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Strategy research typically traces stable performance differences among firms to a priori heterogeneity in initial resource
endowments or in expected flows of resources. The objective of this paper is to explore how this heterogeneity is created

and how it affects firm technological performance. Within the framework of an evolutionary view of technological change,
we develop the notion of technological preadaptation to describe that part of a firm’s prior experience that is accumulated
without anticipation of subsequent uses. In particular, we hypothesize that (technological) performance differences are
positively related to (1) firms’ stock of relevant skills and knowledge potentially available for applications other than those
for which they were originally developed and (2) the extent to which firms actually build on these skills and knowledge
in new domains. The empirical setting is fiber optics technology as it evolved for use in long-distance communications
between 1970 and 1995. We find that “preadapted” firms that consistently leveraged their prior experience achieved higher
levels of performance than did firms that did not leverage that experience or did not have prior experience. The study
illustrates the importance of preadaptation in capability development and technological competition.
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1. Introduction
The problem of sustaining competitive advantage in the
face of technological change is especially critical in
technology-intensive industries, where superior perfor-
mance depends on consistent innovation (Nelson 1991,
Teece et al. 1997). Strategy research, which typically
traces the ability to innovate consistently to heterogene-
ity in initial resource endowments (Rumelt 1984, Barney
1991, Peteraf 1993), has shied away from establish-
ing whether differences in resource endowments result
from strategic foresight or historical accidents. Yet,
while determining the role chance plays in human activ-
ity is fraught with conceptual ambiguity, any attempt
to derive normative implications of existing strategy
research requires that the question of strategic foresight
be properly addressed.
Strategy researchers have recently begun to investigate

more systematically whether firm heterogeneity is the
result of luck or strategic foresight (e.g., Barney 1986,
1997; Garud et al. 1997; Cockburn et al. 2000; Holbrook
et al. 2000; Denrell 2004). A few empirical studies
have likewise examined the origin of differences in ini-
tial conditions among firms. In particular, these studies
have highlighted the positive impact of prior experience,
that is, existing skills and knowledge, on innovation and
firm performance, especially when firms redeploy that
experience across new markets and/or industries (e.g.,
Carroll et al. 1996, Holbrook et al. 2000, Klepper and
Simons 2000, Klepper 2002).

Building on this existing research, we examine the
extent to which firms that create new technological
domains leverage skills and knowledge from other
domains (see Abernathy and Clark 1985, Levinthal
1998). Our empirical setting is the fiber optics technol-
ogy industry as it evolved from 1970—the year when the
possibility of using optical glass fibers for long-distance
telecommunications applications was demonstrated for
the first time—to 1995.
In examining the factors that lead to differential per-

formance, we follow Cockburn et al.’s (2000) suggestion
that empirical strategy research should “not only iden-
tify those factors that are correlated with superior per-
formance but also attempt to explore the origins and the
dynamics of their adoption.” We concern ourselves with
exploring whether the skills and knowledge firms use
to develop a new technology—and even initiate a new
technological trajectory (Dosi 1982, Nelson and Winter
1982)—are created in anticipation of this technology or
were developed in the past for other applications.
Because our objective is to study the potential value

of preexisting skills and knowledge for the creation of
new technological domains, we chart technological entry
(e.g., Malerba and Orsenigo 1999), defined as innovation
in a new technological domain, as distinct from mar-
ket entry, which refers to initial production of a product
or provision of a service (Helfat and Lieberman 2002,
p. 726). Since patent data provide a detailed and con-
sistent chronology of when certain skills and knowledge
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were originally created (Katila and Ahuja 2002), we
use them along with other sources (field interview data,
industry and company reports, specialized books, and
business press articles) to measure technological entry.
Our period of study spans from the inception of fiber

optics technology to the advent of the Internet, so it is
well suited to investigation of the performance impli-
cations of prior experience. Fiber optics was originally
applied in the long-distance telecommunications market
and subsequently in short-distance markets; over time
it has grown into an industry in its own right. The
research design is intended to capture the transition from
the phase when firms accumulate skills and knowledge
without anticipating their future use for other applica-
tions to the phase when firms begin to apply those skills
and knowledge in a new technological domain. In fiber
optics, the first phase lasted until 1966, the year the the-
oretical possibility arose of using glass for data trans-
mission. Initial lab experiments were conducted between
1966 and 1970, the year when producing fibers that
could be used in long-distance applications became a
practical possibility. The application phase began in
1970 and lasted until the present.
A firm’s history endows it with knowledge for reasons

that are unrelated to that knowledge’s application in new
areas of opportunity. Borrowing terminology from evo-
lutionary biology, we develop the notion of technolog-
ical preadaptation to describe the firm’s accumulation,
without anticipation or foresight of subsequent uses, of
skills and knowledge. In biology, preadaptation refers
to cases when the feature of an organism proves by
chance to be useful, or preadapted, for performing a
function other than the one for which it developed or was
originally selected (Bock 1959, Gould and Vrba 1982).
This formulation implicitly acknowledges that skills and
knowledge might exist prior to full consideration of their
possible uses.
Our dependent variable measures a firm’s technolog-

ical performance by gauging the quality of its patent-
ing activity, that is, the number of citations its patents
receive from subsequent patents filed by other firms. We
then estimate the contribution each sample firm made
to the development of fiber optics by looking at the
extent to which other firms build on its R&D activity. We
chose to measure performance with patent data rather
than revenue data both because the dataset was more
complete and because patents report performance in the
R&D phase as well as the market phase. Sales data for
the industry proved less precise than patents; in the case
of some diversified firms, sales relevant to fiber optics
are impossible to isolate. Using patents enables us to
establish backward citation patterns and form direct links
between a firm’s prior experience and its technological
performance. While patents represent the best perfor-
mance data that was available to us (their shortcomings
are discussed in §4), in technology-intensive industries

technological performance measures tend to be posi-
tively correlated to financial and market-based perfor-
mance measures (e.g., Trajtenberg 1990a, b; Hall 2000).
In many industries patent data measure the knowledge
embodied in a new technology accurately (see Hall et al.
2001). Qualitative evidence from our field work (includ-
ing interviews with executives of Corning and data from
the Freedonia Group) and extensive research of the
industry further support our empirical results.
Our goal with this paper is to make three contributions

to strategy and innovation research. First, in response
to existing studies that assert the detrimental effect of
established firms’ experience on their ability to innovate
within an existing domain (for a review see Methe et al.
1997, Hill and Rothaermel 2003), we introduce the idea
that when creating new technologies, prior experience
can become a source of competitive advantage rather
than a constraint. Second, on the premise that firms dif-
fer both with respect to their prior skills and knowledge
and to their ability to properly leverage their skills and
knowledge, we seek to separate the potential for inno-
vation from the achievement of innovation. We distin-
guish between having and using preadaptation by using
backward citations, which reveal when a firm declines
to build on its own research that is cited by other firms.
Third, instead of attributing firm heterogeneity to ini-
tial conditions defined a priori (e.g., Stinchcombe 1965,
Porter 1991), we seek to unpack sources of firm hetero-
geneity by first tracing differences in initial conditions
to differences in the stock of (potentially) transferable
skills and knowledge and then by examining to what
extent firms actually use them in developing a new tech-
nological domain.
The paper is organized as follows. In the next sec-

tion (§2), we review briefly the strategy and innovation
literature that studies the link between prior experience
and firm (technological) performance, develop the notion
of technological preadaptation, and present the hypothe-
ses. We then describe the empirical setting (§3) and
the data (§4) and consider the dependent (§5), indepen-
dent (§6), and control variables (§7). We continue by
presenting the model and method (§8) and the results of
the analyses (§9). We conclude with a discussion of the
main implications of our findings and the identification
of important topics for future research (§10).

2. Theory
Multiple studies have expounded the potential pitfalls
of preentry experience. The dominant design theory, for
instance, argues that preentry experience is disadvanta-
geous when it weds firms to technologies made obso-
lete by the emergence of a new dominant design (see
Christensen et al. 1998). When searching locally, firms
target technologies that are within the boundaries of
what they have done, create incremental innovations, and
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become more expert in their current domain. However,
as established firms become “increasingly removed from
other bases of experience and knowledge and more vul-
nerable to change in their environments” (Levinthal and
March 1993, p. 102), they risk falling into competency
traps (Levitt and March 1988) or becoming hampered
by their core rigidities (Leonard-Barton 1992). Several
empirical studies have shown how local search without
exploration may jeopardize innovation and performance
at the firm level (e.g., Helfat 1994, Stuart and Podolny
1996, Martin and Mitchell 1998, Rosenkopf and Nerkar
2001).
Firms can avoid the pitfalls of local search by part-

nering with other firms (e.g., forming alliances, joint
ventures) to gain access to and/or create novel tech-
nologies (e.g., Stuart and Podolny 1996, Nagarajan and
Mitchell 1998). They can also build the absorptive
capacity required to recognize the value of new, exter-
nal information, assimilate it, and apply it to commercial
ends (Cohen and Levinthal 1990). But absorptive capac-
ity is also path dependent and domain specific: As the
argument goes, firms can enhance their ability to inno-
vate by expanding their base of experience in an existing
domain. These two alternatives have been extensively
investigated.
The case in which a firm explores a new domain, with

customers’ needs and performance requirements differ-
ent from the domains in which it is already competing,
has received relatively less attention (see Methe et al.
1997). Using an evolutionary framework, technological
speciation theory has recently argued that new tech-
nological lineages may result from redeploying exist-
ing knowledge across different domains (Levinthal 1998,
Adner and Levinthal 2002). Technological speciation
originates from “transplanting the existing technological
know-how to a new application domain where it evolves
in new directions” (Adner and Levinthal 2002, p. 51).
The process of adapting to a new selection environment
ultimately triggers novel (rather than path-dependent)
evolutionary patterns, without requiring the firm to over-
haul its knowledge base.
Previous studies have recognized the value of deliber-

ately redeploying existing technology in new domains.
Abernathy and Clark (1985), for instance, showed how
old technologies can be used to create new market
niches. As a result, the body of knowledge that is a
source of competency traps in an existing domain might
enable a firm to create new competitive advantages in a
different domain.
Current research on firm heterogeneity and industry

evolution has further delved into this issue by focusing
on the conditions favoring the fit between prior expe-
rience and new market applications. In their analysis
of the relationship between market entry decisions and
firm prehistory, Helfat and Lieberman (2002) emphasize
the importance of the similarity effect, the idea that the

degree of similarity between a firm’s preentry resources
and capabilities and those required in a new domain pos-
itively affects not only the decision to enter the new
domain, but also the ability to innovate and then prosper
in it. Several longitudinal studies provide supporting evi-
dence for the similarity effect. Carroll et al. (1996), for
instance, found that firms entering the American auto-
mobile industry from related industries survived longer
than newly founded firms or firms from unrelated indus-
tries. Klepper and Simons (2000) showed how firms
experienced in the manufacturing of radios were more
likely to enter the TV industry, were more innovative,
achieved greater market share, and survived longer in the
TV industry than firms with no radio production expe-
rience. Other studies found consistent results in addi-
tional industries (e.g., Holbrook et al. 2000, King and
Tucci 2002, Klepper 2002). This stream of research has
significantly enhanced our understanding of the relation-
ship between prior experience, innovation, and firm per-
formance and has shed light on why prior experience
can be viewed as a critical source of variation in initial
conditions.
However, what is not entirely clear in these studies is

to what extent the ability to innovate can be understood
as a consequence of a firm’s prior experience in other
domains. In other words, do firms innovate because they
anticipate which skills and knowledge will be needed,
or does the environment select those firms whose skills
and knowledge randomly match the requirements of a
new domain? To analyze this question of intentionality,
two issues surrounding the redeployment of technology
must be addressed more thoroughly.
First, if prior experience is a critical source of dif-

ferences in initial conditions and possesses implications
for firm performance, R&D efforts made in exploration
of a new domain should be separated from those con-
ducted without foreknowledge of any potential redeploy-
ment. Identifying a firm’s prior experience (its preentry
resources and capabilities) means clarifying what con-
stitutes “entry.” If entry “refers to initial production of a
product or provision of a service” (Helfat and Lieberman
2002, p. 726), then prior experience consists of both
skills and knowledge created for other applications and
skills and knowledge originating from deliberate efforts
to adapt to a new application domain. The notion
of “technological entry” (e.g., Malerba and Orsenigo
1999)—marked by innovation in a new area, regardless
of whether a market exists—allows for a more accu-
rate characterization of two conceptually and chronolog-
ically distinct adaptive processes. Time, often years, may
elapse between technological entry and market entry, the
production or provision of a new product or service.
During this interval, firms typically carry out the first
lab experiments to develop a new technology—a process
of adaptation rather than preadaptation. R&D efforts
between the technological and market entries could
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enhance the degree of similarity between a firm’s exist-
ing knowledge base and that required in a new domain;
therefore, R&D efforts must be separated according to
when in the innovation timeline they occurred.
Moreover, because previous studies typically estab-

lish an indirect link between prior experience on the
one hand and firm innovation and performance in a
new domain on the other, it is not always entirely clear
which part of that experience retains its value and is then
selected for new uses (e.g., Mokyr 2000). As a result, the
question of whether firms anticipate new applications as
they accumulate skills and knowledge within an exist-
ing domain is not explicitly addressed. The next section
seeks to tackle these two issues by developing the notion
of technological preadaptation.

2.1. Preadaptation in Evolutionary
Biology and Technology

In biology, preadaptation refers to the case where “by
chance, an organ that works well in one function turns
out to work well in another function after relatively lit-
tle adjustment” (Ridley 1999, p. 347).1 The concept of
preadaptation assigns no role to foresight. An organ or
a feature of an organism did not evolve in anticipation
of its new function; it happened to be adaptable to it
(Futuyma 1998). It was then selected for this new func-
tion. The observed function of an existing feature does
not always coincide with the use for which it developed
or was originally selected, but it is often a by-product
of adapting to novel, unanticipated conditions.2 It is the
nature of the selection forces that are associated with the
new function to allow a preadapted feature to execute
this function (Bock 1959, p. 201).
Biological preadaptation has technological analogues.

Each invention or innovation offers a spectrum of oppor-
tunities, only a few of which will ever be developed dur-
ing its lifetime (Basalla 1988). A firm might be endowed
by its past history with skills and knowledge for rea-
sons that are unrelated to their application in a new
opportunity. This body of knowledge frequently exists
prior to full consideration of its possible uses. For exam-
ple, in the early 1960s, Corning invested in the new
field of integrated circuits despite the fact that it was
essentially a specialty glass manufacturer. Eventually,
Corning divested, but a few years later the knowledge
they had gathered as a result of this investment happened
to be useful to fiber optics. Fiber optics’ synergetic
combination of glass manufacturing and semiconductors
meant that Corning’s past experiences made it particu-
larly preadapted to the new industry (Cattani 2004).
Firms can learn more about applications for which

they are potentially preadapted as new information
emerges. Past, even antiquated, technologies might in
fact find novel, unanticipated applications in new envi-
ronmental conditions.3 As a result, firms with a long-
standing tradition in R&D very often already have

in-house solutions to new problems (see Garud and
Nayyar 1994). Moreover, as the notion of technological
speciation implies, a firm’s knowledge base can spur the
emergence of new technological fields when it taps into
unexploited market niches, so long as the corresponding
market needs and performance standards differ signif-
icantly from those faced in other application domains.
This further implies that even prior experience that has
become a competency trap, that is, a “stable suboptimal
solution” (March 1994, p. 96), in its current application
might turn out to be a source of adaptation when the
firm uses it in a distinct application domain.
Previous research has argued that the ease with

which knowledge can be transferred across domains
depends on the degree of similarity between them (e.g.,
Helfat and Lieberman 2002). Technological preadapta-
tion, while embracing the similarity effect, is less restric-
tive about the designation of similarity. The same body
of knowledge can in fact enhance the ability to gen-
erate (economically valuable) innovations in domains
with similar technological roots that appear entirely dis-
tinct from a user’s perspective. Significant variations in
the market space do not necessarily command compa-
rable variations in the technology space (e.g., Adner
and Levinthal 2002). This is especially true when firms
create a new technological field and the only available
knowledge they can readily rely on is their own. Tech-
nological preadaptation represents a vantage point from
where significant innovations but also new evolutionary
patterns can be generated.

Hypothesis 1. Technological performance in a new
domain of application is positively related to a firm’s
level of relevant technological preadaptation, which
serves as a potential source of competitive advantage.

The emphasis placed on preadaptation might unwit-
tingly convey the impression of underestimating the sig-
nificance of purposive behavior. As Cockburn et al.
(2002, p. 1,124) observed, if performance hetero-
geneity “arises from the degree to which a firm’s
resources and/or strategy ‘match’ the competitive envi-
ronment, and if resources are randomly distributed at
‘birth’ � � � then performance heterogeneity simply reflects
the fact that the realized competitive environment favors
some strategies and some resource bundles over oth-
ers.” However, even firms that are similar in all accounts
(including resource endowment) may still differ in their
ability to take advantage of the same environmental
conditions. Far from implying a deterministic view of
innovation and technological performance, and thus dis-
carding any meaningful role for strategy, preadapta-
tion allows for variation in the observed behavior of
preadapted firms.
As we noted earlier, the degree of similarity between

a firm’s knowledge base and that required in a new
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domain increases the probability of entering, innovat-
ing, and prospering in that domain. However, even firms
originating from the same industry (and thereby possess-
ing similar market/technology experience) are likely to
exhibit a differential ability to leverage their experience.
While many technological innovations arise from the
recombination and novel application of existing knowl-
edge, established firms often fail to capitalize on their
past R&D (e.g., Garud and Nayyar 1994). One of the
challenges facing these firms is to make better use of
their knowledge base. There is in fact an important dis-
tinction between having a pool of “relevant specialized
transferable skills and knowledge” (Carroll et al. 1996)
potentially available for other applications than the orig-
inal ones and being able to leverage relevant skills and
knowledge to generate innovations.4

We believe that keeping the potential for innovation
distinct from innovation itself is crucial to properly esti-
mate whether the effects of prior experience “dissipate
or persist over time and exactly how the backgrounds of
entrants condition their performance � � �” (Klepper and
Simons 2000, p. 998). Equally preadapted firms can
display a differential ability to take advantage of solu-
tions, which they have already in-house, to new prob-
lems. Because the range of possible applications of a
firm’s technological knowledge base is typically wider
than its current applications, firms can capitalize on pre-
vious technological investments, a capability that Garud
and Nayyar (1994) call “transformative capacity.” For
instance, firms that have over time developed routines
to store, transform, and retrieve knowledge (e.g., Garud
and Nayyar 1994, Hargadon and Sutton 1997) stand a
better chance of realizing new syntheses and attaining
higher levels of technological performance. This implies
that “having” preadaptation (i.e., availability of relevant
skills and knowledge) is distinct from “using” preadap-
tation. Even though performance (as measured by patent
impact) of firms that continue to build on their prior
knowledge within an existing domain is likely to decline
(e.g., Sørensen and Stuart 2000, Rosenkopf and Nerkar
2001), knowledge that becomes less valuable in its cur-
rent application might be of greater value for other
applications.

Hypothesis 2. Technological performance in a new
domain of application is positively related to the
extent to which firms draw upon their technological
preadaptation.

To test these hypotheses, we study the emergence and
evolution of fiber optics technology. Since we trace its
evolution virtually from its inception, we can identify
the experience accumulated before the development of
fiber optics and estimate to what extent firms actually
acted on their accumulated experience in their subse-
quent innovative efforts.

3. Empirical Setting: Evolution of
Fiber Optics

This analysis focuses on the emergence and evolution of
fiber optics between 1970 and 1995. An optical commu-
nications system comprises several interdependent com-
ponents, including a light-emitting device that converts
an electric signal to light, a light-transmission medium
(optical fiber) through which light is transmitted, and a
light-receiving device that decodes the optical signal and
converts it back to electricity. Optical (glass) fibers are
the core component in long-distance communications.
The notion of preadaptation implies that in the course

of technological evolution it is sometimes possible to
identify a “dividing line” or “watershed event.” Before
this event, during the preadaptation phase, a firm accu-
mulates skills and knowledge without anticipating their
subsequent application. After the event, higher levels of
foresight allegedly guide that firm’s search behavior as
it incorporates market feedback. The role for foresight,
and hence strategy, is especially critical during the tran-
sition between these two phases because this transition
is when a firm begins to realize the possibility of rede-
ploying its preexisting skills and knowledge into a new
domain.
Because identifying such a dividing line is central to

the variables of theoretical interest as well as the sta-
tistical analyses, we offer a succinct narrative of these
events below. Besides drawing from multiple sources
of information (books, newspaper articles, academic
papers, case studies, annual financial reports, and indus-
try reports), we gathered additional data and informa-
tion from three rounds of semistructured interviews with
R&D managers from Corning (some of whom experi-
enced the development of the fiber optics industry) and
an interview with one expert in the field of optical com-
munications. These interviews let us discuss some of the
key facts, double-check our interpretation of the infor-
mation, and reduce the risk that we would impose mean-
ing on historical events from knowledge of the outcomes
(Aldrich 2000).

The Industry
The possibility of using low-loss optical glass fibers over
long distances was first shown in 1970, when Corning
produced the low-loss optical glass fiber. However, the
theoretical possibility of using light for communications
purposes had been envisioned four years earlier by two
researchers, Charles K. Kao and George Hockham, from
the Standard Telecommunications Laboratories (STL),
the British subsidiary of ITT.
The company had formed a research team to study the

properties of optical waveguides to satisfy the needs of
the British Post Office, which at the time operated the
British telephone network and was trying to improve the
national telecommunications infrastructure. The British
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Post Office was concerned with “a better technology to
send signals between local switching centers that typi-
cally were a few miles apart � � �” and in particular with
“� � � something easy and inexpensive to install in heav-
ily developed areas, not high-priced-capacity systems to
span vast distances” (Hecht 1999a, p. 111). At the Insti-
tution of Electrical Engineers meeting held in London
in 1966, Kao and Hockham (1966) presented a paper in
which they argued that optical fibers would be a suit-
able transmission medium for long-distance communi-
cations if attenuation could be kept under 20 dB/km.
This implied that 1% of the light entering a waveguide
would remain after traveling one kilometer. By setting
this threshold Kao and Hockham laid out a concrete
methodology, spurring the first wave of large-scale lab-
oratory experiments.
Corning’s invention of the first optical glass fiber

with attenuation below 20 dB/km in 1970 and its sub-
sequent refinements during the early 1970s fundamen-
tally shaped the evolution of optical communications by
demonstrating for the first time optical fiber’s commer-
cial viability for long-distance telephone networks (see
Trajtenberg et al. 1997). Concurrent advances in semi-
conductor laser technology at AT&T Bell Laboratories
also proved critical (Hecht 1999a). The commercial suc-
cess of fiber optics remained incomplete until the early
1980s, when the U.S. government first deregulated the
telecommunications industry (1982) and forced AT&T
to split up (1984). By injecting more competition into
the long-distance telephone market, AT&T’s divestiture
opened new investment opportunities and fostered the
rapid growth of fiber optics. Moreover, in mid-1982,
MCI decided to build the first long-distance telephone
network in the United States using single-mode opti-
cal fibers, which then became the new market standard.
Since single-mode fibers have a smaller core than multi-
mode fibers, they possess superior transmission qualities
in terms of speed, capacity, and attenuation level (see
Hecht 1999a, b).
To summarize, the evolution of optical commu-

nications had three main phases. Until 1966, light-
transmission over long distances was confined to the
“realm of wishes.” This is a period marked by no fore-
sight with respect to this new application. After 1966,
Kao and Hockham’s paper fostered the first wave of lab-
oratory experiments to meet the 20 dB/km threshold.
Also, the British Post Office’s intention to replace cop-
per fibers with optical glass fibers signaled the existence
of a potentially profitable market. After Corning demon-
strated the commercial feasibility of fiber optics in 1970,
market feedback provided an increasingly clear sense of
direction.
Because preadaptation implies that success in a mar-

ket is determined largely by circumstances established
before anyone knew this market would exist, only
skills and knowledge accumulated before 1966 represent

preadaptation for later stages. Thus, 1966 is an ideal
dividing line or “watershed event” between the period
when foresight was not a factor and the period when a
higher level of foresight was more explicitly at work.5

Available sources on the history of fiber optics (e.g.,
Hecht 1999a, b) as well as our field interviews con-
firmed that 1966 was indeed a turning point in the evolu-
tion of fiber optics. This dividing line shaped the overall
research design, how we collected data, and how we cre-
ated the variable of theoretical interest.

4. Data
In the analysis we used patent data. We chose 1970 as
the beginning of the observation period because the first
key patents that laid the foundations for the practical
implementation of fiber optics were filed in that year. In
1970, Robert Maurer, Donald Keck, and Peter Schultz
from Corning developed the first low-loss optical glass
fiber. The two key patents, Fused Silica Optical Waveg-
uide (No. 3659915) and Method of Producing Optical
Waveguide Fibers (No. 3711262), were filed on May 11,
1970. For the period 1966–1970, we could not collect
patent data, as they are not fully available electronically.
We thus manually collected data on pre-1970 patents,
but only when these patents were cited by a post-1970
patent.
While patents do not measure all relevant knowledge

held by a firm, research has increasingly employed them
as a measure of firm knowledge (e.g., Henderson and
Cockburn 1994, Jaffe et al. 1993, Albert et al. 1991,
Narin et al. 1987) and as an indicator of technologi-
cal capabilities (e.g., Jaffe 1986, Patel and Pavitt 1994,
Stuart and Podolny 1996, Silverman 1999, Fleming and
Sorenson 2001). Unlike R&D expenditures, patents offer
information on a firm’s specific strengths. Furthermore,
in fiber optics, firms display a high propensity to patent
(Levin et al. 1987, Hall et al. 2001).
To identify the technology underlying optical fibers,

we conducted the analysis at the patent subclass level.
The classes and subclasses we identified as relevant are
listed in Table 1. Instead of using a three-digit, pri-
mary technological field classification in determining the

Table 1 Patent Primary Classes and Subclasses

Patent primary classes Patent subclasses

65 Glass manufacturing 17.1–35, 60.1–65, 102–121,
134.1–137, 157–192, 268–301, 335,
346, 348–362, 370.1, 374.1–540

356 Optics: Measuring 73.1, 139, 141, 153, 335–338, 342
and testing

385 Optical waveguides All subclasses
427 Coating processes 162, 163.2
501 Compositions: 11–79
Ceramic
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degree of technological relatedness of patents falling into
different classes, we captured technological similarity by
using a classification up to the nine-digit, subclass level.
Doing so allowed us to define the relevant fiber optics
technical fields as accurately as possible. To ensure pre-
cise and comprehensive coverage of the relevant tech-
nical fields, we double-checked our identification of the
relevant patent primary classes and subclasses with two
firms in the sample. We also validated our interpretation
of the data with these two firms.
For the period 1970–1995, we collected patent data

from the National Bureau for Economic Research
(NBER) (see Hall et al. 2001), the U.S. Patent and
Trademark Office (USPTO), and the UPSTO Cassis
databases. We traced backward citations from patents
filed subsequently using Micropatents. We obtained
financial data from Compustat. Detailed information
about patents filed before 1970 is not available elec-
tronically. However, the creation of the variables of
theoretical interest requires detailed information such
as assignee, filing year, and patent class for all back-
ward citations made by the focal patents to previous
patents, regardless of when they were granted. We thus
retrieved relevant citation information manually from
the USPTO’s official website for all backward citations
referring to patents for which that information was not
available electronically. As a result, our database is dis-
tinctive because it captures as accurately as possible all
prior work relevant to the development of fiber optics.
The research sample was drawn from the population

of firms patenting in the patent classes and subclasses
that define the fiber optics technical fields (Table 1). We
included a firm in the sample if it filed at least one
patent in one of the relevant subclasses. Unfortunately,
using patent data means that potentially preadapted firms
that never filed a patent in fiber optics for telecommu-
nications applications are not included in the final sam-
ple. A very interesting case in this regard is American
Optical Company. During the 1950s it contributed to
the development of the fiberscope, an image-transmitting
device that used the first practical all-glass fiber and
was primarily employed for medical applications such
as the endoscope. Although its patents were widely cited
by subsequent patents in fiber optics for communica-
tions applications, it never entered the telecommunica-
tions market.
As we noted in §2, in the paper we use notion

of “technological entry” (Malerba and Orsenigo 1999),
which is distinct from the case in which a product or ser-
vice is actually brought to market (Helfat and Lieberman
2002). Our choice of technological versus market entry
was motivated by the following reasons. First, as out-
lined in §2, we are concerned with the technological lin-
eage of the firms that came to establish a new field (fiber
optics), not simply their decisions to create or enter a
new or existing market. Second, though firms often file

patents they never use for commercial applications, evi-
dence from other industries’ firms indicates that not all
such patents are purely exploratory; sometimes firms
prefer to license their patents without directly participat-
ing in the production stage. For instance, in the semicon-
ductor industry many patents are granted to firms (also
known as fabless firms) that only design (never produce)
chips but profit from collecting patent license fees. Their
involvement with the downstream market where those
patents are actually used is only indirect. Third, product-
level data were not available. While this is clearly a
limitation of the study, many of the firms that in our
sample appear as technology leaders, filing more patents
that were also more widely cited, became market lead-
ers later on.6 The final list of firms is comprehensive:
As Table 2 indicates, the number of patents filed by
the sample firms represents a significant proportion of
all patents falling in the relevant classes and subclasses,
thus ensuring that we are not sampling on the dependent
variable.
The NBER database provides both the name of the

firm to which the patent was assigned and the name of
the parent company. A firm with several subsidiaries and
divisions can, therefore, have a single entry in Compu-
stat but several assignee names in the NBER database.
We thus treated every assignee name as part of the same
corporation whenever the latter held more than 50%
of that assignee. Availability of yearly data on the

Table 2 Sample Firm Patents vs. Total Patents
in Fiber Optics, 1970–1995

Total patents Focal firm patents %
Year (a) (b) (b/a)

1970 162 107 0.66
1971 193 131 0.68
1972 227 144 0.63
1973 227 134 0.59
1974 241 146 0.61
1975 261 174 0.67
1976 284 177 0.62
1977 301 180 0.60
1978 264 156 0.59
1979 286 178 0.62
1980 344 242 0.70
1981 339 218 0.64
1982 314 205 0.65
1983 304 185 0.61
1984 337 192 0.57
1985 427 216 0.51
1986 397 192 0.48
1987 444 209 0.47
1988 466 222 0.48
1989 491 236 0.48
1990 537 266 0.50
1991 615 283 0.46
1992 598 265 0.44
1993 465 210 0.45
1994 531 246 0.46
1995 563 268 0.48
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control variables reduced the final sample to 206 public
firms patenting in the United States and traded on U.S.
stock markets, for a total of 1,209 firm years. Private
firms, academic institutions, and public research labs for
which R&D and firm size data are not available are not
included. Nevertheless, the composition of the sample
ensures enough variety on most of the key variables. For
instance, firms vary in their size, with the largest firms
having more than 70,000 employees and the smallest
fewer than 100 employees; their age, with some firms
(e.g., Corning, General Electric) being founded more
than 100 years ago and others relatively recently (e.g.,
during the observation period); and the volume of their
patenting activity in fiber optics, with some firms filing
only a few patents and others more than 100 patents per
year. Moreover, as we explain in §9, we ran the anal-
ysis including all firms—not merely firms patenting in
the United States and traded on U.S. stock markets—
and found the results to be qualitatively similar to those
reported here.
The final sample is an unbalanced panel. Over the

study period, the sample firms filed 5,067 patents, com-
prising more than 50% of all the 9,618 patents that
other firms (private or traded on foreign stock markets),
research labs, individual inventors, or academic institu-
tions filed in any of the technological fields correspond-
ing to the selected classes and subclasses.

5. Dependent Variable
We measured firm performance in technological terms
by using patent citations to the focal firm from other
firms to estimate the value of a firm’s innovative out-
put. We preferred this measure to the number of patents
each firm filed in a given year because we are inter-
ested in each firm’s actual contribution to the creation
of a new technological field (i.e., fiber optics). The use
of patent counts can be questioned on several grounds:
Firms differ in their propensity to patent; not all inven-
tions are eventually patented; and not all patented inven-
tions are turned into commercial applications (see Hall
et al. 2001, Hall and Ham-Ziedonis 2001). Also, many
patents have little value and do not reflect any truly dis-
tinctive or significant innovation. As such, although a
patent count indicates a firm’s R&D productivity, it is
a poor proxy for the value of its patents (e.g., Griliches
et al. 1987, Scherer 1965, Hall 2000).
Especially in R&D-intensive industries, the number

of citations a patent receives from other patents is a
more precise measure of technological performance and
a better estimate of the focal patent’s true value (e.g.,
Griliches 1981, 1990; Trajtenberg 1990a, b). Such cita-
tions indicate “that the cited patents opened the way to
a technologically successful line of innovation. � � �Thus,
if citations keep coming, it must be that the innova-
tion originating in the cited patent had indeed proven

to be valuable” (Trajtenberg 1990a, p. 174). Patents that
firms report as more valuable are typically more heav-
ily cited in subsequent patents (Harhoff et al. 1999).
Previous studies have found a positive relation between
firm market value and patent citations (Shane and Klock
1997, Hall 2000, Hall et al. 2001). Strong citation indic-
tors also tend to be positively correlated with firm sales,
profits, and stock prices (see Narin et al. 2001). Strat-
egy research has focused increasingly on the number
of future citations on the premise that they are a better
estimate of true value of a patent and a more informa-
tive signal of success (e.g., Ahuja and Lampert 2001,
Bierly and Chakrabarti 1996, DeCarolis and Deeds
1999, Rosenkopf and Nerkar 2001). Indeed, highly cited
patents “cover innovations that experts in a technological
area perceive to have been the most important inventions
in that area” (Sørensen and Stuart 2000, p. 93).
For all patents the sample firms filed over the study

period (1970–1995) we collected future citations up to
April 2004 from Micropatents. Because patents filed in
earlier years are exposed to the risk of being cited by
subsequent patents for a longer period, we compared
patents only to those filed during the same year. All
the focal patents were issued before February 1996; as
a result, they have remained at risk of being cited for
at least eight years. For each patent, we counted all
future citations received until April 2004, net of a firm’s
self-citations. While self-citations measure the extent to
which a firm builds on its previous R&D efforts, cita-
tions from other firms more objectively estimate the
actual relevance of a firm’s patents.
Following Trajtenberg (1990a, b), the dependent vari-

able estimating the impact of a firm’s patenting activity
is computed as an index of weighted citation counts as
follows:

Weighted Citation Indexit =
m∑

j=1
�1+C�	

where C is the number of future citations that patent j
�1	 � � � 	m� filed by (and then granted to) firm i
�1	 � � � 	 n� in year t �1970	 � � � 	1996� received in subse-
quent years (until year 2004) from patents filed in fiber
optics by other firms. The results of the analysis do not
vary if we compute the index including citations also
coming from patents filed in other classes/subclasses
than those defining fiber optics.

6. Independent Variables
To test Hypothesis 1, we created the variable preadap-
tation, which measures a firm’s stock of relevant trans-
ferable skills and knowledge potentially available for
new uses. The creation of a more fine-grained variable
would require defining the profile of each firm by recon-
structing its historical background. Since some of the
firms in the sample have roots in industries other than
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telecommunications, one approach would be to trace
their complete past patenting activity. Unfortunately,
patents prior to 1970 are not available in an electronic
format.
We thus followed a different approach. We used patent

backward citations to identify technological knowledge
each firm accumulated before 1966. Interestingly, even
though firms typically build on their prior R&D efforts,
very often they fail to do so fully, whether by design
or by oversight. For instance, several sample firms never
cited some of their early (up to 1966) patents in their
subsequent fiber optics patents, even though those same
early patents were cited by other firms. In total, the
sample firms filed 1,234 fiber optics patents in 1966 or
before that were subsequently cited by other patents. Of
those 1,234 patents, 997 were cited only in patents filed
by firms other than the original assignee, and 237 were
cited at least once by the original assignee. Thus, the
pool of relevant skills and knowledge available to each
firm was larger than the set of skills and knowledge they
actually used.
We considered each firm’s pool of pre-1966 patents to

reflect its level of preadaptation with respect to the new
technology (fiber optics), regardless of whether the sam-
ple firms actually leveraged (cited) their prior experience
(the stock of pre-1966 patents) in subsequent innovative
efforts (new patents). This way of estimating technolog-
ical preadaptation accounts for a firm’s knowledge by
looking only at its patenting activity and thereby does
not consider manifestations (such as inventors’ scien-
tific papers) of knowledge that existed without having
led to patents. Nevertheless, it represents a good approx-
imation. If it is true that citation-based measures are
noisy indicators of technological linkages, several stud-
ies have validated their use in identifying the technolo-
gies on which other innovations build (e.g., Jaffe and
Trajtenberg 2002).
Overall, 63 of the 206 sample firms were preadapted,

to varying degrees. Twenty six had accumulated experi-
ence in glass manufacturing, four in optics: measuring
and testing, eight in optical waveguides, two in coating
processes, and 24 in compositions: ceramic (see Table 1
for the patent classes and subclasses defining the cor-
responding technical fields). While several firms (e.g.,
AT&T, Corning, General Electric, ITT) were also oper-
ating in technical fields other than glass, prior experience
in glass manufacturing was clearly an important vantage
point.
In the analysis we do not distinguish between differ-

ent types of prior experience or preadaptation to estab-
lish how closely previous applications were related to
fiber optics. This would require a precise identification
of all technical fields in which the sample firms were
operating based on their primary patent classes. The
technical background of the sample firms is quite het-
erogeneous (as the number of distinct primary classes

of the cited patents clearly indicates). Distinguishing
between different types of technological preadaptation
represents an interesting avenue for future research but
goes beyond the purpose of this study. We entered the
variable preadaptation into the final model after apply-
ing a logarithmic transformation. Since for several firms
the variable is equal to 0, we added the value 1 to be able
to take the log. The results do not change appreciably
by using different values.
To test Hypothesis 2, we captured the extent to which

firms build on their prior experience into a differ-
ent domain by using backward self-citations. As future
patents build on previous patents, a firm that cites its
patents is leveraging its stock of skills and knowledge
(Jaffe et al. 1993). Because the theoretical groundwork
for the development of fiber optics dates back to 1966,
we chose this year as the dividing line; only skills
and knowledge available in 1966 or before represent
preadaptation for future applications. A careful exami-
nation of the content of the patents cited by the focal
patents, along with our interviews with managers from
Corning and an industry expert, further supports our
choice. Among the cited patents, those filed before 1966
did not mention telecommunications as a possible appli-
cation for optical fibers. Accordingly, the variable con-
sists only of backward self-citations that refer to patents
filed until 1966.
Several years may elapse between a patent application

and its publication date. One might thus fail to correctly
identify when prior R&D efforts were first conducted
by simply looking at the year in which a cited patent
was granted. The choice of the filing year for back-
ward self-citations thus traces more closely the timing
of the process of accumulating skills and knowledge.
An example may clarify this point. Suppose patent A
granted in 1975 cites patent B, which was granted in
1970 but filed in 1966. The efforts that eventually led
to patent B allegedly date back to 1966 or before. If a
firm’s future patents build on its previous patents, the
filing year, rather than the publication year, of previous
patents more accurately captures the time when the rel-
evant skills and knowledge were first created (see Hall
et al. 2001). In other words, such skills and knowledge
were available in-house earlier than the publication year
would suggest otherwise. Following this reasoning, the
variable leverage is given by the following ratio:

Leverageit =
total backward self-citations until 1966

total backward citations
	

where the numerator, total backward self-citations until
1966, is the number of citations that all patents filed by
firm i �1	 � � � 	 n� made in year t to patents filed by firm i
in 1966 or before. The denominator, total backward cita-
tions, is the sum of all backward citations—self-citations
and citations of patents filed by other firms—made by
the patents firm i filed in year t. The variable measures



Cattani: A Study on the Evolution of Fiber Optics, 1970–1995
572 Organization Science 16(6), pp. 563–580, © 2005 INFORMS

the extent to which firms actually leverage their prior
experience in a different domain. It takes on the value 0
when one of the following three conditions is fulfilled:
(1) a preadapted firm did not leverage its prior experi-
ence; (2) a firm in existence before the beginning of the
observation period had no prior relevant knowledge; and
(3) a firm was founded after 1966.

7. Control Variables
To account for possible competing hypotheses, we
included several control variables in the model specifi-
cation.

Technology Cycle. The value of prior experience is
likely to decay over time (see Argote et al. 1990, Baum
and Ingram 1998). This implies that firms that build
on older technologies might undermine their ability to
innovate in the future. Following previous research (e.g.,
Rosenkopf and Nerkar 2001), we controlled for this pos-
sibility by creating a variable, technology cycle, that
measures the average age of the patents cited by the
patents a firm filed in a given year. More specifically, we
first computed the difference between the year in which
the (focal) citing patent was filed and the filing year of
all cited patents. We did the same for all patents each
firm filed in a given year. We then calculated the average
age of all cited patents.

Firm Fiber Optics Patents. The number of patents a
firm files in a given year is likely to be affected by its
prior patenting activity. We should then expect future
citation counts to grow with the number of patents being
filed. Controlling for the total number of patents previ-
ously applied for allows capturing differences between
firms in their quality threshold for patenting (Sørenson
and Stuart 2000). We thus created the firm fiber optics
patents variable by counting the number of patents a firm
filed in fiber optics in the previous year. We entered the
variable with one-year lag to avoid simultaneity prob-
lems with the dependent variable.

R&D Expenditures. Several studies have documented
the relation between a firm’s patenting activity and R&D
expenditures (Griliches 1981, 1990; Hausman et al.
1984). We used the log of yearly R&D, expressed in
1996 constant dollars, as a proxy for a firm’s total R&D
inputs to the innovation process. We obtained data from
Compustat. For the few observations where R&D was
not reported, we created a dummy so the R&D coeffi-
cient would not be biased (Ham-Ziedonis 2004).

External Knowledge. Firms can accumulate skills and
knowledge in a new domain by learning from direct
experience or the experience of others (Levitt and March
1988). Firms that cite patents filed by other firms are
more likely to access external knowledge and expand
their base of experience than are firms that continually

cite their own patents. Prior research has shown that
exploration that spans firm boundaries influences tech-
nological evolution in a given domain more than explo-
ration that does not span firm boundaries (Rosenkopf
and Nerkar 2001). Firms can partly offset the disad-
vantage of not having relevant transferable specialized
skills and knowledge through “vicarious interorganiza-
tional learning” during their lifetimes (Baum and Ingram
1998, p. 1,002). We then created the variable external
knowledge, which denotes the ratio of the number of
backward citations made to patents filed by other firms
to the sum of all backward citations in a given year.

Firm Size. Literature in economics has shown that
large firms are responsible for a disproportionate quan-
tity of innovation as measured by the number of patents
filed (Cohen et al. 1987, Cohen and Klepper 1996).
On the other hand, since large organizations “are often
more bureaucratic and less entrepreneurial than small
enterprises � � � [size might] have a negative effect on the
importance of firms’ innovations” (Sørensen and Stuart
2000, p. 94). To control for the effect of size, we used
the log of the number of employees. We also tried a
firm’s total assets (in 1996 constant dollars) but found
no difference. Data were obtained from Compustat.

Firm Age. Older firms are more likely to have accu-
mulated experience in different domains and as such
to have a larger stock of relevant transferable skills
and knowledge. Older firms create more innovations,
though these innovations often have less impact. Firm
age should also increase the frequency of issuing self-
citing patents (Sørensen and Stuart 2000). But older
firms might also be less innovative due to inertial forces,
core rigidities, or existing customers. To control for these
possibilities we created a time-varying variable, firm
age, measuring the years elapsed since the firm was
founded, or, if the foundation year was not available,
the difference between the current year and the year the
focal firm first filed a patent in fiber optics.

Total Fiber Optics Patents. The number of patents
each firm filed in a given year and the number of future
citations received by them might also depend on the
overall patenting activity in the relevant fiber optics
patent classes. As the number of patents grows, the focal
patents are more likely to be cited by subsequent patents.
On the other hand, over time, future citations will be
increasingly spread out over a larger number of patents.
We then created a measure of patent density, total fiber
optics patents, to control for all fiber optics patents filed
by any economic actors—not just the sample firms—in
a given year. We also created a quadratic term but it
turned out to be nonsignificant. Alternatively, we could
have included a calendar time trend (e.g., year) in all
models to account for the fact that the overall patent-
ing activity volume increases over time, but also because
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“the actual composition of organizational innovation is
likely to change as a consequence of the maturation
of the industrial context” (Sørensen and Stuart 2000,
p. 94). Because the variable was highly correlated with
the patent density measure and the results did not vary
appreciably, we decided to enter only the latter into the
model.

Average Patent Impact. Regardless of their quality, on
average recent patents are less frequently cited than older
patents simply because they have been exposed to the
risk of being cited for a shorter period. For each year,
we thus estimated the average number of citations—
average patent impact—fiber optics patents received
from other patents in subsequent years. We computed
this measure including all patents filed in the relevant
classes/subclasses by any type of assignee (whether pub-
lic or private firms, academic institutions, or an individ-
ual inventor), not just the sample firms. We also ran the
analysis using different citations windows by comput-
ing the citation index with future citations within five
to seven years after the focal patent was issued, but the
results did not change significantly. We used the former
approach in our final analysis.

8. Model
To test the previous hypotheses, we estimated a random-
intercept model. The model has the following basic
form:

yit =�t +xit +�zi + ai + �it� (1)

The random-effects model is related most closely to
the fixed-effects model. However, instead of assuming
that ai represents a set of fixed parameters, we suppose
that each ai is a random variable with a specified prob-
ability distribution. Typically, it is assumed that ai has a
normal distribution with a mean of 0 and constant vari-
ance and that it is independent of xit , zi, and �it .
Because the dependent variable weighted citation

index can take on only nonnegative integer values,
a Poisson or a negative binomial specification is recom-
mended (Hausman et al. 1984). In the Poisson distribu-
tion, both the mean and the variance are equal to the
single parameter �, which is a function of the explana-
tory variables—that is, E�Y � = var�Y � = � (Allison
1999). However, in the presence of overdispersion—as
in our data—the variance tends to be greater than the
mean. While overdispersion does not bias the coeffi-
cient estimates, standard errors might be underestimated
and chi-square value statistics overestimated. We thus
included the stochastic component �it that allows for the
effect of omitted explanatory variables to correct for this
problem as follows:

E�Yit�= �it = exp�yit =�t +xit +�zi + ai + �it�	 (2)

where exp��it�∼ ��1	��; that is, it is assumed to have
a gamma distribution. The subscripts i and t indicate

that the parameter � is allowed to vary across firms
�i= 1	 � � � 	 n� and time �t = 1	 � � � 	m�. In this formula-
tion of the negative binomial model, the parameter � is
estimated directly from the data and captures overdisper-
sion. Because � (weighted citation index) cannot be less
than 0, it is generally expressed as a log-linear function
of the covariates as follows.
In the analysis, we report significance levels based on

Huber-White robust standard errors to control for any
residual heteroscedasticity across panels. We obtained
our estimates using PROC NLMIXED and PROC
GENMOD in SAS (version 9.1) for the random inter-
cept and the fixed-effects negative binomial regression
models, respectively.

9. Results
Table 3 presents the descriptive statistics and the cor-
relation values for all variables. The correlation values
are relatively low, except for R&D and firm size. In
analyses not reported here, we entered these two vari-
ables separately into the model but found no differ-
ence in the results. We thus decided to include only the
variable R&D.
Table 4 presents the coefficient estimates for the

random intercept negative binomial regression model
(Models 1 to 3). Model 1 is the baseline model and
includes all controls, which are statistically significant
and in the expected direction, except for external knowl-
edge, which is not significant. The positive coefficient of
the average patent impact variable suggests that a firm’s
fiber optics patents tend to have greater impact in years
when patents filed in the same technical field are more
widely cited. This is especially true for older patents
that have been exposed to the chance of being cited for
a longer period. Moreover, patents filed by older firms
(firm age), which also filed more patents in the previous
year (firm fiber optics patents), have a higher chance of
being cited in the future. In contrast, firms that build on
older technologies, that is, that cite older patents (tech-
nology cycle), are more likely to generate innovations
with less impact.
Model 2 shows the results after we entered the first

variable of theoretical interest, preadaptation, to test
Hypothesis 1. The coefficient is significant and in the
expected direction, providing support for the hypothesis.
In line with our theory, technological preadaptation rep-
resents a vantage point from where firms can eventually
generate new, often very significant, innovations—as the
improvement in the overall fit of the model indicates.
Model 3 presents the results after we included the

second variable of theoretical interest, leverage, to test
Hypothesis 2. The coefficient is statistically significant
and in the expected direction. Firms leveraging their pre-
1966 pool of relevant skills and knowledge in developing
fiber optics are, ceteris paribus, more likely to achieve
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Table 3 Means, Standard Deviations, and Correlations

Variables Mean Std dev Min Max 1 2 3 4 5 6 7 8 9 10 11

1. Weighted citation 67�98 117�76 1 1,174 1
index

2. Average patent 12�55 1�57 7�36 15�12 0�05 1
impact

3. Total fiber optics 6�27 0�48 5�25 7�28 0�10 −0�07 1
patents∗

4. Technology 7�83 5�51 0 45�33 −0�09 0�05 0�002 1
cycle

5. R&D∗ 12�40 9�34 0�01 22�87 −0�06 0�05 0�04 −0�05 1
6. Firm size∗ 7�16 5�17 0�04 13�68 −0�08 0�04 −0�06 −0�04 0�94 1
7. Firm fiber optics 0�94 1�02 0 4�13 0�62 −0�03 0�11 −0�03 0�05 0�04 1
patents∗†

8. Firm age 55�85 35�83 0 152 0�27 −0�05 0�04 0�03 −0�07 −0�07 0�35 1
9. External 0�88 0�17 0 1 −0�26 0�01 −0�01 0�05 −0�01 −0�02 −0�30 −0�20 1
knowledge

10. Preadaptation∗ 1�50 1�53 0 6�88 0�02 −0�04 −0�13 −0�03 0�21 0�22 0�18 0�24 −0�21 1
11. Leverage 0�02 0�06 0 0�45 0�09 −0�11 −0�27 0�10 0�02 0�05 0�12 0�10 −0�36 0�46 1

∗Variables are logged.
†Variable with one-year lag.

Table 4 Determinants of Patent Impact

Model 1 Model 2 Model 3 Model 4
Variables Random effects Random effects Random effects Fixed effects

Intercept −0�529 −0�810 −1�717 —
�0�534� �0�547� �0�587�

Average patent impact 0�079∗∗∗ 0�081∗∗∗ 0�097∗∗∗ 0�084∗∗∗

�0�019� �0�019� �0�019� �0�022�
Total fiber optics patents (log) 0�397∗∗∗ 0�424∗∗∗ 0�503∗∗∗ 0�576∗∗∗

�0�065� �0�066� �0�069� �0�092�
Technology cycle −0�029∗∗∗ −0�028∗∗∗ −0�030∗∗∗ −0�020∗∗

�0�007� �0�007� �0�007� �0�008�
R&D (log) 0�009∗ 0�007 0�006 0�018∗

�0�005� �0�005� �0�005� �0�009�
Firm fiber optics patents (log)† 0�364∗∗∗ 0�361∗∗∗ 0�373∗∗∗ 0�220∗∗∗

�0�044� �0�044� �0�044� �0�048�
Firm age 0�004∗∗ 0�003∗∗ 0�003∗∗ 0�001

�0�001� �0�001� �0�001� �0�004�
External knowledge 0�090 0�130 0�377∗ 0�624∗∗

�0�225� �0�224� �0�227� �0�255�
Preadaptation (log) 0�104∗∗ 0�077∗

�0�046� �0�046�
Leverage 3�172∗∗∗ 3�108∗∗

�0�864� �0�955�

Variance parameter 0�269 0�264 0�260
�0�055� �0�053� �0�052�

theta 1�573 1�580 1�602
�0�077� �0�077� �0�078�

−2 Log likelihood 9,252 9,247 9,232
Likelihood ratio test (vs. baseline) 5∗∗∗ 20∗∗∗

Notes. Random intercept and fixed-effect regression models dependent variable = weighted citation index, 1,209
observations. Sample includes firms publicly traded in the United States. The method of estimation is maximum likeli-
hood for a negative binomial specification. Standard errors (in parentheses) are heteroskedastic consistent (“robust”).
Although not shown, a dummy was included in the model when R&D was not reported. Two-tailed tests for all
variables.

∗p < 0�1; ∗∗p < 0�05; ∗∗∗p < 0�001.
†One-year lag.
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higher levels of technological performance. The vari-
able preadaptation is now significant at the 10% level.
While the availability of transferable skills and knowl-
edge might enhance the ability to innovate in a new
technological field, firms that actually take advantage of
their past R&D efforts have a better chance of inno-
vating in the new field as well as a better chance of
creating innovations of greater impact. The inclusion of
the two variables significantly improves the overall fit
of the model as compared to the baseline model. Taken
together, the results support the two hypotheses.

Robustness Tests. We tested the robustness of the
results against alternative model specifications. First, we
compared them with those for the fixed-effects model
(see Model 4 in Table 4) to verify whether unob-
served heterogeneity might be a problem in our analysis.
Because the variable preadaptation is time invariant,
we excluded it from the model. Following Allison and
Waterman (2002), we estimated a fixed-effects nega-
tive binomial regression model by using unconditional
maximum likelihood to control for all stable covariates
(easily accomplished in SAS with PROC GENMOD in
version 9.1). Allison and Waterman showed that the neg-
ative binomial model of Hausman et al. (1984), and
its associated conditional likelihood estimator, does not
accomplish what is usually desired in a fixed-effects
method, namely to control for all stable covariates. The
reason is that the model is based on a regression decom-
position of the overdispersion parameter rather than the
usual regression decomposition of the mean. The coeffi-
cient estimates for the fixed-effects regression model are
qualitatively similar to those obtained using the random-
intercept model. Also the standard errors are not too
different, though bigger for the fixed-effects model. In
line with previous research estimating a fixed-effect neg-
ative binomial model (Rosenkopf and Nerkar 2001), the
only noticeable difference is that the coefficient for the
variable external knowledge is now statistically signif-
icant. However, after controlling for the size effect by
looking at the standardized coefficients, we saw that the
impact of the variable external knowledge on the depen-
dent variable is smaller than that of the leverage variable.
For several firms in the sample the preadaptation and

leverage variables are equal to 0 over the entire study
period. Apart from firms founded after 1966 (for which
the variable is obviously equal to 0), the variable is
equal to 0 when these firms did not have or did not
leverage prior relevant skills and knowledge. To further
check the robustness of the results, we excluded from
the analysis those firms for which the two variables are
always 0. This led to a subsample of 34 firms for a total
of 487 firm years. Though not reported here, we found
similar results to those presented in the paper.
We further controlled whether sample selection bias

might affect our results. In particular, we ran the analy-
sis by including all assignees—that is, public firms not

traded on U.S. stock markets, private firms, research
labs, and academic institutions—that filed patents in
any of the selected subclasses defining the fiber optics
technological field (for a similar approach see Sørensen
and Stuart 2000). Although we could not obtain data
on R&D and size for those assignees, we nevertheless
believe that the variable firm fiber optics patents, which
measures their overall patenting activity in fiber optics,
can be used as a “reasonably good” proxy for them, on
the premise that larger firms invest more in R&D and
thereby are more likely to patent. The results, which
are available from the authors upon request, did not
vary appreciably from those reported here, suggesting
that sample selection bias may not be an issue in our
analysis.
Because previous studies have controlled for differ-

ences in citation rates across technological domains by
including dummies for the main patent classes (e.g.,
Sørensen and Stuart 2000), we checked whether the
propensity to patent varied across the relevant technical
fields. While we found the propensity to patent higher
for the classes 65 and 385 (and related subclasses),
where most fiber optics patents were filed, the results
are essentially the same with respect to the variables of
theoretical interest. We also ran additional analyses by
(1) including R&D and firm size in the same model,
(2) replacing yearly R&D with a moving average of
3–5 years for R&D, and (3) substituting R&D inten-
sity (R&D divided by sales) for R&D expenditures. All
these tests supported the main results and are consistent
with research showing that R&D spending is correlated
to patent counts but not necessarily patent quality (Narin
et al. 2001).
Since the combined number of patents filed by Corn-

ing and AT&T in optical fibers over the study period
amounts to almost 26% of the overall number of patents
filed by the firms in the sample (1,317 of 5,067), in a
separate set of analyses we excluded these two firms. But
again we found no significant difference from the results
presented in the paper. Finally, we ran the analysis using
patent counts as the dependent variable. Although not
reported, the results are qualitatively similar to those
reported here.

10. Discussion and Conclusions
The main objective of this paper was to explore how
heterogeneity in technological knowledge affects (tech-
nological) performance differences among firms. Using
the concept of biological preadaptation, we investigated
how the availability and exploitation of “relevant trans-
ferable skills and knowledge” relate to technological
performance differences among firms. Extant research
emphasizes how a firm’s prior experience in its cur-
rent application domain might become a constraint
and jeopardize the firm’s ability to innovate in that
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domain. In this paper, on the contrary, we examined the
case when the very same firm redeploys that experi-
ence across different domains. Firms are often endowed
with skills and knowledge for reasons unrelated to the
demands of a new opportunity. As a result, they have
the possibility of creating new competitive advantages as
they leverage their existing skills and knowledge into a
different domain of application. We situated our analysis
in the context of fiber optics, tracing the emergence and
evolution of this new technology virtually from its incep-
tion. We identified relevant transferable skills and knowl-
edge using patent data and backward citation patterns.
Firm (technological) preadaptation was found to have

a positive effect on technological performance. Preadap-
tation does not imply a deterministic view of innova-
tion, discarding any meaningful role for strategy. If the
availability of a pool of skills and knowledge poten-
tially available for other applications is an important
source of firm heterogeneity, so too is firms’ differ-
ential inclination to leverage skills and knowledge to
generate (economically) valuable innovations. Since we
estimated the extent to which firms actually leverage
their existing base of experience, the paper establishes
a direct link between prior experience and technological
performance.
The results of the analysis seem to be inconsistent

with previous research showing how the overall qual-
ity of a firm’s patenting activity declines when firms
repeatedly cite their own patents (e.g., Sørensen and
Stuart 2000, Rosenkopf and Nerkar 2001). However, this
apparent inconsistency can be explained by the fact that
these studies do not distinguish between knowledge that
predates the emergence of a new technological domain
(what we define as preadaptation) and knowledge that
firms accumulate after a new domain emerges. More-
over, those studies focus on firm (technological) perfor-
mance within an existing domain rather than creation of
new technological domains.
We believe our findings contribute to the ongoing

debate in strategy on the determinants of competitive
advantage, especially with respect to R&D-intensive
industries, where superior performance rests on consis-
tent innovation. One side of the debate argues that if
superior performance results mainly from differences in
resources that are distributed randomly “at birth,” then
some firms will outperform others “merely because the
environment happens to change in such a way that it
favors their particular resource environment” (Henderson
2000, p. 286). The other arguement is that competitive
advantage can be the result of “any kind of managerial
foresight or strategic insight” (Henderson 2000, p. 289).
Realistically, probably both luck and foresight play a
role; the challenge is to clarify when each of these two
forces is more likely to be at work.
The identification of a clear watershed event helped

us delineate more accurately the role of foresight and

test whether (technological) performance differences
were attributable to circumstances established before the
emergence of the new technology (i.e., fiber optics).
While firms cannot determine ex ante whether their prior
experience will ever become useful in a new domain,
the spectrum of possible applications for a firm’s base
of experience is often not confined to current applica-
tions. The strategic implication is that firms can increase
their returns from previous technological investments
by transferring skills and knowledge already available
in-house, instead of creating new resources from scratch
(Garud and Nayyar 1994).
One challenge of using analogies from evolutionary

biology is justifying their significance in a different field.
Innovations are not exactly analogous to random bio-
logical mutations (Alchian 1950), but rather result from
firms’ attempts to adapt to and at times even alter their
own environment (Penrose 1952, Garud et al. 1997).
Although we emphasize preadaptation, we do not want
to downplay the significance of purposive behavior. For
instance, several firms in our sample had prior experi-
ence in glass manufacturing—a clear vantage point for
producing optical glass fibers. However, even firms from
the same origin industries exhibit a differential ability
to take advantage of their prior experience across differ-
ent domains, which clearly reflects purposive behavior.
Equally preadapted firms can thus differ not only with
respect to their ability to leverage preexisting skills and
knowledge, but also with respect to when and/or how
quickly they decide to do so.7

A central assumption in the evolutionary theory of
the firm is that of “local search”—a firm’s R&D activ-
ity is closely related to its previous R&D activity
(March and Simon 1958, Nelson and Winter 1982,
Helfat 1994). While firms typically search locally, within
the boundaries of their existing knowledge domain, some
of them display a higher propensity to search beyond
such boundaries (e.g., Rosenkopf and Nerkar 2001). As
research on learning has pointed out, firms have “to cope
with confusing experience and the complicated prob-
lem of balancing the competing goals of developing
new knowledge (i.e., exploration) and exploiting cur-
rent competencies in the face of dynamic tendencies
to emphasize one or the other” (Levinthal and March
1993, p. 95). However, both processes can coexist when
firms leverage their base of experience across different
domains. These new applications can in fact be very
different with respect to the market needs and perfor-
mance requirements that must be satisfied. As such, even
though they may not imply a major shift in a firm’s tech-
nological knowledge base, they might require that a firm
engage in exploration.
In this paper, we concerned ourselves with the per-

formance implications of being preadapted in the tech-
nology space. However, the analysis could be further
expanded to embrace “complementary assets” (Teece
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et al. 1994, Helfat and Lieberman 2002). A firm, for
instance, is more likely to enter a new market or indus-
try if it also “possesses a broad base of assets required
for successful commercialization of the new goods � � �”
(Mitchell 1989, p. 208). While our data do not lend
themselves to properly measure complimentary assets
and gauge their importance relative to prior (technolog-
ical) experience, we surmise that the results would not
change even after controlling for their effect. The two
explanations are not in fact mutually exclusive. Further-
more, in our empirical setting, patents are a key success
factor. What the results suggest is that technological
preadaptation, especially if combined with the ability
to leverage it, positively affects (technological) per-
formance, regardless of whether complementary assets
retain their value in a new domain.
There are some obvious limitations to the study. First,

whenever an analysis focuses on only one technol-
ogy, it is unclear whether findings can be generalized.
Future research comparing and contrasting the evolution
of different technologies will verify whether the same
dynamics can be detected in technological settings other
than fiber optics. More specifically, notwithstanding the
continuity underlying technological evolution, the chal-
lenge is to identify a clear dividing line to discrimi-
nate between the preadaptation and adaptation phases as
accurately as possible.
Second, we could not compare technological perfor-

mance with other market-based or financial measures
(though in R&D-intensive industries technological per-
formance measures are reasonably good proxies for firm
performance). Third, since we do not have product-level
data, we could not establish which firms actually entered
the fiber optics market and which firms just filed patents
in this new field. Given our interest in each firm’s con-
tribution to the creation of a new technological field,
however, focusing on the impact of its patenting activity
is consistent with the original purpose of this study.
In conclusion, we would like to emphasize that despite

their many useful applications, patent data exhibit some
shortcomings as well. While patents have been increas-
ingly used as a measure of firm knowledge, they do
not fully measure a firm’s overall base of experience.
For instance, even though reference to prior art—that is,
citations to patents by other patents—has been a core
methodology in research on social, organizational, and
geographic pathways of knowledge flows, citations made
by patent examiners have not been separated from cita-
tions made by inventors (Alcacer and Gittelman 2004).
Focusing on a single industry, as we did in this paper,
where patents are important for appropriating returns to
R&D, might significantly reduce the effect of this prob-
lem, which is on the contrary compounded in studies
comparing knowledge flows across very different indus-
tries. Of course, similar problems afflict most empirical

measures, especially those measuring intangibles such as
skills and knowledge.
Looking at inventors’ patenting and publication

records might be complimentary way of capturing how
prior experience spanning several technological domains
is embodied in technologies applied in other domains.
The focus on inventors is consistent with the argument
that, though organizational memory does not necessar-
ily coincide with individual memory, inventors are often
“the sole storage point of knowledge that is both idiosyn-
cratic and of great importance to the organization”
(Nelson and Winter 1982, p. 115). Indeed, inventors play
a key role in facilitating the diffusion and recombina-
tion of skills and knowledge accumulated in otherwise
distinct technological domains. Future research should
explore this issue more deeply.
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Endnotes
1There is some disagreement on how expansive the concept
of preadaptation should be. Bock (1959) does not distin-
guish between features that have changed and those that have
retained their original function. In contrast, for Gould and
Vrba (1982) preadaptation refers solely to features that pro-
mote fitness and were built by selection to perform the same
function for which they originally evolved, while features that
evolved for other usages or for no function at all and that
were coopted for their current role at a later point in time are
“exaptations.” Yet the usefulness of establishing whether exist-
ing features were from the outset “optimally designed by nat-
ural selection for their functions” (Gould and Lewontin 1979,
p. 585) is questionable. As Reeve and Sherman (1993) point
out, the original roles of many observable features are virtually
impossible to identify because the phylogenetic and ecolog-
ical information needed to infer such roles is unavailable or
incomplete.
2The evolution of tetrapod limbs is an example. A structure
that was effective at locomotion in water was also good at
locomotion over land with relatively few changes. Bird feath-
ers are another example of a preadaptation: The first feathers
were for heat insulation rather than an adaptation for flight
(see Ridley 1999).
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3Intel’s first microprocessor was a chip set designed to perform
advanced calculator functions, not to be used in a computer
(Burgelman 1994).
4For instance, distinction between de alio and de novo firms
Carroll et al. (1996), and the finding that firms from ori-
gin industries with relevant specialized transferable skills and
knowledge have lower death rates than newly founded firms
and/or firms without similar skills and knowledge clearly sheds
light on sources of firm heterogeneity within an organizational
population. However, a critical strategy question—what might
be driving performance differences among firms within each
group—is not properly accounted for.
5For instance, while it laid out the foundations for the prac-
tical implementation of fiber optics with the invention of the
first low-loss optical glass fiber in September 1970, Corning
initiated the first lab experiments as early as 1966, when it
began to leverage its prior experience in specialty glass, quan-
tum optics, and electronics (see Figure 1). A correct identifica-
tion of Corning’s preentry resources and capabilities, therefore,
should trace them back to the period before 1966. While sub-
sequent efforts by Corning to develop new resources and capa-
bilities before a market for optical fibers materialized spanned
several years, those efforts were made already knowing the
new application (i.e., telecommunications). Therefore, they
represent adaptation to this new application, but not preadap-
tation, or adaptation to other application(s).
6We extracted what information about market share we could
from the annual financial reports of some of the sample
firms and also by looking at the company list provided
by the Freedonia Group, a leading international business
research company that publishes industry (including fiber
optics) research studies annually.
7For instance, despite its monopoly within the long-distance
telecommunications industry, AT&T failed to take the lead in
the development of fiber optics and lost it to Corning. For
Corning, fiber optics was a new technology that opened up a
new market with high growth potential, while for AT&T it was
a substitute technology bound to replace an existing telecom-
munications network in which traditional (copper based) tech-
nologies were still in use. The incentives to invest in the new
technology and accelerate its large-scale adoption were obvi-
ously quite different (Cattani 2004). In contrast, ITT entered
the market for optical fibers relatively late, although its engi-
neers had done most of the theoretical groundwork for fiber
optics.

References
Abernathy, W. J., K. B. Clark. 1985. Innovation: Mapping the winds

of creative destruction. Res. Policy 14 3–22.

Adner, R., D. A. Levinthal. 2002. The emergence of emerging tech-
nologies. California Management Rev. 45(1) 50–66.

Ahuja, G., C. M. Lampert. 2001. Entrepreneurship in the large cor-
poration: A longitudinal study of how established firms create
breakthrough inventions. Strategic Management J. 22 521–543.

Albert, M., D. Avery, F. Narin, P. McAllister. 1991. Direct validation
of citation counts as indicators of industrially important patents.
Res. Policy 20(3) 251–260.

Alcacer, J., M. Gittelman. 2004. How do you know what you know?
Patent examiners and generations of patent citations. Working
paper, NBER, Summer Institute.

Alchian, A. A. 1950. Uncertainty, evolution and economic theory.
J. Political Econom. 58 211–238.

Aldrich, H. 2000. Organizations Evolving. Sage, Thousand Oaks, CA.

Allison, P. D. 1999. Logistic Regression Using the SAS System:
Theory and Application. SAS Institute, Cary, NC.

Allison, P. D., R. Waterman. 2002. Fixed-effects negative binomial
regression models. R. Stolzenberg, ed. Sociological Methodol-
ogy 2002. Basil Blackwell, Boston, MA.

Argote, L., S. L. Beckman, D. Epple. 1990. The persistence and
transfer of learning in industrial settings. Management Sci. 36
140–154.

Barney, J. B. 1986. Strategic Factor markets: Expectations, luck, and
business strategy. Management Sci. 32(10) 1231–1241.

Barney, J. B. 1991. Firm resources and sustained competitive advan-
tage. J. Management 17 99–120.

Barney, J. B. 1997. On flipping coins and making technology deci-
sions: Luck on an explanation of technological foresight and
oversight. R. Garud, P. R. Nayyar, Z. B. Shapira, eds. Techno-
logical Innovation Oversights and Foresights. Cambridge Uni-
versity Press, Cambridge, 13–19.

Basalla, G. 1988. The Evolution of Technology. Cambridge University
Press, New York.

Baum, J. A. C., P. Ingram. 1998. Survival-enhancing learning in the
Manhattan hotel industry, 1898–1980. Management Sci. 44(7)
996–1016.

Bierly, P., A. Chakrabarti. 1996. Generic knowledge strategies in
the US pharmaceutical industry. Strategic Management J. 17
123–135.

Bock, W. J. 1959. Pre-adaptation and multiple evolutionary pathways.
Evolution 21(2) 194–211.

Burgelman, R. A. 1994. Fading memories: A process theory of strate-
gic business exit in dynamic environments. Admin. Sci. Quart.
39(1) 24–56.

Carroll, G. R., L. Bigelow, M. D. Seidel, L. Tsai. 1996. The fates
of de novo and de alio producers in the American automobile
industry, 1885–1981. Strategic Management J. 17 117–138.

Cattani, G. 2004. Essays on technological evolution. Unpublished
doctoral dissertation, The Wharton School, Philadelphia, PA.

Christensen, C. M., F. F. Suarez, J. M. Utterback. 1998. Strategies
for survival in fast-changing industries. Management Sci. 44(12)
S207–S220.

Cockburn, I. M., R. M. Henderson, S. Stern. 2000. Untangling the
origins of competitive advantage. Strategic Management J. 21
1123–1145.

Cohen, W. M., S. Klepper. 1996. Firm size and the nature of inno-
vation within industries: The case of process and product R&D.
Rev. Econom. Stat. 78 223–243.

Cohen, W. M., D. A. Levinthal. 1990. Absorptive capacity: A new
perspective on learning and innovation. Admin. Sci. Quart. 35(1)
128–152.

Cohen, W. M., R. C. Levin, D. C. Mowery. 1987. Firm size and R&D
intensity: A re-examination. J. Indust. Econom. 35 543–565.

DeCarolis, D. M., D. L. Deeds. 1999. The impact of stocks and flows
of organizational knowledge on firm performance: An empirical
investigation of the biotechnology industry. Strategic Manage-
ment J. 20 953–968.

Denrell, J. 2004. Random walks and sustained competitive advantage.
Management Sci. 50(7) 922–934.



Cattani: A Study on the Evolution of Fiber Optics, 1970–1995
Organization Science 16(6), pp. 563–580, © 2005 INFORMS 579

Dosi, G. 1982. Technological paradigms and technological trajecto-
ries. Res. Policy 11 147–162.

Fleming, L. 2001. Recombinant uncertainty in technological search.
Management Sci. 47(1) 117–132.

Fleming, L., O. Sorenson. 2001. Technology as a computer adaptive
system: Evidence from patent data. Res. Policy 30(7) 1019–
1039.

Futuyma, D. J. 1998. Evolutionary Biology. Sinauer Associates,
Sunderland, MA.

Garud, R., P. R. Nayyar. 1994. Transformative capacity: Contin-
ual structuring by inter-temporal technology transfer. Strategic
Management J. 15(5) 365–385.

Garud, R., P. R. Nayyar, Z. B. Shapira. 1997. Technological Inno-
vation. Oversights and Foresights. Cambridge University Press,
Cambridge, UK.

Gould, S. J., R. C. Lewontin. 1979. The spandrels of San Marco
and the Panglossian paradigm: A critique of the adaptationist
programme. Proc. Roy. Soc. London 205 581–598.

Gould, S. J., E. S. Vrba. 1982. Exaptation—A missing term in the
science of form. Paleobiology 8 4–15.

Griliches, Z. 1981. Market value, R&D and patents. Econom. Lett. 7
183–187.

Griliches, Z. 1990. Patent statistics as economic indicators: A survey.
J. Econom. Literature 28 1661–1707.

Griliches, Z., A. Pakes, B. H. Hall. 1987. The value of patents as
indicators of inventive activity. P. Dasgupta, P. Stoneman, eds.
Economic Policy and Technological Performance. Cambridge
University Press, Cambridge, UK.

Hall, B. H. 2000. Innovation and market value. R. Barrell, G. Mason,
M. O’Mahoney, eds. Productivity, Innovation and Economic
Performance. Cambridge University Press, Cambridge, UK.

Hall, B. H., R. Ham-Ziedonis. 2001. The patent paradox revisited:
An empirical study of patenting in the US semiconductor indus-
try, 1979–1995. RAND J. Econom. 32(1) 101–128.

Hall, B. H., A. B. Jaffe, M. Trajtenberg. 2001. The NBER patent
citations data file: Lessons, insights and methodological tools.
NBER Working Paper Series No. 8498, Cambridge, MA.

Ham-Ziedonis, R. 2004. Don’t fence me in: Fragmented markets
for technology and the patent acquisitions strategies of firm.
Management Sci. 50(6) 804–820.

Hargadon, A., R. I. Sutton. 1997. Technology brokering and innova-
tion in a product development firm. Admin. Sci. Quart. 42(6)
716–749.

Harhoff, D., F. Narin, F. M. Scherer, K. Vopel. 1999. Citation fre-
quency and the value of patented inventions. Rev. Econom. Stat.
81(3) 511–515.

Hausman, J., B. H. Hall, Z. Griliches. 1984. Econometric models for
count data with an application to the patents-R&D relationship.
Econometrica 52(4) 909–938.

Hecht, J. 1999a. City of Light. Oxford University Press, New York.

Hecht, J. 1999b. Understanding Fiber Optics, 3rd ed. Prentice Hall,
Upper Saddle River, NJ.

Helfat, C. E. 1994. Evolutionary trajectories in petroleum firm R&D.
Management Sci. 40(12) 1720–1747.

Helfat, C. E., M. Lieberman. 2002. The birth of capabilities: Mar-
ket entry and the importance of pre-history. Indust. Corporate
Change 11(4) 725–760.

Henderson, R. M. 2000. “Luck,” “Leadership” and “Strategy.”
J. A. C. Baum, F. Dobbin, eds. Economics Meets Sociology in
Strategic Management. JAI Press Inc., Sanford, CT, 285–290.

Henderson, R. M., K. B. Clark. 1990. Architectural innovation: The
reconfiguration of existing product technologies and the failure
of established firms. Admin. Sci. Quart. 35(1) 9–30.

Henderson, R. M., I. M. Cockburn. 1994. Measuring competence?
Exploring firm effects in pharmaceutical research. Strategic
Management J. 15 63–84.

Henderson, R. M., I. M. Cockburn. 1996. Scale, scope, and spillovers:
The determinants of research productivity in drug discovery.
RAND J. Econom. 27(1) 32–59.

Hill, C. W., F. T. Rothaermel. 2003. The performance of incum-
bent firms in the face of radical technological innovation. Acad.
Management Rev. 28(2) 257–274.

Holbrook, D., W. M. Cohen, D. A. Hounshell, S. Klepper. 2000.
The nature, sources, and consequences of firm differences in the
early history of the semiconductor industry. Strategic Manage-
ment J. 21(10–11) 1017–1041.

Jaffe, A. B. 1986. Technological opportunity and spillovers of R&D:
Evidence from firms’ patents profits and market value. Amer.
Econom. Rev. 76(5) 984–1001.

Jaffe, A. B., M. Trajtenberg. 2002. Patents, Citations, and Inno-
vations: A Window on the Knowledge Economy. MIT Press,
Cambridge, MA.

Jaffe, A. B., M. Trajtenberg, R. M. Henderson. 1993. Geographic
localization of knowledge spillovers as evidenced by patent cita-
tions. Quart. J. Econom. 108(3) 577–598.

Kao, K. C., G. A. Hockham. 1966. Dielectric-fibre surface waveguides
for optical frequencies. Proc. Institution Electrical Engrg. (IEE)
113 1151–1159.

Katila, R., G. Ahuja. 2002. Something old, something new: A longi-
tudinal study of search behavior and new product introduction.
Acad. Management J. 45(6) 1183–1194.

King, A. A., C. L. Tucci. 2002. The role of experience and managerial
choice in the creation of dynamic capabilities. Management Sci.
48(2) 171–186.

Klepper, S. 2002. The capabilities of new firms and the evolution
of the US automobile industry. Indust. Corporate Change 11(4)
645–665.

Klepper, S., K. L. Simons. 2000. Dominance by birthright: Entry
of prior radio producers and competitive ramifications in the
US television receiver industry. Strategic Management J. 21
997–1016.

Leonard-Barton, D. 1992. Core capabilities and core rigidities:
A paradox in managing new product development. Strategic
Management J. 13 111–126.

Levin, R. C., A. K. Klevorick, R. R. Nelson, S. G. Winter. 1987.
Appropriating the returns from industrial research and develop-
ment. Brookings Papers Econom. Activity 3 783–833.

Levinthal, D. A. 1998. The slow pace of rapid technological change:
Gradualism and punctuation in technological change. Indust.
Corporate Change 7(2) 217–247.

Levinthal, D. A., J. G. March. 1993. The myopia of learning. Strategic
Management J. 14 95–113.

Levitt, B., J. G. March. 1988. Organizational learning. Annual Rev.
Soc. 14 319–340.

Malerba, F., L. Orsenigo. 1999. Technological entry, exit and survival:
An empirical analysis of patent data. Res. Policy 28 643–660.



Cattani: A Study on the Evolution of Fiber Optics, 1970–1995
580 Organization Science 16(6), pp. 563–580, © 2005 INFORMS

March, J. G. 1994. A Primer on Decision-Making: How Decisions
Happen. The Free Press, New York.

March, J. G., H. A. Simon. 1958. Organizations. Wiley, New York.

Martin, M., W. Mitchell. 1998. The influence of local search and per-
formance heuristics on new design introduction in a new product
market. Res. Policy 26 753–771.

Methe, D., A. Swaminathan, W. Mitchell, R. Toyama. 1997. The
underemphasized role of diversifying entrants and industry
incumbents as the sources of major innovations. H. Thomas,
D. O’Neal, eds. Strategic Discovery: Competing in New Arenas.
Wiley, New York, 99–116.

Mitchell, W. 1989. Whether and when? Probability and timing of
incumbents’ entry into emerging industrial subfields. Admin. Sci.
Quart. 34 208–230.

Mokyr, J. 2000. Evolutionary phenomena in technological change.
J. Ziman, ed. Technological Innovation as an Evolutionary Pro-
cess. Cambridge University Press, Cambridge, UK, 52–65.

Nagarajan, A., W. Mitchell. 1998. Evalutionary diffusion: Internal and
external methods used to acquire encompassing, complementary,
and incremental technological changes in the lithotripsy indus-
try. Strategic Management J. 19 1063–1079.

Narin, F., E. Noma, R. Perry. 1987. Patents as indicators of corporate
technological strength. Res. Policy 16(2–4) 143–146.

Narin, F., P. Thomas, A. Breitzman. 2001. Using patent indicators to
predict stock portfolio performance. B. Berman, ed. From Ideas
to Assets: Investing Wisely in Intellectual Property. John Wiley
& Sons, New York, 293–308.

Nelson, R. R. 1991. Why do firms differ, and how does it matter?
Strategic Management J. 12 61–74.

Nelson, R. R., S. G. Winter. 1982. An Evolutionary Theory of Eco-
nomic Change. Belknap Press, Cambridge, MA.

Patel, P., K. Pavitt. 1994. The continuing, widespread (and neglected)
importance of improvements in mechanical technologies. Res.
Policy 23(5) 533–545.

Penrose, E. T. 1952. Biological analogies in the theory of the firm.
Amer. Econom. Rev. 42 804–819.

Peteraf, M. 1993. The cornerstones of competitive advantage:
A resource-based view. Strategic Management J. 14 179–191.

Porter, M. E. 1991. Towards a dynamic theory of strategy. Strategic
Management J. 12 95–117.

Reeve, H. K., P. W. Sherman. 1993. Adaptation and the goals of
evolutionary research. Quart. Rev. Biol. 68(1) 1–32.

Ridley, M. 1999. Evolution. Blackwell Science, Cambridge, MA.

Rosenkopf, L., A. Nerkar. 2001. Beyond local search: Boundary-
spanning, exploration, and the impact in the optical disk indus-
try. Strategic Management J. 22 287–306.

Rumelt, R. P. 1984. Toward a strategic theory of the firm.
R. B. Lamb, ed. Competitive Strategic Management. Prentice-
Hall, Englewood Cliffs, NJ.

Scherer, F. M. 1965. Firm size, market structure, opportunity, and
the output of patented innovations. Amer. Econom. Rev. 55
1097–1123.

Shane, H., M. Klock. 1997. The relation between patent citations and
Tobin’s q in the semiconductor industry. Rev. Quant. Finance
Accounting 9(2) 131–146.

Silverman, B. S. 1999. Technological resources and the direction of
corporate diversification: Toward an integration of the resource-
based view and transaction cost economics. Management Sci.
45(8) 1109–1124.

Sørensen, J. B., T. E. Stuart. 2000. Aging, obsolescence and organi-
zational innovation. Admin. Sci. Quart. 45 81–112.

Stinchcombe, A. L. 1965. Social structure and organizations.
J. G. March, ed. Handbook of Organizations. Rand McNally,
Chicago, IL.

Stuart, T. E., J. M. Podolny. 1996. Local search and the evolu-
tion of technological capabilities. Strategic Management J. 17
21–38.

Teece, D. J., G. Pisano, A. Shuen. 1997. Dynamic capabilities
and strategic management. Strategic Management J. 18(7)
509–533.

Teece, D. J., R. Rumelt, G. Dosi, S. G. Winter. 1994. Understanding
corporate coherence: Theory and evidence. J. Econom. Behavior
Organ. 23 1–30.

Trajtenberg, M. 1990a. A penny for your quotes: Patent cita-
tions and the value of innovations. RAND J. Econom. 21(1)
172–187.

Trajtenberg, M. 1990b. Economic Analysis of Product Innovation.
Harvard University Press, Cambridge, MA.

Trajtenberg, M., R. M. Henderson, A. B. Jaffe. 1997. University ver-
sus corporate patents: A window on the basicness of invention.
Econom. Innovation New Technology 5(1) 19–50.






