Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 165

165

http://site.ebrary.com/id/10269137?ppg

154 4 PartiI: Methods

APPENDIX: BUILDING AN EVENT SEQUENCE FILE
David N. Grazman and Andrew H. Van de Ven

INTRODUCTION

This appendix takes the researcher, step-by-step, through the mechanics in-
volved in building an event sequence file, from defining a qualitative datum
to analyzing the temporal relationships in event sequence data. While each
longitudinal study of organizational change processes is characterized by its
own specific requirements, this discussion will utilize the CIP data to illus-
trate the steps. By design, this appendix leaves substantial room for inter-
pretation and application. We do not intend for it to serve as a manual for
any particular software program, but as a general guide to the steps involved
gn collecting, managing, and analyzing large sets of event data.

The methods described here relate to recording and analyzing event data
consisting of descriptions of actors, actions, outcomes, dates and sources)
From real-time or archival longitudinal, qualitative research. We refer to the
Sresearcher” as the person who participates in all steps of the research, in-
O_cludmg collecting data, designing the database, managing the data, and
%analysis. Although field studies may require the involvement of many data
écollcctors, we find that the fewer the number of individuals involved in
Smanaging or changing the actual event database, the less likely major in-
Econsistencies or errors arise in constructing the dataset. Keeping responsi-
5biliry for entering and working with raw event data with as few individuals
Zas possible is one way to ensure higher levels of data consistency.

e copyrigh

IC

fHal
:
2
C
§
7
&
Q
<!
B
5
;

EComputcrs are a crucial factor in determining how easy or difficult data en-
Stry and manipulation tasks become. Most longitudinal field studies entail
scollemng enormous amounts of data often obtained over lengthy time pe-
; Sriods, Therefore, it is important to use computers with sufficient RAM and
Shard drive storage space. Most software programs basic for this research re-
uire large amounts of RAM and are significantly slowed (or do not run at
l) when adequate memory is not available.

To minimize data management errors, we suggest that data files be
stored on a single computer and that one version of the file serve as a mas-
er. If more than one researcher is involved in entering or managing data, it
Ebecomes crucial to have a single data storage site so that the most up-to-date
nd complete data file will always be used. Research files grow quickly and
ata file backups are best made often and kept by one researcher separately

f

issio|

LE;?G

form witho

Copyright © Oxford University Press. . All rights reserved
d.in an

May not be re rodg,ce

lisues in the Design of Process Research /// 155

from the working master copy. Without these precautions, it is incvitable
that changes made in one copy of the file often do not find their way to other
copies and people begin to work with slightly different versions of the data-
base, creating a problem that is difficult to pinpoint and even harder to
correct.

We are using two commercially available software packages, R:Base® and
RATS®, though these are by no means the only programs on the market
that have the necessary capabilities for longitudinal research. We are cur-
rently evaluating newer, more powerful software packages. Whatever pro-
grams you choose to use, all must be able to store and read data files in un-
formated ASCII code in order to facilitate transfer of data from program to

rogram. Fortunately, it is increasingly common for software packages to
ésimport and export data formated by other packages, and at some point this
Fequirement may no longer be necessary.
R:Base® (Microrim, Inc.) is a Windows-compatible, relational database
rogram that allows information to be entered via predesigned forms into

Iu:éble cop

g‘;lata tables that can be sorted, indexed, reorganized, and accessed quickly
;.md casily, with minimal training. Many of the procedures we cover are tai-
Jored toward R:Base but can be easily adapted to other database programs.
g‘\t the time of our review of database software, we found that R:Base had a
Sinique advantage of allowing unlimited length “note” fields. For qualita-
'iivc event data, it is useful to have the freedom to enter as much informa-
;ion as necessary without worrying about hitting the end of the data field.

Regression Analysis of Time Series® (RATS, VAR Econometrics) is a sta-
istical analysis program focused on time series analysis and the graphing of
Fesults. RATS is a relatively straightforward program to use, however, it
%akcs familiarity with its syntax before one feels comfortable using the pro-
%ram and knowing its capabilitics, We are currently examining other soft-
é’ﬂarc programs that may be more well suited and powerful than RATS, as
. Svell as more user- friendly. We do not anticipate, however, that the funda-

cep; fair us

ental issues involved in event data analysis would change if we were to use
nothcr package. As with R:Base, our example uses RATS because that is
hat we currently use. However, the principles relate to most time series

er,{plssgn f

166

Copyright © Oxford University Press. . All rights reserved

_OL%p

¥

alysis packages available,

*Qrm W

LANNING, PLANNING, PLANNING

Eﬁaﬂ

ven with appropriate hardware and software, we are still #oz ready to be-
in entering data. The data management process described here is fairly
omplex and may involve many data files, many variables, and literally thou-

thed

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 166
http /Isite.ebrary.com/id/10269137?ppg

o
&
o
o
o

o

e
<]
e
>
)

=

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 167

=167

http://sne ebrary. comlld/10269137’7ppg

156 14 Part Ii: Methods

sands of observations. Careful planning at the outset helps ensure (though
it does not guarantee) that problems down the road are few and that when
they do arise, they can be corrected. Planning ahead also helps to maximize
the effectiveness of data analysis; indeed, analyses that could have resulted
in valuable findings may be impossible to carry out if data is coded or stored
sloppily. The value of this appendix comes not only from the detailed in-
structions it provides, but also from pointing out the lessons we have
learned over time from our own mistakes, many of which were completely
preventable.

The process of building an event sequence data file is pictured in Figure
5.3. The following sections describe how to complete the research tasks
outlined in Chapter 5 thatrelate to data collection, management, and analy-

fs'Sis. The steps covered in this appendix do not necessarily correspond one-
'go-onc with the sections in the discussion in chapter 5, but are presented in
%cqucntial order and are logically integrated with and connected to the con-
Eants of chapter 5. We will assume that the researcher has decided on a de-
Sign, chosen an appropriate sample, and has obtained data. At this point, the
ﬁ-esearchcr must prepare that data for further analysis. This process can be
:brokcn into five steps, which will be discussed in turn. Following this, we
g'nll describe a sixth step, conducting a time series analysis; theory and
Enethods for this rype of analysis will be outlined in chapter 8.

5

STEP 1. DESIGNING A DATABASE FILE TO RECORD
AND MANAGE EVENT DATA

8

:;first, the research team must define a qualitative datum, enter raw data into
ancidents, and assess the reliability and validity of the incidents. Chapter 5
g)rovidcs a conceptual overview of incidents and discusses the processes in-
%olvcd in validating meaningful incident records. However, before inci-
é’dents can be recorded, a database file must be built to handle the raw event
, §ata. The design of the database file is the heart of the first step outlined in
igure 5.3.

rmlss,Lgp f

ing the Incident Format

Wéhout g

we observed in chapter 5, before data collection or file creation takes
g)lacc, researchers must agree upon the components of an event for theo-
ggetical reasons. There is also a mechanical reason: Researchers involved in
2 Zollecting the information that will be used to specify incidents must have
gn mind clear definitions of the minimum bits of information necessary to
ocument events in a standard manner, This is true whether the informa-

Copyright © Oxford University Press. . All rights reserved

S
=
o
2
©

Rl

o
o
c
>
)

=

168

.p 168
May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applica

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press,
Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary.com/id/10269137?ppg

Step 1. Designing a Database
File to Record and Manage
Event Data
Sy Step 2. Collecting and
+ Database and Table Design Verifying Data Entered into
« Data Entry Forms Database File
* Views and Reports
*» Database Entry
« Verifying Data T~
$Step 3. Coding Events and
Assessing Coding Reliability
- Developing Decision Rules
« Coding a Sample of Events
+ Measuring Interrater Reliability
» Entering Codes into Database
Step 4. Converting Qualitative ‘/
Events to Bitmaps
Step 5. Aggregating Bitmap / « Modifying Database Structure
Data into Time Periods « Updating Code Column Values
Using SELAGGR = Converting Data into Bitmap Form
S + Checking for Accuracy
« Running SELAGGR
» Checking for Accuracy

Figure 5.3 The process of building an event sequence data file

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 169

169

http://site.ebrary. comlld/10269137’7ppg

158 345 Part I Methods

tion is gathered from archives or in the field. If the needs of the project are
unclear, there is a danger that data will be incomplete. And without stan-
dardization it is hard to compare events or to understand how one event
leads to another.

For example, for the CIP study, the decision rule used to specify an inci-
dent in the CIP study was that each incident should contain, at a minimum,
the name of a primary actor (and secondary actor, if appropriate), a de-
scription of the action taken or change made, the date the action took place,
and if known or discernible, the outcome of the action, why the action took
place, and the source of the information. Agreement about these compo-
nents prior to the initial database design saved time and effort and pre-
vented having to go back to the raw events to change them later. Though it

35 possible to change data after it has been entered, it is a tedious task.

yrigh

Database and Table Construction

nce a standard event format has been set, a researcher must design the
%ambasc file where the data will be stored. This is a crucial step in the data
‘Tnanagement process because the design of the database determines how

Iuajle

?iata are accessed for editing, analysis, and reporting. Various database pro-
grams have different structural capabilities. Our example uses R:Base®,
ghough the principles covered relate to most current database programs.
£ A darabasc file can consist of a number of tables with relational connec-
gions, meaning one data ficld can link together related entries in different
ables, We have found that one table is adequate for many longitudinal
gases, as long as the data coding scheme allows for sufficient complexity.
§%l'hv:n':l’orc we do not go into detail here about the use of multiple data
%abics
The researcher needs to create and define the table into which collected
£lata will be entered. A table gives the data an organized structure and al-
g Eows for access, viewing, and editing. Each row represents a single eventand
m %ach column or “field” contains information relating to thar event. Each
olumn should represent the event components agreed upon carlier and be
laced into the table in a logical order for manipulation. For example, if an
vent is composed of a date, an actor, and an action, it is easiest to place the
ate column to the left of the others, so that itis easy to see the date for each
vent when rows are chronologically sorted. Figure 5.4 shows a sample data
Fable.
When defining columns (fields) in a table, each column’s format must
arch the information that will be entered into it. Fields need to be defined

per

except faj

T,

e publi

in apy fopm W%pewls

Copyright © Oxford University Press. . All rights res

May not be regoduced

Issues in the Design of Process Research /// 159

Days | Event Observation ISouroe Keywords
g Researchers in Los| The event was pub-] ASHA, | House, Mm Data
Angeles conduct | lished in W. F. May, | Academics | Fields —»
the 1st cochlear House and K.. 1885
implant in the US Berliner's “Cochlear]
by Implanting a Implants: Progress
limited number of | and Perspectives,”
patients using & Annals of Otiology
single electrode & Rhinology, 1982,
device. pp. 1-124.
1Mora Events
E
n
P
I
4
‘B
)
Pigure 5.4 Sample event data table from R:Base
[}
g
el
2

S date fields, text fields, note fields, or integer fields. Field definition sets
%hc formart for the data and determines how that data can be used. Formats
.%ncludc the length of the data in the field. However, the length of note fields
%n R:Base® does not need to be specified and can be approximately 4,000
%_vords, Unlike text fields, the content of note fields cannot be searched for
%cy words or phrases. Allow for sufficient length in cach text field because
it is difficult to expand the size once data are entered. Events, or rows in the
&able can be alphanumerically sorted using any field as a key. Once columns
; Gre defined,
Along with columns for incident components, we also suggest including
parate column to be used for code words (keywords) to allow for sort-
and grouping of events on their coded dimensions. We discuss coding
keywords later in this appendix, but this section warrants their mention,

@With a simple coding scheme, a single keyword field (usually, a text field), is
ufficient. Make it long enough to contain multiple codings. More complex
Zoding schemes can often be simplified by adding more than one keyword
cld. For example, if three general categories of codes are used (for changes
transactions, people, or ideas), with subcodes for each category, adding

the table is saved as the central component of the database file.

Mmission fi

&

=170

dp any for, WQOLgJer
A m

e

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 170
Copyright © Oxford University Press. . All rights reserved

http://site.ebrary. comlld/10269137’7ppg

May not be regod

160 154 Part |l: Methods

three uniquely named keyword fields may be the most useful way to handle
coding and grouping. Different coding schemes are addressed in more
detail below.

Data Entry Forms

Although data can be entered directly into the table, we suggest using cus-
tomized data entry forms for quicker and more accurate data entry. Directly
linked with the data table, data entry forms are designed to match column
names and data types. Data entry forms give researchers an easier way to in-
put data because all fields related to a unique incident are visible at one time.
Figure 5.5 shows an example of a data entry form. The ficld order in which
dataare entered can be programmed in the data entry forms and can be des-
Jgnated with efficient entry in mind. Data entry forms serve as templates for
'gncoming event data, and while they can be adjusted to reflect new linkages
Z‘with a table, we suggest limiting modifications in order to keep entries as
Fonsistent as possible.

Data entry forms are also useful as printed copies that can be distributed
Jo data collectors to fill in all fields on the sheet before submitting it for en-
3ry. By doing this, not only is the rescarcher more likely to get complete
Zvents, but also event information will be compatible with the entry form
For the file itself, greatly speeding up and ensuring the integrity of the data
EL%r:l:ry process.

r appligab

Date: Event #:

[
(2}
5
S
o
O
=3
X
]
9
L
n -
2 Event:
-]
o
o}
S
o
I
=]
v
23

Observation:

=171

Source:

Keywords:

igure 5.5 Sample data entry form

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 171
Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary.com/id/10269137?ppg
May not be reproducedinany

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 172

172

Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary. comlld/10269137’?ppg

Issues in the Design of Process Research /// 161

Views and Reports

Views and Reports offer tools with which researchers can systematically
view, manage, or print incidents in a data file, Though these steps of
darabase construction may be better discussed or understood following
an introduction to coding, it is an important element of the file’s infra-
structure and should, at least, be considered throughout the planning
process.
Because we advocate using one data table, all incidents are entered into
a dara file for each individual case. Although one table makes data manage-
ment easier, it makes it more difficult to look directly for certain classes of
events separately. R:Base offers a filterlike option called a “View” that allows
;a predetermined subset of events, based upon codes, dates, or other crite-
g-la to be viewed independently from the entire set of events. To construct
sa view, the researcher must gain access to the data table itself, then follow
;he same procedures as called for by a database query. R:Base’s on-line help
Fommand walks an operator through these steps. Views can be continually
&nd casily updated and changed.
5’5 Predesigned reports allow the researcher to create text or screen output
g)fthe entire set or any particular subset of events sorted by date or other cri-
Feria. Reports can be formated to include any and all columns in the data
Fable. In R:Base, the “Reports” menu contains an option to “Create/
é\dodﬁ’y from which a report can be built and stored for future use. At the
ery least, we recommend setting up an initial report that prints all fields ba-
%Ec ro each event. This report is crucial because it will be used in the itera-
%jve process of verifying data, coding events, and determining the reliability
ifz_)f the coding scheme. Table §.4 from chapter 5 shows an example of a
printed summary report of events,

e publ

?TEP 2. COLLECTING AND VERIFYING DATA
ENTERED INTO A DATABASE FILE

nce the structure of a data file has been constructed and stored, re-
earchers can begin entering real-time and archival data. The data collection
rocess can be tedious as well as exciting; most longitudinal projects will
onsist of periods of both. As always, planning and organization are key to
anaging the data collection process from beginning to end. Researchers
should strive to enter complete event information; however, if only partial
nformation is available for an event, it is best to enter partial data and re-
urn to update or correct it at a later time,

éfonp,wngout(perr&sion

May not be repgeduced ig an

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 173

173

Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary.com/id/10269137?ppg

162 1\ Part li: Methods

Data Entry

Once a database structure is defined, researchers can begin entering the
event data that will serve as the raw materials upon which keyword coding
and time series analysis are based. A general rule for data entry in the case of
longitudinal, real-time studies is to enter the information as soon as possi-
ble after it is collected. Event data piles up very quickly and the researcher
who waits to enter data after too much has been collected can become over-
whelmed. Moreover, the sooner information is entered into a database, the
more likely it is to be accurate. Ifit is inaccurate, the sooner it is noticed, the
more likely the researcher will be able to track down the original source of
the information and correct the incident record.

% In the case of archival studies, systematic scarches of databases, company
Hlocuments, library records, newspapers and magazines, academic journals,
?nd other sources should be conducted at regular intervals over the time
§pan covered by the research so that as much relevant event information as
:i)ossible can be gathered and entered into the database. Interviews, conver-
%atxons and correspondence should be recorded, transcribed, and entered
umto the darabase as soon as possible after they occur to minimize the risk of
%forgctnng nuances of the interview or other important issues relating to the
ionvcycd information. Expediency in entering data is important to prevent
%nisstatements or errors from becoming part of the permanent data file.

2 Original source documents should be recorded and stored in an orderly
g.vay to ensure that if discrepancies in the data exist, rescarchers can reexam-
dne the original documentation to verify or correct event information. Files
%hould be kept by the researcher in a safe and organized way and should be
:fjcasily accessible. One uscful strategy for keeping data sources organized is
.fgo use uniform classifications in the source field in the event table. This way,
Zvents can be quickly and easily linked back to their original source.

Vm_ﬁwng Data

ata entered into the database must be repeatedly checked for complete-
ess and accuracy. As was the case for data entry, verifying data is an easier
Sask if it is done while it is being entered or shortly thereafter, instead of
ﬁrvalung until the entire data file is complete and then returning to check for
curacy. In general, there are two types of verification that can be done in
rder to minimize the possibility of errors in the events that are included as
art of the database. One involves checking original documentation, and
¢ other involves printing events in a report and sharing it with informants
ho can verify its accuracy.

on from the

w@o@er@s&

d for,
d.&:e éparHO

B2

May not bg re

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 174

174

http://site.ebrary.com/id/10269137?ppg

Issues in the Design of Process Research /// 163

First, all of the categories that are chosen to make up the event con-
struct—dates, actors, outcomes, etc.—should be verified. If researchers un-
cover references to the same event from two or more different sources, each
account should be entered so that any biases due to a data collector or
source are minimized. Later, researchers can decide which account is more
accurate or if multiple accounts of a single event need to be included.

Second, data accuracy can also be judged by organizational informants,
participants, or others familiar with the events being observed. Input from
these informed sources is particularly useful in detecting perceptions and
unrecorded events and can, itself, serve as an important source of additional
information. In conducting this type of study we have found that organiza-
nonal informants are very effective in pinpointing errors in the data, elabo-

L"ratm g on the data already collected, and leading us to new sources of infor-
Smation that we did not previously know existed.

copy

%STEP 3. Coping EveENTS AND DETERMINING
g}onﬁ RELIABILITY
©

a0nce event data have been entered and verified, we can move to tasks three
(::?and four described in chapter 2: coding incidents into event constructs and
élsscssing the reliability and validity of our coding scheme. These tasks com-
Bprise the first steps in the analysis of the accumulated data. Figure 5.6 sum-
Smarizes the tasks involved in translating a database of incident listings into
reliable set of coded, theoretically meaningful events,

r useg pe

t,fai

Dewlopmg and Refining Decision Rules

{ﬁ.ﬂ effective coding scheme accomplishes two objectives. First, it captures
Eihc theoretically important dimensions of the phenomena that the re-
g;carcher is interested in tracking. Second, it provides a guide to the classifi-
B:auon and categorization of incidents in the database.

To accomplish the first objective, the researcher should be clear about
¢ theoretical grounding for his or her concepts. This requires clear defin-
dtions of event concepts, constructs and indicators, and decision rules for
chieving high construct validity as concepts move up and down the ladder
f abstraction. The development of decision rules should specify opera-
ional steps for classifying incidents into event constructs the researcher has
hosen to address a particular research question.

For the second objective, the evolving decision rules should be fre-
uently checked against the data to ensure they are meaningful and com-
lete guides for classification. Decision rules should initially be developed
ndependently of the data and based upon the theoretical perspective of the

ermls&g from tl

BW|8OU

ny.,for

q?d%ed in al

Copyright © Oxford University Press. . All rights reserved.

May not be.te

164 4 Part I Methods

Poor Reliability
Y |
Examine
Baneiogriaatiog Code a Sample Reliability and
Decision | —»| o Events | —>| Validity of
e Coding Schem
Poor Reliability * l
[
Enter Event Measure and
Codes into the Report Zdc Code all
 Database | €| Interater Events
c Reliability
E}Tism 5.6 Steps for coding events and determining reliability

Study. As events are coded, some events may not fit into any decision rule,
3while others may indicate the need to expand the decision rules to include

S

o

% new event coding. In the CIP case, we made the development of decision
Fules an iterative process where we used the rules, read through the set of
%vcnts and then discussed whether the coding scheme was adequate and
sufficient. Ifit was not, we added a code or new decision rule and reviewed
.%ll events again using the new codes. These discussions about the coding
j§ch¢.:mc invariably resulted in clearer, more complete, and more valid deci-

E;," A few other practical guidelines are useful to make decision rules easy to
‘-:’usc First, be very clear about the boundaries of a decision rule, that is, the
ancndcnts that a particular decision rule does #no# include, as well as what it
. §loes include. Second, provide examples of incidents that would fall within
2 particular decision rule along with the rule. Third, keep decision rules
Bhort and concise.

t pergpission f

=175

:

ing a Sample of Events to Measuve the Reliability
the Coding Scheme

nce the researcher feels that the decision rules are both theoretically valid
d clearly written, the rules should be tested with a sample of events to ex-

ine the extent to which they provide a reliable coding guide. One im-
ortant measure of the reliability of a coding scheme is the extent to which

gedgl a%for%:wt

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 175
Copyright © Oxford University Press. . All rights reserved

http://site.ebrary.com/id/10269137?ppg

May not be reggod

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 176

=176

Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary.com/id/10269137?ppg

Issues in the Design of Process Research /// 165

two (or more) individuals agree on the appropriate codes for a sample of
events when applying the decision rules independently. We examine one
method for calculating interrater reliability here.

We suggest using a sample of events (at least 25) taken from different
chronological points in the database. For example, one might code every
nth event or select events at random from different points in the dataset. At
least two coders, working independently, should assign codes to each event
in the sample using the same set of decision rules. At earlier stages in the de-
velopment of the decision rules, the researcher can act as one of the coders.
At some point, however, an individual who has not been involved in the de-
velopment of the coding scheme should be asked to code the events. This
fresh perspective helps to ensure that interrater agreement is due to the clar-

Sty of the decision rules and not just to converging interpretations among
%he researchers involved in writing the decision rules.

The agreement between the two coders can be measured using a matrix
Bimilar to the spreadsheet printout in Figure 5.7. The vector of possible
E:odcs should be placed along the top and down the side of the matrix. The
;mdcs assigned by Coder A will be placed along the rows and the codes as-
zigned by Coder B will be placed down the columns. Often, an additional
%atcgory will need to be added to the vector to account for those cases

le cop

Coder B

NEG CMT EXEC cXT NULL

NEG 5 1 6
CMmT 5 5

r&thg puklisher, except fair uses permitted u

EXEC 7 7
CXT 6 6
NULL 1 1

5 5 8 7 0 25

Overall Agreement: 92
Chance Agreement: 24
Cohen's Kappa; .89

igure 5.7 Coding reliability matrix (using EXCEL)

May not be ren&gd yced in any form without permission frol

166 A\ Part II: Methods

where no code is assigned. For each event in the sample, the coders com-
pare their codes and add a 1 to the appropriate cell in the matrix.

For example, assume that Coder Ain Figure 5.6 assigned an “NEG” code
to a particular event and Coder B also assigned an “NEG” code to that event.
This implies that a value of 1 should be added to the (NEG, NEG) cell of the
matrix which lies on the diagonal. On the next event, Coder A assigned an
“NEG” code, but Coder B assigned a “EXEC” code. We would then add a
1 to the (CMT, EXEC) cell of the matrix which lies off the diagonal.

Qnce the codes assigned to all of the events have been entered, the over-
all agreement between the coders can be calculated as follows:

overall agreement = 3(r;, ¢,) /N,

svhcrc (r,, ¢,) represents the value of the cell designated by row i, column i,
%nd N is the total number of codes assigned. In some cases N may be greater
ghan the total number of events, because single events are assigned multiple
Zodes.

While overall agreement provides one measure of reliability, it is also im-
portant to employ a statistic such as Cohen’s kappa (Cohen, 1960) that cor-
gects for chance agreement. Cohen’s kappa is calculated as follows:

applic

(overall agreement — chance agreement)
(1 — chance agreement)

here,

chance agreement = 2(R,C,/N)/N
R, = sum of all codes in row i
C, = sum of all codes in column i

gjlisher, except fair usg‘s permitted under

alues for k can range from —1 to L. Ifk = 0, agreement is equal to chance.
fx < 0,agreementis less than chance and if k > 0, agreement is better than
hance. Values of k > .80 signify reasonable interrater agreement. In some

the p

ases, the researcher may decide that certain misclassifications are more se-
ous than others. In such cases, each cell of the agreement matrix may be
smgncd a weight and the kappa can be calculated to include these weights
see Cohen, 1968 for a description).

We have found thar interrater reliability can be low for two typical rea-
ons. First, individual coders may have different understandings of the
canings and applications of the decision rules. If this is the reason for the
isagreement, the decision rules should be revised to improve clarity and
omprehensiveness and the above process should be repeated. We should

lissign frgm

uﬁ,perﬁl

=177

any form vw.tho

Odlﬁ_edg‘l

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 177
Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary.com/id/10269137?ppg

May not be repy

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 178

178

Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary.com/id/10269137?ppg

Issues in the Design of Process Besearch /// 167

not be surprised if the first few cuts at a coding scheme yield low reliability
scores. In our experience, it takes several iterations before clear and unam-
biguous decision rules that are appropriate for the dataser are developed.
A second typical reason for disagreement is that coders disagree on how
aparticular event in the database should be interpreted. Since disagreement
based on event interpretation does not reflect on the reliability of the deci-
sion rules, this source of disagreement should be eliminated whenever pos-
sible. One approach to eliminating this source of error is to allow coders to
discuss the interpretation of an event (not a decision rule) either with one
another or with a third person who is familiar with the case while coding.
This process can also help the researcher to clarify the wording of events in

the database.

Coding All Events and Measuring Interrater Reliabilities

5}pyrcq{1t law,

nce the interrater reliabilities calculated for samples of events have at-
ained an acceptable level, the decision rules are ready to be applied to the
g:ntlrc sample of events. This process should involve two or more coders
‘who have a basic understanding of the case and who work independently.
:The actual coding can be done in at least two different ways. First, both
%Odcrs can code the entire sample of events and interrater reliabilities can be
alculated on the entire sample. Second, one coder can code the entire sam-

pllc,qble

'salc and a second coder can code a random sample of events (at lcast 25)
%310:[1 from the larger dataset. Interrater agreement can then be calculated
.Zgon this random sample. Since the second approach does not compromise
1:_':e,li:atbilil:y, it may be a preferable approach for most purposes.

In cases of disagreement at this stage of the research, coders can engage
Ein discussions to see whether or not consensus can be reached on specific
%vents' As was mentioned above, these discussions will often reveal two
:&omccs of disagreement: (1) the event was interpreted differently by the
o coders or (2) the coders interpreted the decision rules differently. In the
dormer case, the event can be clarified and consensus can usually be reached.
n the latter case, the decision rules may need to be revised, in which case
e researcher will need to work on obtaining basic reliability with samples

exce

T,

W@ou[ggermssaqq fr

of darta before coding the entire sample.

ntering Event Codes into the Database

ganyﬂgrm

en coding is complete, the event codes should be entered into the key-
ord column in the database. Event codes should be no more than two or
hree letters long and codes should be separated by a space or comma.

Lged

May not be repsod

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 179

179

http://site.ebrary.com/id/10269137?ppg

168 14 Part [I: Methods

StEP 4. CONVERTING QuALITATIVE EVENTS
To QUANTITATIVE BrrMAPs

Because R:Base® is a database program, its statistical capabilities beyond
event counts and frequencies are limited. One important transformation
mentioned in chapter 5 was that qualitative codes must be translated into
quantitative indicators for statistical analyses. Once events have been coded,
the translation from qualitative events to quantitative bitmaps requires only
a few mechanical steps to modify the database and convert the data. Note
that there are many opportunities throughout this process for small errors.
Do not become discouraged by having to repeat certain steps; we have yet
to complete this process in its entirety withourt having to go back to correct
$ome sort of error.

%!odtﬁing the Database Structure

gﬂftcr all events have been coded, the database structure must expand to in-
&lude a unique new column for every code that is selected to classify or rep-
s : : ;
Tesent an event construct (or variable). For example, if 36 total possible
o

«todes are applied to events, the table must be expanded by 36 unique
5 . X

wolumns, each corresponding to one and only onc new variable. Because
Tach column is independent of the others, multiple codings for a single
k3 . ;

Zevent are easily accommodated by this procedure. We suggest that column
gnames be as short and informative as possible regarding their content to
Z&i:liminatc unnecessary confusion. Neither code nor column names can be
Fepeated, nor can they consist of any reserved words (reserved words are
Protected words that the database program will not allow a user to use).

Updatmg Code Column Values

mew code columns should be defined as integer fields which do not require

blisher, ex

*Ethat any length be specified. The new columns represent the binary indica-
g &ors of the presence or absence of a particular event construct (e.g., code).
dnitially, the value of each column for all events should be sct to 0 and then
pdated to reflect the occurrence of a change in a construct for a particular
vent.! Column values are dichotomous and can only be Os or 1s, repre-

d
nisgen o

O/t P

=
;Senting either the presence or absence of a particular event dimension ac-
ording to the set of decision rules. As described in chapter 2, multple

any fggm

1. Note, however, that although the default value in R:Base looks like a zero (-0-), it is ac-
ally a text string variable rather than an integer, and cannot be downloaded into a bitmap.
ile each program differs, other databases are likely 1o follow the same default convention.

%Jced i

Copyright © Oxford University Press. . All rights reserv

May not be rego

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 180

180

Copyright © Oxford University Press. . RII rights reserved.

http://site.ebrary.com/id/10269137?ppg

Issues in the Design of Process Research /// 169

codes on a single event are created by updating more than one column in
an event record witha 1. An example of the syntax entered at the R> prompt
needed to execute this step is given below.? For this example, the code /col-
umn name is OP(outcome-positive), the table is named CIPTand all events
took place after 01 /01 /76.

Update set OP =0 in CIPT where DATE Gt 01 /01 /76
Update set OP =1 in CIPT where DATE Gt 01 /01 /76

Downloading Column Data inte Bitmap Form

Once values are updated to reflect changes in key constructs, the columns

of Os and 1s combine to form the matrix downloaded into a bitmap used by
RATS and other data analysis programs. The downloaded data from these
%)rocedurcs should contain each unique event number, the event date, the
Hwmber of days elapsed since the first event occurred, followed by single
Ei:olumns for each possible codes. The syntax for downloading can be writ-
Een outside of R:Base in ASCII format and used as a command file. The file
Should be written in this format:

Set Varable start to 01 /01 /76

Output CIPEXA.DAT

Select number=4 date (date-.start)=4 +
ac=lic=1lir=1pe=1tr=1ci=1 ce=1 op=1 on=1 om=1 on=1 +
a0l=1a02=1 +

From CIPT Sorted By date

In this example, actual command syntax is in bold and database variables
are initalics. The Set Variable command allows R:Base to calculate the num-
%bcr of days clapsed from the initial event to the current event. This calcu-
Jated variable is necessary for time series analyses as it establishes both atem-
$oral ordering and scaling of events. The date inserted at the end of the first
. Sine (01/01 /76) should be the occurrence date of the first event.

The Output command names the output file to be created. Unless a path

r, £xcept fair uses permitted under U.S. or

f

raission

s explicitly given, R:Base will write the file to its current directory. Using a
DAT cxtension for the file will help keep different types of files easy to
istinguish.

The Select command tells R:Base which columns you want downloaded

out pe

any form Wﬂj

2. As with any command in R:Base, the syntax file can be written in ASCII outside of
:Base and submitted to run at the R> screen. To execute a syntax program, type “run {file-
amc]”, making surc that the file is cither in the current dircctory or the path is specified,

d#,ced i

May not be repeo

170 $% Part |- Methods

into the output file, the number of characters allocated to each field, and the
order in which they appear. For this example, each event has an ID number,
followed by the DATE, the calculated day count, then each of the coded
variables, At the end of each line, a “+” indicates that commands continue
on the next line.

The From command identifies which table (or file) the data are coming
from and the Sorted By command indicates the order of the events in the
output file. Sorted By is usually either the event number or another unique
field for each event.

Once data are transferred, they must be formated before any analysis can
be performed. Because R:Base prints column headings every 20 lines, these
Jeadings must be removed throughout the entire file before it can be read

-i'into another program for analysis. To do this, either work in a text editor or
%vord processing package to delete the lines, and then resave the file (keep-
dng it in ASCII format). Once the editing has been completed, the bitmap
Bhould resemble the sample bitmap shown in Table 5.5 in chapter 5.

appli

a(,‘becking the Downloaded Bitmap File for Accuracy

{Dcspn:c every attempt to prevent errors, it is almost inevitable that errors
gvill appear somewhere in the bitmap. Before any further analysis begins, we
Buggest that a small sample of events be tested in order to be sure that the
%Qlumn codes (downloaded Os and 1s) accurately reflect the coding found
g;n a particular incident record. For example, choose 10 or 20 rows from the
_:ﬂ:nitmap After identifying the unique event represented, examine the codes
El.lsed to describe its content. Then, check the columns of 0s and 1s follow-
3113 the event number and date in the bitmap. Column values should corre-

EsPond precisely to coding in the event. So, if an event had three codes as-
%lgncd those three code columns should each show 1s rather than 0s.

ZLhoosing a small number of events distributed throughout the bitmap and
. §inding them to be correct is a good assurance that the bitmapping process

=

Swas successful.

é)

£ TEP 5. AGGREGATING BrrMar DATA 1o TiME PERIODS
sinG SELAGGR

he bitmap described above contains unique rows for each individual event
included in the entire time series. For some types of time series analyses,
Such as log-linear and logit analysis, a bitmap of unique events is appropri-
te. If continuous data is required, however, it is necessary to aggregate
vent counts into temporal intervals as described in chapter 5. This involves

=181

dp any form WIIBJI

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 181
Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary. com/id/10269137’7ppg

May not be repgodged

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 182

182

http://site.ebrary.com/id/10269137?ppg

Issues in the Design of Process Research /// 171

another step of transforming an event bitmap to an aggregated bitmap, re-
flecting a count of event types occurring during defined time periods (e.g.,
week, month, year). The format of an aggregated bitmap is similar to an
event bitmap but consists of a fixed temporal period (e.g., Year 1, Year 2)
rather than an event date or observation number, and columns which rep-
resent aggregated variable counts rather than individual observations. The
Day Count column in the event bitmap is excluded in an aggregated
bitmap. SELAGGR? converts event bitmaps into aggregated ecvent
bitmaps.

The SELAGGR program is an ASCII text file which contains RATS-
compatible commands and requires RATS to operate. However, before an
event bitmap can be aggregated, SELAGGR’s parameters must be adjusted

ifto fit the event bitmap’s content and structure.

SModifying SELAGGR Parameters

%l"hc SELAGGR program file must be in the same directory as the event
"%)itmap RATS® must also be installed on the computer, though it can be lo-
zated in any directory as long as it is part of the general path. SELAGGR re-
(::n?:]uircs parameter changes based on dimensions of the bitmap, so it is neces-
Bary to know the exact number of events (rows) in the bitmap and the
‘é‘mmbcr and order of columns. These format items are required by SE-
J.AGGR and RATSP. Also, columns representing event numbers, dates,
and codes must be identified to make surc that event numbers and dates are
ot aggregated.

Using any text editor, bring up the SELAGGR program copy. Only two
$cctions of the program need ro be changed: the beginning “input format”
&ection and the ending “output format” section. No other section needs ad-
%ustment. The “input format” and “ocutput format™ sections are shown in
Figure 5.8.

§ The file itselfis self-explanatory. The OPEN DATA command should be
Hollowed by the full name of the event data file bitmap (including its exten-
ion and path if not in the current directory). The NOES variable should be
he total number of columns. Our convention for dates has been to count
ghem as three separate columns (MM /DD /YY) and to adjust the format
ine accordingly (sce below). The FIRSTBS variable is the column number
f the first variable to be aggregated. Obviously, not every bitmap column

ept fai

op fro

in anbform.wmhout.ﬁerlpjs&

T

3. SELAGGR was written by Tse-min Lin for aggregating events for the Minnesota
nnovation Research Program. Contact the authors for a copy of this program.

Copyright © Oxford University Press. . All rights reserved.

May not be reproduc

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 183

183

Copyright © Oxford University Press. . All rights reserved.

http://site.ebrary.com/id/10269137?ppg

172 4 Part Il Methods

BEREENEERFERRARTEREREXIREERRBBAREE AR AR RN AR RN R R AR AR R

- -
* >5>>5> THE FOLLOWING BLOCK OF COMMANDS SPECIFY INPUT FORMAT .
* *

AR EEERREREE RS SRR R RN EREERRERRE KBRS

»

OPEN DATA TAPEEXA DAT ;* OPEN THE INPUT DATA FILE
IEVAL NOFS=58 :* NUMBER OF SERIES IN THE INPUT DATA FILE
IEVAL FIRSTBS=6 ;* SERIES # OF THE FIRST BINARY SERIES TQ BE AGGREGATED
IEVAL LASTBS=58 ;* SERIES # OF THE LAST BINARY SERIES TO BE AGGREGATED
[EVAL LENGTH=267 ;* LENGTH OF THE INPUT SERIES (NUMBER OF EVENTS)
[EVAL WEEKDAY=2 :* DAY (0-6) OF WEEK ON WHICH THE FIRST EVENT OCCURRED
*
CAL11L1
ALLOCATE NOFS LENGTH
EQV 1 TONOFS
num mm dd yy days $
ac ic ir pe tr ci ce op on om od aid01 aid02 $
301 a02 a03 a04 a05 a06 a07 a08 209 al0allal2 al3 §
Sp01 p02 p03 pod 112 13 14151617 §
2301 j02 jO3 j04 jOS jO6 j07 j08& j09 j10 11§12 ji3 j14 j15 j16
ATA(ORG=0BS,FORMAT="(F4.0,3F3.0,F5.0,1X,53F1.0)) / | TO NOFS

sEEXRE

policahjp&

2 -

5* >>>>> THE FOLLOWING BLOCK OF COMMANDS SPECIFIES OUTPUT FORMAT &

ay

S

ot

SDISPLAY(STORE=S1) ### M @-1 # NE

5DO J=1,37

S DISPLAY(STORE=S1) S1 @-1 ## FIX(COUNT(J))
‘EEND DOJ

SDISPLAY(UNIT=COPY) S1

0k

[}

SDISPLAY(STORE=S2)

‘5DO J=38 NOFES

& DISPLAY(STORE=S2) §2 @-1 ## FIX(COUNT(J))
SEND DO J

© DISPLAY(UNIT=COPY) @5 S2

L 1] * LR RS EA L] L i * *

Figure 5.8 SELAGGRs input and output sections

should be aggregated. For example, if the event file includes an event num-
ber, three columns for the date, and the number of days since the first event,
the first variable or serics to be aggregated would be the sixth, so “6” would
be entered. The LASTBS variable should indicate the last column number
to be aggregated. The LENGTH variable should be changed to reflect the
number of rows in the bitmap. The WEEKDAY variable can remain 2, un-
less it is important to the aggregation that day of the week be specified.
Following the input format variables to be changed is a section which

May not be reproduced in any form without permission from the publishe

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 184

=184

http://site.ebrary.com/id/10269137?ppg

Iiswes in the Design of Process Research /// 173

reads the data from the bitmap into the SELAGGR program. The format
convention used here is taken from RATS and will be duplicated when cre-
ating source code files for RATS. The first three lines of the program (CAL,
ALLOCATE, EQV) should not change.

The remainder of this section looks for variable columns to be read. Each
variable is reflected with a simple name and must be ordered as it was down-
loaded from R:Base. A “$” follows each line until all variables have been
listed.

The DATA line contains the FORMAT code vital for reading data. The
FORMAT section of the DATA line must be only on one line.* This string
indicates each series’ location and its character width. All series must be ac-
counted for in the string, In the example below, F4.0 represents the first se-

L‘hcs (num) as a 4-digit series with no decimal point. The 3F3.0 represents
&hc entire dare field, but is separated into 3 3-digit, no decimal point series
E(mm,dd,yy). An integer preceding an F code tells SELAGGR to repeat the
%‘ coded value. Xs are used to represent empty columns in the file (e.g, 1X
%cprcscnts one blank column). The combination of codes must capture the
;'fmctlayout of the file. Unless this FORMAT code is completely accurate,
Zthe program will not aggregate data correctly. In our experience, aggregat-
‘gn g errors are frequenty eliminated by readjusting the FORMAT string, Be
Satient, however; detecting errors here can sometimes be frustrating,

£ At the end of the program, the “output format” section needs to be
ahanged before running SELAGGR. A maximum of 36 series can be ag-
3 egated and printed to an output file during any single pass through the
gprogram. The number following the “J=1,” needs to be equal to (LASTBS
% FIRSTBS + 1) in order to be sure that all aggregated data series are in-
Euitluded in SELAGGR’s output. If more than 36 series need aggregation, the
%ccond DISPLAY block must be included (as in the example). However, if
Jess than 36 scrics are aggregated the “37” should be replaced by the cor-
. Fect number and the second DISPLAY section should be erased from the
rogram. Like the FORMAT line, it is important that this section be com-
lctcly accurate or data will be printed incorrectly.

t penﬁlsspan fr

&

unning SELAGGR

nce all parameters fit the event bitmap, SELAGGR can be run using
TS. The current directory must contain the edited SELAGGR copy and

éo 6WI(

e[ﬁ in an

4. The DATA line, however, can be separated by placing a “$” after ORG=0BS, and
utting the FORMAT string onto the next line.

Copyright © Oxford University Press. . All rights reserved.

May not be repgpduc

Poole, Marshall Scott. Organizational Change and Innovation Processes : Theory and Methods for Research.

: Oxford University Press, . p 185

=185

http://site.ebrary.com/id/10269137?ppg

174 44 Part Il: Methods

the event bitmap. At the DOS prompt, type “RATS SELAGGR.xxx,” de-
pending on the exact name under which you saved SELAGGR. Any name
can be used for the file. Once executed, SELAGGR prompts the researcher
for two items of information needed to complete the aggregation proce-
dure. First, the length of the temporal interval must be specified. The choice
of time period depends on the total time span of events, theoretical
requirements, and meaningfulness of stadstical interpretation. Second,
SELAGGR asks for an output file name to be used for the aggregated
bitmap. Make sure that the name you choose is different from the event
bitmap or the original data will be erased inadvertently.

When SELAGGR writes an outfile with the new bitmap, the first column
indicates the period number, the second column indicates the number of
Aggregated cvents in that time period, and aggregated variables begin in the
;hlrd column. This has been a problem for us more than once and is essen-
8tlal for checking data accuracy.

icable

§Checkmg Data for Accuracy

:)As in all previous steps, it is important to check the aggregated bitmap data
o be certain that columns total to the correct sum and are in the correct or-
der. To do this, we recommend choosing a few codes, summing up the to-
al figure in the columns, and checking it against the sum of event types in
?;hc R:Base file. If columns do not add up correctly, it is likely that the prob-
ﬁcm lies in how the data was rcad into the SELAGGR program or printed
5‘(0 the outpur file. Check the input and outpur sections for errors in the
Q'ORMAI line, errors in the listed variables and their order, and the num-
der of iterations (in the output section after the J) for printing.

[
[
<

ZCONCLUSION

o

&t is our hope that this appendix will make the procedures for coding and
; &ata entry more concrete and “doable” for the reader. While the packages
entioned in this chapter have been useful for us, many other similar ones
re now available. It should be possible to translate the steps outlined here
2 Swithout too much difficulty.

gnf

ermlss

Copyright © Oxford University Press. . All rights reserved.

May not be reproduced in any form withou

