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4 A

Wiener Process

A Wiener process (or Brownian motion) has the following
properties:
» Markov process
» Independent increments
» Changes over any finite time interval are normally distributed with
variance that increases linearly in time

Nice property that past patterns have no forecasting
value

For prices, it makes more sense to assume that changes
in their logarithms are normally distributed, i.e., prices

are lognormally distributed
More formally for a Wiener process {z(t),t > 0}:
> Az =e;V/At, where e, ~ N(0,1)

\ » ¢, are serially uncorrelated, i.e., E[ees] = 0 for t # s /
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Wiener Process: Properties

\_

Implications ot the two conditions are examined Dy
breaking up the time interval 7" into n units of length
At each
» Change in z over T'is z(s +T) — 2(s) = >, €,V At, where the ¢;
are independent
» Via the CLT, 2(s +T) — 2(s) is N(0,nAt = T)
» Variance of the changes increases linearly in time

Letting At become infinitesimally small implies dz =
eV dt, where €, ~ N(0,1)

This implies that E[dz] = 0 and V(dz) = E[(dz)?] = dt
Coeflicient of correlation between two Wiener processes,

21(t) and 25(t): E|dz1dzs] = p1adt
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Brownian Motion with Drift

Generalise the Wiener process: dr = adt + odz, where
dz is the increment of the Wiener process, « is the drift
parameter, and o is the variance parameter
» Over time interval At, Az is normal with mean E[Az] = aAt and
variance V(Az) = 0? At
» Given xo, it is possible to generate sample paths

» For example, if « = 0.2 and ¢ = 1.0, then the discretisation with
At = == is ¢y = z:—1 + 0.01667 + 0.2887¢; (Figure 3.1)

Optimal forecast is Z; .7 = z; + 0.016671 and 66% CI is
x, + 0.01667T + 0.2887\/T (Figure 3.2)

Mean of z; — xg is ot and its SD is ov/t, so the trend
dominates in the long run /
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/ Brownian Motion with Drift:

[ ]
Figures 3.1 and 3.2
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Figure 3.2.  Uptimal Forecast of Brownian Motion with Drift
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/ Brownian Motion and Random \
Walks

Suppose that a discrete-time random walk for which the
position is described by variable x makes jumps of =Ah
every At time units given the initial position xg
» The probability of an upward (downward) jump is p (¢ = 1 — p)
» Thus, x follows a Markov process with independent increments,
i.e., probability distribution of its future position depends only on
its current position (Figure 3.3)

Mean: E[Az] = (p — q)Ah; second moment: E[(Az)?
p(AR)? +q(Ah)? = (Ah)?; variance: V(Az) = (Ah)?|
(p— )] = [L — (2p — 1)*](Ah)? = 4pg(Ah)’

Thus, if t has n = ﬁ steps, then x; — x¢ is a binomial RV

__ tp—a)Ah
At

|
1_—

with mean nE[Az] and variance nV(Ax)

4pqt(Ah)?
\ At /
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/ Brownian Motion and Random \

Walks: Figure 3.3
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\ Figure 3.3. Random Walk Representation of Brownian Motion /
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/ Brownian Motion and Random \

Walks: Properties

Choose Ah, At, p, and ¢ so that the random walk con-
verges to a Brownian mot10n as At — 0

> Ah=ovVAt

- p= 21 sva o= 2 1 sva

» Thus, p—q = 2VALt = % Ah
Substitute these into the formulas for the mean and vari-
ance r; — xo:

2 2
> Mean: Efz; —xo] = 2UEM- = t20 Bt — o4 variance: V(z; —x0) =
2
2 4to? At [1— oy At] 5
% = " = to? [1 — ‘;‘—zAt}, which goes to to?
as At — 0

Hence, these are the mean and variance of a Brown-
ian motion; furthermore, the binomial distribution ap-

\ proaches the normal one for large n /
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4 A

(Generalised Brownian Motion

An Tto process 1s do = a(x,1)dt + b(x, t)dz, where dz 1s
the increment of a Wiener process, and both a(x,t) and
b(x,t) are known but may be functions of both = and ¢
» Mean: E[dx] = a(z,t)dt; second moment: E[(dx)?] =
Ela®(z,t)(dt)*+b*(x, t)(dz)*+2a(x, t)b(z, t)dtdz] = b*(x,t)dt; vari-
ance: V(dz) = E[(dz)?] — (E[dx])? = b*(=, t)dt
A geometric Brownian motion (GBM) has a(z,t) = ax
and b(x,t) = oz, which implies dx = axdt + oxdz
» Percentage changes in x are normally distributed, or absolute

changes in x are lognormally distributed
» If {y(¢),¢t > 0} is a BM with parameters (o — 10%) ¢ and o*¢, then

{z(t) = z0e?P,t > 0} is a GBM
> my(s) = BleV®] = ™75 2, which implies E[y(t)] =

( — 20°)t and V(y(t)) = ot

\ > Thus, Eoz(t)] = Euolzoe?®] = azomy(l) = zoe any
V900 (2(t)) = Eaq [(2(t))*] — (B [:U(t)])2 = 23R, [er(t)] et =

Zat[ o A 1]
Siddiqui 11 of 91
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GBM Trajectories

\_

Expected PV of a GBM assuming discount rate
r> ais By | [ x@)e™dt] = [ Eylz(t)]e ™dt =
fooo roete Ttdt = 2o

r—«

Generate sample paths for « = 0.09 and ¢ = 0.2 per
annum using x1950 = 100 and one-month intervals, i.e.,

LT — L—1 — 0.00753375_1 +O-O577wt—1€t7 where €t N N(O, 1)

(Figure 3.4)
» Trend line is obtained by setting ¢, =0

> Optimal forecast given Tigr4 1S 531974+T = (1.0075>T$1974, while

the CI is (1.0075)7(1.0577) YT 21974 (Figure 3.5)
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/GBM Trajectories: Figures 3.4 and \
3.5
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Figure 3.5.  Optimal Forecast of Geomeiric Brownian Motion
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4 A

It0’'s Lemma

Ito’s lemma allows us to integrate and differentiate func-
tions of It0 processes
» Recall Taylor series expansion for F(z,t): dF = 2&dx + 284t +
2
108 (dz)? + $ 9.5 (dw)® +
» Usually, higher-order terms Vanish, but here (dz)? = b*(x,t)dt
(once terms in (dt)% and (dt)? are ignored), which is linear in dt
» Thus, dF = 2Edp + 2Lq 4 12E(gp)? = JF =
[%—IZ + a(z,t) 25 + 1v*(x, 1) giz;] dt + b(z,t) 2L dz
» Intuitively, even if a(z,t) = 0 and & = 0, then E[dz] = 0, but
E[dF] # 0 because of Jensen’s inequality

Generalise to m Ito processes with dx;
a;(Ty, ... ,xm, t)dt + b-(wl, . zm, t)dz; and E|dz;dz;]

\ pydt: dF = 2Lt + . 2 d:z:z AN Ok dd,
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4 A

Application to GBM
[T dv = axdi+oxdz and F'(x) = In(x), then F(z) follows

a BM with parameters o — %a and o
> %1; 0, %1; = 316, 62 = 2, which implies that dF = ? —

5z (dz)? = adt + adz — —a2dt (a — 20%)dt + odz
Consider F'(z,y) = xy and G = In F with dz = azxdt +
0,2d2,, dy = aydt + o,ydz,, and E|dz,dz,] = pdt
> 215 = ‘321; —0and 2 P;J 1, which implies dF' = ydx+xdy-+dxdy
» Substitute dx and dy dF' = azzydt + orxydz: + ayrydt +

OyTYdzy + Yooy pdt = dF = (ag + ay + poyoy)Fdt + (0zdzy +
oydzy)F, i.e., F is also a GBM

» Meanwhile, dG = (ay + ozy 107 — 100)dt + 0pdzy + 0ydzy

Discounted PV: F(z) = 2% and z follows a GBM
» F follows a GBM, too: dF = 6z 'dz +

60 —
12?7 %(dz)? = Flfa + 20(0 — 1)0®|dt + 00 Fdz = Eq, [F(z(t

)]
F(:Bo)et(eo‘Jf%e(e_l)"Q) /
TQ
Siadidui | T—0—20(0—1)02 15 of 01

1
2
x
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4 A

Stochastic Discount Factor

Proposition: The conditional expectation of the stochas-
tic discount factor, E,|e™*7], is the power function,

(]f*)ﬁl, where 7 = min{t: P, > P*}, dP = aPdt +
ocPdz, and Py = p.
Proof: Let g(p) = E, [e™""]
> g(p) = o(dt)e """ + (1 — o(dt))e *"'E, [g(p + dP)]
> = 9(p) = o(d)e " 4+ (1 -
o(dt))e” """ Ey [g(p) + dPg'(p) + 5(dP)*g" (p) + o(dt)]
> = g(p) = o(dt) + e " g(p) + e " apg' (p)dt + e~ *¥ So?p?g" (p)dt
> = g(p) = o(dt) + (1 — pdt)g(p) + (1 — pdt)apg’(p)dt + (1 —
pdt) 30°p°g" (p)dt
> = —pg(p) + apg’ (p) + 30°p*g" (p) = 21
> = g(p) = arp™ + azxp™

\ » limp, 09(p) =0=a2=0and g(P*) =1=a; = p*lﬁl /
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/ Dynamic Programming: Many- \
Period Example

Now, let the state variable x; be continuous and the con-

trol variable u; represent the possible choices made at
time ¢

» Let the immediate profit flow be 7 (x+, ut) and Pt (xey1|xe, usr) be

the CDF of the state variable next period given current information

» Given the discount rate p and the Bellman Principle of Optimality,

the expected NPV of the cash flows to go from period t is Fi(x:) =

mMaXqy, {Wt(xt,ut) + ﬁEt [Ft+1($t+1)]}
» Use the termination value at time T and work back-
wards to solve for successive values of w:: Fr_i(zr—1) =

MaXy,_, {WT—l(CCT—l, ur—1) + uTlmET—l[QT(wT)]
With an infinite horizon, it is possible to solve the prob-
lem recursively due to independence from time and the

downward scaling due to the discount factor: F(x) =
\ max, {r(z,u) + FEIF(2)]w,u] /
S

L)

J
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/ Dynamic Programming: Optimal \
Stopping

Suppose that the choice is binary: either continue (to
wait or to produce) or to terminate (waiting or produc-
tion)

» Bellman equation is now max {Q(a:), m(x) + (l}rp)]E[F(x’)‘x]}

» Focus on case where it is optimal to continue for > z* and stop
otherwise

» Continuation is more attractive for higher x if: (i) immediate profit
from continuation becomes larger relative to the termination pay-
off, i.e., m(x) + (1Jlrp)E[Q(a;’)\x] — Q(z) is increasing in z, and (ii)
current advantage should not be likely to be reversed in the near
future, i.e., require first-order stochastic dominance

» Both conditions are satisfied in the applications studied here: (i)
always holds, and (ii) is true for random walks, Brownian motion,

MR processes, and most other economic applications

» In general, may have stopping threshold that varies with time,
z* (1)
8 March 2011 Siddiqui 18 of 91




/ Dynamic Programming: Continuous\
Time

In continuous time, the length of the time period, At,
goes to zero and all cash flows are expressed in terms of
rates

» Bellman equation is now F(z,t) =
max,, {ﬂ'(x, u, t) At + mE[F(aﬁ', t + At)|z, u]}

» Multiply by (1 + pAt) and re-arrange:  pAtF(z,t)
max,, {7(x,u,t)At(1 + pAt) + E[F(z',t + At) — F(z,t)|z,u]}
max,, {7 (x,u,t)At(1 + pAt) + E[AF|z,u]}

» Divide by At and let it go to zero to obtain pF(z,t) =
maxs, {w(m,u, t) + W}

» Intuitively, the instantaneous rate of return on the asset must equal
its expected net appreciation
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/ Dynamic Programming: It0 \
Processes

Suppose that dxr = a(z,u,t)dt + b(x,u,t)dz and =’ =

x + dx
Apply Itd’s lemma to the value function, F"
» E[F(x+ Ax,t+ At)|z,u| = F(x,t) + [Fi(z,t) + a(z, u, t) Fr(x,t) +
107 (2, u, t) Fow (z, 1) At + o(At)
» Return equilibrium condition is now pF(x,t) =
max, {7(z,u,t) + Fi(z,t) + a(z, u, t) Fp(z,t) + 3b°(z,u, t) Fra(z,t) }
» Next, find optimal v as a function of Fi(x,t), Fy(x,t), Fuz(x,t),
x, t, and underlying parameters
» Subsitute it back into the return equilibrium condition to obtain
a second-order PDE with F' as the dependent variable and x and
t as the independent ones
» Solution procedure is typically to start at the terminal time 7" and
work backwards

When time horizon is infinite, ¢ drops out of the equation:
\ > pF(z) = max, {r(z,u) + a(z,w)F'(z) + $b°(z,uw)F"'(z)} /

8 March 2011 Siddiqui 20 of 91




/ Dynamic Programming: Optimal \
Stopping and Smooth Pasting

Consider a binary decision problem: can either continue
to obtain a profit flow (with continuation value) or stop

to obtain a termination payoff where dr = a(x,t)dt +
b(x,t)dz
» In this case, a threshold policy with z*(¢) exists, and the Bellman
equation is pF'(x,t)dt = max {Q(z,t)dt, 7(x,t)dt + E[dF|z]}
» The RHS is larger in the continuation region, so applying Ito‘s
lemma gives 2b°(z, t) Foo (2, t)+a(z, t) Fy(z, t)+ Fi (z,t)— pF (z, )+
m(z,t) =0
> The PDE can be solved for F(x,t) for z > z*(t) subject to the
boundary condition F(z*(t),t) = Q(«*(t),t) Vt (value-matching
condition)
» A second condition is necessary to find the free boundary:
Fp(x™(t),t) = Qu(x™(t),t) Vt (smooth-pasting condition)
» The latter may be thought of as a first-order necessary condition,
\ i.e., if the two curves met at a kink, then the optimal stoppiny
wonld occur elsewhere
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/ Dynamic Programming: Optimal \
Abandonment

You own a machine that produces profit, x, that evolves
according to a BM, i.e., dr = adt + bdz, where a < 0 to
reflect decay of the machine over time

The lifetime of the machine is T years, discount rate is
p, and we must find the optimal threshold profit level,

z*(t), below which to abandon the machine (zero salvage

value)
» Corresponding PDE is 2b° Fyz (, t)+aFy(z,t)+ Fy (z,t)— pF (z, )+
x =0
» PDE is solved numerically for 7' = 10, a = —0.1, b = 0.2, and
p = 0.10 using discrete time steps of At = 0.01
» Solution in Figure 4.1 indicates that for lifetimes greater than ten
years, the optimal abandonment threshold is about -0.17

\ » As lifetime is reduced, it becomes easier to abandon the machine
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/ Dynamic Programming Example: \
Figure 4.1

/ d b
Zatl .
0750 02 04 06 08 190 X 45
(b}
Figure 4.1, Depreciation and Abandonment
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/ Dynamic Programming: Optimal \
Abandonment

Assume an eftectively inninite litetime to obtaimn an ODE
instead of a PDE: s0?F"(z) 4+ aF'(z) — pF(z) + =0
» Homogeneous solution is y(x) = c1e"”* + coe™”
» Substituting derivatives into the homogeneous portion of the PDE
yields c1€™*(1b°rf + ar1 — p) + c2€™*(3b°r3 + arz — p) =0
» The terms in the parentheses must be equal to zero, ie., r1 =

VPP _ 5584 > 0 and e = —2VITH2P 854 <
» Particular solution: Y(z) = Az + B, Y'(x) = A, and Y''(2) =0

» Substituting these into the original PDE yields aA — p(Ax + B) +
r=0= A= l ,B=%

p2

» Thus, Y(z) = £ + %, and F(z) = 16”"’" + o€ + 24 5
» Boundary condltlons (i) F(z*) = 0, (ii) F'(z*) = 0, (iii)
limg oo F(z) =Y (x)
» The third one implies that c; =0, i.e., F(z) = c2¢™" + 2 + %
\ » First two conditions imply z* = —% + % = —0.17 and c2 = /
e~ 27"
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Topic Outline

\_

Basic model and NPV approach
Dynamic programming solution

Features of optimal investment

Embedded options

Another approach: optimal stopping time

_/
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Basic Model: Optimal Timing

\_

Suppose project value, V', evolves according to a GBM,
ie., dV = aVdt + ocVdz, which may be obtained at a

sunk cost of [

When is the optimal time to invest?
» A perpetual option, i.e., calendar time is not important
» Ignore temporary suspension or other embedded options
» Can use both dynamic programming and contingent claims meth-

ods

Problem formulation: maxy By [(Vy — I)e 7]
» Assume 0 = p — a > 0, otherwise it is always better to wait

indefinitely
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4 A

Basic Model: Deterministic Case

Supposethata—o ie., V(i) = Voe* for Vo = V(0
» F(V)=maxre pT(VeaT I)
» If o <0, then F(V) = max[V — I, 0]
» Otherwise, for 0 < a < p, waiting may be better because either (i)
V < I or (ii) V > I, but discounting of future sunk cost is greater

than that in the future project value
» Thus, the FONC is dngfv) =0= (p—a)Ve =T = pJe=rT =

T = max{éln{(p_pi)v} ,O}
» Reason for delaying is that the MC is depreciating over time by

more than the MB
Substitute T* to determine V* — (pp ! 5 > I

And, F(V) = ( al ) [“) QW} itV <V (F(V)=V—I

p— pl

otherwise)
\ Figure 5.1 indicates that greater « increases V* /
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4 A

Basic Model: Figure 5.1

2.0 e
18
1.6
1.4]
1.2]
1.0}

F(V)
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P m —— e o e TR e o - —
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g
;

3.0

4
\ Figure 5.1.  Value of Investment Opportunity. F(V), foro =0, p = 0.1 /
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4 A

Dynamic Programming Solution

Bellman equation for continuation is pFdt = IK|dF]

Expand the RHS via [t6’s lemma: dF = F'(V)dV +
LF(VY(dV)? = E[dF) = F'(V)aVdt + LF"(V)o?V2dt
Substitution into the Bellman equation yields the ODE
LY (V)o?V2 4+ F'(V)aV — pF(V) = 0
» Equivalently, 2F"'(V)o*V? + F'(V)(p— 86V —pF(V) =0
» Three boundary conditions: (i) F(0) = 0, (ii) F(V*) = V* — I,
and (iii) F'(V*) =1
» General solution to the ODE is F(V) = A; VPt + A,V P2
» Taking derivatives, we have F'(V) = A1 51 VP11 + 4,8, VP21 and
F''(V) = Aifi(Br — 1)V 72  AaBa(B2 — 1)V 72
» Substitution into the ODE yields A4, V"t [%0261 (61— 1)+ Bi(p —
8) — pl + A2V (302 B2 (B2 — 1) 4 Pa(p — 8) — p] = 0

1 (p—9) p—3§ 112 |, 2p 1
\ >Thusaﬁ1—§—a—2+\/[a—z—§}+a—23ﬂdﬁ2—§— = —/
p—8 _ 112 4 2p
VI -4+ %
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Solution Features

The characteristic quadratic, Q(8) = 50°3(8— 1)+ (p—
d)B — p, has two roots such that g; > 1 and B2 <0

» Q(B) has a positive coefficient for 52, i.e., it is an upward-pointing

parabola
» Note that Q(1) = —¢ < 0, which means that g1 > 1

» O(0) = —p, which means that 82 < 0 (Figure 5.2)

Consequently, the first boundary condition implies that
Ay =0,ie., F(V)=AVA

» Using the VM and SP conditions, we obtain V* = %I and
_vren _ _(B-nfrTt
A= (V*)B1 — [(B1)P1IP1—1]

» Since 81 > 1, we also have V* > I

\_ _/
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Figure 5.2

/ Characteristic Quadratic Function: \

\_

\&

—p

Figure 5.2. The Fundamental Quadratic

_/
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/ Optimal Investment: Comparative \
Statics

ot
8—;<O

» Differentiate Q(0) totally and evaluate it at (;

09 951 4 00 o0 _ 80/d0
> 55 95 T o0 — 0= = T %0/08

» Know that 8% >0 at 61 via Figure 5.2 and % =oB(B—-1)>0
at 1 > 1
» Thus, 851 < 0 and Bi

T increases with o
8Q/ ol

Similarly, = 851 = 50705 > 0

= For51>1, %%2:—5<—1

» Thus, 88%1 > (0 and B L decreases with ¢

Finally, % = gg;gg <0

> For61>1, %%—ﬁ>1

» Thus, 88—% < 0 and % increases with p

\ Asa%oo,ﬁl%1andV*%oo,WhereasaSJ%O/
B1 — L and V* — £] for a > 0

£
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/ Optimal Investment: Comparison to \

Neoclassical Theory

Marshallian  analysis i to compare Vjy =
Er, fooo e Pds = fo w0 | Ts|e PPds = —0- with
1
» Invest if Vo > 1T or mo > (p — )l
» Real options approach says to invest when w9 > ©° = 61 T (p —
a)l > (p—a)l

Tobin‘s ¢ is the ratio of the value of the existing capital
goods to the their current reproduction cost
» Rule is to invest when ¢ > 1
» If we interpret g as being %, then the real options threshold is
4" = gy > 1
» Hence, the real options definition of ¢ adds option value to the PV
of assets in place
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/ Project Value without Operating
Costs

~

\_

Suppose that the output price, P, follows a GBM and
the firm produces one unit per year forever
» Without operating costs and ruling out speculative bubbles,
the value of the project is V(P) = Ep [~ Pe *dt =
[°Ep[P)e Ptdt = [° Pem(Pmigt = £
» We can now find the value of the option to invest, F'(P), which
will satisfy the ODE 0°P*F"'(P)+ (p — §)PF'(P) — pF(P) = 0:
F(P) = A, PPt + A, PP?
» Boundary condition F(0) = 0= A2 =0
» VM and SP conditions imply: (i)A;(P*)P

BrA (P =&

» Therefore, P* = P1 -0 and A;

B1—
> Note that V* = 5= = AT > T
1

(i)

_ (Bi— 1)P1-17—(B1—1)
(861)P1

_/
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/ Operating Costs and Temporary \

Suspension: Value of the Project

\_

Suppose now that the project incurs operating cost, C,

but it may be costlessly suspended or resumed once in-
stalled

>

>

Value the project, V(P), via usual dynamic program-
ming approach

>

>

>
>

>

Instantaneous profit flow is 7(P) = max[P — C,0], i.e., project
owner has infinite embedded operational options

Thus, the value of an active project will be worth more than simply
the NPV of the cash flows

Unlike the option to invest, we now have a profit flow, 7(P), which
implies that the ODE becomes z0°P*V"'(P) 4 (p — §)PV'(P) —
pV(P)+n(P)=0

For P < C, only the homogeneous part of the solution is valid,
ie., V(P)= K| P" + KyP"

With P > C, we also have the particular solution D1 P+ D>C+ D3
Substitution into the ODE yields D1 = %, Dy = —%, D3 =0

Therefore, V(P) = ByP°t + BoP?2 + £ _ S for P> C
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/ Operating Costs and Temporary \

Suspension: Value of the Project

For P < C, V(P) represents the option value of resuming

a suspended project
» Intuitively, this must increase in P and be worthless for very small
P
» Only when K3 = 0 does this hold; thus, V(P) = K;P"! for P < C

For P > C, V(P) is the value of an active project inclu-

sive of the option to suspend operations
» The suspension option is valuable only for small P and becomes

worthless for large P
» Thus, By =0 and V(P) = ByP?2 + £ — % for P> C

Find K; and By via VM and SP at P =C
> KiC% = B0 + 5 — % and B1 K1C”' 1 = 3, B.CP2 7 + 1

_ C17A1 (Bs _ (Ba—l) _cl7% (p _ (fi=D)
> K= B1—B2 ( 02 s ) >0, By = B1—B2 ( pl 5 ) >0
» V(P) is increasing (decreasing) in o (§) (Figures 6.1 and 6.2)
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/ Operating Costs and Temporary \

Suspension: Figure 6.1

400

350 |
300 |
250 |
< 200
150
100}

50

O 2 4 6 8 10 12 14 16.18‘20
P

Figure 6.1 Value of Project, ViP), for o = 0, 0.2 0.4
(Note: r = 8 = (.04, and C = 10)
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/ Operating Costs and Temporary \
Suspension: Figure 6.2

400 L L L L b L] v’ 1 ¥ ¥ L] ¥ L Ll b L] ¥ T

350

Figure 6.2.  Value of Project, V (P, for 5 = 0.02, .04, (.08
(Note:r = 004, 0 = 0.2, and C = 10)
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perating Costs and Temporary \
Suspension: Value of the Option to
Invest

Following the contingent claims approach, F(P) =

A PPt - A, PP
» Boundary condition F'(0) =0 = A2 =0
For P < (', it is never optimal to invest
» Thus, VM and SP of F'(P) will occur for P > C, i.e., with V(P) —

I=BP2 4 LS ]

> Use A1 (P)" = By (P*)? + &= — £ — T and 14, (P*)" 7 =
B2By (P*)P27 1 4 5 to solve for P* and A;

» Substitute to solve the following equation numerically: (81 —
B2)B2 (P7)* + (81 = )5 = gy (S +1) =0

» Solution for p = 0.04, 6 = 0.04, ¢ = 0.20, I = 100, and C = 10
(Figure 6.3)

> 31 =2, B = —1, PP = 28, A" = 0.4464, P* = 23.8, and
A1 =0.4943

» Sensitivity analysis: F(P) and P* increase with o (Figure 6.4)

» But F(P) decreases and P* increases with ¢ (Figures 6.5 and 6.6)
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/ Operating Costs and Temporary
Suspension: Figure 6.3

~

\_

400
350

300 |-
~ 250

-

Q.
~ 200

— 150
o

g 100

= e e a — —— — —

Frgure 6.2,

24

Value of Investiment Opportunity, F(P), and V (P)—]
(Note: r = § = 0.04, 0 = 0.2,and [ = 100)

28

_/
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/ Operating Costs and Temporary
Suspension: Figure 6.4

F(P), v(P) -1

\_

650
600
550
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450
400
350
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1 L) | ] T 1 T [ L] 1 L) ¥

o=02

P* =349 (0=04) |7

]
i
|
I
i
|
L
{

7

/| P =140(=0) INP*=238(0=02) |
| ;
1 L 1 L ] i " i L i il

12 16 20 24 28 32 36

P
Figure 6.4. Value of Investment Opportunity, F( ), und V (P}~ 1, Joro =0, 0.2 and 0.4 /
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/ Operating Costs and Temporary \

Suspension: Figure 6.5
500 ———————

400

_100 4 4 L 1 " L . N ' }
0 4 8 12 16 20 24 28 30

P
\ Figure 0.5. Vulue of Investment Opportuniry, FiP), and V{ P)— i, for 8 = 0,04 and 0.08 /
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/ Operating Costs and Temporary \

Suspension: Figure 6.6

50

10}
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/ Optimal Stopping Time Approach: Now- \
or-Never NPV

Example from McDonald (2005): oil extraction under
certainty at a rate of one barrel per year forever
» Current price of oil is Py = 15, discount rate is p = 0.05, growth

rate of oil is @ = 0.01, operating cost is C = 8, and investment
cost is I = 180

Is it optimal to extract the oil now?
» Assuming that the price of oil grows exponentially, the NPV from
immediate extraction is V(Py) = fooo e Pt {Poeat — C’} dt — I =
Lo € T=215-180 =35

p—a  p
» Since V(Py) > 0, it is optimal to extract

But, would it not be better to wait longer?

\ Investment cost is being discounted, and the value of the/
1 1 (TT‘[\TXT; 1O
o~ T O
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/ Optimal Stopping Time Approach: \
Deterministic NPV

Think instead about value of perpetual investment op-

portunity
> F(P) = maxr fr_,?o e Pt {Poeo‘t — C' —pl}dt = maxr pli—oae(O‘_P)T_

%e_pT — Je Pt

> =T = Lin(9520) = 125163

» Or, invest when Pr« = 17
» Indeed, the initial value of the investment opportunity is F(FPo) =

45.46 > 35 = V(P)

By delaying investment to the optimal time period, it is
possible to maximise NPV

How does this work when the price is stochastic? /
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Optimal Investment under Uncertainty

\_

Price process evolves according to a GBM, 1.e.,
dP;, = aPdt + o P,dz; with initial price Py = p

» Note that (dP;)* = o*(P;)?dt

Qil Price ($)

—— (il Price

== [nvestment Trigger
=== Restart Trigger
=== Shutdown Trigger

A e 3 A RN ORGP N O M P RO EE R

S . ¢ e . v
Time /
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Optimal Investment under Uncertainty

\_

If the project were started now, then its expected NPV
isV(p) =E, [[; e {P— (C+pl)}dt] =2 -C—1T

p—a  p

Canonical real options problem:

F(p) =supkE, [/TOO e " {P, — (C+ pl)} dt]

TES

TES P*>p

= F(p) = supE, [e”"V(P;)| = max { (%)ﬁl V(P*)}

» (1 (B2) is the positive (negative) root of 20°¢(( — 1)+ al—p =0

/
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/ Optimal Investment Threshold under \
Uncertainty

Solve for optimal investment threshold, P*:

F(p) = max { ( ]f*)ﬂl v(P*)}

» First-order necessary condition yields P* = %(p — Q) (% +1 )

» Note that in the case without uncertainty, 31 = £ = P* = C'+pl

For a level of volatility of o = 0.15, P* = 25.28, and the
value of the investment opportunity is F(p) = 94.35

Compared to the case with certainty, the investment op-

\ portunity is worth more, but is also less likely to be ex-/

ercised
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Investment Thresholds and Values

500

400t -

300

200

100

Option value, NPV ($)

-100

-200

-300

! ! !
5 10 15 20 25 30
Qil price, P ($/barrel)

8 March 2011 Siddiqui 50 of 91 m



/ Investment under Uncertainty with \

Abandonment
It the project 1s abandoned alter investment, then the
expected incremental payoft is:

VA =5, | [T e (0 - pk) - Ry ar| = Sor

P p—«
Solve for optimal abandonment threshold, P.:

FA(p) = max { (%f vA(p*)} LV (p)

P, <p

» First-order necessary condition yields P, = #(p — ) (

_ Ks)
» Solve numerically for P*: F(p) =

«\ B
\ maXp*Zp{(%)ﬁl {V(P*)—I— (%) 2VA(P*)}} /
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/ Investment Thresholds and Values \
with Abandonment

\_

500 ———————————— —_— —— e
FAP), 6 =0.15 ; ; | .
400} F(P),6=015 | ... ... ... . i L, /
------- FAP).6=005 | | | |
------- F(P), 5 =0.05
300

200

100

Option value, NPV ($)

o

-100

-200

_30 g | | | |
0 5 10 15 20 25 30
Qil price, P (S/barrel)
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/Investment under Uncertainty with \

Suspension and Resumption

\_

If the project is resumed from a suspended state, then
the expected incremental payoff is:

Vi(p) =B,y UOOO e " {P, — (C’—l—pKr)}dt] — pfa_ p—Kr

Solve for optimal resumption threshold, P**:

F*(p) = max { (P]i*)ﬁl VR(P**)}

» First-order necessary condition yields P** = LL_(p —

B1—1
o (5%

» Substitute P** back into F”(p) to solve numerically for P. and
then repeat for F'(p) to obtain P*
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/ Investment Thresholds and Values \
with Resumption

500 ! ! ! ! !

400 -

300 -

200

100

Option value, NPV (3$)
[en]

-100

~200

300~ et R i e R TIRIE SRR R RREE -

_a0d | | | | |
0 5 10 15 20 25 30
Qil price, P ($/barrel)
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/Investment with Infinite Suspension and \

Resumption Options
Start with the expected value of a sus-

pended project: Ve(p, 00, 00; Py, P*) =
()" (Vo(P**, 00, 00; P., P*™) = K,)

Also note the expected value of an active
project: V,(p, 00, 00; Py, P*) = p_La — % +

B2
(5) (&~ K. = 2 + Vi(P.y 00,00, P, P))

» Solve the two equations numerically, i.e., start with initial thresh-
olds and successively iterate until convergence

Finally, solve for P* numerically: F'(p, 0o, 00; P,, P**) =

\ MaXps>y, (]f*)ﬁ1 {V,(P*, 00, 00; P,, P**) — I}
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/Investment Thresholds and Values with \
Complete Flexibility

500

—F)
V(P)-

|
V (P)-I-K,

c

o

4001

300

200

100

Option value, NPV ($)

-100

-200

30 | | | | |
0 5 10 15 20 25 30
Qil price, P ($/barrel)
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\_

[ ] [ ] [ [ ]
Thresholds with Complete Flexibility
McDonald p. 579 Suspension and Resumption Thresholds
14 T T T T T T T
3.162
131 - d T
121 11.607 . 1
1+ | :
fg‘ 10 5‘10;110 |
S 19250
— 9 - _
8
s gl c=8 |
8
7 - .
b 400 ‘
- 5225
5r 4&______—_—————______ é.??? 2
T 51 393
40 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 /
o
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/ Numerical Results: Data from \

McDonald (2005)
Py = 15,C = 8p = 0.05,a = 0.01,] = 180, K, =
25 K, = 25

s N. N, | I P, fak F (D)

005 0 0 | 18.5846 - - h6.0527

0.10 0 0 | 21.5927 - - 74.6799

015 0 0 | 25.2791 - - 94.3469

0.05 1 0 | 18.5846 4.9396 - H6.0527

010 1 0 | 21.5821 4.2514 - 74.7062

015 1 0 | 25.1537 3.6315 - 94.6154

005 1 1 | 18.5846 5.2246 10.1122 | 56.05627

0.10 1 1 | 21.5784 47702 11.7489 | 74.7153

015 1 1 | 25,1233  4.3625 13.7548 | 94.6946

005 oo oo | 185846 5.2246 10.1104 | 56.0527

010 oo oo | 215784 4.7766 11.6070 | 74.7154

\ 0.15 oo oo | 25,1219 43926 13.1619 | 94.6977 /
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4 A

Seminar Outline

Mathematical Background (Dixit and Pindyck, 1994:
chs. 3-4)

Investment and Operational Timing (Dixit and Pindyck,
1994: chs. 56 and McDonald, 2005: ch. 17)

Strategic Interactions (Huisman and Kort, 1999)

Capacity Switching (Siddiqui and Takashima, 2011)
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4 A

Topic Outline

Classification of setups
Pre-emptive setting

Non-pre-emptive setting
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/ Interaction of Game Theory and \
Real Options

Fudenberg and Tirole (1985) treat a duopoly with
pre-emption over timing in a deterministic model

Huisman and Kort (1999) extend this to reflect market
uncertainty to find that the incentive to delay in real
options may be reduced due to competition

Possible settings: cooperative and non-cooperative
(pre-emptive and non-pre-emptive)
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Duopoly Assumptions

\_

Fach decision-maker has the perpetual right to start
a project at any time for deterministic investment cost,

Price process evolves according to a GBM, i.e., dP;, =
aP.dt + o P;dz; with initial price Fy > 0

» Subjective interest rate is p

» An active project produces one unit of output per year forever

R, = P,D(Q) is the project’s revenue given @; = 0,1, 2
active firms in the industry and D(1) > D(2)

T?Emin{tZO:PtZPTj},j:L,F and i = m. p.n

1

/
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Formulation 1: Monopoly

\_

Value function if monopolist has invested (Fy > P ):
Vi(Po) =Eg, [ [, e " {P.D(1) — pI)} dt]

> V#L(Po) = HDbd) _ g

p—
Value function if  monopolist IS waiting
to invest, ie, PR < Py VI(Fy,) =

sup,, s Er, | [ e {PD(1) - pl}dt

> VI (P) = sup_; s Ep, [e—m%] (M _ I)

p—

Monopolist’s entry threshold: P = ( Blﬁil) Dp(I1)

/
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4 A

Formulation 2: Pre-Emptive Duopoly

Follower’s problem:
> If Py > Por: VS (Po) = 22 — T

p—a

Ia . F PTFD(2)
» Else: V' (FPo) = SUp. Fes Ep, [e ”Tp] L

» Entry threshold: PTIg = (Bfi1> DP(IQ)

Leader’s problem:
» Value function for Pp > P_ r is the same as the follower’s

P1 [P_p(D(2)—D(1))
» Else: V.F(Py) =220 14 (&) [ 2 ]

p— P"'g p—

» Find 77 by setting VpL(PTpL) =V, (P,L)

p
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/ Formulation 3: Non-Pre-Emptive \
Duopoly

Follower’s problem is the same as under the pre-
emptive duopoly framework, i.e., V" (Fy) = V[ (P) and
Prr = Frr

Leader’s problem:
» Leader’s value function for Py > PT};“ is the same as in the pre-

emptive case, i.e., V,'(Py) = V' (R)
» Leader’s value function for PT# < Py < PT}S‘ is also the same as in
the pre-emptive case

B rp ;. D)
» FKElse: VnL(Po) = maxp_, >p, (PPOL> [ Tk — T

T p—a
Py B1 PTI%;-(D(2)—D(1))
+ P P
» Optimal entry threshold for the leader in the non-pre-emptive case
. . . L 18 I
\ is the same as that for a monopolist: P = (5111) D”(l) /
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4 A

Numerical Example: Monopoly
oc=0.20,p=0.04, «=0,1 =100, D(1) =2, D(2) =1

900

j _
800 | Vm(P), P2 PIJm

j | 3
700 = = =Vm(PhP<Py S

BO0

AOOf ‘

Option value, NPV

OfF=—=/ - S T ]
-100 : : :
0 5 10 15 20
Price (P)
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/ Numerical Example:
Duopoly

Pre-Emptive \

400 T ! !
VEP)=vie), PP | ‘
350 p pr T U N .
F
300H| = = = Vp(P)’ P< PTE ,,,,,,,,,,,,,, i
L
250 F Vp(P), P< PTF ,,,,,,,,,,,,,,,,,,,, 4
> p
o
Z 200 e .
)
=)
S 150 A .
g ;
= 100 B .
O .
50 V5~ 0 S .
-
£ :
O —— ] - L. P -
T AR ARNR— S ]
-100 : : :
0 5 10 15 20
Price (P)
8 March 2011 Siddiqui



/ Numerical Example: Non-Pre-

~

[ ]
Emptive Duopoly
400 T T )
F /L
asol Vieve.ezpel o |
F
300 | | == = = Vn(P)1 P < PT: ,,,,,,,,,,,,,, ]
L
250 F Vn(P), P< PTF ,,,,,,,,,,,,,,,,,,,, i
> n
o L -p .
Z 200 == Vn(P), P< Pti_PTJm ,,,,,,,,,,,,,,,,,,,,,,, i
o
>
c_g 150 - o .
g ;
= 100 e P .
O .
50 Pd ’, B el .
o -
|‘*"" -
O —— G .. T .
50 R T TR -
-100 : ' '
5 10 15 20
Price (P)
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/ Numerical Example: Entry

\_

[ [ J [ J ([ ]
Threshold Sensitivity Analysis
Entry Thresholds for Risk—MNeutral Cases
15 I I I
.g..PJ=Py IKAM.QEE
145 PP T
—'3‘— T T el
pm -383
P .---""&2
12} i -
______@1.,1-'.*352
£ 10} 1
9428
8 _laoeo
S 17464
- 6442
E - .
5.526
4714 4 553
000 3.984
b 3.040 >480 |
D 667 '
2 1 1 1
D.2 0.25 0.3 0.35 0.4
Volatility (o) /
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/ Numerical Example: Option Value \
Sensitivity Analysis

polist leader

a P

Relative value of duo

: or i p
Vi) " Vi(P..)
P P

o
-
. ] _— - - L -— - - — - - -

Pre—emptive duopoly

= = = Non-pre-emptive duopoly

0.2 0.25 0.3 0.35
Volatility (o)

04 /

8 March 2011

Siddiqui



4 A

Seminar Outline

Mathematical Background (Dixit and Pindyck, 1994:
chs. 3-4)

Investment and Operational Timing (Dixit and Pindyck,
1994: chs. 56 and McDonald, 2005: ch. 17)

Strategic Interactions (Huisman and Kort, 1999)

Capacity Switching (Siddiqui and Takashima, 2011)
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Topic Outline

Monopoly
Spillover duopoly

Proprietary duopoly
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Monopoly Setup

\_

- I

» Direct strategy: obtain project of size K> for an investment cost
of I1 + Io

» Sequential strategy: invest in size K7 before deciding to switch to
a project with a higher capacity, K2 (total cost is still I; + I2)

» Market shock: dx: = ax:dt + ocxidz:, where o > 0 and o > 0

» P, = xz:D(k:) (in $/unit), where k; is the installed capacity (in
units/annum) at time ¢t and D(k:) is the demand parameter given
the installed capacity at time ¢ (strictly decreasing)

> p >«

8 March 2011 Siddiqui 73 of 91



-~

~

Monopoly: Direct Strategy

VZd(x) = [, [fooo 6_pt[(2xtl)2dﬂ -5 -1, = xfoDQ —IL—1
Value function in state 0: V@(x) = Adz"

Value—matching and smooth-pasting conditions:

> V5 (:1:0) = Vs’ (5150)
dV dV
> O ‘:13 wg _ 2 |w mg

Solution yields zd = ( b1 )(11“2)(’) ~%)  and Ad =

B1—1 KoDo

g (1 +1p)
B1—1

_/
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4 A

Monopoly: Sequential Strategy

Vi(x) = “’lel I+ As2P if o < 25 and Vi (z) = Vi ()
otherwise

State-1 value- matching and smooth-pasting conditions:
> V(i) = V(2 )

dVl A
> ’:13 wl T dx ‘w:w‘i+
_ B1 I>(p—a) d
Solution yields xi = ( 5.1) T, D] > X0 and
s — BlI
s __ wl 2 d

Value function in state 0: V¥ (z) = Az

» VM and SP conditions lead to z{ = (5fi1) I%f;?) < zd and

S __ AS 1
\ A=A+ - /
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Spillover Duopoly Setup

:: 22
L+
» Symmetric non-pre-emptive duopoly with spillover knowledge
» Direct strategy: obtain project of size K2 for an investment cost
of I1 + I» before follower makes similar investment
» Sequential strategy: invest in size K; before waiting for follower’s
entry

» Additional assumptions: 0 < Dss < D21 < Dog < D11 < Dyg =
D1, K2D23 > K1D21, K2D21 > Ki1D11, and %(Kl + K2)D21 >

\ K1 D1
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Spillover Duopoly: Direct Strategy

~

\_

Value functions: Vj’d(a:) — zHaDop I, — I,
59 p—

Voo (z) = zBaloo _ [, — L + Ag'a?, Vyg () = Agg'aP,

and V7% (z) = A o

VM and SP conditions:

F.,d d _ F.d d
> V0" (25) = V" (%)
F.,d F,d
> dV20 | - dV22 | .,
L.,d; _d L.,d; _d
> Voo («’1720) (51320)
Jd 1 F.d
> Vs (z6o) 5[ (z80) + Vag (ono)}
i, d L.d ,d
avigs 1 | 4V’ deo
> dx T=x 2 dx |90 zd + dx ‘:z::a:d
00 00 00
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Solutions

/ Spillover Duopoly: Direct Strategy \

pd — (B ) (htlz)(p=o)
20 B1—1 KoDoo
F,d 51720 1(I1+12)

A B1—1

AL’d o azgo_'gl (I1+12)(D22—D2g)B1

20 (B1—1) D22
gl — ( EA ) (htls)(p—a) _
00 — \ Bg1—1 K2 Do

1(I1+I2)

' 1 F,d xdo
AfS =3 {A + Ay +

\_

_/
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/ Spillover Duopoly: Sequential \
Strategy

Value functions: szgd(a:) = D p [
p—a
Vai*(z) = et —h - bt Az, Vit(a) =

2D [+ APz, Vi (2) = 500 — [ 4 At
Vi (r) = w1, 4 abeat Vi) = Al

Some VM and SP conditions:

> VzliFs( T31) = Vzgsg;’ﬁm)
> dV21’s| - dv22’8| .
ded T=T5q L;;la: T=Toq
> V5% (x31) = Voo (231)
> Vit(zh) =% (Var 11)+V21i8(3?11)}

\_

v

J,s
de 1T=Tq1q 2 de 1T=T71q de 1T=T71
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/ Spillover Duopoly: Sequential
Strategy Solutions

s — (B Ix(p—a)
21 — \ B —1 [K2D22—K1D21]

21— Bi-1
AL’S _ x5, P1161 | KyDyy— KDy
21 B1—1 KoDoos— K1 D2y

&
)
H

|
N

1 I3(p—a)
B1—1 ) [(K1+K2)D21—2K1D11]

S,
1—
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Option value, NPV

Numerical Example: Monopoly
oc=2040, p=004, =0, Iy =10, I = 20, K1 =1, Ko = 3.5, D1g = 5,
D11 = 4, D20 = 3, Do = 2.5, Doy =1

Monopoly direct value curves forg = 0.40 Monopoly sequential value curves for ¢ = 0.40
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Duopoly

/ Numerical Example: Spillover

Duopoly direct value curves for ¢ = 0.40

Duopoly sequential value curves for ¢ = 0.40
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/ Numerical Example: Proprietary
Duopoly

Propietary—knowledge duopoly sequential value curves for g = 0.40
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/ Numerical Example: Spillover \
Duopoly Thresholds
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/ Numerical Example: Spillover \

[ ] [ ] [ ]
Duopoly Value of Flexibility
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/ Numerical Example: Spillover \

[ ] [ ]
Duopoly Effect of Competition
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umerical Example: Spillover Duopoly \
Effect of Competition with Lower First-

Mover Advantage
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/ Numerical Example: Proprietary \
Duopoly Value of Flexibility
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to sequential strategy for proprietary—knowledge case




/ Numerical Example: Proprietary \
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