

- Perfect foresight...? Perfect information!
- · Risk-neutrality
- Open-loop: all decisions for all stages at start
 - Vs. closed-loop: 'feedback strategies': at every stage former decisions and outcomes taken into account when choosing a course of action
 - Assumptions open-loop more restrictive but generally mathematically tractable

rw.ntnu.edu © Ruud Egging 10 M

Investments in MCP - outline

- · Agent with perfect foresight
- Decide on sales in year y $SALES_y$ capacity expansions Δ_y
- Selling price π_v discount rate γ_v (both exogenous)
- Convex cost curve $c_y(SALES_y)$
- Initial capacity \(\overline{CAP} \)
- Investment costs per unit b_{y}
- Upper bounds on expansions $\bar{\Delta}_{\nu}$

Ruud Egging 10 March 2011, page 26

Investments - Formulation

$$\begin{aligned} \max_{SALES_{y},\Delta_{lm}^{L}} & \sum_{y \in Y} \gamma_{y} \left\{ \pi_{y} SALES_{y} - c_{y} (SALES_{y}) - b_{y} \Delta_{y} \right\} \\ s.t. & SALES_{y} \leq \overline{CAP} + \sum_{y < y} \Delta_{y}, & \forall y \\ & \Delta_{y} \leq \overline{\Delta}_{y} & \forall y \\ & SALES_{y} \geq 0 & \forall y \\ & \Delta_{y} \geq 0 & \forall y \end{aligned}$$

© Ruud Egging 10 March 2011, page 27

Investments - KKT

$$\begin{split} 0 &\leq \gamma_y \Biggl(-\pi_y^L + \frac{\partial c_y (SALES_y)}{\partial SALES_y} \Biggr) + \alpha_y & \perp & SALES_y \geq 0 \quad \forall y \\ 0 &\leq \gamma_y b_y - \sum_{y \geq y} \alpha_{y} + \rho_y & \perp & \Delta_y \geq 0 \quad \forall y \\ 0 &\leq \overline{CAP} + \sum_{y \leq y} \Delta_{y} - SALES_y & \perp & \alpha_y \geq 0 \quad \forall y \\ 0 &\leq \overline{\Delta}_y - \Delta_y & \perp & \rho_y \geq 0 \quad \forall y \end{split}$$

GAMS

- Code up the model on slide 28, for a two-period model, monopoly player, current capacity 5, investment costs 2/unit, Inverse Demand curve 20-q
- When you're done, time for a break
- ~25 minutes, including break

NTNU - Trondhei Norwegian Universit Science and Technol

© Ruud Egging 10 March 2011, page

Stochastic Natural Gas Market Model

- · Extensive-form stochastic MCP
- Consider multiple futures when making capacity expansion decisions
- Additional assumption: risk-neutrality
- Maximize expected profits
- Include all considered futures and assign probabilities

Stochastic gas market model - Remarks

- Two uncertain events is not so much
- Doubling of model size, calc time: 5-10 times as big
- When uncertainty is in far future, the impact is largely 'discounted away'
- Hedging affects timing and sizes, but many results 'close to averages'
- Some detailed developments and results differ due to interplay of timing, hedging and game-theoretic approach

www.ntnu.edu

Ruud Egging 10 March 2011, page 4

Benders Decomposition Outline

- Some variables make the problem hard.
 - Fixing these: remaining problem easy
- Decompose problem in two parts
 - Difficult variables → Master Problem (MP)
 - Remaining variables → Sub Problems (SP)
- Iteratively MP and SP are solved
 - MP: 'fixing values'
 - SP: feasible solution + info to improve MP

NTNU - Trondbeim Nemegian University of Science and Technology

www.ntnu.edu

uud Egging 10 March 2011, page 4

Approach BD and cuts originally for optimization BD for Stoch MCP (Gabriel & Fuller, 2010) general, two-stage, electricity market (stylized) small number players, many scenarios market power in SP: MP are LCP, SP are LCP G&F derive alternative cut to be used for imperfectly competitive lower level problems

	A	В	C (*)	D (*)	E (*)
Model periods	4	6	6	8	8
Scenarios	4	4	8	4	8
Scenario nodes	11	19	31	27	47
Num expansion var	339	763	1,187	1,187	2,035
Total num variables	27,221	47,373	77,177	67,525	117,481
Full MCP calc time	263	1,005	13,853	3,005	18,679
VI-MCP Net calc time^	267	2,036	5,572	5,222	5,013
Num iterations	46	188	316	325	179
VI-MCP Gross calc time	521	13,684	52,272	51,207	32,502
feasible MP calc time ^{&}	4	129	502	550	333
infeasible MP calc time [%]	4	60	122	96	301
feasible SP calc time ^{&}	259	1,847	4,934	4,576	4,373
infeasible SP calc time [%]	0	0	7	0	6
Num infeasible MP	7	18	14	8	7
Num infeasible SP	0	0	1	0	1
Convergence criterion	Expans	Expans	MP infeas	MP infeas	MP infeas

Benders in GAMS • Same problem with monopoly supplier facing a high and a low demand scenario GAMS small BD • Note: numerical deviations, but no complications yet... **TNL-Troodboom yet...** **Procedure and including 10 March 2011, page 69

