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3. It avoids having to deduce and program a
complicated likelihood function. Not all spec-
ifications have software available for their
estimation.

4. Time-varying explanatory
accommodated without problem.

5. An easy nonparametric way of estimating
the baseline hazard is possible.

6. It provides 2 good approximation to
continuous-time duration models.

For a good economist-oriented exposition of
discrete-time estimation, S€€ Jenkins (1995). This
does not mean that more complicated maximum
likelihood estimation is not employed; a popular
approach that allows the baseline hazard t0 be
flexible is that of Meyer (1990)-

We saw that for limited dependent variable models,
the equation determining whether an individual is
at the limit may not be the same as the equation
that determines its level if not at the limit. In the
duration context, it could be that some individu-
als may be such that they will never experience
the event in question, and so for them the hazard
function is misleading. For example, upon leav-
ing jail some criminals turn over 2 new leaf and
so never return to jail, but others continué their
life of crime and will probably return to jail at
some point. Schmidt and Witte (1989) introduce
a split population survival model in which a logit
model for determining if an event will ever hap-
pen is combined with 2 hazard function for how
Jong it will take for the event 10 happen given that
it may happen.
Care needs to be taken when collecting data and
structuring  the likelihood function. Suppose
you are interested in time tO failure for banks
and have a data set that includes all banks in

variables are

existence in 1965, some of which have failed at
known duration times by now, and some of which
have not failed. This is not a random sample of
durations because you only have observations
on banks that survived to 1965; you are dispro-
portionately missing observations on banks with
short failure times (in particular, banks that failed |
before 1965), resulting in biased estimation ofthe |
hazard function. The likelihood needs to be
adjusted to accommodate the type of data, recog- |
nizing that observations are survivors. For con-|
tinuous data, the density for an observation needs|
to be divided by its survivor function evaluated
at that observation’s duration as of 1965. For
discrete data an observation should not bg‘
included in the logit ingredients until we reaaﬂ
the logit ingredient for its age in 1965. So, for
example, a bank which began in 1960 would no
appear in the risk set until year 5. 1f the starttime
of banks are not knowi, these data cannot beuti
lized. See Guo (1993).
To underline this problem here is anoth
example. You might have a data set consistr
of a large number of people who were un
ployed as of a specific date, some of whe
employment by the end of your time pe od
analysis, and some of whom did notfinde
ment. Your sample is overrepresentef["by
with long survivor times (because an
people unemployed at a specific date will
a disproportionat® number of Peopie /h
experiencing long unemployment P s);
estimation. This problem would not have:
if the data had been collected on ind
pegan their unemployment spell on orat
tain date, rather than on individuals W
unemployed as of that date. '

e
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Panel Data

18.1 Introduction
‘Modern econometrics is divided into two branches: microeconometrics and time series
lysis. The latter is covered in chapter 19. The former has many elements, of which
ve discussed several examples, such as qualitative dependent variables, duration
s, count data, and limited dependent variables, all of which primarily involve
erent types of cross-sectional data. In light of this it would seem natural to call
econometrics cross-sectional data analysis. We do not, however, because a major
ory of microeconometrics involves longitudinal or panel data in which a cross-
(of people, firms, countries, etc.) is observed over time. Thanks to the com-
tevolution, such data sets, in which we have observations on the same units in
wveral different time periods, are more common and have become more amenable to

minent examples of panel data are the PSID (Panel Study of Income Dynamics)
> NLS (National Longitudinal Surveys of Labor Market Experience) data,
‘which were obtained by interviewing several thousand people over and over
; through time. These data sets were designed to enable examination of the causes
ature of poverty in the United States, by collecting information on such things

€, consisting of a very large number of cross-sectional units observed over
t of time periods. Such data are expensive to obtain, involving tracking
'__'_“ bers of people over extended time periods. Is this extra expense warranted?

d.can be used to deal with heterogeneity in the micro units. In any
D there is a myriad of unmeasured explanatory variables that affect
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282 Chapter 18 Panel Data

ple (firms, countries, etc.) being analyzed. (Heterogeneity
units are all different from one another in fundamental

unmeasured ways.) Omitting these variables causes bias in estimation. The same
holds true for omitted time series variables that influence the behavior of the micro

units uniformty, but differently in each time period. panel data enable correction of
this problem. 1ndeed, some t the ability to deal with this omitted

would claim tha
variable problem is the main attrl

bute of panel data. |
2. Panel data create more variability, through combining variation across micro units
with variation OVeT time, alleviating mu

lticollinearity problems. With this more
informative data, more efficient estimation is possible. :

3. Panel data can be used to examine iSSues that cannot be studied using time series |
or cross-sectional data alone. As an example, consider the problem of separating!
economies of scale from technological change in the analysis of production func-

sed to examine economies of scale, by compar-

tions. Cross-sectional data can be u
ing the costs of small and large firms, but because all the data come from one time.
period there is no way to estimate the effect of technological change. Things are

worse with time series data on a single firm; Wé cannot separate the two effests
because we cannot tell if a change in that firm’s costs over timeé is due to techno
logical change Of due to a change in the size of the firm. As a second examiflé
consider the distinction between temporary and long-term unemployment. ._@_;og_s'
sectional data tell us who is unemployed in @ single year, and time series dataitel
" us how the unemployment jevel changed from year to year. But neither ¢an -té]l"ﬁ
if the same people are unemployed from year to year, implying a Jow turnoverrai

or if different people are unemployed from year to year, implying @ 'hi'gh.-m_o
rate. Analysis using panel data can address the turnover question because LheS
data track a common sample of people over several years.

4. Panel data allow better analysis of dynamic adjustment. Cross-seetior‘ial\ﬂa
tell us nothing about dynamics. Time series data need to be very lengthy topro ‘
good estimates of dynamic behavior, and then typically relate t0 aggregate dynd u

behavior. Knowledge of individual dynamic reactions can be crucial to understa

ing economic phenomena. Panel data avoid the need for a lengthy xir_t}g._v;__S__G

exploiting information on the dynamic reactions of each of several individt Is.
-

the behavior of the peo
means that these micro

18.2 Allowing for Different Intercepts

Suppose an individual’s consumption y 18 determined linearly by his o'
and we have observations on thousand individuals (N= 1000) in &4
periods (T= 4). A plot of all the data produces 2 scatter shown in simpl

a few observations are shown, not all 4000 observations!) in FigL
Jeast squares {

ellipses for the moment.) 1f we were to run ordinary
produce 2 slope estimate shown by the line AA drawn through'
suppose We identify these data by the cross-sectional unit (person

for example) to which they belong, in this case a person- This is/sht
by drawing an ellipse for each person, surrounding all four time seli
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¥ igure 18.1 Panel data showing four observations on each of four individuals.

-

on that person. (There would be a thousand such ellipses in the actual data scatterplot,
with roughly half above and half below AA; only four are drawn in Figure 18.1.) This
way of viewing the data reveals that although each person in this example has the
same slope, these people all have different intercepts. Most researchers would agree
that this cross-sectional heterogeneity is the normal state of affairs — there are so many
unmeasured variables that determine y that their influence gives rise to a different
intercept for each individual. This phenomenon suggests that OLS is biased unless the
of these omitted variables (embodied in different intercepts) is uncorrelated
ncluded explanatory variables. Two ways of improving estimation have been
; associated with two different ways of modeling the presence of a different
st for each cross-sectional unit.
first way is to put in a dummy for each individual (and omit the intercept).
allows each individual to have a different intercept, and so OLS including
mmies should guard against the bias discussed above. This “fixed effect”
estise to what is called the fixed effects estimator — OLS applied to the fixed
model. At first glance this seems as though it would be difficult to estimate
duse L(‘i_rl_'-our example above) we would require a thousand dummies. It turns out
\omputational trick avoids this problem via an easy transformation of the data.
ransformation consists of subtracting from each observation the average of the
WIthin its ellipse — the observations for each individual have subtracted from
ges of all the observations for that individual. OLS on these transformed
e desired slope estimate.
6ts model has two major drawbacks:

'_ncluding a thousand dummy variables we lose 999 degrees of free-
_ OPpIng the intercept we save one degree of freedom). If we could find
Sy Obavoiding this loss, we could produce a more efficient estimate of the

Panel Data 283
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2. The transformation
variables that do not vary within an indivi
variable that 18 time-invari

so we are unable t

because within the ellipse in Figure

same so that when we su

The second way of allowing fo
is designed to OVer
model is similar to
cept for each individual

the fixed effects model

This procedure views the different intercepts as
ted as random (usu

sible intercepts, SO they may be interpre
distributed) and treated as though they were
have a specification in which there is an overa
with coefficients of interest, and a composite
parts. For a particular individual, one part is

the extent to which this individual’s intercep
or with which we are familiar,

other part is just the traditional random erT
a random deviation
the first part is the s
period.

ame in all time periods;

The trick to estimation using the random effec
ance matrix of this composite error i
zero). In the example above,

ance—covari
nal elements are

individual, the random intercept componen
will be correlated in

d to have zero correlation

these composite errors
individuals are assume
creates a
mator estimates th

data that creates a spherical variance—co

the transformed data.

that it uses a different transformation.

18.3 Fixed Versus Random Effects

By saving on degrees of free
cient estimator of the slope coeffic
transformation used for the rando
the explanatory variab
on variables such as gen
effects model is superio

involved in this estimation proces
dual.

ant, such as gen

o estimate a slope coefficien
18.1, the values of these variables are all the

btract their average they all become 7€r10.)

r different intercepts, the
come these two drawbacks

, but it interprets these differing intercepts

11 intercept, a set of explanatory varables

for that individual in that time period.

variance—covariance matrix with a spec
s variance-covariance matrix and

least squares (EGLS). The EGLS calculation is done by
variance matrix a

In this respect it is simi

dom, the random effects
ients than the fixed effects model. Furth

m effects estimation procedure d
les that are time-invariant, allowing

der, race, and religion.
r to the fixed effects model. So shou

s wipes out all explanatory
This means that any explanatory
der, race, of religion, disappears, and
¢ for that variable. (This happens

«random effects” model,

of the fixed effects model. This
that it postulates a different inter-
in a novel way.
having been drawn from a bowl of pos-
ally assumed to be normally
a part of the error term. As a result, we

in

error term. This composite error has two
the “random intercept” term, measuring
t differs from the overall intercept. Tihe
indieg;ing]'
For a particular individual
the second part is different in each time
ts model is to recognize that the vari
s nonspherical (i.e., not all off-diago
for all four observations;ona speaifil

t of the composite error is the same,
a special way. Observations on difiere
between their composite errors.‘" hi
ial pattern. The random effg_é_at-Sj_e
performs estimated generalizé

finding a transformation Of
nd then performing OLS(

CC|
e

lar to the fixed effects estimator ex

model produces

estimation (0)

These results suggest
1d we

alway’
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~ Figure 18.2  Panel data showing four observations on each of four individuals, with positive

&
g g
|
| v .
| correlation between x and the intercept.

random effects model? Unfortunately, the random effects model has a major qualifica-
n that makes it applicable only in special circumstances.
- This qualification is illustrated in Figure 18.2, where the data look exactly the same
Figure 18.1, but the ellipses are drawn differently, to reflect a different allocation
ofiobservations to individuals. All persons have the same slope and different intercepts,
Just as before, but there is a big difference now — the common slope is not the same
the slope of the AA line, as it was in Figure 18.1. The main reason for this is that
ntercept for an individual is larger the larger is that individual’s x value. (Lines
through the observations in ellipses associated with higher x values cut the y
larger values.) This causes the OLS estimate using all the data to produce the
e, clearly an overestimate of the common slope. This happens because as we
move toward a higher x value, the y value increases for two reasons. First, it increases
because the x value increases, and second, because there is likely to be a higher inter-
| estimation is biased upward because when x changes, OLS gives it credit
oth of these y changes.
ias does not characterize the fixed effects estimator because as described ear-
ifferent intercepts are explicitly recognized by putting in dummies for them.
iSI__ii roblem for the random effects estimator because rather than being explicitly
?;  the intercepts are incorporated into the (composite) error term. As a conse-
%, the composite error term will tend to be bigger whenever the x value is bigger,
g correlation between x and the composite error term. Correlation between the
N explanatory variable creates bias. As an example, suppose that wages are
ed on schooling for a large set of individuals, and that a missing variable,
Ought to affect the intercept. Since schooling and ability are likely to be
modeling this as a random effect will create correlation between the com-
ﬂ'the regressor schooling, causing the random effects estimator to be
Otom line here is that the random effects estimator should only be used
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orrelated with the explanatory
iscussed in the general notes),
ficantly different from the

whenever we aré confident that its composite error isunc
variables. A test for this, a variant of the Hausman test (d
is based on seeing if the random effects estimate is insigni

unbiased fixed effects estimate.
Here is a summary of the discussion above. Estimation with panel data begins by

testing the null that the intercepts are equal. If this null is accepted the data are pooled.

1f this null 1s rejected, a Hausman test is applied to test if the random effects estimator
e random effects estimator is used; if thisnull

is unbiased. If this null is not rejected, th
d. For the example shown in Figure 18.1,

is rejected, the fixed effects estimator is use
OLS, fixed effects, and random effects estimators are all unbiased, but random effects
is most efficient. For the example shown in Figure 18.2, OLS and random effects esti-
mators are biased, but the fixed effects estimator is not.
There are two kinds of variation in the data pictured in Figures 18.1 and 182.°
One kind is variation from observation to observation within a single ellipse (1:e.,
variation within a single individual). The other kind is variation in observations from
ellipse to ellipse (i.e., variation petween individuals)- The fixed effects estimator uses,
the first type Of variation (in all the ellipses), ignoring the second type. Because this |
first type of variation is variation within each cross-sectional unit, the fixed effects
estimator is sometimes called the “within” estimator. An alternative estimator can be
produced by using the second type of variation, ignoring the first type. This is done
| by finding the average of the values within each ellipse and then running OLS on
,- these average values. This is called the “petween” estimator because it uses variation
between individuals (ellipses). Remarkably, the OLS estimator on the pooled datads ar
unweighted average of the within and between estimators. The random effects estima;
tor is a (matrix-) weighted average of these two estimators. Three implications of thif
are of note.
1. This is where the extra efficiency of the random effects estimator comes ._fr'or'ii'-
uses information from both the within and the between estimators. i
2. This is how the random effects estimator can produce estimates of coefficients
time-invariant explanatory variables — these variables vary between ellipses bt
not within ellipses. .
3. This is where the bias of the random effects estimator cOmes from when &
explanatory variable is correlated with the composite error - the betweéﬂfQSt{m ‘
s biased. The between estimator is biased because a higher x value gives nseld
higher y value both because x is higher and because the compositeﬂfror_-'is.’{ g
(because the intercept is higher) — the estimating formula gives the changein#
the credit for the change iny.

18.4 Short Run Versus Long Run

individual’s consumption (¥) 18 determined i
data plot such as that in
hort run the individual adjusts Gons!

Suppose that an
her level of income (x), producing a
that due to habit persistence, in the s




partially when income changes. A consequence of this is that within an ellipse in
Figure 18.2, as anindividual experiences changesinincome, changesin consumption are
i1 modest, compared to the long-run changes evidenced as we move from ellipse to
' ellipse (i.e., from one individual’s approximate long-run income level to another
individual’s approximate long-run income level). If we had observations on only one
cross-section we would have one observation (for the first time period, say) from
each ellipse and an OLS regression would produce an estimate of the long-run rela-
tionship between consumption and income. If we had observations on only one cross-
§  sectional unit over time (i.e., observations within a single ellipse) an OLS regression
9 L - would produce an estimate of the short-run relationship between consumption and
| income. This explains why, contrary to many people’s intuition, cross-sectional data
' are said to estimate long-run relationships whereas time series data estimate short-run
~ relationships.
Because the fixed effects estimator is based on the time series component of the
data, it estimates short-run effects. And because the random effects estimator uses both
the cross-sectional and time series components of the data, it produces estimates that
mix the short-run and long-run effects. A lesson here is that whenever we have reason
" to believe that there is a difference between short- and long-run reactions, we must
build the appropriate dynamics into the model specification, such as by including a
lagged value of the dependent variable as an explanatory variable.
"One of the advantages of panel data is that they can be used to analyze
iﬁaﬁlics with only a short time series. For a time series to reveal dynamic behavior
ust be long enough to provide repeated reactions to changes — without such
nformation the estimating procedure would be based on only a few reactions to
chs ge and so the resulting estimates could not be viewed with confidence. The
power of panel data is that the required repeated reactions are found by lookin g at the
feactions of the NV different cross-sectional units, avoiding the need for a long time
Lf1es.
Modeling dynamics typically involves including a lagged value of the dependent
ble as an explanatory variable. Unfortunately, fixed and random effect estima-
® biased in this case; to deal with this, special estimation procedures have been
feloped, as discussed in the general notes.

tion above is appropriate for the context of a wide, short panel, in which
ber of cross-sectional units, is large, and T, the number of time periods,
enever we have a long, narrow panel, analysis is typically undertaken in
n. With a lot of time series observations on each of a small number
al units, it is possible to estimate a separate equation for each cross-
nsequently, the estimation task becomes one of finding some way to
on of these equations by estimating them together. Suppose, for illus-
ve have six firms each with observations over 30 years, and we are
ation in which investment y is a linear function of expected profit x.

=)
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There are several different ways in which the six equations (one for each firm) could
be estimated together so as to improve efficiency.

coefficients are the same for each

1. We could assume that the intercept and slope
4 OLS used to estimate the single

firm, in which case the data could be pooled an
intercept and single slope.

2. More realistically, we could assume the six slopes to be the same but the intercepts
to be different. By putting in dummies for the intercept differences, we could esti-|
mate a single equation by OLS, using all the data. '

3. Even more realistically, in addition to assuming different intercepts (and equal
slopes) we could assume that the variance of the error term is different for each
equation. A single equation would be estimated by EGLS. |
4. We could assume contemporaneous correlation among the cross-sectional errors.,
This would allow the error in the fourth equation, for example, to be correlated with

the error in the fifth (and all other equations) in the same time period. Correlations|
between errors in different time periods are assumed to be zero. Estimation wou]_'d_g
be by EGLS following the SURE (seemingly unrelated estimation) proCedgné

described in chapter 11.

5. We could allow the errors in eac
and be autocorrelated within equation

h of the six equations to have different variances,
s, but uncorrelated across equations.

Before choosing one of these estimation procedures we need to test the relevan

General Notes

18.1 Introduction

e Baltagi (2005) is an excellent source of infor-
mation on panel data procedures, with extensive
reference to its burgeoning literature. His intro-
ductory chapter (pp- 1-9) contains a descrip-
tion of the nature of prominent panel data sets,
references to sources of panel data, examples of
applications of these data, an exposition of the
advantages of panel data, and discussion of limi-
tations of panel data. Hsiao (2003a) is another
well-known survey. Cameron and Trivedi (2005,
pp. 58-9) has a concise description of several
sources of microeconomic data, some of which
are panel data. Pergamit et al. (2001) is a good

assumptions to justify our choice. A varie
general and technical notes to this section.

ty of tests is available, as discussed in the

description of the NLS data. Limitation
data include data collection problems, dis
caused by measurement errors that plag
data, problems caused by the typicall
dimension, and sample selection prob
self-selection, nonresponse, and attritio
o Greene (2008, chapter 9) has a £0
exposition of relationships among
mators, computational considerati__d
evant test statistics. Bl

e The second dimension of panel dafa
be time. For example, we could S
twins (or sisters), in which case
period” for an individual is n¢

on that individual in a differen
rather an observation on his © e
her sisters). As another examp




data on N individuals writing a multiple-choice
exam with T questions.

e Most panel data has a time dimension, so prob-
lems associated with time series analysis can
become of concern. In particular, unit roots and
cointegration may need to be tested for and
accommodated in a panel data analysis. Some
commentary on this dimension of panel data is

il provided in chapter 19 on time serjes.

18.2  Allowing for Different Intercepts

e The “fixed effects estimator” is actually the “OLS
estimator applied when using the fixed effects
model,” and the “random effects estimator” is
actually the “EGLS estimator applied when
using the random effects model.” This technical
abuse of econometric terminology has become so
common that it is understood by all as to what is
meant and so should not cause confusion.
 The transformation used to produce the fixed
effects estimator takes an individual’s observation
On an explanatory variable and subtracts from it
 the average of all of that individual’s observations
* on that explanatory variable. In terms of Figures
~ 18.1 and 18.2, each observation within an ellipse
has subtracted from it its average value within
~ that ellipse. This moves all the ellipses so that
*they are centered on the origin. The fixed effects
‘estimate of the slope is produced by running OLS
on all these observations, without an intercept.
8 ‘The fixed effects transformation is not the only
nsformation that removes the individual
lercepts. An alternative transformation is first
ifferencing — by subtracting the first period’s
Ivation on an individual from the second
d’s observation on that same individual, for
SXample, the intercept for that individual is elimi-
nated nning OLS on the differenced data pro-
. alternative to the fixed effects estimator.
e only two time periods, these two esti-
identical. When there are more than
€riods the choice between them rests
10ns about the error term in the rela-
Ng estimated. If the errors are serially
1, the fixed effects estimator is more
» Whereas if the errors follow a random
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walk (discussed in chapter 19) the first-differ-
encing estimator is more efficient. Wooldridge
(2002, pp. 284-5) discusses this problem and the
fact that these two estimators will both be biased,
but in different ways, whenever the explanatory
variables are not independent of the error term.
In practice first differencing appears to be used
mainly as a means of constructin g estimators used
when a lagged value of the dependent variable is
a regressor, as discussed in the general notes to
section 18.4.
The random effects transformation requires esti-
mates of the variance of each of the two compo-
nents of the “composite” error ~ the variance of
the “random intercepts” and the variance of the
usual error term. Several different ways of pro-
ducing these estimates exist. For example, fixed
effects estimation could be performed, with the
variance of the intercept estimates used to esti-
mate the variance of the “random intercepts,”
and the variance of the residual used to estimate
the variance of the usual error term. Armed with
these estimates, random effects estimation can be
performed. Monte Carlo studies suggest use of
whatever estimates are computationally easiest.
Both fixed and random effects estimators assume
that the slopes are equal for all cross-sectional
units. Robertson and Symons (1992) claim that
this is hard to detect and that even small differ-
ences in slopes can create substantial bias, par-
ticularly in a dynamic context. On the other hand,
Baltagi, Griffen, and Xiong (2000) claim that
although some bias may be created, the efficiency
gains from the pooling more than offset this. This
view is supported by Attanasio, Picci, and Scorcu
(2000).
Whenever the number of time period observa-
tions for each cross-section is not the same we
have an unbalanced panel. This requires modi-
fication to estimation, built into panel data esti-
mation software. Extracting a balanced panel out
of an unbalanced data set is not advised — doing
so leads to a substantial loss of efficiency. As
always, one must ask why the data are missing
to be alert to selection bias problems; a check for
selection bias here can take the form of compar-
ing balanced and unbalanced estimates.
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e The fixed and random effects estimators dis- estimates. Do an F test in the usual way (@ Chow
cussed in the body of this chapter were explained test) to test if the coefficients on the dummy vari-
in the context of each individual having a dif- ables are identical. Another way is to perform the
ferent intercept. 1t is also possible for each time random effects estimation and test if the variance

period to have a different intercept. In the second of the intercept component of the composite error
time period there may have been a big advertis- term 1S Z€r0, using a Lagrange multiplier (LM)
ing campaign, for example, SO gveryone’s con- test developed by Breusch and Pagan (1980),
sumption of the product in question May have as described for example in Greene (2008,
risen during that period. In the fixed effects case, pp- 205-6). Be careful here — 2 common error’
to deal with this dummies are added for the dif- among practitioners is to think that this LM test
ferent time periods. In the random effects case, is testing for the appropriateness of the random
atime-period-speciﬁc error component is added. effects model, which it does not. To test for
When there ar¢ intercept differences across both whether we should use the fixed or the random
individuals and time periods, we speak of a two- effects estimator we need to test for whether the
way effects model, to distinguish it from the one- random effects estimator is unbiased, as exp\ain_e{
way effect model in which the intercepts differ below. '
only across individuals. Estimation 18 similar to e The random effects estimator (sometimes callel
the one-way effects case, but the transformations the variance components o1 error componen
are more compiicated. The one-way effect model estimator) 1S recommended whenever it is uf
is used far more often than the two-way effects biased (.e. whenever its composite erTor |
model. uncorrelated with the explanatory variables, |

explained carlier). This is an example of testi!
for independence between the error term andt

i 18.3 Fixed Versus Random Effects ) : > a]
. explanatory variables, for which, as explail
e Another way of summarizing the difference in chapter 9, the Hausman test is appropriﬂ'
between the fixed and random effects estimators Regardless of the truth of the null, the £
is in terms of omitted variable bias. If the col- effects estimator is unbiased because it in6ly
lective influence of the unmeasured omitted vari- dummies for the different intercepts. But thet
ables (that give rise to the different intercepts) is dom effects estimator 18 unbiased only if &le
uncorrelated with the included explanatory vari- is true. Consequently if the nullis true thelfl
ables, omitting them will not cause any bias in and ranoom effects estimators should b‘e"-apgﬁ
OLS estimation. In this case they can be bundled mately equal, and if the null is false they sh
into the error term and efficient estimation under- be different. The Hausman test tests the
taken via BEGLS — he random effects estimator is testing if these tWO estimators aré insignific
appropriate. 1f, however, the collective influence different from one another. Fortunatelys |
of these omitted unmeasured variables 1s cor- an easy way 10 conduct this test: Transfort
related with the included explanatory variables, data to compute the random effects estimato
omitting them causes OLS bias. In this €ase, they when regressing the transformed dcpeﬂi}'éﬁ'
should be included to avoid this bias. The fixed able on the transformed independen_t':j-v
effects estimator does this by including a dummy add an extra set of independent variables, i
for each cross-sectional unit. the explanatory varial ]

o There are two ways to test if the intercepts are effects estimation. The Hausmat 1est 12
different from one another. (If they do not differ lated as an F test for testing the: coeRI=s
from one another, OLS on the pooled data is the these extra explanatory yariables agai> 4
estimator of choice.) One way is to perform the ® The fixed effects estimator 1S more T

et

fixed effects estimation and calculate the corre- selection bias problems than is theT&
sponding dummy variable coefficient (intercept) estimator because if the intercep




selection characteristics they are controlled for in
the fixed effects estimation.

o One other consideration is sometimes used when
deciding between fixed and random effects esti-
mators. If the data exhaust the population (say,

| observations on all firms producing automobiles),

1 then the fixed effects approach, which produces

[ results conditional on the cross-section units in

" the data set, seems appropriate because these are

the cross-sectional units under analysis. Inference

is confined to these cross-sectional units, which
is what is relevant. On the other hand, if the data
are a drawing of observations from a large popu-
lation (say, a thousand individuals in a city many
times that size), and we wish to draw inferences
regarding other members of that population, the
random effects model seems more appropriate

(so long as the random effects composite error is

not correlated with the explanatory variables).

‘o The “between” estimator (OLS when each obser-

vation is the average of the data inside an ellipse)

has some advantages as an estimator in its own

* right. Because it averages variable observations,

- it can reduce the bias caused by measurement

~ error (by averaging out the measurement eITors).

" Incontrast, transformations that wipe out the indi-

‘vidual intercept effect, such as that of the fixed

fect estimator, may aggravate the measurement

or bias (because all the variation used in esti-
ation is variation within individuals, which is
avily contaminated by measurement error; in
€ PSID data, for example, it is thought that as

‘much as 80% of wage changes is due to measure-

m rror!). Similarly, averaging may alleviate

‘Dlas caused by correlation between the error

and 4 e explanatory variables.

ged value of the dependent variable
as a regressor, both fixed and random

MMation subtracts each unit’s average value
Ch observation. Consequently, each trans-
Value of the lagged dependent variable
Uit involves all the error terms associ-
that unit, and so is contemporaneously
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correlated with the transformed error. Things are
even worse for random effects because a unit’s
random intercept appears directly as an element
of the composite error term and as a determinant
of the lagged value of the dependent variable.
One way of dealing with this problem is by
using the first-differencing transformation to
eliminate the individual effects (the heterogene-
ity), and then finding a suitable instrument to
apply 1V estimation. The first-differencing trans-
formation is popular because for this transfor-
mation it is easier to find an instrument, in this
case a variable that is correlated with the first-
differenced lagged value of the dependent vari-
able but uncorrelated with the first-differenced
error. A common choice of instrument is Y5 used
as an instrumental variable for (Ay),y, as sug-
gested by Anderson and Hsiao (1981). This pro-
cedure does not make use of a large number of
additional moment conditions, such as that higher
lags of y are not correlated with (Ay),_;. This has
led to the development of several GMM (gener-
alized method of moments) estimators. Baltagi
(2005, chapter 8) has a summary of all this, with
references to the literature. One general conclu-
sion, consistent with results reported earlier for
GMM, is that researchers should avoid using
a large number of IVs or moment conditions.
See, for example, Harris and Mitayas (2004).
How serious is the bias when using the lagged
value of the dependent variable in a fixed effects
panel data model? A Monte Carlo study by Judson
and Owen (1999) finds that even with T = 30 this
bias can be as large as 20%. They investigate four
competing estimators and find that a “bias-cor-
rected” estimator suggested by Kiviet (1995) is
best. Computational difficulties with this estima-
tor render it impractical in unbalanced panels,
in which case they recommend the usual fixed
effects estimator when T is greater than 30 and
a GMM estimator (with a restricted number of
moment conditions) for T less than 20, and note
that the computationally simpler IV estimator of
Anderson and Hsiao (1981) can be used when
T is greater than 20. A general conclusion here,
as underlined by Attanasio, Picci, and Scorcu
(2000), is that for T greater than 30, the bias
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created by using the fixed effects estimator 18
more than offset by its greater precision com-
pared to 1V and GMM estimators.

18.5 Long, Narrow Panels

Greene (2008, chapter 10) has a good exposition
of the several different ways in which estimation
can be conducted in the context of long, narrow
panels. A Chow test (as described in the general
notes to section 15.4) canbe used to test for equal-
ity of slopes across equations. Note, though, that
if there is reason to believe that errors in different
equations have different yariances, of that there is
contemporaneous correlation between the equa-
tions’ erTors, such testing should be undertaken by
using the SURE estimator, not OLS; as explained
in chapter 8, inference with OLS is unreliable
if the yariance—~covariance matrix of the error is
nonspherical. If one is not certain whether the
coefficients ar¢ identical, Maddala (1991) recom-
mends shrinking the separate estimates towards
some common estimate. Testing for equality of
yariances across equations, and zero contempora-
neous correlation among erTors across equations,
can be undertaken with a variety of LM, W, and
LR tests, all described clearly by Greene.
Estimating several equations together improves
efficiency only if there is someé connection among
these equations. Correcting for different error
variances across equations, for example, will
yield no benefit if there is no constraint across
the equations enabling the heteroskedasticity cor-
rection to improve efficiency. The main examples
of such constraints aré equality of coefficients
across equations (they all have the same slope,
for example), and contemporaneous correlation
among errors as described in the general and
technical notes of section 11.1 when discussing
SURE. The qualiﬁcations to SURE introduced
by Beck and Katz (1995, 1996), discussed in the
technical notes to section 11.1, are worth review-
ing for the context of long, narrow panels.
Long, wide panels, such as the Penn World
Tables widely used to study growth, are becom-
ing more common. In this context the slope coef-
ficients are often assumed t0 differ randomly and

Technical Notes |

interest focuses O estimating the average effect of
an explanatory variable. Four possible estimating
procedures seem reasonable: estimate a separate
regression for each unit and average the resulting
coefficient estimates; estimate using fixed or ran-
dom effects models assuming common slopes;
average the data over units and estimate using
these aggregated time series data; and average the
data over time and use @ cross-section regression
on the unit averages- Although all four estimation
procedures are unbiased when the regressors are:
exogenous, Pesaran and Smith (1995) show that|
when a lagged value of the dependent variableis
present, only the first of these methods is asymp.ﬁ
totically unbiased.

o A popular way of analyzing macroeconomifi

growth with large-N, large-T panel data is to ust
five- or ten-year averages of the data. The ideai
that this will aleviate business-cycle effects anl
measurement error. Attanasio, Picci, and Score
(2000) argue that this is undesirable because |
throws away to0 much information. -

|
18.2 Allowing for Different Intercepts bJ

e The fixed effects estimator can be shown to’b :
instrumental yariable estimator with the deviatf
from individual means a5 the instraments:
insight has been used to develop alternativeins
mental variable estimators for this context.Ver
(2000, pp- 321-2)isa textbook expositi_on.

o In addition to having different intercepts:
individual may have 2 different trend: Firs
ferencing the data will eliminate the diff
intercepts and convert the different €

different intercepts for the ﬁrst-differensé}f!

183 Fixed versus Random Effests.

o The transformation for fixed effects GStL‘
very simple to derive. Suppose‘llle_r.o'!?;% :
the ith individual in the fth timepert i

Vi = i +ﬂx" + &




If we average the observations on the ith indi-
vidual over the T time periods for which we have
data on this individual we get

y, =, +fx +& (18.2)

Subtracting equation (18.2) from equation
(18.1) we get

Yo =i =ﬂ(x,, —f’)-i-(é‘h —E,)

The intercept has been eliminated. OLS of
y* =Y,—Y¥ on x* =x, —X produces the
fixed effects estimator. Computer software esti-
mates the variance of the error term by dividing
the sum of squared errors from this regression by
NT — K — N rather than by NT — K, in recognition
of the N estimated means.

For random effects estimation the estimating
equation is written as

yu :lu+ﬂxu +(ui +£il)

- where u is the mean of the “random” intercepts
@ =M+, and the errors i; and g in the com-
‘posite error term have variances 0,2 and 0.2,
‘tespectively.

The transformation for random effects estima-
'~ tion can be shown to be

y*ir =yi _gj’: and x*ir =X _HE'

it 1
o
where f=1- —=—

To, +o;

his is derived by figuring out what transfor-
tion will make the transformed residuals such
1t they have a spherical variance—covariance

tice that if all the individuals had the same
ftercept, so that ¢,2 = 0, 6 becomes 0 and the
adom effects estimator becomes OLS on all the
, as makes sense. A better way of look-
pecial cases is to draw on the result that
m effects estimator is a matrix-weighted
14ge of the fixed effects (the “within”) estima-
dthe “between™ estimator (recall that the
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“between” estimator estimates the slope by run-
ning OLS on data averaged across time for each
individual). For expository purposes this can be
written as

random effects = fixed effects + A between

where 4 = (] —9)2 = TT.:‘;‘-E;—O"—’.
i £

The fixed effects estimator ignores infor-
mation provided by the “between” estimator,
whereas the random effects estimator tries to use
this information. The “between” estimator allows
the differing intercepts to play a prominent role.
This happens because the averaged data have
attached to them averaged errors embodying a
common intercept. Minimizing the sum of these
squared errors allows the differing intercepts to
have a heavy influence on the estimated slope. By
eliminating the intercepts, fixed effects wipes out
this influence. By not eliminating the intercepts,
random effects allows this influence to play a
role. The smaller the variance in the intercepts
(and thus the weaker the justification for ignoring
them via fixed effects), the greater A and so the
greater is the role for the “between” estimator in
the random effects estimator.

To make all of this work we need estimates
of the variances 0,2 and G,2, so that an estimate
of 8 can be produced. Typically o, is estimated
as the estimated error variance from the within
estimation, and o, is estimated as the estimated
error variance from the between estimation less
1/T times the ¢, estimate. Notice that if the num-
ber of cross-sectional units is small, the between
estimator will not have many observations and so
will likely produce a poor estimate of ¢, This
suggests that the random effects estimator should
not be used whenever there is a small number of
cross-sectional units.

Asymptotic analysis in the context of panel data
is complicated by the issue of what should be
allowed to go to infinity, N or 77 Asymptotic
justification for random effects requires that the
number of cross-sections N grow, to enable the
variance of the distribution of the intercepts to
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be estimated using more and more observations
and so be consistent. But for fixed effects it is
the number of time periods T that must grow, to
enable each of the N intercepts to be estimated
using more and more observations and so be
consistent.
Suppose the dependent yariable in a panel data
set is qualitative. An obvious extension of the
fixed effects method would be to estimate using
logit or probit, allowing (via dummies) each indi-
vidual to have a different intercept in the index
function. Because of the nonlinearity of the logit/
probit specification, there is no easy way to trans-
form the data to climinate the intercepts, as was
done for the linear regression case. Consequently,
estimation requires estimating the N intercepts
(by including N dummies) along with, the slope
coefficients. Althou gh these maximum likelihood
estimates (MLEs) are consistent, because of the
nonlinearity all estimates are biased in small
samples. The dummy variable coefficient (the
intercept) estimate for each individual is based on
T observations; because in most applications Tis
small, this produces 2 bias that cannot be ignored.
This is referred to as the “incidental parameters”
problem: as N becomes larger and larger more
and more parameters (the intercepts) need to
be estimated, preventing the manifestation of
consistency (unless T also grows). The bottom
line here is that T needs to be sufficiently large
(20 or more should be large enough) to allow this
logit/probit fixed effects estimation procedure
to be acceptable. Greene (2004) reports Monte

Carlo results measuring the impact of using fixed
effects in nonlinear models such as logit/probit,

Tobit, and selection models.

e There is a caveat t0 the fixed effects Jogit/probit
described above. If the dependent variable obser-
vation for an individual is one in all time periods,
traditional likelihood maximization breaks down
because any infinitely large intercept estimate for
that individual creates a perfect fit for the obser-
vations on that individual — the intercept for that
individual is not estimable. Estimation in this
context requires throwing away observations on
individuals with all one or all zero observations.
An example of when this procedure should work

o This technique of maximizing the -cor‘idit__id

well is when we have N students answering, say,
50 multiple-choice exam questions, and nobody
scored zero or 50 correct.
But what if T'is small, as is typically the case for
panel data? In this case, for logit (but not for pro-
bit), a clever way of eliminating the intercepts is
possible by maximizing a jikelihood conditional
on the sum of the dependent variable values for
each individual. Suppose T = 3 and for the ith
individual the three observations on the dependent
variabte are (0, 1, 1), in that order. The sum of
these observations is 2. Conditional on the sum|
of these observations equal to 2, the probability
of (0,1, 1) is calculated by the expression for the
unconditional probability for (0, 1, 1), given by
the usual logit formula for three observations,
divided by the sum of the unconditional probabili:
ties for all the different ways in which the sumjol
the dependent variable observations could be 2
namely ©, 1, 1), (1, 1,0), and (1,0, 1). In words
f an individual has two OREs in the three time peri
ods, what is the probability that these two one
occurred during the second and third time perl
ods rather than in some other way? Greene (200§
pp. 803-5) has an example showing how this prt
cess eliminates the intercepts. This process'i_{m"_"'-
mizing the conditional likelihood) is the usual W
in which fixed effects estimation 18 undertaken
qualitative dependent variable panel data od
in econometrics. Larger values of T cause &
tions to become burdensome, but software (st
as LIMDEP) has overcome this problem.

likelihood cannot be used for probit, because.
probit the algebra described above doesno
inate the intercepts. Probit is used fo ran
effects estimation in this context, however:
case the usual maximum likelihood appre
used, but it becomes computationa]_l'y..GO Al
because the likelihood cannot be writte
product of individual Jikelihoods (&
observations pertain t0 the same]
so cannot be considered 0 have be
independently). See Baltagi (2005-P
for discussion. v
o Baltagi (2005, pp- 215-6) summare
computational innovations (based O SHES




in estimating limited dependent variable mod-
els with panel data. Wooldridge (1995) suggests
| some simple tests for selection bias and ways to
1 correct for such bias in linear fixed effects panel
1 data models.

e Wooldridge (2002, pp. 262-3, 274-6) exposits
| estimation of robust variance—covariance matri-
| ces for random and fixed effects estimators.

E; 18.5 Long, Narrow Panels

- o When pooling data from different time periods
] oracross different cross-sectional units, you may

r ; believe that some of the data are “more reliable”
v : than others. For example, you may believe that
~§ morerecent data should be given a heavier weight
: in the estimation procedure. Bartels (1996) pro-
poses a convenient way of doing this.

matrix have good intuitive content. Consider the
- LR test for equality of the error variances across

N
: LR=T(Nln6'2—Zlno“f)

i=!

re 6 is the estimate of the assumed-common
error. variance, and 6',-2 is the estimate of the ith
error variance. If the null of equal vari-
ances is true, the 62 values should all be approxi-
mately the same as 62 and so this statistic should
be small, distributed as a chi-square with N — 1
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The corresponding LM test is given by

r&fe T
LM=> zl[ = ]

If the null is true the 67 /67 ratios should all
be approximately unity and this statistic should
be small.

As another example, consider the LR test for
the N(N — 1)/2 unique off-diagonal elements of
the contemporaneous variance—covariance matrix
(%) equal to zero, given by

N A~
LR = T(Zlnaf —lanlJ
i=l

If the null is true, the determinant of X is just
the product of its diagonal elements, so ZInG;?
should be approximately equal to 3] and this
statistic should be small, distributed as a chi-
square with N(N — 1)/2 degrees of freedom.

The corresponding LM test is given by

where 1,3 is the square of the correlation coeffi-
cient between the contemporaneous errors for the
ith and jth firms. The double summation just adds
up all the different contemporaneous correlations.
If the null is true, all these correlation coefficients
should be approximately zero and so this statistic
should be small.



