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At its core, a behavioral theory of choice has two fundamental attributes that distinguish it from traditional economic
models of decision making. One attribute is that choice sets are not available ex ante to actors, but must be constructed.

This notion is well established in our models of learning and adaptation. The second fundamental postulate is that the
evaluation of alternatives is likely to be imperfect. Despite the enshrinement of the notion of bounded rationality in the
organizations literature, this second postulate has been largely ignored in our formal models of learning and adaptation. We
develop a structure with which to capture the imperfect evaluation of alternatives at the individual level and then explore the
implications of alternative organizational structures, comprising such individual actors, on organizational decision making.
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A central building block of the behavioral theory of
the firm is the notion of bounded rationality (Simon
1955). In contrast to the optimizing agent of neoclassical
economics, Simon offered the satisficing decision maker.
The set of alternative actions are not presumed to be
laid out in their entirety ex ante, but must be discovered
or searched. This facet of the behavioral theory of the
firm (March and Simon 1958, Cyert and March 1963,
Nelson and Winter 1982) is by now well established.
However, another critical facet of bounded rationality
has been largely ignored in this tradition, and that is how
alternatives, once identified, are to be evaluated.
Simon (1955) suggested that, rather than optimizing a

utility function, individuals search for alternatives until
they identify one that satisfies some minimum perfor-
mance criteria—i.e., in his words, individuals engage in
satisficing behavior. Central to this perspective is the
view that choice alternatives are considered in a sequen-
tial manner and that the process of the sequential eval-
uation of alternatives stops well short of some latent
optimal possible option. What is less salient, though con-
sidered in the original discussion, is how actors are to
evaluate the proposed solutions or alternatives. How is
an actor to know whether a given alternative in fact “sat-
isfices” or not? Simon (1955) noted that there may be
uncertainty as to whether a particular alternative yields
a state of nature that is in the satisfactory set or not, but
the text suggests that this indeterminacy may be resolved
by identifying a new alternative that does not suffer this
risk. However, this discussion points to an important
lacuna in both this early and subsequent development of
behavioral theories of individuals and firms.1

While ideas of search are central in behavioral the-
ories of the firm (March and Simon 1958, Cyert and
March 1963), the mechanisms by which these alterna-
tives are evaluated are less clearly developed (Gavetti
and Levinthal 2000). Models of adaptive search gener-
ally have the following characteristics. Some space of
possible alternatives is sampled. The realization from
this draw is then compared either to the current status
quo action, or, in other cases, to an aspiration level (e.g.,
Levinthal and March 1981, Nelson and Winter 1982,
Lant and Mezias 1990). When the space of alternatives
constitutes attributes such as prices (Stigler 1961, Nelson
1970), assuming that quality attributes are well defined
and equal, then the model does not seem to require any
elaboration. However, consider other possible spaces of
alternatives, such as the space of possible spouses or the
set of possible new production technologies for a fac-
tory. When presented with a new alternative from one
of these sorts of spaces, how is one to recognize a satis-
factory solution when one is confronted with a proposed
solution? When is one to stop searching for alternatives?
Despite the neglect of uncertain evaluation in our mod-
els of adaptive search, it is an important characteristic
of many task environments.
Another important gap in our formal models of search

is that the work tends to be remarkably nonorgani-
zational (but see March 1991, Lin and Carley 1997,
Seshadri and Shapira 2003, Rivkin and Siggelkow 2003,
and Siggelkow and Rivkin 2005 for important excep-
tions). While the label of organizations may be invoked,
oftentimes the formal structure corresponds to a model
of individual-level problem solving. We draw on Chris-
tensen and Knudsen’s (2004) recent extension of the
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Sah and Stiglitz (1986) characterization of organiza-
tional architectures to provide a framework with which
we can consider the impact of alternative organizational
structures on search processes.
As in the work initiated by Sah and Stiglitz (1986) and

in the Theory of Teams (Marschak and Radner 1972), the
notion of organizational form used in the present study is
referring to a stylized representation of the flow of infor-
mation among organization members. Thus, a hierar-
chy is a centralized information-processing structure and
a polyarchy is a decentralized information-processing
structure (Sah and Stiglitz 1986). Therefore, the terms
hierarchy and �de�centralization are used here in a nar-
row sense of information-processing structures and do
not fully incorporate issues of authority and control
(Weber 1942) or, for instance, power and politics (Pfef-
fer 1981). While some progress has been made toward
incorporating such considerations into formal models
(cf. Dosi et al. 2003, Rivkin and Siggelkow 2003, and
Siggelkow and Rivkin 2005), that is not the focus of the
current work. Rather, we are concerned with the organi-
zation of individual evaluators and the nature of collec-
tive evaluation criteria.
At a basic level, evaluation of alternatives can suf-

fer from two possible errors: Type I errors of rejecting
a superior alternative and Type II errors of accepting
an inferior alternative. As shown on the work on eco-
nomic architecture (Sah and Stiglitz 1986, Christensen
and Knudsen 2004), different organizational structures
vary in their proclivity to make one type of error or
the other. In particular, hierarchical structures, in which
a proposal needs to be validated by successive ranks
of the hierarchy in order to be approved, will tend to
reduce the likelihood that an inferior alternative will be
adopted—i.e., hierarchy reduces Type II errors. In con-
trast, what Sah and Stiglitz (1986) term polyarchies—
a flat organizational structure in which approval by any
one actor in a series of decision makers is sufficient for
an alternative to be approved—will tend to minimize the
probability of rejecting a superior alternative—i.e., pol-
yarchy reduces Type I errors. Christensen and Knudsen
(2004) provide a general graph-theoretic treatment of
these structures that allows one to consider the full range
of organizational architectures that range between these
two extreme forms, and thereby allows one to specify
structures that trade off these two types of errors as the
relative degree of hierarchy and polyarchy shifts and,
furthermore, to examine the change in the overall reli-
ability of the organizational structure as the number of
actors within the organization changes.
Using this analytical platform, we examine how alter-

native organizations of evaluators would move on a
space of possible alternatives. In particular, we use the
structure of fitness landscapes (Wright 1931, Kauffman
1993) to characterize a sense in which alternatives are
more or less proximate to one another.2 As characterized

by Levinthal (1997), a process of local search is mod-
eled as examining, at random, one of the adjacent points
in the space of alternatives. The values of points in
adjacent locations in fitness landscapes, as developed by
Kauffman (1993), are correlated, with the degree of cor-
relation being tuned by the intensity of the interdepen-
dencies among the N attributes that contribute to the fit-
ness of a given alternative. Changing the level of interde-
pendencies also has an impact on the overall structure of
the landscape in that the number of local peaks increases
with the degree of interdependencies (Kauffman 1993).
The presence of local peaks poses particular challenges
to a process of local search, because a decision maker
at a local peak will be unable to identify superior alter-
natives that may be present on the broader landscape.
While the structure of fitness landscapes has been

used to consider the issue of organizational adaptation
(cf., Levinthal 1997, Rivkin 2000), as with much of the
broader literature on search processes, the issue of how
alternatives are to be evaluated has been underdeveloped.
There have been some recent studies (e.g., Rivkin and
Siggelkow 2003, Dosi et al. 2003, Ethiraj and Levinthal
2004) that examined how the allocation of decisions
across actors within an organization and the degree to
which actors make decisions based on the parochial con-
cerns of their local subunit or the payoff to the broader
organization affects the adaptive capabilities of an orga-
nization. However, in these analyses there is no uncer-
tainty as to the payoff implications of the choices being
made; rather, decision-making processes are affected by
the perspective (local versus global, one subunit versus
another) taken by the actors. Closer in spirit to our effort
is Gavetti and Levinthal (2000), who contrasted evalua-
tion that is off-line, in which assessment is done on the
basis of actors’ cognitive model of the fitness landscape,
and online, in which the evaluation occurs subsequent to
experience with the actual alternative.
We try to incorporate both faces of a search pro-

cess: the sequential identification of alternatives and the
uncertain evaluation of those alternatives that are identi-
fied. Whilst the first topic has been studied extensively in
previous models of adaptive search, the second topic of
uncertain evaluation has been rather neglected. We find
that highly accurate evaluation of alternatives results in
search processes being greatly influenced by the happen-
stance of the order in which alternatives are identified by
the actor. As a consequence, highly accurate evaluators
become trapped by their random starting positions in the
landscape of alternative actions. Perfect evaluation leads
to the rapid identification of a local peak and the per-
sistence in that location across time. In contrast, imper-
fect evaluation leads to a more robust search process
that is not as influenced by the happenstance of one’s
starting position in this landscape. Furthermore, we find
that populations of moderately imperfect evaluators pay
a surprisingly modest penalty in terms of the variability
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in their performance, either in a cross-sectional manner,
or across time.3

We also consider, albeit in a rather stylized manner,
how the structure of organizational evaluation of alter-
natives impacts these dynamics. Organizations that are
hierarchical in structure, even if composed of imperfect
evaluators, tend to replicate the conservatism of perfect
evaluators and become trapped by local peaks. Hybrid
forms, consisting of a mixture of polyarchy and hierar-
chy, effectively balance the dual imperatives of explo-
ration and exploitation (Holland 1975, March 1991).
More generally, this work fits into a tradition of an

information-based processing approach to contingency
theory (Galbraith 1973, Burton and Obel 1984). Our
analysis points to a three-way contingency among
agents’ screening ability, the nature of the problem envi-
ronment as defined by the degree of interaction in the
task environment, and the structure of decision making
within the organization. Screening ability and organiza-
tional structure display an important degree of comple-
mentarity. The less able (or, conversely, the more able)
individual evaluators are, the more attractive are orga-
nizational forms that tend toward hierarchy (polyarchy)
as the hierarchical structure tends to compensate for the
high error rates of less able individual evaluators (or,
conversely, the variance induced by the polyarchy forms
tends to compensate for the overly precise judgments of
more able evaluators).

Model Structure
The model structure has three basic elements: the char-
acterization of individual evaluation of alternatives, how
individual evaluators are aggregated into an organiza-
tional form, and the specification of the task environment
or the space of alternatives.

Individual Evaluation of Alternatives
Individual evaluators are characterized as being able to
distinguish between a proposed action alternative and the
status quo with more or less reliability. A perfect eval-
uator would, with certainty, distinguish between inferior
and superior alternatives no matter how small the value
differences are between two proposals. However, deci-
sion makers are unlikely to conform to such high stan-
dards. Actors are likely to make errors in identifying
which of a pair of alternatives is, in fact, superior. How-
ever, one would expect that the likelihood of making a
false classification is a decreasing function of the actual
differences in value between the alternatives. That is,
one may frequently misclassify pairs of alternatives that
vary in payoff by only a small amount. In contrast, if
the payoff to the two alternatives is substantially differ-
ent, then the probability of making a misclassification,
while not zero, would certainly be less than in the former
case. Thus, misclassification is not a random process.

Figure 1 Six Levels of Screening Ability for an Evaluator,
Ranging from Completely Random Screening ��= 0�
to Perfect Screening ��→��
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All evaluators are presumed to be intelligent in that they
are more likely to favor superior alternatives; rather, they
are simply assumed to vary in the precision with which
they do this.
These properties are reflected in the screening func-

tions represented in Figure 1. The horizontal axis indi-
cates the actual difference in payoffs between a currently
held alternative and a proposed alternative (current fit-
ness minus new fitness), ranging from large negative dif-
ferences in value to large positive differences in values.
The vertical axis indicates the probability that an eval-
uator would accept the proposed alternative. Obviously,
an intelligent screening function should have an upward
slope, such that superior alternatives are more likely to
be accepted than are inferior alternatives. In the extreme,
with a perfect evaluator, the curve would have a point
of discontinuity at zero, such that proposed alternatives
with a payoff less than the current alternative (yielding a
negative fitness difference) would be rejected with prob-
ability one and those with higher payoff (positive fitness
difference) accepted with certainty.
We specify a family of screening functions f �x� that

takes the difference, x, of current fitness minus new
fitness as an argument. The particular functional form
used in the present work is a linear screening function,
f �x�= �x+ �. The slope of the line, indicated by the
variable �, can be interpreted as the screening capability
of the evaluator. A steeper slope, or higher value of �,
implies that the probability of accepting a proposal is
more sensitive to changes in its actual value. The cutoff
of the line, indicated by the variable �, can be inter-
preted as the bias of the evaluator’s error (a higher value
of � favors Type II errors of accepting an inferior alter-
native, while a lower � favors Type I errors rejecting a
superior alternative). Within the class of linear screening
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functions, we restrict our attention to those that are unbi-
ased in that if there is no difference in payoff between
the proposed alternative and the current action (the value
of fitness difference is zero), then the actor is equally
likely to accept or reject the proposed alternative.4 Thus,
we have symmetric errors �= 0 and the screening func-
tion becomes f �x�= �x. As � becomes arbitrarily large
��→��, the screening function approximates that of a
perfect evaluator.

Aggregation of Individual Evaluators into
an Organizational Form
Individual evaluators can be aggregated into more com-
plex organizational forms. In particular, organizations
can be characterized by the number of evaluators within
them, but also more subtly by the nature of deci-
sion authority within them. Following Sah and Stiglitz
(1986), we focus on whether or not a given actor has the
authority to approve or reject a proposed alternative, or
is merely authorized to pass the proposed initiative along
within a broader chain of command. In particular, con-
sider the flow of decisions in six distinct organizational
forms shown in the appendix. In what we term a hier-
archy, a proposal is initially considered by the evaluator
at the far left in Figure A1. If the proposal is rejected
by that evaluator, it is eliminated from further consider-
ation (indicated in the figure by the dashed vertical line
from that decision node). Alternatively, if the proposal is
approved by that individual, then it is passed rightward
to the next individual in the chain of command. A pro-
posal is acted on only if it is positively screened by all
six evaluators. The evaluator to the far right, effectively
sitting at the top of this hierarchy, views only propos-
als that have been successfully vetted by the lower-level
actors and has final say as to whether the organization
adopts those proposed initiatives that reach his or her
attention. In a hierarchical evaluation of a stack of job
applications, for example, applications are eliminated at
each level in the hierarchy and a diminished stack moves
up to the next level. The evaluator at the top of the hier-
archy will only see a very small stack of applications.
At the other extreme is the polyarchy structure. Here,

proposed alternatives can be adopted by any of the
six decision makers; an alternative is only dismissed
if all decision makers in succession reject it. It is this
contrast between the conservative (rejection-oriented)
hierarchical structure and the acceptance-oriented pol-
yarchy structure that Sah and Stiglitz (1986) considered.
Christensen and Knudsen (2004) developed an analyt-
ical structure that allowed them to consider a wide
range of hybrid forms that lie intermediate to these
two extremes.5 The appendix illustrates four intermedi-
ate forms that range from nearly hierarchical (Hybrids 1
and 2) to nearly polyarchical (Hybrids 3 and 4).
In analyzing the role of alternative organizational

forms, we wish to distinguish between the effect of indi-
vidual differences in screening ability and the impact

Figure 2 Ability of Imperfect Evaluator Compared to Six
Organizational Forms, Each Built of Six Identical
Imperfect Evaluators
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Notes. We represent the case where n = 6 and �= 10. The ability
of the six hybrid organizational forms were derived according to
the procedure shown in the appendix.

of the structure of the relationship among evaluators
within the organization. Therefore, we treat organiza-
tions as being homogeneous in the screening ability of
the individual evaluators that comprise the organization,
although we examine the impact of varying this homo-
geneous level.
Figure 2 indicates the effective screening properties

of six alternative organizational forms, all comprised of
6 evaluators with an � value of 10. It compares the
screening function of an individual evaluator (indicated
by the straight diagonal line) with the screening func-
tions of six different organizational forms that are each
built from a number (six) of such individual agents.
Using methods outlined in Christensen and Knudsen
(2004), we derive an organizational-level screening func-
tion, F , which is a mathematical representation of the
flow of decisions in an organizational form (as shown in
the appendix). In order to examine the effect of chang-
ing organizational structure, we assume that all mem-
bers in an organization have identical abilities. That is,
we assume that the individual-level screening function,
f �x�, the probability that an individual accepts an alter-
native, is the same for all members of an organization. In
this case, the organizational-level screening function, F ,
is a polynomial in the individual-level screening func-
tion, f �x�, i.e., F takes f �x� as an argument.
The particular functional form of F represents an ag-

gregation of information flows in the organization under
consideration. The appendix shows the organizational-
level screening function, F , for the six organizations
studied in the present work. Notably, the organizational-
level screening function, F , of the six hybrid organiza-
tions shown here will change in the same way relative
to any screening function f �x� at the individual level.
Thus, the aggregation of an organizational form does
not depend on the underlying individual-level screening
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function. Any given individual-level screening function
will be changed in the way shown in Figure 2.
The organizational-level screening function of an

n-member hierarchy is F = f �x�n, and the organiza-
tional-level screening function of an n-member pol-
yarchy is F = 1− �1− f �x��n. For example, accepting
an alternative in the six-member hierarchy requires that
all six members accept the alternative. Therefore, the
organizational-level screening function of the hierarchy
(shown in Figure 2) is given by F = f �x�6, which is
the probability that this structure accepts the alternative
in question. In a similar way, it is easy to see that the
organizational-level screening function of the polyarchy
(shown in Figure 2) is given by F = 1−�1−f �x��6, i.e.,
the probability that at least one out of the six polyarchy
members accepts an alternative. The screening functions
of the four hybrids shown in the appendix are derived in
a similar way.6 As a point of reference, in Figure 2 we
also include for comparison the evaluation function of a
single perfect evaluator.7

The set of possible organizational forms is enormous,
with the number of members ranging from n = 2 to
infinity. We chose a set of structures with six organiza-
tional members—a number sufficient to generate a rich
set of possible forms (there is a total of 223 topologically
distinct graphs representing hybrid organizations with
six members),8 yet small enough to allow for an explicit
representation of the individual organizational forms (see
Figure A1 in the appendix). Among these, we picked the
four hybrid structures that best spanned the topological
(and functional) difference between the hierarchy and
polyarchy. We see that the screening function of the pol-
yarchy lies everywhere above the screening functions of
alternative forms. This implies that the polyarchy for any
given fitness difference is, as we suggested above, more
prone to accept alternatives, even those with a negative
value—a Type II error. That is, the polyarchy reduces
Type I error at the expense of increasing Type II error.
Conversely, hierarchies are very unlikely to mistakenly
accept an inferior alternative (a Type II error) with the
probability of acceptance being near zero for alterna-
tives with a negative fitness difference. However, that
same caution causes the hierarchical structure to reject
many superior alternatives, i.e., alternatives with a posi-
tive fitness difference—a Type I error. Hierarchy reduces
Type II error and increases Type I error. Interestingly,
the screening function of hybrid forms will trade off the
effects of polyarchy and hierarchy: Hybrids reduce both
Type II and Type I errors (in particular, this effect is
apparent in Hybrids 2 and 3).

Specification of the Task Environment
The final basic element of the model structure concerns
the task environment in which evaluators (and organi-
zations) operate. In prior work on the effect of alterna-
tive organizational forms on the effectiveness of screen-
ing alternatives, the process of alternative generation is

treated as consisting of random draws from a fixed dis-
tribution of possibilities (Sah and Stiglitz 1986, Chris-
tensen and Knudsen 2004). However, research on organi-
zational search processes (March and Simon 1958, Cyert
and March 1963) has emphasized the spatial location of
the set of possible alternatives, with the notions of local
and distant search being central in theoretical (March
and Simon 1958, Nelson and Winter 1982) and empir-
ical (Stuart and Podolny 1996, Rosenkopf and Nerkar
2001) analyses. The imagery of spatial location is given
clear expression in work on search in fitness landscapes
(Levinthal 1997).
The generation of alternatives is not purely random,

but is likely to reflect the availability of options in
the neighborhood of the organization’s current practices.
Building on Levinthal (1997) and related work (Rivkin
2000, Rivkin and Siggelkow 2003, Dosi et al. 2003), the
task environment of fitness landscapes (Kauffman 1993)
is used to characterize a space of alternatives, where
alternatives vary along any one of N dimensions and the
correlation among distinct alternatives can be tuned by
manipulating how interdependent these N elements are
in determining the overall payoff.
If attributes of a policy contribute to performance in

a relatively independent manner, the landscape of policy
alternatives is relatively smooth; changing one attribute
of the policy only affects the performance contribu-
tion of that attribute in isolation. In contrast, if pol-
icy attributes have a high degree of interdependence,
then changing even just one attribute may have broader
repercussions and affect the performance contributions
of other attributes. As a result, a landscape of alterna-
tives in which there is a high degree of interdependence
will exhibit a relatively low level of correlation, with
even modest shifts in attributes leading to a pronounced
change in overall value. Related to this issue of degree of
correlation among neighboring alternatives is the num-
ber of peaks in this performance landscape. With no
interdependence among the policy attributes, there is a
single peak in the landscape corresponding to the opti-
mal setting of each of the individual policy attributes. As
interdependence increases, the performance surface will
exhibit local peaks of configurations of policy attributes
that exhibit some degree of internal consistency (Kauff-
man 1993).
As regards alternative generation, we adopt the model

used in much of the literature, i.e., randomly perturbing
one of the N activities of the firm. This model pro-
vides a stylized representation of myopic local search by
examining, at random, one of the adjacent points in the
space of alternatives. While agents might perturb more
activities, the properties of such longer jumps are fairly
well known (Levinthal 1997). Thus, in order to focus on
the issue of alternative evaluation, we limit our analysis
of alternative generation to the simple model of myopic
local search.



Knudsen and Levinthal: Alternative Generation and Alternative Evaluation
44 Organization Science 18(1), pp. 39–54, © 2007 INFORMS

More formally, we specify alternatives as consisting
of N attributes, a1� � � � � aN . For simplicity, it is assumed
that each attribute can take on two states. A perfor-
mance landscape is a mapping of any possible vector of
firm choices A= �a1� a2� � � � � aN � to performance values
V �A�. We create performance landscapes with a variant
of the NK model (Kauffman 1993; see Sorenson 2002
for a review of these models in the organizations litera-
ture). The value of each individual attribute ai is affected
by both the state of that attribute itself and the states
of a number of other attributes a−i. Denote the value of
attribute ai by ci�ai� a−i�. For each landscape, the par-
ticular value of an attribute, ci, is determined by drawing
randomly from a uniform distribution over the unit inter-
val, i.e., ci�ai� a−i� ∼ u�0�1�. The value of a given set
of alternatives A is then given by

V = �c1�a1� a−1�+ c2�a2� a−2�+ · · ·+ cN �aN �a−N ���

The identity of a−i, i.e., the set of alternatives that
affect each attribute ai, is given by the interaction struc-
ture of the firm’s decision problem (i.e., the variable K�.

Analysis
To provide some initial understanding of the nature of
the adaptive search process modeled here, we first con-
sider the behavior of individual evaluators, and then, in
the subsequent analysis, model the behavior of alterna-
tive organizational structures. All results reported here
are based on simulations of landscapes with N = 10.
We use K = 3 as a baseline case and, in a later sec-
tion, expand the analysis to provide a comprehensive
assessment of robustness by considering all levels of K
�0�1� � � � �N −1�. Unless indicated otherwise, our results
reflect the average of 100 entities searching on each of
100 distinct landscapes, resulting in 10,000 unique runs
obtained from 100 different landscapes. Each of these
landscapes has the same structure in terms of K, the
degree of interdependence among attributes in contribut-
ing to performance, but represents a distinct draw on
the common underlying probability-generating structure.
At the beginning of each of the 10,000 runs, attribute
sets are randomly assigned to the individual entities. In
some simulations,9 we analyze the behavior over a sin-
gle, randomly specified performance landscape, but hold
constant the number of unique runs at 10,000.
To enhance the comparison across these families of

landscapes, we normalize the performance level on each
surface so that average performance equals 0.5 and max-
imum performance equals one. That is, the crude fitness
measure à la Kauffman is normalized in order to com-
pare the results across different values of K. Using this
normalized measure instead of the crude fitness measure
does not alter the results in a qualitative sense.10

Figure 3 Fitness for Perfect Evaluator and Imperfect Evaluator
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Individual Evaluators
Figure 3 indicates the performance of two types of eval-
uators who vary according to the accuracy of their eval-
uation function. For the sake of a baseline comparison,
we model one as being a perfect evaluator; in this set-
ting, only alternatives that enhance the actual payoff will
be accepted. In contrast, the other evaluator ��= 10�
exhibits some intelligence in evaluation (i.e., � > 0),
with the probability of accepting a more favorable alter-
native increasing as a linear function of the performance
increases associated with that alternative; however, this
evaluator will at times mistakenly accept alternatives that
in fact offer inferior performance, and in other instances
will reject alternatives that could enhance the organi-
zation’s performance (i.e., � is finite). We see that the
perfect evaluator quickly asymptotes in the performance
that is achieved, while the imperfect evaluator not only
outperforms the perfect evaluator, but, if additional peri-
ods are examined, continues to exhibit modest but steady
performance improvement. Perfect evaluation leads to
the rapid identification of a local peak and the per-
fect evaluation function will lead the actor to maintain
that position for the remainder of the simulation, while
imperfect evaluation leads to persistence in search.
We would expect, however, that imperfect evaluation

would suffer from two possible downsides. First, it is
natural to expect that an imperfect evaluator would expe-
rience a slower rate of ascent in initial performance gains
because an imperfect evaluator, by definition, will at
times make downward moves.11 Even though the per-
fect evaluator converges faster to the local optimum than
does the imperfect evaluator, the difference in the initial
rate of progress between the imperfect and the perfect
evaluator is too slight to be visible in the comparison
shown in Figure 3. However, around Period 40, we start
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Figure 4 Distribution of Imperfect Evaluators at Each Peak During the Entire Run
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Note. K = 3, 10�000 evaluators each on a single randomly selected landscape.

to see a divergence in the two performance curves as
the performance of the imperfect evaluator continues on
an upward gradient, while that of the perfect evaluator
begins to asymptote. With less ability of the imperfect
evaluator or larger values of N , the faster convergence of
the perfect evaluator to a local optimum becomes more
pronounced.12

The other penalty that imperfect evaluation might
exhibit is with respect to a limited ability to maintain,
over extended periods of time, the attractive alternatives
that have been identified. Given the noise in his or her
evaluation process, even if a global peak is identified,
there is a chance of mistakenly being seduced away from
it by an alternative that appears superior. Figure 4 illus-
trates the emergence of the distribution of evaluators
across the performance landscape, where the 1,024 dis-
tinct locations in the landscape are ranked ordered from
1 (the global peak) to 1,024 (the lowest value).13 In the
initial period, locations are randomly arrayed, and hence
the distribution of evaluators across locations is quite
flat. Rapidly, we see the emergence of clusters of evalu-
ators aggregating on specific locations in the landscape.
We see a particular massing of evaluators on the global
peak, although given the imperfect evaluations, there
is some dispersion of evaluators around this peak—a
“cloud” of evaluators, as it were. In contrast, in Figure 5
with perfect evaluations, we see greater cross-sectional
dispersion among evaluators as columns of evaluators
aligned on distinct local peaks.
Figures 4 and 5 also provide more direct evidence

regarding the ability of the two populations of evaluators

to identify relatively attractive locations in the perfor-
mance landscape. We see that the evaluators’ locations
across different performance levels are much more dis-
persed in the case of imperfect evaluators. Imperfect
evaluators tend to mass at locales with the highest level
of performance, but occasionally visit discrete locales
associated with rather low levels of performance. While
imperfect evaluators tend to mass among the highest-
performing locations, there are fewer perfect evaluators
at these locations. Perfect evaluators tend to spread out
at intermediately performing locations.
Indeed, imperfect evaluators spread more unevenly

than do perfect evaluators, with most locating near the
highest-performing locations to a greater degree than do
perfect evaluators, but with the right tail being thicker
as well (i.e., there are more imperfect evaluators than
perfect evaluators doing poorly). The tendency of imper-
fect evaluators to occasionally visit rather low levels of
performance is a testimony to their very imperfection.
The negative performance effect is offset, however, by a
broadening of search that is also caused by the evalua-
tor’s imperfection. At the � value of 10 used in our base-
line (and, more generally, at intermediate levels of �),
the net effect is that imperfect evaluators, on average,
tend to mass at the highest-performing locations, with
occasional detours to low-performing places.
Building on this analysis, we can convey a more lit-

eral sense of the imagery of clouds of evaluators forming
more or less tighter clusters of movement around differ-
ent performance peaks in the landscape. Figures 4 and 5
indicate the number of evaluators in the two populations
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Figure 5 Distribution of Perfect Evaluators at Each Peak During the Entire Run
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Note. K = 3, 10�000 evaluators each on a single randomly selected landscape.

that mass at different locales, but these figures do not
convey a sense of the instability or turbulence in the
populations of imperfect evaluators. Imperfect evaluators
are, on average, finding attractive locations in the space
of alternatives, but are they wandering at some (possibly
high) rate of velocity on the performance landscape?
Figure 6 creates a panel of images that conveys a

sense of the dispersion of evaluators across locations in
terms of the size of the clouds of evaluators massing at
a location, and the flux in these constellations of eval-
uators. We measure flux, or turbulence, by the ratio of
the number of different evaluators who visit a particular
point in a given period of time (the last 10% of the run
in this analysis) to the average number of evaluators at
that location during that same time interval. In Figure 6,
this measure of turbulence is indicated by color, with
a darker color indicating a more turbulent setting. As
the population of evaluators cools down and this ratio
approaches 1, we use an increasingly lighter color. The
size of the circle represents the number of evaluators at
that location.
Highly imperfect evaluators (� equal to one) lead to

both a very diffuse population (the circles are numer-
ous in number and tend to be of modest size) and a
very turbulent structure, with many different evaluators
visiting a given locale (the clouds are very dark). Mod-
erately able evaluators (� values of 3, 5, and 10) result
in evaluators clustering on superior locations, with the
evaluators forming a few large constellations around the
superior points in the performance landscape. Clearly,
the degree of turbulence diminishes as the evaluators’

evaluation ability increases, with the color of the clouds
shifting from dark to light. However, we see that with
populations of evaluators who are highly accurate the
clouds tend to be frozen, in that there is little or no tur-
bulence. Such freezing tends to result in a number of
distinct constellations of evaluators, many of which are
not associated with particularly attractive points in the
performance landscape.
Thus, imperfect evaluators appear not to wander too

far away from the attractive peaks that they identify.
That is, the clouds of evaluators around the peaks stay
tightly clustered. We do not often see a situation in
which slightly inferior alternatives are adopted and then,
from this new lower base, even more inferior alternatives
are mistakenly adopted. It is certainly possible for eval-
uators to take such a two-step “walk” from an attractive
peak, and on occasion they will do so. However, the fact
that the screening process, while imperfect, is nonethe-
less intelligent (in that more favorable alternatives are
more likely to be accepted than are less favorable ones)
implies that mistakes (walks away from superior alter-
natives) will tend to be self-correcting. After accepting
an inferior alternative that takes him or her away from
an attractive peak, it is more likely that the subsequent
move will be back to this same peak rather than a move
that takes the evaluator even farther away from this loca-
tion. Ironically, the evaluators with an evaluation mech-
anism more prone to error exhibit less cross-sectional
variability than does the population of perfect evalua-
tors. While it is true that perfect evaluators will exhibit
greater reliability in terms of period-to-period location
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Figure 6 Fitness-Ranked Distribution of Evaluators Last 10% of Run
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and performance differences, we see from Figure 6 that
the degree of instability in the behavior of the imperfect
evaluator is rather modest. Furthermore, this population
convergence among the imperfect evaluators occurs at
the highest-performing locations in the landscape.
Our main result is driven by the fact that in high

K worlds, firms who do local search (with perfect eval-
uation) will get stuck on one of the myriad local peaks.
A general claim that noise (perturbations and muta-
tions) is beneficial in complex landscapes is not novel.
Scholars have long recognized that in complex environ-
ments some degree of perturbation or mutation leads to
broader search and better outcomes. Our claim goes fur-
ther, however, by considering what may be called intelli-
gent noise. Mutation probabilities are (usually) identical
for all of the alternatives and thus insensitive to fitness

differences. In contrast, the screening function intro-
duced in the present work is sensitive to the goodness
of possible alternatives. An alternative that has much
lower fitness than the current alternative will be accepted
with a (very) low probability. Similarly, alternatives with
much higher fitnesses will be accepted with a (very)
high probability. Finally, alternatives that only differ
marginally are accepted with a probability of about 1/2.
Thus, imperfect evaluation introduces intelligent search
in the sense that error probabilities depend on the per-
formance of a new proposed alternative relative to the
current.
Because the search effort of our imperfect evaluator

(e.g., �= 10, N = 10, K = 3) is characterized by intel-
ligent noise, she can outperform perfect evaluators even
if they benefit from (slight) random mutations.14 The
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reason is that random mutations lead to broader search
at the cost of occasional detours to inferior points in
the fitness landscape. A screening function, by contrast,
can be devised to favor broad search with a much lower
probability of experiencing such detours. Even though
we have used a linear screening function, our framework
allows the screening function to take on any shape. This
has two important implications. First, we can model a
much larger family of disturbances that may influence
the search process than is feasible with perturbations
or mutations of bit-strings. Second, and related, we can
capture any kind of deviations from perfect evaluation,
including symmetric or nonsymmetric evaluation (as in
prospect theory), and other kinds of misguided evalu-
ation. This is an important property of our framework
because it admits a straightforward way to model cog-
nitive biases and evaluation errors emphasized in the
behavioral literature (e.g., prospect theory).

Robustness
This result that the performance of imperfect evaluators
can exceed that of a perfect evaluator is not a knife-
edge property of the model. The critical factor regarding
the robustness of the analysis relates to the structure of
the task environment. We have examined in this base-
line analysis a relatively small landscape �N = 10� with
a moderate degree of interdependence (K = 3). In the

Figure 7 Period 250 Fitness for Varying Evaluator Precision ��� and K (10,000 Evaluators: 100 Distinct Landscapes with 100
Evaluators on Each)
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Note. Fitness of perfect evaluator and imperfect evaluator (�= 10) marked at K = 3.

limit, with no interdependencies (i.e., K = 0), the land-
scape would have just one peak corresponding to the
globally maximum fitness level. In such a setting, the
fact that perfect evaluators reliably identify their local
peak and sustain their position on this peak over time
can only serve to enhance performance. However, as
long as K takes on a value of one or more, it is possi-
ble to identify an imperfect evaluation screening value
that results in superior performance. Figure 7 displays
the performance level reached in the final period (t =
250) for different screening abilities (� values) in land-
scapes that vary in their degree of ruggedness (i.e.,
their K value).15 Not surprisingly, shifting from a zero-
intelligence screener (� value of zero) to evaluators with
some ability to discern superior from inferior alternatives
(� values of one or more) leads to a marked improve-
ment in performance. However, more surprisingly, as
long as K > 0, we find that as the precision of the
screeners is increased beyond some threshold level, the
performance level that is achieved begins to decline.
This threshold is realized at a lower value of � in more-
complex environments; it is in more-complex, multipeak
landscapes that the enhanced tendency for imperfect
evaluators to search is most valuable. Having said that,
there are sharply decreasing returns to error at high lev-
els of error induced by high levels of imperfect eval-
uation (values of � of three or less in Figure 3). This
observation highlights a notion of optimal imperfection,
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and also invites consideration of possible remedies that
can help very imperfect evaluators. One obvious remedy
would be to improve evaluation by training. When this
is not a feasible option, it is conceivable that organiza-
tion structures may have an important role in improv-
ing the overall (organization level) outcome even though
the errors of individual evaluators cannot be remedied.
This possibility is explored in more detail in the section
below.
We have explored a relatively small landscape with

N = 10. If the screening function is scaled appropri-
ately, the results hold generally independent of the val-
ues of N . With higher N , the differences in fitnesses
between points in the landscape shrink. This is because a
larger set of points in the landscape maps onto the inter-
val �0�1�. If the slope of the screening function is scaled
with a factor of sqrt�12N�, the results become invariant
to the size of the landscape N , provided the ratio of K
to N is held constant. For example, N = 10, K = 1 and
slope � gives a result similar to N = 100, K = 10 and
slope sqrt�12N��. With N = 100 and K = 1, the slope
must be additionally increased for the imperfect screener
to do better than the perfect screener (a scaling factor of
about 5sqrt�12N� has the desired property). All of these
claims were supported by additional simulation results
comparing �N = 100� K = 99�90�10�1�, �N = 50� K =
49�45�5�1�, and �N = 10� K = 9�1�.16

Organizations of Evaluators
Search is not merely carried out by individuals in isola-
tion, but such individual evaluation is typically embed-
ded in a larger organizational context. One actor may
endorse an initiative and pass it along to another actor,
perhaps a hierarchical superior, for approval. Other
actors may have sufficient authority to endorse or termi-
nate an initiative on their own. We characterize an orga-
nization as consisting of a set of individuals who vary
with respect to their authority to terminate proposals
(terminating by their own evaluation or recommending
termination to others) and endorsing proposals (autho-
rizing the proposal on the basis of their own assessment
or recommending acceptance to others).
As previously noted, we can characterize two extreme

forms of organizational architectures: hierarchy and pol-
yarchy. Hierarchy requires that for an alternative to be
accepted it must pass through an approval process at
each level of the organization. In this sense, hierarchy is
very conservative and is unlikely to make Type II errors
of accepting inferior alternatives. In contrast, polyarchy
is a structure in which approval by any evaluator within
the organization is sufficient for acceptance of an alter-
native. As a result, the polyarchy structure tends to be
very proinnovation and prochange and tends not to make
Type I errors of rejecting superior alternatives. Only one
actor in the organization needs to see merit in the ini-
tiative for it to be adopted; however, this same property

makes polyarchies prone to making Type II errors of
adopting inferior alternatives.
We model organizations of a fixed number of actors,

six. These organizations include the two pure forms
of hierarchy and polyarchy, as well as the four forms
intermediate to them (see Figure 2, and Figure A1 in
the appendix). Obviously, organizational structure is an
interesting property for a population of imperfect eval-
uators; in contrast, with perfect evaluation the decision
outcome would be invariant to structure. Thus, we take
the same imperfect evaluation function previously exam-
ined in the individual actor analysis and examine orga-
nizations of six such actors arrayed according to the six
alternative organizational forms.17

What is the effect of organizational architecture on
search processes? We see that the hierarchical form has
many of the properties of the perfect evaluator. Such
organizations tend only to walk uphill, albeit slowly,
because they tend only to accept new alternatives that
do, in fact, lead to an increase in performance. Thus, as
with perfect evaluators, they tend to be prisoners of their
starting positions, identifying local peaks but not explor-
ing more broadly in the landscape. Furthermore, we find
that our intermediate forms can offer an effective mix
of exploration and exploitation (Holland 1975, March
1991). Elements of polyarchy enhance the breadth of
search, but some degree of hierarchy facilitates the orga-
nization’s ability to reliably sustain an attractive position
in the landscape, once such a position has been iden-
tified. However, given that even a population of single
evaluators is able to cluster rather closely to the most
attractive peaks in the landscape, only a modest degree
of hierarchy is needed to reliably sustain an attractive
position in the performance landscape.
Reflecting these trade-offs between the search induc-

ing polyarchical forms and the inertia generating hier-
archical forms, we find an important complementarity
between organizational form and the screening ability of
the evaluators who comprise the organization. Figure 8
provides a cross-sectional slice of Figure 7 at a value of
K = 3 while extending the results to encompass the six
organizational forms. Thus, Figure 8 examines the per-
formance implications of the six organizational forms in
the final period (t = 250�, with the screening ability of
evaluators within the organization spanning levels from
� = 1 (very low ability) to � = 20 (very high ability).
We find, in this setting, that for � values of six or more,
the polyarchy yields the highest performance among the
six organizational forms.
However, it is also important to note that some of the

six organizational forms would result in a lower perfor-
mance than could be generated by an individual member
of the organization (i.e., the imperfect evaluator shown
with square markers). Organizations have the potential to
compensate for weaknesses of individual screeners (hier-
archy potentially helping to reduce the extensiveness of
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Figure 8 Comparison of Period 250 Fitness for Perfect Evaluator, Imperfect Evaluator, and Six Organizational Forms for Each
Level of � �N = 10, K = 3)
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Notes. The perfect evaluator is illustrated with round markers (no line) and the imperfect evaluator with square markers (no line). The
hierarchy (H) and the polyarchy (P) are illustrated with thick lines. The four hybrids (1–4) are illustrated with thin lines. Hybrid 1, in particular,
is illustrated with a thin, dashed line.

search in the case of highly inaccurate screeners and
polyarchy forms usefully enhancing the degree of search
for screeners who are more accurate), but as indicated in
the results in Figure 8, the inappropriate organizational
form may exacerbate the pathologies associated with an
individual evaluator.
Figure 8 further examines this interrelationship be-

tween organizational form and screening ability across a
range of screening levels. For very imperfect screening
ability (� values of one and two), we see that hierarchy
yields a substantially higher level of performance rela-
tive to the polyarchy form. Hierarchy is a useful com-
plement to very imperfect screeners. Individuals who
evaluate alternatives with considerable imprecision nat-
urally induce considerable breadth of search. Breadth
of search has the virtuous quality of preventing organi-
zations from locking in prematurely to inferior peaks.
Sustained breadth of search, however, has the liabil-
ity of generating a more dispersed cloud, or distribu-
tion, of organizations around the superior alternatives
that come to be identified in the long run. Thus, highly
imperfect evaluators, even if placed in a hierarchical

structure, are likely to generate wide-ranging search, but
the hierarchical form will enhance the ability of such
organizations to retain the attractive solutions that are
identified.
Conversely, polyarchy is a desired complement to

organizations composed of highly accurate screeners
(� values of six or more). Accurate screeners are likely
to rapidly identify a local peak in the landscape. Pol-
yarchy, a form that permits any individual within the
organization to approve an alternative, only requires one
of the six actors in the organization to view an alter-
native as favorable in order to result in its adoption.
Thus, as long as the evaluation of the individual evalua-
tors composing the organization has some possibility of
error, polyarchy compounds the likelihood of accepting
an alternative that results in an immediate decline in per-
formance; at the same time, however, polyarchy offers
the possibility of broadening search to new regions of
the performance landscape. If actors are highly accurate
in their individual screening, such organizations do not
pay a significant price for their proacceptance bias of
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the polyarchy form in that, in the long run, the distri-
bution of organizations is still tightly packed around the
superior peaks in the performance landscape.
For modest � values of 2–5, some hybrid form dom-

inates both the hierarchy and the polyarchy: Hybrid 2
dominates at � values of 2 and 3, Hybrid 3 dominates
at � of 4, and Hybrid 4 dominates at � of 4. The
effect of Hybrid 2 is to somewhat narrow the breadth
of search while producing a sharper ability to discrim-
inate between alternatives (as shown in Figure 2). This
effect is critical at values of � that are modest, but
not extremely low (� value of one). As the discrimi-
natory ability sharpens at values of � above three, less
hierarchical forms that broaden search are favored, i.e.,
Hybrid 3 and Hybrid 4, and then, with � values of
6 or more, the polyarchy. Interestingly, the very simi-
lar results produced by Hybrid 1 and Hybrid 2 reflect
the trade-off between narrowing the breadth of search
(Hybrid 1) and sharpening the discriminatory ability
(Hybrid 2).
Indeed, these results suggest that organizational forms

must be designed to fit the contingencies of the available
workforce (screening ability) as well as the task envi-
ronment (level of uncertain evaluation and interdepen-
dencies among policy attributes). Thus, in the same task
environment, the more able are the individual evaluators
composing the organization, the more that organizational
form should shift toward the permissiveness of the pol-
yarchy form. Very able evaluators need a structure that
accepts and empowers the divergent views of organiza-
tional members. Conversely, evaluators who are less able
and therefore less discriminating require the repeated
checks on behavior that hierarchical elements provide.
Note that, as evaluators become near-perfect screeners,
performance becomes insensitive to the specification of
organizational form. In the limit, with perfect screeners,
evaluators would simply replicate each other’s evalua-
tion decision; thus, in the limit, performance is invari-
ant to organizational form and the number of evaluators
engaged in evaluation. Thus, a perfect evaluator would
not benefit from being a member of an organization.

Conclusion
Much of our analysis of search processes has been very
one-sided. We recognize that choice sets are not pre-
sented to decision makers, but must be identified through
search processes. However, in considering these impor-
tant issues of discovery, we have tended to treat the
problem of evaluation as trivial or self-evident. However,
the question of valuation is far from trivial, and indeed
forms the crux of resource allocation processes (Bower
1970). If, as suggested by the Carnegie School view
of the firm, organizations engage in problemistic search
comparing small sets of alternatives to a status quo per-
formance, then understanding the nature of that evalu-
ation process is critical to understanding the dynamics

of search processes and, ultimately, the pattern of firm
adaptation that we observe.
While clearly a stylized and admittedly incomplete

treatment of this question of evaluation, the work pro-
vides some useful redirection of the field’s attention, as
well as some initial results of interest. An unintended
by-product of a precise evaluation mechanism is the
short-circuiting of the search process. Highly accurate
evaluation systems will rapidly identify one of the local
peaks in the neighborhood of the location at which the
search process commenced. Evaluation processes under
a rather wide range of imprecision will yield superior
performance. It is perhaps not surprising that evalua-
tion that is less precise would tend to result in search
processes persisting for longer periods of time. How-
ever, the relatively low variability in the range of behav-
ior and performance that such populations experience
is quite surprising. Indeed, in a cross-sectional sense,
highly accurate evaluators generate greater variability in
performance and behavior than do populations of less-
precise evaluators. Under moderate ranges of evaluation
ability, we observe clouds of evaluators clustering rather
tightly around the superior peaks in the performance
landscape. In contrast, with highly precise evaluation we
observe distinct mass points of evaluators spread out
evenly on a variety of local peaks that vary considerably
in their performance value.
The precision of evaluation and the relative rates of

Type I and Type II errors in the evaluation process are
importantly affected by the structure of organizational
decision processes. Hierarchical organizational forms,
for a given screening ability of the evaluators who com-
prise it, tend to be cautious and are unlikely to mis-
takenly shift to less favorable alternatives. In contrast,
flat forms that have a polyarchy quality tend to induce
greater search as a result of the greater probability of
making such errors in evaluation. Given that highly
accurate screeners are likely to stop their search process
prematurely, polyarchy as an organizational form is a
useful complement to highly accurate screening ability.
By the same token, elements of hierarchy can facilitate
an organization of rather inaccurate screeners persisting
on a favorable course of action, once identified.
This basic analytical structure that we have developed

can be enriched and built on in a number of ways. In our
current analysis, the generation of alternatives is speci-
fied exogenously and is determined by the structure of
the performance landscape. As Nelson (1982) argued,
a better cognitive understanding of one’s task environ-
ment may allow for more intelligent identification of the
alternatives to be sampled. We have treated the sam-
pling process as defined by local search. While this is an
important line of argument in the literature (from March
and Simon 1958 onward), it is important to consider the
intelligent identification of nonlocal options (Gavetti and
Levinthal 2000).
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A different form of endogeneity that would be inter-
esting to consider is with respect to an actor’s screen-
ing ability. There is a vast literature on experiential
learning (Argote 1999) that suggests that skill at tasks
increases with repeated trials. Therefore, it is reason-
able to expect that screening ability may change with an
actor’s experience with a class of problems. Thus, actors
may become quite skillful and accurate in evaluating one
class of alternatives, but rather inaccurate in evaluating a
different and—for them—novel set of alternatives. Expe-
riential learning of this form should tend to acerbate
the problem of competency traps previously identified
in the literature (Levinthal and March 1981, Levitt and
March 1988). By becoming more expert evaluators in
the domain of the organization’s current activities, actors
are less likely to engage in further search. Consistent
with work on organizational demography and innova-
tion, and similar to March’s (1991) model of exploration
and exploitation, turnover in personnel and the intro-
duction of novice actors may be necessary to facilitate
search processes.
While there are many such avenues of further inquiry,

we wish to reiterate the basic call with which we started.
Search is not merely about generating and discovering
alternatives. It is equally about judging the value of those
alternatives with which one is presented. We hope at a

Figure A1 Flow of Decisions in Six Stylized Organizational Forms, Each with Six Members

Hierarchy Hybrid 1

Hybrid 2 Hybrid 3

Hybrid 4 Polyarchy

Notes. In each of the six organizational forms shown in Figure A1, proposals enter with the actor in the lower left corner and flow from the
left to the right. At each hierarchical level, all members must reject a proposal to avoid it being passed on to higher levels. Dashed lines
show rejection of proposals and solid lines show acceptance. Proposals that exit to the right are adopted by the organization. (The number
of organization members that may have a final say as to whether the organization adopts a proposal increases from one in the hierarchy
to six in the polyarchy.)

broad level, to have redirected the conversation in the
organization’s literature to a more balanced considera-
tion of search processes, as well as to have provided
a particular structure and set of results to facilitate such
consideration.
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Appendix
The organizational-level screening function, F , is a polyno-
mial in the individual-level screening function, f �x�, under the
assumption that all members of an organization have identi-
cal screening functions. Given the flow of decisions shown in
Figure A1, we derive organizational-level screening functions
(shown in Figure 2) for the six organizational forms. They are
as follows:
Hierarchy: F = f �x�6

Hybrid 1: F = f �x�6− 3f �x�5+ 2f �x�4+ f �x�2

Hybrid 2: F =−f �x�6+ 6f �x�5 −12f �x�4+ 8f �x�3
Hybrid 3: F = f �x�6− 6f �x�5+ 15f �x�4− 18f �x�3+

9f �x�2

Hybrid 4: F =−f �x�6+ 4f �x�5− 5f �x�4+ 2f �x�3−
f �x�2+ 2f �x�

Polyarchy. F = 1− �1− f �x��6 =−f �x�6+ 6f �x�5−
15f �x�4+ 20f �x�3− 15f �x�2+ 6f �x�
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Endnotes
1In contrast, the question of what constitutes an appropri-
ate threshold, or aspiration level, has received considerable
attention in the literature (cf., Greve 2003, Lant 1992). This
boundary of what constitutes satisfactory or nonsatisfactory
performance is defined by a comparison of current performance
to prior performance, as well as to the performance of others
who are viewed by the focal actor as belonging to his or her
reference group.
2While it is common to refer to the value ascribed to the pheno-
type as fitness in this structure, the value may better be thought
of as a kind of technical performance measure, as opposed to
corresponding to a measure of birth and death rates as in the
standard biological use of the term “fitness.”
3It is important to note that the imperfect evaluation process
that we model is not one of random error. Rather, imperfect
evaluators are modeled as being intelligent and, in particular,
being more likely to select superior alternatives to inferior alter-
natives. However, they do so with less-than-perfect reliability.
Indeed, in separate analyses not reported here, we demonstrate
that perfect evaluators subject to random errors perform less
well than the intelligent, but imperfect, evaluators modeled
here.
4One might imagine that actors have a status quo bias, in which
case when faced with a new alternative that yields the same
payoff as the current alternative, they would be inclined to
reject the proposed alternative. We have analyzed screening
functions with this property. Essentially, such a bias simply
shifts the y intercept of these curves and generates qualitatively
similar results to the results provided here. We examine the no-
bias condition simply to eliminate the need to introduce another
parameter in the subsequent analysis.
5The critical analytical challenge is to specify the implied orga-
nizational screening function that results from a set of individ-
uals of a given ability (or individual screening function as in
Figure 1) that are organized in a particular structure (as sug-
gested by Figure A1 in the appendix). Christensen and Knudsen
(2004) derived this mathematical relationship.
6For intermediate hybrid structures the organizational-level
screening function is bounded by the number of members, n,
in that the highest exponent in the polynomial F of any hybrid
will be n. Intermediate structures are found by a systematic
derivation of the set of feasible paths leading to acceptance and
rejection (Christensen and Knudsen 2004).
7The issue of organizational form is not relevant in the case of
perfect evaluators because each perfect evaluator in the organi-
zation would simply replicate the decision of others.
8We limit the study to organizations that have well-defined,
noncyclic information flows as shown in the appendix. That
is, there are 223 topologically distinct noncyclic, inward deter-
ministic graphs representing hybrid organizations.
9See Figures 4 and 5.
10This claim was supported by additional simulations.
11This downward movement is masked by the results in Fig-
ure 2 because the figure provides the results for the average
performance over a set of runs (10,000 agents: 100 distinct
landscapes with 100 agents on each). Examination of individ-
ual runs does reveal instances of such downward walks.
12Confirmed through additional runs that are available from the
authors.

13In Figures 4–7, we analyze the behavior over a single, ran-
domly specified performance landscape (10,000 agents). This
allows us to identify a fixed population of 2N alternatives, or
1,024, given N has a value of 10 in our analysis. These figures
were generated by assigning the average number of agents at
each of the 1,024 locations for each of the 250 time steps.
14This conjecture was supported by an illustrative example,
comparing the imperfect evaluator (�= 10� with perfect eval-
uators that experience random mutations of (all) bits in a con-
figuration with probability 0.001 (N = 10, K = 3). In this case,
the imperfect evaluator (�= 10) outperforms the perfect evalu-
ators experiencing random mutations who, in turn, outperform
the straight perfect evaluator. Perfect evaluators that experience
random mutations of (all) bits in a configuration with probabil-
ity 0.01 (N = 10, K = 3) are inferior to those experiencing a
lower mutation probability as well as imperfect evalutors, but
still superior to the perfect evaluator.
15The values of K = 3 and �= 10 and perfect evaluation are
indicated in this plot because these two points correspond to
the values used in our prior baseline analysis.
16These results are available on request.
17Clearly, size is another facet of organizational form that could
be varied. However, the set of possible hybrid forms grows
exponentially with organizational size. Indeed, Christensen and
Knudsen (2004) showed that with a sufficient number of agents,
an organizational form can be specified that approximates arbi-
trarily closely a perfect screening function—i.e., a function that
rejects inferior alternatives and accepts superior alternatives
with certainty. However, note that per our analysis of perfect
screening in the prior section, perfect screening need not be a
desired property. To focus the attention on the role of changing
organizational structure from structures that are more hierar-
chical to structures that are more polyarchical, we keep the
number of actors within the organization fixed.
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