Real Options and Game Theory: Introduction and Applications

Afzal Siddiqui

Department of Statistical Science
University College London
London WC1E 6BT, UK
afzal@stats.ucl.ac.uk

Seminar Outline

* Mathematical Background (Dixit and Pindyck, 1994: chs. 3-4)
* Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5-6 and McDonald, 2005: ch. 17)
* Strategic Interactions (Huisman and Kort, 1999)
* Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

* Wiener process and GBM
* Itô's lemma
\star Dynamic programming

Wiener Process

* A Wiener process (or Brownian motion) has the following properties:
- Markov process
- Independent increments
- Changes over any finite time interval are normally distributed with variance that increases linearly in time
* Nice property that past patterns have no forecasting value
* For prices, it makes more sense to assume that changes in their logarithms are normally distributed, i.e., prices are lognormally distributed
* More formally for a Wiener process $\{z(t), t \geq 0\}$:
- $\Delta z=\epsilon_{t} \sqrt{\Delta t}$, where $\epsilon_{t} \sim \mathcal{N}(0,1)$
$-\epsilon_{t}$ are serially uncorrelated, i.e., $\mathbb{E}\left[\epsilon_{t} \epsilon_{s}\right]=0$ for $t \neq s$

Wiener Process: Properties

Implications of the two conditions are examined by breaking up the time interval T into n units of length Δt each

- Change in z over T is $z(s+T)-z(s)=\sum_{i=1}^{n} \epsilon_{i} \sqrt{\Delta t}$, where the ϵ_{i} are independent
- Via the CLT, $z(s+T)-z(s)$ is $\mathcal{N}(0, n \Delta t=T)$
- Variance of the changes increases linearly in time
\star Letting Δt become infinitesimally small implies $d z=$ $\epsilon_{t} \sqrt{d t}$, where $\epsilon_{t} \sim \mathcal{N}(0,1)$
\star This implies that $\mathbb{E}[d z]=0$ and $\mathbb{V}(d z)=\mathbb{E}\left[(d z)^{2}\right]=d t$
\star Coefficient of correlation between two Wiener processes, $z_{1}(t)$ and $z_{2}(t): \mathbb{E}\left[d z_{1} d z_{2}\right]=\rho_{12} d t$

Brownian Motion with Drift

* Generalise the Wiener process: $d x=\alpha d t+\sigma d z$, where $d z$ is the increment of the Wiener process, α is the drift parameter, and σ is the variance parameter
- Over time interval $\Delta t, \Delta x$ is normal with mean $\mathbb{E}[\Delta x]=\alpha \Delta t$ and variance $\mathbb{V}(\Delta x)=\sigma^{2} \Delta t$
- Given x_{0}, it is possible to generate sample paths
- For example, if $\alpha=0.2$ and $\sigma=1.0$, then the discretisation with $\Delta t=\frac{1}{12}$ is $x_{t}=x_{t-1}+0.01667+0.2887 \epsilon_{t}$ (Figure 3.1)
* Optimal forecast is $\hat{x}_{t+T}=x_{t}+0.01667 T$ and $66 \% \mathrm{CI}$ is $x_{t}+0.01667 T \pm 0.2887 \sqrt{T}$ (Figure 3.2)
* Mean of $x_{t}-x_{0}$ is αt and its SD is $\sigma \sqrt{t}$, so the trend dominates in the long run

Brownian Motion with Drift: Figures 3.1 and 3.2

Figure 3.1. Sample Paths of Brownian Motion with Drift

Figure 3.2. Optimal Forecast of Brownian Motion with Drift

Brownian Motion and Random Walks

* Suppose that a discrete-time random walk for which the position is described by variable x makes jumps of $\pm \Delta h$ every Δt time units given the initial position x_{0}
- The probability of an upward (downward) jump is $p(q=1-p)$
- Thus, x follows a Markov process with independent increments, i.e., probability distribution of its future position depends only on its current position (Figure 3.3)
\star Mean: $\mathbb{E}[\Delta x]=(p-q) \Delta h$; second moment: $\mathbb{E}\left[(\Delta x)^{2}\right]=$ $p(\Delta h)^{2}+q(\Delta h)^{2}=(\Delta h)^{2}$; variance: $\mathbb{V}(\Delta x)=(\Delta h)^{2}[1-$ $\left.(p-q)^{2}\right]=\left[1-(2 p-1)^{2}\right](\Delta h)^{2}=4 p q(\Delta h)^{2}$
Thus, if t has $n=\frac{t}{\Delta t}$ steps, then $x_{t}-x_{0}$ is a binomial RV with mean $n \mathbb{E}[\Delta x]=\frac{t(p-q) \Delta h}{\Delta t}$ and variance $n \mathbb{V}(\Delta x)=$ $\frac{4 p q t(\Delta h)^{2}}{\Delta t}$

Brownian Motion and Random Walks: Figure 3.3

Figure 3.3. Random Walk Representation of Brownian Motion

Brownian Motion and Random Walks: Properties

夫 Choose $\Delta h, \Delta t, p$, and q so that the random walk converges to a Brownian motion as $\Delta t \rightarrow 0$

- $\Delta h=\sigma \sqrt{\Delta t}$
- $p=\frac{1}{2}\left[1+\frac{\alpha}{\sigma} \sqrt{\Delta t}\right], q=\frac{1}{2}\left[1-\frac{\alpha}{\sigma} \sqrt{\Delta t}\right]$
- Thus, $p-q=\frac{\alpha}{\sigma} \sqrt{\Delta t}=\frac{\alpha}{\sigma^{2}} \Delta h$

Substitute these into the formulas for the mean and variance $x_{t}-x_{0}$:

- Mean: $\mathbb{E}\left[x_{t}-x_{0}\right]=\frac{t \alpha(\Delta h)^{2}}{\sigma^{2} \Delta t}=\frac{t \alpha \sigma^{2} \Delta t}{\sigma^{2} \Delta t}=\alpha t$; variance: $\mathbb{V}\left(x_{t}-x_{0}\right)=$

$$
\frac{4 p q t(\Delta h)^{2}}{\Delta t}=\frac{4 t \sigma^{2} \Delta t\left[1-\frac{\alpha^{2}}{\sigma^{2}} \Delta t\right]}{4 \Delta t}=t \sigma^{2}\left[1-\frac{\alpha^{2}}{\sigma^{2}} \Delta t\right], \text { which goes to } t \sigma^{2}
$$

$$
\text { as } \Delta t \rightarrow 0
$$

Hence, these are the mean and variance of a Brownian motion; furthermore, the binomial distribution approaches the normal one for large n

Generalised Brownian Motion

An Itô process is $d x=a(x, t) d t+b(x, t) d z$, where $d z$ is the increment of a Wiener process, and both $a(x, t)$ and $b(x, t)$ are known but may be functions of both x and t

- Mean: $\mathbb{E}[d x]=a(x, t) d t ;$ second moment: $\mathbb{E}\left[(d x)^{2}\right]=$ $\mathbb{E}\left[a^{2}(x, t)(d t)^{2}+b^{2}(x, t)(d z)^{2}+2 a(x, t) b(x, t) d t d z\right]=b^{2}(x, t) d t ;$ variance: $\mathbb{V}(d x)=\mathbb{E}\left[(d x)^{2}\right]-(\mathbb{E}[d x])^{2}=b^{2}(x, t) d t$
A geometric Brownian motion (GBM) has $a(x, t)=\alpha x$ and $b(x, t)=\sigma x$, which implies $d x=\alpha x d t+\sigma x d z$
- Percentage changes in x are normally distributed, or absolute changes in x are lognormally distributed
- If $\{y(t), t \geq 0\}$ is a BM with parameters $\left(\alpha-\frac{1}{2} \sigma^{2}\right) t$ and $\sigma^{2} t$, then $\left\{x(t) \equiv x_{0} e^{y(t)}, t \geq 0\right\}$ is a GBM
- $m_{y}(s)=\mathbb{E}\left[e^{s y(t)}\right]=e^{s \alpha t-\frac{s \sigma^{2} t}{2}+\frac{s^{2} \sigma^{2} t}{2}}$, which implies $\mathbb{E}[y(t)]=$ $\left(\alpha-\frac{1}{2} \sigma^{2}\right) t$ and $\mathbb{V}(y(t))=\sigma^{2} t$
- Thus, $\mathbb{E}_{x_{0}}[x(t)]=\mathbb{E}_{x_{0}}\left[x_{0} e^{y(t)}\right]=x_{0} m_{y}(1)=x_{0} e^{\alpha t}$ and $\mathbb{V}_{x_{0}}(x(t))=\mathbb{E}_{x_{0}}\left[(x(t))^{2}\right]-\left(\mathbb{E}_{x_{0}}[x(t)]\right)^{2}=x_{0}^{2} \mathbb{E}_{x_{0}}\left[e^{2 y(t)}\right]-x_{0}^{2} e^{2 \alpha t}=$

GBM Trajectories

Expected PV of a GBM assuming discount rate $r>\alpha$ is $\mathbb{E}_{x_{0}}\left[\int_{0}^{\infty} x(t) e^{-r t} d t\right]=\int_{0}^{\infty} \mathbb{E}_{x_{0}}[x(t)] e^{-r t} d t=$ $\int_{0}^{\infty} x_{0} e^{\alpha t} e^{-r t} d t=\frac{x_{0}}{r-\alpha}$

Generate sample paths for $\alpha=0.09$ and $\sigma=0.2$ per annum using $x_{1950}=100$ and one-month intervals, i.e., $x_{t}-x_{t-1}=0.0075 x_{t-1}+0.0577 x_{t-1} \epsilon_{t}$, where $\epsilon_{t} \sim \mathcal{N}(0,1)$ (Figure 3.4)

- Trend line is obtained by setting $\epsilon_{t}=0$
- Optimal forecast given x_{1974} is $\hat{x}_{1974+T}=(1.0075)^{T} x_{1974}$, while the CI is $(1.0075)^{T}(1.0577)^{ \pm \sqrt{T}} x_{1974}$ (Figure 3.5)

GBM Trajectories: Figures 3.4 and 3.5

Figure 3.4. Sample Paths of Geometric Brownian Motion

Figure 3.5. Optimal Forecast of Geometric Brownian Motion

Itô's Lemma

Itô's lemma allows us to integrate and differentiate functions of Itô processes

- Recall Taylor series expansion for $F(x, t): d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial t} d t+$ $\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}(d x)^{2}+\frac{1}{6} \frac{\partial^{3} F}{\partial x^{3}}(d x)^{3}+\cdots$
- Usually, higher-order terms vanish, but here $(d x)^{2}=b^{2}(x, t) d t$ (once terms in $(d t)^{\frac{3}{2}}$ and $(d t)^{2}$ are ignored), which is linear in $d t$
- Thus, $d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial t} d t+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{2}}(d x)^{2} \Rightarrow d F=$ $\left[\frac{\partial F}{\partial t}+a(x, t) \frac{\partial F}{\partial x}+\frac{1}{2} b^{2}(x, t) \frac{\partial^{2} F}{\partial x^{2}}\right] d t+b(x, t) \frac{\partial F}{\partial x} d z$
- Intuitively, even if $a(x, t)=0$ and $\frac{\partial F}{\partial t}=0$, then $\mathbb{E}[d x]=0$, but $\mathbb{E}[d F] \neq 0$ because of Jensen's inequality

Generalise to m Itô processes with $d x_{i}=$ $a_{i}\left(x_{1}, \ldots, x_{m}, t\right) d t+b_{i}\left(x_{1}, \ldots, x_{m}, t\right) d z_{i}$ and $\mathbb{E}\left[d z_{i} d z_{j}\right]=$ $\rho_{i j} d t: d F=\frac{\partial F}{\partial t} d t+\sum_{i} \frac{\partial F}{\partial x_{i}} d x_{i}+\frac{1}{2} \sum_{i} \sum_{j} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} d x_{i} d x_{j}$

Application to GBM

* If $d x=\alpha x d t+\sigma x d z$ and $F(x)=\ln (x)$, then $F(x)$ follows a BM with parameters $\alpha-\frac{1}{2} \sigma^{2}$ and σ
- $\frac{\partial F}{\partial t}=0, \frac{\partial F}{\partial x}=\frac{1}{x}, \frac{\partial^{2} F}{\partial x^{2}}=-\frac{1}{x^{2}}$, which implies that $d F=\frac{d x}{x}-$ $\frac{1}{2 x^{2}}(d x)^{2}=\alpha d t+\sigma d z-\frac{1}{2} \sigma^{2} d t=\left(\alpha-\frac{1}{2} \sigma^{2}\right) d t+\sigma d z$
\star Consider $F(x, y)=x y$ and $G=\ln F$ with $d x=\alpha_{x} x d t+$ $\sigma_{x} x d z_{x}, d y=\alpha_{y} y d t+\sigma_{y} y d z_{y}$, and $\mathbb{E}\left[d z_{x} d z_{y}\right]=\rho d t$
- $\frac{\partial^{2} F}{\partial x^{2}}=\frac{\partial^{2} F}{\partial y^{2}}=0$ and $\frac{\partial^{2} F}{\partial x \partial y}=1$, which implies $d F=y d x+x d y+d x d y$
- Substitute $d x$ and $d y$: $d F=\alpha_{x} x y d t+\sigma_{x} x y d z_{x}+\alpha_{y} x y d t+$ $\sigma_{y} x y d z_{y}+x y \sigma_{x} \sigma_{y} \rho d t \Rightarrow d F=\left(\alpha_{x}+\alpha_{y}+\rho \sigma_{x} \sigma_{y}\right) F d t+\left(\sigma_{x} d z_{x}+\right.$ $\left.\sigma_{y} d z_{y}\right) F$, i.e., F is also a GBM
- Meanwhile, $d G=\left(\alpha_{x}+\alpha_{y}-\frac{1}{2} \sigma_{x}^{2}-\frac{1}{2} \sigma_{y}^{2}\right) d t+\sigma_{x} d z_{x}+\sigma_{y} d z_{y}$ Discounted PV: $F(x)=x^{\theta}$ and x follows a GBM
- F follows a GBM, too: $d F=\theta x^{\theta-1} d x+\frac{1}{2} \theta(\theta-$ 1) $x^{\theta-2}(d x)^{2}=F\left[\theta \alpha+\frac{1}{2} \theta(\theta-1) \sigma^{2}\right] d t+\theta \sigma F d z \Rightarrow \mathbb{E}_{x_{0}}[F(x(t))]=$ $F\left(x_{0}\right) e^{t\left(\theta \alpha+\frac{1}{2} \theta(\theta-1) \sigma^{2}\right)}$

Stochastic Discount Factor

* Proposition: The conditional expectation of the stochastic discount factor, $\mathbb{E}_{p}\left[e^{-\rho \tau}\right]$, is the power function, $\left(\frac{p}{P^{*}}\right)^{\beta_{1}}$, where $\tau \equiv \min \left\{t: P_{t} \geq P^{*}\right\}, d P=\alpha P d t+$ $\sigma P d z$, and $P_{0} \equiv p$.
Proof: Let $g(p) \equiv \mathbb{E}_{p}\left[e^{-\rho \tau}\right]$
- $g(p)=o(d t) e^{-\rho d t}+(1-o(d t)) e^{-\rho d t} \mathbb{E}_{p}[g(p+d P)]$
- $\Rightarrow \quad g(p) \quad=\quad o(d t) e^{-\rho d t} \quad+\quad(1-$ $o(d t)) e^{-o d t} \mathbb{E}_{p}\left[g(p)+d P g^{\prime}(p)+\frac{1}{2}(d P)^{2} g^{\prime \prime}(p)+o(d t)\right]$
- $\Rightarrow g(p)=o(d t)+e^{-\rho d t} g(p)+e^{-\rho d t} \alpha p g^{\prime}(p) d t+e^{-\rho d t} \frac{1}{2} \sigma^{2} p^{2} g^{\prime \prime}(p) d t$
- $\Rightarrow g(p)=o(d t)+(1-\rho d t) g(p)+(1-\rho d t) \alpha p g^{\prime}(p) d t+(1-$ $\rho d t) \frac{1}{2} \sigma^{2} p^{2} g^{\prime \prime}(p) d t$
$>\Rightarrow-\rho g(p)+\alpha p g^{\prime}(p)+\frac{1}{2} \sigma^{2} p^{2} g^{\prime \prime}(p)=\frac{o(d t)}{d t}$
- $\Rightarrow g(p)=a_{1} p^{\beta_{1}}+a_{2} p^{\beta_{2}}$
- $\lim _{p \rightarrow 0} g(p)=0 \Rightarrow a_{2}=0$ and $g\left(P^{*}\right)=1 \Rightarrow a_{1}=\frac{1}{P^{* \beta_{1}}}$

Dynamic Programming: ManyPeriod Example

* Now, let the state variable x_{t} be continuous and the control variable u_{t} represent the possible choices made at time t
- Let the immediate profit flow be $\pi_{t}\left(x_{t}, u_{t}\right)$ and $\Phi_{t}\left(x_{t+1} \mid x_{t}, u_{t}\right)$ be the CDF of the state variable next period given current information
- Given the discount rate ρ and the Bellman Principle of Optimality, the expected NPV of the cash flows to go from period t is $F_{t}\left(x_{t}\right)=$ $\max _{u_{t}}\left\{\pi_{t}\left(x_{t}, u_{t}\right)+\frac{1}{(1+\rho)} \mathbb{E}_{t}\left[F_{t+1}\left(x_{t+1}\right)\right]\right\}$
- Use the termination value at time T and work backwards to solve for successive values of $u_{t}: F_{T-1}\left(x_{T-1}\right)=$ $\max _{u_{T-1}}\left\{\pi_{T-1}\left(x_{T-1}, u_{T-1}\right)+\frac{1}{(1+\rho)} \mathbb{E}_{T-1}\left[\Omega_{T}\left(x_{T}\right)\right]\right\}$
* With an infinite horizon, it is possible to solve the problem recursively due to independence from time and the downward scaling due to the discount factor: $F(x)=$ $\frac{\max _{u}\left\{\pi(x, u)+\frac{1}{(1+\rho)} \mathbb{E}\left[F\left(x^{\prime}\right) \mid x, u\right]\right\}}{8 \operatorname{March} 2011}$

Dynamic Programming: Optimal Stopping

* Suppose that the choice is binary: either continue (to wait or to produce) or to terminate (waiting or production)
- Bellman equation is now $\max \left\{\Omega(x), \pi(x)+\frac{1}{(1+\rho)} \mathbb{E}\left[F\left(x^{\prime}\right) \mid x\right]\right\}$
- Focus on case where it is optimal to continue for $x>x^{*}$ and stop otherwise
- Continuation is more attractive for higher x if: (i) immediate profit from continuation becomes larger relative to the termination payoff, i.e., $\pi(x)+\frac{1}{(1+\rho)} \mathbb{E}\left[\Omega\left(x^{\prime}\right) \mid x\right]-\Omega(x)$ is increasing in x, and (ii) current advantage should not be likely to be reversed in the near future, i.e., require first-order stochastic dominance
- Both conditions are satisfied in the applications studied here: (i) always holds, and (ii) is true for random walks, Brownian motion, MR processes, and most other economic applications
- In general, may have stopping threshold that varies with time, $x^{*}(t)$

Dynamic Programming: Continuous Time

\star In continuous time, the length of the time period, Δt, goes to zero and all cash flows are expressed in terms of rates

- Bellman equation is now $F(x, t)$ = $\max _{u}\left\{\pi(x, u, t) \Delta t+\frac{1}{(1+\rho \Delta t)} \mathbb{E}\left[F\left(x^{\prime}, t+\Delta t\right) \mid x, u\right]\right\}$
- Multiply by $(1+\rho \Delta t)$ and re-arrange: $\rho \Delta t F(x, t)=$ $\max _{u}\left\{\pi(x, u, t) \Delta t(1+\rho \Delta t)+\mathbb{E}\left[F\left(x^{\prime}, t+\Delta t\right)-F(x, t) \mid x, u\right]\right\}=$ $\max _{u}\{\pi(x, u, t) \Delta t(1+\rho \Delta t)+\mathbb{E}[\Delta F \mid x, u]\}$
- Divide by Δt and let it go to zero to obtain $\rho F(x, t)=$ $\max _{u}\left\{\pi(x, u, t)+\frac{\mathbb{E}[d F \mid x, u]}{d t}\right\}$
- Intuitively, the instantaneous rate of return on the asset must equal its expected net appreciation

Dynamic Programming: Itô Processes

* Suppose that $d x=a(x, u, t) d t+b(x, u, t) d z$ and $x^{\prime}=$ $x+d x$
Apply Itô's lemma to the value function, F :
- $\mathbb{E}[F(x+\Delta x, t+\Delta t) \mid x, u]=F(x, t)+\left[F_{t}(x, t)+a(x, u, t) F_{x}(x, t)+\right.$ $\left.\frac{1}{2} b^{2}(x, u, t) F_{x x}(x, t)\right] \Delta t+o(\Delta t)$
- Return equilibrium condition is now $\rho F(x, t)=$ $\max _{u}\left\{\pi(x, u, t)+F_{t}(x, t)+a(x, u, t) F_{x}(x, t)+\frac{1}{2} b^{2}(x, u, t) F_{x x}(x, t)\right\}$
- Next, find optimal u as a function of $F_{t}(x, t), F_{x}(x, t), F_{x x}(x, t)$, x, t, and underlying parameters
- Subsitute it back into the return equilibrium condition to obtain a second-order PDE with F as the dependent variable and x and t as the independent ones
- Solution procedure is typically to start at the terminal time T and work backwards
* When time horizon is infinite, t drops out of the equation:
$\triangleright \rho F(x)=\max _{u}\left\{\pi(x, u)+a(x, u) F^{\prime}(x)+\frac{1}{2} b^{2}(x, u) F^{\prime \prime}(x)\right\}$

Dynamic Programming: Optimal Stopping and Smooth Pasting

* Consider a binary decision problem: can either continue to obtain a profit flow (with continuation value) or stop to obtain a termination payoff where $d x=a(x, t) d t+$ $b(x, t) d z$
- In this case, a threshold policy with $x^{*}(t)$ exists, and the Bellman equation is $\rho F(x, t) d t=\max \{\Omega(x, t) d t, \pi(x, t) d t+\mathbb{E}[d F \mid x]\}$
- The RHS is larger in the continuation region, so applying Itô's lemma gives $\frac{1}{2} b^{2}(x, t) F_{x x}(x, t)+a(x, t) F_{x}(x, t)+F_{t}(x, t)-\rho F(x, t)+$ $\pi(x, t)=0$
- The PDE can be solved for $F(x, t)$ for $x>x^{*}(t)$ subject to the boundary condition $F\left(x^{*}(t), t\right)=\Omega\left(x^{*}(t), t\right) \forall t$ (value-matching condition)
- A second condition is necessary to find the free boundary: $F_{x}\left(x^{*}(t), t\right)=\Omega_{x}\left(x^{*}(t), t\right) \forall t$ (smooth-pasting condition)
- The latter may be thought of as a first-order necessary condition, i.e., if the two curves met at a kink, then the optimal stopping would_occur elsewhere

Dynamic Programming: Optimal Abandonment

\star You own a machine that produces profit, x, that evolves according to a BM, i.e., $d x=a d t+b d z$, where $a<0$ to reflect decay of the machine over time

The lifetime of the machine is T years, discount rate is ρ, and we must find the optimal threshold profit level, $x^{*}(t)$, below which to abandon the machine (zero salvage value)

- Corresponding PDE is $\frac{1}{2} b^{2} F_{x x}(x, t)+a F_{x}(x, t)+F_{t}(x, t)-\rho F(x, t)+$ $x=0$
- PDE is solved numerically for $T=10, a=-0.1, b=0.2$, and $\rho=0.10$ using discrete time steps of $\Delta t=0.01$
- Solution in Figure 4.1 indicates that for lifetimes greater than ten years, the optimal abandonment threshold is about -0.17
- As lifetime is reduced, it becomes easier to abandon the machine

Dynamic Programming Example: Figure 4.1

(a)

Dynamic Programming：Optimal Abandonment

Assume an effectively infinite lifetime to obtain an ODE instead of a PDE：$\frac{1}{2} b^{2} F^{\prime \prime}(x)+a F^{\prime}(x)-\rho F(x)+x=0$
－Homogeneous solution is $y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
－Substituting derivatives into the homogeneous portion of the PDE yields $c_{1} e^{r_{1} x}\left(\frac{1}{2} b^{2} r_{1}^{2}+a r_{1}-\rho\right)+c_{2} e^{r_{2} x}\left(\frac{1}{2} b^{2} r_{2}^{2}+a r_{2}-\rho\right)=0$
－The terms in the parentheses must be equal to zero，i．e．，$r_{1}=$ $\frac{-a+\sqrt{a^{2}+2 b \rho}}{b^{2}}=5.584>0$ and $r_{2}=\frac{-a-\sqrt{a^{2}+2 b \rho}}{b^{2}}=-0.854<0$
－Particular solution：$Y(x)=A x+B, Y^{\prime}(x)=A$ ，and $Y^{\prime \prime}(x)=0$
－Substituting these into the original PDE yields $a A-\rho(A x+B)+$ $x=0 \Rightarrow A=\frac{1}{\rho}, B=\frac{a}{\rho^{2}}$
－Thus，$Y(x)=\frac{x}{\rho}+\frac{a}{\rho^{2}}$ ，and $F(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}+\frac{x}{\rho}+\frac{a}{\rho^{2}}$
－Boundary conditions：（i）$F\left(x^{*}\right)=0$ ，（ii）$F^{\prime}\left(x^{*}\right)=0$ ，（iii） $\lim _{x \rightarrow \infty} F(x)=Y(x)$
－The third one implies that $c_{1}=0$ ，i．e．，$F(x)=c_{2} e^{r_{2} x}+\frac{x}{\rho}+\frac{a}{\rho^{2}}$
－First two conditions imply $x^{*}=-\frac{a}{\rho}+\frac{1}{r_{2}}=-0.17$ and $c_{2}=$ $-\frac{e^{-r_{2} x^{*}}}{r_{2} \rho}$

Seminar Outline

* Mathematical Background (Dixit and Pindyck, 1994: chs. 3-4)
* Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5-6 and McDonald, 2005: ch. 17)
* Strategic Interactions (Huisman and Kort, 1999)
* Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

* Basic model and NPV approach
\star Dynamic programming solution
* Features of optimal investment
\star Embedded options
* Another approach: optimal stopping time

Basic Model: Optimal Timing

* Suppose project value, V, evolves according to a GBM, i.e., $d V=\alpha V d t+\sigma V d z$, which may be obtained at a sunk cost of I
* When is the optimal time to invest?
- A perpetual option, i.e., calendar time is not important
- Ignore temporary suspension or other embedded options
- Can use both dynamic programming and contingent claims methods
\star Problem formulation: $\max _{T} \mathbb{E}_{V_{0}}\left[\left(V_{T}-I\right) e^{-\rho T}\right]$
- Assume $\delta \equiv \rho-\alpha>0$, otherwise it is always better to wait indefinitely

Basic Model: Deterministic Case

\star Suppose that $\sigma=0$, i.e., $V(t)=V_{0} e^{\alpha t}$ for $V_{0} \equiv V(0)$

- $F(V) \equiv \max _{T} e^{-\rho T}\left(V e^{\alpha T}-I\right)$
- If $\alpha \leq 0$, then $F(V)=\max [V-I, 0]$
- Otherwise, for $0<\alpha<\rho$, waiting may be better because either (i) $V<I$ or (ii) $V \geq I$, but discounting of future sunk cost is greater than that in the future project value
- Thus, the FONC is $\frac{d F(V)}{d T}=0 \Rightarrow(\rho-\alpha) V e^{-(\rho-\alpha) T}=\rho I e^{-\rho T} \Rightarrow$ $T^{*}=\max \left\{\frac{1}{\alpha} \ln \left\{\frac{\rho I}{(\rho-\alpha) V}\right\}, 0\right\}$
- Reason for delaying is that the MC is depreciating over time by more than the MB
\star Substitute T^{*} to determine $V^{*}=\frac{\rho I}{(\rho-\alpha)}>I$
\star And, $F(V)=\left(\frac{\alpha I}{\rho-\alpha}\right)\left[\frac{(\rho-\alpha) V}{\rho I}\right]^{\frac{\rho}{\alpha}}$ if $V \leq V^{*}(F(V)=V-I$
otherwise)
Figure 5.1 indicates that greater α increases V^{*}

Basic Model: Figure 5.1

Figure 5.1. Value of Investment Opportunity, $F(V)$, for $\sigma=0, \rho=0.1$

Dynamic Programming Solution

\star Bellman equation for continuation is $\rho F d t=\mathbb{E}[d F]$
Expand the RHS via Itô's lemma: $d F=F^{\prime}(V) d V+$ $\frac{1}{2} F^{\prime \prime}(V)(d V)^{2} \Rightarrow \mathbb{E}[d F]=F^{\prime}(V) \alpha V d t+\frac{1}{2} F^{\prime \prime}(V) \sigma^{2} V^{2} d t$ Substitution into the Bellman equation yields the ODE $\frac{1}{2} F^{\prime \prime}(V) \sigma^{2} V^{2}+F^{\prime}(V) \alpha V-\rho F(V)=0$

- Equivalently, $\frac{1}{2} F^{\prime \prime}(V) \sigma^{2} V^{2}+F^{\prime}(V)(\rho-\delta) V-\rho F(V)=0$
- Three boundary conditions: (i) $F(0)=0$, (ii) $F\left(V^{*}\right)=V^{*}-I$, and (iii) $F^{\prime}\left(V^{*}\right)=1$
- General solution to the ODE is $F(V)=A_{1} V^{\beta_{1}}+A_{2} V^{\beta_{2}}$
- Taking derivatives, we have $F^{\prime}(V)=A_{1} \beta_{1} V^{\beta_{1}-1}+A_{2} \beta_{2} V^{\beta_{2}-1}$ and $F^{\prime \prime}(V)=A_{1} \beta_{1}\left(\beta_{1}-1\right) V^{\beta_{1}-2}+A_{2} \beta_{2}\left(\beta_{2}-1\right) V^{\beta_{2}-2}$
- Substitution into the ODE yields $A_{1} V^{\beta_{1}}\left[\frac{1}{2} \sigma^{2} \beta_{1}\left(\beta_{1}-1\right)+\beta_{1}(\rho-\right.$

$$
\delta)-\rho]+A_{2} V^{\beta_{2}}\left[\frac{1}{2} \sigma^{2} \beta_{2}\left(\beta_{2}-1\right)+\beta_{2}(\rho-\delta)-\rho\right]=0
$$

- Thus, $\beta_{1}=\frac{1}{2}-\frac{(\rho-\delta)}{\sigma^{2}}+\sqrt{\left[\frac{\rho-\delta}{\sigma^{2}}-\frac{1}{2}\right]^{2}+\frac{2 \rho}{\sigma^{2}}}$ and $\beta_{2}=\frac{1}{2}-\frac{(\rho-\delta)}{\sigma^{2}}-$ $\sqrt{\left[\frac{\rho-\delta}{\sigma^{2}}-\frac{1}{2}\right]^{2}+\frac{2 \rho}{\sigma^{2}}}$

Solution Features

\star The characteristic quadratic, $\mathcal{Q}(\beta)=\frac{1}{2} \sigma^{2} \beta(\beta-1)+(\rho-$ б) $\beta-\rho$, has two roots such that $\beta_{1}>1$ and $\beta_{2}<0$

- $\mathcal{Q}(\beta)$ has a positive coefficient for β^{2}, i.e., it is an upward-pointing parabola
- Note that $\mathcal{Q}(1)=-\delta<0$, which means that $\beta_{1}>1$
- $\mathcal{Q}(0)=-\rho$, which means that $\beta_{2}<0$ (Figure 5.2)
* Consequently, the first boundary condition implies that $A_{2}=0$, i.e., $F(V)=A_{1} V^{\beta_{1}}$
- Using the VM and SP conditions, we obtain $V^{*}=\frac{\beta_{1}}{\beta_{1}-1} I$ and $A_{1}=\frac{\left(V^{*}-I\right)}{\left(V^{*}\right) \beta_{1}}=\frac{\left(\beta_{1}-1\right)^{\beta_{1}-1}}{\left[\left(\beta_{1}\right)^{\left.\beta_{1} I^{\beta_{1}-1}\right]}\right.}$
- Since $\beta_{1}>1$, we also have $V^{*}>I$

Characteristic Quadratic Function： Figure 5.2

Figure 5．2．The Fundamental Quadratic

Optimal Investment: Comparative Statics

$\star \frac{\partial \beta_{1}}{\partial \sigma}<0$

- Differentiate $\mathcal{Q}(\beta)$ totally and evaluate it at β_{1}
$-\frac{\partial \mathcal{Q}}{\partial \beta} \frac{\partial \beta_{1}}{\partial \sigma}+\frac{\partial \mathcal{Q}}{\partial \sigma}=0 \Rightarrow \frac{\partial \beta_{1}}{\partial \sigma}=-\frac{\partial \mathcal{Q} / \partial \sigma}{\partial \mathcal{Q} / \partial \beta}$
- Know that $\frac{\partial \mathcal{Q}}{\partial \beta}>0$ at β_{1} via Figure 5.2 and $\frac{\partial \mathcal{Q}}{\partial \sigma}=\sigma \beta(\beta-1)>0$ at $\beta_{1}>1$
- Thus, $\frac{\partial \beta_{1}}{\partial \sigma}<0$ and $\frac{\beta_{1}}{\beta_{1}-1}$ increases with σ
\star Similarly, $\frac{\partial \beta_{1}}{\partial \delta}=-\frac{\partial \mathcal{Q} / \partial \delta}{\partial \mathcal{Q} / \partial \beta}>0$
- For $\beta_{1}>1, \frac{\partial \mathcal{Q}}{\partial \delta}=-\beta<-1$
- Thus, $\frac{\partial \beta_{1}}{\partial \delta}>0$ and $\frac{\beta_{1}}{\beta_{1}-1}$ decreases with δ
\star Finally, $\frac{\partial \beta_{1}}{\partial \rho}=-\frac{\partial \mathcal{Q} / \partial \rho}{\partial \mathcal{Q} / \partial \beta}<0$
- For $\beta_{1}>1, \frac{\partial \mathcal{Q}}{\partial \rho}=\beta>1$
- Thus, $\frac{\partial \beta_{1}}{\partial \rho}<0$ and $\frac{\beta_{1}}{\beta_{1}-1}$ increases with ρ

As $\sigma \rightarrow \infty, \beta_{1} \rightarrow 1$ and $V^{*} \rightarrow \infty$, whereas as $\sigma \rightarrow 0$, $\beta_{1} \rightarrow \frac{\rho}{\rho}$ and $V^{*} \rightarrow \frac{\rho}{\delta} I$ for $\alpha>0$

Optimal Investment: Comparison to Neoclassical Theory

* Marshallian analysis is to compare $V_{0} \equiv$ $\mathbb{E}_{\pi_{0}} \int_{0}^{\infty} \pi_{s} e^{-\rho s} d s=\int_{0}^{\infty} \mathbb{E}_{\pi_{0}}\left[\pi_{s}\right] e^{-\rho s} d s=\frac{\pi_{0}}{\rho-\alpha}$ with I
- Invest if $V_{0} \geq I$ or $\pi_{0} \geq(\rho-\alpha) I$
- Real options approach says to invest when $\pi_{0} \geq \pi^{*} \equiv \frac{\beta_{1}}{\beta_{1}-1}(\rho-$ $\alpha) I>(\rho-\alpha) I$
* Tobin's q is the ratio of the value of the existing capital goods to the their current reproduction cost
- Rule is to invest when $q \geq 1$
- If we interpret q as being $\frac{V}{I}$, then the real options threshold is $q^{*}=\frac{\beta_{1}}{\beta_{1}-1}>1$
- Hence, the real options definition of q adds option value to the PV of assets in place

Project Value without Operating

Costs

\star Suppose that the output price, P, follows a GBM and the firm produces one unit per year forever

- Without operating costs and ruling out speculative bubbles, the value of the project is $V(P)=\mathbb{E}_{P} \int_{0}^{\infty} P_{t} e^{-\rho t} d t=$ $\int_{0}^{\infty} \mathbb{E}_{P}\left[P_{t}\right] e^{-\rho t} d t=\int_{0}^{\infty} P e^{-(\rho-\alpha) t} d t=\frac{P}{\delta}$
- We can now find the value of the option to invest, $F(P)$, which will satisfy the ODE $\frac{1}{2} \sigma^{2} P^{2} F^{\prime \prime}(P)+(\rho-\delta) P F^{\prime}(P)-\rho F(P)=0$: $F(P)=A_{1} P^{\beta_{1}}+A_{2} P^{\beta_{2}}$
- Boundary condition $F(0)=0 \Rightarrow A_{2}=0$
- VM and SP conditions imply: (i) $A_{1}\left(P^{*}\right)^{\beta_{1}}=\frac{P^{*}}{\delta}-I$ and (ii) $\beta_{1} A_{1}\left(P^{*}\right)^{\beta_{1}-1}=\frac{1}{\delta}$
- Therefore, $P^{*}=\frac{\beta_{1}}{\beta_{1}-1} \delta I$ and $A_{1}=\frac{\left(\beta_{1}-1\right)^{\beta_{1}-1} I^{-\left(\beta_{1}-1\right)}}{\left(\delta \beta_{1}\right)^{\beta_{1}}}$
- Note that $V^{*}=\frac{P^{*}}{\delta}=\frac{\beta_{1}}{\beta_{1}-1} I>I$

Operating Costs and Temporary Suspension: Value of the Project

* Suppose now that the project incurs operating cost, C, but it may be costlessly suspended or resumed once installed
- Instantaneous profit flow is $\pi(P)=\max [P-C, 0]$, i.e., project owner has infinite embedded operational options
- Thus, the value of an active project will be worth more than simply the NPV of the cash flows
* Value the project, $V(P)$, via usual dynamic programming approach
- Unlike the option to invest, we now have a profit flow, $\pi(P)$, which implies that the ODE becomes $\frac{1}{2} \sigma^{2} P^{2} V^{\prime \prime}(P)+(\rho-\delta) P V^{\prime}(P)-$ $\rho V(P)+\pi(P)=0$
- For $P<C$, only the homogeneous part of the solution is valid, i.e., $V(P)=K_{1} P^{\beta_{1}}+K_{2} P^{\beta_{2}}$
- With $P \geq C$, we also have the particular solution $D_{1} P+D_{2} C+D_{3}$
- Substitution into the ODE yields $D_{1}=\frac{1}{\delta}, D_{2}=-\frac{1}{\rho}, D_{3}=0$
- Therefore, $V(P)=B_{1} P^{\beta_{1}}+B_{2} P^{\beta_{2}}+\frac{P}{\delta}-\frac{C}{\rho}$ for $P \geq C$

Operating Costs and Temporary Suspension: Value of the Project

For $P<C, V(P)$ represents the option value of resuming a suspended project

- Intuitively, this must increase in P and be worthless for very small P
- Only when $K_{2}=0$ does this hold; thus, $V(P)=K_{1} P^{\beta_{1}}$ for $P<C$
\star For $P \geq C, V(P)$ is the value of an active project inclusive of the option to suspend operations
- The suspension option is valuable only for small P and becomes worthless for large P
- Thus, $B_{1}=0$ and $V(P)=B_{2} P^{\beta_{2}}+\frac{P}{\delta}-\frac{C}{\rho}$ for $P \geq C$

Find K_{1} and B_{2} via VM and SP at $P=C$
$\rightarrow K_{1} C^{\beta_{1}}=B_{2} C^{\beta_{2}}+\frac{C}{\delta}-\frac{C}{\rho}$ and $\beta_{1} K_{1} C^{\beta_{1}-1}=\beta_{2} B_{2} C^{\beta_{2}-1}+\frac{1}{\delta}$
$\triangleright K_{1}=\frac{C^{1-\beta_{1}}}{\beta_{1}-\beta_{2}}\left(\frac{\beta_{2}}{\rho}-\frac{\left(\beta_{2}-1\right)}{\delta}\right)>0, B_{2}=\frac{C^{1-\beta_{2}}}{\beta_{1}-\beta_{2}}\left(\frac{\beta_{1}}{\rho}-\frac{\left(\beta_{1}-1\right)}{\delta}\right)>0$

- $V(P)$ is increasing (decreasing) in $\sigma(\delta)$ (Figures 6.1 and 6.2)

Operating Costs and Temporary Suspension: Figure 6.1

Figure 6.1. Value of Project, $V(P)$, for $\sigma=0,0.2,0.4$
(Note: $r=\delta=0.04$, and $C=10$)

Operating Costs and Temporary Suspension: Figure 6.2

Figure 6.2. Value of Project, $V(P)$, for $\hat{0}=0.02,0.04,0.08$
(Note: $r=0.04, \sigma=0.2$, and $C=10$)

Operating Costs and Temporary Suspension: Value of the Option to Invest

\star Following the contingent claims approach, $F(P)=$ $A_{1} P^{\beta_{1}}+A_{2} P^{\beta_{2}}$

- Boundary condition $F(0)=0 \Rightarrow A_{2}=0$

For $P<C$, it is never optimal to invest

- Thus, VM and SP of $F(P)$ will occur for $P \geq C$, i.e., with $V(P)-$ $I=B_{2} P^{\beta_{2}}+\frac{P}{\delta}-\frac{C}{\rho}-I$
- Use $A_{1}\left(P^{*}\right)^{\beta_{1}}=B_{2}\left(P^{*}\right)^{\beta_{2}}+\frac{P^{*}}{\delta}-\frac{C}{\rho}-I$ and $\beta_{1} A_{1}\left(P^{*}\right)^{\beta_{1}-1}=$ $\beta_{2} B_{2}\left(P^{*}\right)^{\beta_{2}-1}+\frac{1}{\delta}$ to solve for P^{*} and A_{1}
- Substitute to solve the following equation numerically: $\left(\beta_{1}-\right.$ $\left.\beta_{2}\right) B_{2}\left(P^{*}\right)^{\beta_{2}}+\left(\beta_{1}-1\right) \frac{P^{*}}{\delta}-\beta_{1}\left(\frac{C}{\rho}+I\right)=0$
- Solution for $\rho=0.04, \delta=0.04, \sigma=0.20, I=100$, and $C=10$ (Figure 6.3)
- $\beta_{1}=2, \beta_{2}=-1, P^{*, n f}=28, A_{1}^{n f}=0.4464, P^{*}=23.8$, and $A_{1}=0.4943$
- Sensitivity analysis: $F(P)$ and P^{*} increase with σ (Figure 6.4)
- But $F(P)$ decreases and P^{*} increases with δ (Figures 6.5 and 6.6)

Operating Costs and Temporary Suspension: Figure 6.3

Figure 6.3. Value of Investment Opportunity, $F(P)$, and $V(P)-I$
(Note: $r=\delta=0.04, \sigma=0.2$, and $I=100$)

Operating Costs and Temporary Suspension: Figure 6.4

Figure 6.4. Value of Investment Opportunity, $F(P)$, and $V^{\prime}(P)-I$, for os $=0,0.2$ and 0.4

Operating Costs and Temporary Suspension: Figure 6.5

Figure 6.5. Value of investment Opportunity, $F(P)$, and $V(P)-I$, for $\delta=0.04$ and 0.08

Operating Costs and Temporary Suspension: Figure 6.6

Optimal Stopping Time Approach: Now-or-Never NPV

Example from McDonald (2005): oil extraction under certainty at a rate of one barrel per year forever

- Current price of oil is $P_{0}=15$, discount rate is $\rho=0.05$, growth rate of oil is $\alpha=0.01$, operating cost is $C=8$, and investment cost is $I=180$
* Is it optimal to extract the oil now?
- Assuming that the price of oil grows exponentially, the NPV from immediate extraction is $V\left(P_{0}\right)=\int_{0}^{\infty} e^{-\rho t}\left\{P_{0} e^{\alpha t}-C\right\} d t-I=$ $\frac{P_{0}}{\rho-\alpha}-\frac{C}{\rho}-I=215-180=35$
- $\stackrel{\rho-\alpha}{\text { Since }} \stackrel{\rho}{V}\left(P_{0}\right)>0$, it is optimal to extract
* But, would it not be better to wait longer?

Investment cost is being discounted, and the value of the -il is ofrowing

Optimal Stopping Time Approach: Deterministic NPV

* Think instead about value of perpetual investment opportunity
$-F\left(P_{0}\right)=\max _{T} \int_{T}^{\infty} e^{-\rho t}\left\{P_{0} e^{\alpha t}-C-\rho I\right\} d t=\max _{T} \frac{P_{0}}{\rho-\alpha} e^{(\alpha-\rho) T}-$ $\frac{C}{\rho} e^{-\rho T}-I e^{-\rho T}$
$\Rightarrow \Rightarrow T^{*}=\frac{1}{\alpha} \ln \left(\frac{C+\rho I}{P_{0}}\right)=12.5163$
- Or, invest when $P_{T^{*}}=17$
- Indeed, the initial value of the investment opportunity is $F\left(P_{0}\right)=$ $45.46>35=V\left(P_{0}\right)$
* By delaying investment to the optimal time period, it is possible to maximise NPV
\star How does this work when the price is stochastic?

Optimal Investment under Uncertainty

* Price process evolves according to a GBM, i.e., $d P_{t}=\alpha P_{t} d t+\sigma P_{t} d z_{t}$ with initial price $P_{0}=p$
- Note that $\left(d P_{t}\right)^{2}=\sigma^{2}\left(P_{t}\right)^{2} d t$

Optimal Investment under Uncertainty

* If the project were started now, then its expected NPV is $V(p)=\mathbb{E}_{p}\left[\int_{0}^{\infty} e^{-\rho t}\left\{P_{t}-(C+\rho I)\right\} d t\right]=\frac{p}{\rho-\alpha}-\frac{C}{\rho}-I$
* Canonical real options problem:

$$
\begin{gathered}
F(p)=\sup _{\tau \in \mathcal{S}} \mathbb{E}_{p}\left[\int_{\tau}^{\infty} e^{-\rho t}\left\{P_{t}-(C+\rho I)\right\} d t\right] \\
\Rightarrow F(p)=\sup _{\tau \in \mathcal{S}} \mathbb{E}_{p}\left[e^{-\rho \tau} V\left(P_{\tau}\right)\right]=\max _{P^{*} \geq p}\left\{\left(\frac{p}{P^{*}}\right)^{\beta_{1}} V\left(P^{*}\right)\right\}
\end{gathered}
$$

- $\beta_{1}\left(\beta_{2}\right)$ is the positive (negative) root of $\frac{1}{2} \sigma^{2} \zeta(\zeta-1)+\alpha \zeta-\rho=0$

Optimal Investment Threshold under Uncertainty

\star Solve for optimal investment threshold, P^{*} :

$$
F(p)=\max _{P^{*} \geq p}\left\{\left(\frac{p}{P^{*}}\right)^{\beta_{1}} V\left(P^{*}\right)\right\}
$$

- First-order necessary condition yields $P^{*}=\frac{\beta_{1}}{\beta_{1}-1}(\rho-\alpha)\left(\frac{C}{\rho}+I\right)$
- Note that in the case without uncertainty, $\beta_{1}=\frac{\rho}{\alpha} \Rightarrow P^{*}=C+\rho I$
\star For a level of volatility of $\sigma=0.15, P^{*}=25.28$, and the value of the investment opportunity is $F(p)=94.35$

Compared to the case with certainty, the investment opportunity is worth more, but is also less likely to be exercised

Investment Thresholds and Values

Investment under Uncertainty with Abandonment

If the project is abandoned after investment, then the expected incremental payoff is:

$$
V^{A}(p)=\mathbb{E}_{p}\left[\int_{0}^{\infty} e^{-\rho t}\left\{\left(C-\rho K_{s}\right)-P_{t}\right\} d t\right]=\frac{C}{\rho}-K_{s}-\frac{p}{\rho-\alpha}
$$

* Solve for optimal abandonment threshold, P_{*} :

$$
F^{A}(p)=\max _{P_{*} \leq p}\left\{\left(\frac{p}{P_{*}}\right)^{\beta_{2}} V^{A}\left(P_{*}\right)\right\}+V(p)
$$

- First-order necessary condition yields $P_{*}=\frac{\beta_{2}}{\beta_{2}-1}(\rho-\alpha)\left(\frac{C}{\rho}-K_{s}\right)$
- Solve numerically for P^{*} : $F(p)=$ $\max _{P^{*} \geq p}\left\{\left(\frac{p}{\left.P^{*}\right)^{\beta_{1}}}\left\{V\left(P^{*}\right)+\left(\frac{p^{*}}{P_{*}^{*}}\right)^{\beta_{2}} V^{A}\left(P_{*}\right)\right\}\right\}\right.$

Investment Thresholds and Values with Abandonment

Investment under Uncertainty with Suspension and Resumption

If the project is resumed from a suspended state, then the expected incremental payoff is:

$$
V^{R}(p)=\mathbb{E}_{p}\left[\int_{0}^{\infty} e^{-\rho t}\left\{P_{t}-\left(C+\rho K_{r}\right)\right\} d t\right]=\frac{p}{\rho-\alpha}-\frac{C}{\rho}-K_{r}
$$

Solve for optimal resumption threshold, $P^{* *}$:

$$
F^{R}(p)=\max _{P^{* *} \geq p}\left\{\left(\frac{p}{P^{* *}}\right)^{\beta_{1}} V^{R}\left(P^{* *}\right)\right\}
$$

- First-order necessary condition yields $P^{* *}=\frac{\beta_{1}}{\beta_{1}-1}(\rho-$ a) $\left(\frac{C}{\rho}+K_{r}\right)$
- Substitute $P^{* *}$ back into $F^{S}(p)$ to solve numerically for P_{*} and then repeat for $F(p)$ to obtain P^{*}

Investment Thresholds and Values with Resumption

Investment with Infinite Suspension and Resumption Options

* Start with the expected value of a suspended project: $\quad V_{c}\left(p, \infty, \infty ; P_{*}, P^{* *}\right)=$ $\left(\frac{p}{P^{* *}}\right)^{\beta_{1}}\left(V_{o}\left(P^{* *}, \infty, \infty ; P_{*}, P^{* *}\right)-K_{r}\right)$
* Also note the expected value of an active project: $\quad V_{o}\left(p, \infty, \infty ; P_{*}, P^{* *}\right) \quad=\quad \frac{p}{\rho-\alpha}-\frac{C}{\rho}+$ $\left(\frac{p}{P_{*}}\right)^{\beta_{2}}\left(\frac{C}{\rho}-K_{s}-\frac{P_{*}}{\rho-\alpha}+V_{c}\left(P_{*}, \infty, \infty ; P_{*}, P^{* *}\right)\right)$
- Solve the two equations numerically, i.e., start with initial thresholds and successively iterate until convergence
\star Finally, solve for P^{*} numerically: $F\left(p, \infty, \infty ; P_{*}, P^{* *}\right)=$ $\max _{P^{*} \geq p}\left(\frac{p}{P^{*}}\right)^{\beta_{1}}\left\{V_{o}\left(P^{*}, \infty, \infty ; P_{*}, P^{* *}\right)-I\right\}$

Investment Thresholds and Values with Complete Flexibility

Thresholds with Complete Flexibility

Numerical Results: Data from McDonald (2005)

* $P_{0}=15, C=8, \rho=0.05, \alpha=0.01, I=180, K_{s}=$ $25, K_{r}=25$

σ	N_{s}	N_{r}	P_{I}	P_{*}	P^{*}	$F\left(P_{0}\right)$
0.05	0	0	18.5846	-	-	56.0527
0.10	0	0	21.5927	-	-	74.6799
0.15	0	0	25.2791	-	-	94.3469
0.05	1	0	18.5846	4.9396	-	56.0527
0.10	1	0	21.5821	4.2514	-	74.7062
0.15	1	0	25.1587	3.6315	-	94.6154
0.05	1	1	18.5846	5.2246	10.1122	56.0527
0.10	1	1	21.5784	4.7702	11.7489	74.7153
0.15	1	1	25.1233	4.3625	13.7548	94.6946
0.05	∞	∞	18.5846	5.2246	10.1104	56.0527
0.10	∞	∞	21.5784	4.7766	11.6070	74.7154
0.15	∞	∞	25.1219	4.3926	13.1619	94.6977

Seminar Outline

* Mathematical Background (Dixit and Pindyck, 1994: chs. 3-4)
* Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5-6 and McDonald, 2005: ch. 17)
* Strategic Interactions (Huisman and Kort, 1999)
* Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

* Classification of setups
\star Pre-emptive setting
\star Non-pre-emptive setting

Interaction of Game Theory and Real Options

* Fudenberg and Tirole (1985) treat a duopoly with pre-emption over timing in a deterministic model
* Huisman and Kort (1999) extend this to reflect market uncertainty to find that the incentive to delay in real options may be reduced due to competition
* Possible settings: cooperative and non-cooperative (pre-emptive and non-pre-emptive)

Duopoly Assumptions

* Each decision-maker has the perpetual right to start a project at any time for deterministic investment cost, I
* Price process evolves according to a GBM, i.e., $d P_{t}=$ $\alpha P_{t} d t+\sigma P_{t} d z_{t}$ with initial price $P_{0}>0$
- Subjective interest rate is ρ
- An active project produces one unit of output per year forever
$\star R_{t}=P_{t} D\left(Q_{t}\right)$ is the project's revenue given $Q_{t}=0,1,2$ active firms in the industry and $D(1)>D(2)$
$\star \tau_{i}^{j} \equiv \min \left\{t \geq 0: P_{t} \geq P_{\tau_{i}^{j}}\right\}, j=L, F$ and $i=m, p, n$

Formulation 1: Monopoly

Value function if monopolist has invested $\left(P_{0} \geq P_{\tau_{m}^{j}}\right)$: $\left.V_{m}^{j}\left(P_{0}\right)=\mathbb{E}_{P_{0}}\left[\int_{0}^{\infty} e^{-\rho t}\left\{P_{t} D(1)-\rho I\right)\right\} d t\right]$

- $V_{m}^{j}\left(P_{0}\right)=\frac{P_{0} D(1)}{\rho-\alpha}-I$
\star Value function if monopolist is waiting to invest, i.e., $P_{0}<P_{\tau_{m}^{j}}$: $V_{m}^{j}\left(P_{0}\right)=$

$$
\begin{gathered}
\sup _{\tau_{m}^{j} \in \mathcal{S}} \mathbb{E}_{P_{0}}\left[\int_{\tau_{m}^{j}}^{\infty} e^{-\rho t}\left\{P_{t} D(1)-\rho I\right\} d t\right] \\
\quad V_{m}^{j}\left(P_{0}\right)=\sup _{\tau_{m}^{j} \in \mathcal{S}} \mathbb{E}_{P_{0}}\left[e^{-\rho \tau_{m}^{j}}\right]\left(\frac{P_{0} D(1)}{\rho-\alpha}-I\right)
\end{gathered}
$$

* Monopolist's entry threshold: $P_{\tau_{m}^{j}}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{\rho I}{D(1)}$

Formulation 2: Pre-Emptive Duopoly

* Follower's problem:

- If $P_{0} \geq P_{\tau_{p}^{F}}: V_{p}^{F}\left(P_{0}\right)=\frac{P_{0} D(2)}{\rho-\alpha}-I$
- Else: $V_{p}^{F}\left(P_{0}\right)=\sup _{\tau_{p}^{F} \in \mathcal{S}} \mathbb{E}_{P_{0}}\left[e^{-\rho \tau_{p}^{F}}\right]\left(\frac{P_{\tau_{p}^{F}} D(2)}{\rho-\alpha}-I\right)$
- Entry threshold: $P_{\tau_{p}^{F}}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{\rho I}{D(2)}$

Leader's problem:

- Value function for $P_{0} \geq P_{\tau_{p}^{F}}$ is the same as the follower's
- Else: $V_{p}^{L}\left(P_{0}\right)=\frac{P_{0} D(1)}{\rho-\alpha}-I+\left(\frac{P_{0}}{P_{\tau_{F}^{F}}}\right)^{\beta_{1}}\left[\frac{P_{\tau_{p}^{F}}(D(2)-D(1))}{\rho-\alpha}\right]$
- Find τ_{p}^{L} by setting $V_{p}^{L}\left(P_{\tau_{p}^{L}}\right)=V_{p}^{F}\left(P_{\tau_{p}^{L}}\right)$

Formulation 3: Non-Pre-Emptive Duopoly

夫 Follower's problem is the same as under the preemptive duopoly framework, i.e., $V_{n}^{F}\left(P_{0}\right)=V_{p}^{F}\left(P_{0}\right)$ and $P_{\tau_{p}^{F}}=P_{\tau_{n}^{F}}$

* Leader's problem:
- Leader's value function for $P_{0} \geq P_{\tau_{n}^{F}}$ is the same as in the preemptive case, i.e., $V_{n}^{L}\left(P_{0}\right)=V_{p}^{L}\left(P_{0}\right)$
- Leader's value function for $P_{\tau_{n}^{L}} \leq P_{0}<P_{\tau_{n}^{F}}$ is also the same as in the pre-emptive case
- Else: $V_{n}^{L}\left(P_{0}\right)=\max _{\tau_{n}^{L} \geq P_{0}}\left(\frac{P_{0}}{P_{\tau_{n}^{L}}}\right)^{\beta_{1}}\left[\frac{P_{\tau_{n}^{L}} D(1)}{\rho-\alpha}-I\right.$ $\left.+\left(\frac{P_{\tau_{n}^{L}}}{P_{\tau_{p}^{F}}}\right)^{\beta_{1}}\left[\frac{P_{\tau_{p}^{F}}(D(2)-D(1))}{\rho-\alpha}\right]\right]$
- Optimal entry threshold for the leader in the non-pre-emptive case is the same as that for a monopolist: $P_{\tau_{n}^{L}}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{\rho I}{D(1)}$

Numerical Example: Monopoly

$$
\sigma=0.20, \rho=0.04, \alpha=0, I=100, D(1)=2, D(2)=1
$$

Numerical Example: Pre-Emptive Duopoly

Numerical Example: Non-PreEmptive Duopoly

Numerical Example: Entry Threshold Sensitivity Analysis

Numerical Example: Option Value Sensitivity Analysis

$$
\frac{V_{p}^{L}\left(P_{\tau_{p}^{L}}\right)}{V_{m}^{j}\left(P_{\tau_{p}^{L}}\right)} \text { or } \frac{V_{n}^{L}\left(P_{\tau_{p}^{L}}\right)}{V_{m}^{j}\left(P_{\tau_{p}^{L}}\right)}
$$

Seminar Outline

* Mathematical Background (Dixit and Pindyck, 1994: chs. 3-4)
* Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5-6 and McDonald, 2005: ch. 17)
* Strategic Interactions (Huisman and Kort, 1999)
* Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

\star Monopoly
\star Spillover duopoly
\star Proprietary duopoly

Monopoly Setup

- Direct strategy: obtain project of size K_{2} for an investment cost of $I_{1}+I_{2}$
- Sequential strategy: invest in size K_{1} before deciding to switch to a project with a higher capacity, K_{2} (total cost is still $I_{1}+I_{2}$)
- Market shock: $d x_{t}=\alpha x_{t} d t+\sigma x_{t} d z_{t}$, where $\alpha \geq 0$ and $\sigma \geq 0$
- $P_{t}=x_{t} D\left(\kappa_{t}\right)$ (in $\$ /$ unit), where κ_{t} is the installed capacity (in units/annum) at time t and $D\left(\kappa_{t}\right)$ is the demand parameter given the installed capacity at time t (strictly decreasing)
- $\rho>\alpha$

Monopoly: Direct Strategy

$\star V_{2}^{d}(x)=\mathbb{E}_{x}\left[\int_{0}^{\infty} e^{-\rho t} K_{2} x_{t} D_{2} d t\right]-I_{1}-I_{2}=\frac{x K_{2} D_{2}}{\rho-\alpha}-I_{2}-I_{1}$
\star Value function in state $0: V_{0}^{d}(x)=A_{0}^{d} x^{\beta_{1}}$

* Value-matching and smooth-pasting conditions:
- $V_{0}^{d}\left(x_{0}^{d}\right)=V_{2}^{d}\left(x_{0}^{d}\right)$
- $\left.\frac{d V_{0}^{d}}{d x}\right|_{x=x_{0}^{d}}=\left.\frac{d V_{2}^{d}}{d x}\right|_{x=x_{0}^{d}}$
\star Solution yields $x_{0}^{d}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{\left(I_{1}+I_{2}\right)(\rho-\alpha)}{K_{2} D_{2}}$ and $A_{0}^{d}=$ $\frac{x_{0}^{d-\beta_{1}}\left(I_{1}+I_{2}\right)}{\beta_{1}-1}$

Monopoly: Sequential Strategy

$\star V_{1}^{s}(x)=\frac{x K_{1} D_{1}}{\rho-\alpha}-I_{1}+A_{1}^{s} x^{\beta_{1}}$ if $x<x_{1}^{s}$ and $V_{1}^{s}(x)=V_{2}^{s}(x)$ otherwise

* State-1 value-matching and smooth-pasting conditions:
- $V_{1}^{s}\left(x_{1}^{s-}\right)=V_{1}^{s}\left(x_{1}^{s+}\right)$
- $\left.\frac{d V V_{s}^{s}}{d x}\right|_{x=x_{1}^{s-}}=\left.\frac{d V V^{s}}{d x}\right|_{x=x_{1}^{s+}}$
\star Solution yields $x_{1}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{2}(\rho-\alpha)}{\left[K_{2} D_{2}-K_{1} D_{1}\right]}>x_{0}^{d}$ and $A_{1}^{s}=\frac{x_{1}^{s-\beta_{1}} I_{2}}{\beta_{1}-1}<A_{0}^{d}$
* Value function in state 0: $V_{0}^{s}(x)=A_{0}^{s} x^{\beta_{1}}$
- VM and SP conditions lead to $x_{0}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{1}(\rho-\alpha)}{K_{1} D_{1}}<x_{0}^{d}$ and

$$
A_{0}^{s}=A_{1}^{s}+\frac{x_{0}^{s}-\beta_{1} I_{1}}{\beta_{1}-1}
$$

Spillover Duopoly Setup

- Symmetric non-pre-emptive duopoly with spillover knowledge
- Direct strategy: obtain project of size K_{2} for an investment cost of $I_{1}+I_{2}$ before follower makes similar investment
- Sequential strategy: invest in size K_{1} before waiting for follower's entry
- Additional assumptions: $0<D_{22}<D_{21}<D_{20}<D_{11}<D_{10}=$ $D_{1}, K_{2} D_{22}>K_{1} D_{21}, K_{2} D_{21}>K_{1} D_{11}$, and $\frac{1}{2}\left(K_{1}+K_{2}\right) D_{21}>$ $K_{1} D_{11}$

Spillover Duopoly: Direct Strategy

Value functions: $V_{22}^{j, d}(x)=\frac{x K_{2} D_{22}}{\rho-\alpha}-I_{2}-I_{1}$, $V_{20}^{L, d}(x)=\frac{x K_{2} D_{20}}{\rho-\alpha}-I_{2}-I_{1}+A_{20}^{L, d} x^{\beta_{1}}, V_{20}^{F, d}(x)=A_{20}^{F, d} x^{\beta_{1}}$, and $V_{00}^{j, d}(x)=A_{00}^{j, d} x^{\beta_{1}}$

* VM and SP conditions:
- $V_{20}^{F, d}\left(x_{20}^{d}\right)=V_{22}^{F, d}\left(x_{20}^{d}\right)$
$-\left.\frac{d V_{20}^{F, d}}{d x}\right|_{x=x_{20}^{d}}=\left.\frac{d V_{22}^{F, d}}{d x}\right|_{x=x_{20}^{d}}$
- $V_{20}^{L, d}\left(x_{20}^{d}\right)=V_{22}^{L, d}\left(x_{20}^{d}\right)$
$-V_{00}^{j, d}\left(x_{00}^{d}\right)=\frac{1}{2}\left[V_{20}^{L, d}\left(x_{00}^{d}\right)+V_{20}^{F, d}\left(x_{00}^{d}\right)\right]$
$-\left.\frac{d V_{00}^{j, d}}{d x}\right|_{x=x_{00}^{d}}=\frac{1}{2}\left[\left.\frac{d V_{20}^{L, d}}{d x}\right|_{x=x_{00}^{d}}+\left.\frac{d V_{20}^{F, d}}{d x}\right|_{x=x_{00}^{d}}\right]$

Spillover Duopoly: Direct Strategy Solutions

$$
\begin{aligned}
& \star x_{20}^{d}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{\left(I_{1}+I_{2}\right)(\rho-\alpha)}{K_{2} D_{22}} \\
& \star A_{20}^{F, d}=\frac{x_{20}^{d}-\beta_{1}\left(I_{1}+I_{2}\right)}{\beta_{1}-1} \\
& \star A_{20}^{L, d}=\frac{x_{20}^{d}-\beta_{1}\left(I_{1}+I_{2}\right)\left(D_{22}-D_{20}\right) \beta_{1}}{\left(\beta_{1}-1\right) D_{22}} \\
& \star x_{00}^{d}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{\left(I_{1}+I_{2}\right)(\rho-\alpha)}{K_{2} D_{20}}=x_{0}^{d} \\
& \star A_{00}^{j, d}=\frac{1}{2}\left[A_{20}^{L, d}+A_{20}^{F, d}+\frac{x_{00}^{d-\beta_{1}}\left(I_{1}+I_{2}\right)}{\beta_{1}-1}\right]
\end{aligned}
$$

Spillover Duopoly: Sequential Strategy

* Value functions: $V_{22}^{j, d}(x)=\frac{x K_{2} D_{22}}{\rho-\alpha}-I_{2}-I_{1}$,

$$
V_{21}^{L, s}(x)=\frac{x K_{2} D_{21}}{\rho-\alpha}-I_{1}-I_{2}+A_{21}^{L, s} x^{\beta_{1}}, \quad V_{21}^{F, s}(x)=
$$

$$
\frac{x K_{1} D_{21}}{\rho_{-}-\alpha}-I_{1}+A_{21}^{F, s} x^{\beta_{1}}, V_{11}^{j, s}(x)=\frac{x K_{1} D_{11}}{\rho-\alpha}-I_{1}+A_{11}^{j, s} x^{\beta_{1}}
$$

$$
V_{10}^{L, s}(x)=\frac{x K_{1} D_{10}}{\rho-\alpha}-I_{1}+A_{10}^{L, s} x^{\beta_{1}}, V_{10}^{F, s}(x)=A_{10}^{F, s} x^{\beta_{1}}
$$

$$
V_{00}^{j, s}(x)=A_{00}^{j, s} x^{\beta_{1}}
$$

* Some VM and SP conditions:
- $V_{21}^{F, s}\left(x_{21}^{s}\right)=V_{22}^{F, s}\left(x_{21}^{s}\right)$
$-\left.\frac{d V_{21}^{F, s}}{d x}\right|_{x=x_{21}^{s}}=\left.\frac{d V_{22}^{F, s}}{d x}\right|_{x=x_{21}^{s}}$
- $V_{21}^{L, d}\left(x_{21}^{s}\right)=V_{22}^{L, s}\left(x_{21}^{s}\right)$
- $V_{11}^{j, s}\left(x_{11}^{s}\right)=\frac{1}{2}\left[V_{21}^{L, s}\left(x_{11}^{s}\right)+V_{21}^{F, s}\left(x_{11}^{s}\right)\right]$
$-\left.\frac{d V_{11}^{j, s}}{d x}\right|_{x=x_{11}^{s}}=\frac{1}{2}\left[\left.\frac{d V_{21}^{L, s}}{d x}\right|_{x=x_{11}^{s}}+\left.\frac{d V_{21}^{F, s}}{d x}\right|_{x=x_{11}^{s}}\right]$

Spillover Duopoly: Sequential Strategy Solutions

$$
\begin{aligned}
& \star x_{21}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{2}(\rho-\alpha)}{\left[K_{2} D_{22}-K_{1} D_{21}\right]} \\
& \star A_{21}^{F, s}=\frac{x_{21}^{s}-\beta_{1} I_{2}}{\beta_{1}-1} \\
& A_{21}^{L, s}=\frac{x_{21}^{s}-\beta_{1} I_{2} \beta_{1}}{\beta_{1}-1}\left[\frac{K_{2} D_{22}-K_{2} D_{21}}{K_{2} D_{22}-K_{1} D_{21}}\right] \\
& x_{11}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{2}(\rho-\alpha)}{\left[\left(K_{1}+K_{2}\right) D_{21}-2 K_{1} D_{11}\right]} \\
& A_{11}^{j, s}=\frac{1}{2}\left(A_{21}^{L, s}+A_{21}^{F, s}+\frac{\left(x_{11}^{s}\right)^{-\beta_{1} I_{2}}}{\beta_{1}-1}\right) \\
& x_{10}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{1}(\rho-\alpha)}{K_{1} D_{11}} \\
& A_{10}^{F, s}=A_{11}^{j, s}+\frac{x_{10}^{s}-\beta_{1} I_{1}}{\beta_{1}-1} \\
& x_{00}^{s}=\left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{1}(\rho-\alpha)}{K_{1} D_{10}}=x_{0}^{s} \\
& \frac{A_{00}^{j, s}=\frac{1}{2}\left(A_{10}^{L, s}+A_{10}^{F, s}+\frac{x_{00}^{s}-\beta_{1} I_{1}}{\beta_{4}-1}\right)}{\text { March 2011 }}
\end{aligned}
$$

Proprietary Duopoly Setup

Numerical Example: Monopoly

$$
\begin{aligned}
& \quad \begin{array}{l}
\sigma=0.40, \rho=0.04, \alpha=0, I_{1}=10, I_{2}=20, K_{1}=1, K_{2}=3.5, D_{10}=5, \\
D_{11}=4, D_{20}=3, D_{21}=2.5, D_{22}=1
\end{array}
\end{aligned}
$$

Numerical Example: Spillover Duopoly

Numerical Example: Proprietary Duopoly

Numerical Example: Spillover Duopoly Thresholds

Numerical Example: Spillover Duopoly Value of Flexibility

$$
\frac{V_{0}^{s}\left(x_{0}^{s}\right)-V_{0}^{d}\left(x_{0}^{s}\right)}{V_{0}^{d}\left(x_{0}^{s}\right)}
$$

Numerical Example: Spillover Duopoly Effect of Competition

$$
\frac{V_{00}^{j, d}\left(x_{0}^{s}\right)}{V_{0}^{d}\left(x_{0}^{s}\right)} \text { or } \frac{V_{00}^{j, s}\left(x_{0}^{s}\right)}{V_{0}^{s}\left(x_{0}^{s}\right)}
$$

Numerical Example: Proprietary Duopoly Value of Flexibility

$\frac{V_{0}^{s}\left(x_{0}^{s}\right)-V_{0}^{d}\left(x_{0}^{s}\right)}{V_{0}^{d}\left(x_{0}^{s}\right)}$

Numerical Example: Proprietary Duopoly Effect of Competition

$$
\frac{V_{00}^{j, d}\left(x_{0}^{s}\right)}{V_{0}^{d}\left(x_{0}^{s}\right)} \text { or } \frac{V_{00}^{j, s}\left(x_{0}^{s}\right)}{V_{0}^{s}\left(x_{0}^{s}\right)}
$$

Questions

