the 
interpretation of, say, the jth element of f3°LS is 
as an estimate of the influence of the jth explana­
tory variable, holding all other 
variables constant. That the red area is 
can be emphasized by noting that the 
estimate of, say, f3x can be calculated 
either the regression of Yon X and Z together 
the regression of Y on X "residualized" 
respect to Z (i.e., with the influence of Z <Oillluv•~"' ' 

In Figure 3.2, if we were to regress X on 
we would be able to explain the 
area; the residuals from this regression, 
blue-plus-brown area, are called X 
for Z. Now suppose that Y is regressed on 
residualized for Z. The overlap of the Y 
with the blue-plus-brown area is the blue are~ 
exactly the same information is used to 
f3x in this method as is used when Y is rpo·rP.~••I!l 

on X and Z together, resulting in an 
estimate of f3x· 
Notice further that, if Y were also 
ized for Z, producing the yellow-plus-blue 
regressing the residualized Y on the res:id..!i!illll~ 
X would also produce the same estimate or 
since their overlap is the blue area. An 
implication of this result is that, for 
running a regression on data from whicli 
time trend has been removed will produce 
the same coefficient estimates as when a 
time trend is included among the regressors 
regression run on raw data. As another 
consider the removal of a linear seasonal 
ence; running a regression on linearly 
ized data will produce exactly the ~<~rne.,[;uc;u• .... , 
estimates as if the linear seasonal influence 
included as an extra regressor in a regression 
on raw data. 



• A variant of OLS called stepwise regression is 
to be avoided. It consists of regressing Yon each 
explanatory variable separately and keeping the 
regression with the highest R2

• (A variant looks 
for the regressor with the highest t statistic.) This 
determines the estimate of the slope coefficient 
of that regression's explanatory variable. Then 
the residuals from this regression are used as 
the dependent variable in a new search using the 
remaining explanatory variables and the proce­
dure is 'repeated. Suppose that, for the example 
of Figure 3.2, the regression of Yon X produced 
a higher R2 than the regression of Y on Z. Then 
the estimate of f3x would be formed using the 
information in the blue-plus-red area. Note that 
this estimate is biased. Econometricians often 
denigrate statisticians on the grounds that they 
e&gouse such algorithmic searches. Leamer 
~007~ p.lOl) expresses this cogently: 

We don't rely on stepwise regression or any other 
automated statistical pattern recognition to pull 
understanding from our data sets because there is 
aurrently no way of providing the critical contextual 
inputs ~nto these algorithms and because an 
understanding ofthe context is absolutely critical to 
making SJmSe of our noisy non-experimental data. 
The las~ person ¥OU want to analyze an economic 
data set is a statistician, which is what you get when 
you run ste,Pwise regression. 

• The Ballentine can be used to illustrate several 
variants of R-. 6 onsider, for example, the simple 
~between Y and Z in Figure 3.2. If the area of 

Y cirole ~s normalized to be unity, this simple 
denoted R;., 1s given by the red-plus-green 
The partial R~ between Y and Z is defined as 

. the influence of Z on Y after accounting 
mfluence of X. It is measured by obtaining 
from the regression of Y corrected for X on 

for X~ and is denoted R;z..<. Our earlier 
Ballentinellmikes it easy to deduce that 
3.2 it is given as the green area divided 

area. The reader might 
thatit~s given by the formula 
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• The OLS estimator has several well-known 
mechanical properties with which students 
should become intimately familiar - instructors 
tend to assume this knowledge after the first 
lecture or two on OLS. Listed below are the 
more important of these properties; proofs can 
be found in most textbooks. The context is y =a+ 
f3x+e. 
I. If f3 = 0 so that the only regressor is the inter­

cept, y is regressed on a column of ones, 
producing a 0 Ls = y, the average of the y 
observations. 

2. If a = 0 so there is no intercept and one 
explanatory variable, y is regressed on a 
column of x values, producing f3°Ls = 
"LxytrX. 

3. If there is an intercept and one explanatory 
variable .X 

tpLS = I(x- x)(y- y)IL(x- .X)2 

= l:.(x- x)y!L(x - xl 

4 . If observations are expressed as deviations 
from their means, y* = y - y and x* = x - .X, 
then f3°Ls = l:x*y*/Ix*2

• This follows from 
(3) above. Lower case letters are sometimes 
reserved to denote deviations from sample 
means. 

5. The intercept can be estimated as y - f3°LS.x 
or, if there are more explanatory variables, as 
y- I.f3;oLs.x;. This comes from the first normal 
equation, the equation that results from set­
ting the partial derivative of SSE (the sum of 
squared errors) with respect to a equal to zero 
(to minimize the SSE). 

6. An implication of (5) is that the sum of 
the OLS residuals equals zero; in effect 
the intercept is estimated by the value that 
causes the sum of the OLS residuals to 
equal zero. 

7. The predicted, or estimated, y values are cal­
culated as Y; = a 0 Ls + f3°Lsx;. An implication 
of (6) is that the mean of they values equals 
the mean of the actual y values: y = y. 

8. An implication of (5), (6), and (7) above is 
that the OLS regression line passes through 
the overall mean of the data points. 
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9. Adding a constant to a variable, or scaling 
a variable, has a predictable impact on the 
OLS estimates. For example, multiplying 
the x observations by I 0 will multiply f3°LS 
by one-tenth, and adding 6 to the y obser­
vations will increase a 0 Ls by 6. 

I 0. A linear restriction on the parameters can 
be incorporated into a regression by elimi­
nating one coefficient from that equation 
and running the resulting regression using 
transformed variables. For an example see 
the general notes to section 4.3. 

ll. The "variation" in the dependent variable is 
the "total sum of squares" SST= 1:(y- y )2 

= y'y- Ny2 where y'y is matrix notation for 
:Ll, and N is the sample size. 

12. The "variation" explained linearly by the 
independent variables is the "regression 
~urn of squares," SSR = 1:(.9 - :YY = 
fy-Ny2. 

13 The sum of squared errors from a regres­
sion is SSE = (y - y)'(y - y) = y'y - fy 
= SST- SSR. (Note that textbook notation 
varies. Some authors use SSE for "explained 
sum of squares" and SSR for "sum of squared 
residuals," creating results that look to be the 
opposite of those given here.) 

14 SSE is often calculated by 1:l- a0 LS:Ly­
f3°LSr._\)', or in the more general matrix 
notation y'y- {3°Ls-X'y. 

15 The coefficient of determination, R2 = 
SSRISST = 1 - SSE/SST is maximized by 

OLS because OLS minimizes SSE. R2 is 
the squared correlation coefficient between 
y and y ; it is the fraction of the "varia­
tion" in y that is explained linearly by the 
explanatory variables. 

16 When no intercept is included, it is pos­
sible for R2 to lie outside the zero to one 
range. See the general notes to section 2.4. 

17 Minimizing with some extra help cannot 
make the minimization less successful. 
Thus SSE decreases (or in unusual cases 
remains unchanged) when an additional 
explanatory variable is added; R2 must 
therefore rise (or remain unchanged). 

18 Because the explanatory variable(s) is 
(are) given as much credit as possibl 
for explaining changes in y, and the 
error as little credit as possible, e0LS 
uncorrelated with the 
variable(s) and thus with y 
is a linear function of the 
variable(s)). 

19 The estimated coefficient of the ith 
sor can be obtained by regressing y 
this regressor "residualized" for the 
regressors (the residuals from a reg:ressiQ) 
of the ith regressor on all the other 
sors). The same result is obtained if 
"residualized" y is used as the rPar""''""1 
instead of y. These results were <OAL/lcu••" 

earlier in these technical notes witli 
help of the Ballentine. 



Chapter 4 

Interval Estimation and 
Hypothesis Testing 

4.1 Introduction 

In addition to estimating parameters, econometricians often wish to construct 
Gonfidenee ~ntervals for their estimates and test hypotheses concerning parameters. 
To strengtl'ien the perspective from which violations of the classical linear regression 
(CLR model are viewed in the following chapters, this chapter provides a brief discus­
sion of these,gr.inciples of inference in the context of traditional applications found in 
econometciGs. 

Under the null hypothesis most test statistics have a distribution that is tabulated in 
appendiees at tbe back of statistics books, the most common of which are the standard 
normal, the t, the ehi-square, and the F distributions. In small samples the applicabil­
ity of all tbese distributions depends on the errors in the CLR model being normally 
distributed, something that is not one of the CLR model assumptions. For situations in 
which the erroFs are not distributed normally, it turns out that in most cases a traditional 
test statistic has an asymptotic distribution equivalent to one of these tabulated distri­
butions; with this as Justification, testing/interval estimation proceeds in the usual way, 
~IIJIIOrinR the small-sample bias. For expository purposes, this chapter's discussion of 

js couG!ied dn terms of the classical normal linear regression (CNLR) model, 
the assumptions of the CLR model are augmented by assuming that the errors 

nomnally. 

tests on. and interval estimates of, single parameters are straightforward 
of ~eehnigueslfamiliar to all students of elementary statistics. In the CNLR 

ordinruw least squares (OLS) estimator f3°LS generates estimates that are 

51 
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distributed joint-normally in repeated samples. This means that ,BPLS. ,BfLS, .. . , ,BPLS are 
all connected to one another (through their covariances). In particular, this means that 
,B~LS. say, is distributed normally with mean ,83 (since the OLS estimator is unbiased) 
and variance V(,B~LS) is equal to the third diagonal element of the variance-covariance 
matrix of fiOLS. The sq!lare root of V(,B~LS) is the standard deviation of ,B~LS . Using the 
normal table and this standard deviation, interval estimates can be constructed and 
hypotheses can be tested. 

A major drawback to this procedure is that the variance-covariance matrix of fiOLS 
is not usually known (because d, the variance of the disturbances, which appears in 
the formula for this variance-covariance matrix, is not usually known). Estimating 
a'- by sl, as discussed in the technical notes to section 3.3, allows an estimate of this 
matrix to be created. The square root of the third diagonal element of this matrix is 
the standard error of V(,83°LS), an estimate of the standard deviation of V(,83°LS). Willi 
this estimate the t table can be used in place of the normal table to test hypotheses or 
construct interval estimates. 

The use of such t tests, as they are called, is so common that econometric 
packages have included in their estimation output a number called the t statistic 
each parameter estimate. This gives the value of the parameter estimate divided 
its estimated standard deviation (the standard error). This value can be coJnp;[l.fe_c 
directly to critical values in the t table to test the hypothesis that that parameter is 
to zero. In some research reports, this t statistic is printed in parentheses nn,n"''"""'''" 
the parameter estimates, creating some confusion because sometimes the 
errors appear in this position . (A negative number in parentheses would have to be 
value, so that this would indicate that these numbers were t values rather than 
errors.) 

4.3 Testing a Joint Hypothesis: the F Test 

Suppose that a researcher wants to test the joint hypothesis that, say, the fourth 
fifth elements of ,B are equal to 1.0 and 2.0, respectively. That is, he or she 
test the hypothesis that the sub-vector 

[~:] 
is equal to the vector 

[1.0] 
2.0 

This is a different question from the two separate questions of whether ,84 is 
1.0 and whether ,85 is equal to 2.0. It is possible, for example, to accept 
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that f34 is equal to 1.0 and also to accept the hypothesis that /35 is equal to 2.0, but to 
reject the joint hypothesis that 

[~:] 
is equal to 

[
1.0] 
2.0 

The purpose of this section is to explain how the F test is used to test such joint 
Hypotheses. The following section explains how a difference between results based on 
s~parate tests and joint tests could arise. 

ffie f statistic for testing a set of J linear constraints in a regression with K param­
eteFS (inGluding the intercept) and N observations takes the generic form 

[SSE (constrained)- SSE (unconstrained) J I J 

SSE(unconstrained)!(N- K) 

where tHe, degrees of freedom for this F statistic are J and N- K. This generic form 
is wolilh memorizing - it is extremely useful for structuring F tests for a wide variety 
of sp!!Gia1 Gases, such as Chow tests (chapter 6) and tests involving dummy variables 
{GbapteF 1!5!). 

When tlie constraints are true, because of the error term they will not be satisfied 
exaGtly 'by the- data; so the SSE (error sum of squares) will increase when the con­
straints are jmgosed - minimization subject to constraints will not be as successful 
as minimization without constraints. But if the constraints are true, the per-constraint 
increase in SSE snould not be large relative to the influence of the error term. The 
numerator has the "(ler-constraint" change in SSE due to imposing the constraints and 
the den0rninator has the "per-error" contribution to SSE. (The minus Kin this expres­
sion correGts 011 degrees of freedom, explained in the general notes.) If their ratio is 
~big" we w0u1o be reluctant to believe that it happened by chance, concluding that 

must have ha:_p~ned because the constraints are false. High values of this F statistic 
lead us to!l'ejeat the null hypothesis that the constraints are true. 

does one ifind the constrained SSE? A constrained regression is run to obtain 
lcoostrai11ed SSE. The easiest example is the case of constraining a coefficient to 

to zero - just run the regression omitting that coefficient's variable. To run a 
constraining f32LS to be 1.0 and f3~LS to be 2.0, subtract 1.0 times the fourth 

2.0 times the fifth regressor from the dependent variable and regress this 
lllntlr.t••tt. de$ndent variable on the remaining regressors. In general, to incor­

restr.iation ~nto a regression, use the restriction to solve out one of the 
an~ reauange the resulting equation to form a new regression involving 
vanables. An explicit example is given in the general notes. 
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4.4 Interval Estimation for a Parameter Vector 

Interval estimation in the multidimensional case is best illustrated by a two-dimensional 
example. Suppose that the sub-vector 

[~:] 
is of interest. The OLS estimate of this sub-vector is shown as the point in the cen­
ter of the rectangle in Figure 4.1. Using the t table and the square root of the fourtli 
diagonal term in the estimated Variance-COVariance matriX Of tpLS, a 95% conn."'"'"0 

interval can be constructed for {34 • This is shown in Figure 4.1 as the interval 
A to B; [J~LS lies halfway between A and B. Similarly, a 95% confidence interval can 
constructed for {35; it is shown in Figure 4.1 as the interval from C to D and is 
larger than the interval AB to reflect an assumed larger standard error for [J~LS. 

An interval estimate for the sub-vector 

[~:] 
is a region or area that, when constructed in repeated samples, covers the true 
{/34, {35) in, say, 95% of the samples. Furthermore, this region should for an 

10 
I 
I 
I 
I 
I 
I 
I 
I 
I 

luJ?LS ,JPslS) 
A l.l B --------T--------

Possible values of P4 

Figure 4.1 A confidence region with zero covariance. 
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estimate be the smallest such region possible. A natural region to choose for this 
purpose is the rectangle formed by the individual interval estimates, as shown in 
Figure 4.1. If f3~LS and f3~LS have zero covariance, then in repeated sampling rectangles 
calculated in this fashion will cover the unknown point (/34, /35) in 0.95 x 0.95 = 90.25% 
of the samples. (In repeated samples the probability is 0.95 that the /34 confidence inter­
val covers f34, as is the probability that the /35 confidence interval covers f35; thus the 
probability for both /34 and /35 to be covered simultaneously is 0.95 x 0.95.) 

Evidently, this rectangle is not "big" enough to serve as a 95% joint confidence 
interval. Where should it be enlarged? Because the region must be kept as small as pos­
sible, the enlargement must come in those parts that have the greatest chance of cover­
ing (/34, f35) in repeated samples. The comers of the rectangle will cover (/34, /35) in a 
[epeated sample whenever f3~LS and f3~LS are simultaneously a long way from the mean 
values of f34 and /35• The probability in repeated samples of having these two unlikely 
~vents occur simultaneously is very small. Thus the areas just outside the rectangle 
neau the points A, B, C, and D are more likely to cover (/34, /35) in repeated samples than 
are the areas just outside the corners of the rectangle: the rectangle should be made big­
ger near the points A, B, C, and D. Further thought suggests that the areas just outside 
the points A, B, C, and D are more likely, in repeated samples, to cover (/34, /35) than the 
areas just inside the corners of the rectangle. Thus the total region should be adjusted 
by GliOI:Jping a lot of area off the corners and extending slightly the areas near the points 
A, B, €. and D. In fact, the F statistic described earlier allows the econometrician to 
derive the confidence region as an ellipse, as shown in Figure 4.1. 

1Fhe ellipse in Figure 4.1 represents the case of zero covariance between f3~LS and 
[ft-S. IF f32LS and f3~LS have a positive covariance (an estimate of this covariance is found 
in eitheJTiMifourth column and fifth row or the fifth column and fourth row of the esti­
mate of the variance-covariance matrix of /PLS), whenever f3~LS is an overestimate of f34 , 

fJtS is lik~ly to be an overestimate of f35, and whenever f3~LS is an underestimate of f34, 

fJfS is 1ike1y to be an underestimate of f35. This means that the area near the top right­
hand comer of11he rectangle and the area near the bottom left-hand corner are no longer 
IS unlikely to cover (/34, f35) in repeated samples; it also means that the areas near the top 
left-hand comer and bottom right-hand corner are even less likely to cover (/34, /35). In 
this case the e1qpse representing the confidence region is tilted to the right, as shown in 

4.2.1In the case of negative covariance between f3~LS and f3~LS, the ellipse is tilted 
left. !In all cases, the ellipse remains centered on the point (j3~LS, f3~LS). 
two-dimensional example illustrates the possibility, mentioned earlier, of accept­
individualhy~?Ptheses but rejecting the corresponding joint hypothesis. Suppose 

11P<lilhel>is is that /34 = 0 and /35 = 0, and suppose the point (0, 0) lies inside a corner of 
in IFi~ 4.1, But outside the ellipse. Testing the hypothesis f34 = 0 using a 

IPICIUdes that P.111is1.nsignificantly different from zero (because the interval AB con­
and t~tingthe hypothesis f35 = 0 concludes that f35 is insignificantly different 

~· ''"'"'""u~~e the interval CD contains zero). But testing the joint hypothesis 

~:]=[~] 
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Figure 4.2 A confidence region with positive covariance. 

using an F test concludes that 

[~:] 
is significantly different from the zero vector because (0, 0) lies outside the 
In this example, one can confidently say that at least one of the two variable 
significant influence on the dependent variable, but one cannot with confidenGe 
that influence to either of the variables individually. The typical circumstance in 
this comes about is in the case of multicollinearity (see chapter 12), in which· 
dent variables are related so that it is difficult to tell which of the variables 
credit for explaining variation in the dependent variable. Figure 4.2 is 
the multicollinearity case. 

In three dimensions the confidence region becomes a confidence volume 
represented diagrammatically by an ellipsoid. In higher dimensions diagrammatic 
resentation is impossible, but the hypersurface corresponding to a critical value 
F statistic can be called a multidimensional ellipsoid. 

4.5 LR, W, and LM Statistics 

The F test discussed above is applicable whenever we are testing linear 
in the context of the CNLR model. Whenever the problem cannot be Gast 
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lnl, g(p) 

lnlmax ------------- - - - ------ A 

}LR LM-.... 
lnLR ------------ B 

p 

Figure 4.3 Explaining the LR, W, and LM statistics. 

mold - {or example, if the restrictions are nonlinear, the model is nonlinear in the 
parameten • or the errors are distributed non-normally- this procedure is inappropriate 
and is usually ifeplaced by one of three asymptotically equivalent tests. These are the 
likelihood ratio (LR) test, the Wald (W) test, and the Lagrange multiplier (LM) test. 
The test' statistics associated with these tests have unknown small-sample distributions, 
but are eacb distriButed asymptotically as a chi-square (X2

) with degrees of freedom 
equal to the number of restrictions being tested. 

These three test statistics are based on three different rationales. Consider 
Fipre 4.3, oin wbicfi the log-likelihood (In L) function is graphed as a function of {3, the 
p!U'ameterbeing estimated. fJMLE is, by definition, the value of f3 at which lnL attains its 

o:.~-"'"u1.u. Supp>ose the restriction being tested is written as g(/3) = 0, satisfied at the 
fP'ALE where the function g(/3) cuts the horizontal axis: 

LR test l!fi the restriction is true, then In LR, the maximized value of lnL impos­
the restriGtien, Should not be significantly less than lnLmax• the unrestricted 

value of ~nL. The LR test tests whether (lnLmax- lnLR) is significantly 
from zero. 

test If the restriction g(/3) = 0 is true, then g(fJMLE) should not be significantly 
from zem. TheW test tests whether fJMLE (the unrestricted estimate of /3) 

the restriGtion by a significant amount. 
test ~e log-'likelihood function lnL is maximized at point A where the 
lnL Wltli. respect to f3 is zero. If the restriction is true, then the slope of 

B should not be significantly different from zero. The LM test tests 
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whether the slope of lnL, evaluated at the restricted estimate, is significantly dif­
ferent from zero. 

When faced with three statistics with identical asymptotic properties, econometri­
cians would usually choose among them on the basis of their small-sample properties, 
as determined by Monte Carlo studies. In this case, however, it happens that computa­
tional cost plays a dominant role in this respect. To calculate the LR statistic, both the 
restricted and the unrestricted estimates of f3 must be calculated. If neither is difficult 
to compute, then the LR test is computationally the most attractive of the three tests. 
To calculate the W statistic only the unrestricted estimate is required; if the restricted 
but not the unrestricted estimate is difficult to compute, owing to a nonlinear restric­
tion, for example, the W test is computationally the most attractive. To calculate the 
LM statistic, only the restricted estimate is required; if the unrestricted but not the 
restricted estimate is difficult to compute- for example, when imposing the restriction 
transforms a nonlinear functional form into a linear functional form - the LM test is 
the most attractive. In cases in which computational considerations are not of conse­
quence, the LR test is the test of choice. 

4.6 Bootstrapping 

Testing hypotheses exploits knowledge of the sampling distributions of test ~·"'"~u·~'l 
when the null is true, and constructing confidence intervals requires knowledge of 
mators' sampling distributions. Unfortunately, this "knowledge" is often Iesltt"c JQa,bJtll 

or unavailable, for a variety of reasons: 

1. Assumptions made concerning the distribution of the error term may be false. 
example, the error may not be distributed normally, or even approximately 
mally, as is often assumed. 

2. Algebraic difficulties in calculating the characteristics of a sampling u•~·unJuuv' 
often cause econometricians to undertake such derivations assuming that the 
ple size is very large. The resulting "asymptotic" results may not be close 
mations for the sample size of the problem at hand. 

3. For some estimating techniques, such as minimizing the median squared 
even asymptotic algebra cannot produce formulas for estimator variances. 

4. A researcher may obtain an estimate by undertaking a series of tests, the. 
of which lead eventually to adoption of a final estimation formula. Thi 
process makes it impossible to derive algebraically the character of the 
distribution. 

One way of dealing with these problems is to perform a Monte Carlo study: da!l 
simulated to mimic the process thought to be generating the data, the estimate or 
statistic is calculated and this process is repeated several thousand times to 
putation of the character of the sampling distribution of the estimator OF tesn 
To tailor the Monte Carlo study to the problem at hand, initial parameter es~imaJtc:lll 
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used as the "true" parameter values, and the actual values of the explanatory variables 
are employed as the "fixed in repeated sample" values of the explanatory variables. 
But this tailoring is incomplete because in the Monte Carlo study the errors must be 
drawn from a known distribution such as the normal. This is a major drawback of the 
traditional Monte Carlo methodology in this context. 

The bootstrap is a special Monte Carlo procedure that circumvents this problem. It 
does so by assuming that the unknown distribution of the error term can be adequately 
approximated by a discrete distribution that gives equal weight to each of the residuals 
from the original estimation. With a reasonable sample size, in typical cases most of 
tlie residuals should be small in absolute value, so that although each residual is given 
egual weight (and thus is equally likely to be chosen in random draws from this distri­
bution), small residuals predominate, causing random draws from this distribution to 
produce small values much more frequently than large values. This procedure, which 
estimates sampling distributions by using only the original data (and so "pulls itself up 
bydts own bootstraps"), has proved to be remarkably successful. In effect, it substitutes 
Gomputing power, the price of which has dramatically decreased, for theorem-proving, 
whose grice has held constant or even increased as we have adopted more complicated 
estimation procedures. 

The bootstrap begins by estimating the model in question and saving the residuals. 
It ~rforms a Monte Carlo study, using the estimated parameter values as the "true" 
parameteJi Y. ues and the actual values of the explanatory variables as the fixed explan­
atory variable values. During this Monte Carlo study errors are drawn, with replace­
ment, lfrom llie set of original residuals. In this way account is taken of the unknown 
distribution of the true errors. This "residual-based" technique is only appropriate 
whenevel? each error is equally likely to be drawn for each observation. If this is not 
the case, an alternative bootstrapping method is employed. See the general notes for 
further ClisGussion. 

Introduction 

is extreme1y convenient to assume that errors 
distmbutea normally, but there exists little 

!l'lllnCBJtiOn lfon this assumption. Tiao and Box 
p. J3) speculate that "Belief in universal 

of disturbances may be traced, 
to eat>ly !feeding on a diet of asymptotic 

of maximum likelihood and other esti-
Poincare is said to have claimed that 
believes in theJ[ffiaussian] law of errors, 

because ~y think it is a math­
· .. llll=on~m. the mathematicians because 

it is an empirical fact." Several tests 

for normality exist; for a textbook expos1t10n 
see Maddala ( 1977, pp. 305-8). See also Judge 
et al. (1985, pp. 882- 7). The consequences of 
non-normality of the fat-tailed kind, imply­
ing infinite variance, are quite serious, since 
hypothesis testing and interval estimation can­
not be undertaken meaningfully. Faced with such 
non-normality, two options exist. First, one can 
employ robust estimators, as described in chap­
ter 21. And second, one can transform the data to 
create transformed errors that are closer to being 
normally distributed. For discussion see Maddala 
(1977, pp. 314-17). 

• Testing hypotheses is viewed by some with scorn. 
Consider, for example, the remark of Johnson 
(1971, p. 2): "The 'testing of hypotheses' is 
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frequently merely a euphemism for obtaining 
plausible numbers to provide ceremonial ade­
quacy for a theory chosen and defended on a 
priori grounds." For a completely opposite cyni­
cal view, Blaug (1980, p. 257) feels that econo­
metricians "express a hypothesis in terms of an 
equation, estimate a variety of forms for that 
equation, select the best fit, discard the rest, and 
then adjust the theoretical argument to rationalize 
the hypothesis that is being tested." 

• It should be borne in mind that despite the power, 
or lack thereof, of hypothesis tests, often conclu­
sions are convincing to a researcher only if sup­
ported by personal experience. Nelson (1995, 
p. 141) captures this subjective element of empir­
ical research by noting that "what often really 
seems to matter in convincing a male colleague of 
the existence of sex discrimination is not studies 
with 10000 'objective' observations, but rather a 
particular single direct observation: the experi­
ence of his own daughter." 

• Hypothesis tests are usually conducted using a 
type I error rate (probability of rejecting a true 
null) of 5%, but there is no good reason why 5% 
should be preferred to some other percentage. The 
father of statistics, R. A. Fisher, suggested it in an 
obscure 1923 paper, and it has been blindly fol­
lowed ever since. Rosnow and Rosenthal (1989, 
p. 1277) recognize that "surely, God loves the 
.06 as much as the .05." By increasing the type 
I error rate, the type II error rate (the probability 
of accepting the null when it is false) is lowered, 
so the choice of type I error rate should be deter­
mined by the relative costs of the two types of 
error, but this issue is usually ignored by all but 
Bayesians (see chapter 14). The .05 is chosen so 
often that it has become a tradition, prompting 
Kempthorne and Doerfler (1969, p. 231) to opine 
that "statisticians are people whose aim in life is 
to be wrong 5% of the time!" 

• Most hypothesis tests fall into one of two catego­
ries. Suppose we are testing the null that the slope 
of x in a regression is zero. One reason we are 
doing this could be that we are genuinely inter­
ested in whether this slope is zero, perhaps because 
it has some substantive policy implication or 
is crucial to supporting some economic theory. 

This is the category for which the traditional 
choice of a 5% type I error rate is thought to be 
applicable. But it may be that we have no real 
interest in this parameter and that some other 
parameter in this regression is of primary inter­
est. In this case, the reason we are testing this 
null hypothesis is because if we fail to reject it 
we can drop this explanatory variable from the 
estimating equation, thereby improving estima­
tion of this other parameter. In this context, the 
traditional choice of 5% for the type I error is no 
longer an obvious choice, something that is not 
well recognized by practitioners. As explained in 
chapter 6, omitting a relevant explanatory vari­
able in general causes bias. Because most econo­
metricians fear bias, they need to be very carefll1 
that they do not drop an explanatory variable that 
belongs in the regression. Because of this tlley 
want the power of their test (the probability of 
rejecting the null when it is false) to be high, to 
ensure that they do not drop a relevant explanatory 
variable. But choosing a low type I error, suGh as 
5%, means that power will be much lower than if 
a type I error of, say, 30% was chosen. Somenow 
the type I error needs to be chosen so as to maxi­
mize the quality of the estimate of the parameter 
of primary interest. Maddala and Kim (J 998 
p. 140) suggest a type I error of about 2§%. 
Further discussion of this important praGtical 
issue occurs in the general notes to section 5.2~ in 
section 6.2 and its general notes, and in the tech­
nical notes to section 13.5 . 

• For a number of reasons, tests of significance 
can sometimes be misleading. A good Qis,!3USS100 
can be found in Bakan ( 1966). One of the 
interesting problems in this respect is iliefaGt 
almost any parameter can be found to be 
cantly different from zero if the sample sizeis 
ficiently large. (Almost every relevant i"r 1deJ~DCJC 
variable will have some influence, hn,IIP.ver-:.1111 

on a dependent variable; increasing tlie 
size will reduce the variance and 
make this influence "statistically 
Thus, although a researcher wants a JIU'ge 
ple size to generate more accurate 
large a sample size might cause 
in interpreting the usual tests of 
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McCloskey and Ziliak (1996) look carefully at 
a large number of empirical studies in econom­
ics and conclude that researchers seem not to 
appreciate that statistical significance does not 
imply economic significance. One must ask if 
the magnitude of the coefficient in question is 
large enough for its explanatory variable to have 
a meaningful (as opposed to "significant") influ­
ence on the dependent variable. This is called 
the too-large sample size problem. One sugges­
tion for dealing with this problem is to report 
beta coefficient estimates - scale the usual coef­
:fieient estimates so that they measure the number 
of standard deviation changes in the dependent 
variable due to a standard deviation change in 
the explanatory variable. A second suggestion is 
to adjust the significance level downward as the 
sample size grows; for a formalization see Leamer 
~~978, pp. 88-9, 104-5). See also Attfield (1982). 
Leamer would also argue (1988, p. 331) that this 
problem would be resolved if researchers recog­
nized that genuinely interesting hypotheses are 
neigfiborhoods, not points. Another interesting 
dimension of this problem is the question of what 
significance level should be employed when rep­
licating a study with new data; conclusions must 
be drawn by considering both sets of data as a 
unit, not oust the new set of data. For discussion 
see Buscne and !Kennedy (1984). Another inter­
esting example in this context is the propensity 
for pub1isned studies to contain a disproportion­
ately large numoer of type I errors; studies with 
statistically significant results tend to get pub­
lished, whereas those with insignificant results do 
not. F011 comment see Feige (1975). Yet another 
~ample that bould be mentioned here is pretest 
bias, discusset!l in chapter 13. 

...._.. psJfGDOmletricsthese problems with significance 
have given r.i.se to a book entitled "What 

were no significance tests?" (Harlow, 
and St~ger, [ 997~ and journal policies 

pulSlisb pamlrs that do not report effect size 
. of a tueatment's impact, usually 
m terms of standard deviations of the 

in question~. Loftus's (1993, p. 250) 
that "hypothesis testing is overstated, 
and practically useless as a means of 

illuminating what the data in some experiment 
are trying to tell us," is shared by many. Nester 
( 1996) has a collection of similar quotes berating 
significance testing. One way of alleviating this 
problem is to report confidence intervals rather 
than hypothesis test results; this allows a reader 
to see directly the magnitude of the parameter 
estimate along with its uncertainty. 

In econometrics, McCloskey ( 1998, chapter 
8) summarizes her several papers on the subject, 
chastising the profession for its tendency to pay 
undue homage to significance testing. McCloskey 
and Ziliak (1996, p. 112) cogently sum up this 
view as follows: 

No economist has achieved scientific success as a 
result of a statistically significant coefficient. Massed 
observations, clever common sense, elegant theorems, 
new policies, sagacious economic reasoning, histori­
cal perspective, relevant accounting: these have allied 
to scientific success. Statistical significance has not. 

Ziliak and McCloskey (2004) is an update of their 
earlier study, finding that researchers continue to 
abuse significance tests; this paper is followed by 
a set of interesting commentaries. 

• Tukey ( 1969) views significance testing as "sanc­
tification" of a theory, with a resulting unfortu­
nate tendency for researchers to stop looking for 
further insights. Sanctification via significance 
testing should be replaced by searches for addi­
tional evidence, both corroborating evidence, 
and, especially, disconfirrning evidence. If your 
theory is correct, are there testable implications? 
Can you explain a range of interconnected find­
ings? Can you find a bundle of evidence consistent 
with your hypothesis but inconsistent with alter­
native hypotheses? Abelson ( 1995, p. 186) offers 
some examples. A related concept is encompass­
ing: Can your theory encompass its rivals in the 
sense that it can explain other models' results? 
See Hendry ( 1988). 

• Inferences from a model may be sensitive to the 
model specification, the validity of which may be 
in doubt. A fragility analysis is recommended to 
deal with this; it examines the range of inferences 
resulting from the range of believable model 
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specifications. See Learner and Leonard (1983) 
and Learner (1983a). 

• Armstrong (1978, pp. 406-7) advocates the use 
of the method of multiple hypotheses, in which 
research is designed to compare two or more rea­
sonable hypotheses, in contrast to the usual advo­
cacy strategy in which a researcher tries to find 
confirming evidence for a favorite hypothesis. 
(Econometricians, like artists, tend to fall in love 
with their models!) It is claimed that the latter 
procedure biases the way scientists perceive the 
world, and that scientists employing the former 
strategy progress more rapidly. 

• Keuzenkarnp and Magnus (I995) have an inter­
esting and informative discussion of the different 
purposes served by hypothesis testing and of the 
meaning of "significance." 

4.2 Testing a Single Hypothesis: 
The t Test 

• A t test can be used to test any single linear con­
straint. Suppose y = a+ {3x + Dw + e and we wish 
to test {3 + o = I . A t test is formulated by rewrit­
ing the constraint so that it is equal to zero, in this 
case as {3 +D- 1 = 0, estimating the left-hand side 
as {3°1.5 + o0 LS - I and dividing this by the square 
root of its estimated variance to form a t statis­
tic with degrees of freedom equal to the sample 
size minus the number of parameters estimated in 
the regression. Estimation of the variance of 
({3°1.5 + OOLS- I) is a bit messy, but can be done 
using the elements in the estimated variance­
covariance matrix from the OLS regression. This 
messiness can be avoided by using an F test, as 
explained in the general notes to the following 
section. 

• Another way of avoiding this messiness for a 
single linear hypothesis is by twisting the specifi­
cation to produce an artificial regression in which 
one of the "coefficients" is the linear restriction 
under test. Consider the example above in which 
we wish to test {3 + D = I, rewritten as {3 + o -
1 = 0. Set 8 = {3 + D- 1, solve for {3 = 8- o + I, 
substitute into the original specification to get 
y =a+ (8 -D + i)x+ ow+ e and rearrange to get 

y -x= a+ 8x+ o(w -x) +e. Regressing y-x on 
an intercept, x and w - x will produce estimates 
of 8 and its variance. Its t statistic can be used to 
test the null that 8 = 0. 

• Nonlinear constraints are usually tested by using 
a W, LR, or LM test, but sometimes an "asymp­
totic" t test is encountered: the nonlinear con­
straint is written with its right-hand side equal 
to zero, the left-hand side is estimated and then 
divided by the square root of an estimate of its 
asymptotic variance to produce the asymptotic 
t statistic. It is the square root of the correspond­
ing W test statistic. The asymptotic variance of a 
nonlinear function was discussed in chapter 2. 

4.3 Testing a Joint Hypothesis: The FTest 

• If there are only two observations, a linear function 
with one independent variable (i .e., two param­
eters) will fit the data perfectly, regardless of 
what independent variable is used. Adding a tliird 
observation will destroy the perfect fit, bu~ the 
fit will remain quite good, simply because tbere 
is effectively only one observation to explain. rn 
is to correct this phenomenon that statistics are 
adjusted for degrees of freedom - the number of 
"free" or linearly independent observations used 
in the calculation of the statistic. For all oft the 
F tests cited in this section, the degrees offue­
dorn appropriate for the numerator is the number 
of restrictions being tested. The degrees or:free­
dorn for the denominator is N- K, the number of 
observations less the number of 
estimated. N - K is also the degrees of 
for the t statistic mentioned in section 4.2. 

• The degrees of freedom of a statistic js 
number of quantities that enter into the-cl(JIGtilatt~ 

of the statistic minus the number of GODtStrBilli 

connecting these quantities. For example, 
formula used to compute the sample 
involves the sample mean statistic. Trills 
a constraint on the data- given tlie samJ?1e 
any one data point can be determined by 
(N - 1) data points. Consequently, tberc: 
in effect only (N - 1) unconstrained 
tions available to estimate the sam,i!~ 
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the degrees of freedom of the sample variance 
statistic is (N- 1 ). 

• A special case of the F statistic is automati­
cally reported by most regression packages - the 
F statistic for the "overall significance of the 
regression." This F statistic tests the hypothesis 
that all the slope coefficients are zero. The con­
strained regression in this case would have only 
an intercept. 

• To clarify further how one runs a constrained 
regression, suppose, for example, that y = a+ f3x 
+ ow + e and we wish to impose the constraint 
that f3 + c5 = l. Substitute f3 = I - c5 and rearrange 
to get y- x = a+ D(w- x) + e. The restricted 
SSE is obtained from regressing the constructed 
variable (y- x) on a constant and the constructed 
variable (w- x). Note that because the dependent 
variaole has changed it will not be meaningful to 
compare the R2 of this regression with that of the 
original regression. 

• IDl the preceding example it should be clear that 
it is easy to construct an F test of the hypothesis 
that f3 + ~ = l. The resulting F statistic will be the 
sguru:e of the t statistic that could be used to test 
iliis same hypothesis (described in the preceding 
section, involving a messy computation of the 
required standard error) . This reflects the general 
resl)]ttliat the square of a t statistic is an F statis­
tic (with numerator degrees of freedom equal to 
one and denominator degrees of freedom equal to 
the t tes~ degrees of freedom). With the exception 
of testing a single coefficient equal to a specific 
value, i~is usually easier to perform an F test than 
at test. Note that the square root of an F statistic 
is not equa'I to a t statistic unless the degrees of 
freedom of the'llumerator is one. 

dividing the numerator and denominator 
tbe F statistic by SST (total sum of squares), 

total variation in the dependent variable F 
be written in terms of R2 and M 2• This 

is not recommended, however, because 
the restricted SSE is obtained by run­

regression willi a different dependent 
than thai.' used by the regression run to 

unrestricted SSE (as in the example 
different .SS'ifs and incompa-

• An F statistic with p and n degrees of freedom 
is the ratio of two independent chi-square statis­
tics, each divided by its degrees of freedom, p for 
the numerator and n for the denominator. For the 
standard F statistic that we have been discuss­
ing, the chi-square on the denominator is SSE, 
the sum of squared OLS residuals, with degrees 
of freedom T- K, divided by cr. Asymptotically, 
SSEI(T - K) equals cr, so the denominator 
becomes unity, leaving F equal to the numerator 
chi-square divided by its degrees of freedom p. 
Thus, asymptotically pF is distributed as a chi­
square with degrees of freedom p. This explains 
why test statistics derived on asymptotic argu­
ments are invariably expressed as chi-square sta­
tistics rather than as F statistics. In small samples 
it cannot be said that this approach, calculating 
the chi-square statistic and using critical values 
from the chi-square distribution, is definitely pre­
ferred to calculating the F statistic and using criti­
cal values from the F distribution: the choice of 
chi-square statistic here is an econometric ritual. 

• One application of the F test is in testing for cau­
sality. It is usually assumed that movements in 
the dependent variable are caused by movements 
in the independent variable(s), but the existence 
of a relationship between these variables proves 
neither the existence of causality nor its direc­
tion. Using the dictionary meaning of causal­
ity, it is impossible to test for causality. Granger 
developed a special definition of causality which 
econometricians use in place of the dictionary 
definition; strictly speaking, econometricians 
should say "Granger-cause" in place of "cause," 
but usually they do not. A variable x is said to 
Granger-causey if prediction of the current value 
of y is enhanced by using past values of x. This 
definition is implemented for empirical testing by 
regressing y on past, current, and future values 
of x; if causality runs one way, from x to y, the 
set of coefficients of the future values of x should 
test insignificantly different from the zero vector 
(via an F test), and the set of coefficients of the 
past values of x should test significantly different 
from zero. Before running this regression both 
data sets are transformed (using the same trans­
formation), so as to eliminate any autocorrelation 
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in the error attached to this regression. (This is 
required to permit use of the F test; chapter 8 
examines the problem of autocorrelated errors.) 
Great controversy exists over the appropriate 
way of conducting this transformation and the 
extent to which the results are sensitive to the 
transformation chosen. Other criticisms focus 
on the possibility of expected future values of x 
affecting the current value of y, and, in general, 
the lack of full correspondence between Granger­
causality and causality. (Consider, for example, 
the fact that Christmas card sales Granger-cause 
Christmas!) In essence, Granger-causality just 
means precedence. Bishop (1979) has a concise 
review and references to the major studies on 
this topic. Darnell (1994, pp. 41-3) has a concise 
textbook exposition. 

4.4 Interval Estimation for a Parameter 
Vector 

• Figure 4.2 can be used to illustrate another 
curiosity - the possibility of accepting the 
hypothesis that 

[~:] = [~] 
on the basis of an Ftest while rejecting the hypoth­
esis that {34 = 0, and the hypothesis that {35 = 0 on 
the basis of individual t tests. This would be the 
case if, for the sample at hand, the point (0, 0) fell 
in either of the small shaded areas (in the upper 
right or lower left) of the ellipse in Figure 4.2. 
For a summary discussion of the possible cases 
that could arise here, along with an example of 
this seldom encountered curiosity, see Geary and 
Leser (1968). 

4.5 LR, W, and LM Statistics 

• Figure 4.3 is taken from Buse (1982) who uses 
it to conduct a more extensive discussion of the 
W, LR, and LM statistics, noting, for example, 
that the geometric distances being tested depend 
on the second derivatives of the log-likelihood 

function, which enter into the test statistics 
through variances (recall that these second deriv­
atives appeared in the Cramer- Rao lower bound). 
Engle (1984) has an extensive discussion of the 
W, LR, and LM test statistics. Greene (2008, 
pp. 498-507) is a good textbook exposition. 

• An alternative derivation of the LM statistic gives 
rise to its name. The Lagrange multiplier tech­
nique is used to maximize subject to restrictions; 
if the restrictions are not binding, the vector of 
Lagrange multipliers is zero. When maximizing 
the log-likelihood subject to restrictions, true 
restrictions shoud be close to being satisfied 
the data and so the value of the Lagrange mu 
plier vector should be close to zero. 
we can test the restrictions by testing the 
of Lagrange multipliers against the zero 
This produces the LM test. 

• Critical values from the x2 distribution are 
for the LR, W, and LM tests, in spite of the 
that in small samples they are not distributed 
x2

• This is a weakness of all three of these 
Furthermore, it has been shown by Berndt 
Savin (I 977) that in linear models in small 
pies, the values of these test statistics are such 
W ~ LR ~ LM for the same data, testing tfor 
same restrictions. Consequently, it is possiOle 
conflict among these tests to arise in the 
in small samples a restriction could be 
on the basis of one test but rejected on 
of another. Zaman (1996, pp. 411-12) argues 
the third-order terms in the asymptotie 
sions of theW, LR, and LM tests are diflferen~IJ/ 
upon examination the LR test is to be 
small samples. Dagenais and Dufour 
conclude that W tests and some forms 
are not invariant to changes in the me:i!SUI:eiDJ 
units, the representation of the nu11 
and reparameterizations, and so r&>f'or.mrna 

the LR test. 
• For the special case of testing lineali 

in the CNLR model with cJ2 knownJ the 
and LM tests are equivalent to the F 
this circumstance, because cJ2 is known, 
a X2 test). When cJ2 is unknown, see 
(1981) for the relationships among these 
In general, theW and LM test statistiGs are 
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on a quadratic approximation to the log-likeli­
hood (and so are equivalent if the log-likelihood 
is quadratic); for this reason, Meeker and Escobar 
( 1995) claim that confidence regions based on the 
LR statistic are superior. 

• In many cases it turns out that the parameters 
Gharacterizing several misspecifications are func­
tionally independent of each other, so that the 
information matrix is block-diagonal. In this case 
the LM statistic for testing all the misspecifica­
tions jointly is the sum of the LM statistics for 
testing each of the misspecifications separately. 
The same is true for the W and LR statistics. 

• A nonlinear restriction can be written in differ­
ent ways. For example, the restriction a{J - 1 = 
0 Gould be written as a - 11{3 = 0, or the restric­
tion e = 1 could be written as lne = 0. Gregory 
and Vea11 ( 1985) find that the Wald test statistic 
is sensitive to which way the restriction is writ­
ten. It would be wise to formulate the restriction 
in the simplest possible way, avoiding quotients. 
The foFlller versions in the two examples above 
wou1d be~eGommended . 

e ['n Ghapter 8 much Will be made of the fact that 
the ®.LS variance estimates are biased whenever 
the variance-eovariance matrix of the error term 
is nonsW:temGal. As explained in chapter 8 a very 
popu1ar (and lfecommended) way of dealing with 
this is to employ a "robust" estimate of the OLS 
varianGe--Govariance matrix, which avoids this 
bias in 11llige samples. A great advantage of the 
Wald testis that it easily incorporates this adjust­
ment: the L'R and IUM tests do not. This is one 
reason why the Wald test is the most popular of 

W, I.JR, and!ILM tests; another reason is that 
i.'l the test most ;familiar to practitioners, with t 

(the square root of a W test) reported auto­
in software output. 

econometric applications, and Veall ( 1989, 
1998) are concise surveys of such applications. 
Kennedy (2001) is a good elementary exposition. 
Efron and Tibshirani (1993) is a detailed exposi­
tion. Brownstone and Valletta (2001) is a concise 
exposition. MacKinnon (2006) is a good survey, 
emphasizing that bootstrapping does not work 
well in all contexts and often needs to be under­
taken in special ways. 

• Davidson and MacKinnon (2000) suggest a 
means of determining how many bootstraps are 
required to calculate for testing purposes. Efron 
( 1987) suggests that estimation of bias and vari­
ance requires only about 200, but estimation of 
confidence intervals, and thus use for hypothesis 
testing, requires about 2000. Booth and Sarkar 
( 1998) find that about 800 bootstrap resamples 
are required to estimate variance properly. 

• An implicit assumption of bootstrapping is that 
the errors are exchangeable, meaning that each 
error, which in this case is one of the N residu­
als (sample size N), is equally likely to occur 
with each observation. This may not be true. For 
example, larger error variances might be associ­
ated with larger values of one of the explanatory 
variables (i.e., a form of heteroskedasticity - see 
chapter 8), in which case large errors are more 
likely to occur whenever there are large values of 
this explanatory variable. A variant of the boot­
strap called the complete, or paired, bootstrap 
is employed to deal with this problem. Each of 
theN observations in the original sample is writ­
ten as a vector of values containing an observa­
tion on the dependent variable and an associated 
observation for each of the explanatory variables. 
Observations for a Monte Carlo repeated sample 
are drawn with replacement from the set of these 
vectors. 

This technique introduces three innovations. 
First, it implicitly employs the true, unknown 
errors because they are part of the dependent 
variable values, and keeps these unknown 
errors paired with the original explanatory vari­
able values with which they were associated. 
Second, it does not employ estimates of the 
unknown parameters, implicitly using the true 
parameter values (and the true functional form). 
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And third, it no longer views the explanatory 
variable values as fixed in repeated samples, 
assuming instead that these values were drawn 
from a distribution adequately approximated by 
a discrete distribution giving equal weight to 
each observed vector of values on the explana­
tory variables. A larger sample size is needed 
for this to be representative of the population of 
explanatory variable values. This makes sense in 
a context in which the observations are a small 
subset of a large population of similar observa­
tions. Unfortunately, it does not make sense if 
the original observations exhaust the popula­
tion, as would be the case, for example, if they 
were observations on all large Canadian cities. 
This would especially be the case if there was one 
city that was markedly different than the others 
(very large, for example); the bootstrapped 
samples could contain this city more 
than once and so can be misleading. It would 
also not make sense in a context in which a 
researcher selected the values of the explanatory 
variables to suit the study rather than via some 
random process. It also would not be suitable 
for a problem in which the errors are autocor­
related in that the error for one observation 
is related to the error for another; in this 
case a bootstrapping residuals technique would 
have to be used with an appropriate modification 
to create the desired error correlation in each 
bootstrapped sample. The message here is that 
the bootstrapping procedure must be carefully 
thought out for each application. 

• To find the sampling distribution of a test sta­
tistic on the null hypothesis, the null hypothesis 
parameter values should be used when creating 
Monte Carlo repeated samples. In general, as 
with all Monte Carlo studies, every effort should 
be made to create the bootstrap samples in a way 
that incorporates all known facets of the data­
generating process. As an example, consider the 
residuals from estimating a nonlinear functional 
form. Unlike when estimating a linear func­
tion, the average of these residuals may not be 
zero; before bootstrapping the residuals should 
be recentered (by subtracting their average 
from each residual). 

• The most common use of the bootstrap by prac­
titioners is to estimate standard errors in contexts 
in which standard errors are difficult to compute. 
Here are three examples. 
(a) The estimating procedure may involve two 

steps, with the first step computing an esti­
mated or expected value of a variable and the 
second step using this variable to estimate an 
unknown parameter. Calculation of the stan­
dard error in this context is difficult because 
of the extra stochastic ingredient due to the 
first step. 

(b) The desired coefficient estimate may be a 
linear function of two estimates, for ~~'""f"'··, 
e= /318. The delta method (see appendix 
could be used to estimate the variance of 
but it has only asymptotic justification. 

(c) An estimation procedure may have been 
for which there does not exist a pushbutton 
the software for robust variance estimates 
guard against heteroskedasticity of uru~01Ni 
form (see chapter 8). 

In each of these examples a bootstrapping 
cedure would be used to produce B ccx!tlt13Ieq 
estimates and then the sample variance on these 
estimates would be used to estimate the 

the square root of the variance measure. 
• The second-most common use of the 

by practitioners is to adjust hypothesis tests 
incorrect type I error rates. The non-nested l 
for example, has a type I error rate that 
its nominal rate (i.e., in repeated samgles 
statistic exceeds the o:% critical value from 
table more than a% of the time). SirnilaJily, 
tests that rely on the outer product of the 
ent (OPG) estimate of the 
matrix have type I error rates that differ 
what they are supposed to be. In these 
bootstrapping procedure can be used to 
B values of the relevant test statistiG- and 
we can see where the actual statistic value 
in the distribution of these B statistiGS. 
example, if B is 1999 we have 2000 
the test statistic (1999 bootstrap,ped values 
the original, actual value), and if 39 of 
ues exceed the actual statistic value the 
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(one-sided) of our test is 2%. In general, as 
illustrated in this example, for bootstrap tests B 
should be chosen such that a(B + I) is an integer, 
where a is the type I error rate. 

• An observant reader may have noticed an incon­
sistency between the preceding two popular 
applications of bootstrapping. The main reason 
for estimating standard errors via the bootstrap­
ping procedure is to undertake hypothesis testing 
or to produce confidence intervals. This would 
be done by utilizing a critical value from one 
of the statistical tables provided at the back of 
most textbooks. But these tables rely on errors 
being distributed normally, or rely on asymptotic 
justifications that are invalid in small samples. 
'l?art of the whole point of bootstrapping is to 
avoid having to rely on this assumption. The 
essence of the hypothesis-testing methodology 
llescribed above is to calculate special criti­
cal values applicable to the specific problem at 
hand. 'ifhis suggests that a standard error estimate 
calculated via bootstrapping should not be used 
fo1i h1fpothesis testing except in circumstances 
in whicb one is confident that the critical values 
from the usual tables are applicable. A similar 
caveat, applies when estimating confidence inter­
vals. 'ii'lie, estimated standard error (sterr) can be 
used fot this purpose, but it should not in gen­
eral be combined with the traditional critical 
values. Tnstead_, we should bootstrap to find the 
critical values apP.licable to the problem at hand. 
Suppose in the example above we had 1000 val­
ues of the '!'Statistic. If we order them from small­
est to larges and pick out the 50th value (critlow) 
IDd the 950th value (crithigh) these values will be 

critical values we seek for a two-sided 90% 
interval. This confidence interval 

be formed! by taking our estimated coef­
and subtracting critlow*sterr and adding 
~steFr. lllhis ~s our "bootstrapped" con­
Interval; it could be asymmetric around 

estimate, in contrast to the tradi-
c COinfi~len<~einteliVal that is symmetric. This 
~mole of an asymptotic refinement that 

bootstrap grocedure perform better in 
than lfomnulas based on traditional 

theory. 

Technical Notes 

4.1 Introduction 

• A type I error is concluding the null hypothesis 
is false when it is true; a type II error is conclud­
ing the null hypothesis is true when it is false. 
Traditional testing methodologies set the prob­
ability of a type I error (called the size, usually 
denoted a, called the significance level) equal 
to an arbitrarily determined value (typically 5%) 
and then maximize the power (one minus the 
probability of a type II error) of the test. A test 
is called uniformly most powetful (UMP) if it 
has greater power than any other test of the same 
size for all degrees of falseness of the hypothesis. 
Econometric theorists work hard to develop fancy 
tests with high power, but, as noted by McAleer 
(1994, p. 334), a test that is never used has zero 
power, suggesting that tests must be simple to 
perform if they are to have power. 

• A test is consistent if its power goes to one as 
the sample size grows to infinity, something that 
usually happens if the test is based on a consistent 
estimate. Many tests are developed and defended 
on the basis of asymptotics, with most such tests 
being consistent; this creates a dilemma - how 
can the power of such tests be compared when 
asymptotically they all have power one? This 
problem is solved through the concepts of a local 
alternative and local power. For the null hypoth­
esis f3 = {30 , the alternative hypothesis is indexed to 
approach the null as the sample size N approaches 
infinity, so that, for example, the alternative f3 -:/. 
f3o becomes the local alternative f3N = {30 + ll{3/...JN. 
Now an increase inN increases power, but this is 
balanced by a move of the alternative towards the 
null; the local alternative is in general constructed 
so as to make the power approach a well-defined 
limit as N approaches infinity. This limit is called 
the local power, and is what is used to compare 
consistent tests. 

• Power varies with the degree of falseness of the 
null hypothesis. (It also varies, of course, with 
the precision of estimation, affected by things 
like sample size, error variance, and varia­
tion in regressors.) If the null is true, power is 
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equal to the probability of a type I error, the 
significance level of the test; if the null is grossly 
false, power should be close to 100%. Because 
the degree of falseness of the null is not known, 
the power of a test is not known. This creates the 
following unfortunate dilemma. Suppose a null is 
"accepted" (i.e., not rejected). We would like to 
conclude that this acceptance is because the null 
is true, but it may simply be because the power 
of our test is low. What should be done here (but, 
embarrassingly, is not) is report power for some 
meaningful alternative hypothesis; this would 
give readers of a report some sense of how seri­
ously to take the results of an hypothesis test. 

4.3 Testing a Joint Hypothesis: The FTest 

• The L\SSE that appears in the numerator of the 
F statistic sometimes appears in other guises in 
textbooks. If, for example, the test for f3 is equal 
to a specific vector {30 , then L\SSE = ({3°LS - {30)' 

X'X({3°LS - {30). This can be shown algebraically, 
but it is instructive to see why it makes sense. 
Assuming the CNLR model applies, under the null 
hypothesis {JDLS is distributed normally with mean 
f3u and variance-covariance matrix cr(X'Xf'. 
Thus ({3°LS - {30) is distributed normally with 
mean zero and variance dl(X'X)-', implying that 
({JDLS- {J0)'X'X({3°LS- {30)1a2 is distributed as a chi­
square. (This is explained in the technical notes to 
section 4.5.) This chi-square is the numerator chi­
square of the F statistic (an F statistic is the ratio of 
two independent chi-squares, each divided by its 
degrees of freedom); the a2 gets canceled out by a 
a2 that appears in the denominator chi-square. 

4.5 LR, W, and LM Statistics 

• The LR test statistic is computed as-2lnA. where A. 
is the likelihood ratio, the ratio of the constrained 
maximum of the likelihood (i.e., under the null 
hypothesis) to the unconstrained maximum of the 
likelihood. This is just 2(ln Lmax - ln 4), easily 
calculated by estimating MLE unrestricted, 
estimating again restricted, and picking out the 
maximized Jog-likelihood values reported by 
the software. 

• The W statistic is computed using a generalized 
version of the x2 which is very useful to know. 
A sum of J independent, squared standard 
normal variables is distributed as x2 with J degrees 
of freedom. (This in effect defines a X2 distribu­
tion in most elementary statistics texts.) Thus, 
if the J elements ej of e are distributed normally 
with mean zero, variance a} and zero covariance, 
then Q= 1: e]!a]is distributed as a x2 with J degrees 
of freedom. This can be written in matrix termi­
nology as Q = e' v-•e where Vis a diagonal matrix 
with a} as its diagonal elements. Generalizing in 
the obvious way, we obtain e'v-•e distributed as 
a X2 with J degrees of freedom, where the J X 1 
vector e is distributed multivariate normally with 
mean zero and variance-covariance matrix V. 

For the W statistic, e is a vector g of the- !/ 
restrictions evaluated at {JMLe, and V, the vari­
ance-covariance matrix of g, is given by G'CG 
where G is the (K x J) matrix of derivatives ofl 
g with respect to f3 and C is the Crarner-Rao 
lower bound, representing the asymptotiG vari­
ance of [J"'Le. (The technical notes of section 2-:8 
and appendix B provide an explanation of w.hy 
the asymptotic variance of g is given by G'(l@..) 
Placing hats over G and C to indicate that they are 
evaluated at fJMLe, we obtain W = g'[ G' CGJ 'g 

• Calculation of the LM statistic can be undertaJcen 
by the formula d' C d, sometimes referred to as 
the score test. d is a K x I vector of the- lopes 
(first derivatives) of lnL with resprot to p, 
evaluated at {J~LE, the restricted estimate of JUt 
is called the score vector, or the gradient 
or often just the score. C is an estimate of 
Cramer-Rao lower bound. Different ways of 
mating the Cramer-Rao lower bound · 
variety of LM statistics with identical 
properties but slight! y diffen~ntsmall··Sruf!pleplll 
erties. For discussion of the various diff~~nt 1WI 
of computing the LM statistic, and an P."Wi!UftDOI 

their relative merits, see Davidson 
MacKinnon (1983). 

• If the model in question can be 
Y = h(x; {3) + e where h is either a linear or 
ear functional form and thee are distributed 
pendent normally with zero mean and 
variance, an auxiliary regression Gan 
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to facilitate calculation of the LM statistic for a 
test of some portion of f3 equal to a specific vec­
tor. Consider H, the vector of the K derivatives 
of h with respect to f3. Each element of this vec­
tor could be evaluated for each of the N obser­
vations, using f3rfLE, the restricted estimate of 
f3. This would give a set of N "observations" on 
each of the K derivatives. Consider also £., the 
vector of N residuals resulting from the calcu­
lation of f3~LE. Suppose £. is regressed on the K 
derivatives in H. Then the product of the result­
ing R2 and the sample size N yields the LM sta­
tistic: LM = NR2

• For a derivation of this, and 
an instructive example illustrating its applica­
tion~ see Breusch and Pagan (1980, pp. 242-3). 
Additional examples of the derivation and use of 
lfue. l,M statistic can be found in Godfrey (1978), 
Breusch and Pagan (1979), Harvey (1981 , 
pp. ~ 67 74), and Tse (1984). 

• Here is a very simple example of the NR2 ver­
sion of the LM test, often encountered in the 
literature. Suppose we have the CNLR model 
y = a * !Jx -+ rz + ~w + e and we wish to test 
the ooint null hypothesis that r = ~ = 0. The 
restriGted MLE residuals e are obtained by 
regressing yon x. The derivative ofy with respect 
to a ds a column of ones, with respect to f3 is a 
column of il<: values, with respect to r is a col­
umn ofz- values, and with respect to l5 is a column 
of w values. The I..;M test is computed as NR2 

from regressing e on an intercept (the column 
of ones), ·X~ 'l~ and w. In essence we are trying to 
see if the restriGted residuals can be explained by 

andw. 

column of ones on the scores. This test statistic 
is extremely easy to calculate, but unfortunately 
is not reliable because in small samples its type 
I error can be grossly inflated. This is because it 
is based on the OPG variant of the information 
matrix, as explained below. Nonetheless, some, 
such as Verbeek (2000), believe that its compu­
tational simplicity overcomes its unreliability. 
As with most such statistics, its problems can be 
greatly alleviated via bootstrapping. 

• It is noted in appendix B that there are three 
different ways of estimating the information 
matrix. This implies that there are three differ­
ent ways of estimating the variance-covariance 
matrix needed for calculating the W and LM 
tests. In general, the OPG variant is inferior to the 
alternatives and should be avoided; see, for exam­
ple, Bera and McKenzie (1986). Unfortunately, 
however, some of the computationally attractive 
ways of calculating the LM statistic implicitly 
have built into them the OPG calculation for 
the variance-covariance matrix of the MLE, 
causing the size of the resulting LM statistic to 
be too large. In particular, versions of the LM 
test that are calculated as the explained sum 
of squares from regressing a column of ones 
on first derivatives are suspect. Davidson and 
MacKinnon (1983) suggest an alternative way 
of calculating the LM statistic for a wide variety 
of applications, through running what they call 
a double-length regression (DLR), which retains 
the computational attractiveness of the OPG vari­
ant of the LM test, but avoids its shortcomings. 
Godfrey (1988, pp. 82-4) has a good discus­
sion. See also Davidson and MacKinnon (1988). 
Davidson and MacKinnon ( 1993, pp. 492-502) is 
a good textbook exposition. Again, bootstrapping 
can help. 

4.6 Bootstrapping 

• When drawing OLS residuals for bootstrapping 
they should be adjusted upwards by multiplying 
by the square root of NI(N- K) to account for the 
fact that although the OLS residuals are unbiased 
estimates of the errors, they underestimate their 
absolute value. 
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• A lesson not immediately evident from the 
discussion in the general notes is that boot­
strapping should investigate the sampling distri­
bution of an "asymptotically pivotal" statistic, 
a statistic whose sampling distribution does 
not depend on the true values of the parameters 
(most test statistics are pivotal). For example, 
rather than bootstrapping the sampling distri­
bution of a parameter estimate, the sampling 
distribution of the associated t statistic should 
be bootstrapped. The sampling distribution of 
the t statistic can be used indirectly to produce 
confidence intervals, as described earlier in 
the general notes, rather than calculating con­
fidence intervals directly using the sampling 
distribution of the parameter estimate. 

• The bootstrap can be used to estimate the 
bias of an estimate. Generate bootstrap sam­
ples using fi and then see if the average of 
the bootstrap estimates is close to fi. If not, a 
bias is evident, and an obvious adjustment can 
be made to fi. This bias correction is seldom 
used, however, because the bootstrap estimate 
can be more variable than the fi, and any bias 
is often quite small relative to the standard 
error of fi. 

• There are many variants of the bootstrap. One of 
the most peculiar, and most successful for deal­
ing with heteroskedasticity (heteroskedasticity 
is discussed in chapter 8), is the wild bootstrap. 
In this procedure, when drawing bootstrapped 
residuals each residual£ is replaced with either 
-0.618 £or 1.618 £, with probability 0.7236 
and 0.2764, respectively. This causes the new 
residual to have mean zero and variance £2

, 

forcing heteroskedasticity into the bootstrap 
draws. Although this is not a good way of 
estimating the actual heteroskedasticity, this 

bootstrapping procedure, more successful than 
the paired bootstrap, works because what is rel­
evant happens when this heteroskedasticity is 
averaged over bootstrap draws. This is similar 
to why the heteroskedasticity-consistent vari­
ance-covariance matrix estimate (discussed 
in chapter 8) works. See question 17 in sec­
tion HH of appendix D for how this peculiar 
distribution has come about. 

• An alternative computer-based means of estimat­
ing a sampling distribution of a test statistic is 
that associated with a randomization/permutation 
test. The rationale behind this testing methodol­
ogy is that if an explanatory variable has no influ­
ence on a dependent variable then it should make 
little difference to the outcome of the test statj -
tic if the values of this explanatory variable are 
shuffled and matched up with different depen­
dent variable values. By performing this shuffling 
thousands of times, each time calculating the 
test statistic, the hypothesis can be tested by 
seeing if the original test statistic value is unu ual 
relative to the thousands of test statistic values 
created by the shufflings. Notice how diffet:ent 
is the meaning of the sampling distribution - it 
no longer corresponds to "what would hagpen if 
we drew different bundles of errors"; now ill Gar­
responds to "what would happen if the in9e]«:D­
dent variable values were paired with different 
dependent variable values." Hypothesis testing 
is based on viewing the test statistic as 
resulted from playing a game of chanGe; 
randomization view of testing claims iliat 
is more than one way to play a game of 
with one's data! For further discussion of 
testing methodology in the econometrics 
text see Kennedy (1995) and Kennedf and 
(1996). Noreen ( 1989) is a good 
reference. 



Chapter 5 

Specification 

5.! Introduction 

At one time, econometricians tended to assume that the model provided by economic 
theory represented accurately the real-world mechanism generating the data, and viewed 
their Fole as one of providing "good" estimates for the key parameters of that model. If 
any unGertainty was expressed about the model specification, there was a tendency to 
think 'n terms of using econometrics to "find" the real-world data-generating mecha­
nism. Both these v.iews of econometrics are obsolete. It is now generally acknowl­
edged that econometric models are "false" and that there is no hope, or pretense, that 
through them "truth" will be found. Feldstein's (1982, p. 829) remarks are typical of 
this view: "in praGtice all econometric specifications are necessarily 'false' models .... 
The applied eGonometrician, like the theorist, soon discovers from experience that a 
useful modeHs not one that is 'true' or 'realistic' but one that is parsimonious, plausible 

informative." '[his is echoed by an oft-quoted remark attributed to George Box, "All 
models are wrong, but some are useful," and another from Theil (1971, p. vi): "Models 

to be used, but not to be believed." In Leamer's (2004, p. 555) view "The goal of an 
M Piriical eGonomist should be not to determine the truthfulness of a model but rather 

of usefulness. ' 
light of this ~~:eGognition, econometricians have been forced to articulate more 

what eGonometrie models are, one view being that they "are simply rough 
to understanding" (Quah, 1995, p. 1596). There is some consensus that models 

or windows through which researchers view the observable world, 
their adoption d~pends not upon whether they can be deemed "true" but 

whether tliey can be said to (1) correspond to the facts and (2) be useful. 
speoification analysis therefore is a means of formalizing what is meant 

to the faGts" and "being useful," thereby defining what is meant by a 
~IPI:Cdied model" .From this perspective, econometric analysis becomes much 
,esl:im:aticm and inference in the context of a given model; in conjunction 
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