Real Options and Game Theory: Introduction and Applications

Department of Statistical Science University College London London WC1E 6BT, UK afzal@stats.ucl.ac.uk

Seminar Outline

- ★ Mathematical Background (Dixit and Pindyck, 1994: chs. 3–4)
- ★ Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5–6 and McDonald, 2005: ch. 17)
- \bigstar Strategic Interactions (Huisman and Kort, 1999)
- \star Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

 \bigstar Wiener process and GBM

 \star Itô's lemma

 \star Dynamic programming

Wiener Process

- \star A Wiener process (or Brownian motion) has the following properties:
 - Markov process
 - Independent increments
 - Changes over any finite time interval are normally distributed with variance that increases linearly in time
- \bigstar Nice property that past patterns have no forecasting value
- ★ For prices, it makes more sense to assume that changes in their logarithms are normally distributed, i.e., prices are lognormally distributed
- ★ More formally for a Wiener process $\{z(t), t \ge 0\}$:

$$\blacktriangleright \quad \Delta z = \epsilon_t \sqrt{\Delta t}, \text{ where } \epsilon_t \sim \mathcal{N}(0, 1)$$

▶ ϵ_t are serially uncorrelated, i.e., $\mathbb{E}[\epsilon_t \epsilon_s] = 0$ for $t \neq s$

Wiener Process: Properties

- ★ Implications of the two conditions are examined by breaking up the time interval T into n units of length Δt each
 - Change in z over T is $z(s+T) z(s) = \sum_{i=1}^{n} \epsilon_i \sqrt{\Delta t}$, where the ϵ_i are independent
 - ► Via the CLT, z(s+T) z(s) is $\mathcal{N}(0, n\Delta t = T)$
 - ▶ Variance of the changes increases linearly in time
- ★ Letting Δt become infinitesimally small implies $dz = \epsilon_t \sqrt{dt}$, where $\epsilon_t \sim \mathcal{N}(0, 1)$
- ★ This implies that $\mathbb{E}[dz] = 0$ and $\mathbb{V}(dz) = \mathbb{E}[(dz)^2] = dt$
- ★ Coefficient of correlation between two Wiener processes, $z_1(t)$ and $z_2(t)$: $\mathbb{E}[dz_1dz_2] = \rho_{12}dt$

Brownian Motion with Drift

- ★ Generalise the Wiener process: $dx = \alpha dt + \sigma dz$, where dz is the increment of the Wiener process, α is the drift parameter, and σ is the variance parameter
 - Over time interval Δt , Δx is normal with mean $\mathbb{E}[\Delta x] = \alpha \Delta t$ and variance $\mathbb{V}(\Delta x) = \sigma^2 \Delta t$
 - Given x_0 , it is possible to generate sample paths
 - For example, if $\alpha = 0.2$ and $\sigma = 1.0$, then the discretisation with $\Delta t = \frac{1}{12}$ is $x_t = x_{t-1} + 0.01667 + 0.2887\epsilon_t$ (Figure 3.1)
- ★ Optimal forecast is $\hat{x}_{t+T} = x_t + 0.01667T$ and 66% CI is $x_t + 0.01667T \pm 0.2887\sqrt{T}$ (Figure 3.2)
- ★ Mean of $x_t x_0$ is αt and its SD is $\sigma \sqrt{t}$, so the trend dominates in the long run

Brownian Motion and Random Walks

- ★ Suppose that a discrete-time random walk for which the position is described by variable x makes jumps of $\pm \Delta h$ every Δt time units given the initial position x_0
 - The probability of an upward (downward) jump is p (q = 1 p)
 - Thus, x follows a Markov process with independent increments, i.e., probability distribution of its future position depends only on its current position (Figure 3.3)

★ Mean:
$$\mathbb{E}[\Delta x] = (p - q)\Delta h$$
; second moment: $\mathbb{E}[(\Delta x)^2] = p(\Delta h)^2 + q(\Delta h)^2 = (\Delta h)^2$; variance: $\mathbb{V}(\Delta x) = (\Delta h)^2 [1 - (p - q)^2] = [1 - (2p - 1)^2](\Delta h)^2 = 4pq(\Delta h)^2$
★ Thus, if t has $n = \frac{t}{\Delta t}$ steps, then $x_t - x_0$ is a binomial RV with mean $n\mathbb{E}[\Delta x] = \frac{t(p - q)\Delta h}{\Delta t}$ and variance $n\mathbb{V}(\Delta x) = \frac{4pqt(\Delta h)^2}{\Delta t}$

Brownian Motion and Random Walks: Properties

★ Choose Δh , Δt , p, and q so that the random walk converges to a Brownian motion as $\Delta t \to 0$ ► $\Delta h = \sigma \sqrt{\Delta t}$ ► $p = \frac{1}{2} \left[1 + \frac{\alpha}{\sigma} \sqrt{\Delta t} \right], q = \frac{1}{2} \left[1 - \frac{\alpha}{\sigma} \sqrt{\Delta t} \right]$ ► Thus, $p - q = \frac{\alpha}{\sigma} \sqrt{\Delta t} = \frac{\alpha}{\sigma^2} \Delta h$ ★ Substitute these into the formulas for the mean and variance $x_t - x_0$: ► Mean: $\mathbb{E}[x_t - x_0] = \frac{t\alpha(\Delta h)^2}{\sigma^2 \Delta t} = \frac{t\alpha\sigma^2 \Delta t}{\sigma^2 \Delta t} = \alpha t$; variance: $\mathbb{V}(x_t - x_0) = \frac{4pqt(\Delta h)^2}{\Delta t} = \frac{4t\sigma^2 \Delta t \left[1 - \frac{\alpha^2}{\sigma^2} \Delta t \right]}{4\Delta t} = t\sigma^2 \left[1 - \frac{\alpha^2}{\sigma^2} \Delta t \right]$, which goes to $t\sigma^2$ as $\Delta t \to 0$ ★ Hence, these are the mean and variance of a Brown-

Hence, these are the mean and variance of a Brownian motion; furthermore, the binomial distribution approaches the normal one for large n

Generalised Brownian Motion

 \star An Itô process is dx = a(x,t)dt + b(x,t)dz, where dz is the increment of a Wiener process, and both a(x,t) and b(x,t) are known but may be functions of both x and t ▶ Mean: $\mathbb{E}[dx] = a(x,t)dt$; second moment: $\mathbb{E}[(dx)^2] =$ $\mathbb{E}[a^{2}(x,t)(dt)^{2}+b^{2}(x,t)(dz)^{2}+2a(x,t)b(x,t)dtdz] = b^{2}(x,t)dt; \text{ vari-}$ ance: $\mathbb{V}(dx) = \mathbb{E}[(dx)^2] - (\mathbb{E}[dx])^2 = b^2(x, t)dt$ \star A geometric Brownian motion (GBM) has $a(x,t) = \alpha x$ and $b(x,t) = \sigma x$, which implies $dx = \alpha x dt + \sigma x dz$ \blacktriangleright Percentage changes in x are normally distributed, or absolute changes in x are lognormally distributed • If $\{y(t), t \ge 0\}$ is a BM with parameters $(\alpha - \frac{1}{2}\sigma^2) t$ and $\sigma^2 t$, then $\{x(t) \equiv x_0 e^{y(t)}, t \ge 0\}$ is a GBM \blacktriangleright $m_y(s) = \mathbb{E}[e^{sy(t)}] = e^{s\alpha t - \frac{s\sigma^2 t}{2} + \frac{s^2 \sigma^2 t}{2}}$, which implies $\mathbb{E}[y(t)] =$ $\left(\alpha - \frac{1}{2}\sigma^2\right)t$ and $\mathbb{V}(y(t)) = \sigma^2 t$ ► Thus, $\mathbb{E}_{x_0}[x(t)] = \mathbb{E}_{x_0}[x_0e^{y(t)}] = x_0m_y(1) = x_0e^{\alpha t}$ and $\mathbb{V}_{x_0}(x(t)) = \mathbb{E}_{x_0}[(x(t))^2] - (\mathbb{E}_{x_0}[x(t)])^2 = x_0^2 \mathbb{E}_{x_0}[e^{2y(t)}] - x_0^2 e^{2\alpha t} =$ $\frac{2}{8 \operatorname{March02011}} \frac{2 \alpha t}{e^{\sigma^2 t} - 1}$ Siddiqui 11 of 91

GBM Trajectories

- ★ Expected PV of a GBM assuming discount rate $r > \alpha$ is $\mathbb{E}_{x_0} \left[\int_0^\infty x(t) e^{-rt} dt \right] = \int_0^\infty \mathbb{E}_{x_0} [x(t)] e^{-rt} dt = \int_0^\infty x_0 e^{\alpha t} e^{-rt} dt = \frac{x_0}{r-\alpha}$
- ★ Generate sample paths for $\alpha = 0.09$ and $\sigma = 0.2$ per annum using $x_{1950} = 100$ and one-month intervals, i.e., $x_t - x_{t-1} = 0.0075x_{t-1} + 0.0577x_{t-1}\epsilon_t$, where $\epsilon_t \sim \mathcal{N}(0, 1)$ (Figure 3.4)
 - For Trend line is obtained by setting $\epsilon_t = 0$
 - Optimal forecast given x_{1974} is $\hat{x}_{1974+T} = (1.0075)^T x_{1974}$, while the CI is $(1.0075)^T (1.0577)^{\pm \sqrt{T}} x_{1974}$ (Figure 3.5)

Itô's Lemma

- \bigstar Itô's lemma allows us to integrate and differentiate functions of Itô processes
 - Recall Taylor series expansion for F(x,t): $dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial t}dt + \frac{1}{2}\frac{\partial^2 F}{\partial x^2}(dx)^2 + \frac{1}{6}\frac{\partial^3 F}{\partial x^3}(dx)^3 + \cdots$
 - Usually, higher-order terms vanish, but here $(dx)^2 = b^2(x,t)dt$ (once terms in $(dt)^{\frac{3}{2}}$ and $(dt)^2$ are ignored), which is linear in dt
 - Thus, $dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial t}dt + \frac{1}{2}\frac{\partial^2 F}{\partial x^2}(dx)^2 \Rightarrow dF = \left[\frac{\partial F}{\partial t} + a(x,t)\frac{\partial F}{\partial x} + \frac{1}{2}b^2(x,t)\frac{\partial^2 F}{\partial x^2}\right]dt + b(x,t)\frac{\partial F}{\partial x}dz$

• Intuitively, even if a(x,t) = 0 and $\frac{\partial F}{\partial t} = 0$, then $\mathbb{E}[dx] = 0$, but $\mathbb{E}[dF] \neq 0$ because of Jensen's inequality

Generalise to *m* Itô processes with
$$dx_i = a_i(x_1, \dots, x_m, t)dt + b_i(x_1, \dots, x_m, t)dz_i$$
 and $\mathbb{E}[dz_i dz_j] = \rho_{ij}dt$: $dF = \frac{\partial F}{\partial t}dt + \sum_i \frac{\partial F}{\partial x_i}dx_i + \frac{1}{2}\sum_i \sum_j \frac{\partial^2 F}{\partial x_i \partial x_j}dx_i dx_j$

Application to GBM \star If $dx = \alpha x dt + \sigma x dz$ and $F(x) = \ln(x)$, then F(x) follows a BM with parameters $\alpha - \frac{1}{2}\sigma^2$ and σ $\rightarrow \frac{\partial F}{\partial t} = 0, \frac{\partial F}{\partial r} = \frac{1}{r}, \frac{\partial^2 F}{\partial r^2} = -\frac{1}{r^2},$ which implies that $dF = \frac{dx}{r}$ $\frac{1}{2\pi^2}(dx)^2 = \alpha dt + \sigma dz - \frac{1}{2}\sigma^2 dt = (\alpha - \frac{1}{2}\sigma^2)dt + \sigma dz$ \star Consider F(x,y) = xy and $G = \ln F$ with $dx = \alpha_x x dt + \alpha_y x dt$ $\sigma_x x dz_x, dy = \alpha_y y dt + \sigma_y y dz_y, \text{ and } \mathbb{E}[dz_x dz_y] = \rho dt$ $\frac{\partial^2 F}{\partial x^2} = \frac{\partial^2 F}{\partial y^2} = 0 \text{ and } \frac{\partial^2 F}{\partial x \partial y} = 1, \text{ which implies } dF = y dx + x dy + dx dy$ \blacktriangleright Substitute dx and dy: $dF = \alpha_x xy dt + \sigma_x xy dz_x + \alpha_y xy dt + \sigma_y xy dt$ $\sigma_y xydz_y + xy\sigma_x\sigma_y\rho dt \Rightarrow dF = (\alpha_x + \alpha_y + \rho\sigma_x\sigma_y)Fdt + (\sigma_x dz_x + \rho\sigma_y)Fdt + (\sigma_x dz_x + \rho\sigma_y)Fdt$ $\sigma_y dz_y F$, i.e., F is also a GBM • Meanwhile, $dG = (\alpha_x + \alpha_y - \frac{1}{2}\sigma_x^2 - \frac{1}{2}\sigma_y^2)dt + \sigma_x dz_x + \sigma_y dz_y$ \star Discounted PV: $F(x) = x^{\theta}$ and x follows a GBM \blacktriangleright F follows a GBM, too: $dF = \theta x^{\theta-1} dx + \frac{1}{2} \theta (\theta - \theta)$ $1)x^{\theta-2}(dx)^2 = F[\theta\alpha + \frac{1}{2}\theta(\theta-1)\sigma^2]dt + \theta\sigma Fdz \Rightarrow \mathbb{E}_{x_0}[F(x(t))] =$ $F(x_0)e^{t(\theta\alpha+\frac{1}{2}\theta(\theta-1)\sigma^2)}$ Thus, $\mathbb{E}_{x_0} \left[\int_0^\infty F(x(t)) e^{-rt} dt \right] = \frac{x_0^2}{r - \alpha \theta - \frac{1}{2} \theta(\theta - 1) \sigma^2}$ 15 of 91

Stochastic Discount Factor

 \star Proposition: The conditional expectation of the stochastic discount factor, $\mathbb{E}_{p}[e^{-\rho\tau}]$, is the power function, $\left(\frac{p}{D^*}\right)^{\beta_1}$, where $\tau \equiv \min\{t: P_t \ge P^*\}, dP = \alpha P dt +$ $\sigma P dz$, and $P_0 \equiv p$. \star Proof: Let $g(p) \equiv \mathbb{E}_p \left[e^{-\rho \tau} \right]$ • $g(p) = o(dt)e^{-\rho dt} + (1 - o(dt))e^{-\rho dt}\mathbb{E}_p [g(p + dP)]$ $\Rightarrow g(p) = o(dt)e^{-\rho dt} + (1)$ $o(dt)e^{-\rho dt} \mathbb{E}_p \left[g(p) + dPg'(p) + \frac{1}{2}(dP)^2 g''(p) + o(dt) \right]$ $\blacktriangleright \Rightarrow g(p) = o(dt) + e^{-\rho dt}g(p) + e^{-\rho dt}\alpha pg'(p)dt + e^{-\rho dt}\frac{1}{2}\sigma^2 p^2 g''(p)dt$ $\Rightarrow g(p) = o(dt) + (1 - \rho dt)g(p) + (1 - \rho dt)\alpha pg'(p)dt + (1 - \rho d$ $(\rho dt) \frac{1}{2} \sigma^2 p^2 g''(p) dt$ $\blacktriangleright \Rightarrow -\rho g(p) + \alpha p g'(p) + \frac{1}{2} \sigma^2 p^2 g''(p) = \frac{o(dt)}{dt}$ $\blacktriangleright \Rightarrow g(p) = a_1 p^{\beta_1} + a_2 p^{\beta_2}$ \blacktriangleright $\lim_{p\to 0} g(p) = 0 \Rightarrow a_2 = 0$ and $g(P^*) = 1 \Rightarrow a_1 = \frac{1}{D^*\beta_1}$

Dynamic Programming: Many-Period Example

- ★ Now, let the state variable x_t be continuous and the control variable u_t represent the possible choices made at time t
 - Let the immediate profit flow be $\pi_t(x_t, u_t)$ and $\Phi_t(x_{t+1}|x_t, u_t)$ be the CDF of the state variable next period given current information
 - Given the discount rate ρ and the Bellman Principle of Optimality, the expected NPV of the cash flows to go from period t is $F_t(x_t) = \max_{u_t} \left\{ \pi_t(x_t, u_t) + \frac{1}{(1+\rho)} \mathbb{E}_t[F_{t+1}(x_{t+1})] \right\}$
 - Use the termination value at time T and work backwards to solve for successive values of u_t : $F_{T-1}(x_{T-1}) = \max_{u_{T-1}} \left\{ \pi_{T-1}(x_{T-1}, u_{T-1}) + \frac{1}{(1+\rho)} \mathbb{E}_{T-1}[\Omega_T(x_T)] \right\}$
- ★ With an infinite horizon, it is possible to solve the problem recursively due to independence from time and the downward scaling due to the discount factor: $F(x) = \max_u \left\{ \pi(x, u) + \frac{1}{(1+\rho)} \mathbb{E}[F(x')|x, u] \right\}$

8 March 201

Dynamic Programming: Optimal Stopping

- ★ Suppose that the choice is binary: either continue (to wait or to produce) or to terminate (waiting or production)
 - Bellman equation is now max $\left\{ \Omega(x), \pi(x) + \frac{1}{(1+\rho)} \mathbb{E}[F(x')|x] \right\}$
 - Focus on case where it is optimal to continue for $x > x^*$ and stop otherwise
 - Continuation is more attractive for higher x if: (i) immediate profit from continuation becomes larger relative to the termination payoff, i.e., $\pi(x) + \frac{1}{(1+\rho)}\mathbb{E}[\Omega(x')|x] - \Omega(x)$ is increasing in x, and (ii) current advantage should not be likely to be reversed in the near future, i.e., require first-order stochastic dominance
 - Both conditions are satisfied in the applications studied here: (i) always holds, and (ii) is true for random walks, Brownian motion, MR processes, and most other economic applications
 - In general, may have stopping threshold that varies with time, $x^*(t)$

Dynamic Programming: Continuous Time

- ★ In continuous time, the length of the time period, Δt , goes to zero and all cash flows are expressed in terms of rates
 - $\blacktriangleright \text{ Bellman equation is now } F(x,t)$ $\max_{u} \left\{ \pi(x,u,t)\Delta t + \frac{1}{(1+\rho\Delta t)} \mathbb{E}[F(x',t+\Delta t)|x,u] \right\}$
 - Multiply by $(1 + \rho\Delta t)$ and re-arrange: $\rho\Delta tF(x,t) = \max_{u} \{\pi(x,u,t)\Delta t(1+\rho\Delta t) + \mathbb{E}[F(x',t+\Delta t) F(x,t)|x,u]\} = \max_{u} \{\pi(x,u,t)\Delta t(1+\rho\Delta t) + \mathbb{E}[\Delta F|x,u]\}$
 - ► Divide by Δt and let it go to zero to obtain $\rho F(x,t) = \max_u \left\{ \pi(x,u,t) + \frac{\mathbb{E}[dF|x,u]}{dt} \right\}$
 - Intuitively, the instantaneous rate of return on the asset must equal its expected net appreciation

Dynamic Programming: Itô Processes

- **★** Suppose that dx = a(x, u, t)dt + b(x, u, t)dz and x' = x + dx
- \star Apply Itô's lemma to the value function, F:
 - $\mathbb{E}[F(x + \Delta x, t + \Delta t)|x, u] = F(x, t) + [F_t(x, t) + a(x, u, t)F_x(x, t) + \frac{1}{2}b^2(x, u, t)F_{xx}(x, t)]\Delta t + o(\Delta t)$
 - Return equilibrium condition is now $\rho F(x,t) = \max_u \left\{ \pi(x,u,t) + F_t(x,t) + a(x,u,t)F_x(x,t) + \frac{1}{2}b^2(x,u,t)F_{xx}(x,t) \right\}$
 - Next, find optimal u as a function of $F_t(x,t)$, $F_x(x,t)$, $F_{xx}(x,t)$, x, t, and underlying parameters
 - Subsitute it back into the return equilibrium condition to obtain a second-order PDE with F as the dependent variable and x and t as the independent ones
 - Solution procedure is typically to start at the terminal time T and work backwards

 \star When time horizon is infinite, t drops out of the equation:

• $\rho F(x) = \max_{u} \left\{ \pi(x, u) + a(x, u)F'(x) + \frac{1}{2}b^{2}(x, u)F''(x) \right\}$

Dynamic Programming: Optimal Stopping and Smooth Pasting

- ★ Consider a binary decision problem: can either continue to obtain a profit flow (with continuation value) or stop to obtain a termination payoff where dx = a(x,t)dt + b(x,t)dz
 - In this case, a threshold policy with $x^*(t)$ exists, and the Bellman equation is $\rho F(x,t)dt = \max \{\Omega(x,t)dt, \pi(x,t)dt + \mathbb{E}[dF|x]\}$
 - ► The RHS is larger in the continuation region, so applying Itô's lemma gives $\frac{1}{2}b^2(x,t)F_{xx}(x,t)+a(x,t)F_x(x,t)+F_t(x,t)-\rho F(x,t)+\pi(x,t)=0$
 - ► The PDE can be solved for F(x,t) for $x > x^*(t)$ subject to the boundary condition $F(x^*(t),t) = \Omega(x^*(t),t) \forall t$ (value-matching condition)
 - A second condition is necessary to find the free boundary: $F_x(x^*(t), t) = \Omega_x(x^*(t), t) \ \forall t \text{ (smooth-pasting condition)}$
 - The latter may be thought of as a first-order necessary condition, i.e., if the two curves met at a kink, then the optimal stopping would occur elsewhere

Dynamic Programming: Optimal Abandonment

- ★ You own a machine that produces profit, x, that evolves according to a BM, i.e., dx = adt + bdz, where a < 0 to reflect decay of the machine over time
- ★ The lifetime of the machine is T years, discount rate is ρ , and we must find the optimal threshold profit level, $x^*(t)$, below which to abandon the machine (zero salvage value)
 - Corresponding PDE is $\frac{1}{2}b^2 F_{xx}(x,t) + aF_x(x,t) + F_t(x,t) \rho F(x,t) + x = 0$
 - ▶ PDE is solved numerically for T = 10, a = -0.1, b = 0.2, and $\rho = 0.10$ using discrete time steps of $\Delta t = 0.01$
 - ▶ Solution in Figure 4.1 indicates that for lifetimes greater than ten years, the optimal abandonment threshold is about -0.17
 - ▶ As lifetime is reduced, it becomes easier to abandon the machine

Dynamic Programming Example: Figure 4.1

Dynamic Programming: Optimal Abandonment

- ★ Assume an effectively infinite lifetime to obtain an ODE instead of a PDE: ¹/₂b²F''(x) + aF'(x) − ρF(x) + x = 0
 ▶ Homogeneous solution is y(x) = c₁e^{r₁x} + c₂e^{r₂x}
 - Substituting derivatives into the homogeneous portion of the PDE yields $c_1 e^{r_1 x} (\frac{1}{2}b^2 r_1^2 + ar_1 \rho) + c_2 e^{r_2 x} (\frac{1}{2}b^2 r_2^2 + ar_2 \rho) = 0$
 - The terms in the parentheses must be equal to zero, i.e., $r_1 = \frac{-a + \sqrt{a^2 + 2b\rho}}{b^2} = 5.584 > 0$ and $r_2 = \frac{-a \sqrt{a^2 + 2b\rho}}{b^2} = -0.854 < 0$
 - Particular solution: Y(x) = Ax + B, Y'(x) = A, and Y''(x) = 0
 - Substituting these into the original PDE yields $aA \rho(Ax + B) + x = 0 \Rightarrow A = \frac{1}{\rho}, B = \frac{a}{\rho^2}$
 - Thus, $Y(x) = \frac{x}{\rho} + \frac{a}{\rho^2}$, and $F(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \frac{x}{\rho} + \frac{a}{\rho^2}$
 - ► Boundary conditions: (i) $F(x^*) = 0$, (ii) $F'(x^*) = 0$, (iii) $\lim_{x\to\infty} F(x) = Y(x)$
 - ▶ The third one implies that $c_1 = 0$, i.e., $F(x) = c_2 e^{r_2 x} + \frac{x}{\rho} + \frac{a}{\rho^2}$
 - First two conditions imply $x^* = -\frac{a}{\rho} + \frac{1}{r_2} = -0.17$ and $c_2 = -\frac{e^{-r_2x^*}}{r_2}$

 $r \circ \rho$

Seminar Outline

- ★ Mathematical Background (Dixit and Pindyck, 1994: chs. 3–4)
- ★ Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5–6 and McDonald, 2005: ch. 17)
- \bigstar Strategic Interactions (Huisman and Kort, 1999)
- \star Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

- \star Basic model and NPV approach
- \star Dynamic programming solution
- \star Features of optimal investment
- \star Embedded options
- \star Another approach: optimal stopping time

Basic Model: Optimal Timing

- ★ Suppose project value, V, evolves according to a GBM, i.e., $dV = \alpha V dt + \sigma V dz$, which may be obtained at a sunk cost of I
- \star When is the optimal time to invest?
 - ▶ A perpetual option, i.e., calendar time is not important
 - ▶ Ignore temporary suspension or other embedded options
 - Can use both dynamic programming and contingent claims methods
- \star Problem formulation: $\max_T \mathbb{E}_{V_0}[(V_T I)e^{-\rho T}]$
 - Assume $\delta \equiv \rho \alpha > 0$, otherwise it is always better to wait indefinitely

Basic Model: Deterministic Case

Suppose that
$$\sigma = 0$$
, i.e., $V(t) = V_0 e^{\alpha t}$ for $V_0 \equiv V(0)$
 $\blacktriangleright F(V) \equiv \max_T e^{-\rho T} (V e^{\alpha T} - I)$

• If
$$\alpha \leq 0$$
, then $F(V) = \max[V - I, 0]$

▶ Otherwise, for 0 < α < ρ, waiting may be better because either (i) V < I or (ii) V ≥ I, but discounting of future sunk cost is greater than that in the future project value

• Thus, the FONC is
$$\frac{dF(V)}{dT} = 0 \Rightarrow (\rho - \alpha)Ve^{-(\rho - \alpha)T} = \rho I e^{-\rho T} \Rightarrow$$

 $T^* = \max\left\{\frac{1}{\alpha}\ln\left\{\frac{\rho I}{(\rho - \alpha)V}\right\}, 0\right\}$

Reason for delaying is that the MC is depreciating over time by more than the MB

★ Substitute T^* to determine $V^* = \frac{\rho I}{(\rho - \alpha)} > I$

★ And,
$$F(V) = \left(\frac{\alpha I}{\rho - \alpha}\right) \left[\frac{(\rho - \alpha)V}{\rho I}\right]^{\frac{\rho}{\alpha}}$$
 if $V \le V^* \left(F(V) = V - I\right)$ otherwise)

 \star Figure 5.1 indicates that greater α increases V^*

Dynamic Programming Solution

★ Bellman equation for continuation is $\rho F dt = \mathbb{E}[dF]$ ★ Expand the RHS via Itô's lemma: $dF = F'(V)dV + \frac{1}{2}F''(V)(dV)^2 \Rightarrow \mathbb{E}[dF] = F'(V)\alpha V dt + \frac{1}{2}F''(V)\sigma^2 V^2 dt$ ★ Substitution into the Bellman equation yields the ODE

$$\frac{1}{2}F''(V)\sigma^2 V^2 + F'(V)\alpha V - \rho F(V) = 0$$

• Equivalently,
$$\frac{1}{2}F''(V)\sigma^2V^2 + F'(V)(\rho - \delta)V - \rho F(V) = 0$$

Three boundary conditions: (i) F(0) = 0, (ii) $F(V^*) = V^* - I$, and (iii) $F'(V^*) = 1$

• General solution to the ODE is
$$F(V) = A_1 V^{\beta_1} + A_2 V^{\beta_2}$$

- Taking derivatives, we have $F'(V) = A_1 \beta_1 V^{\beta_1 1} + A_2 \beta_2 V^{\beta_2 1}$ and $F''(V) = A_1 \beta_1 (\beta_1 1) V^{\beta_1 2} + A_2 \beta_2 (\beta_2 1) V^{\beta_2 2}$
- Substitution into the ODE yields $A_1 V^{\beta_1} [\frac{1}{2} \sigma^2 \beta_1 (\beta_1 1) + \beta_1 (\rho \delta) \rho] + A_2 V^{\beta_2} [\frac{1}{2} \sigma^2 \beta_2 (\beta_2 1) + \beta_2 (\rho \delta) \rho] = 0$

• Thus,
$$\beta_1 = \frac{1}{2} - \frac{(\rho - \delta)}{\sigma^2} + \sqrt{\left[\frac{\rho - \delta}{\sigma^2} - \frac{1}{2}\right]^2 + \frac{2\rho}{\sigma^2}}$$
 and $\beta_2 = \frac{1}{2} - \frac{(\rho - \delta)}{\sigma^2} - \sqrt{\left[\frac{\rho - \delta}{\sigma^2} - \frac{1}{2}\right]^2 + \frac{2\rho}{\sigma^2}}$

8 March 2011

Solution Features

- ★ The characteristic quadratic, $\mathcal{Q}(\beta) = \frac{1}{2}\sigma^2\beta(\beta-1) + (\rho \beta)^2\beta(\beta-1) + (\rho$
 - $\delta(\beta) \rho$, has two roots such that $\beta_1 > 1$ and $\beta_2 < 0$
 - $\mathcal{Q}(\beta)$ has a positive coefficient for β^2 , i.e., it is an upward-pointing parabola
 - Note that $Q(1) = -\delta < 0$, which means that $\beta_1 > 1$
 - ▶ $\mathcal{Q}(0) = -\rho$, which means that $\beta_2 < 0$ (Figure 5.2)
- ★ Consequently, the first boundary condition implies that $A_2 = 0$, i.e., $F(V) = A_1 V^{\beta_1}$

▶ Using the VM and SP conditions, we obtain $V^* = \frac{\beta_1}{\beta_1 - 1}I$ and $A_1 = \frac{(V^* - I)}{(V^*)\beta_1} = \frac{(\beta_1 - 1)^{\beta_1 - 1}}{[(\beta_1)^{\beta_1}I^{\beta_1 - 1}]}$

Since $\beta_1 > 1$, we also have $V^* > I$

Optimal Investment: Comparative Statics

Optimal Investment: Comparison to Neoclassical Theory

 $\star \text{ Marshallian analysis is to compare } V_0 \equiv \mathbb{E}_{\pi_0} \int_0^\infty \pi_s e^{-\rho s} ds = \int_0^\infty \mathbb{E}_{\pi_0} [\pi_s] e^{-\rho s} ds = \frac{\pi_0}{\rho - \alpha} \text{ with } I$

• Invest if
$$V_0 \ge I$$
 or $\pi_0 \ge (\rho - \alpha)I$

- Real options approach says to invest when $\pi_0 \ge \pi^* \equiv \frac{\beta_1}{\beta_1 1} (\rho \alpha)I > (\rho \alpha)I$
- \star Tobin's q is the ratio of the value of the existing capital goods to the their current reproduction cost
 - Rule is to invest when $q \ge 1$
 - ▶ If we interpret q as being $\frac{V}{I}$, then the real options threshold is $q^* = \frac{\beta_1}{\beta_1 1} > 1$
 - Hence, the real options definition of q adds option value to the PV of assets in place

Project Value without Operating Costs

- **★** Suppose that the output price, P, follows a GBM and the firm produces one unit per year forever
 - Without operating costs and ruling out speculative bubbles, the value of the project is $V(P) = \mathbb{E}_P \int_0^\infty P_t e^{-\rho t} dt = \int_0^\infty \mathbb{E}_P \left[P_t\right] e^{-\rho t} dt = \int_0^\infty P e^{-(\rho - \alpha)t} dt = \frac{P}{\delta}$
 - We can now find the value of the option to invest, F(P), which will satisfy the ODE $\frac{1}{2}\sigma^2 P^2 F''(P) + (\rho - \delta)PF'(P) - \rho F(P) = 0$: $F(P) = A_1 P^{\beta_1} + A_2 P^{\beta_2}$

• Boundary condition
$$F(0) = 0 \Rightarrow A_2 = 0$$

- VM and SP conditions imply: (i) $A_1(P^*)^{\beta_1} = \frac{P^*}{\delta} I$ and (ii) $\beta_1 A_1(P^*)^{\beta_1 - 1} = \frac{1}{\delta}$
- Therefore, $P^* = \frac{\beta_1}{\beta_1 1} \delta I$ and $A_1 = \frac{(\beta_1 1)^{\beta_1 1} I^{-(\beta_1 1)}}{(\delta \beta_1)^{\beta_1}}$

• Note that
$$V^* = \frac{P^*}{\delta} = \frac{\beta_1}{\beta_1 - 1}I > I$$

Operating Costs and Temporary Suspension: Value of the Project

- **★** Suppose now that the project incurs operating cost, C, but it may be costlessly suspended or resumed once installed
 - ▶ Instantaneous profit flow is $\pi(P) = \max[P C, 0]$, i.e., project owner has infinite embedded operational options
 - Thus, the value of an active project will be worth more than simply the NPV of the cash flows
- ★ Value the project, V(P), via usual dynamic programming approach
 - Unlike the option to invest, we now have a profit flow, $\pi(P)$, which implies that the ODE becomes $\frac{1}{2}\sigma^2 P^2 V''(P) + (\rho \delta)PV'(P) \rho V(P) + \pi(P) = 0$
 - For P < C, only the homogeneous part of the solution is valid, i.e., $V(P) = K_1 P^{\beta_1} + K_2 P^{\beta_2}$
 - With $P \ge C$, we also have the particular solution $D_1P + D_2C + D_3$
 - Substitution into the ODE yields $D_1 = \frac{1}{\delta}, D_2 = -\frac{1}{\rho}, D_3 = 0$
 - Therefore, $V(P) = B_1 P^{\beta_1} + B_2 P^{\beta_2} + \frac{P}{\delta} \frac{C}{\rho}$ for $P \ge C$

Operating Costs and Temporary Suspension: Value of the Project

- ★ For P < C, V(P) represents the option value of resuming a suspended project
 - Intuitively, this must increase in P and be worthless for very small P
 - Only when $K_2 = 0$ does this hold; thus, $V(P) = K_1 P^{\beta_1}$ for P < C
- ★ For $P \ge C$, V(P) is the value of an active project inclusive of the option to suspend operations
 - The suspension option is valuable only for small P and becomes worthless for large P

• Thus, $B_1 = 0$ and $V(P) = B_2 P^{\beta_2} + \frac{P}{\delta} - \frac{C}{\rho}$ for $P \ge C$

Find
$$K_1$$
 and B_2 via VM and SP at $P = C$
 $K_1C^{\beta_1} = B_2C^{\beta_2} + \frac{C}{\delta} - \frac{C}{\rho}$ and $\beta_1K_1C^{\beta_1-1} = \beta_2B_2C^{\beta_2-1} + \frac{1}{\delta}$
 $K_1 = \frac{C^{1-\beta_1}}{\beta_1-\beta_2} \left(\frac{\beta_2}{\rho} - \frac{(\beta_2-1)}{\delta}\right) > 0, B_2 = \frac{C^{1-\beta_2}}{\beta_1-\beta_2} \left(\frac{\beta_1}{\rho} - \frac{(\beta_1-1)}{\delta}\right) > 0$
 $V(P)$ is increasing (decreasing) in σ (δ) (Figures 6.1 and 6.2)

8 March 2011

39 of 91

ŵ

Operating Costs and Temporary Suspension: Value of the Option to Invest

★ Following the contingent claims approach, $F(P) = A_1 P^{\beta_1} + A_2 P^{\beta_2}$

• Boundary condition
$$F(0) = 0 \Rightarrow A_2 = 0$$

- ★ For P < C, it is never optimal to invest
 - ► Thus, VM and SP of F(P) will occur for $P \ge C$, i.e., with $V(P) I = B_2 P^{\beta_2} + \frac{P}{\delta} \frac{C}{\rho} I$

• Use
$$A_1 (P^*)^{\beta_1} = B_2 (P^*)^{\beta_2} + \frac{P^*}{\delta} - \frac{C}{\rho} - I$$
 and $\beta_1 A_1 (P^*)^{\beta_1 - 1} = \beta_2 B_2 (P^*)^{\beta_2 - 1} + \frac{1}{\delta}$ to solve for P^* and A_1

- Substitute to solve the following equation numerically: $(\beta_1 \beta_2)B_2 (P^*)^{\beta_2} + (\beta_1 1)\frac{P^*}{\delta} \beta_1 \left(\frac{C}{\rho} + I\right) = 0$
- Solution for $\rho = 0.04$, $\delta = 0.04$, $\sigma = 0.20$, I = 100, and C = 10 (Figure 6.3)
- $\beta_1 = 2, \ \beta_2 = -1, \ P^{*,nf} = 28, \ A_1^{nf} = 0.4464, \ P^* = 23.8, \ \text{and} A_1 = 0.4943$

Sensitivity analysis: F(P) and P* increase with σ (Figure 6.4)
But F(P) decreases and P* increases with δ (Figures 6.5 and 6.6)

m

Optimal Stopping Time Approach: Nowor-Never NPV

- \star Example from McDonald (2005): oil extraction under certainty at a rate of one barrel per year forever
 - Current price of oil is $P_0 = 15$, discount rate is $\rho = 0.05$, growth rate of oil is $\alpha = 0.01$, operating cost is C = 8, and investment cost is I = 180
- \star Is it optimal to extract the oil now?
 - ▶ Assuming that the price of oil grows exponentially, the NPV from immediate extraction is $V(P_0) = \int_0^\infty e^{-\rho t} \{P_0 e^{\alpha t} - C\} dt - I =$ $\frac{P_0}{\rho - \alpha} - \frac{C}{\rho} - I = 215 - 180 = 35$ Since $V(P_0) > 0$, it is optimal to extract
- \star But, would it not be better to wait longer?

 \star Investment cost is being discounted, and the value of the

<u>oil is growing</u> 8 March 201

Optimal Stopping Time Approach: Deterministic NPV

 \star Think instead about value of perpetual investment opportunity

 $F(P_0) = \max_T \int_T^\infty e^{-\rho t} \{ P_0 e^{\alpha t} - C - \rho I \} dt = \max_T \frac{P_0}{\rho - \alpha} e^{(\alpha - \rho)T} - \frac{C}{\rho} e^{-\rho T} - I e^{-\rho T}$

$$\Rightarrow T^* = \frac{1}{\alpha} \ln \left(\frac{C + \rho I}{P_0} \right) = 12.5163$$

• Or, invest when
$$P_{T^*} = 17$$

Indeed, the initial value of the investment opportunity is $F(P_0) = 45.46 > 35 = V(P_0)$

 \star By delaying investment to the optimal time period, it is possible to maximise NPV

\bigstar How does this work when the price is stochastic?

46 of 91 🕋

Optimal Investment under Uncertainty

★ If the project were started now, then its expected NPV is $V(p) = \mathbb{E}_p \left[\int_0^\infty e^{-\rho t} \left\{ P_t - (C + \rho I) \right\} dt \right] = \frac{p}{\rho - \alpha} - \frac{C}{\rho} - I$

 \star Canonical real options problem:

$$F(p) = \sup_{\tau \in \mathcal{S}} \mathbb{E}_p \left[\int_{\tau}^{\infty} e^{-\rho t} \left\{ P_t - (C + \rho I) \right\} dt \right]$$

$$\Rightarrow F(p) = \sup_{\tau \in \mathcal{S}} \mathbb{E}_p \left[e^{-\rho \tau} V(P_\tau) \right] = \max_{P^* \ge p} \left\{ \left(\frac{p}{P^*} \right)^{\beta_1} V(P^*) \right\}$$

• $\beta_1 \ (\beta_2)$ is the positive (negative) root of $\frac{1}{2}\sigma^2\zeta(\zeta-1) + \alpha\zeta - \rho = 0$

Optimal Investment Threshold under Uncertainty

 \star Solve for optimal investment threshold, P^* :

$$F(p) = \max_{P^* \ge p} \left\{ \left(\frac{p}{P^*}\right)^{\beta_1} V(P^*) \right\}$$

First-order necessary condition yields $P^* = \frac{\beta_1}{\beta_1 - 1} (\rho - \alpha) \left(\frac{C}{\rho} + I\right)$ Note that in the case without uncertainty, $\beta_1 = \frac{\rho}{\alpha} \Rightarrow P^* = C + \rho I$

- ★ For a level of volatility of $\sigma = 0.15$, $P^* = 25.28$, and the value of the investment opportunity is F(p) = 94.35
- ★ Compared to the case with certainty, the investment opportunity is worth more, but is also less likely to be exercised

Investment under Uncertainty with Abandonment

 \star If the project is abandoned after investment, then the expected incremental payoff is:

$$V^{A}(p) = \mathbb{E}_{p}\left[\int_{0}^{\infty} e^{-\rho t}\left\{\left(C - \rho K_{s}\right) - P_{t}\right\}dt\right] = \frac{C}{\rho} - K_{s} - \frac{p}{\rho - \alpha}$$

 \star Solve for optimal abandonment threshold, P_* :

$$F^{A}(p) = \max_{P_{*} \leq p} \left\{ \left(\frac{p}{P_{*}}\right)^{\beta_{2}} V^{A}(P_{*}) \right\} + V(p)$$

First-order necessary condition yields $P_* = \frac{\beta_2}{\beta_2 - 1} (\rho - \alpha) \left(\frac{C}{\rho} - K_s \right)$ Solve numerically for P^* : $F(p) = \max_{P^* \ge p} \left\{ \left(\frac{p}{P^*} \right)^{\beta_1} \left\{ V(P^*) + \left(\frac{P^*}{P_*} \right)^{\beta_2} V^A(P_*) \right\} \right\}$

8 March 2011

Investment Thresholds and Values with Abandonment

Investment under Uncertainty with Suspension and Resumption

 \star If the project is resumed from a suspended state, then the expected incremental payoff is:

$$V^{R}(p) = \mathbb{E}_{p}\left[\int_{0}^{\infty} e^{-\rho t} \left\{P_{t} - \left(C + \rho K_{r}\right)\right\} dt\right] = \frac{p}{\rho - \alpha} - \frac{C}{\rho} - K_{r}$$

Solve for optimal resumption threshold, P^{**} :

$$F^{R}(p) = \max_{P^{**} \ge p} \left\{ \left(\frac{p}{P^{**}} \right)^{\beta_{1}} V^{R}(P^{**}) \right\}$$

First-order necessary condition yields P^{**} = β₁/β₁-1(ρ − α) (C/ρ + K_r)
Substitute P^{**} back into F^S(p) to solve numerically for P_{*} and then repeat for F(p) to obtain P^{*}

Investment Thresholds and Values with Resumption

Investment with Infinite Suspension and Resumption Options

- ★ Start with the expected value of a suspended project: $V_c(p, \infty, \infty; P_*, P^{**}) = \left(\frac{p}{P^{**}}\right)^{\beta_1} \left(V_o(P^{**}, \infty, \infty; P_*, P^{**}) K_r\right)$
- $\bigstar \text{ Also note the expected value of an active project: } V_o(p, \infty, \infty; P_*, P^{**}) = \frac{p}{\rho \alpha} \frac{C}{\rho} + \left(\frac{p}{P_*}\right)^{\beta_2} \left(\frac{C}{\rho} K_s \frac{P_*}{\rho \alpha} + V_c(P_*, \infty, \infty; P_*, P^{**})\right)$

▶ Solve the two equations numerically, i.e., start with initial thresholds and successively iterate until convergence

55 of 91 🕋

★ Finally, solve for P^* numerically: $F(p, \infty, \infty; P_*, P^{**}) = \max_{P^* \ge p} \left(\frac{p}{P^*}\right)^{\beta_1} \{V_o(P^*, \infty, \infty; P_*, P^{**}) - I\}$

Numerical Results: Data from McDonald (2005)

★ $P_0 = 15, C = 8, \rho = 0.05, \alpha = 0.01, I = 180, K_s = 25, K_r = 25$

σ	N_s	N_r	P_I	P_*	P^*	$F(P_0)$
0.05	0	0	18.5846	-	-	56.0527
0.10	0	0	21.5927	-	-	74.6799
0.15	0	0	25.2791	-	-	94.3469
0.05	1	0	18.5846	4.9396	-	56.0527
0.10	1	0	21.5821	4.2514	-	74.7062
0.15	1	0	25.1587	3.6315	-	94.6154
0.05	1	1	18.5846	5.2246	10.1122	56.0527
0.10	1	1	21.5784	4.7702	11.7489	74.7153
0.15	1	1	25.1233	4.3625	13.7548	94.6946
0.05	∞	∞	18.5846	5.2246	10.1104	56.0527
0.10	∞	∞	21.5784	4.7766	11.6070	74.7154
0.15	∞	∞	25.1219	4.3926	13.1619	94.6977

8 March 2011

Seminar Outline

- ★ Mathematical Background (Dixit and Pindyck, 1994: chs. 3–4)
- ★ Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5–6 and McDonald, 2005: ch. 17)
- \bigstar Strategic Interactions (Huisman and Kort, 1999)
- \star Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

- \bigstar Classification of setups
- \star Pre-emptive setting
- \star Non-pre-emptive setting

Interaction of Game Theory and Real Options

- \star Fudenberg and Tirole (1985) treat a duopoly with pre-emption over timing in a deterministic model
- ★ Huisman and Kort (1999) extend this to reflect market uncertainty to find that the incentive to delay in real options may be reduced due to competition
- ★ Possible settings: cooperative and non-cooperative (pre-emptive and non-pre-emptive)

Duopoly Assumptions

- \star Each decision-maker has the perpetual right to start a project at any time for deterministic investment cost, I
- ★ Price process evolves according to a GBM, i.e., $dP_t = \alpha P_t dt + \sigma P_t dz_t$ with initial price $P_0 > 0$
 - Subjective interest rate is ρ
 - ▶ An active project produces one unit of output per year forever

★ $R_t = P_t D(Q_t)$ is the project's revenue given $Q_t = 0, 1, 2$ active firms in the industry and D(1) > D(2)

$$\bigstar \ \tau_i^j \equiv \min\left\{t \ge 0 : P_t \ge P_{\tau_i^j}\right\}, \ j = L, F \text{ and } i = m, p, n$$

8 March 2011

62 of 91 🕋

Formulation 1: Monopoly

★ Value function if monopolist has invested $(P_0 \ge P_{\tau_m^{j,}})$: $V_m^j(P_0) = \mathbb{E}_{P_0} \left[\int_0^\infty e^{-\rho t} \left\{ P_t D(1) - \rho I \right\} dt \right]$ ► $V_m^j(P_0) = \frac{P_0 D(1)}{\rho - \alpha} - I$

★ Value function if monopolist is waiting to invest, i.e., $P_0 < P_{\tau_m^j}$: $V_m^j(P_0) =$ $\sup_{\tau_m^j \in \mathcal{S}} \mathbb{E}_{P_0} \left[\int_{\tau_m^j}^{\infty} e^{-\rho t} \left\{ P_t D(1) - \rho I \right\} dt \right]$ ► $V_m^j(P_0) = \sup_{\tau_m^j \in \mathcal{S}} \mathbb{E}_{P_0} \left[e^{-\rho \tau_m^j} \right] \left(\frac{P_0 D(1)}{\rho - \alpha} - I \right)$

★ Monopolist's entry threshold: $P_{\tau_m^j} = \left(\frac{\beta_1}{\beta_1 - 1}\right) \frac{\rho I}{D(1)}$

63 of 91 🚠

Formulation 2: Pre-Emptive Duopoly

 \star Follower's problem:

• If
$$P_0 \ge P_{\tau_p^F}$$
: $V_p^F(P_0) = \frac{P_0 D(2)}{\rho - \alpha} - I$

• Else:
$$V_p^F(P_0) = \sup_{\tau_p^F \in \mathcal{S}} \mathbb{E}_{P_0} \left[e^{-\rho \tau_p^F} \right] \left(\frac{P_{\tau_p^F} D(2)}{\rho - \alpha} - I \right)$$

- Entry threshold: $P_{\tau_p^F} = \left(\frac{\beta_1}{\beta_1 1}\right) \frac{\rho I}{D(2)}$
- \bigstar Leader's problem:

▶ Value function for $P_0 \ge P_{\tau_p^F}$ is the same as the follower's

Else:
$$V_p^L(P_0) = \frac{P_0 D(1)}{\rho - \alpha} - I + \left(\frac{P_0}{P_{\tau_p^F}}\right)^{\beta_1} \left[\frac{P_{\tau_p^F}(D(2) - D(1))}{\rho - \alpha}\right]$$
Find τ_p^L by setting $V_p^L(P_{\tau_p^L}) = V_p^F(P_{\tau_p^L})$

64 of 91 📥

Formulation 3: Non-Pre-Emptive Duopoly

- ★ Follower's problem is the same as under the preemptive duopoly framework, i.e., $V_n^F(P_0) = V_p^F(P_0)$ and $P_{\tau_p^F} = P_{\tau_n^F}$
- \star Leader's problem:
 - Leader's value function for $P_0 \ge P_{\tau_n^F}$ is the same as in the preemptive case, i.e., $V_n^L(P_0) = V_p^L(P_0)$
 - ▶ Leader's value function for $P_{\tau_n^L} \leq P_0 < P_{\tau_n^F}$ is also the same as in the pre-emptive case

Else:
$$V_n^L(P_0) = \max_{\substack{P_{\tau_n^L} \ge P_0}} \left(\frac{P_0}{P_{\tau_n^L}}\right)^{\beta_1} \left[\frac{P_{\tau_n^L}D(1)}{\rho - \alpha} - I + \left(\frac{P_{\tau_n^L}}{P_{\tau_p^F}}\right)^{\beta_1} \left[\frac{P_{\tau_p^F}(D(2) - D(1))}{\rho - \alpha}\right]\right]$$

• Optimal entry threshold for the leader in the non-pre-emptive case is the same as that for a monopolist: $P_{\tau_n^L} = \left(\frac{\beta_1}{\beta_1 - 1}\right) \frac{\rho I}{D(1)}$

Numerical Example: Non-Pre-Emptive Duopoly

Numerical Example: Entry Threshold Sensitivity Analysis

Seminar Outline

- ★ Mathematical Background (Dixit and Pindyck, 1994: chs. 3–4)
- ★ Investment and Operational Timing (Dixit and Pindyck, 1994: chs. 5–6 and McDonald, 2005: ch. 17)
- \bigstar Strategic Interactions (Huisman and Kort, 1999)
- \star Capacity Switching (Siddiqui and Takashima, 2011)

Topic Outline

★ Monopoly

 \star Spillover duopoly

★ Proprietary duopoly

8 March 2011

Siddiqui

$$\begin{array}{l} \textbf{Monopoly: Sequential Strategy} \\ \bigstar \ V_1^s(x) = \frac{xK_1D_1}{\rho - \alpha} - I_1 + A_1^s x^{\beta_1} \text{ if } x < x_1^s \text{ and } V_1^s(x) = V_2^s(x) \\ \text{otherwise} \\ \end{array} \\ \bigstar \ State-1 \text{ value-matching and smooth-pasting conditions:} \\ \blacklozenge \ V_1^s(x_1^{s-}) = V_1^s(x_1^{s+}) \\ \trianglerighteq \ \frac{dV_1^s}{dx}|_{x=x_1^{s-}} = \frac{dV_1^s}{dx}|_{x=x_1^{s+}} \\ \bigstar \ Solution \text{ yields } x_1^s = \left(\frac{\beta_1}{\beta_1 - 1}\right) \frac{I_2(\rho - \alpha)}{[K_2D_2 - K_1D_1]} > x_0^d \text{ and } \\ A_1^s = \frac{x_1^{s-\beta_1}I_2}{\beta_1 - 1} < A_0^d \\ \bigstar \ \text{Value function in state } 0: \ V_0^s(x) = A_0^s x^{\beta_1} \\ \blacktriangleright \ \text{VM and SP conditions lead to } x_0^s = \left(\frac{\beta_1}{\beta_1 - 1}\right) \frac{I_1(\rho - \alpha)}{K_1D_1} < x_0^d \text{ and } \\ A_0^s = A_1^s + \frac{x_0^{s-\beta_1}I_1}{\beta_1 - 1} \end{aligned}$$

Spillover Duopoly: Direct Strategy Solutions

$$\star x_{20}^{d} = \left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{(I_{1}+I_{2})(\rho-\alpha)}{K_{2}D_{22}} \\ \star A_{20}^{F,d} = \frac{x_{20}^{d} -\beta_{1}(I_{1}+I_{2})}{\beta_{1}-1} \\ \star A_{20}^{L,d} = \frac{x_{20}^{d} -\beta_{1}(I_{1}+I_{2})(D_{22}-D_{20})\beta_{1}}{(\beta_{1}-1)D_{22}} \\ \star x_{00}^{d} = \left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{(I_{1}+I_{2})(\rho-\alpha)}{K_{2}D_{20}} = x_{0}^{d} \\ \star A_{00}^{j,d} = \frac{1}{2} \left[A_{20}^{L,d} + A_{20}^{F,d} + \frac{x_{00}^{d} -\beta_{1}(I_{1}+I_{2})}{\beta_{1}-1}\right]$$

8 March 2011

Spillover Duopoly: Sequential Strategy

$$\begin{aligned} & \begin{array}{l} \textbf{Spillover Duopoly: Sequential} \\ & \textbf{Strategy Solutions} \\ \hline \bigstar x_{21}^{s} = \left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{2}(\rho-\alpha)}{[K_{2}D_{22}-K_{1}D_{21}]} \\ & \bigstar x_{21}^{F,s} = \frac{x_{21}^{s}-\beta_{1}I_{2}}{\beta_{1}-1} \\ & \bigstar A_{21}^{F,s} = \frac{x_{21}^{s}-\beta_{1}I_{2}\beta_{1}}{\beta_{1}-1} \left[\frac{K_{2}D_{22}-K_{2}D_{21}}{[K_{2}D_{22}-K_{1}D_{21}]}\right] \\ & \bigstar A_{21}^{1,s} = \frac{1}{\beta_{1}-1} \frac{I_{2}(\rho-\alpha)}{[(K_{1}+K_{2})D_{21}-2K_{1}D_{11}]} \\ & \bigstar A_{11}^{j,s} = \frac{1}{2} \left(A_{21}^{L,s} + A_{21}^{F,s} + \frac{(x_{11}^{s})^{-\beta_{1}}I_{2}}{\beta_{1}-1}\right) \\ & \bigstar x_{10}^{s} = \left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{1}(\rho-\alpha)}{K_{1}D_{11}} \\ & \bigstar A_{10}^{F,s} = A_{11}^{j,s} + \frac{x_{10}^{s}-\beta_{1}I_{1}}{\beta_{1}-1} \\ & \bigstar x_{00}^{s} = \left(\frac{\beta_{1}}{\beta_{1}-1}\right) \frac{I_{1}(\rho-\alpha)}{K_{1}D_{10}} = x_{0}^{s} \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{F,s} + \frac{x_{00}^{s}-\beta_{1}I_{1}}{\beta_{1}-1}\right) \\ & \bigstar A_{00}^{j,s} = \frac{1}{2} \left(A_{10}^{L,s} + A_{10}^{S$$

Numerical Example: Proprietary Duopoly

8 March 2011

Numerical Example: Spillover Duopoly Effect of Competition with Lower First-Mover Advantage

