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Seminar Outline

F Mathematical Background (Dixit and Pindyck, 1994:
chs. 3—4)

F Investment and Operational Timing (Dixit and Pindyck,
1994: chs. 5—6 and McDonald, 2005: ch. 17)

F Strategic Interactions (Huisman and Kort, 1999)

F Capacity Switching (Siddiqui and Takashima, 2011)
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Topic Outline

F Wiener process and GBM

F Itô’s lemma

F Dynamic programming
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Wiener Process
F AWiener process (or Brownian motion) has the following
properties:
I Markov process
I Independent increments
I Changes over any finite time interval are normally distributed with
variance that increases linearly in time

F Nice property that past patterns have no forecasting
value

F For prices, it makes more sense to assume that changes
in their logarithms are normally distributed, i.e., prices
are lognormally distributed

F More formally for a Wiener process {z(t), t ≥ 0}:
I ∆z = ²t

√
∆t, where ²t ∼ N (0, 1)

I ²t are serially uncorrelated, i.e., E[²t²s] = 0 for t 6= s
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Wiener Process: Properties
F Implications of the two conditions are examined by
breaking up the time interval T into n units of length
∆t each
I Change in z over T is z(s+ T )− z(s) =Pn

i=1 ²i
√
∆t, where the ²i

are independent
I Via the CLT, z(s+ T )− z(s) is N (0, n∆t = T )
I Variance of the changes increases linearly in time

F Letting ∆t become infinitesimally small implies dz =
²t
√
dt, where ²t ∼ N (0, 1)

F This implies that E[dz] = 0 and V(dz) = E[(dz)2] = dt
F Coefficient of correlation between two Wiener processes,
z1(t) and z2(t): E[dz1dz2] = ρ12dt
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Brownian Motion with Drift
F Generalise the Wiener process: dx = αdt + σdz, where
dz is the increment of the Wiener process, α is the drift
parameter, and σ is the variance parameter
I Over time interval ∆t, ∆x is normal with mean E[∆x] = α∆t and
variance V(∆x) = σ2∆t

I Given x0, it is possible to generate sample paths
I For example, if α = 0.2 and σ = 1.0, then the discretisation with
∆t = 1

12
is xt = xt−1 + 0.01667 + 0.2887²t (Figure 3.1)

F Optimal forecast is x̂t+T = xt + 0.01667T and 66% CI is
xt + 0.01667T ± 0.2887

√
T (Figure 3.2)

F Mean of xt − x0 is αt and its SD is σ
√
t, so the trend

dominates in the long run
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Brownian Motion with Drift: 
Figures 3.1 and 3.2



8 March 2011 Siddiqui 8 of 91

Brownian Motion and Random 
Walks
F Suppose that a discrete-time random walk for which the
position is described by variable x makes jumps of ±∆h
every ∆t time units given the initial position x0
I The probability of an upward (downward) jump is p (q = 1− p)
I Thus, x follows a Markov process with independent increments,
i.e., probability distribution of its future position depends only on
its current position (Figure 3.3)

F Mean: E[∆x] = (p− q)∆h; second moment: E[(∆x)2] =
p(∆h)2+q(∆h)2 = (∆h)2; variance: V(∆x) = (∆h)2[1−
(p− q)2] = [1− (2p− 1)2](∆h)2 = 4pq(∆h)2

F Thus, if t has n = t
∆t
steps, then xt−x0 is a binomial RV

with mean nE[∆x] = t(p−q)∆h
∆t

and variance nV(∆x) =
4pqt(∆h)2

∆t
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Brownian Motion and Random 
Walks: Figure 3.3
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Brownian Motion and Random 
Walks: Properties
F Choose ∆h, ∆t, p, and q so that the random walk con-
verges to a Brownian motion as ∆t→ 0
I ∆h = σ

√
∆t

I p = 1
2

h
1 + α

σ

√
∆t
i
, q = 1

2

h
1− α

σ

√
∆t
i

I Thus, p− q = α
σ

√
∆t = α

σ2
∆h

F Substitute these into the formulas for the mean and vari-
ance xt − x0:
I Mean: E[xt−x0] = tα(∆h)2

σ2∆t
= tασ2∆t

σ2∆t
= αt; variance: V(xt−x0) =

4pqt(∆h)2

∆t
=

4tσ2∆t

∙
1−α2

σ2
∆t

¸
4∆t

= tσ2
h
1− α2

σ2
∆t
i
, which goes to tσ2

as ∆t→ 0

F Hence, these are the mean and variance of a Brown-
ian motion; furthermore, the binomial distribution ap-
proaches the normal one for large n
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Generalised Brownian Motion
F An Itô process is dx = a(x, t)dt + b(x, t)dz, where dz is
the increment of a Wiener process, and both a(x, t) and
b(x, t) are known but may be functions of both x and t
I Mean: E[dx] = a(x, t)dt; second moment: E[(dx)2] =
E[a2(x, t)(dt)2+b2(x, t)(dz)2+2a(x, t)b(x, t)dtdz] = b2(x, t)dt; vari-
ance: V(dx) = E[(dx)2]− (E[dx])2 = b2(x, t)dt

F A geometric Brownian motion (GBM) has a(x, t) = αx
and b(x, t) = σx, which implies dx = αxdt+ σxdz
I Percentage changes in x are normally distributed, or absolute
changes in x are lognormally distributed

I If {y(t), t ≥ 0} is a BM with parameters
¡
α− 1

2
σ2
¢
t and σ2t, then

{x(t) ≡ x0ey(t), t ≥ 0} is a GBM
I my(s) = E[esy(t)] = esαt−

sσ2t
2

+ s2σ2t
2 , which implies E[y(t)] =¡

α− 1
2
σ2
¢
t and V(y(t)) = σ2t

I Thus, Ex0 [x(t)] = Ex0 [x0ey(t)] = x0my(1) = x0e
αt and

Vx0(x(t)) = Ex0 [(x(t))2]− (Ex0 [x(t)])2 = x20Ex0 [e2y(t)]− x20e2αt =
x20e

2αt[eσ
2t − 1]
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GBM Trajectories

F Expected PV of a GBM assuming discount rate
r > α is Ex0

£R∞
0
x(t)e−rtdt

¤
=
R∞
0
Ex0 [x(t)]e−rtdt =R∞

0
x0e

αte−rtdt = x0
r−α

F Generate sample paths for α = 0.09 and σ = 0.2 per
annum using x1950 = 100 and one-month intervals, i.e.,
xt−xt−1 = 0.0075xt−1+0.0577xt−1²t, where ²t ∼ N (0, 1)
(Figure 3.4)
I Trend line is obtained by setting ²t = 0
I Optimal forecast given x1974 is x̂1974+T = (1.0075)Tx1974, while

the CI is (1.0075)T (1.0577)±
√
Tx1974 (Figure 3.5)
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GBM Trajectories: Figures 3.4 and 
3.5
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Itô’s Lemma

F Itô’s lemma allows us to integrate and differentiate func-
tions of Itô processes
I Recall Taylor series expansion for F (x, t): dF = ∂F

∂x
dx + ∂F

∂t
dt +

1
2
∂2F
∂x2

(dx)2 + 1
6
∂3F
∂x3

(dx)3 + · · ·
I Usually, higher-order terms vanish, but here (dx)2 = b2(x, t)dt

(once terms in (dt)
3
2 and (dt)2 are ignored), which is linear in dt

I Thus, dF = ∂F
∂x
dx + ∂F

∂t
dt + 1

2
∂2F
∂x2

(dx)2 ⇒ dF =h
∂F
∂t
+ a(x, t) ∂F

∂x
+ 1

2
b2(x, t)∂

2F
∂x2

i
dt+ b(x, t) ∂F

∂x
dz

I Intuitively, even if a(x, t) = 0 and ∂F
∂t
= 0, then E[dx] = 0, but

E[dF ] 6= 0 because of Jensen’s inequality

F Generalise to m Itô processes with dxi =
ai(x1, . . . , xm, t)dt + bi(x1, . . . , xm, t)dzi and E[dzidzj] =
ρijdt: dF =

∂F
∂t
dt+

P
i
∂F
∂xi
dxi +

1
2

P
i

P
j

∂2F
∂xi∂xj

dxidxj
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Application to GBM
F If dx = αxdt+σxdz and F (x) = ln(x), then F (x) follows
a BM with parameters α− 1

2
σ2 and σ

I ∂F
∂t = 0, ∂F∂x = 1

x ,
∂2F
∂x2

= − 1
x2
, which implies that dF = dx

x −
1
2x2
(dx)2 = αdt+ σdz − 1

2
σ2dt = (α− 1

2
σ2)dt+ σdz

F Consider F (x, y) = xy and G = lnF with dx = αxxdt+
σxxdzx, dy = αyydt+ σyydzy, and E[dzxdzy] = ρdt
I ∂2F

∂x2
= ∂2F

∂y2
= 0 and ∂2F

∂x∂y
= 1, which implies dF = ydx+xdy+dxdy

I Substitute dx and dy: dF = αxxydt + σxxydzx + αyxydt +
σyxydzy + xyσxσyρdt ⇒ dF = (αx + αy + ρσxσy)Fdt+ (σxdzx +
σydzy)F , i.e., F is also a GBM

I Meanwhile, dG = (αx + αy − 1
2σ

2
x − 1

2σ
2
y)dt+ σxdzx + σydzy

F Discounted PV: F (x) = xθ and x follows a GBM
I F follows a GBM, too: dF = θxθ−1dx + 1

2θ(θ −
1)xθ−2(dx)2 = F [θα + 1

2θ(θ − 1)σ2]dt + θσFdz ⇒ Ex0 [F (x(t))] =
F (x0)e

t(θα+ 1
2
θ(θ−1)σ2)

I Thus, Ex0
£R∞
0
F (x(t))e−rtdt

¤
=

xθ0
r−αθ− 1

2
θ(θ−1)σ2
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Stochastic Discount Factor
F Proposition: The conditional expectation of the stochas-
tic discount factor, Ep [e−ρτ ], is the power function,¡
p
P∗
¢β1 , where τ ≡ min {t : Pt ≥ P ∗}, dP = αPdt +

σPdz, and P0 ≡ p.
F Proof: Let g(p) ≡ Ep [e−ρτ ]

I g(p) = o(dt)e−ρdt + (1− o(dt))e−ρdtEp [g(p+ dP )]
I ⇒ g(p) = o(dt)e−ρdt + (1 −
o(dt))e−ρdtEp

£
g(p) + dPg0(p) + 1

2
(dP )2g00(p) + o(dt)

¤
I ⇒ g(p) = o(dt) + e−ρdtg(p) + e−ρdtαpg0(p)dt+ e−ρdt 1

2
σ2p2g00(p)dt

I ⇒ g(p) = o(dt) + (1 − ρdt)g(p) + (1 − ρdt)αpg0(p)dt + (1 −
ρdt) 1

2
σ2p2g00(p)dt

I ⇒ −ρg(p) + αpg0(p) + 1
2
σ2p2g00(p) = o(dt)

dt

I ⇒ g(p) = a1p
β1 + a2p

β2

I limp→0 g(p) = 0⇒ a2 = 0 and g(P
∗) = 1⇒ a1 =

1

P∗β1
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Dynamic Programming: Many-
Period Example
F Now, let the state variable xt be continuous and the con-
trol variable ut represent the possible choices made at
time t
I Let the immediate profit flow be πt(xt, ut) and Φt(xt+1|xt, ut) be
the CDF of the state variable next period given current information

I Given the discount rate ρ and the Bellman Principle of Optimality,
the expected NPV of the cash flows to go from period t is Ft(xt) =

maxut

n
πt(xt, ut) +

1
(1+ρ)

Et[Ft+1(xt+1)]
o

I Use the termination value at time T and work back-
wards to solve for successive values of ut: FT−1(xT−1) =

maxuT−1

n
πT−1(xT−1, uT−1) + 1

(1+ρ)
ET−1[ΩT (xT )]

o
F With an infinite horizon, it is possible to solve the prob-
lem recursively due to independence from time and the
downward scaling due to the discount factor: F (x) =

maxu

n
π(x, u) + 1

(1+ρ)
E[F (x0)|x, u]

o
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Dynamic Programming: Optimal 
Stopping
F Suppose that the choice is binary: either continue (to
wait or to produce) or to terminate (waiting or produc-
tion)
I Bellman equation is now max

n
Ω(x),π(x) + 1

(1+ρ)
E[F (x0)|x]

o
I Focus on case where it is optimal to continue for x > x∗ and stop
otherwise

I Continuation is more attractive for higher x if: (i) immediate profit
from continuation becomes larger relative to the termination pay-
off, i.e., π(x) + 1

(1+ρ)
E[Ω(x0)|x] − Ω(x) is increasing in x, and (ii)

current advantage should not be likely to be reversed in the near
future, i.e., require first-order stochastic dominance

I Both conditions are satisfied in the applications studied here: (i)
always holds, and (ii) is true for random walks, Brownian motion,
MR processes, and most other economic applications

I In general, may have stopping threshold that varies with time,
x∗(t)
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Dynamic Programming: Continuous 
Time
F In continuous time, the length of the time period, ∆t,
goes to zero and all cash flows are expressed in terms of
rates
I Bellman equation is now F (x, t) =

maxu
n
π(x, u, t)∆t+ 1

(1+ρ∆t)
E[F (x0, t+∆t)|x, u]

o
I Multiply by (1 + ρ∆t) and re-arrange: ρ∆tF (x, t) =
maxu {π(x, u, t)∆t(1 + ρ∆t) + E[F (x0, t+∆t)− F (x, t)|x, u]} =
maxu {π(x, u, t)∆t(1 + ρ∆t) + E[∆F |x, u]}

I Divide by ∆t and let it go to zero to obtain ρF (x, t) =

maxu
n
π(x, u, t) + E[dF |x,u]

dt

o
I Intuitively, the instantaneous rate of return on the asset must equal
its expected net appreciation
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Dynamic Programming: Itô
Processes
F Suppose that dx = a(x, u, t)dt + b(x, u, t)dz and x0 =
x+ dx

F Apply Itô’s lemma to the value function, F :
I E[F (x+∆x, t+∆t)|x, u] = F (x, t)+ [Ft(x, t) + a(x, u, t)Fx(x, t) +

1
2
b2(x, u, t)Fxx(x, t)]∆t+ o(∆t)

I Return equilibrium condition is now ρF (x, t) =
maxu

©
π(x, u, t) + Ft(x, t) + a(x, u, t)Fx(x, t) +

1
2
b2(x, u, t)Fxx(x, t)

ª
I Next, find optimal u as a function of Ft(x, t), Fx(x, t), Fxx(x, t),
x, t, and underlying parameters

I Subsitute it back into the return equilibrium condition to obtain
a second-order PDE with F as the dependent variable and x and
t as the independent ones

I Solution procedure is typically to start at the terminal time T and
work backwards

F When time horizon is infinite, t drops out of the equation:
I ρF (x) = maxu

©
π(x, u) + a(x, u)F 0(x) + 1

2
b2(x, u)F 00(x)

ª
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Dynamic Programming: Optimal 
Stopping and Smooth Pasting
F Consider a binary decision problem: can either continue
to obtain a profit flow (with continuation value) or stop
to obtain a termination payoff where dx = a(x, t)dt +
b(x, t)dz
I In this case, a threshold policy with x∗(t) exists, and the Bellman
equation is ρF (x, t)dt = max {Ω(x, t)dt,π(x, t)dt+ E[dF |x]}

I The RHS is larger in the continuation region, so applying Itô‘s
lemma gives 1

2
b2(x, t)Fxx(x, t)+a(x, t)Fx(x, t)+Ft(x, t)−ρF (x, t)+

π(x, t) = 0
I The PDE can be solved for F (x, t) for x > x∗(t) subject to the
boundary condition F (x∗(t), t) = Ω(x∗(t), t) ∀t (value-matching
condition)

I A second condition is necessary to find the free boundary:
Fx(x

∗(t), t) = Ωx(x
∗(t), t) ∀t (smooth-pasting condition)

I The latter may be thought of as a first-order necessary condition,
i.e., if the two curves met at a kink, then the optimal stopping
would occur elsewhere



8 March 2011 Siddiqui 22 of 91

Dynamic Programming: Optimal 
Abandonment
F You own a machine that produces profit, x, that evolves
according to a BM, i.e., dx = adt + bdz, where a < 0 to
reflect decay of the machine over time

F The lifetime of the machine is T years, discount rate is
ρ, and we must find the optimal threshold profit level,
x∗(t), below which to abandon the machine (zero salvage
value)
I Corresponding PDE is 1

2
b2Fxx(x, t)+aFx(x, t)+Ft(x, t)−ρF (x, t)+

x = 0
I PDE is solved numerically for T = 10, a = −0.1, b = 0.2, and

ρ = 0.10 using discrete time steps of ∆t = 0.01
I Solution in Figure 4.1 indicates that for lifetimes greater than ten
years, the optimal abandonment threshold is about -0.17

I As lifetime is reduced, it becomes easier to abandon the machine
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Dynamic Programming Example: 
Figure 4.1
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Dynamic Programming: Optimal 
Abandonment

F Assume an effectively infinite lifetime to obtain an ODE
instead of a PDE: 1

2
b2F 00(x) + aF 0(x)− ρF (x) + x = 0

I Homogeneous solution is y(x) = c1e
r1x + c2e

r2x

I Substituting derivatives into the homogeneous portion of the PDE
yields c1e

r1x( 1
2
b2r21 + ar1 − ρ) + c2er2x( 12b2r22 + ar2 − ρ) = 0

I The terms in the parentheses must be equal to zero, i.e., r1 =
−a+
√
a2+2bρ

b2
= 5.584 > 0 and r2 =

−a−
√
a2+2bρ

b2
= −0.854 < 0

I Particular solution: Y (x) = Ax+B, Y 0(x) = A, and Y 00(x) = 0
I Substituting these into the original PDE yields aA− ρ(Ax+B) +
x = 0⇒ A = 1

ρ
, B = a

ρ2

I Thus, Y (x) = x
ρ
+ a

ρ2
, and F (x) = c1e

r1x + c2e
r2x + x

ρ
+ a

ρ2

I Boundary conditions: (i) F (x∗) = 0, (ii) F 0(x∗) = 0, (iii)
limx→∞ F (x) = Y (x)

I The third one implies that c1 = 0, i.e., F (x) = c2e
r2x + x

ρ
+ a

ρ2

I First two conditions imply x∗ = −a
ρ
+ 1

r2
= −0.17 and c2 =

− e−r2x
∗

r2ρ
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Seminar Outline

F Mathematical Background (Dixit and Pindyck, 1994:
chs. 3—4)

F Investment and Operational Timing (Dixit and Pindyck,
1994: chs. 5—6 and McDonald, 2005: ch. 17)

F Strategic Interactions (Huisman and Kort, 1999)

F Capacity Switching (Siddiqui and Takashima, 2011)
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Topic Outline

F Basic model and NPV approach

F Dynamic programming solution

F Features of optimal investment

F Embedded options

F Another approach: optimal stopping time
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Basic Model: Optimal Timing
F Suppose project value, V , evolves according to a GBM,
i.e., dV = αV dt + σV dz, which may be obtained at a
sunk cost of I

F When is the optimal time to invest?
I A perpetual option, i.e., calendar time is not important
I Ignore temporary suspension or other embedded options
I Can use both dynamic programming and contingent claims meth-
ods

F Problem formulation: maxT EV0 [(VT − I)e−ρT ]
I Assume δ ≡ ρ − α > 0, otherwise it is always better to wait
indefinitely
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Basic Model: Deterministic Case
F Suppose that σ = 0, i.e., V (t) = V0e

αt for V0 ≡ V (0)
I F (V ) ≡ maxT e−ρT (V eαT − I)
I If α ≤ 0, then F (V ) = max[V − I, 0]
I Otherwise, for 0 < α < ρ, waiting may be better because either (i)
V < I or (ii) V ≥ I, but discounting of future sunk cost is greater
than that in the future project value

I Thus, the FONC is dF (V )
dT = 0 ⇒ (ρ − α)V e−(ρ−α)T = ρIe−ρT ⇒

T ∗ = max
n
1
α
ln
n

ρI
(ρ−α)V

o
, 0
o

I Reason for delaying is that the MC is depreciating over time by
more than the MB

F Substitute T ∗ to determine V ∗ = ρI
(ρ−α) > I

F And, F (V ) =
³

αI
ρ−α

´ h
(ρ−α)V

ρI

i ρ
α
if V ≤ V ∗ (F (V ) = V −I

otherwise)
F Figure 5.1 indicates that greater α increases V ∗
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Basic Model: Figure 5.1
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Dynamic Programming Solution
F Bellman equation for continuation is ρFdt = E[dF ]
F Expand the RHS via Itô’s lemma: dF = F 0(V )dV +

1
2
F 00(V )(dV )2 ⇒ E[dF ] = F 0(V )αV dt+ 1

2
F 00(V )σ2V 2dt

F Substitution into the Bellman equation yields the ODE
1
2
F 00(V )σ2V 2 + F 0(V )αV − ρF (V ) = 0
I Equivalently, 1

2
F 00(V )σ2V 2 + F 0(V )(ρ− δ)V − ρF (V ) = 0

I Three boundary conditions: (i) F (0) = 0, (ii) F (V ∗) = V ∗ − I,
and (iii) F 0(V ∗) = 1

I General solution to the ODE is F (V ) = A1V
β1 +A2V

β2

I Taking derivatives, we have F 0(V ) = A1β1V
β1−1+A2β2V

β2−1 and
F 00(V ) = A1β1(β1 − 1)V β1−2 +A2β2(β2 − 1)V β2−2

I Substitution into the ODE yields A1V
β1 [ 1

2
σ2β1(β1 − 1) + β1(ρ −

δ)− ρ] +A2V β2 [ 1
2
σ2β2(β2 − 1) + β2(ρ− δ)− ρ] = 0

I Thus, β1 =
1
2
− (ρ−δ)

σ2
+
q£

ρ−δ
σ2
− 1

2

¤2
+ 2ρ

σ2
and β2 =

1
2
− (ρ−δ)

σ2
−q£

ρ−δ
σ2
− 1

2

¤2
+ 2ρ

σ2
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Solution Features
F The characteristic quadratic, Q(β) = 1

2
σ2β(β−1)+(ρ−

δ)β − ρ, has two roots such that β1 > 1 and β2 < 0
I Q(β) has a positive coefficient for β2, i.e., it is an upward-pointing
parabola

I Note that Q(1) = −δ < 0, which means that β1 > 1
I Q(0) = −ρ, which means that β2 < 0 (Figure 5.2)

F Consequently, the first boundary condition implies that
A2 = 0, i.e., F (V ) = A1V

β1

I Using the VM and SP conditions, we obtain V ∗ = β1
β1−1I and

A1 =
(V ∗−I)
(V ∗)β1

= (β1−1)β1−1
[(β1)

β1Iβ1−1]
I Since β1 > 1, we also have V

∗ > I
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Characteristic Quadratic Function: 
Figure 5.2
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Optimal Investment: Comparative 
Statics

F ∂β1
∂σ
< 0

I Differentiate Q(β) totally and evaluate it at β1
I ∂Q

∂β
∂β1
∂σ

+ ∂Q
∂σ
= 0⇒ ∂β1

∂σ
= −∂Q/∂σ

∂Q/∂β
I Know that ∂Q

∂β > 0 at β1 via Figure 5.2 and
∂Q
∂σ = σβ(β − 1) > 0

at β1 > 1
I Thus, ∂β1

∂σ
< 0 and β1

β1−1 increases with σ

F Similarly, ∂β1
∂δ
= − ∂Q/∂δ

∂Q/∂β > 0
I For β1 > 1,

∂Q
∂δ
= −β < −1

I Thus, ∂β1
∂δ

> 0 and β1
β1−1 decreases with δ

F Finally, ∂β1
∂ρ
= − ∂Q/∂ρ

∂Q/∂β < 0
I For β1 > 1,

∂Q
∂ρ
= β > 1

I Thus, ∂β1
∂ρ

< 0 and β1
β1−1 increases with ρ

F As σ → ∞, β1 → 1 and V ∗ → ∞, whereas as σ → 0,
β1 → ρ

ρ−δ and V
∗ → ρ

δ
I for α > 0
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Optimal Investment: Comparison to 
Neoclassical Theory

F Marshallian analysis is to compare V0 ≡
Eπ0

R∞
0
πse
−ρsds =

R∞
0
Eπ0[πs]e−ρsds = π0

ρ−α with
I
I Invest if V0 ≥ I or π0 ≥ (ρ− α)I
I Real options approach says to invest when π0 ≥ π∗ ≡ β1

β1−1 (ρ −
α)I > (ρ− α)I

F Tobin‘s q is the ratio of the value of the existing capital
goods to the their current reproduction cost
I Rule is to invest when q ≥ 1
I If we interpret q as being V

I
, then the real options threshold is

q∗ = β1
β1−1 > 1I Hence, the real options definition of q adds option value to the PV

of assets in place
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Project Value without Operating 
Costs
F Suppose that the output price, P , follows a GBM and
the firm produces one unit per year forever
I Without operating costs and ruling out speculative bubbles,
the value of the project is V (P ) = EP

R∞
0
Pte
−ρtdt =R∞

0
EP [Pt] e−ρtdt =

R∞
0
Pe−(ρ−α)tdt = P

δ

I We can now find the value of the option to invest, F (P ), which
will satisfy the ODE 1

2σ
2P 2F 00(P ) + (ρ− δ)PF 0(P )− ρF (P ) = 0:

F (P ) = A1P
β1 +A2P

β2

I Boundary condition F (0) = 0⇒ A2 = 0
I VM and SP conditions imply: (i)A1(P

∗)β1 = P∗
δ
− I and (ii)

β1A1(P
∗)β1−1 = 1

δ

I Therefore, P ∗ = β1
β1−1δI and A1 =

(β1−1)β1−1I−(β1−1)
(δβ1)

β1

I Note that V ∗ = P∗
δ
= β1

β1−1I > I
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Operating Costs and Temporary 
Suspension: Value of the Project
F Suppose now that the project incurs operating cost, C,
but it may be costlessly suspended or resumed once in-
stalled
I Instantaneous profit flow is π(P ) = max[P − C, 0], i.e., project
owner has infinite embedded operational options

I Thus, the value of an active project will be worth more than simply
the NPV of the cash flows

F Value the project, V (P ), via usual dynamic program-
ming approach
I Unlike the option to invest, we now have a profit flow, π(P ), which
implies that the ODE becomes 1

2
σ2P 2V 00(P ) + (ρ − δ)PV 0(P ) −

ρV (P ) + π(P ) = 0
I For P < C, only the homogeneous part of the solution is valid,
i.e., V (P ) = K1P

β1 +K2P
β2

I With P ≥ C, we also have the particular solution D1P+D2C+D3

I Substitution into the ODE yields D1 =
1
δ
,D2 = − 1

ρ
,D3 = 0

I Therefore, V (P ) = B1P
β1 +B2P

β2 + P
δ
− C

ρ
for P ≥ C
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Operating Costs and Temporary 
Suspension: Value of the Project
F For P < C, V (P ) represents the option value of resuming
a suspended project
I Intuitively, this must increase in P and be worthless for very small
P

I Only when K2 = 0 does this hold; thus, V (P ) = K1P
β1 for P < C

F For P ≥ C, V (P ) is the value of an active project inclu-
sive of the option to suspend operations
I The suspension option is valuable only for small P and becomes
worthless for large P

I Thus, B1 = 0 and V (P ) = B2P
β2 + P

δ
− C

ρ
for P ≥ C

F Find K1 and B2 via VM and SP at P = C
I K1C

β1 = B2C
β2 + C

δ
− C

ρ
and β1K1C

β1−1 = β2B2C
β2−1 + 1

δ

I K1 =
C1−β1
β1−β2

³
β2
ρ
− (β2−1)

δ

´
> 0, B2 =

C1−β2
β1−β2

³
β1
ρ
− (β1−1)

δ

´
> 0

I V (P ) is increasing (decreasing) in σ (δ) (Figures 6.1 and 6.2)
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Operating Costs and Temporary 
Suspension: Figure 6.1
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Operating Costs and Temporary 
Suspension: Figure 6.2
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Operating Costs and Temporary 
Suspension: Value of the Option to 
Invest
F Following the contingent claims approach, F (P ) =
A1P

β1 +A2P
β2

I Boundary condition F (0) = 0⇒ A2 = 0
F For P < C, it is never optimal to invest

I Thus, VM and SP of F (P ) will occur for P ≥ C, i.e., with V (P )−
I = B2P

β2 + P
δ
− C

ρ
− I

I Use A1 (P
∗)β1 = B2 (P

∗)β2 + P∗
δ
− C

ρ
− I and β1A1 (P

∗)β1−1 =

β2B2 (P
∗)β2−1 + 1

δ
to solve for P ∗ and A1

I Substitute to solve the following equation numerically: (β1 −
β2)B2 (P

∗)β2 + (β1 − 1)P
∗
δ
− β1

³
C
ρ
+ I

´
= 0

I Solution for ρ = 0.04, δ = 0.04, σ = 0.20, I = 100, and C = 10
(Figure 6.3)

I β1 = 2, β2 = −1, P ∗,nf = 28, Anf1 = 0.4464, P ∗ = 23.8, and
A1 = 0.4943

I Sensitivity analysis: F (P ) and P ∗ increase with σ (Figure 6.4)
I But F (P ) decreases and P ∗ increases with δ (Figures 6.5 and 6.6)
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Operating Costs and Temporary 
Suspension: Figure 6.3



8 March 2011 Siddiqui 42 of 91

Operating Costs and Temporary 
Suspension: Figure 6.4
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Operating Costs and Temporary 
Suspension: Figure 6.5
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Operating Costs and Temporary 
Suspension: Figure 6.6
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Optimal Stopping Time Approach: Now-
or-Never NPV

F Example from McDonald (2005): oil extraction under
certainty at a rate of one barrel per year forever
I Current price of oil is P0 = 15, discount rate is ρ = 0.05, growth
rate of oil is α = 0.01, operating cost is C = 8, and investment
cost is I = 180

F Is it optimal to extract the oil now?
I Assuming that the price of oil grows exponentially, the NPV from
immediate extraction is V (P0) =

R∞
0
e−ρt

©
P0e

αt − C
ª
dt − I =

P0
ρ−α − C

ρ − I = 215− 180 = 35
I Since V (P0) > 0, it is optimal to extract

F But, would it not be better to wait longer?

F Investment cost is being discounted, and the value of the
oil is growing
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Optimal Stopping Time Approach: 
Deterministic NPV
F Think instead about value of perpetual investment op-
portunity
I F (P0) = maxT

R∞
T
e−ρt

©
P0e

αt − C −ρI}dt = maxT P0
ρ−αe

(α−ρ)T−
C
ρ e
−ρT − Ie−ρT

I ⇒ T ∗ = 1
α
ln
³
C+ρI
P0

´
= 12.5163

I Or, invest when PT∗ = 17
I Indeed, the initial value of the investment opportunity is F (P0) =
45.46 > 35 = V (P0)

F By delaying investment to the optimal time period, it is
possible to maximise NPV

F How does this work when the price is stochastic?
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Optimal Investment under Uncertainty
F Price process evolves according to a GBM, i.e.,
dPt = αPtdt+ σPtdzt with initial price P0 = p

I Note that (dPt)
2 = σ2(Pt)

2dt
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Optimal Investment under Uncertainty
F If the project were started now, then its expected NPV
is V (p) = Ep

£R∞
0
e−ρt {Pt − (C + ρI)} dt

¤
= p

ρ−α − C
ρ
− I

F Canonical real options problem:

F (p) = sup
τ∈S

Ep
∙Z ∞

τ

e−ρt {Pt − (C + ρI)} dt
¸

⇒ F (p) = sup
τ∈S

Ep
£
e−ρτV (Pτ )

¤
= max

P ∗≥p

½³ p
P ∗

´β1
V (P ∗)

¾
I β1 (β2) is the positive (negative) root of

1
2
σ2ζ(ζ − 1) +αζ − ρ = 0
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Optimal Investment Threshold under 
Uncertainty
F Solve for optimal investment threshold, P ∗:

F (p) = max
P ∗≥p

½³ p
P ∗

´β1
V (P ∗)

¾
I First-order necessary condition yields P ∗ = β1

β1−1 (ρ− α)
³
C
ρ
+ I

´
I Note that in the case without uncertainty, β1 =

ρ
α
⇒ P ∗ = C+ ρI

F For a level of volatility of σ = 0.15, P ∗ = 25.28, and the
value of the investment opportunity is F (p) = 94.35

F Compared to the case with certainty, the investment op-
portunity is worth more, but is also less likely to be ex-
ercised
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Investment Thresholds and Values
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Investment under Uncertainty with 
Abandonment

F If the project is abandoned after investment, then the
expected incremental payoff is:

V A(p) = Ep
∙Z ∞

0

e−ρt {(C − ρKs)− Pt} dt
¸
=
C

ρ
−Ks−

p

ρ− α

F Solve for optimal abandonment threshold, P∗:

FA(p) = max
P∗≤p

(µ
p

P∗

¶β2

V A(P∗)

)
+ V (p)

I First-order necessary condition yields P∗ =
β2

β2−1 (ρ−α)
³
C
ρ
−Ks

´
I Solve numerically for P ∗: F (p) =

maxP∗≥p

½¡
p
P∗
¢β1 ½V (P ∗) + ³P∗P∗ ´β2 V A(P∗)

¾¾
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Investment Thresholds and Values 
with Abandonment
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Investment under Uncertainty with 
Suspension and Resumption

F If the project is resumed from a suspended state, then
the expected incremental payoff is:

V R(p) = Ep
∙Z ∞

0

e−ρt {Pt − (C + ρKr)} dt
¸
=

p

ρ− α
−C
ρ
−Kr

F Solve for optimal resumption threshold, P ∗∗:

FR(p) = max
P ∗∗≥p

½³ p

P ∗∗

´β1
V R(P ∗∗)

¾
I First-order necessary condition yields P ∗∗ = β1

β1−1 (ρ −
α)
³
C
ρ
+Kr

´
I Substitute P ∗∗ back into FS(p) to solve numerically for P∗ and
then repeat for F (p) to obtain P ∗
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Investment Thresholds and Values 
with Resumption
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Investment with Infinite Suspension and 
Resumption Options
F Start with the expected value of a sus-
pended project: Vc(p,∞,∞;P∗, P ∗∗) =¡
p
P∗∗
¢β1 (Vo(P ∗∗,∞,∞;P∗, P ∗∗)−Kr)

F Also note the expected value of an active
project: Vo(p,∞,∞;P∗, P ∗∗) = p

ρ−α − C
ρ
+³

p
P∗

´β2 ³
C
ρ
−Ks − P∗

ρ−α + Vc(P∗,∞,∞;P∗, P ∗∗)
´

I Solve the two equations numerically, i.e., start with initial thresh-
olds and successively iterate until convergence

F Finally, solve for P ∗ numerically: F (p,∞,∞;P∗, P ∗∗) =
maxP ∗≥p

¡
p
P∗
¢β1 {Vo(P ∗,∞,∞;P∗, P ∗∗)− I}
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Investment Thresholds and Values with 
Complete Flexibility
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Thresholds with Complete Flexibility
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Numerical Results:  Data from 
McDonald (2005)

F P0 = 15, C = 8, ρ = 0.05,α = 0.01, I = 180,Ks =
25,Kr = 25



8 March 2011 Siddiqui 59 of 91

Seminar Outline

F Mathematical Background (Dixit and Pindyck, 1994:
chs. 3—4)

F Investment and Operational Timing (Dixit and Pindyck,
1994: chs. 5—6 and McDonald, 2005: ch. 17)

F Strategic Interactions (Huisman and Kort, 1999)

F Capacity Switching (Siddiqui and Takashima, 2011)
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Topic Outline

F Classification of setups

F Pre-emptive setting

F Non-pre-emptive setting
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Interaction of Game Theory and 
Real Options

F Fudenberg and Tirole (1985) treat a duopoly with
pre-emption over timing in a deterministic model

F Huisman and Kort (1999) extend this to reflect market
uncertainty to find that the incentive to delay in real
options may be reduced due to competition

F Possible settings: cooperative and non-cooperative
(pre-emptive and non-pre-emptive)
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Duopoly Assumptions
F Each decision-maker has the perpetual right to start
a project at any time for deterministic investment cost, I

F Price process evolves according to a GBM, i.e., dPt =
αPtdt+ σPtdzt with initial price P0 > 0
I Subjective interest rate is ρ
I An active project produces one unit of output per year forever

F Rt = PtD(Qt) is the project’s revenue given Qt = 0, 1, 2
active firms in the industry and D(1) > D(2)

F τ ji ≡ min
n
t ≥ 0 : Pt ≥ Pτji

o
, j = L, F and i = m, p, n
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Formulation 1: Monopoly

F Value function if monopolist has invested (P0 ≥ Pτj,m):

V jm(P0) = EP0
£R∞
0
e−ρt {PtD(1)− ρI)} dt

¤
I V j

m(P0) =
P0D(1)
ρ−α − I

F Value function if monopolist is waiting
to invest, i.e., P0 < Pτjm: V jm(P0) =

supτ jm∈S EP0
hR∞

τjm
e−ρt {PtD(1)− ρI} dt

i
I V j

m(P0) = supτjm∈S EP0
h
e−ρτ

j
m

i ³
P0D(1)
ρ−α − I

´
F Monopolist’s entry threshold: Pτjm =

³
β1

β1−1

´
ρI
D(1)
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Formulation 2: Pre-Emptive Duopoly
F Follower’s problem:

I If P0 ≥ PτFp : V
F
p (P0) =

P0D(2)
ρ−α − I

I Else: V F
p (P0) = supτFp ∈S EP0

h
e−ρτ

F
p

iµP
τFp

D(2)

ρ−α − I
¶

I Entry threshold: PτFp =
³

β1
β1−1

´
ρI
D(2)

F Leader’s problem:
I Value function for P0 ≥ PτFp is the same as the follower’s

I Else: V L
p (P0) =

P0D(1)
ρ−α − I +

µ
P0
P
τFp

¶β1 ∙P
τFp

(D(2)−D(1))
ρ−α

¸
I Find τLp by setting V L

p (PτLp ) = V
F
p (PτLp )
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Formulation 3: Non-Pre-Emptive 
Duopoly
F Follower’s problem is the same as under the pre-
emptive duopoly framework, i.e., V Fn (P0) = V

F
p (P0) and

PτFp = PτFn

F Leader’s problem:
I Leader’s value function for P0 ≥ PτFn is the same as in the pre-

emptive case, i.e., V L
n (P0) = V

L
p (P0)

I Leader’s value function for PτLn ≤ P0 < PτFn is also the same as in
the pre-emptive case

I Else: V L
n (P0) = maxPτLn

≥P0

µ
P0
P
τLn

¶β1 ∙P
τLn

D(1)

ρ−α − I

+

µ
P
τLn

P
τFp

¶β1 ∙P
τFp

(D(2)−D(1))
ρ−α

¸#
I Optimal entry threshold for the leader in the non-pre-emptive case

is the same as that for a monopolist: PτLn =
³

β1
β1−1

´
ρI
D(1)
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Numerical Example: Monopoly
σ = 0.20, ρ = 0.04, α = 0, I = 100, D(1) = 2, D(2) = 1

0 5 10 15 20
−100

0

100

200

300

400

500

600

700

800

900

Price (P)

O
pt

io
n 

va
lu

e,
 N

P
V

 

 

Vj
m

(P), P ≥ Pτj

m

Vj
m

(P), P < Pτj

m



8 March 2011 Siddiqui 67 of 91

Numerical Example: Pre-Emptive 
Duopoly
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Numerical Example: Non-Pre-
Emptive Duopoly
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Numerical Example: Entry 
Threshold Sensitivity Analysis
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Numerical Example: Option Value 
Sensitivity Analysis

V L
p (PτLp

)

V j
m(PτLp

)
or
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n (PτLp

)

V j
m(PτLp

)
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Seminar Outline

F Mathematical Background (Dixit and Pindyck, 1994:
chs. 3—4)

F Investment and Operational Timing (Dixit and Pindyck,
1994: chs. 5—6 and McDonald, 2005: ch. 17)

F Strategic Interactions (Huisman and Kort, 1999)

F Capacity Switching (Siddiqui and Takashima, 2011)
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Topic Outline

F Monopoly

F Spillover duopoly

F Proprietary duopoly



8 March 2011 Siddiqui 73 of 91

Monopoly Setup

I Direct strategy: obtain project of size K2 for an investment cost
of I1 + I2

I Sequential strategy: invest in size K1 before deciding to switch to
a project with a higher capacity, K2 (total cost is still I1 + I2)

I Market shock: dxt = αxtdt+ σxtdzt, where α ≥ 0 and σ ≥ 0
I Pt = xtD(κt) (in $/unit), where κt is the installed capacity (in
units/annum) at time t and D(κt) is the demand parameter given
the installed capacity at time t (strictly decreasing)

I ρ > α
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Monopoly: Direct Strategy

F V d2 (x) = Ex
£R∞
0
e−ρtK2xtD2dt

¤
−I1−I2 = xK2D2

ρ−α −I2−I1

F Value function in state 0: V d0 (x) = A
d
0x

β1

F Value-matching and smooth-pasting conditions:
I V d

0 (x
d
0) = V

d
2 (x

d
0)

I dV d
0

dx
|x=xd0 =

dV d
2

dx
|x=xd0

F Solution yields xd0 =
³

β1
β1−1

´
(I1+I2)(ρ−α)

K2D2
and Ad0 =

xd0
−β1(I1+I2)
β1−1
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Monopoly: Sequential Strategy

F V s1 (x) =
xK1D1
ρ−α −I1+As1xβ1 if x < xs1 and V s1 (x) = V s2 (x)

otherwise

F State-1 value-matching and smooth-pasting conditions:
I V s

1 (x
s
1
−) = V s

1 (x
s
1
+)

I dV s
1

dx
|
x=xs−1

=
dV s

1
dx
|
x=xs+1

F Solution yields xs1 =
³

β1
β1−1

´
I2(ρ−α)

[K2D2−K1D1] > xd0 and

As1 =
xs1
−β1I2
β1−1 < Ad0

F Value function in state 0: V s0 (x) = A
s
0x

β1

I VM and SP conditions lead to xs0 =
³

β1
β1−1

´
I1(ρ−α)
K1D1

< xd0 and

As0 = A
s
1 +

xs0
−β1I1
β1−1
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Spillover Duopoly Setup

I Symmetric non-pre-emptive duopoly with spillover knowledge
I Direct strategy: obtain project of size K2 for an investment cost
of I1 + I2 before follower makes similar investment

I Sequential strategy: invest in size K1 before waiting for follower’s
entry

I Additional assumptions: 0 < D22 < D21 < D20 < D11 < D10 =
D1, K2D22 > K1D21, K2D21 > K1D11, and

1
2
(K1 + K2)D21 >

K1D11
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Spillover Duopoly: Direct Strategy

F Value functions: V j,d22 (x) = xK2D22
ρ−α − I2 − I1,

V L,d20 (x) =
xK2D20
ρ−α − I2− I1+A

L,d
20 x

β1, V F,d20 (x) = A
F,d
20 x

β1,

and V j,d00 (x) = A
j,d
00 x

β1

F VM and SP conditions:
I V F,d

20 (xd20) = V
F,d
22 (xd20)

I dV
F,d
20
dx

|x=xd20 =
dV

F,d
22
dx

|x=xd20
I V L,d

20 (xd20) = V
L,d
22 (xd20)

I V j,d
00 (x

d
00) =

1
2

h
V L,d
20 (xd00) + V

F,d
20 (xd00)

i
I dV

j,d
00
dx

|x=xd00 =
1
2

∙
dV

L,d
20
dx

|x=xd00 +
dV

F,d
20
dx

|x=xd00
¸
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Spillover Duopoly: Direct Strategy 
Solutions

F xd20 =
³

β1
β1−1

´
(I1+I2)(ρ−α)

K2D22

F AF,d20 =
xd20
−β1 (I1+I2)
β1−1

F AL,d20 =
xd20
−β1(I1+I2)(D22−D20)β1

(β1−1)D22
F xd00 =

³
β1

β1−1

´
(I1+I2)(ρ−α)

K2D20
= xd0

F Aj,d00 =
1
2

h
AL,d20 +A

F,d
20 +

xd00
−β1(I1+I2)
β1−1

i
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Spillover Duopoly: Sequential 
Strategy

F Value functions: V j,d22 (x) = xK2D22
ρ−α − I2 − I1,

V L,s21 (x) = xK2D21
ρ−α − I1 − I2 + AL,s21 x

β1 , V F,s21 (x) =
xK1D21
ρ−α − I1 + AF,s21 xβ1 , V j,s11 (x) = xK1D11

ρ−α − I1 + Aj,s11xβ1,
V L,s10 (x) =

xK1D10
ρ−α − I1 + AL,s10 xβ1 , V F,s10 (x) = AF,s10 x

β1,

V j,s00 (x) = A
j,s
00x

β1

F Some VM and SP conditions:
I V F,s

21 (x
s
21) = V

F,s
22 (x

s
21)

I dV
F,s
21
dx

|x=xs21 =
dV

F,s
22
dx

|x=xs21
I V L,d

21 (xs21) = V
L,s
22 (xs21)

I V j,s
11 (x

s
11) =

1
2

h
V L,s
21 (xs11) + V

F,s
21 (x

s
11)
i

I dV j,s
11
dx

|x=xs11 =
1
2

∙
dV L,s

21
dx

|x=xs11 +
dV F,s

21
dx

|x=xs11
¸
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Spillover Duopoly: Sequential 
Strategy Solutions

F xs21 =
³

β1
β1−1

´
I2(ρ−α)

[K2D22−K1D21]

F AF,s21 =
xs21
−β1I2
β1−1

F AL,s21 =
xs21
−β1I2β1
β1−1

h
K2D22−K2D21
K2D22−K1D21

i
F xs11 =

³
β1

β1−1

´
I2(ρ−α)

[(K1+K2)D21−2K1D11]

F Aj,s11 =
1
2

³
AL,s21 +A

F,s
21 +

(xs11)
−β1I2

β1−1

´
F xs10 =

³
β1

β1−1

´
I1(ρ−α)
K1D11

F AF,s10 = A
j,s
11 +

xs10
−β1I1
β1−1

F xs00 =
³

β1
β1−1

´
I1(ρ−α)
K1D10

= xs0

F Aj,s00 =
1
2

³
AL,s10 +A

F,s
10 +

xs00
−β1I1
β1−1

´
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Proprietary Duopoly Setup
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Numerical Example: Monopoly
σ = 0.40, ρ = 0.04, α = 0, I1 = 10, I2 = 20, K1 = 1, K2 = 3.5, D10 = 5,

D11 = 4, D20 = 3, D21 = 2.5, D22 = 1
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Numerical Example: Spillover 
Duopoly
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Numerical Example: Proprietary 
Duopoly
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Numerical Example: Spillover 
Duopoly Thresholds
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Numerical Example: Spillover 
Duopoly Value of Flexibility

V s
0 (x

s
0)−V d

0 (x
s
0)

V d
0 (x

s
0)
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Numerical Example: Spillover 
Duopoly Effect of Competition

V j,d
00 (x

s
0)

V d
0 (x

s
0)
or

V j,s
00 (x

s
0)

V s
0 (x

s
0)
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Numerical Example: Spillover Duopoly 
Effect of Competition with Lower First-
Mover Advantage

V j,d
00 (x

s
0)

V d
0 (x

s
0)
or

V j,s
00 (x

s
0)

V s
0 (x

s
0)
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Numerical Example: Proprietary 
Duopoly Value of Flexibility

V s
0 (x

s
0)−V d

0 (x
s
0)

V d
0 (x

s
0)
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Numerical Example: Proprietary 
Duopoly Effect of Competition

V j,d
00 (x

s
0)

V d
0 (x

s
0)
or

V j,s
00 (x

s
0)

V s
0 (x

s
0)
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Questions


