49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

Decomposition Strategy for Natural Gas Production Network Design
Under Uncertainty

Xiang Li, Asgeir Tomasgard and Paul 1. Barton

Abstract— The use of natural gas for power generation has
been rising rapidly in the past two decades [1]. To ensure
the security of supply of gas to the market and meet strict
specifications on gas quality (e.g., sulfur content), natural gas
production network design must address uncertainty explicitly
as well as tracking the quality of each gas flow in the entire
system. This leads to the stochastic pooling problem [2], which
is a (potentially large-scale) nonconvex mixed-integer nonlinear
program (MINLP). This paper presents a rigorous, duality-
based decomposition strategy to solve the stochastic pooling
problem, which guarantees finding an c-optimal solution of
the problem with a finite number of iterations. A case study
involving a gas production network demonstrates the dramatic
computational advantages of the decomposition method over
a state-of-the-art global optimization method. The proposed
method can be extended to tackle more general nonconvex
MINLP problems, which may occur in the design of integrated
energy systems involving fuel production, power generation and
electricity transmission [3].

I. INTRODUCTION

Natural gas is an important fuel for electricity generation
worldwide, because it is more efficient and less carbon-
intensive than other fossil fuels [4]. In the past two decades,
the use of natural gas for electricity generation has been ris-
ing rapidly, and this trend is expected to continue in the next
two decades [1] [4]. Traditionally, electric power systems
are planned and operated without considering other energy
subsystems, which may not lead to the best performance
for the overall energy system including fuel production,
power generation and electricity transmission subsystems.
This has motivated research, in both electrical engineer-
ing (e.g., [3] [5] [6]) and chemical engineering (e.g., [7])
communities, on modeling and optimization of integrated
energy systems. This paper focuses on solution algorithms
for difficult optimization problems that arise in the design of
natural gas production networks (that are part of integrated
energy systems), and this technique can also be applied to
the design of integrated energy systems that include natural
gas production subsystems.

There are two major challenges in natural gas production
network design. One is to track the qualities, or the compo-
sitions, of the gas flows throughout the entire system. This
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is because the qualities of the raw gas flows from different
reservoirs can vary over large ranges, but these gas flows
are usually sent through several mixing and splitting units,
with little further processing, to product terminals, at which
they must satisfy strict quality specifications. The other is
to address the large uncertainty in different parts of the
system (e.g., capacity and quality of reservoirs, customer
demands, etc.). Li et al. addressed these two difficult issues
with a stochastic pooling problem formulation [2], where the
qualities of the gas flows are modeled with bilinear functions
(which are nonconvex) and the uncertainty in the natural gas
production networks is represented by a finite number of
scenarios in the stochastic programming formulation.

In [2], the stochastic pooling problem was solved by a
state-of-the-art global optimization solver, BARON [8] and
it was shown that BARON was not suitable for the problems
with large numbers of scenarios. This paper is devoted to
a more efficient solution method for the stochastic pooling
problem in the following form:
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where the index i € {1, ..., s} indicates the different scenarios
of uncertainty realization, ITj is a nonempty compact convex
polyhedral set for each scenario &, and Y is a set of binary
variables.

The stochastic pooling problem is a potentially large-scale
nonconvex MINLP problem. MINLP problems are typically
solved with branch-and-bound strategies, such as branch-
and-reduce [8], SMIN-aBB and GMIN-aBB [9], or decom-
position strategies, such as outer approximation [10] [11]
[12] and generalized Benders decomposition (GBD) [13]. In
the context of scenario-based stochastic programming, the
duality-based decomposition strategies, such as GBD, can
naturally decompose the problem for each scenario, which
is an overwhelming advantage over other solution strategies.
However, GBD is restricted to specific convex programs
and it cannot be applied to nonconvex MINLPs directly. In
this paper, a rigorous, duality-based decomposition strategy
which is inspired by GBD, is developed for the stochastic
pooling problem. The proposed method guarantees finding an
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e-optimal solution with a finite number of iterations. This
paper does not give all the details of the method because
of the limited space, but it presents the general idea and
most important aspects of the strategy, so that readers can
understand the essence of the method.

The remaining part of the paper is organized as follows:
Section II gives an overview of the decomposition strategy
and Section III discusses the decomposed subproblems.
Then, Section IV details the decomposition algorithm.
Section V presents the results of a case study that
demonstrate the dramatic computational advantage of the
proposed method over a state-of-the-art global optimization
method. The paper ends with conclusions and discussions
on future work in Section VI.

II. THE DECOMPOSITION STRATEGY

The decomposition strategy is developed based on the
framework of concepts presented by Geoffrion for the design
of large-scale mathematical programming techniques [14].
This framework includes two groups of concepts: problem
manipulations and solution strategies. Problem manipula-
tions, such as convexification, projection and dualization
(used in this paper), are devices for restating a given problem
in an alternative form more amenable to solution. The result
is often what is referred to as a master problem. Solution
strategies, such as relaxation and restriction (used in this
paper), reduce the master problem to a related sequence of
simpler subproblems.

A. Convexification - The Lower Bounding Problem

Since Problem (P) is separable in the continuous and
the integer variables, the continuous and integer feasible
regions can be individually characterized [10]. So it suffices
to convexify and underestimate the bilinear functions in
Problem (P) to yield a lower bounding problem. This can
be done by replacing the bilinear functions in Problem (P)
with their convex and concave envelopes [15], which leads
to the following mixed-integer linear program (MILP):
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is the intersection of set IT, and the convex and concave
envelopes for the bilinear functions, and x;[,]l, x% ; denote the
upper and lower bounds on xp,; and qfl/_l, qfl"t denote the upper

and lower bounds on g, ;. Obviously, IT, is also a nonempty
compact convex polyhedral set for each scenario A. It is not
difficult to show that any feasible point of Problem (P) is also
feasible for Problem (LBP), and the optimal objective value
of Problem (LBP) represents a lower bound on the optimal
objective value of Problem (P).

B. Projection/Dualization - The Master Problem

Problem (LBP) is a large-scale MILP when the number
of scenarios addressed by the problem is large. According
to the principle of projection explained in Geoffrion [13],
Problem (LBP) can be projected from the feasible region
of both the continuous and integer variables to the feasible
region of the integer variables, and any subproblem for a
fixed integer realization can be reformulated into its dual.
Thus, Problem (LBP) can be transformed into the following
form:
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The first set of constraints in Problem (MP) represents the
optimality cuts, which restrict the optimal objective value of
the problem according to strong duality for linear programs
(LP). The second set of constraints represents the feasibility
cuts, which characterize the feasible region of the problem
in the projected space. The equivalence of Problems (MP)
and (LBP) follows from Theorems 2.1, 2.2 and 2.3 in [13].

C. Relaxation/Restriction - Solution Strategies

The master problem (MP) is difficult to solve directly
because of the uncountable number of constraints. Therefore,
it is solved in this paper by solving a sequence of Relaxed
Master Problems and Primal Bounding Problems which
are much easier to solve. The primal bounding problem is
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constructed by restricting the integer variables to specific
values in the lower bounding problem (LBP), whose so-
lution yields a valid upper bound on the optimal objective
value of Problem (LBP) (and therefore Problem (MP) as
well). When the primal bounding problem is infeasible, a
corresponding Feasibility Problem is solved, which yields
valid information for the algorithm to proceed. Both the
primal bounding and the feasibility problems can be further
decomposed into subproblems for each scenario. The relaxed
master problem is constructed by relaxing Problem (MP) so
that the constraints are satisfied for only a finite number of
multiplier values. The solution of the relaxed master problem
yields a valid lower bound on the optimal objective value of
Problem (MP).

On the other hand, Problem (LBP) or (MP) is a relaxation
of the original problem (P), and a restriction of Problem
(P), called the Primal Problem, is constructed by restricting
the integer variables to specific values in Problem (P).
The primal problem can also be further decomposed into
subproblems for each scenario.

The proposed decomposition algorithm is implemented
by solving the aforementioned subproblems iteratively until
certain stopping criteria are met and a global optimum or
infeasibility of Problem (P) is indicated. More details of the
decomposed subproblems are given in the next section.

III. THE DECOMPOSED SUBPROBLEMS

A. Decomposed Primal Bounding Subproblem

When visiting the kth integer realization of y = y®),
Problem (LBP) is reduced to an LP, which can naturally
be decomposed into s subproblems. For each scenario 4, the
subproblem is as follows:
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The Lagrange multipliers for Problem (PBP,) for h=1,...;s
are used to construct optimality cuts for the relaxed master
problem (which will be discussed later).

B. Decomposed Feasibility Subproblem

If Problem (PBP}) is infeasible for some A € {I1,...,s}
when y = y(k), then the primal bounding problem is infea-
sible. In this case, a corresponding feasibility problem is
solved, which minimizes the violation of the constraints by
introducing additional slack variables. Again, the feasibility
problem can be naturally decomposed into s subproblems.
For each scenario 4, the subproblem is as follows:
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It can be shown that the Lagrange multipliers for Problem
(FPp,) for h=1,...,s form valid multipliers to construct the
feasibility cuts for the relaxed master problem. The proof is
not given here due to space limitations.

C. Relaxed Master Problem

After solving the primal bounding subproblems or fea-
sibility subproblems for a particular integer realization, a
relaxed master problem will be solved to generate a new
integer realization, which only contains a finite number of
optimality and feasibility cuts that are constructed with the
Lagrange multipliers for the primal bounding subproblems
and feasibility subproblems solved at previous iterations.
This problem is stated for iteration k as follows:

min 1N
»n
st. n>Fypa? A, vieTk
Go.ul, . uy<o, viest, )
RMP
Y - Y owsirn? =iy, O
re{r:y£1)):1} re{r:yfnp):o}
Vp e TFUSK,
yeY,neR,

where the index sets 7% and S* contain the indices of the
previous iterations in which the primal bounding problem
is feasible and infeasible, respectively. The additional
constraints (that do not appear in the master problem (MP)
stated before) represent a set of canonical integer cuts
that prevent the previously examined integer realizations
from becoming a solution [16]. Therefore, the following
proposition holds.

Proposition 1: Problems (RMP¥) never generate the same
integer solution twice.

Also, Problem (RMP¥) is a relaxation of the master
problem (MP) when augmented with the relevant canonical
integer cuts, in the sense that its feasible region is larger
(due to the less constraints included), so it yields valid lower
bound on the optimal objective value of the augmented mas-
ter problem. In the case study in this paper, Problem (RMP¥)
is further augmented into a tighter relaxation by constructing
feasibility cuts for multiple scenarios respectively for each
visited integer realizations (instead of constructing only one
feasibility cut for that). The details are not shown here due
to space limitations.

Notice that if T¥ = 0, Problem (RMP¥) is unbounded from
below. In this case, any feasible solution of Problem (RMP¥)
can be used to generate a new integer realization and let the
algorithm proceed.

D. Decomposed Primal Subproblem

The solution of the lower bounding problem (LBP) yields
a valid lower bound on the optimal objective value of the
original problem (P). On the other hand, a valid upper bound
for Problem (P) can be obtained by solving the primal
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problem with a particular integer realization, say y = y(¥),
which can naturally be decomposed into s subproblems. For
each scenario #, the subproblem is as follows:

ob jpp, (y(k>) = min c;hxh + c{hqh + C4T’huh
XhydhsUn
St Upre =Xpiqne, V(1) €Q,
Ay + Ag jxi, +As g+ Aa g, < by,
(Xns qnsun) € I

Problem (PP,) is a nonconvex nonlinear program (NLP),
which can be solved to &-optimality in finite steps with
a state-of-the-art deterministic global optimization method,
such as branch-and-reduce [8]. In addition, the solution of
Problem (PP;) can be accelerated with the inclusion of an
additional cut on the objective, which is derived from the
solutions of the previous subproblems. (Again, although it
is implemented for the case study, its details are not shown
here due to space limitations). Nevertheless, Problem (PP;,)
requires much more solution time than the decomposed
primal bounding/feasible subproblems (which are only LPs),
and it usually requires more solution time than the relaxed
master problem (which is a MILP) as well. Therefore, the
solution of Problem (PP,) is postponed in the proposed
decomposition strategy until the primal bounding problem
solution and the relaxed master problem solution converge
and a group of integer realizations have been examined for
the lower bounding problem. Then, Problem (PP}) is solved
for these integer realizations to yield and update valid upper
bounds on the target problem (P).

(PPy)

IV. ALGORITHM
A. Decomposition Algorithm
Initialize:

1. Iteration counters k=0, [ = 1, and the index sets 79 = 0,
s'=0,U°=0.

2. Upper bound on the problem UBD = 4o, upper bound
on the lower bounding problem UBDPB = 4o, lower
bound on the lower bounding problem LBD = —oo.

3. Integer realization y(!) is given.

repeat
if k =0 or (RMP* is feasible and LBD < UBDPB and
LBD < UBD) then
repeat
Set k=k+1
1. Solve the decomposed primal bounding prob-
lem PBPh(y(k)) for each scenario h =1,...,s se-
quentially. If PBP,(y%)) is feasible for all the
scenarios with duality multipliers l(k), add a
cut to the relaxed master problem RMP* ac-
cording to ll(k),...,ls(k), set T = Tk=1y {k}.
If objeap(y¥)) = c[y® + ¥5_, objpep, (Y¥)) <
UBDPB, update UBDPB = ob jpgp(y*)), y* =
Y0,k =k;
2. If PBPh(y(k)) is infeasible for one scenario, stop
solving it for the remaining scenarios and set
Sk = §&1'U {k}. Then, solve the decomposed

feasibility problem FP,(y%)) for h=1,...,s and
obtain the corresponding Lagrange multiplier vec-
tor 1. Add feasibility cuts to RMP* according
to these multipliers.

3. If T = 0, solve the relaxed master problem RMP*
for a feasible solution; otherwise, solve RMP* for
an optimal solution. In the latter case, if RMP* is
feasible, set LBD to its optimal objective value
and set y**1) to the y value at its optimum.

until LBD > UBDPB or RMP* is infeasible.

end if

if UBDPB < UBD then

1. Solve the decomposed primal problem PPj(y*) for
each scenario & = 1,...,s sequentially. Set U =
U= U {k*}. If PP,(y*) is feasible with optimum
(X}, js@p oy, ) for all the scenarios and ob jpp(y*) =
c1y" + Yj_,0bjpp,(y*) < UBD, update UBD =
objpp(y*) and y, = y".

2. 1f T*\ U' = 0, set UBDPB = +o.

3. If TF\ U # 0, pick the iteration index i € T*\ U’
such that objpgp(y\)) = minjeTk\Uz{objpo(y(j>)}.
Update UBDPB = 0b jppp(y\), y* =y, k* = i. Set
I=1+1.

end if

until UBDPB > UBD and (RMPk is infeasible or LBD >
UBD).

The global optimum of the original problem P is given
by (y;>x;,1v“-ax;s’q;l7-~-7q;*7,s7”;,17-"a“;,s) or P is infea-
sible.

B. Finite convergence

Definition 1: A feasible point of an optimization problem
is an g-optimal solution if it renders an objective value
whose difference from the optimal objective value is within a
particular tolerance €. If an €-optimal solution of the problem
is obtained, the problem is said to be solved to €-optimality.

Theorem 1: If all the subproblems (presented in Section
IIT) can be solved to e-optimality in a finite number of steps,
the decomposition algorithm terminates in a finite number of
steps providing an €-optimal solution of Problem (P) or with
an indication that Problem (P) is infeasible.

Proof: First, all the integer realizations are generated by
solving Problem (RMP¥) in the algorithm, and according to
Proposition 1, no integer realization will be generated twice.
Since set Y is finite by definition and all the subproblems are
terminated in finite number of steps, the algorithm terminates
in a finite number of steps.

Next it is shown that, if Problem (P) is feasible, the
algorithm terminates with an optimal solution of it. Notice
that in this case the algorithm terminates with ‘“Problem
(RMP¥) is infeasible” or “LBD > UBD”. If Problem (RMP¥)
is infeasible, then an optimum of Problem (P) is obtained at
the integer realization y = y;‘,. (Note y; exists because of
the feasibility of Problem (P).) Then an optimal solution of
the primal problem for y =y}, which is constructed by the
solutions of subproblems (PP;) for all the scenarios, leads
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Fig. 1.

Superstructure of the gas network.

to an optimal solution of Problem (P). If Problem (RMPX)
is feasible and LBD > UBD, then a global optimum has
been obtained by the solutions of the already visited Problem
(RMP¥) and the corresponding subproblems (PPy).

If Problem (P) is infeasible, the algorithm terminates with
UBD = +eo because UBD can only be updated with optimal
solutions of Problem (PPy,) for all the scenarios, which are
not all feasible for any integer realization (and therefore UBD
is never updated).

|

In practice, the convergence criteria, such as UBDPB >
UBD would not be used, but rather UBDPB > UBD — &,
where € is a predefined convergence tolerance. This is not
explicitly addressed in the above algorithm and proof because
of space limitation. However, the inclusion of the tolerance
does not change the structure and the properties of the
algorithm and the proof of finite convergence.

V. CASE STUDY
A. The Gas Network Planning Problem

The case study is to demonstrate the computational ad-
vantages of the proposed decomposition algorithm (DA)
over BARON through a gas network planning problem.
This problem is similar to the one studied in [2], which
demonstrates the advantages of the stochastic pooling prob-
lem formulation over several deterministic formulations. Fig.
1 gives the superstructure of the gas network. The round
symbols denote the sources of the gas flows which are
typically gas wells, the triangular symbols denote the pools
where the different gas flows are mixed and then split, which
are typically gas production or riser platforms, the square
symbols denote the product terminals where the final gas
products are produced, which are typically plants supplying
dry and/or liquefied gas products. The symbols with solid
lines denote the facilities that must be developed for the
network due to specific engineering reasons, and the symbols
with dashed lines denote the potential facilities that can be
developed for the system. The uncertainty in the network
comes from the compositions of sources 2, 4 and 5, which
are uniformly distributed within given ranges.

There are several differences between the problem studied
here and the problem in [2]. First, source 7 and the pipeline
connecting it to pool 10 must be developed while they are
determined by the optimization in [2]. Second, component 1

content in each gas flow is not tracked and the bounds on it
are not included in the problem. Third, additional integer
constraints are added into the model which prevent any
isolated node (i.e., a node that is not connected to any other
node) to appear in the network. Finally, additional redudant
constraints, which can tighten the relaxations of the bilinear
terms (as suggested in [17]), are added into the model to
accelerate the solution. Readers can find other details of the
problem in [2].

The nonconvex MINLP problem to be solved for the gas
network planning has 19 binary variables which decide the
network design, and 68s (where s denotes the total number
of scenarios addressed by the problem) continuous variables
which determine the optimal operation for each scenario. So
the size of the problem depends on the number of scenarios
linearly.

The problem is solved on on a computer allocated a single
2.83GHz CPU and running Linux kernel. GAMS 22.8.1 is
used to formulate the model, program the DA, and solve
the problems with BARON and the DA. BARON 8.1.5 158
used as the branch-and-reduce global optimization solver
for comparison, which employs SNOPT 7.2.4 [18] for NLP
subproblems and CPLEX 11.1.1 [19] for LP subproblems.
The relative termination criteria for BARON is 1%. The DA
employs BARON 8.1.5 with the same setting for NLP sub-
problems and CPLEX 11.1.1 for LP and MILP subproblems.
The relative termination criteria for DA is 1% as well.

B. Results and Discussion

First, the uniformly distributed uncertain parameters in
the model, i.e., the compositions of source 2, 4 and 5,
are assumed to be correlated as described in [2]. Then,
the scenarios in the stochastic formulation can be gener-
ated according to this assumption and the total number of
scenarios addressed. When the number of scenarios is 1,
the formulation is reduced to a deterministic formulation
and the uncertain parameter is set to its expected value.
Fig. 2 summarizes the total solver times with BARON and
DA, respectively, for different numbers of scenarios. It is
clear that, DA solves the problems faster than BARON
does, and that its solution time increases moderately with
the number of scenarios. On the other hand, the solution
time with BARON increases exponentially with the number
of scenarios. According to the trend shown in this figure,
solving a problem with 100 scenarios would take BARON
about 10°” CPU seconds! Fig. 2 also shows the solver times
with explicit enumeration of integer realizations from set ¥
(called EI in the paper), which is estimated by the cardinality
of ¥ and the solution time for Problem (PPy,). It can be seen
that DA outperforms EI as well, because it only visits a small
part of the elements of Y.

Second, it will be shown how DA performs for large
numbers of scenarios. Here the three uniformly distributed
uncertain parameters in the model are assumed to be in-
dependent. 2, 4, 6, 8, 10 scenarios are generated for each
parameter respectively, which lead to problems with §, 64,
216, 512, 1000 scenarios. Fig. 3 shows the solver timeswith
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DA for these five cases. It can be seen that the increase in the
solution time with DA is roughly linear with respect to the
number of scenarios. Notice that the problem has 19 integer
variables and 68000 continuous variables when addressing
1000 scenarios, which is a very large-scale MINLP. But this
problem is solved by DA within only 5 hours solver time!

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a rigorous decomposition method,
that can guarantee an g-optimal solution of the nonconvex
MINLP problem for natural gas network design under uncer-
tainty, with a finite number of iterations. Since this method
can take advantage of the structure of the stochastic pooling
problem, it has a tremendous advantage over state-of-the-art
branch-and-bound based methods such as branch-and-reduce,
and it also outperforms the explicit enumberation of integer
realizations because it only visits part of the elements of
the integer set. This is demonstrated by the case study of a
gas network planning problem, where a nonconvex MINLP
as large as with 68000 continuous variables and 19 binary
variables is not solvable with BARON, but can be solved
to e-optimality by the decomposition method within only 5
hours solver time. The case study results also show that the
increase of solution time with the proposed decomposition
method is roughly linear with respect to the number of
scenarios, which indicates the viability of the method for
even larger problems.

Two interesting issues will be addressed in future work.
First, notice that parallel computation naturally fits the
decomposition algorithm because the decomposed primal
subproblems, primal bounding subproblems and feasibility

subproblems can be solved in parallel without exchanging
any information between them. Integration of a parallel
computing architecture can significantly reduce the run time
of the method. Second, the proposed method can be extended
to tackle more general nonconvex functions in the stochastic
formulation, and thus it can solve more general nonconvex
stochastic programming problems. Then, the decomposition
method is not only applicable to integrated grid design
including the natural gas subsystem, but also applicable to
more types of grid design problems with some nonconvex
functions in the model.
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