

Introduction to Electricity Network Modelling

PhD Winterschool, Oppdal March 2011

Daniel Huppmann & Friedrich Kunz

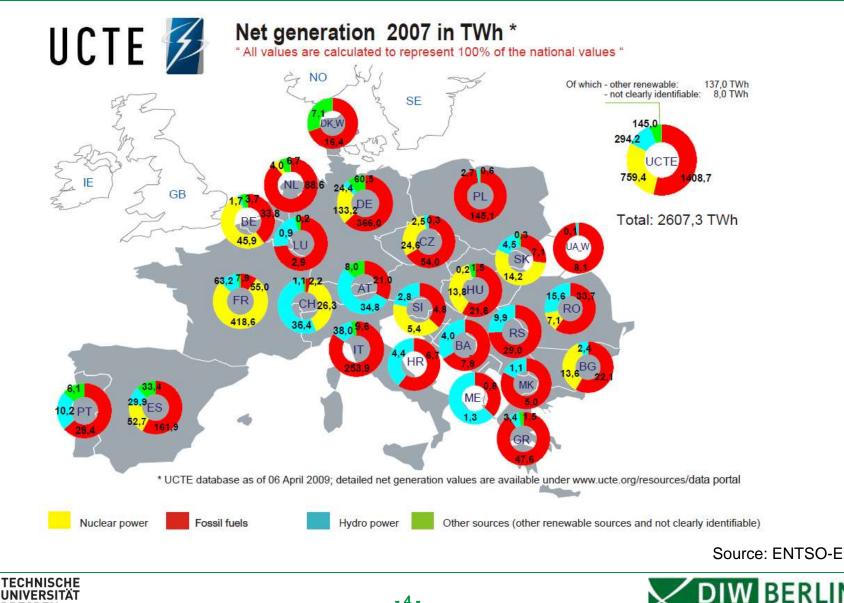
Agenda

- 1. Introduction to Electricity Markets
- 2. The Electricity Market Model (ELMOD)
- 3. Congestion Management
- 4. Exercise: 3-Node Network
- 5. Introducing Wind Power
- 6. Exercise: Stochastic Multi-Period European Network
- 7. Outlook and further developments

Literature

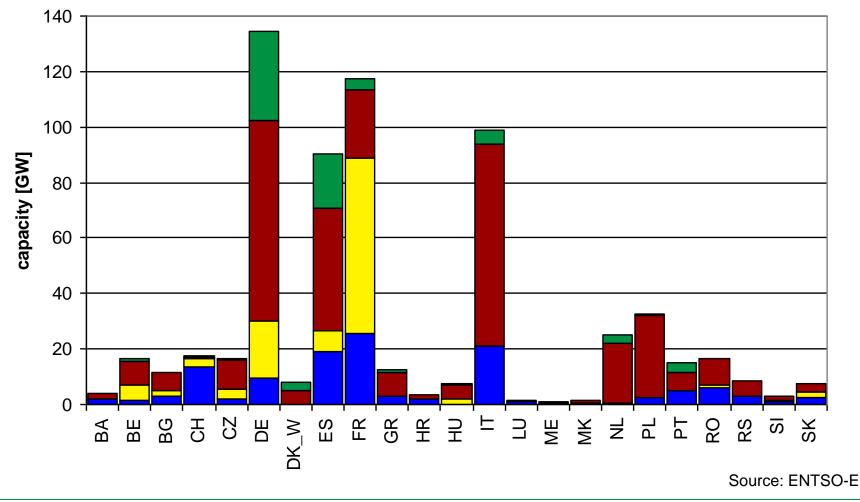
Electricity

- Non storable
- Grid-bound
- High fix cost ratio
- Economies of scale in generation and transmission
- Daily and seasonal demand patterns
- Power flows according to physical laws (Kirchhoff)


Value added chain

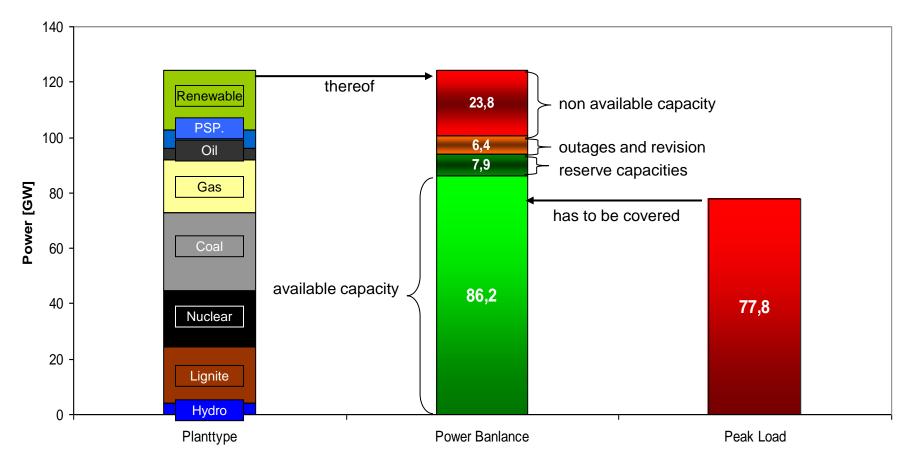
- 1. Generation
- 2. Transmission/Distribution
- 3. Supply

Electricity Generation



DRESDEN

Electricity Generation Capacities



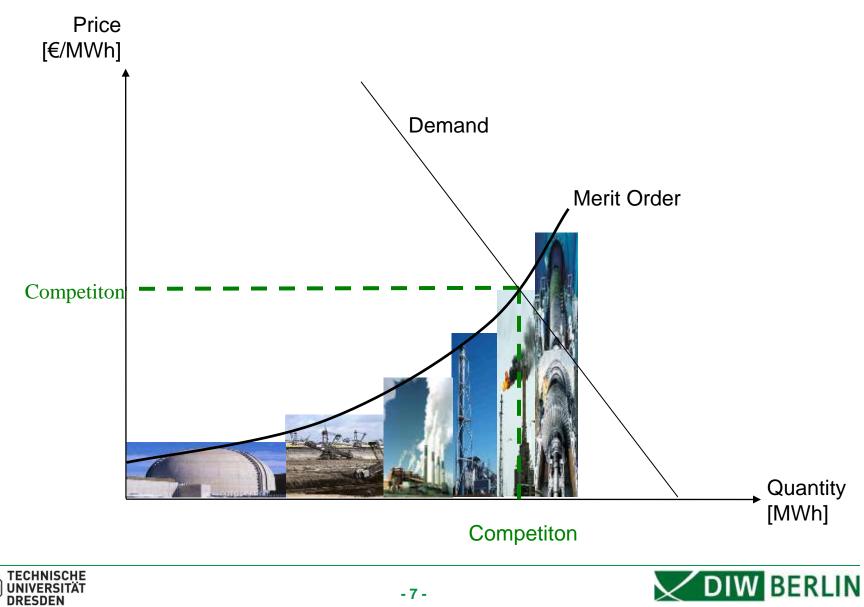
TECHNISCHE

UNIVERSITÄT

DRESDEN

Plant Capacity and Peak Load in Germany 2006

Sufficient capacity to supply Germany and still export:


At time of peak load an export surplus of 2.1GW occured

Source: VDN 2006

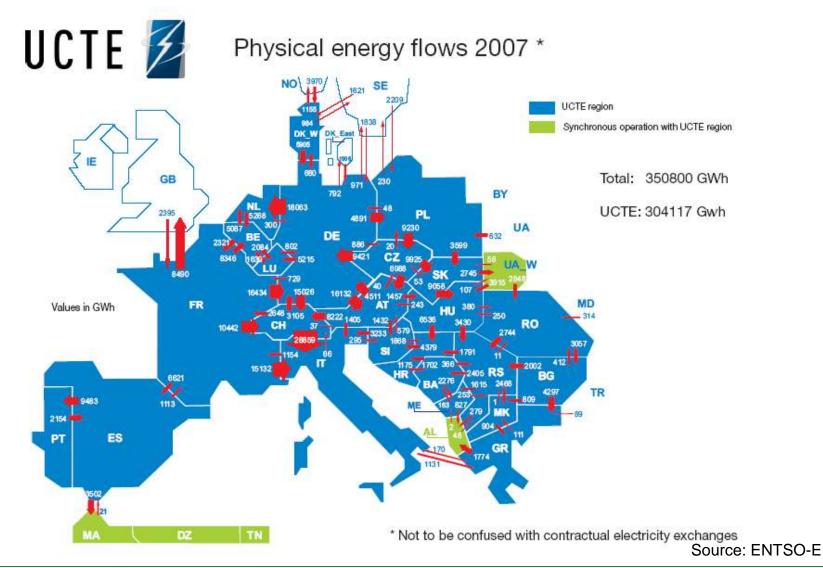
The Merit-Order Cost Curve and Pricing under Competition

European High Voltage Network

4 Voltage Levels

German network operators maintain 1.6 mio km of lines and 500 000
 transformer stations

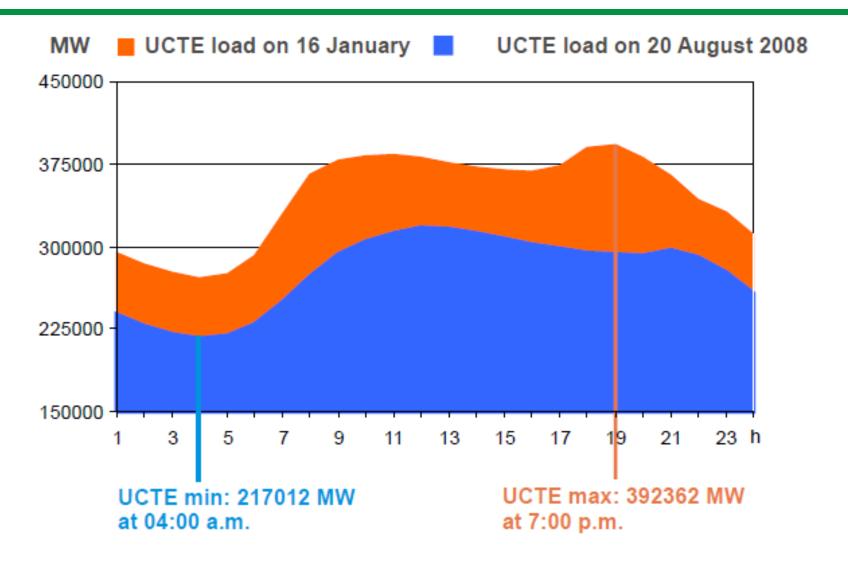
Transmission	Voltage Level	Coverage	Consumer	¥. / /
Extra High Voltage	220 380 kV	national	Regional suppliers, large industry, imports/exports	
Distribution	Voltage Level	Coverage	Consumer	
High Voltage	36 110 kV	regional	Local suppliers, industry	
Medium Voltage	1 36 kV	regional	Industry, large commercial	 220-kV DC Cable Sub station
Low Voltage	0,4 1 kV	local	Households, Agriculture, Commercial	Source: VDN



TECHNISCHE

UNIVERSITÄT

DRESDEN


Physical Electricity Exchange

DIW BERLIN

Electricity Demand

Source: ENTSO-E

Agenda

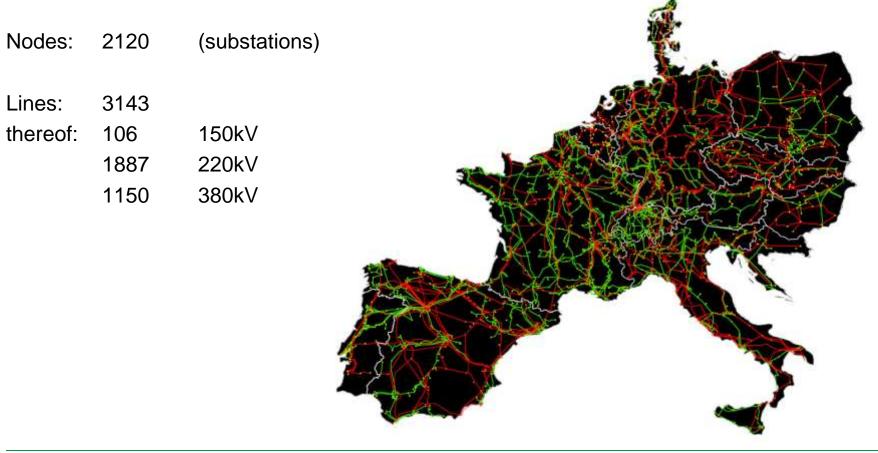
- 1. Introduction to Electricity Markets
- 2. The Electricity Market Model (ELMOD)
- 3. Congestion Management
- 4. Exercise: 3-Node Network
- 5. Introducing Wind Power
- 6. Exercise: Stochastic Multi-Period European Network
- 7. Outlook and further developments

Literature

 Electricity markets are in a process of restructuring
 Economic modeling of electricity markets not possible without accounting for technical constraints

- Model-based research of electricity markets very common, e.g. in the US (Hogan, Hobbs, UC Berkeley, ...)
- Economic-engineering model-based research for Germany and Europe available rather limited

DIW BERLIN


Scope of the Model

Physical model (included countries): ENTSO-E

ECHNISCHE

INIVERSITÄT

Portugal, Spain, France, Netherlands, Belgium, Luxembourg, Denmark, Germany, Switzerland, Austria, Italy, Poland, Hungary, Czech Republic, Slovenia and Slovakia ...

Market Assumptions and Data

• Market:

- No strategic players \rightarrow Perfect competition
- Perfect market bidding (marginal cost bids, no market power)
- Independent SO optimizes generation dispatch and network usage simultaneously

• Node demand:

- Linear inverse demand function constructed using
 - a reference demand,
 - a reference price, and
 - a point demand elasticity
- Reference demands are based on ENTSO-E data and distributed to system nodes according to regional population and/or gross domestic product
- Reference prices are based on the spot prices of the national energy exchange

• Wind input:

- Given as external parameter based on wind distributions derived from historic data

• Reference: Leuthold et al. (2010)

Model Formulation

Sets	$n, k \dots$ nodes $n' \dots$ swing bus $u \dots$ generation units (by fuel) $l \dots$ power lines
Parameters	$a_n \dots$ intercept of inverse demand function $b_n \dots$ slope of inverse demand function $c_u^m \dots$ marginal production costs of generation $cap_l^{max} \dots$ maximum thermal capacity of power lines $H_{l,k} \dots$ branch susceptance matrix $B_{n,k} \dots$ node susceptance matrix
Variables	$\begin{array}{l} d_n \ \dots \ \text{electricity consumption} \\ g_{n,u} \ \dots \ \text{electricity generation} \\ \delta_n \ \dots \ \text{phase angle (decision variable of ISO)} \\ \lambda_n \ \dots \ \text{dual for power balance constraint} \\ \beta_{n,u} \ \dots \ \text{dual for maximum generation capacity constraint} \\ \overline{\mu}_l \ \dots \ \text{dual for line capacity constraint (positive direction)} \\ \underline{\mu}_l \ \dots \ \text{dual for line capacity constraint (negative direction)} \\ \gamma \ \dots \ \text{dual for swing bus constraint} \end{array}$

📈 DIW BERLIN

Model Formulation Objective Function and Constraints

Given: generation capacities, network, demand function, wind Decide about: generation, demand

```
max (Social Welfare)
```

subject to:

demand	=	generation + netinput	
generation	<=	installed capacity	
ABS(loadflow)	<=	thermal limit	

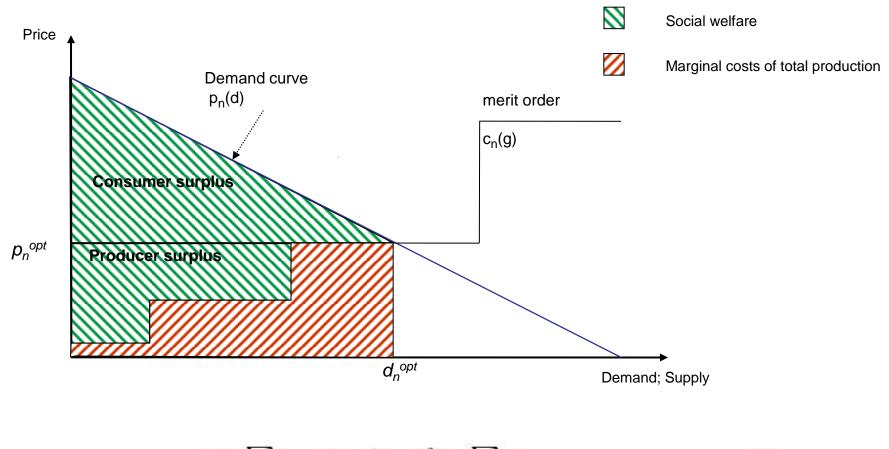
Model Formulation Objective Function and Constraints

$$\max_{g,d,\delta} \sum_{n} (a_n \cdot d_n - \frac{1}{2}b_n \cdot d_n^2) - \sum_{u} c_u^m \cdot g_{n,u} \tag{1}$$

$$d_n - \sum_u g_{n,u} - \sum_k B_{n,k} \delta_k = 0 \qquad \lambda_n \text{ (free)} \qquad \forall n \qquad (2)$$

$$g_{n,u} \le g_{n,u}^{max} \qquad \beta_{n,u} \ge 0 \qquad \qquad \forall \ n,u \tag{3}$$

$$\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \overline{\mu}_l \ge 0 \qquad \qquad \forall \ l \qquad (4)$$


$$-\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \underline{\mu}_l \ge 0 \qquad \qquad \forall \ l \tag{5}$$

$$\delta_{n'} = 0 \qquad \gamma \text{ (free)} \tag{6}$$

Objective Welfare Maximization

$$\max_{g,d,\delta} \sum_{n} (a_n \cdot d_n - \frac{1}{2}b_n \cdot d_n^2) - \sum_{u} c_u^m \cdot g_{n,u} \tag{1}$$

TECHNISCHE UNIVERSITÄT DRESDEN

Market Clearing Constraint or Nodal Energy Balance

- Main characteristics of electricity
 - Non storable
 - Grid-bounded
 - \rightarrow Supply has to be equal to demand
 - \rightarrow Exchange between system nodes through transmission network

$$\max_{g,d,\delta} \sum_{n} (a_n \cdot d_n - \frac{1}{2}b_n \cdot d_n^2) - \sum_{u} c_u^m \cdot g_{n,u} \tag{1}$$

$$d_n - \sum_u g_{n,u} - \sum_k B_{n,k} \delta_k = 0 \qquad \lambda_n \text{ (free)} \qquad \forall n \qquad (2)$$

$$g_{n,u} \le g_{n,u}^{max} \qquad \beta_{n,u} \ge 0 \qquad \qquad \forall \ n,u \qquad (3)$$

$$\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \overline{\mu}_l \ge 0 \qquad \qquad \forall l \qquad (4)$$

$$-\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \underline{\mu}_l \ge 0 \qquad \qquad \forall l \qquad (5)$$

$$\delta_{n'} = 0 \qquad \gamma \text{ (free)} \tag{6}$$

Technical Constraints: Generation

- Generation capacity can be classified into
 - Maximum generation capacity
 - Minimum generation capacity (\rightarrow not relevant here)

$$\max_{g,d,\delta} \sum_{n} (a_n \cdot d_n - \frac{1}{2}b_n \cdot d_n^2) - \sum_{u} c_u^m \cdot g_{n,u} \tag{1}$$

$$d_n - \sum_u g_{n,u} - \sum_k B_{n,k} \delta_k = 0 \qquad \lambda_n \text{ (free)} \qquad \forall n \qquad (2)$$

$$g_{n,u} \le g_{n,u}^{max} \qquad \beta_{n,u} \ge 0 \qquad \qquad \forall \ n,u \tag{3}$$

$$\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \overline{\mu}_l \ge 0 \qquad \qquad \forall \ l \qquad (4)$$

$$-\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \underline{\mu}_l \ge 0 \qquad \qquad \forall l \qquad (5)$$

$$\delta_{n'} = 0 \qquad \gamma \text{ (free)} \tag{6}$$

Technical Constraints: Load Flow Transition to DC-Load Flow

Assumptions

- 1. Neglecting reactive power flows
- 2. Small voltage angles
- 3. Standardization of node voltages to respective voltage level

Power flow P on line i from node k to node m

$$P_{km} = b_{km} \cdot \Theta_{km}$$

Losses P_L on line i from node k to node m

r_{km} Series resistance of the line

$$P_{L\,km} = r_{km} \cdot P_{km}^2$$

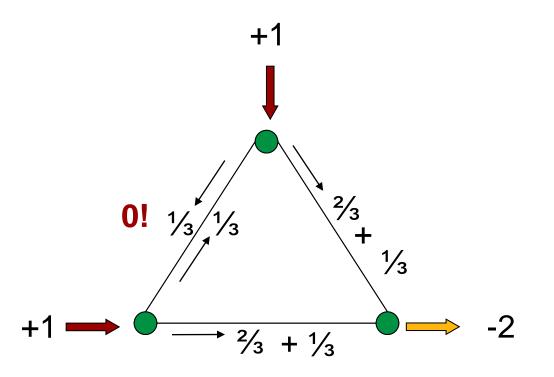
Technical Constraints: Load Flow Summary

$$\max_{g,d,\delta} \sum_{n} (a_n \cdot d_n - \frac{1}{2}b_n \cdot d_n^2) - \sum_{u} c_u^m \cdot g_{n,u} \tag{1}$$

$$d_n - \sum_u g_{n,u} - \sum_k B_{n,k} \delta_k = 0 \qquad \lambda_n \text{ (free)} \qquad \forall n \qquad (2)$$

$$g_{n,u} \le g_{n,u}^{max} \qquad \beta_{n,u} \ge 0 \qquad \qquad \forall \ n,u \tag{3}$$

$$\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \overline{\mu}_l \ge 0 \qquad \qquad \forall l \qquad (4)$$


$$-\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \underline{\mu}_l \ge 0 \qquad \qquad \forall l \qquad (5)$$

$$\delta_{n'} = 0 \qquad \gamma \text{ (free)} \tag{6}$$

Technical Constraints: Load Flow 3-Node Example

 According to the characteristics of the transmission lines, the flow over a meshed network is distributed following Kirchoff's and Ohm's Law

Model Formulation as an Optimization Problem

$$\max_{g,d,\delta} \sum_{n} (a_n \cdot d_n - \frac{1}{2}b_n \cdot d_n^2) - \sum_{u} c_u^m \cdot g_{n,u} \tag{1}$$

$$d_n - \sum_u g_{n,u} - \sum_k B_{n,k} \delta_k = 0 \qquad \lambda_n \text{ (free)} \qquad \forall n \qquad (2)$$

$$g_{n,u} \le g_{n,u}^{max} \qquad \beta_{n,u} \ge 0 \qquad \qquad \forall \ n,u \tag{3}$$

$$\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \overline{\mu}_l \ge 0 \qquad \qquad \forall \ l \qquad (4)$$

$$-\sum_{n} H_{l,n} \delta_n \le cap_l^{max} \qquad \underline{\mu}_l \ge 0 \qquad \qquad \forall \ l \tag{5}$$

$$\delta_{n'} = 0 \qquad \gamma \text{ (free)} \tag{6}$$

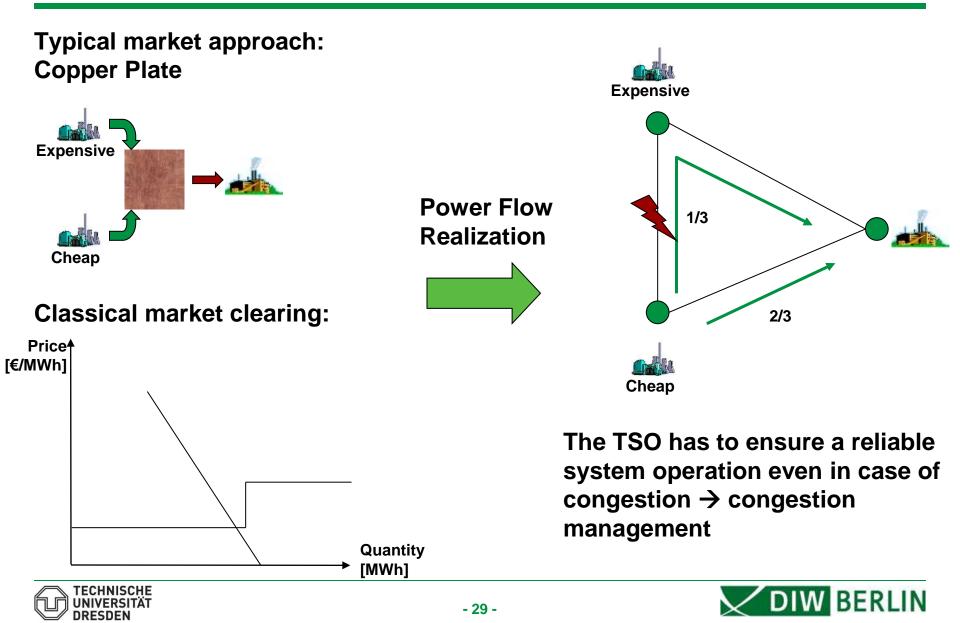
Lagrangian Function

$$\begin{split} L &= -\left(\sum_{n} (a_{n} \cdot d_{n} - \frac{1}{2}b_{n} \cdot d_{n}^{2}) - \sum_{u} c_{u}^{m} \cdot g_{n,u}\right) \\ &+ \sum_{n} \lambda_{n} \cdot \left(d_{n} - \sum_{u} g_{n,u} - \sum_{k} B_{n,k} \delta_{k}\right) \\ &+ \sum_{n,u} \beta_{n,u} \cdot \left(g_{n,u} - g_{n,u}^{max}\right) \\ &+ \sum_{l} \overline{\mu}_{l} \cdot \left(\sum_{n} H_{l,n} \delta_{n} - cap_{l}^{max}\right) \\ &+ \sum_{l} \underline{\mu}_{l} \cdot \left(-\sum_{n} H_{l,n} \delta_{n} - cap_{l}^{max}\right) \\ &+ \delta_{n'} \cdot \gamma \end{split}$$

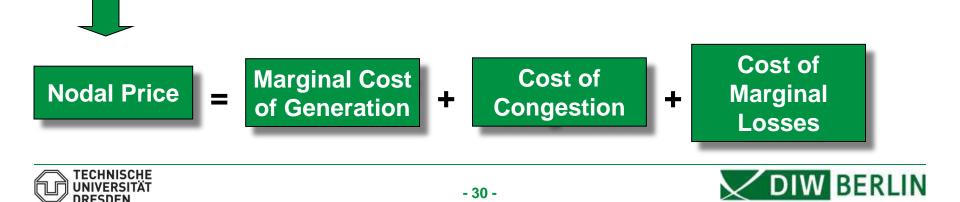
Karush-Kuhn-Tucker Conditions

$$\begin{aligned} c_u^m - \lambda_n + \beta_{n,u} &\geq 0 \quad \bot \quad g_{n,u} \geq 0 \\ -a_n + b_n \cdot d_n + \lambda_n \geq 0 \quad \bot \quad d_n \geq 0 \\ \sum_k B_{k,n} \cdot \lambda_k + \sum_n H_{l,n} \cdot \overline{\mu}_l - \sum_n H_{l,n} \cdot \underline{\mu}_l + \gamma = 0 \quad \bot \quad \delta_n \text{ (free)} \\ d_n - \sum_u g_{n,u} - \sum_k B_{n,k} \delta_k = 0 \quad \bot \quad \lambda_n \text{ (free)} \\ - \sum_n H_{l,n} \cdot \delta_n + cap_l^{max} \geq 0 \quad \bot \quad \overline{\mu}_l \geq 0 \\ + \sum_n H_{l,n} \delta_n + cap_l^{max} \geq 0 \quad \bot \quad \underline{\mu}_l \geq 0 \\ -g_{n,u} + g_{n,u}^{max} \geq 0 \quad \bot \quad \beta_{n,u} \geq 0 \\ \delta_{n'} = 0 \quad \bot \quad \gamma \text{ (free)} \end{aligned}$$

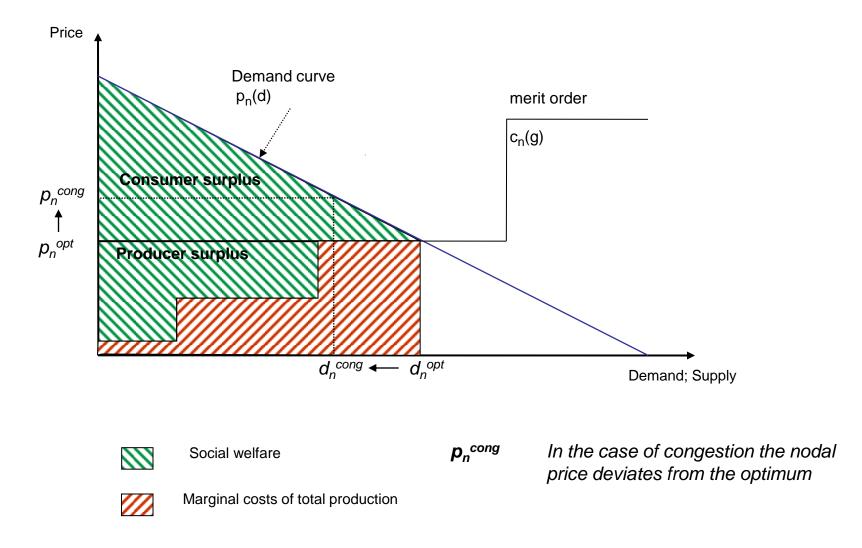
Agenda


- 1. Introduction to Electricity Markets
- 2. The Electricity Market Model (ELMOD)
- 3. Congestion Management
- 4. Exercise: 3-Node Network
- 5. Introducing Wind Power
- 6. Exercise: Stochastic Multi-Period European Network
- 7. Outlook and further developments

Literature



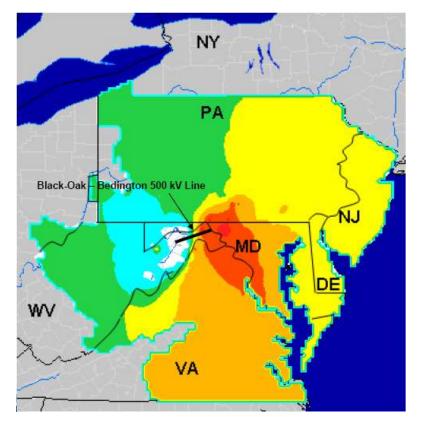
Problem: Power Flows follow Physics...



The Theory of Nodal Pricing

- Nodal Pricing (often also referred to as Locational Marginal Pricing (LMP)):
 - there is a separate price for energy for each node in the network
 - containing cost of generation, losses and transmission ("implicit auction")
- Nodal Prices result from the cost:
 - for the supply of an additional MW(h) energy
 - at a specific node in the grid
 - while using the available least-cost generation unit(s)
 - subject to network constraints

Impact on Objective Function



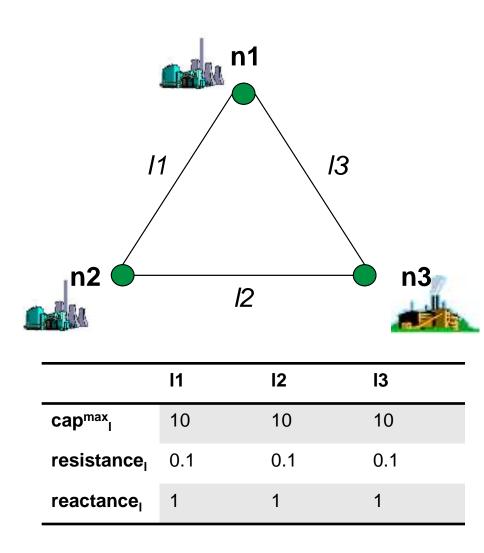
TECHNISCHE UNIVERSITÄT DRESDEN

The Realisation of Nodal Pricing PJM (2005)

- PJM (Pennsylvania, New Jersey, Maryland):
- biggest Independent System Operator (ISO) in the world
- 134 GW peak load
- 165 GW generation capacities
- 728 TWh annual consumption
- 56000 miles transmission lines
- 164000 square miles territory
- including 13 states
- 19% of US GDP produced in PJM

Locational Price Distribution • Source: Ott, 2005

- Nodal Pricing not applied in Europe
- European countries use zonal pricing
 - Price zones fixed and equal to country (e.g. Germany, Belgium, France)
 - Price zones fixed, but several zones within a country (e.g. Italy, Norway)
 - Price zones flexible according to network congestion \rightarrow Nodal Pricing
- Implementation of zonal pricing in ELMOD
 - Additional restriction which ensures equality of prices with a price zone
 - a(n) + b(n)*q(n) =e= p(z) forall nodes n in zone z


Agenda

- 1. Introduction to Electricity Markets
- 2. The Electricity Market Model (ELMOD)
- 3. Congestion Management
- 4. Exercise: 3-Node Network
- 5. Introducing Wind Power
- 6. Exercise: Stochastic Multi-Period European Network
- 7. Outlook and further developments

Literature

Exercise 3-Node Network

TECHNISCHE UNIVERSITÄT DRESDEN

	n1	n2	n3
a _n	1	1	10
b _n	1	1	1
gen ^{max} n,u1	10 MWh		
gen ^{max} n,u2		10 MWh	
gen ^{max} n,u3		10 MWh	
C _{n,u1}	2 €/MWh		
C _{n,u2}		1 €/MWh	
C _{n,u3}		3€/MWh	

Source: Gabriel & Leuthold (2010)

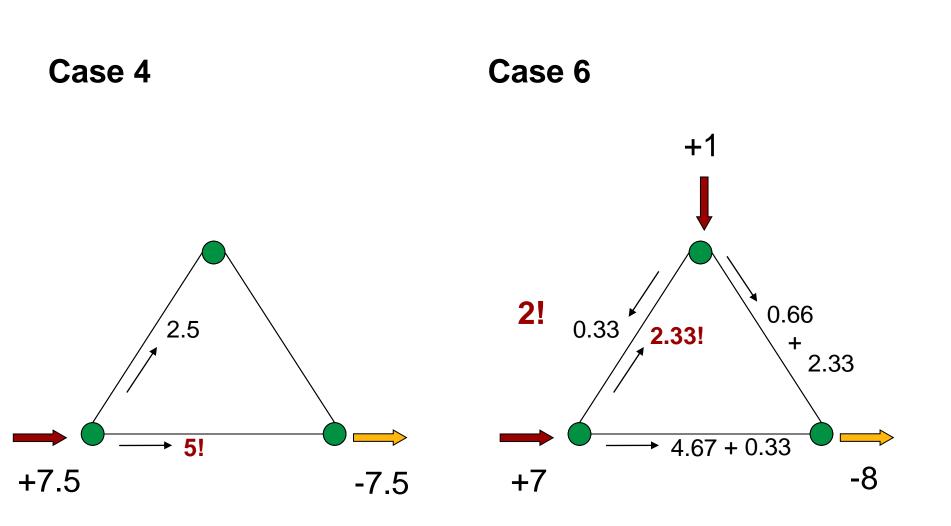
Exercise 3-Node Network

OPEN GAMS OPEN OWS_3N_elmod.gms

Exercise 3-Node Network

- Adjust the capacity of transmission lines!
- Analyze the impact on model results (prices, demand, generation)!

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
cap ^{max} 11	3	2	10	10	2	2
cap ^{max} _{l2}	10	10	6	5	6	5
cap ^{max} _{I3}	10	10	10	10	10	10



Exercise 3-Node Network

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
cap ^{max} 11	3	2	10	10	2	2
cap ^{max} _{I2}	10	10	6	5	6	5
cap ^{max} _{I3}	10	10	10	10	10	10
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
flow _{I1}	3	2	3	2.5	2	2
flow _{I2}	-6	-5.25	-6	-5	-5.25	-5
flow _{I3}	-3	-3.25	3	-2.5	-3.25	-3
cons _{n3}	9	8.5	9	7.5	8.5	8
price _{n3}	1	1.5	1	2.5	1.5	2

Exercise 3-Node Network


Agenda

- 1. Introduction to Electricity Markets
- 2. The Electricity Market Model (ELMOD)
- 3. Congestion Management
- 4. Exercise: 3-Node Network
- 5. Introducing Wind Power
- 6. Exercise: Stochastic Multi-Period European Network
- 7. Outlook and further developments

Literature

Wind mills in medieval times

14th century windmill; http://en.wikipedia.org/wiki/History_of_wind_power

TECHNISCHE UNIVERSITÄT DRESDEN

Charles F. Brush's windmill (built in 1887)

12kW, 17 meter diameter rotor; http://en.wikipedia.org/wiki/History_of_wind_power

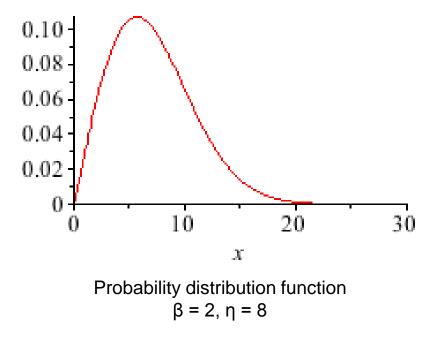
TECHNISCHE UNIVERSITÄT DRESDEN

Research wind turbines in the US (built in 1981)

NASA/DOE, 7.5 MW; http://en.wikipedia.org/wiki/History_of_wind_power

Probability distribution of wind speed

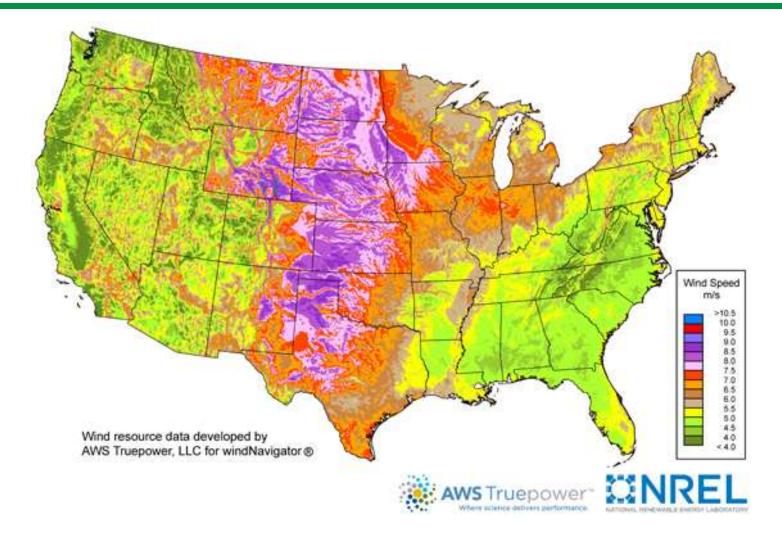
Weibull distribution (two parameters)


- Probability distribution function

$$f(x) = \frac{\beta}{\eta} \left(\frac{x}{\eta}\right)^{\beta-1} \exp\left(-\left(\frac{x}{\eta}\right)^{\beta}\right), \quad x \ge 0$$

x...wind speed

- β ...shape parameter
- η ...scale parameter
- Cumulative distribution function


$$F(x) = 1 - \exp\left(-\left(\frac{x}{\eta}\right)^{\beta}\right), \quad x \ge 0$$

- Mean
$$mean = \eta \cdot \Gamma\left(\frac{1}{\beta} + 1\right)$$

• The Weibull distribution is commonly used for wind speed probability using a shape parameter β = 2 for Europe and North America

Average wind speed for the USA

Source: http://www.windpoweringamerica.gov/wind_maps.asp

TECHNISCHE UNIVERSITÄT DRESDEN

Power of wind

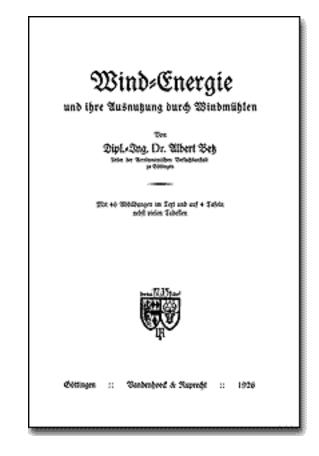
Newtons second law of motion:

 $P = \frac{1}{2}\rho x^3 \pi r^2$

P...power of wind ρ...density of dry air

x...wind speed

r...radius of the rotor


Betz law:

TECHNISCHE

UNIVERSITÄT

DRESDEN

Formulated by German physicist Albert Betz in 1919 Published "Wind-Energie" in 1926 "you can only convert less than 16/27 (or 59%) of the kinetic energy in the wind to mechanical energy using a wind turbine"

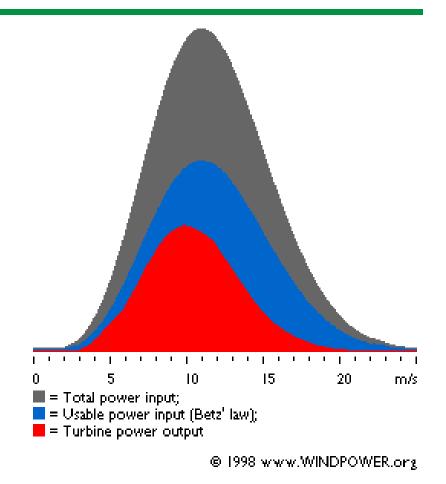
Danish Wind Industry Association – http://guidedtour.windpower.org/

Power Density Function

Distribution of wind power:

Probability of wind speed x power of wind

$$\frac{\beta}{\eta} \left(\frac{x}{\eta}\right)^{\beta-1} \exp\left(-\left(\frac{x}{\eta}\right)^{\beta}\right) \quad \times \quad \frac{1}{2} \rho x^3 \pi r^2$$


Important message:

Bulk of wind energy is found to the right of the mean of wind speed!

• Further consideration:

NIVERSITAT

Cut-in and *cut-out* wind speed: wind turbines cannot operate outside of a certain wind speed band (3-25 m/s)

Danish Wind Industry Association – http://guidedtour.windpower.org/

Some References on Electricity Data, Wind, etc.

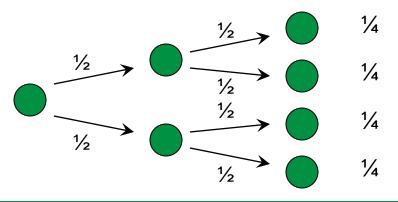
References for Electricity Data

- European Network of Transmission System Operators for Electricity
 - https://www.entsoe.eu/resources/data-portal/
- EUROSTAT
 - http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
- References for Wind Power Generation
 - Danish Wind Industry Association
 - http://guidedtour.windpower.org
 - http://www.talentfactory.dk/
 - US Department of Energy
 - http://www.windpoweringamerica.gov/
 - http://www.eere.energy.gov/

Agenda

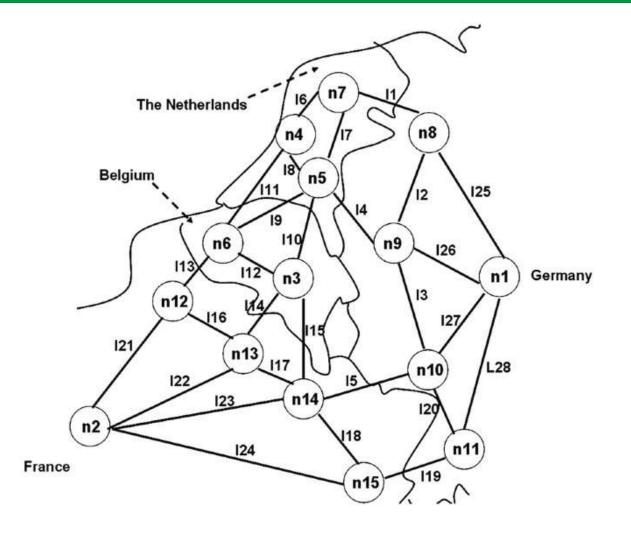
- 1. Introduction to Electricity Markets
- 2. The Electricity Market Model (ELMOD)
- 3. Congestion Management
- 4. Exercise: 3-Node Network
- 5. Introducing Wind Power
- 6. Exercise: Stochastic Multi-Period European Network
- 7. Outlook and further developments

Literature



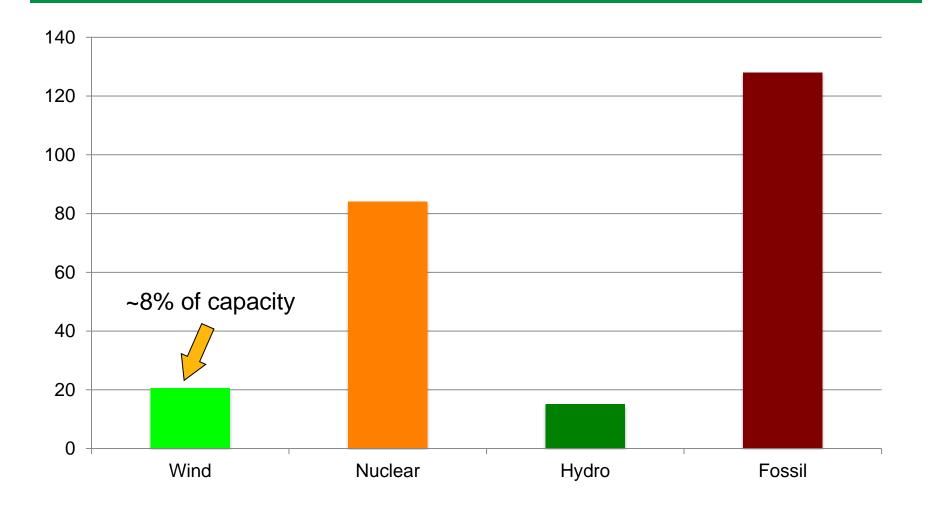
Extension to a multi-period-model

- Additional characteristic of the model:
 - Ramp-up costs of power generation units
- Time-varying factors:
 - Demand (load curve)
 - Wind input
- Deterministic vs. stochastic optimization
 - Deterministic: future values of time-varying factors are known with certainty


- Stochastic: scenarios of future values are known with respective probabilities

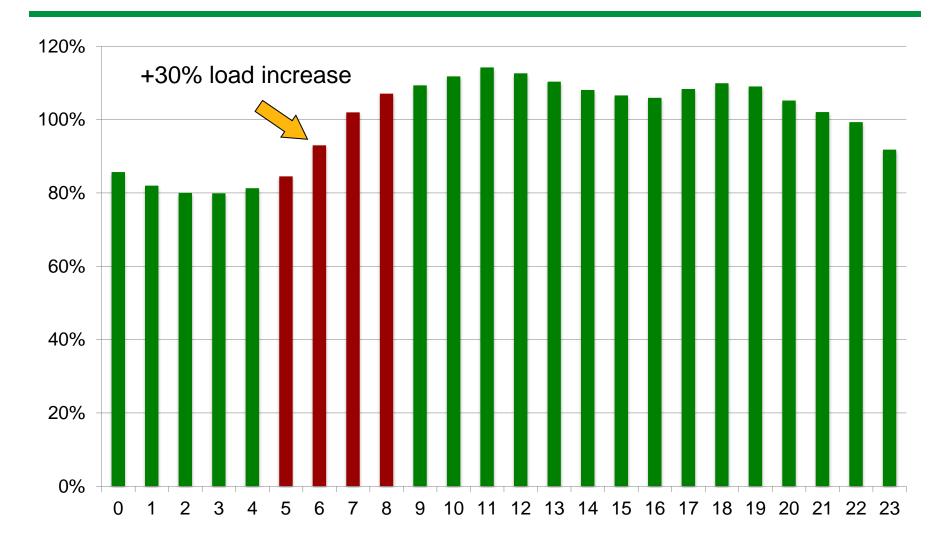
Probability of scenario branch

European Grid Representation (15 nodes)


From Gabriel and Leuthold (2010), based on Neuhoff et al. (2005)

TECHNISCHE UNIVERSITÄT DRESDEN

Maximum generation capacity


Maximum generation capacity in 15-node European grid example by fuel/unit

TECHNISCHE

UNIVERSITÄT

Typical load curve

Relative to daily average demand

GAMS Exercise: 15 Node European Network

- Focus: time period 5 am 9 am
 - Determine the optimal ramp-up decisions from the point of the ISO
- Assumptions:
 - Load curve exogenously given (deterministic)
 - Ramp-up at no cost in first period
 - Wind power must be fed into the grid
 - No wind generation at 5 am
 - Wind generation jumps discretely at the full hour
 - Wind generation relative to total capacity identical at each node

Notation of the multi-period model (I)

Sets	$n, k \dots$ nodes $n' \dots$ swing bus $u \dots$ generation units (by fuel) $l \dots$ power lines $s, ss \dots$ scenarios
Parameters	A(s) set of ancestor scenario (i.e., previous scenario) a_n intercept of inverse demand function b_n slope of inverse demand function c_u^m marginal production costs of generation c_u^r ramp-up costs
	cap_l^{max} maximum thermal capacity of power lines $g_{s,n}^{wind}$ wind generation (exogenous and obligatory feed-in) prob(s) probability of scenario $H_{l,k}$ branch susceptance matrix $B_{n,k}$ node susceptance matrix

Notation of the multi-period model (II)

Variables

- $d_{s,n}$... electricity consumption
- $g_{s,n,u}$... electricity generation
- $g_{s,n,u}^{up}$... electricity generation ramp-up
 - $\delta_{s,n}$... phase angle (decision variable of ISO)
 - $\lambda_{s,n}$... dual for power balance constraint
- $\beta_{s,n,u}$... dual for maximum generation capacity constraint
- $\eta_{s,n,u}$... dual for ramp-up constraint
 - $\overline{\mu}_{s,l}$... dual for line capacity constraint (positive direction)
 - $\underline{\mu}_{s,l}$... dual for line capacity constraint (negative direction)
 - γ_s ... dual for swing bus constraint

A stochastic multi-period welfare optimization problem

$$\max_{g,g^{up},d,\delta} \sum_{s,n} prob_s \cdot \left[(a_n \cdot d_{s,n} - \frac{1}{2}b_n \cdot d_{s,n}^2) - \sum_u c_u^m \cdot g_{s,n,u} - \sum_u c_u^r \cdot g_{s,n,u}^{up} \right]$$
(1)

$$d_{s,n} - \sum_{u} g_{s,n,u} - g_{s,n}^{wind} + \sum_{k} B_{n,k} \delta_{s,k} = 0 \qquad \lambda_{s,n} \text{ (free)} \qquad \forall s,n \qquad (2)$$

$$g_{s,n,u} \le g_{n,u}^{max} \qquad \beta_{s,n,u} \ge 0 \qquad \forall \ s,n,u \qquad (3)$$

$$g_{s,n,u} - g_{A(s),n,u} - g_{s,n,u}^{up} \le 0 \qquad \eta_{s,n,u} \ge 0 \qquad \forall \ s,n,u$$
(4)

$$\sum_{n} H_{l,n} \delta_{s,n} \le cap_l^{max} \qquad \overline{\mu}_{s,l} \ge 0 \qquad \qquad \forall \ s,l \qquad (5)$$

$$-\sum_{n} H_{l,n} \delta_{s,n} \le cap_l^{max} \qquad \underline{\mu}_{s,l} \ge 0 \qquad \qquad \forall \ s,l \qquad (6)$$

$$\delta_{s,n'} = 0 \qquad \gamma_s \text{ (free)} \qquad \forall s \qquad (7)$$

Karush-Kuhn-Tucker conditions

$$-prob_{s} \cdot c_{u}^{m} + \lambda_{s,n} - \beta_{s,n,u} - \eta_{n,u,s} + \sum_{ss \in A(s)} \eta_{n,u,ss} \le 0 \quad \bot \quad g_{s,n,u} \ge 0 \tag{8}$$

$$prob_s \cdot (a_n - b_n \cdot d_{s,n}) - \lambda_{s,n} \le 0 \quad \perp \quad d_{s,n} \ge 0$$
 (9)

$$-prob_s \cdot c_u^r + \eta_{n,u,s} \le 0 \quad \perp \quad g_{s,n,u}^{up} \ge 0 \quad (10)$$

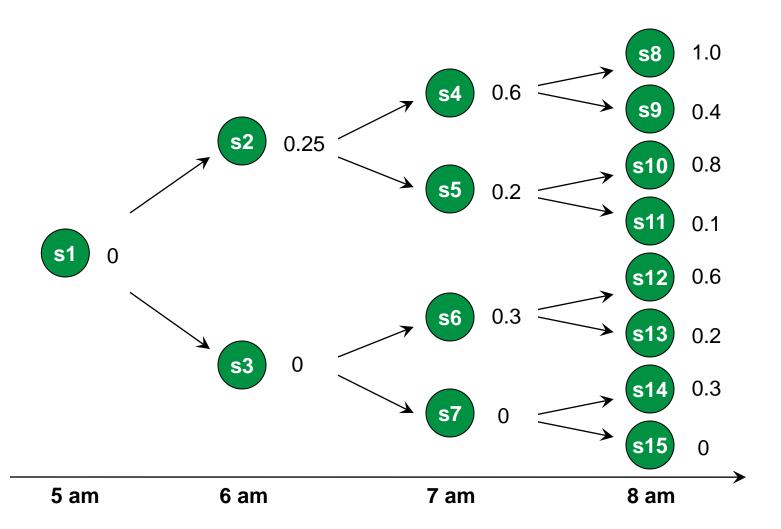
$$\sum_{nn} B_{nn,n} \cdot \lambda_{s,nn} - \sum_{l} H_{l,n} \cdot \overline{\mu}_{s,l} + \sum_{l} H_{l,n} \cdot \underline{\mu}_{s,l} - \gamma_s = 0 \quad \bot \quad \delta_{s,n} \text{ (free)} \quad (11)$$

$$d_{s,n} - \sum_{u} g_{s,n,u} - g_{s,n}^{wind} + \sum_{k} B_{n,k} \delta_{s,k} = 0 \quad \perp \quad \lambda_{s,n} \text{ (free)} \quad (12)$$

$$g_{s,n,u} - g_{n,u}^{max} \le 0 \quad \perp \quad \beta_{s,n,u} \ge 0 \quad (13)$$

$$g_{s,n,u} - g_{A(s),n,u} - g_{s,n,u}^{up} \le 0 \quad \perp \quad \eta_{s,n,u} \ge 0 \quad (14)$$

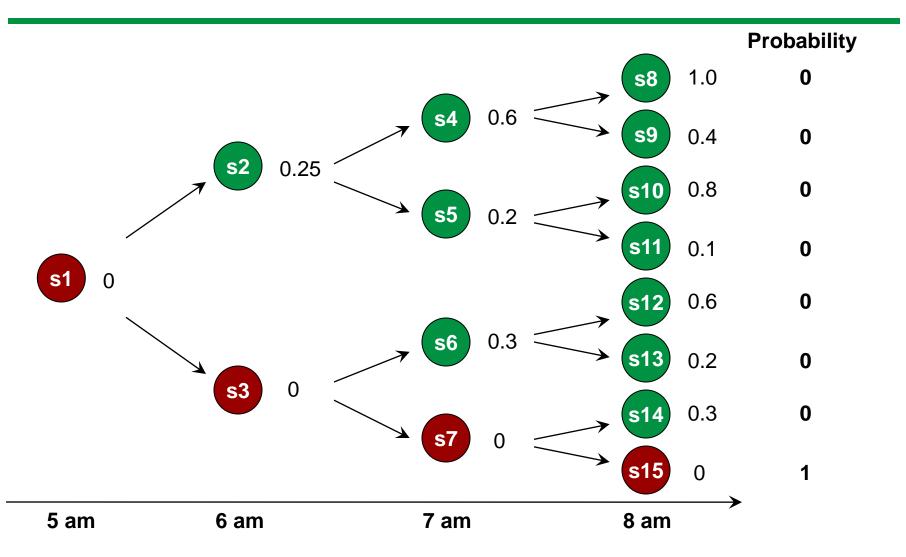
$$\sum_{n} H_{l,n} \delta_{s,n} - cap_l^{max} \le 0 \quad \bot \quad \overline{\mu}_{s,l} \ge 0 \tag{15}$$


$$-\sum_{n} H_{l,n} \delta_{s,n} - cap_l^{max} \le 0 \quad \perp \quad \underline{\mu}_{s,l} \ge 0 \tag{16}$$

$$\delta_{s,n'} = 0 \quad \perp \quad \gamma_s \text{ (free)} \qquad (17)$$

Scenario tree – stochastic wind power generation

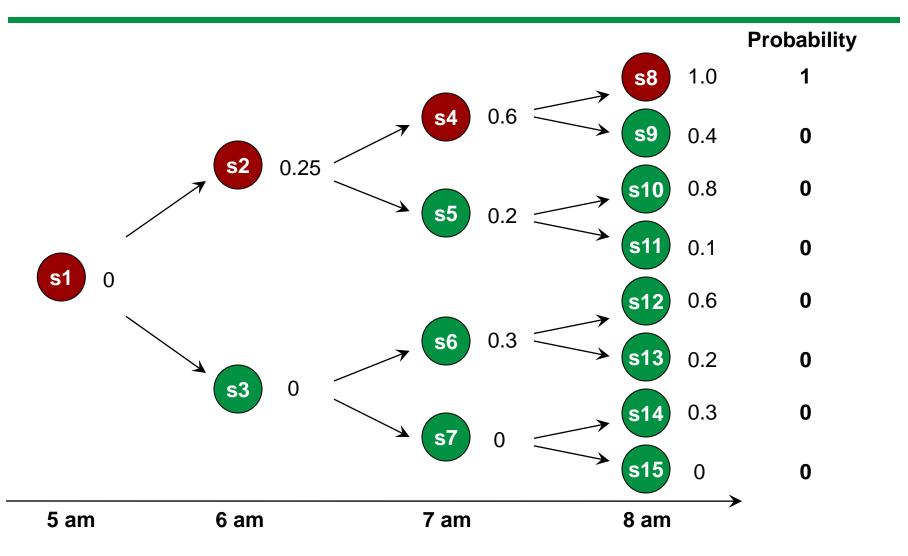
TECHNISCHE


UNIVERSITÄT

DRESDEN

Scenario tree and respective wind power relative to maximum capacity

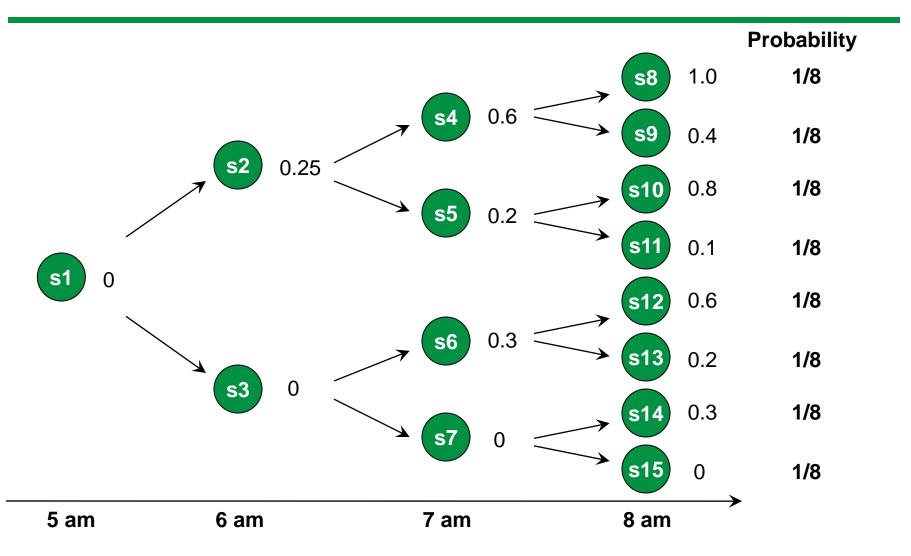
Deterministic optimization – no wind power generation


Scenario tree and respective wind power relative to maximum capacity

TECHNISCHE

UNIVERSITÄT

Deterministic optimization – full wind power at 9am


Scenario tree and respective wind power relative to maximum capacity

TECHNISCHE

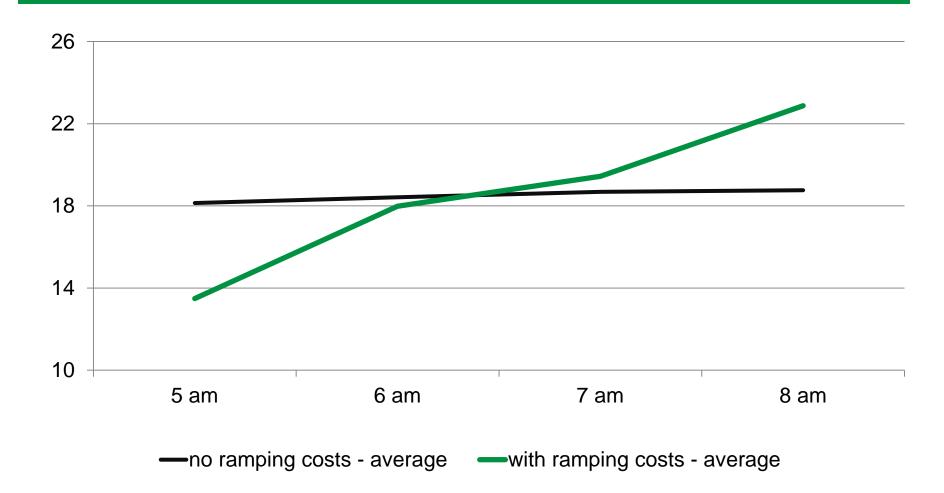
UNIVERSITÄT

Stochastic Optimization – uniform probability

Scenario tree and respective wind power relative to maximum capacity

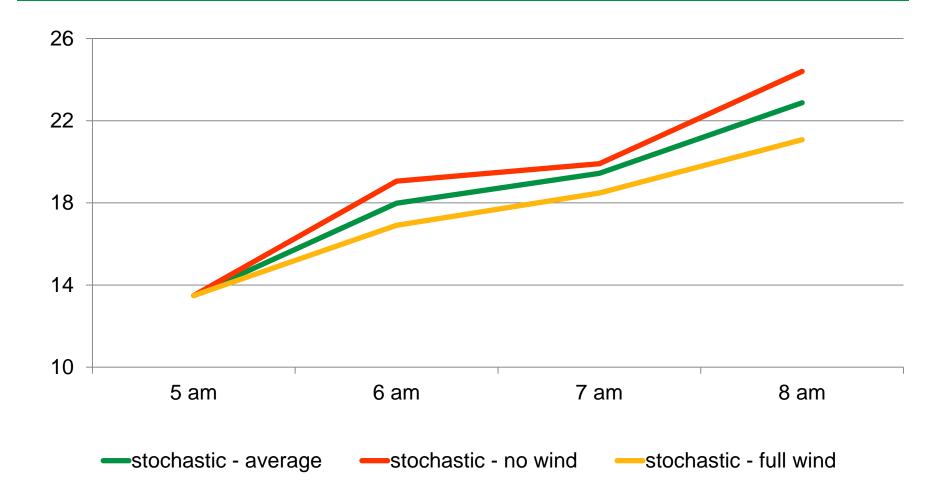
TECHNISCHE

UNIVERSITÄT


How to compare scenario simulation results?

- Objective value of optimization problem: welfare
 - Difficult to grasp this value intuitively
- Final demand or wholesale prices
 - The model is built on locational marginal prices, so there are no "prices" similar to the prices observed in the real world
- Dual variables (shadow prices) to the energy balance constraint (λ)
 - Which nodes to compare?
 - How to weight results from different nodes?
- Consumption-weighted average of energy balance constraint duals
 - This is only an index and may hide big variations in welfare/shadow prices

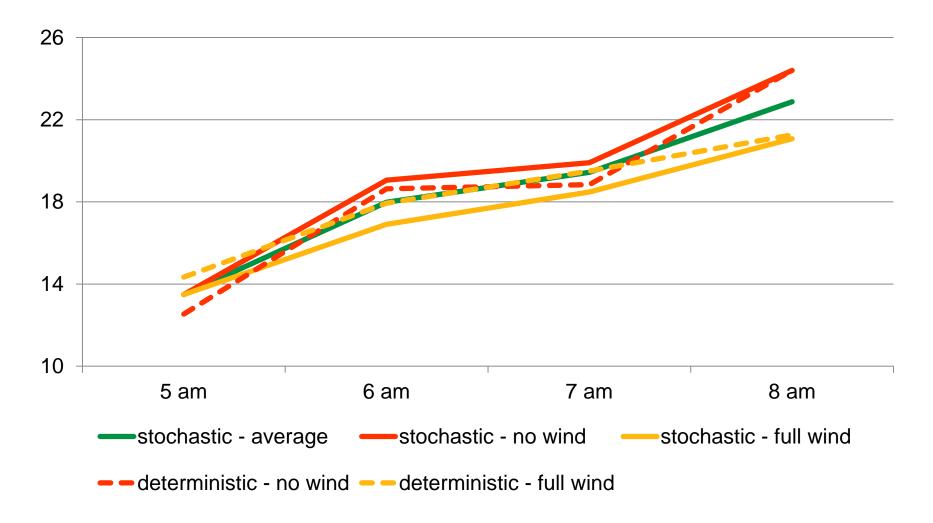
Results – stochastic model with vs. without ramping costs



Consumption-weighted energy balance constraint dual (interpreted as price in €/MWh)

INIVERSITAT

Results – variation within stochastic optimization



Consumption-weighted energy balance constraint dual (interpreted as price in €/MWh)

INIVERSITÄT

Results – deterministic vs. stochastic optimization

Consumption-weighted energy balance constraint dual (interpreted as price in €/MWh)

INIVERSITAT

Conclusions: stochastic vs. deterministic optimization

- Ramp-up costs lead to lower costs at the beginning of the time horizon, as power plants are ramped up earlier
 - Watch out: there is a bias in this model due to zero ramp-up costs in the first period by assumption
- This effect is stronger in a deterministic no-wind scenario
- Higher wind input reduces prices (shadow prices to energy balance)
- Uncertainty leads to hedging by the ISO
- Prices converge in last period of deterministic vs. stochastic optimization

Exercise: Stochastic Multi-Period European Network

OPEN GAMS OPEN OWS_EUR_elmod.gms

Possible Projects

- Nice and easy start
 - Variation of ramping-costs
 - Variation of probabilities/wind power generation of scenarios
 - Analysing the impact of stochasticity on market results (determinisitic vs. Stochastic model setup, EVPI)
- Investment analysis (policy evaluation)
 - Expansion of wind generation capacity
 - Investment in new power lines
- Model horizon and data
 - Extension of observation period
 - Extension of scenario tree
 - Norwegian grid representation
- Model developments
 - Implementation of endogenous pumped-hydro storage dispatch
 - Implementation of zonal pricing

Agenda

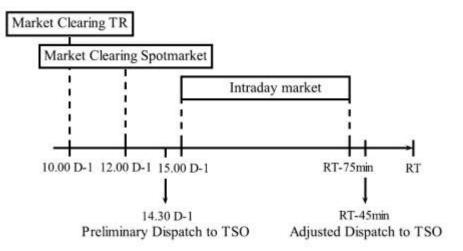
- 1. Introduction to Electricity Markets
- 2. The Electricity Market Model (ELMOD)
- 3. Congestion Management
- 4. Exercise: 3-Node Network
- 5. Introducing Wind Power
- 6. Exercise: Stochastic Multi-Period European Network
- 7. Outlook and further developments

Literature

A better representation of ramping

- In our example, ramping costs are...
 - Proportional to the level of ramped-up generation
 - Not related to the duration of down-time (i.e., cold-start vs. hot start)
- A more realistic representation would be possible using binary variables
 - Introduce a variable to indicate whether unit u is running in period t
 - Associate costs with this binary variable in the objective function
 - May introduce further technical/operational constraints such as minimum up-time requirement after ramping
- Mathematically, this leads to a Mixed Integer Problem (MIP)
 - More sophisticated and complex, considerably longer run-time of computation
 # binary variables = # time steps x # units x # nodes ...

- In our example, we assumed perfect competition as well as welfare-optimal dispatch and congestion management
- One could consider Cournot market power...
 - Simultaneous-move game by all generators
 - Easily applicable in a Mixed Complementarity Problem (MCP) framework by adding the conjectural variation in the KKT's of the suppliers
- One could consider Stackelberg market power...
 - Sequential-move game: a Stackelberg leader optimizes under the constraint of an equilibrium in the market
 - Mathematically leads to a Mathematical Problem under Equilibrium Constraints (MPEC)


Daily German Electricity Markets

- 12.00: Dayahead market (Spotmarket)
 - Central auction at EEX
 - Clearing for 24h of following day
- 14.30: Preliminary dispatch timetable
 - § 5 (1) StromNZV
- 15:00: Start of intraday market
 - Bilateral or standardized (EEX)
 - Closure of market RT-75min
- RT-45min: Final dispatch timetables
 - § 5 (2) StromNZV

TECHNISCHE

UNIVERSITÄT

- Management of network constraints
- RT: Balancing of unexpected deviations

Modelling Approach

Dayahead Market Model Reserve Market	Intraday Market Model	Dispatch Model	Balancing
12.00 D-1	Rolling Planning	1h before RT	RT
 24h UC & dispatch of power plants 	 Time variable (24h) UC & dispatch given restrictions of dayahead and previous intraday market 	 Redispatch 	 Hourly Dispatch of reserve capacity
 Initial wind forecast for delivery day 	 Arrival of new wind forecasts 	 Arrival of new wind forecasts 	 Realization of wind generation

TECHNISCHE UNIVERSITÄT DRESDEN

Dayahead Market Model

Given: wind forecast, (past power plant plans)

Decide about: plant status, generation, reserve provision, storage use

min (Generation Cost + Startup Cost)

subject to:

Generation	=	Demand
Reserve Capacity	=	Reserve Demand
Generation	<=	Installed Capacity
Generation	>=	Minimum Generation (if online)
Offline Time	>=	Minimum Offline Time
Online Time	>=	Minimum Online Time

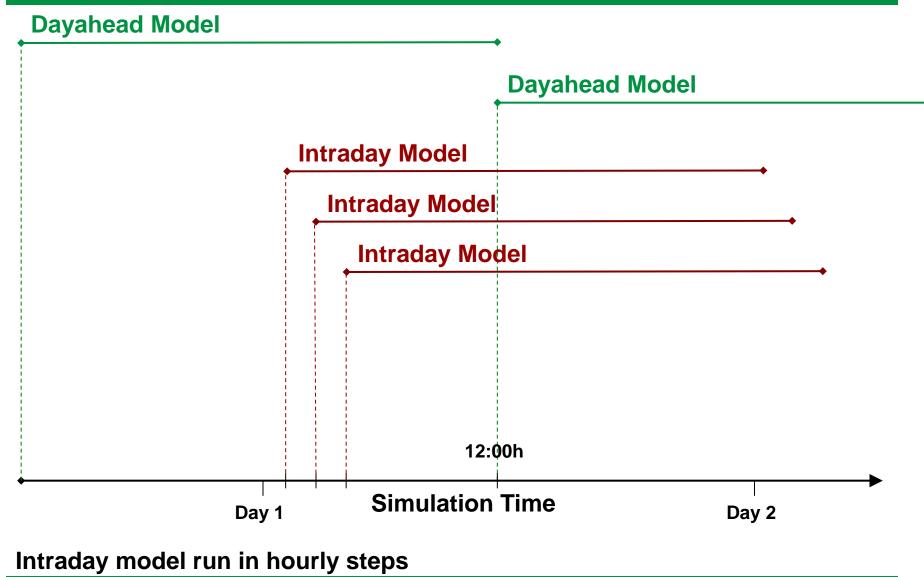
+ Storage restrictions, Wind Shedding

Intraday Market Model

Given: new wind forecast, current plant status, reserve capacities Decide about: plant status, generation, reserve provision, storage use

min (Generation Cost + Startup Cost)

subject to:


Generation	=	Demand
Generation	<=	Installed Capacity (net of reserve)
Generation	>=	Minimum Generation (net of reserve)
Offline Time	>=	Minimum Offline Time
Online Time	>=	Minimum Online Time

+ Storage restrictions, Wind Shedding

+ Running requirements given by previous decisions (reserve, minimum times)

Rolling Planning

DIW BERLIN

Thank you very much for your attention! Any questions or comments?

DHuppmann@diw.de Friedrich.Kunz@tu-dresden.de

Literature

- S.A. Gabriel and F.U. Leuthold. Solving discretely-constrained MPEC problems with applications in electric power markets. *Energy Economics*, 32(1):3–14, 2010.
- F.U. Leuthold, H. Weigt, and C. von Hirschhausen. A Large-Scale Spatial Optimization Model of the European Electricity Market. *Networks and Spatial Economics*, 2010.
- K. Neuhoff, J. Barquin, M.G. Boots, A. Ehrenmann, B.F. Hobbs, F.A. Rijkers, and M. Vázquez. Network-constrained cournot models of liberalized electricity markets: the devil is in the details. *Energy Economics*, 27(3):495 – 525, 2005.
- F.C. Schweppe, M.C. Caramanis, R.D. Tabors, and R. E. Bohn: *Spot Pricing of Electricity*. Kluwer, Boston, 1988.
- H. Stigler and C. Todem. Optimization of the Austrian Electricity Sector (Control Zone of VERBUND APG) under the Constraints of Network Capacities by Nodal Pricing. *Central European Journal of Operations Research*, 13:105–125, 2005.

