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Abstract— The use of natural gas for power generation has
been rising rapidly in the past two decades [1]. To ensure
the security of supply of gas to the market and meet strict
specifications on gas quality (e.g., sulfur content), natural gas
production network design must address uncertainty explicitly
as well as tracking the quality of each gas flow in the entire
system. This leads to the stochastic pooling problem [2], which
is a (potentially large-scale) nonconvex mixed-integer nonlinear
program (MINLP). This paper presents a rigorous, duality-
based decomposition strategy to solve the stochastic pooling
problem, which guarantees finding an ε-optimal solution of
the problem with a finite number of iterations. A case study
involving a gas production network demonstrates the dramatic
computational advantages of the decomposition method over
a state-of-the-art global optimization method. The proposed
method can be extended to tackle more general nonconvex
MINLP problems, which may occur in the design of integrated
energy systems involving fuel production, power generation and
electricity transmission [3].

I. INTRODUCTION

Natural gas is an important fuel for electricity generation

worldwide, because it is more efficient and less carbon-

intensive than other fossil fuels [4]. In the past two decades,

the use of natural gas for electricity generation has been ris-

ing rapidly, and this trend is expected to continue in the next

two decades [1] [4]. Traditionally, electric power systems

are planned and operated without considering other energy

subsystems, which may not lead to the best performance

for the overall energy system including fuel production,

power generation and electricity transmission subsystems.

This has motivated research, in both electrical engineer-

ing (e.g., [3] [5] [6]) and chemical engineering (e.g., [7])

communities, on modeling and optimization of integrated

energy systems. This paper focuses on solution algorithms

for difficult optimization problems that arise in the design of

natural gas production networks (that are part of integrated

energy systems), and this technique can also be applied to

the design of integrated energy systems that include natural

gas production subsystems.

There are two major challenges in natural gas production

network design. One is to track the qualities, or the compo-

sitions, of the gas flows throughout the entire system. This
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is because the qualities of the raw gas flows from different

reservoirs can vary over large ranges, but these gas flows

are usually sent through several mixing and splitting units,

with little further processing, to product terminals, at which

they must satisfy strict quality specifications. The other is

to address the large uncertainty in different parts of the

system (e.g., capacity and quality of reservoirs, customer

demands, etc.). Li et al. addressed these two difficult issues

with a stochastic pooling problem formulation [2], where the

qualities of the gas flows are modeled with bilinear functions

(which are nonconvex) and the uncertainty in the natural gas

production networks is represented by a finite number of

scenarios in the stochastic programming formulation.

In [2], the stochastic pooling problem was solved by a

state-of-the-art global optimization solver, BARON [8] and

it was shown that BARON was not suitable for the problems

with large numbers of scenarios. This paper is devoted to

a more efficient solution method for the stochastic pooling

problem in the following form:

min
y,x1,...,xs,

q1,...,qs,u1,...,us

cT
1 y+

s

∑
h=1

(cT
2,hxh + cT

3,hqh + cT
4,huh)

s.t. uh,l,t = xh,lqh,t , ∀(l, t) ∈ Ω ⊂ {1, ...,nx}×{1, ...,nq}

A1,hy+A2,hxh +A3,hqh +A4,huh ≤ bh,

(xh,qh,uh) ∈ Πh ⊂ R
nx ×R

nq ×R
nu , y ∈ Y ⊂ {0,1}ny ,

∀h ∈ {1, ...,s},
(P)

where the index h∈ {1, ...,s} indicates the different scenarios

of uncertainty realization, Πh is a nonempty compact convex

polyhedral set for each scenario h, and Y is a set of binary

variables.

The stochastic pooling problem is a potentially large-scale

nonconvex MINLP problem. MINLP problems are typically

solved with branch-and-bound strategies, such as branch-

and-reduce [8], SMIN-αBB and GMIN-αBB [9], or decom-

position strategies, such as outer approximation [10] [11]

[12] and generalized Benders decomposition (GBD) [13]. In

the context of scenario-based stochastic programming, the

duality-based decomposition strategies, such as GBD, can

naturally decompose the problem for each scenario, which

is an overwhelming advantage over other solution strategies.

However, GBD is restricted to specific convex programs

and it cannot be applied to nonconvex MINLPs directly. In

this paper, a rigorous, duality-based decomposition strategy

which is inspired by GBD, is developed for the stochastic

pooling problem. The proposed method guarantees finding an
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ε-optimal solution with a finite number of iterations. This

paper does not give all the details of the method because

of the limited space, but it presents the general idea and

most important aspects of the strategy, so that readers can

understand the essence of the method.

The remaining part of the paper is organized as follows:

Section II gives an overview of the decomposition strategy

and Section III discusses the decomposed subproblems.

Then, Section IV details the decomposition algorithm.

Section V presents the results of a case study that

demonstrate the dramatic computational advantage of the

proposed method over a state-of-the-art global optimization

method. The paper ends with conclusions and discussions

on future work in Section VI.

II. THE DECOMPOSITION STRATEGY

The decomposition strategy is developed based on the

framework of concepts presented by Geoffrion for the design

of large-scale mathematical programming techniques [14].

This framework includes two groups of concepts: problem

manipulations and solution strategies. Problem manipula-

tions, such as convexification, projection and dualization

(used in this paper), are devices for restating a given problem

in an alternative form more amenable to solution. The result

is often what is referred to as a master problem. Solution

strategies, such as relaxation and restriction (used in this

paper), reduce the master problem to a related sequence of

simpler subproblems.

A. Convexification - The Lower Bounding Problem

Since Problem (P) is separable in the continuous and

the integer variables, the continuous and integer feasible

regions can be individually characterized [10]. So it suffices

to convexify and underestimate the bilinear functions in

Problem (P) to yield a lower bounding problem. This can

be done by replacing the bilinear functions in Problem (P)

with their convex and concave envelopes [15], which leads

to the following mixed-integer linear program (MILP):

min
y,x1,...,xs,

q1,...,qs,u1,...,us

cT
1 y+

s

∑
h=1

(cT
2,hxh + cT

3,hqh + cT
4,huh)

s.t. A1,hy+A2,hxh +A3,hqh +A4,huh ≤ bh,

(xh,qh,uh) ∈ Π̂h, y ∈ Y,

∀h ∈ {1, ...,s},

(LBP)

where

Π̂h = {(xh,qh,uh) : (xh,qh,uh) ∈ Πh,

uh,l,t ≥ xL
h,lqh,t + xh,lq

L
h,t − xL

h,lq
L
h,t ,

uh,l,t ≥ xU
h,lqh,t + xh,lq

U
h,t − xU

h,lq
U
h,t ,

uh,l,t ≤ xU
h,lqh,t + xh,lq

L
h,t − xU

h,lq
L
h,t ,

uh,l,t ≤ xL
h,lqh,t + xh,lq

U
h,t − xL

h,lq
U
h,t , ∀(l, t) ∈ Ω}

is the intersection of set Πh and the convex and concave

envelopes for the bilinear functions, and xU
h,l , xL

h,l denote the

upper and lower bounds on xh,l and qU
h,t , qL

h,t denote the upper

and lower bounds on qh,t . Obviously, Π̂h is also a nonempty

compact convex polyhedral set for each scenario h. It is not

difficult to show that any feasible point of Problem (P) is also

feasible for Problem (LBP), and the optimal objective value

of Problem (LBP) represents a lower bound on the optimal

objective value of Problem (P).

B. Projection/Dualization - The Master Problem

Problem (LBP) is a large-scale MILP when the number

of scenarios addressed by the problem is large. According

to the principle of projection explained in Geoffrion [13],

Problem (LBP) can be projected from the feasible region

of both the continuous and integer variables to the feasible

region of the integer variables, and any subproblem for a

fixed integer realization can be reformulated into its dual.

Thus, Problem (LBP) can be transformed into the following

form:

min
y,η

η

s.t. η ≥ F(y,λ1, ...,λs), ∀λ1, ...,λs ≥ 0,

G(y,µ1, ...,µs)≤ 0, ∀(µ1, ...,µs) ∈ M,

y ∈ Y, η ∈ R,

(MP)

where

F(y,λ1, ...,λs) = inf
(xh,qh,uh)∈Π̂h,

∀h∈{1,...,s}

[cT
1 y+

s

∑
h=1

(cT
2,hxh + cT

3,hqh + cT
4,huh)

+
s

∑
h=1

λ T
h gh(y,xh,qh,uh)],

G(y,µ1, ...,µs) = inf
(xh,qh,uh)∈Π̂h,

∀h∈{1,...,s}

s

∑
h=1

µT
h gh(y,xh,qh,uh),

and

gh(y,xh,qh,uh) = A1,hy+A2,hxh +A3,hqh +A4,huh −bh,

the multipliers

λ h ∈ R
m
, µh = (µh,1, ...,µh,m) ∈ R

m
, ∀h ∈ {1, ...,s},

and the set

M = {(µ1, ...,µs) ∈ R
m×s : µ1, ...,µs ≥ 0,

s

∑
h=1

m

∑
i=1

µh,i = 1}.

The first set of constraints in Problem (MP) represents the

optimality cuts, which restrict the optimal objective value of

the problem according to strong duality for linear programs

(LP). The second set of constraints represents the feasibility

cuts, which characterize the feasible region of the problem

in the projected space. The equivalence of Problems (MP)

and (LBP) follows from Theorems 2.1, 2.2 and 2.3 in [13].

C. Relaxation/Restriction - Solution Strategies

The master problem (MP) is difficult to solve directly

because of the uncountable number of constraints. Therefore,

it is solved in this paper by solving a sequence of Relaxed

Master Problems and Primal Bounding Problems which

are much easier to solve. The primal bounding problem is

189



constructed by restricting the integer variables to specific

values in the lower bounding problem (LBP), whose so-

lution yields a valid upper bound on the optimal objective

value of Problem (LBP) (and therefore Problem (MP) as

well). When the primal bounding problem is infeasible, a

corresponding Feasibility Problem is solved, which yields

valid information for the algorithm to proceed. Both the

primal bounding and the feasibility problems can be further

decomposed into subproblems for each scenario. The relaxed

master problem is constructed by relaxing Problem (MP) so

that the constraints are satisfied for only a finite number of

multiplier values. The solution of the relaxed master problem

yields a valid lower bound on the optimal objective value of

Problem (MP).

On the other hand, Problem (LBP) or (MP) is a relaxation

of the original problem (P), and a restriction of Problem

(P), called the Primal Problem, is constructed by restricting

the integer variables to specific values in Problem (P).

The primal problem can also be further decomposed into

subproblems for each scenario.

The proposed decomposition algorithm is implemented

by solving the aforementioned subproblems iteratively until

certain stopping criteria are met and a global optimum or

infeasibility of Problem (P) is indicated. More details of the

decomposed subproblems are given in the next section.

III. THE DECOMPOSED SUBPROBLEMS

A. Decomposed Primal Bounding Subproblem

When visiting the kth integer realization of y = y(k),

Problem (LBP) is reduced to an LP, which can naturally

be decomposed into s subproblems. For each scenario h, the

subproblem is as follows:

ob jPBPh
(y(k)) = min

xh,qh,uh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. A1,hy(k)+A2,hxh +A3,hqh +A4,huh ≤ bh,

(xh,qh,uh) ∈ Π̂h.

(PBPh)

The Lagrange multipliers for Problem (PBPh) for h = 1, ...,s

are used to construct optimality cuts for the relaxed master

problem (which will be discussed later).

B. Decomposed Feasibility Subproblem

If Problem (PBPh) is infeasible for some h ∈ {1, ...,s}
when y = y(k), then the primal bounding problem is infea-

sible. In this case, a corresponding feasibility problem is

solved, which minimizes the violation of the constraints by

introducing additional slack variables. Again, the feasibility

problem can be naturally decomposed into s subproblems.

For each scenario h, the subproblem is as follows:

min
xh,qh,uh,zh

m

∑
i=1

zh,i

s.t. A1,hy(k)+A2,hxh +A3,hqh +A4,huh −bh ≤ zh,

(xh,qh,uh) ∈ Π̂h, zh = (zh,1, ...,zh,m) ∈ {z ∈ R
m : z ≥ 0}.

(FPh)

It can be shown that the Lagrange multipliers for Problem

(FPh) for h = 1, ...,s form valid multipliers to construct the

feasibility cuts for the relaxed master problem. The proof is

not given here due to space limitations.

C. Relaxed Master Problem

After solving the primal bounding subproblems or fea-

sibility subproblems for a particular integer realization, a

relaxed master problem will be solved to generate a new

integer realization, which only contains a finite number of

optimality and feasibility cuts that are constructed with the

Lagrange multipliers for the primal bounding subproblems

and feasibility subproblems solved at previous iterations.

This problem is stated for iteration k as follows:

min
y,η

η

s.t. η ≥ F(y,λ
( j)
1 , ...,λ

( j)
s ), ∀ j ∈ T k

,

G(y,µ
(i)
1 , ...,µ

(i)
s )≤ 0, ∀i ∈ Sk

,

∑
r∈{r:y

(p)
r =1}

yr − ∑
r∈{r:y

(p)
r =0}

yr ≤ |{r : y
(p)
r = 1}|−1,

∀p ∈ T k ∪Sk
,

y ∈ Y, η ∈ R,

(RMPk)

where the index sets T k and Sk contain the indices of the

previous iterations in which the primal bounding problem

is feasible and infeasible, respectively. The additional

constraints (that do not appear in the master problem (MP)

stated before) represent a set of canonical integer cuts

that prevent the previously examined integer realizations

from becoming a solution [16]. Therefore, the following

proposition holds.

Proposition 1: Problems (RMPk) never generate the same

integer solution twice.

Also, Problem (RMPk) is a relaxation of the master

problem (MP) when augmented with the relevant canonical

integer cuts, in the sense that its feasible region is larger

(due to the less constraints included), so it yields valid lower

bound on the optimal objective value of the augmented mas-

ter problem. In the case study in this paper, Problem (RMPk)

is further augmented into a tighter relaxation by constructing

feasibility cuts for multiple scenarios respectively for each

visited integer realizations (instead of constructing only one

feasibility cut for that). The details are not shown here due

to space limitations.

Notice that if T k = /0, Problem (RMPk) is unbounded from

below. In this case, any feasible solution of Problem (RMPk)

can be used to generate a new integer realization and let the

algorithm proceed.

D. Decomposed Primal Subproblem

The solution of the lower bounding problem (LBP) yields

a valid lower bound on the optimal objective value of the

original problem (P). On the other hand, a valid upper bound

for Problem (P) can be obtained by solving the primal
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problem with a particular integer realization, say y = y(k),

which can naturally be decomposed into s subproblems. For

each scenario h, the subproblem is as follows:

ob jPPh
(y(k)) = min

xh,qh,uh

cT
2,hxh + cT

3,hqh + cT
4,huh

s.t. uh,l,t = xh,lqh,t , ∀(l, t) ∈ Ω,

A1,hy(k)+A2,hxh +A3,hqh +A4,huh ≤ bh,

(xh,qh,uh) ∈ Πh.

(PPh)

Problem (PPh) is a nonconvex nonlinear program (NLP),

which can be solved to ε-optimality in finite steps with

a state-of-the-art deterministic global optimization method,

such as branch-and-reduce [8]. In addition, the solution of

Problem (PPh) can be accelerated with the inclusion of an

additional cut on the objective, which is derived from the

solutions of the previous subproblems. (Again, although it

is implemented for the case study, its details are not shown

here due to space limitations). Nevertheless, Problem (PPh)

requires much more solution time than the decomposed

primal bounding/feasible subproblems (which are only LPs),

and it usually requires more solution time than the relaxed

master problem (which is a MILP) as well. Therefore, the

solution of Problem (PPh) is postponed in the proposed

decomposition strategy until the primal bounding problem

solution and the relaxed master problem solution converge

and a group of integer realizations have been examined for

the lower bounding problem. Then, Problem (PPh) is solved

for these integer realizations to yield and update valid upper

bounds on the target problem (P).

IV. ALGORITHM

A. Decomposition Algorithm

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = /0,

S0 = /0, U0 = /0.

2. Upper bound on the problem UBD = +∞, upper bound

on the lower bounding problem UBDPB = +∞, lower

bound on the lower bounding problem LBD =−∞.

3. Integer realization y(1) is given.

repeat

if k = 0 or (RMPk is feasible and LBD < UBDPB and

LBD < UBD) then

repeat

Set k = k+1

1. Solve the decomposed primal bounding prob-

lem PBPh(y(k)) for each scenario h = 1, ...,s se-

quentially. If PBPh(y(k)) is feasible for all the

scenarios with duality multipliers λ
(k)
h , add a

cut to the relaxed master problem RMPk ac-

cording to λ
(k)
1 , ...,λ

(k)
s , set T k = T k−1 ∪ {k}.

If ob jPBP(y
(k)) = cT

1 y(k) + ∑
s
h=1 ob jPBPh

(y(k)) <

UBDPB, update UBDPB = ob jPBP(y
(k)), y∗ =

y(k), k∗ = k;

2. If PBPh(y(k)) is infeasible for one scenario, stop

solving it for the remaining scenarios and set

Sk = Sk−1 ∪ {k}. Then, solve the decomposed

feasibility problem FPh(y(k)) for h = 1, ...,s and

obtain the corresponding Lagrange multiplier vec-

tor µ
(k)
h . Add feasibility cuts to RMPk according

to these multipliers.

3. If T k = /0, solve the relaxed master problem RMPk

for a feasible solution; otherwise, solve RMPk for

an optimal solution. In the latter case, if RMPk is

feasible, set LBD to its optimal objective value

and set y(k+1) to the y value at its optimum.

until LBD ≥ UBDPB or RMPk is infeasible.

end if

if UBDPB < UBD then

1. Solve the decomposed primal problem PPh(y∗) for

each scenario h = 1, ...,s sequentially. Set U l =
U l−1 ∪ {k∗}. If PPh(y∗) is feasible with optimum

(x∗p,h,q
∗
p,h,u

∗
p,h) for all the scenarios and ob jPP(y

∗)=

cT
1 y∗ + ∑

s
h=1 ob jPPh

(y∗) < UBD, update UBD =
ob jPP(y

∗) and y∗p = y∗.

2. If T k \U l = /0, set UBDPB =+∞.

3. If T k \U l 6= /0, pick the iteration index i ∈ T k \U l

such that ob jPBP(y
(i)) = min j∈T k\U l{ob jPBP(y

( j))}.

Update UBDPB = ob jPBP(y
(i)), y∗ = y(i), k∗ = i. Set

l = l +1.

end if

until UBDPB ≥ UBD and (RMPk is infeasible or LBD ≥
UBD).

The global optimum of the original problem P is given

by (y∗p,x
∗
p,1, ...,x

∗
p,s,q

∗
p,1, ...,q

∗
p,s,u

∗
p,1, ...,u

∗
p,s) or P is infea-

sible.

B. Finite convergence

Definition 1: A feasible point of an optimization problem

is an ε-optimal solution if it renders an objective value

whose difference from the optimal objective value is within a

particular tolerance ε . If an ε-optimal solution of the problem

is obtained, the problem is said to be solved to ε-optimality.

Theorem 1: If all the subproblems (presented in Section

III) can be solved to ε-optimality in a finite number of steps,

the decomposition algorithm terminates in a finite number of

steps providing an ε-optimal solution of Problem (P) or with

an indication that Problem (P) is infeasible.

Proof: First, all the integer realizations are generated by

solving Problem (RMPk) in the algorithm, and according to

Proposition 1, no integer realization will be generated twice.

Since set Y is finite by definition and all the subproblems are

terminated in finite number of steps, the algorithm terminates

in a finite number of steps.

Next it is shown that, if Problem (P) is feasible, the

algorithm terminates with an optimal solution of it. Notice

that in this case the algorithm terminates with “Problem

(RMPk) is infeasible” or “LBD ≥ UBD”. If Problem (RMPk)

is infeasible, then an optimum of Problem (P) is obtained at

the integer realization y = y∗p. (Note y∗p exists because of

the feasibility of Problem (P).) Then an optimal solution of

the primal problem for y = y∗p, which is constructed by the

solutions of subproblems (PPh) for all the scenarios, leads
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