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Aging, Obsolescence and Organizational Innovation

Clarifying the relationship between organizational aging and innovation processes is an
important step in understanding the dynamics of high-technology industries, as well as for
resolving debates in organizational theory about the effects of aging on organizational
functioning.  We argue that aging has two seemingly contradictory consequences for
organizational innovation.  First, we believe that aging is associated with increases in firms’ rates
of innovation. Simultaneously, however, we argue that the difficulties of keeping pace with
incessant external developments causes firms’ innovative outputs to become obsolete relative to
the most current environmental demands. These seemingly contradictory outcomes are
intimately related and reflect inherent trade-offs in organizational learning and innovation
processes.  Multiple longitudinal analyses of the relationship between firm age and patenting
behavior in the semiconductor and biotechnology industries lend support to these arguments.
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Introduction

In an increasingly knowledge-based economy, pinpointing the factors that shape the

ability of organizations to produce influential ideas and innovations is a central issue for

organizational studies. Among all organizational outputs, innovation is fundamental not only

because of its direct impact on the viability of firms, but also because of its profound effects on

the paths of social and economic change. In this paper, we focus on an ubiquitous organizational

process -- aging -- and examine its multifaceted influence on organizational innovation.  In so

doing, we address an important unresolved issue in organizational theory, namely the nature of

the relationship between aging and organizational behavior (Hannan 1998).

Evidence clarifying the relationship between organizational aging and innovation

promises to improve our understanding of the organizational dynamics of high-technology

markets, and in particular the dynamics of technological leadership. For instance, consider the

possibility that aging has uniformly positive consequences for innovative activity: on the

foundation of accumulated experience, older firms innovate more frequently, and their

innovations have greater significance than those of younger enterprises. In this scenario,

technological change paradoxically may be associated with organizational stability, as incumbent

organizations come to dominate the technological frontier and their preeminence only increases

with their tenure.1  Now consider the possibility of a consistently negative relationship between

aging and innovation, implying that firms are increasingly unable to generate new or important

innovations as they age. In this scenario, technological change progresses hand-in-hand with

organizational turnover: technological leadership is ephemeral and those at the forefront are

quickly supplanted by new ventures. At first glance, reality does not conform neatly to either of

these images. The positive effects of aging find their expression in the disproportionate patenting
                                                       
1  Of course, this scenario is highly simplified. In particular, it rests on the disputable assumption that technological
dominance can be parlayed into market dominance and hence superior life chances. In the concluding section of the
paper, we offer a more thoughtful consideration of this assumption.
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of well-established, Fortune 500 firms. At the same time, the putative negative effects of aging

find their expression in the many tales of the displacement of technological leaders by upstarts

(Abernathy and Utterback 1978; Tushman and Anderson 1986).

Clearly, the relationship between organizational aging and innovation is also directly

relevant for the growing literature on the organizational determinants of technological

innovation. Motivated by the insights of Schumpeter (1942), there is a vast but inconclusive

body of empirical work on the effect of firm size in the industrial organization (IO) economics

literature (this literature is extensively reviewed in Cohen and Levin 1989). In the administrative

literature, there has been a great deal of work evaluating the ability of different internal systems

and structures to spawn new ideas and speed the commercialization of inventions (Burgelman

1983). To our awareness, however, there have been very few systematic studies of the

relationship between organizational age and the propensity of firms to produce technological

innovations in large samples of firms.

In addition to shedding light on these relationships, evidence of how aging affects

innovation promises to inform a number of important theoretical debates in organizational

theory. For example, documenting the links between these two processes should produce

evidence relevant to competing theories of how age alters the internal features of organizations.

Organizational ecologists have devoted the most sustained attention to the consequences of aging

for organizational outcomes, but have failed to reach consensus as to whether aging has negative

or positive effects on organizational functioning (Hannan 1998). While recent evidence suggests

that there is a liability of aging (see Barnett 1990; Barron, West, and Hannan 1994; Ranger-

Moore 1997), there remains considerable empirical uncertainty about this relationship (Hannan

et al. 1998). Moreover, there are debates in the ecology literature surrounding the mechanisms

that underlie the observed effects of age on life chances (Barron, West and Hannan 1994;

Hannan 1998).

Competing theories about the effects of aging on organizational survival reduce to

contrasting claims about the effects of aging on internal organizational processes and on
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organization-environment fit, respectively. However, the outcomes typically studied by

ecologists -- survival and growth -- do not readily lend themselves to tests of these different

mechanisms (but see Ranger-Moore 1997). By studying the relationship between age and

organizational innovation, we will be able to shed light on some of the competing mechanisms

posited in ecological theories and to contribute scarce empirical evidence to the debate over the

behavioral changes associated with organizational aging.

To anticipate our argument, our review of existing empirical research and ideas about the

effects of organizational aging in the literatures in ecology and on technical change lead us to

conclude that aging has two seemingly contradictory consequences for organizational

innovation. First, we believe that the passage of time leads to refinements and incremental

improvements in established organizational routines. The upshot of such experience-dependent

enhancements is that aging is associated with increases in firms’ rates of innovation.

Simultaneously, however, the difficulties of keeping pace with incessant external developments

causes firms’ innovative outputs to become increasingly unsuited to the most current

environmental demands. As a result, the innovative activities of older firms may be less relevant

in light of the most current technological developments, reflecting the obsolescence of

organizational know-how as firms age in rapidly changing environments (Tushman and

Anderson, 1986; Henderson, 1993; Barron, West and Hannan 1994). As we will suggest, these

seemingly contradictory outcomes are intimately related and reflect inherent trade-offs in

organizational learning and innovation processes (March 1991).

The notion that established organizations often encounter difficulty in keeping up with

externally-generated technical advances--especially when such developments represent radical

changes from prior approaches--is widely accepted in the evolutionary literature on technical

change. This idea is grounded in part in past historical studies of technological trajectories and

industrial evolution (Abernathy 1978; Abernathy and Utterback 1978).  Thus, a number of

industry histories and case studies have demonstrated that periods of technological ferment in an

industry (where new product introductions are frequent and alternative product forms compete
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for market acceptance) are followed by periods of relative stability where innovation consists

largely of incremental improvements to a widely adopted product architecture (often called a

“dominant design”).  These studies have also demonstrated that the “radical” innovations which

spawn new technological fields often emerge from small, entrepreneurial firms (Abernathy and

Utterback 1978; Tushman and Anderson 1986; Rosenbloom and Christensen 1994), and that the

innovative capabilities of established organizations are generally better suited to producing

incremental innovations along existing technological trajectories. Thus, particularly in periods of

radical technical change, it has been demonstrated that established organizations often are unable

to adapt their activities to incorporate major, external advances.

Our argument differs from these studies in two respects.  First, rather than making

categorical distinctions between industry incumbents and entrants or radical and incremental

technological change, we view the innovative capabilities of firms as falling along a continuum

defined by firm age. We argue that organizational aging leads to predictable changes in the

nature of firm-level innovative activity, and that many of these changes occur independently of

the broader innovative context.  Second, although innovation at the firm level is governed in part

by an industry-level clock, whereby the passage of time heralds different economic and

technological contexts for innovation in an industry (i.e., the industry lifecycle), our emphasis is

on how innovation processes at the firm level are governed by the firm’s own internal clock.

Our arguments are thus independent of the arrival of radical or competence destroying

innovations; rather, we believe that some of the consequences of aging for the characteristics of

firm-level innovative activity are generic to different innovative contexts.  While all firms at a

given point in time face the same industry-level context, we argue that they respond to these

constraints differently as a function of differences in their ages.

To develop our predictions, we begin by reviewing ideas about the consequences of aging

in three areas of the literature: organizational ecology, evolutionary theory, and learning theory.

Our extension to the literature is to derive from it testable implications of an aging as

obsolescence process for a variety of aspects of organizational innovation and, most importantly,
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to present empirical analyses that document the impact of age on these different facets of

corporate technological innovation in a large sample of firms. Our analyses are performed on

samples of firms drawn from two high-technology industries: semiconductors and

biotechnology.

Aging in Organization Theory

We start from the notion that innovation at the organizational level is governed by

collections of organizational routines and search strategies (Cyert and March 1963; Nelson and

Winter 1982; Hannan and Freeman 1984). Routines are repositories of organizational knowledge

(March 1988), and it is through their combination that organizations generate outputs. It is also

through their combination that organizational frictions arise, as a result of coordination problems,

breakdowns in control, and so on. In general, an organization’s performance reflects a

combination of its ability to refine and effectively coordinate its organizational routines, which

we denote as “organizational competence”, and the extent to which those routines are well-suited

to the state of the environment, which we label as “environmental fit”.2 A firm with routines that

are well-tailored to environmental demands (high fit) may nonetheless perform poorly if the

organization suffers from an inability to effectively coordinate its routines or experiences

excessive bureaucratization (low competence). Conversely, a highly efficient firm may fail in the

absence of demand for the outputs that its routines are designed to create. In trying to unpack the

relationship between organizational aging and innovation, we find that it is helpful to frame the

discussion in terms of this distinction. We therefore first consider a number of theoretical

perspectives on how aging might affect organizational competence (vis-à-vis innovation).

Subsequently, we discuss the consequences of aging for the fit between organizational routines

and environmental demands.

                                                       
2 We use both of these terms narrowly throughout the paper. “Organizational competence” refers to the capacity of
the firm to produce innovations, regardless of the broader acceptance or quality of these new technologies.
“Environmental fit” refers to the match between the firm’s innovations and the current state-of-the-art, as well as to
the receptivity of other producers to the organization’s new technologies.
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A number of scholars have argued that aging leads to decreases in the efficiency with

which organizations carry out their routines, and hence to a decline in organizational

competence. Barron, West and Hannan (1994) suggest that a positive relationship between aging

and organizational mortality may be due to the development of impediments to effective action,

including taken-for-granted understandings, political coalitions and the like. With respect to

innovation, Cohen and Levinthal (1989; 1990) suggest that a firm’s ability to use its existing

knowledge base for further innovation depends critically on the patterns of communication and

distribution of knowledge within the firm. Thus if aging leads to increased rigidity and an

ossification of communication patterns, firms may produce fewer innovations as they age.

However, there are also strong reasons to believe that organizational competence

improves over time. In positing a “liability of newness,” Stinchcombe suggested that older

organizations may be more efficient than younger firms because they have more (cumulative)

production experience, possess stronger relationships with vendors and customers, have a more

experienced workforce, and so on (Stinchcombe 1965; Hannan and Freeman 1984).

Organizational learning theorists also have argued that experience with a set of routines enhances

an organization’s competence, in part by improving the reliability with which routines are

implemented (March 1991). Specifically with respect to the production of technological

innovations, Cohen and Levinthal (1990) show that the accumulation of knowledge enhances the

ability of organizations to recognize and assimilate new ideas, as well as their ability to convert

this knowledge into further innovations. Similarly, Tushman and Anderson (1986), Henderson

(1993) and others have argued that established firms possess information processing routines that

facilitate incremental innovation along existing technological trajectories. Thus, if the passage of

time leads to an accumulation of foundational knowledge, organizational competence will

increase with age.

The distinction between these two arguments parallels the competing perspectives offered

by two theories of aging in organizational ecology, namely the “liability of newness”

(Stinchcombe 1965; Hannan and Freeman 1984) and the “liability of senescence” (Barron, West
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and Hannan 1994). As Hannan (1998) shows, both of these arguments can be cast as special

cases of a general framework relating organizational outcomes to the cumulation of knowledge,

internal frictions, and the quality of external ties. The two theories differ in their expectations

concerning how aging affects each of these components of organizational behavior. Empirically,

these arguments suggest that the net effect of aging on organizational competencies depends on

the relative magnitude of the gains from experience with a set of routines and the losses due to

various forms of organizational sclerosis.

With respect to the production of innovations, we believe that the gains from experience

with the innovation process will outweigh any negative consequences of bureaucratization.

Abstracting for the moment from the quality and significance of their output, we suspect that

organizations will become more adept at producing innovations as they age. We see two primary

reasons why this will be the case. First, as Cohen and Levinthal (1990: 136) note, the

background knowledge required for innovative activity is cumulative: new ideas are more

efficiently assimilated if a solid base of knowledge has been established (see also Nelson and

Winter, 1982; March 1991). Moreover, the cycle between innovation and the accumulation of

knowledge within the organization tends to be self-reinforcing, such that organizations with a

larger knowledge base are more likely to pursue the innovative opportunities that further

contribute to the accumulation of knowledge (Cohen and Levinthal 1990). Second, older high

technology firms will have perfected the routines, structures, incentive programs and other

infrastructure that are needed to develop new technologies and to bring them to market. In short,

high-technology firms that have survived a long period of time are likely to have developed the

competence to innovate, particularly (as we will argue below) in their established innovative

domains. This lead us to expect,

Hypothesis 1: Organizational age will be positively associated with the rate of
innovation.3

                                                       
3  We emphasize at this point that our models will control for firm size. Therefore, our predictions about the effects
of age are premised on holding size constant. Many scholars have argued that large size is associated with high
levels of complexity and bureaucracy (Blau and Schoenherr 1971) and a decline in organizational responsive that
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We now shift our focus to the question of how aging affects the second determinant of

innovative performance -- the fit between an organization’s internal competence and its

environment. Here, it is important to note that organizational age gauges not just the length of a

firm’s operational experience, but also the duration of its exposure to environmental changes

(Carroll 1983). The effect of aging on organization-environment fit therefore depends on the rate

of adjustment of internal organizational routines relative to the pace of environmental change

(Hannan and Freeman 1984). We suspect that organizations are only imperfectly able to adapt to

environmental changes and that the gap between organizational competencies and environmental

demands therefore will increase with time. In other words, aging will be associated with

organizational obsolescence (Barron, West and Hannan 1994), particularly in industries where

significant developments in technology can require a different set of knowledge and skills than

that possessed by established firms (Clark 1985; Tushman and Anderson 1986).

Support for this claim can be found in a number of literatures. Organizational ecologists

suggest that the combined influences of imprinting, inertia and environmental change render

obsolete the core technologies of old organizations (Barron, West and Hannan 1994; Aldrich and

Auster 1986; Ranger-Moore 1997). Stinchcombe (1965) argued that the core technologies,

structures and processes of organizations reflect the early decisions of a firm’s founders and the

prevailing practices at the time of founding (see also Hannan, Burton and Baron 1996). If

organizations are relatively inert (Hannan and Freeman 1984; Delacroix and Swaminathan 1991;

Amburgey, Kelly, and Barnett 1993), then important early decisions and practices will persist as

organizations age. When the external environment changes significantly over time, the forces of

imprinting coupled with organizational inertia generate a decline in organization-environment fit

                                                                                                                                                                                  
leads to reduced levels of innovation (Aldrich and Auster 1986). Conversely, a different view suggests that large
organizations may invest a greater proportion of their slack resources in innovation because they possess the market
power to appropriate the returns from innovating (Schumpeter 1942). Thus, Cohen and Klepper (1996) have argued
that large firms are likely to spend more on R&D and shift there R&D mix toward process innovation, the latter
because they have a greater production volume over which to benefit from process improvements. In either case, our
expectation that older organizations will have high competence (as well as all subsequent hypotheses) is premised
upon empirical models that control for firm size.
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as the accreting drift of the environment results in a relatively large, cumulative shift away from

the activities of the organization.

Evolutionary theories (Nelson and Winter 1982) reinforce the notion that core

organizational routines are subject to inertial pressures. These theories subscribe to a Markovian

conception of adaptation, seeing organizational change as the product of searches for new

practices in the neighborhood of an organization’s existing routines (Cyert and March 1963;

Stuart and Podolny 1996). Describing their assumptions about the process of organizational

change, Nelson and Winter (1982: 211) state, “for any firm engaging in exploration, search is

‘local’ in the sense that the probability distribution of what is found is concentrated on

techniques close to current ones.” Local search occurs for myriad reasons. Most importantly,

individual decision makers within organizations are boundedly rational and heavily anchored on

past experiences when they evaluate alternative courses of action. Also, patterns of behavior

stabilize as formal structures and routines become institutionalized over time (Cyert and March

1963). In order to preserve their privileged positions, dominant political coalitions inside the firm

often have strong incentives to insure that the firm continue to focus on activities and market

niches that require their expertise (Pfeffer 1981; Burgelman 1994). Incumbent personnel also

have career interests at stake if they have developed expertise specific to the area(s) in which an

organization has previously focused, particularly if this expertise if of little value to other

organizations. Similarly, the necessity of servicing existing customers often hampers the ability

of an organization to perceive and pursue emerging market opportunities (Rosenbloom and

Christensen 1994). Although the retention of routines and the entrenchment of interests may

facilitate smooth and stable organizational functioning, they also interfere with the capacity of

the organization to adjust to changing environments (Nelson and Winter 1982). In other words,

as organizations age, they gain history and routines that limit their flexibility by restricting the

range of organizational action.

Organizational learning theories suggest that firms may become less likely to change as

they age precisely because their competencies improve as they accumulate experience in a
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particular domain of activity. Experience in existing activities, if accompanied by improvements

in the performance of those tasks, may increase the appeal of existing courses of action (Levitt

and March 1988). Cohen and Levinthal (1990) argue that if organizations have not previously

acquired knowledge in a rapidly evolving technological area, they quickly lose the ability to

assimilate and exploit new information in that domain. This type of “lockout” occurs for two

reasons. First, when firms lack detailed knowledge of a particular set of technologies, they do not

appreciate the significance of new technological opportunities in related areas. Second, even if

such opportunities are recognized, the lack of sufficient background knowledge impedes

organizations’ ability to capitalize on new developments to generate innovations. (Cohen and

Levinthal 1990: 137). Particularly in high technology markets where the ability to innovate

hinges on heavy investments in competence building in particular areas of technology, long-

established competencies are likely to stand in the way of adaptation to major changes in

technological regimes (Abernathy and Utterback 1978; Tushman and Anderson 1986; Henderson

and Clark 1990; Burgelman 1994).

These arguments suggest that the core technologies of firms in changing environments

will become obsolete as they age. As Barron, West, and Hannan (1994) note, obsolescence is due

to changes in external circumstances over time; it is not caused by a decline in internal

organizational efficiency. In fact, if environments were stable, the organization-environment fit

would not diminish over time. In changing environments, however, the improvement in

organizational competence that accompanies the accumulation of production experience

paradoxically exacerbates the decline in organization-environment fit, because the organization

becomes better at performing routines that are less and less valued by the environment. In this

sense, innovative firms may succumb to competency traps, which occur when "favorable

performance with an inferior procedure leads an organization to accumulate more experience

with it, thus keeping experience with a superior procedure inadequate to make it rewarding to

use” (Levitt and March 1988: 322). Competency traps ensnare organizations because prior
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innovative successes reinforce established routines even as the technological frontier shifts to

new areas.

The obsolescence argument suggests a number of hypotheses about how age affects the

quality and nature of the innovative outputs that firms develop. First, we anticipate that aged

firms are more likely to exploit their established innovative domains, as opposed to moving into

new fields of innovative activity. If older firms have specific areas of innovation in which they

have encountered repeated successes in the past, we can expect to observe them harvesting in

those areas in the future because of the organizational tendency to exploit areas of established

competence. Moreover, if older organizations are slow in changing due to inertia, they will be

unhurried in moving beyond past areas of innovation. Similarly, if more experienced firms with

long-standing routines are less likely than younger companies to experiment with non-local

investments in technology, then a firm’s innovative activity may become increasingly insulated

from external technological developments and thus increasingly take the form of refinements to

its areas of prior innovation. In short, an obsolescing organization follows a firm-specific

innovation trajectory (cf. Dosi 1982). This implies our second prediction,

Hypothesis 2: When compared to young companies, older firms will show a greater
tendency to build upon their previous innovative activity.

A closely related manifestation of an age-related decline in organization-environment fit

would be a tendency for the current-period innovative activities of older organizations to build

upon older technological foundations. If inertial tendencies are strong, then we would expect to

find that older firms will be slow to update their areas of concentration. Hence, because they are

less flexible, older firms may be less likely to incorporate the technological advances of other

firms into their activity, effectively ceding the development of newer and potentially more

influential areas of technology to upstart organizations. These ideas lead us to a third prediction,

Hypothesis 3: As firms age, their current-period innovations will elaborate and refine
older areas of technology.
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A final indication of the fit between a firm’s innovative activities and the current

technological environment is the influence of the organization’s innovations on its technological

community. If obsolescence is a concomitant of age, then as firms age their innovative outputs

may become increasingly mismatched with current environmental demands and increasingly

irrelevant to the innovative activities of the other firms in a technological community. In this

sense, age, experience, and accumulated competencies can be considerable disadvantages when

compared to inexperience and youth, particularly with respect to their influences on the

organization’s ability to adapt to or develop major technological changes (Abernathy 1978;

Tushman and Anderson 1986; Henderson and Clark 1990; Henderson 1993). Routines that are

nurtured in the course of a firm’s experience with developing and refining older scientific or

technological principles simply become outmoded. If older organizations are more likely to hold

onto such routines and to work in older areas of technology, or if they are slow to incorporate the

most recent technological advances into their developmental work, the obsolescence argument

leads to our final prediction:

Hypothesis 4: In the broader industrial community, the innovations of older firms will be
less influential than those of their younger counterparts on subsequent technology
development.

Sample, Data and Measures

We have assembled large samples of firms from two very different high technology

areas—semiconductors and biotechnology—to test the predicted effects of firm age on

innovative activity. There are many differences in the fundamental nature of the underlying

technologies in these two businesses, in the types of firms that populate them, in their market

dynamics, and in the maturity levels of the two areas of technology. Rather than focus on a

single industry, we have chosen to collect data on two very diverse contexts. Should they

emerge, consistent findings across two very different industries will further our ability to claim

that our arguments have general application.
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The semiconductor industry originated with the discovery of the point contact transistor

at Bell Labs in 1947 (Tilton, 1971 and Wilson, Ashton, and Egan, 1980 present excellent

histories of the early industry). Although the industry has grown large and global in scope over

the past fifty years, it is arguably still changing quickly. The pace of technological change

continues to be rapid and relentless, a condition evidenced by the fact that research and

development expenditures by industry incumbents routinely exceed 10 percent of revenues. The

members of the industry include many of the largest and most influential firms in the worldwide

economy—companies such as IBM, Intel, Philips, and Fujitsu—as well as many young and

small dedicated producers. The sample that we analyze contains all semiconductor producers for

which we were able to gather annual sales volume data during a seven-year period (1986-1992).

This sampling criterion was imposed because of the importance of sales volume as a control

variable in the statistical models. As research in organizational ecology has so clearly

demonstrated, inferences drawn about the effects of organizational age in models that fail to

control for firm size may be spurious due to the correlation between age and size (Barron,

Hannan, and West 1994). In addition, there is a rich body of work in the industrial organization

literature which suggests firm size is likely to influence a number of the outcome variables that

we will model. Dataquest, a consulting and information services firm, was the source of the

revenue data. The Dataquest database was supplemented with sales figures from the Integrated

Circuit Engineering Corp.'s annual reports. All together, there were 150 companies in the

sample, although some were not present for all years. Two-thirds of the firms in the sample had

headquarters in the U.S.; the remainder were divided between Europe, Japan, and other

Southeast Asian nations. As a whole, the sample accounted for 90 percent of the total, worldwide

semiconductor production volume in 1991.

Our sample of semiconductor firms reflects certain trade-offs in research design created

by the necessity of including sales data.  First, the sample excludes very small, private firms.

This means that young firms may be underrepresented in our sample. Second, the sample is

characterized by a survivor bias: it does not contain organizations that were founded and failed
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before the first year we were able to acquire data. However, we have reason to believe that this

bias will work against most of our predictions. Because the semiconductor industry is technology

driven and success is at some level tied to innovative ability, one might expect that the more

accomplished innovators on balance experience lower failure probabilities. If so, then the level

of support for our predictions about the adverse consequences of aging on environmental fit will

likely be weakened by the survivor bias in the semiconductor sample.

Biotechnology differs markedly from the semiconductor business. First, contemporary

biotechnology is a more recent endeavor: the industry is often claimed to have originated in 1973

with a radical discovery—recombinant DNA – and the discovery, two years later, of hybridoma

technology (Kenney 1986, provides a useful overview of the core biotechnologies and the early

history of the industry).  However, commercial activity in biotechnology did not take off until

after 1980, thanks to changes in patent law and the astonishingly successful initial public

offering of Genentech in that year.

The  biotechnology sample was created by randomly selecting 250 dedicated

biotechnology firms that were listed in the Corporate Technology Directory in 1988.  Due to

inconsistencies across data sources in reported founding dates and/or firms sizes, our analysis

sample was reduced to 237 firms  observed during an eight year period (1987-1994). Our data

sources suggest that very few biotechnology firms failed prior to the start of our observation

window, which gives us confidence that there is little if any survivor bias in the biotechnology

sample.

Although the microelectronics and biotechnology industries share certain similarities (for

instance they are both among the most innovation-intensive industries in the economy) the two

differ in myriad ways. First, the nature of the underlying technology differs fundamentally;

whereas semiconductor innovation derives from the physical and material sciences,

biotechnology is at the intersection of molecular biology, immunology, genetics, and chemistry.

Second, the semiconductor business is importantly shaped by confederations of producers
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banding together to promote technology standards. In contrast, standards and network

externalities do not affect biotechnology industry dynamics. The biotechnology industry is

populated primarily with small and dedicated producers staffed with Ph.D. scientists, whereas

the semiconductor industry contains many diversified, multi-billion dollar companies. Because

they are small and specialized enterprises, all but a few dedicated biotechnology firms rely

heavily on external organizations, such as pharmaceutical and chemical companies, to fund their

internal development efforts and to assist in the manufacture, distribution, marketing, and sales

of their innovations (Barley, Freeman, and Hybels, 1992). In fact, many biotechnology

companies have no revenues other than royalty payments from strategic alliance partners.

Although semiconductor firms have also taken on many strategic partners of late and sometimes

outsource chip fabrication, the larger producers have tended to perform many segments of the

value chain in house. Whereas the contemporary semiconductor industry has globalized, the

United States remains the center of biotechnology. In short, the two industrial contexts differ on

many rudimentary dimensions. Consistent findings of aging for innovation across the two

contexts would strengthen our confidence in their validity and generalizability.



Aging, Obsolescence  and Organizational Innovation 16

U.S. Patents

The empirical analyses require a number of measures of the innovative activities of the firms in

the two industry samples. To construct these measures, we have gathered data on semiconductor

and biotechnology inventions patented in the U.S.. As a requirement of the patent application

process, an inventor must submit a list of citations to all previously-granted patents that made

technological claims similar to those that are claimed in the current application. In other words,

the application procedure mandates that patent applicants acknowledge the existing, patented

inventions that are nearest in technical content to their proposed inventions. Patent citations are

an integral part of the application process because they establish the scope of patents under

evaluation: inventors can only stake property rights for the novel aspect(s) of their inventions. To

establish their unique contributions, patent applicants must recognize all patented precursors, in

addition to emphasizing the original elements of their pending inventions. In the process of

reviewing applications, one of the duties of the Patent Examiner is to verify that the list of

references to previous patents, known as the "prior art," is complete. When a patent application is

granted, the patent issues with the final list of prior art citations. The Patent Examiner's prior art

search serves as a safeguard for the integrity of the citation process.

For the analysis, we collected all U.S. biotechnology and semiconductor patents assigned

to the firms in each of our industry samples, as well as all patents that were cited by or

subsequently cited those patents. We chose to collect U.S. patents because the United States is

the largest technology marketplace in the world. To gain intellectual property protection in a

particular country, the inventor must file for a patent in that country. Because the U.S. is a large

and central market for both semiconductors and biotechnology, it is standard practice for non-

U.S.-based firms to patent in this country (Albert et al. 1991; also see Pavitt 1988). Our source

for the patent data is the Micropatent “Patent Abstracts” CD series, which includes all U.S.

patents from 1975 until the present.

For the sample of dedicated biotechnology firms, we collected patents by searching the

U.S. patent system for the names of all 237 firms in our sample. The semiconductor sample
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required us to employ a more complex procedure to gather patent data because some of the firms

in microelectronics were broadly diversified into other industries. Searching on firm names

would cast a net that would capture all of the patents of the firm, whereas our objective was to

isolate an organization’s activity in microelectonics. To do this, we identified approximately

2400 distinct patent classes which contained semiconductor product, device, and design

inventions. We retrieved the 50,000 patents issued in these classes between 1975 and 1994 from

the Micropatent CDs. Next, we matched the patents in the 2400 patent classes to the 150 firms in

our sample (after constructing detailed corporate ownership trees). Once the patents of the firms

in the two industry samples were compiled, we then merged on additional information as needed

from a database containing the entire U.S. patent system (see below).

Before concluding the discussion of the patent data, it deserves to be noted that some

scholars have been critical of the use of patent data in social science research (see Levin et al.

1987). The most frequently voiced objection to the use of these data is that the proclivity to

patent varies across industries. For two reasons, however, we believe that inter-industry

differences in patenting activity will not jeopardize the results from this endeavor. First, because

we analyze the samples from each industry separately, our coefficients cannot be influenced by

uncontrolled cross-industry variance in the proclivity to patent. Second, firms in both the

semiconductor and biotechnology industries actively patent, particularly as the strength of U.S.

intellectual property protection has increased (Rivette 1993). With one exception (the U.S.

government), the top 10 patent holders in the U.S. in 1997 were electronics firms that each

patented heavily in microelectronics: IBM, Canon, NEC, Motorola, Fujitsu, Hitachi, Mitsubishi,

Toshiba, and Sony. Similarly, biotechnology is identified in the Levin et al. (1987) study as one

of the industries in which intellectual property protection is particularly strong.

Patent-Based Measures of Innovation

We utilize the patent data to derive four measures of innovation to test the four

predictions we have laid out above. The first relationship posited between age and innovation is
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that older organizations will produce a greater number of innovations. We test this hypothesis by

modeling the rate of patenting as a function of firm age and other covariates.

The three remaining analyses employ patent citation data, which enable us to construct

measures of the importance of firms’ inventions, of the temporal proximity of firms’ inventions

to the most current technological developments, and of the inter-temporal stability in the focus of

firms’ innovative activities. Our second prediction holds that age increases the likelihood that

firms will innovate in the technological areas in which they have worked in the past; that is, that

they will remain on a firm-specific technological trajectory (Dosi 1982). For this analysis, we

wish to distinguish new patents that are closely related to a firm’s prior innovative activities from

inventions that are technologically distant from the firm’s past activities. To do so, we

differentiate between two types of patents that can be issued to a firm: self-citing patents, which

include one or more citations to the firm’s prior patents; and non-self-citing patents, which do not

build on the firm’s earlier patented inventions. Our reasoning for this distinction is that,

relatively speaking, non-self-citing patents are differentiated from a focal firm’s previous

innovative activity, whereas self-citing patents are elaborations of a firm’s prior endeavors.

Conditional on the firm having been granted at least one patent, we treat these outcomes

as competing risks in an event history framework. In competing risks models, the transition rate

to a particular destination state (for example, issuing a self-citing patent) can be decomposed into

the overall rate of transition (the patent rate) times the probability of the destination state, given

that the transition has occurred (Petersen 1995: 482). Our prediction is that firm age should

increase the rate of issuing self-citing patents. We do not have a strong prediction regarding how

age should affect the rate of developing non-self-citing patents. On the one hand, a firm that

suffers from poor organization-environment fit may have difficulty generating patents that do not

build on its own prior work, suggesting a negative effect of age. On the other hand, the increased

efficiency associated with the refinement of organizational routines may lead to a positive effect

of age. It is therefore possible that aging will increase both the rate of issuing self-citing and non-

self-citing patents. However, if obsolescence processes are operating, the relative tendency to
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self-cite should increase with age. We therefore expect that the age effect on issuing self-citing

patents will be stronger than the increase in the rate of non-self-citing patents.

Next, we predicted that old firms will be less likely than young firms to incorporate the

most recent technological developments into their innovative activities. We test this hypothesis

by measuring the age of the foundations of each firm’s current-period innovations (i.e., the age

of the prior art cited by a firm’s current-period patents). Because patent citations are tantamount

to technological building relationships (Jaffe, Trajtenberg, and Henderson 1993), firms that cite

new patents are elaborating upon the most contemporary areas of technology. Conversely, firms

that cite old prior art are working in mature areas of technology. Our prediction is that the patents

of older firms will include longer citation lags (the time elapsed between the application dates of

the cited and citing patent).

The fact that organizational age can be construed as a measure of a firm’s exposure to

environmental changes, when coupled with the likelihood of organizational inertia, produced our

final prediction: the innovations of older firms will be less important than those of younger

organizations. Previous studies have shown that highly-cited patents cover innovations which

experts in a technological area perceive to have been the most important inventions in that area

(Albert et al. 1991). Therefore, patent citations reveal community-wide perceptions of the

relative importance of patented technologies (see Trajtenberg 1990). Because citations from

future patents signify the importance of inventions, we can test our prediction about the effect of

organizational age on the importance of firms’ innovations by investigating how the age of a

firm at the time it develops a patent affects the rate at which the patent is cited in the future.

These analyses exclude all citations that a firm makes to its own, previously-issued patents.

In addition to the patent data, we require a measure of firm age. The age of the firms in

the semiconductor sample is measured as the difference between the current year and the time

that the firm first entered the industry. For startup semiconductor firms, the date of first entry is

the firm’s incorporation date. For entrants from other industries, the date of entry is the first year

that the firm began producing semiconductor devices. We use the date of first entry into the
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industry for these firms because virtually all entrants established new organizations (subsidiaries)

on or shortly after their initial entry into the industry. Because the biotechnology sample consists

of dedicated producers only, the age clock for the firms in this sample always begins at

incorporation. Our models include both a monotone and quadratic organizational age term. We

chose to specify organizational age in this way to allow the models to determine if the effect of

age on a focal outcome is linear, or if the second derivative of age is positive or negative with

respect to the different patent-based outcome measures.

Recall that we have argued that organizational age is a proxy for the level of

organization-environment fit. Because of the substantial rate of change in high-technology

industries such as microelectronics and biotechnology, we posit that the quality of the

organization-environment fit diminishes with firm age. Implicitly, our models will assume that

environmental change occurs is not cyclical during the periods studied. Because we lack good

measures of the pace of change in the environments for the two industries under scrutiny, we are

unable to make a different assumption. However, because our analyses cover a relatively short

period of time, we believe that the assumption of a linear path of change is reasonable.

Moreover, our knowledge of the two industries suggests that although innovation has been rapid

in both domains, neither one has experienced a radical or competence destroying technological

change in the periods spanned by our data.4 We discuss this issue further in the concluding

section.

We include time-varying measures of firm size in our models, for two reasons. First,

previous research has shown that models of age effects that fail to control for size yield biased

estimates of the effects of age on organizational outcomes, due to the typically strong positive

correlation between the two variables (Barron, West and Hannan 1994). Second, controls for
                                                       
4 Tushman and Anderson (1986: 442) define competence enhancing discontinuities as inventions that result in
“sharp price-performance improvements over existing technologies,” and competence destroying discontinuities as
inventions that require fundamentally different skills and knowledge. No such radical changes occurred in
semiconductors in our study period. Because of the nature of the technology, it is difficult to use the price-
performance ratio as a metric of the importance of an invention in biotechnology. Perhaps the most significant shift
in biotech in the period of our analyses was the growing importance and influence of genomics, but this area did not
emerge in full force until just beyond the end of our sampling period.
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firm size are particularly important in studies of patenting behavior in light of the vibrant

literature in economics on the association between firm size and innovation rates. This literature

has explored the hypothesis, credited to Schumpeter (1942), that large firms generate a

disproportionate quantity of innovation (Cohen, Levin, and Mowery 1987; Cohen and Klepper

1996). Economists have posited a number of potential explanations for this relationship,

including capital market imperfections that preclude small firms from raising sufficient funds to

support large R&D programs, the existence of scale economies in the R&D function, and the

superior capacity of large firms to appropriate the returns generated by their discoveries.

We operationalize size in the microelectronics sample as the total volume of

semiconductor sales of each firm in each year. As previously noted, the source for these data was

Dataquest; the sales measure reflects a firm’s turnover in semiconductors only, not corporate-

wide sales. The size of biotechnology firms is operationalized as the total number of employees

of the firm in a year. Because many biotechnology firms do not have any revenues and because

their assets are usually intangible, the best measure of firm size in this industry is headcount

(Powell, Koput, and Smith-Doerr 1996). Since we included only dedicated biotechnology firms

in the sample, the corporate-level size data accurately reflect a firm’s scale of operations in

biotechnology. The source for these data was the annual Corptech directories.

All of the models we report include a calendar time trend (denoted as “year” in the

tables). There are two reasons to include this variable. First, the volume of patenting increases

over the observation window in both industries, and this temporal pattern would be captured by

the age (and size) variables in the absence of the time trend. Second, the industry lifecycle model

described above suggests that the actual composition of organizational innovation is likely to

change as a consequence of the maturation process of the industrial context. Even though the

time interval we analyze is relatively short, it is still necessary to incorporate the time trend.

Two additional covariates are included in the models estimated on the biotechnology

sample (because we were able to obtain the necessary data only in this setting). First, the

biotechnology models are reported with and without a control for the annual R&D expenditure
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levels of publicly-traded firms.  We were not able to obtain R&D spending for semiconductor

firms or for privately held biotechnology firms. Therefore, the results including biotechnology

R&D exclude the predominantly young, private firms in the sample.  We report the

biotechnology results without R&D both to allow comparisons with the findings from the

semiconductor analyses5 and in order to avoid any sample selection bias. Second, we include an

indicator variable denoting if the CEO of the biotechnology firm changed. The rationale for

including this variable was that a change in senior-level leadership may be associated with a

conscious, board-level decision to change the direction of the firm. Even when CEO changes

result from mandatory retirements or volitional departures, replacing senior leaders may enable

major alterations in the innovative foci of a firm. Therefore, we included this variable to learn

whether leadership changes altered the innovation-related manifestations of aging.

Methods

                                                       
5 Because many of the firms in our semiconductor samples were diversified, privately-owned, or foreign-owned, we
were unable to gather the industry-specific, annual R&D expenditures of many of the firms in the sample. However,
we were able to collect the annual R&D expenditures of a small subset of firms in the semiconductor industry (about
one-third of the firm years in the full sample). Among publicly-traded, dedicated, U.S.-based semiconductor
producers, the correlation between R&D spending and sales was very high--0.978. Therefore, in the semiconductor
sample, we are confident that size is a sufficient control for R&D spending.
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With the exception of the analyses of the age of the prior art cited in a firm’s patents, all

of our analyses employ event-history techniques. While previous studies in economics have

modeled yearly patent counts (e.g., Hausman, Hall, and Griliches 1984), our data sources

specify the precise day on which patent applications were received by the Patent Office. To

perform our analyses, we have opted to utilize event history analysis rather than the count

models commonly employed by economists, for two reasons. First, in all of our non-parametric

and parametric analyses of firm-level patenting rates, we have found strong evidence of  a rapid

decline in the patent rate with the passage of time since the firm’s last patent was issued. This

violates a basic assumption of the Poisson distribution, which is the basis for event-count

models. Specifically, the Poisson distribution assumes that the underlying rate of event

occurrence is constant within a time period (e.g., King 1989: 50). In addition, our data contain

right-censored event histories. While there are awkward ways to accommodate right censoring

using count models, they typically involve discarding information on the censored cases. By

contrast, the hazard rate models we employ incorporate information on both uncensored and

censored cases. Therefore, event history techniques are used throughout, although without fail

we have been able to reproduce all of the findings we will report using a fixed effects negative

binomial estimator (Hausman, Hall, and Griliches 1984).  All models are estimated in Stata 6.0.

The first two predictions are tested using patent rate models. If we define T as the

duration elapsed until a change in state, the instantaneous (hazard) rate of issuing a patent at time

t is defined as

In the patent rate models, duration is measured as the time elapsed since the last patent

application date or, if the firm has issued no previous patents, the time since the firm was

founded. The application dates of patents are recorded to the day. Note that although we do not
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model the full history of patenting of every firm, the data are left-truncated, not left-censored.

Because we know the date of the most recent pre-sample patent for each firm and the date all

firms were founded, we were able to correctly measure duration for the initial spell of each firm.

Similarly, we were able to accurately measure all covariates.

We model the hazard rate using semi-parametric Cox models (Cox 1972). In a Cox

model, the hazard rate is the product of an unspecified baseline rate, h(t), and a term specifying

the influences of covariates in X:

The advantage of using a Cox model is that one does not need to make parametric assumptions

about the form of duration dependence in the hazard rate. Incorrect parametric assumptions may

lead to biased estimates of the effects of covariates on the hazard rate (Blossfeld and Rohwer

1995). In the Cox model, the coefficient estimates β measure shifts in the baseline rate due to

the covariates in X, under the assumption that all such changes are proportional -- in other words

that h(t) does not depend on the covariates. For the analyses we undertake, the Cox model is

appropriate: there exists little theory to suggest how the transition rate should depend on the time

elapsed since the previous patent (thus making parametric assumptions more difficult), and there

is no reason to believe that the proportionality assumption is violated.  However, in order to

increase our confidence in the results, we also estimated piecewise-constant rate models, which

generated nearly identical results.

Next, we look at the average age of the prior art citations of the patents issued to a firm

each year. This variable is constructed by averaging the age of all patent citations (the difference

between the current year and the year in which a cited patent was applied for) made by the

patents of each firm in each year. Average citation age, which is defined for a firm in a year only

if the firm had at least one new patent in that year, is continuous and approximately normally

distributed. We therefore estimate models using OLS but correct for autocorrelation of the

disturbances within firms by using a fixed-effects estimator (Tuma and Hannan 1984). Adding

X)h(t)exp(r(t) β=
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fixed effects for firms assumes that the correlation structure in the disturbance term can be

decomposed into a firm-specific effect and a residual term that is uncorrelated across

observations and is homoscedastic. It is important to note that because of the inclusion of firm

dummy variables, the estimated coefficients represent within-firm effects (and so implicitly

control for differences across firms in the technological areas in which they specialize). In

addition to the other covariates, the citation age models include annual period effects.

A separate issue presents itself in the citation age models, namely the possibility of

sample selection bias (Heckman 1976). The citation age measure is necessarily missing for a

firm in any year in which the firm does not patent. In order to control for any biases such

selection might induce, we use a generalization of the Heckman correction procedure suggested

by Lee (1983). We use estimates from an event history patent rate model to generate a predicted

probability that a firm will patent at age t; this corresponds to the probit selection equation in the

Heckman procedure. These predicted probabilities are then used to generate:

where Fi(t) is the survivor function for firm i at time t, φ is the standard normal density function,

and Φ-1 is the inverse of the standard normal distribution function (Lee 1983). We then include

the time varying λ as a covariate in the fixed effects models of citation age.

The final analysis that we perform concerns the effect of age on the importance of a firm’s

innovative outputs. Here, we infer importance from the extent to which a firm’s patents are cited

in subsequently-developed inventions. We perform this analysis at the level of the individual

patent: we assume that each patent is at risk of being cited by other firms from the time that it is

issued onward. These data are modeled at the patent level and as a continuous time event history

because the patents in our database are issued at different points in time and so are at risk of

being cited by future patents for different time intervals. We estimate Cox models of the citation

rate and treat citation as a repeatable event. Duration is defined as the time elapsed since the
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issuance of the patent (if the patent has not been cited) or the time since last citation. Each time a

patent is cited, it re-enters the risk set with duration reset to zero.  Note that firms are represented

in this analysis proportional to their patent rate; virtually all firms are represented more than

once. This will typically lead to inflated t-statistics for the effects of firm-level characteristics.

We therefore present robust variance estimates that adjust for clustering at the firm level (Lin

and Wei 1989).

Results

Firm-level descriptive statistics and bivariate correlations for the two samples are

presented in Table 1.  These statistics make apparent the differences between the semiconductor

and biotechnology industries in terms of patenting activity and average firm age.  In both

samples, there is a moderately high correlation between firm size and the total number of patents;

the correlations involving firm age are more modest.

[***Insert Table 1 About Here***]

Table 2 displays a series of univariate statistics corresponding to each of the four

predictions. This table splits the firms in each industry into four age categories and then presents

category-specific means of the rate of patenting, the rate of self-cite patenting, the average age of

the patents cited by each firm’s patents, and the rate at which each of the patents of the firms in

an age range are cited by patents developed by other organizations. In this table, all rates are

computed by dividing the observed number of events (e.g., the number of patents) by the number

of years that the firms in the age range are at risk of experiencing the event. Consistent with our

predictions, the univariates in Table 2 demonstrate that the rate of patenting and of self-cite

patenting increases sharply with firm age in both sample. Similarly, the age of the foundations of

firms’ current-period innovations (mean citation age) increases precipitously with firm age.

Lastly, there is a monotonic decline across the age categories in the rate at which firms’ patents

are cited by the patents of other organizations. Our predictions find strong support in the

univariate statistics; we now turn our attention to whether they hold up in multivariate analyses.
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[***Insert Table 2 About Here***]

We begin by analyzing the relationship between aging and the rate at which firms in the

two samples produce new innovations. Tables 3 and 4 presents Cox model estimates of the firm-

level patent rate in the two samples. In addition to firm age and age-squared, we have included

time-varying measures of firm size (sales in semiconductors and total employees in

biotechnology) and a time trend. We have also included a time-varying count of the number of

(semiconductor or biotechnology) patents issued to each firm prior to the beginning of the spell.

Including the frequency of occurrence of the focal event is a common method of controlling for

unobserved heterogeneity (Heckman and Borjas 1980). The occurrence dependence variable

should control for the time-constant effects of unobserved factors (such as managerial ability)

that produce variance in organizations’ abilities or opportunities to patent.

[***Insert Tables 3 and 4 About Here***]

The results in Tables 3 and 4 show that older firms innovate at a higher rate. This

supports our claim that as firms age, they gradually refine the organizational routines and

competencies that underlie the production of innovations. In the semiconductor industry, a one-

year increase in firm age leads to a three percent increase in the patent rate; in biotechnology, the

corresponding increase is two percent.  Model 2 in both of the tables add a quadratic age term in

order to determine whether the effects of age are monotonic.  There is some evidence of a

weakly non-monotonic age effect in the semiconductor sample.  By contrast, patenting rates

among biotechnology firms increase with age up to a point and then decline, generating an

inverted-U shape.   The point of inflection, or maximum effect on patenting, is at approximately

10 years of age.

We assess the robustness of these results by including, in Models 3 and 4 in Table 4,

measures of the R&D expenditures of (public) biotechnology firms, and an indicator for recent

CEO turnover.  Firms with greater R&D expenditures have higher patenting rates; however, a

change in firm leadership does not affect patenting rates.  Most importantly, the effects of age
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remain highly significant and imply the same substantive result: patenting rates increase with

age, at a decreasing rate.

One might counter this claim with the argument that the increased patenting rates of older

firms may be due to greater investments in a patenting infrastructure within the firm, if these

investments lower the marginal cost of new patent applications. However, since building such an

infrastructure requires a certain degree of organizational slack, we suspect that such investments

should be strongly correlated with firm size, which is included as a control variable. Moreover,

the models control for occurrence dependence with the lagged patent count, yet the positive

effect of age persists. Net of firm size and the lagged patent count, the effects of age are strong

and highly significant.

While we control for what we believe to be the most important firm level determinants of

innovative activity, a skeptic might still claim that the aging results we observe are due to the

influence of unmeasured variables correlated with firm age. In least squares regression, such

complications are often dealt with by including firm-specific dummy variables to control for any

unmeasured characteristics. To our knowledge, however, there exists no analogue to the fixed

effects estimator in an event-history framework. Therefore, we also estimated fixed-effects

negative binomial models of counts of the number of patents applied for by each firm in each

year. The available upon request) support the conclusions drawn from the hazard rate models in

Tables 3 and 4: organizational age has a significant, positive effect on the patent rate in both

samples.

Our remaining analyses show that the fit between an organization’s outputs and

environmental demands appears to decline as firms age. The first manifestation of this decline in

organization-environment fit can be found in the fact that the innovations of older firms are more

likely to consist of extensions of their established innovative domains. Firms engaged primarily

in the exploitation of established competencies, as opposed to the development of new ones,

should be prone to building upon their prior innovations. Recalling that patent citations manifest

technological building relations, this suggests a positive association between firm age and patent
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self-citation rates. In addition to models of the overall patenting rate, Tables 3 and 4 present

estimates from models in which we decompose the overall patent rate into two competing risks:

self-citing and non-self-citing patents. Since a firm can only issue a self-citing patent if it already

possesses patents, these analyses are restricted to spells occurring after the firm’s first patent.

In the semiconductor industry, age increases the rate at which a firm applies for both

types of patents. There is no evidence to suggest a non-monotonic effect of age. However, age

has a greater effect on the rate of self-cite patenting than it does on the rate of non-self-cite

patenting. This difference is statistically significant: a Wald test of the equality of the age

coefficients yields a χ2 of 24.4 with 1 degree of freedom, which can be rejected easily at the one

percent level. Thus, as semiconductor firms age, they grow increasingly more likely to build

upon their prior areas of activity than to branch into new technological domains.

The pattern of results is even more striking in the biotechnology sample. Here, firm age

has a strong, positive effect on the rate of patent self-citing. The effect of firm age on issuing a

non-self-citing patent, by contrast, is statistically indistinguishable from zero. This difference is

again statistically significant, yielding a χ2 of  6.35 for 1 degree of freedom. As in the case of the

overall patent rate, the rates of issuing both non-self-citing and self-citing patents exhibit a non-

monotonic relationship with firm age; the patenting rates follow an inverted-U shape.

Furthermore, the inclusion of controls for R&D spending and CEO turnover do not substantially

affect the relationship between age and patenting. A firm’s volume of R&D investments appear

to increase the rate of generating patents in innovative domains that are new to the firm but they

have no impact on the propensity to create patents that extend the firm’s existing work.  A

change in CEO leadership does not impact patenting rates.

In sum, these results are consistent with our claim that as firms age, they become

increasingly likely to generate innovations that exploit existing competencies. The qualitative

implications of these models are shown in Figures 1 and 2. Figure 1 plots the predicted multiplier

of the hazard rate for the two types of patenting in the semiconductor industry, based on the age

coefficients in models 3 and 5 of Table 3.  As age increases, the relative tendency to issue self-
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citing patents increases.  Figure 2 plots the hazard rate multipliers for biotechnology, based on

the age effects in models 6 and 10 in Table 4.  We see clear evidence that as the age of

biotechnology firms increases, their propensity to generate patents based on their own prior

innovations, as opposed to working in new innovative domains, increases dramatically.

[***Insert Figures 2 & 3 About Here***]

 We further hypothesized that increasing obsolescence due to aging would cause firms to

fail to capitalize on the most current technological developments, instead working on

refinements of older areas of technology. The extent to which firms have incorporated recent

technological developments into their own innovations can be measured by the average age of

the patents that they have cited as prior art. Table 5 presents estimates from fixed-effects models

of the mean citation lag for all of the patents applied for by a firm (on a yearly basis), including

Lee’s (1983) correction for sample selection bias. In both the semiconductor and biotechnology

industries, the age of the prior art cited increases significantly with firm age. Note that with the

inclusion of the firm-specific dummies, the increase in the age of cited prior art can be attributed

to the consequences of aging on the firm’s innovative activity (i.e., it is not due to cross-sectional

differences in the level of firm age, nor is it due to between-firm differences in technological

foci). This further reinforces our claim that as firms grow older, their outputs become

increasingly dated. Older firms trail behind the technological frontier, focusing their innovative

activities instead on well-established rather than up-and-coming technological domains.

[***Insert Table 5 About Here***]

Finally, we argued that older firms are likely to produce innovations that have a lesser

impact on their technological communities than do those of young firms. This would manifest

itself in a lower citation rate to the patents of older firms. Tables 6 and 7 present estimates from

Cox models of the citation rate of all patents issued to the firms in our samples, with standard

errors adjusted for clustering at the firm level. In addition to our firm-level measures of size and
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number of patents6 (both at the time the patent was applied for), we control for three

characteristics of the patent itself. We include the age of the patent (i.e., the time elapsed since

patent issuance) and a quadratic patent age term to control for possible dependence of the

citation rate on the amount of time the patent has been available to the broader technological

community (cf. Podolny and Stuart, 1995). We also include a series of dummy variables for the

patent’s major class as controls for differences in citation rates across broad technological

domains. Model 1 in Table 6 shows that in the semiconductor industry, firm age at the time of

patent application has a significant, negative effect on the rate at which the patent is used as a

foundation for the work of other innovators. Patents issued by older semiconductor firms garner

less attention from external actors. However, the effect of firm age on citation rates in

biotechnology does not conform to our expectations, as is apparent from the first four models in

Table 7. For models estimated on the full sample of biotechnology firms, our estimates suggest a

positive but non-significant effect of age on the citation rate.

[***Insert Tables 6 and 7 About Here***]

Occasionally, firms have been suspected of filing for a set of closely-related patents to

obtain an intellectual property “blanket” for a particularly important technology. This may lead

firms to patent relatively marginal inventions that are unlikely to be of interest to the broader

technological community. Because the citation rate models are estimated at the patent level, this

phenomenon could lead us to find that old firms develop less important inventions, when in

reality they simply file for a large number of patents for marginal inventions to secure broad

intellectual property coverage for certain discoveries. The final sets of models in both Tables 6

and 7 report citation rate models that are restricted to the sub-sample of patents that, at the time

                                                       
6 We control for the total number of patents previously applied for by each firm in Tables 6 and 7 because this
variable should capture differences between organizations in their quality threshold for patenting. We reasoned that
the cost of patenting may vary across organizations, and that this in turn would create differences in the quality
threshold that an invention must surpass for the organization to decide to file for a patent. Our operating assumption
is that, ceteris paribus, firms that have applied for many patents possess lower costs of patenting. We therefore
expect that the lagged patent count will have a negative effect on the rate at which patents are cited (because, ceteris
paribus, firms that have patented extensively in the past are likely to have a lower cost of patenting and are therefore
more willing to patent lower quality inventions).
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of issuance, do not include self citations to any of the firm’s previously-issued patents. By

excluding all patents that make one or more self-citations, we should largely eliminate marginal

patents filed for the purpose of filling in small holes in an intellectual property estate. The firm

age coefficients, however, are essentially unchanged in the citation rate models that exclude all

such patents.

Before turning to a discussion of the findings, we briefly comment on the effect of firm

size on some of the innovation outcomes we have modeled. First, in Table 3, larger firms patent

at a higher rate in the semiconductor industry.  A positive effect of firm size is also evident in the

biotechnology patent rate models in Table 4, but disappears in the model that controls for R&D

spending. Second, it is interesting to note in Tables 6 and 7 that size has discrepant effects on the

importance of firms' innovations across the two samples: in biotechnology, the patents of large

firms are less-well cited on a per-patent basis, but the innovations of large semiconductor firms

are more likely to be cited by the patents of other organizations. Because large organizations are

often more bureaucratic and less entrepreneurial than small enterprises (Blau and Schoenherr

1971; Abernathy 1978; Aldrich and Auster 1986), we had expected that size would have a

negative effect on the importance of firms' innovations. One possible explanation for why firm

size has a positive effect in the semiconductor sample may be that technologies in that market are

interdependent due to the need for compatibility among users of semiconductor devices.

Therefore, the success of a new microelectronics technology may depend as much upon the

social capital and reputation of the firms sponsoring an innovation as it does on the underlying

technical specification of a device (Wade 1995; Podolny and Stuart 1995; Tushman and

Rosenkopf 1992). Because resources in such highly interdependent markets are often distributed

on the basis of reputations and promises, large and prestigious firms (e.g., Intel) are often able to

attract other innovators as adopters and elaborators of their technologies even if their innovations

are not superior from a technological standpoint. By contrast, there are no such network

externalities in biotechnology.
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VI. Discussion

Theorists from a variety of perspectives have suggested that the age of organizations

affects their capacity to change, innovate, grow and survive. Although there is a burgeoning

literature on the effects of age on life chances in the organizational ecology literature, there are

few studies of how the behavior of organizations changes as they age. We have argued that aging

has two seemingly contradictory consequences for organizational behavior. On the one hand,

experience with a set of organizational routines leads to gains in the efficiency with which these

routines are executed. On the other hand, in rapidly changing environments, the fit between

organizational capabilities and environmental demands declines with age.

The empirical results presented in Tables 3 through 7 provide strong support for our

arguments about the relationship between organizational aging and innovation processes. In

Tables 3 and 4, we find evidence that as organizations age, they generate more innovations: the

competence to produce new innovations—or at least patents—appears to improve with age.

However, these gains in organizational competence come at a price: namely, an increasing

divergence between organizational competence and current environmental demands. Most

impressively, the results are generally consistent across two very diverse technological contexts,

semiconductors and biotechnology. It is also notable that in the biotech sample we find effects

that are generally consistent with our theory even though the industry is quite young: the mean

age of the firms in the sample is only 7.3 years, but the posited effects are already evident.

Of course, some of the findings in the tables are open to alternative interpretation. For

instance, although there is considerable evidence that the patent citation rate is a valid measure of

the importance of the technology the patent represents, one might counter this interpretation of

the rate by positing that patents are also cited at a lower rate when their owners succeed at

excluding potential competitors from entering their areas of activity. If this were the case, then

older firms may garner fewer patent citations because they have so dominated a technological

area that others choose not to enter (or, perhaps, entry is deterred out of concern for some type of
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competitive retaliation). Because the individual findings may be interpreted in more than one

way, our empirical strategy has been to establish a series of findings consistent with the

obsolescence argument. Thus, considered as isolated findings, the results in each of the tables

may not be accepted as strong evidence of an age-related decline in organization-environment fit.

When the pattern of results is considered together, however, we feel that the evidence for the

existence of an obsolescence process is persuasive.

The apparent paradox that organizations improve the functioning of their routines just as

they lose touch with environmental demands is readily resolved with arguments about the

tradeoffs necessary for effective organizational learning (March 1991). Gains in the efficiency of

organizational routines are achieved by making simplifying assumptions about the state of the

environment (Cyert and March 1963). These assumptions may be formulated in the early period

after firm formation, and therefore may reflect the state of the environment near the time of

founding (Stinchcombe 1965). Unless routines are updated to reflect changes in the environment,

the organization’s capabilities will drift out of alignment with environmental demands. As a

growing literature has established, however, introducing significant changes in organizational

routines is risky, as it upsets existing balances of power and patterns of interaction, which may

create short-term performance problems. Therefore, in the absence of compelling evidence of the

inferiority of existing routines, firms are unlikely to substantially modify seemingly successful

procedures. Rather, changes in the blueprints for behavior will tend to be incremental.

A number of unresolved empirical issues remain, and we believe that the results suggest

some exciting possibilities for future research. One important question we have not considered

concerns the largely undocumented link between innovation and firm survival (and hence, based

upon the results we have reported, the indirect link from age to innovation to survival). We

began this paper by asking the reader to envision two hypothetical scenarios, one in which aging

had uniformly positive consequences for organizational innovation, and another in which aging

impeded the ability to innovate. We suggested that those two scenarios had direct implications

for the emergent demography of organizations in high-technology industries. Yet the coupling
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between organizational survival and the innovation outcomes we have analyzed is not at all

transparent. Although our results have demonstrated that the inventions of older firms tend to be

less well matched to the current demands of the technological field, this disadvantage could be

overcome if older firms possess stronger relations with vendors, buyers, and strategic partners or

if they enjoy higher status and a superior reputation. In short, it would be quite useful to study

the joint effects of age and innovation outcomes in models of organizational mortality or growth.

Due to the positional advantages that older firms may have accrued (Hannan 1998), age may

have a negative effect on mortality in models that control for measures of the organization-

environment fit.

A promising avenue for future research concerns the intersection between industry- and

firm-level maturation processes. At the level of the firm, our arguments suggest that the ultimate

impact of aging on organizational performance depends on whether the gains in competence due

to experience are negated by the decline in performance due to poor organization-environment

fit. At the field level, evolutionary models of technical change suggest that the pace and content

of technical development tend to vary systematically with the maturity of a technological area

(Abernathy 1978; Abernathy and Utterback 1978; Dosi 1982; Tushman and Anderson 1986).

These studies have shown that the early period of a new area of technology is often characterized

by technological ferment, but that the pace of change slows after the emergence of a dominant

design. At that point, innovation becomes more incremental, and process innovation increases in

importance relative to product innovation. Coupling the insights of the evolutionary model with

our arguments suggests that the slope coefficients on firm age in the models of organization-

environment fit are likely to vary across levels of industry maturity. If the pace of change in the

environment is sufficiently subdued (as may be the case later in an industry’s lifecycle), the

efficiency advantages that accrue to older organizations may put them at a competitive advantage

relative to younger firms.  The coefficients on the age variable in the models of organization-

environment fit will then approach zero. In this respect, the effects of aging on organizational

performance are contingent on the organization’s context. The time period spanned by our data is
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too short to allow us to empirically explore this contingency, but it seems a promising direction

for future research.

One of the limitations of patents as an innovation index is that these data do not allow us

to examine how organizational age affects the commercialization of new technologies. Case-

based evidence and the popular press suggest that older firms often experience great difficulty in

shepherding inventions from the R&D lab into the marketplace when the inventions differ

substantially from the firm’s established areas of business. Perhaps the most celebrated example

of this failure is Xerox, whose Palo Alto Research Center (PARC) is credited with having

developed many of the seminal technologies used in personal computing, graphical displays, and

computer networking (e.g., Hiltzik 1999). Unfortunately, Xerox failed to capitalize on most of

the developments at PARC, although it did patent a number of the PARC discoveries. This case

at least suggests that analyses of patent data may understate the adverse consequences of aging

on the organization-environment fit, since Xerox successfully established a satellite R&D lab

that developed many revolutionary technologies, but nevertheless the organization as a whole

failed to understand and assimilate the PARC developments. In terms of research avenues, this

case suggests the importance of exploring the aging process with other measures of innovation.

More generally, our findings raise a number of questions about the general consequences

of aging for organizational functioning and dynamics, and of the effects of aging on innovation

in particular. One intriguing issue concerns the relationship between organizational aging and the

demography of the organizational workforce. For example, we suspect that differences across

firms in the pattern of recruitment and turnover over time may mediate the relationship between

aging and organizational innovation. One hypothesis is that high levels of turnover – particularly

in key roles – may dilute the “institutional memory” of the organization. Firms with high

turnover levels might therefore not see the gains in competence associated with aging. On the

other hand, the higher levels of turnover also expose the firm to a greater variety of external

influences (Baty, Evan and Rothermel 1971; Sørensen 1999), which may make it easier for the

firm to stay abreast of new technological developments. Although we observed no immediate
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effects of CEO turnover on the patent-based outcome measures in this study, our analysis of this

possibility is incomplete because of the short time frame covered by our data, which precluded

experimentation with different lag structures. Similarly, we ran a series of unreported models

looking at the impact of changes in firm headcount on the measures of organization-environment

fit. Here as well, we found no significant effects on the patent-based outcome measures, although

this analysis was also handicapped by our inability to incorporate multi-year lags.

Another issue is the managerial implications of the age-related decline in organization-

environment fit. As Barnett and Carroll (1995) recently noted, organizational theories have for

some time been polarized according to their perspective on the adaptability of organizations. Our

own perspective is that the mismatch between older firms’ capabilities and the environment’s

demands poses a particularly difficult problem for managers because it develops incrementally

and it is hard to detect. This is in part because the increasing mastery of existing routines

disguises the gradual divergence between the organization’s areas of competence and the

environment’s demands. Although we do believe that inertia is a powerful force in high-

technology firms, we think that patent-based measures could be used to further the empirical

study of the role of management practice in moderating the age-innovation relationship.

In conclusion, we would suggest that the increasing gap between the organization’s

innovative capabilities and the technological frontier creates opportunities for new firms whose

internal routines are better aligned with the current state of technological development.

Consistent with observations of students of technical change that many major innovations are

very often pioneered by young, entrepreneurial firms, we find in organizational aging an

important source of dynamic change in high technology markets. One could make a strong case

that age-related obsolescence in established organizations is a necessary condition for the surge

in entrepreneurial activity in high technology industries.  In the absence of this constraint, the

advantaged resource positions of established firms would enable them to out compete startups in

important, emerging market niches.
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Table 1: Descriptive Statistics and Correlations

Panel A: Means and Standard Deviations for Firm-Level Data

Semiconductor Biotechnology

Mean F Mean F

Firm Size 350.07 762.47 121.32 310.54

Patents at entry to sample 94.91 246.72 2.11 6.06

Patents issued during sampling period 130.51 295.29 8.62 19.38

Firm Age 18.54 12.26 4.31 3.48

Log R&D – – 1.51 1.49

CEO Change – – 0.09 0.29

N of Firms 150 237

Sample Years 1986-1992 1987-1994

Note: In the semiconductor industry, size is measured as annual revenue; in biotechnology, size is measured
as the number of employees.  The R&D measure is restricted to public biotechnology firms only.

Panel B: Bivariate Correlations for Firm-Level Data

Size Patent Total Firm Age Log R&D

Size 0.758 0.439 –

Patent Total 0.670 0.490 –

Firm Age 0.242 0.292 –

Log R&D 0.555 0.549 0.321

CEO Change -0.022 0.007 -0.042 0.012

                                           

Note: Correlations for the semiconductor industry are above the main diagonal; for biotechnology, they are
below.  Correlations are from the pooled cross-section time series data: N=985 for semiconductor and
N=1628 for biotechnology.  (Correlations involving R&D in biotechnology are restricted to public firms;
N=678).
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Table 2: Characteristics of Patenting Activity by Age Groups

Panel A: Semiconductor Industry

Age
Overall 

Patent Rate
Self-Citing
Patent Rate

Mean
Citation Age Citation Rate

0 - 12 Years 1.794 0.877 5.139 0.676

12 - 24 Years 9.255 3.731 5.548 0.621

24 - 36 Years 34.248 12.899 5.773 0.573

36+ Years 71.174 28.250 6.164 0.411

Overall 17.920 9.350 5.596 0.556

Panel B: Biotechnology Industry

Age
Overall 

Patent Rate
Self-Citing
Patent Rate

Mean
Citation Age Citation Rate

0 - 4 Years 0.505 0.101 7.452 0.388

4 - 8 Years 0.980 0.329 7.870 0.356

8 - 12 Years 1.538 0.592 7.779 0.271

12 + Years 2.279 0.959 9.126 0.258

Overall 1.151 0.723 7.931 0.320

Note: The predicted rates are computed by dividing the observed number of failures by the total duration at
risk (in years).  The rates of issuing self-citing patents are contingent on the firm having at least one patent.
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Table 3: Cox Models of Firm Patent Rates, Semiconductor Industry

Overall 
Patent Rate

Competing Risk Model

Non-Self-Citing Self-Citing

(1) (2) (3) (4) (5) (6)

Size/1000 0.331† 0.329† 0.383† 0.382† 0.255† 0.260†
(0.008) (0.008) (0.009) (0.009) (0.013) (0.013)

Cumulative Firm
Patents/100

0.416† 0.414† 0.096† 0.096† 0.899† 0.907†
(0.014) (0.014) (0.018) (0.018) (0.021) (0.022)

Year -0.045† -0.042† -0.027† -0.026† -0.095† -0.102†
(0.004) (0.005) (0.005) (0.005) (0.008) (0.008)

Firm Age 0.029† 0.040† 0.027† 0.032† 0.040† 0.016
(0.001) (0.005) (0.001) (0.006) (0.002) (0.011)

Firm Age
Squared/1000

-0.206* -0.086 0.429*
(0.098) (0.118) (0.201)

Log-Likelihood -149,176 -149,174 -98,100 -98,100 -50,409 -50,407

Events 17,470 17,470 11,519 11,519 5,912 5,912

Spells 18,445 18,445 18,095 18,095 18,095 18,095

† p < 0.01    * p < 0.05

P2 test for equality of age coefficients in models (3) and (5): 24.40 (1 d.f.)
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Table 4: Cox Models of Firm Patent Rates, Biotechnology Industry

Overall
Patent Rate

Competing Risk Model

Non-Self-Citing Self-Citing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Size/1000 0.215† 0.153† -0.098 0.153† 0.348† 0.306† -0.048 0.304† -0.141 -0.252* -0.262* -0.252*
(0.043) (0.045) (0.055) (0.045) (0.048) (0.049) (0.062) (0.049) (0.103) (0.109) (0.122) (0.109)

Cumulative Firm
Patents/100

0.468† 0.940† 0.743† 0.940† 0.373† 0.703† 0.578† 0.703† 0.977† 1.410† 1.184† 1.410†
(0.071) (0.096) (0.113) (0.096) (0.087) (0.114) (0.141) (0.114) (0.149) (0.191) (0.204) (0.191)

Year 0.016 -0.010 -0.043† -0.010 -0.025 -0.036* -0.065† -0.035* 0.047 0.016 -0.006 0.016
(0.013) (0.013) (0.014) (0.013) (0.015) (0.015) (0.017) (0.015) (0.025) (0.025) (0.028) (0.025)

Firm Age 0.023† 0.302† 0.212† 0.302† -0.008 0.204† 0.192† 0.203† 0.037† 0.389† 0.276† 0.389†
(0.008) (0.028) (0.041) (0.028) (0.010) (0.035) (0.051) (0.035) (0.014) (0.064) (0.077) (0.064)

Firm Age
Squared/1000

-15.358† -11.809† -15.362† -11.624† -12.799† -11.601† -16.908† -11.184† -16.907†
(1.557) (2.154) (1.557) (1.955) (2.782) (1.954) (3.196) (3.709) (3.197)

Log R&D 0.250† 0.356† 0.022
(0.030) (0.037) (0.053)

CEO Change -0.016 -0.066 0.012
(0.081) (0.099) (0.151)

Log-Likelihood -12,291 -12,217 -9,357 -12,217 -8,381 -8,355 -6,379 -8,355 -3,431 -3,409 -2,834 -3,409

Events 1,899 1,899 1,521 1,899 1,303 1,303 1,044 1,303 525 525 451 525

Spellsa 3,563 3,563 2,227 3,563 2,843 2,843 2,077 2,843 2,843 2,843 2,077 2,843

† p < 0.01    * p < 0.05
a The models including R&D (models 3, 7, and 11) are restricted to public firms only.

 P2 test for equality of age coefficients in models (5) and (9): 6.35, 1d.f.
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Table 5: Fixed Effects OLS Models of the Average Age of Prior Art Cited in Patents Issued

Semiconductor Biotechnology

(1) (2) (3) (4) (5) (6)

Size/1000 -0.265 -0.258 -0.176 -0.166 0.092 -0.164
(0.300) (0.300) (0.785) (0.786) (0.716) (0.786)

Cumulative Firm
Patents/100

-0.050 -0.068 0.779 0.650 0.609 0.773
(0.070) (0.078) (1.052) (1.076) (0.992) (1.054)

8 0.056 0.056 -0.392 -0.382 -0.375 -0.400
(0.061) (0.061) (0.441) (0.442) (0.412) (0.442)

Firm Age 0.241† 0.205* 0.428† 0.296 0.490† 0.430†
(0.045) (0.084) (0.135) (0.262) (0.175) (0.135)

Firm Age
Squared/1000

0.854 7.358
(1.650) (12.522)

Log R&D -0.345
(0.385)

CEO Change 0.314
(0.589)

R2 0.09 0.09 0.08 0.08 0.11 0.08

Spellsa 517 517 451 451 295 451

† p < 0.01    * p < 0.05

Note: 8 is an adjustment for sample selection bias as in Lee (1983).  All models include dummy variables for annual period
effects (estimates not shown).  
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Table 6: Cox Models of the Citation Rate to Patents Issued to Firms in the Semiconductor Industry

All Patents Non-Self-Citing

(1) (2) (3) (4)

257: Active Solid-State Devices (e.g.,
Transistors, Solid-State Diodes)

0.235† 0.232† 0.267† 0.264†
(0.040) (0.040) (0.038) (0.038)

307: Electrical Transmission or Interconnection
Systems

0.288† 0.283† 0.281† 0.277†
(0.039) (0.040) (0.036) (0.037)

364: Electrical Computers and Data Processing
Systems

0.103* 0.104* 0.144† 0.144†
(0.046) (0.045) (0.052) (0.052)

365: Static Information Storage and Retrieval 0.095† 0.090† 0.115† 0.110†
(0.031) (0.030) (0.033) (0.032)

395: Information Processing System
Organization

0.208† 0.214† 0.219† 0.223†
(0.047) (0.049) (0.053) (0.054)

438: Semiconductor Device Manufacturing:
Process

0.365† 0.364† 0.407† 0.406†
(0.029) (0.030) (0.042) (0.042)

Size/1000 0.053† 0.059† 0.045† 0.050†
(0.016) (0.015) (0.016) (0.015)

Cumulative Firm Patents/100 -0.006 -0.006 -0.007 -0.007*
(0.004) (0.003) (0.005) (0.004)

Patent Age 0.832† 0.839† 0.831† 0.838†
(0.021) (0.021) (0.019) (0.019)

Patent Age Squared -0.113† -0.113† -0.113† -0.113†
(0.005) (0.005) (0.004) (0.004)

Year 0.007 -0.001 0.012 0.004
(0.007) (0.009) (0.010) (0.012)

Firm Age -0.008† -0.032* -0.009† -0.032*
(0.003) (0.013) (0.003) (0.014)

Firm Age Squared/1000 0.469 0.490
(0.259) (0.294)

Log-Likelihood -308,088 -308,071 -200,235 -200,220

Spells 50,169 50,169 34,112 34,112

† p < 0.01    * p < 0.05
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Table 7: Cox Models of the Citation Rate to Patents Issued to Firms in the Biotechnology Industry

All Patents Non-Self-Citing

(1) (2) (3) (4) (5) (6) (7) (8)

128: Surgery 0.001 -0.008 -0.065 -0.007 0.016 0.010 -0.086 0.010
(0.162) (0.161) (0.155) (0.157) (0.174) (0.173) (0.169) (0.171)

424: Drug, Bio-Affecting 
... Compositions

-0.048 -0.053 0.042 -0.050 -0.152 -0.155 -0.108 -0.153
(0.124) (0.122) (0.150) (0.121) (0.152) (0.151) (0.210) (0.150)

435: Molecular Biology
and Microbiology

-0.312* -0.317* -0.343* -0.317* -0.278* -0.280* -0.365* -0.281*
(0.126) (0.124) (0.157) (0.124) (0.135) (0.134) (0.178) (0.133)

436: Analytical and
Immunological Testing

-0.315 -0.316 -0.180 -0.323 -0.409 -0.410 -0.196 -0.413
(0.258) (0.256) (0.251) (0.257) (0.281) (0.280) (0.255) (0.280)

514: Drug, Bio-Affecting
...  Compositions

-0.277* -0.277* -0.111 -0.277* -0.215 -0.215 -0.070 -0.217
(0.127) (0.128) (0.119) (0.128) (0.138) (0.139) (0.145) (0.140)

530:Natural Resins or
Derivatives; etc.

-0.479† -0.481† -0.430† -0.484† -0.465† -0.466† -0.478† -0.470†
(0.128) (0.127) (0.128) (0.129) (0.142) (0.142) (0.155) (0.145)

536: Organic Compounds -0.633† -0.638† -0.533* -0.634† -0.604† -0.606† -0.547* -0.604†
(0.204) (0.203) (0.216) (0.202) (0.221) (0.220) (0.249) (0.220)

Size/1000 -0.178† -0.182† -0.049 -0.179† -0.125* -0.127 0.050 -0.124
(0.057) (0.063) (0.116) (0.061) (0.060) (0.066) (0.138) (0.064)

Cumulative Firm
Patents/100

-0.231 -0.235 -0.104 -0.229 -0.138 -0.142 -0.009 -0.137
(0.150) (0.150) (0.160) (0.149) (0.192) (0.192) (0.189) (0.189)

Patent Age 0.879† 0.879† 0.895† 0.880† 0.852† 0.853† 0.870† 0.853†
(0.048) (0.048) (0.058) (0.048) (0.054) (0.054) (0.064) (0.054)

Patent Age Squared -0.089† -0.089† -0.087† -0.089† -0.084† -0.084† -0.083† -0.084†
(0.010) (0.010) (0.011) (0.010) (0.011) (0.011) (0.012) (0.011)

Year -0.098† -0.098† -0.118† -0.101† -0.095† -0.095† -0.114† -0.097†
(0.026) (0.026) (0.031) (0.028) (0.029) (0.029) (0.035) (0.031)

Firm Age 0.029 0.042 0.147† 0.042 0.018 0.026 0.181† 0.026
(0.015) (0.038) (0.054) (0.038) (0.017) (0.041) (0.058) (0.041)

Firm Age Squared/1000 -0.655 -4.661 -0.653 -0.372 -7.259† -0.372
(1.288) (2.447) (1.288) (1.279) (2.600) (1.280)

Log R&D -0.111 -0.125
(0.058) (0.070)

CEO Change 0.070 0.055
(0.109) (0.133)

Log-Likelihood -18,206 -18,205 -12,463 -18,205 -13,780 -13,780 -8,847 -13,781

Spellsa 4,420 4,420 3,326 4,420 3,349 3,349 2,409 3,349

† p < 0.01    * p < 0.05
a The models including R&D (models 3 and 7) are restricted to public firms only.
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Figure 1: Predicted Effects of Age on Patent Rate, Semiconductor
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Figure 2: Predicted Effects of Age on Patent Rate, Biotechnology
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