Generation + Transmission Investment: Decision Making under Uncertainty

Antonio J. Conejo C. Ruiz, J. Kazempour, L. Baringo Univ. Castilla – La Mancha Spain, 2011

- 1. Introduction
- 2. Generic model: generation plus transmission expansion planning: (G+T)EP
- 3. TEP Centralized framework
- 4. TEP Market framework
- 5. GEP Centralized framework
- 6. GIP Market framework
- 7. RGI
- 8. Equilibria
- 9. Challenges

General framework (G+T)EP

Generic model: (G+T)EP (decision-making)

- ✓ Model to generate best alternative G+T plans (stochastic MILP, stochastic MPEC)
- ✓ Plans: security checking
- ✓ Plans: stability checking
- ✓ Plans: updating
- ✓ Papers: REE

✓ Uncertainty: stochastic modeling

✓ Market: complementarity modeling

Model (features)

- ✓ Static vs. dynamic (multi-stage) modeling
- Pseudo-dynamic: chronological modeling
- ✓ Uncertainty!
- ✓ Scenario modeling
 - ✓ Load
 - \checkmark Fuel cost
 - ✓ Renewable sources
 - ✓ Rival behavior

Model: static (features)

- Perfect foresight (in target year)
- ✓ How many alternatives?
- Imperfect foresight (in target year)
- ✓ Many alternatives!

Perfect foresight (data & results)

- ✓ Data (for target year)
 - ✓ Demand (D)
 - ✓ Conventional generation units (CGU)
 - ✓ Renewable generation units (RGU)
 - ✓ Rival data
- Expansion alternatives
 - ✓ Candidate CGUs
 - ✓ Candidate RGUs
 - Candidate transmission lines (TL)

Perfect foresight (data and results)

- ✓ Results
 - ✓ Which RGUs to build
 - ✓ Which CGUs to build
 - \checkmark Which TLs to build

Perfect foresight (optimization algorithm)

Build alternative investment plans (IP)

Has to be done cleverly!

Evaluate alternative investment plans

Perfect foresight (how many IPs?)

Elements	Plans
2	4
3	8
4	16
***	***
10	1024
20	1,048,576
50	1.1259e+015

nelements

2ⁿ altenatives

$$2^n = \sum_{i=0}^n \binom{n}{i}$$
 alternatives

Perfect foresight (How many IPs?)

Α	В	С
0	0	0
1	0	0
0	1	0
0	0	1
1	1	0
1	0	1
Ο	1	1
1	1	1

Imperfect foresight (scenarios)

Scenario	Profit/Cost	Probability
1	<i>C</i> ¹	π_1
•••	•••	•••
m	C _m	π_m

$$\sum_{i=1}^{m} \pi_i = 1$$
$$C = \sum_{i=1}^{m} \pi_i C_i$$

Chronological model (pseudo-dynamic approach)

- ✓ Target year solution known
- Investment alternatives restricted to the "target" year solution
- ✓ Solve again "year by year"
- ✓ Solve again dynamically

References

 F. Soto, R. de Dios, A. J. Conejo, "Planning to Expand? Looking at mainland Spain to see the importance of wellplanned transmission expansion". IEEE Power and Energy Magazine. Vol. 5, No. 5, pp. 64-70. September-October 2007.

- ✓ Perfect foresight
- Imperfect foresight (scenarios)
- ✓ MILP formulation
- ✓ Solution: branch-and-cut (B&C) vs. decomposition
- ✓ Heuristics? No, thanks!
- ✓ Some papers: de la Torre

- ✓ Large scale problem
- ✓ Mixed-integer problem
- ✓ Nonlinear problem
- ✓ Multiple objectives
- ✓ Uncertainty
- ✓ Data availability?
- ✓ Hard to solve!

- ✓ SO: System Operator
 - ✓ Get optimal plans
 - ✓ Plans: security checking
 - ✓ Plans: stability checking
 - ✓ Plans: updating

References

- N. Alguacil, A. L. Motto, A. J. Conejo, "Transmission Expansion Planning: A Mixed-Integer LP Approach". IEEE Transactions on Power Systems. Vol. 18, No. 3, pp. 1070-1077. August 2003.
- S. de la Torre, A. J. Conejo, J. Contreras, "Transmission Expansion Planning in Electricity Markets". IEEE Transactions on Power Systems. Vol. 23, No. 1, pp. 238-248. February 2008.

Optimization Problems constrained by other Optimization Problems (OPcOP)

OPcOP

Optimization Problem constrained by other Optimization Problems (OPcOP)

Objective function (minimize or maximize)

subject to:

Constraints

Constraining optimization problem 1

Constraining optimization problem n

OPcOP

$$\begin{split} & \operatorname{Minimize}_{\{x\}\cup\{x^1,\ldots,x^n\}\cup\{\lambda^1,\ldots,\lambda^n,\mu^1,\ldots,\mu^n\}}_{\begin{array}{c} f(x,x^1,\ldots,x^n,\lambda^1,\ldots,\lambda^n,\mu^1,\ldots,\mu^n) \\ \text{subject to:} \\ & h(x,x^1,\ldots,x^n,\lambda^1,\ldots,\lambda^n,\mu^1,\ldots,\mu^n) = 0 \\ & g(x,x^1,\ldots,x^n,\lambda^1,\ldots,\lambda^n,\mu^1,\ldots,\mu^n) \leq 0, \\ & \begin{cases} \operatorname{Minimize}_{x^1} & f^1(x,x^1,\ldots,x^n) \\ & \operatorname{subject to:} \\ & h^1(x,x^1,\ldots,x^n) = 0 \quad (\lambda^1) \\ & g^1(x,x^1,\ldots,x^n) \leq 0 \quad (\mu^1), \\ & \vdots \\ \end{cases} \\ & \begin{cases} \operatorname{Minimize}_{x^i} & f^i(x,x^1,\ldots,x^n) \\ & \operatorname{subject to:} \\ & h^i(x,x^1,\ldots,x^n) = 0 \quad (\lambda^i) \\ & g^i(x,x^1,\ldots,x^n) \leq 0 \quad (\mu^i), \\ & \vdots \\ \end{cases} \\ & \begin{cases} \operatorname{Minimize}_{x^n} & f^n(x,x^1,\ldots,x^n) \\ & \operatorname{subject to:} \\ & h^n(x,x^1,\ldots,x^n) = 0 \quad (\lambda^n) \\ & g^n(x,x^1,\ldots,x^n) \leq 0 \quad (\mu^n). \end{cases} \end{split}$$

Mathematical Program with Equilibrium Constraints (MPEC)

Objective function (minimize or maximize)

 $\operatorname{Constraints}$

subject to:

KKT conditions of constraining problem 1

KKT conditions of constraining problem \boldsymbol{n}

MPEC

$$\begin{split} \text{Minimize}_{\{x\}\cup\{x^1,\dots,x^n\}\cup\{\lambda^1,\dots,\lambda^n,\mu^1,\dots,\mu^n\}} \\ & f(x,x^1,\dots,x^n,\lambda^1,\dots,\lambda^n,\mu^1,\dots,\mu^n) \\ \text{subject to:} \\ & h(x,x^1,\dots,x^n,\lambda^1,\dots,\lambda^n,\mu^1,\dots,\mu^n) = 0 \\ & g(x,x^1,\dots,x^n,\lambda^1,\dots,\lambda^n,\mu^1,\dots,\mu^n) \leq 0, \\ & \nabla_{x^i}f^i(x,x^1,\dots,x^n) + \lambda^{i^T}\nabla_{x^i}h^i(x,x^1,\dots,x^n) + \\ & \mu^{i^T}\nabla_{x^i}g^i(x,x^1,\dots,x^n) = 0, \quad i = 1,\dots,n \\ & h^i(x,x^1,\dots,x^n) = 0, \quad i = 1,\dots,n \\ & 0 \leq \mu^i \bot - g^i(x,x^1,\dots,x^n) \geq 0, \quad i = 1,\dots,n. \end{split}$$

MPEC

TEP: market framework

- ✓ TSO: Transmission System Operator (EU)
- ✓ RTO: Regional Transmission Operator (US)
- ✓ Transmission investors
 - ✓ Get optimal plans
 - Plans: security checking
 - Plans: stability checking
 - ✓ Plans: updating

- ✓ Á la EU: TSO in charge and controlling (Transmission System Operator paradigm)
- ✓ Which objective function?
- ✓ Uncertainty: scenarios
- ✓ Single vs. multiple decision points
- ✓ Bilevel → Stochastic MPEC → MILP
- ✓ Solution: B&C vs. decomposition
- ✓ Some papers: Garcés

What?

Transmission Expansion Planning (TEP) within a market environment:

- Pool based market
- Transmission: regulated monopoly
- Transmission System Operator (TSO) paradigm
- Minimum investment cost, minimum unserved energy and Maximum average social welfare (SW)

Outline

- Model paradigm •
- Model structure
- MILP
- Example
- **Final remarks**

Model paradigm

Market scenarios

- Different load growth levels
- Load growth at different locations
- Line contingencies

Proxy for "promoting trade"

Model structure (bi-level)

Minimize Investment cost + Unserved energy cost subject to:

Investment constraints

Maximize social welfare for scenario 1

Maximize social welfare for scenario n

Model structure

Decision variables (bilevel model):

- Investment decisions
 - (upper level)
- Productions and consumptions per scenario (lower level)

Model structure

Bilevel model coupling:

• Social welfare per scenario

Model structure (MPEC)

Minimize Investment cost + Unserved energy cost

subject to:

Investment constraints
 PC+DC+SDE market clearing scenario 1

 •••

 PC+DC+SDE market clearing scenario n

Linearization

Mixed-Integer **NONLINEAR** mathematical programming problem

Mixed-Integer LINEAR mathematical programming problem: Tractable Sufficiently well-conditioned

BILEVEL MODEL: MAXIMUM AVERAGE (3 scenarios) SOCIAL WELFARE

Example

Approach	Investment Plan	Total investment cost (M€)	Social welfare (M€)	Average social welfare (M€)
Bilevel	3-5 , 2-3 4-6 (3)	25.10		292.71
Cost Min. Scenario 1	3-5 , 2-3 2-6 (2)	19.31	275.60	- 2,613.02
Cost Min. Scenario 2	3-5 , 2-3 4-6 (3)	25.10	291.50	292.71
Cost Min. Scenario 3	3-5 , 2-6 4-6 (2)	21.24	286.62	- 423.57

Line contingencies:

- One contingency at a time in one scenario
- Low probability scenario

Example

Contingency	Investment plan	Total investment cost (M€)	Average social welfare (M€)
1 – 2	2-3 , 3-5, 4-6 (3)	25.10	292.71
1 – 5	1-5 , 2-3 , 3-5 4-6 (3)	28.96	292.72
2 – 4	2-3 , 3-5 4-6 (3)	25.10	292.71
3 – 5	2-3 3-5 (2) 4-6 (3)	28.96	292.70

References

 L. Garcés, A. J. Conejo, R. García-Bertrand, R. Romero, "A Bi-level Approach to Transmission Expansion Planning within a Market Environment". IEEE Transactions on Power Systems. Vol. 24, No. 3, pp. 1513-1522, August 2009.

GEP: centralized framework

(centralized framework)

- ✓ Anyone interested (besides EdF)?
- ✓ Worst scenario analysis
- ✓ Multi-scenario analysis
- ✓ MILP formulation
- ✓ Solution: B&C vs. decomposition
- ✓ Some papers: Smeers & Murphy

References

✓ F. H. Murphy, and Y. Smeers, "Generation capacity expansion in imperfectly competitive restructured electricity markets," *Operations Research*, vol. 53, no. 4, pp. 646-661, 2005.

GIP: market framework

- ✓ Oligopolistic generation investors
- ✓ Generation investors
- ✓ Regulators

- Competitive agent
- ✓ Oligopolistic agent
- ✓ Renewable producer
- ✓ Uncertainty: multi-scenario!
- ✓ Bilevel → Stochastic MPEC → MILP
- ✓ Solution: B&C vs. decomposition
- ✓ Papers: Kazempour

Background and Aim

Strategic power producer

- Comparatively large number of generating units
- Units distributed throughout the power network

Background and Aim

Pool-based electricity market

- Cleared once a day, one day ahead and on a hourly basis
- DC representation of the network including first and second Kirchhoff laws
- Hourly Locational Marginal Prices (LMPs)

Background and Aim

Strategic power producer

Best investment options and Best offering strategy to maximize profit

Pool-based electricity market

Features

- Strategic investment and offering for a producer in a pool with endogenous formation of LMPs.
- 2) Uncertainty of demand bids, rival production offers and rival investments.
- 3) MPEC approach under multi-period, networkconstrained pool clearing.
- 4) MPEC transformed into an equivalent MILP.

Deterministic Model Upper-Level → Profit Maximization:

Minimize

Costs - Revenues

subject to:

Investment options

Price = Balance dual variable

Deterministic Model Lower-Level → Market Clearing

Deterministic Model Lower-Level → Market Clearing

subject to:

Production / Demand Power Limits

Transmission Capacity Limits

Angle Limits

Deterministic Model

Linearizations

The MPEC includes the following non-linearities:

1) The complementarity conditions ($0 \le a \perp b \ge 0$). 2) The term $\lambda_{tn} P_{tib}^S$ in the objective function.

Deterministic Model Linearizations → Complementarity Conditions

Fortuny-Amat transformation

$$0 \le a \perp b \ge 0$$

$$\downarrow$$

$$a \ge 0$$

$$b \ge 0$$

$$a \le uM$$

$$b \le (1-u)M$$

$$u \in \{0,1\}$$

M Large enough constant (but not too large)

Deterministic Model

Linearizations $\rightarrow \lambda_{tn} P_{tib}^S$

•Problem-dependent procedures

Stochastic Model

Uncertainty incorporated by using a set of scenarios modeling different realizations of:

- Consumers' bids
- Rival producers' offers
- Future demands
- Rival investments

Stochastic Model. Math Structure (B&C vs. decomposition)

Stochastic Model. Math Structure

- 1. Direct solution: CPLEX, XPRESS
- 2. Decomposition procedures (Lagrangian Relaxation)

Investment options

option	Base technology	Peak technology	
Investment Cost (€/MW)	75000	15000	
Capacity (MW)	0, 500, 750, 1000	0, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000	
Cost: block 1 (€/MWh)	6.01	6.31	
Cost: block 2 (€/MWh)	14.72	15.20	

Investment results

Capacity of tie-lines	Uncongested	450 MW	150 MW
Base technology (MW)	500 (north)	500 (south)	500 (south)
Peak technology (MW)	200 (south)	200 (south)	600 (south)
Total investment (MW)	700	700	1100
Investment profit (M€)	45.55	45.55	47.64

Stochastic case

Uncertainties:

- Rival investment
- Rival offering

Number of scenarios	One	4	12
Base technology (MW)	500 (south)	-	500 (north)
Peak technology (MW)	200 (south)	350 (north) 350 (south)	200 (south)
Total investment (MW)	700	700	700
Investment profit (M€)	45.55	32.25	31.38

IEEE one-area RTS

Number of scenarios	One	4	12 (reduced version)	
Base technology (MW)	-	-	-	
Peak technology (MW)	750 (bus 15)	550 (bus 11)	450 (bus 23)	
Total investment (MW)	750	550	450	N
Investment profit (M€)	82.97	65.66	61.95	И М
Optimality gap (%)	0.10	1.00	1.75	
CPU time	12.14 (s)	3.95 (hours)	3.76 (hours)	

The resulting model, although computationally expensive, is tractable!

Conclusions

- Procedure to derive investments and strategic offers for a power producer in a network constrained pool market.
 - LMPs are endogenously generated.
 - Uncertainty is taken into account.
 - Resulting MILP problem.
- Strategic behavior results in higher profit and lower production.
- Network congestion can be used to further increase profit.

References

 S. J. Kazempour, A. J. Conejo, C. Ruiz, "Strategic Generation Investment using a Complementarity Approach". IEEE Transactions on Power Systems. In press, 2010.

Renewable Generation Investment (RGI)

(who is interested?)

- ✓ Renewable generation investors
- ✓ Regulators

- ✓ Price-taker producer
- ✓ Uncertain production level

Uncertainty (modeling)

- ✓ Uncertainty modeling
- ✓ Complementarity approach

Approach

Complementarity model:

Equilibria for investment problems

Equilibria

Equilibria

Equilibria

- ✓ Solving simultaneously a collection of optimization problems
- ✓ For instance, solving simultaneously the investment problems of several producers

EPEC

Equilibrium Problem with Equilibrium Constraints (EPEC)
MPEC 1
• • •
MPEC n

EPEC

- ✓ Solving simultaneously a collection of MPECs
- ✓ For instance, solving simultaneously the investment problems of several oligopolistic producers

EPEC

- ✓ Multi-Leader-Common-Follower Games
 - Sven Leyffer and Todd Munson "Solving Multi-Leader-Common-Follower Games". Mathematics and Computer Science Division. Preprint ANL/MCS-P1243-0405. April 2005; Revised March 2007.
 - Frederic Murphy and Yves Smeers, "On the Impact of Forward Markets on Investments in Oligopolistic Markets with Reference to Electricity", Operations Research, Vol. 58, No. 3, May–June 2010, pp. 515–528.

Challenges

Challenges (research!)

- Uncertainty characterization
- ✓ Tractability
- ✓ Multi-stage decision making
- ✓ Risk management
- ✓ Stochastic MPEC/ EPEC modeling

Research needed!

